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ABSTRACT 

Dharmadhikari, Shalmali T. Ph.D., Purdue University, May 2015. Imaging Specific 
Absorption Rate With MR Thermometry Using Paramagnetic Lanthanide Complexes 
And In Vivo GABA MR Spectroscopy In Movement Disorders. Major Professor: Ulrike 
Dydak. 

Magnetic Resonance Imaging (MRI) is a popular imaging modality due to its ability to 

provide excellent soft tissue contrast without exposure to ionizing radiation. It can be 

used for temperature monitoring (thermometry) as well as for assessing the biochemistry 

in vivo (MRS). This dissertation focuses separately on the development, application and 

quantitation issues of these two aspects of MRI. 

Radiofrequency (RF)-induced tissue heating is a concern in MRI. The dosimetric quantity 

for monitoring RF heating is the Specific Absorption Rate (SAR) defined as the RF 

power absorbed per unit mass of tissue. A novel approach for imaging SAR from 

absolute temperature images obtained using a paramagnetic lanthanide complex-Thulium 

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylene phosphonate) (TmDOTP5-) 

was developed. The effects of a bare-ended, insulated conductor in a phantom were 

investigated by 3D SAR imaging. 3D SAR maps were also generated using a high SAR 

sequence while varying the pulse duration. The high spatial resolution SAR maps 

correctly identified the local SAR rise near the wire end and also revealed increasing 

SAR with increasing pulse duration in the high SAR sequence, as expected. These results
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demonstrate the potential of MR thermometry with paramagnetic lanthanide complexes 

for evaluating safety of implants, medical devices as well as different pulse sequences. 

The second part of the thesis is dedicated to the technique of measuring in vivo levels of 

the neurotransmitter γ-aminobutyric acid (GABA) using MRS. GABA is an inhibitory 

neurotransmitter in the brain which is involved in the control of fine movement and 

balance. GABA MRS with spectral editing was performed and GABA was quantified 

using custom fitting parameters in the tool LCModel to measure changes in movement 

disorders – particularly Parkinson’s disease (PD) and sleep bruxism. Higher levels of 

thalamic GABA were detected in PD with correlation to disease severity indicating the 

possibility to use GABA MRS as a biomarker for PD progression. On the other hand, in 

the bruxers, lower levels of GABA correlating with higher levels of glutamate in the 

dorso-lateral prefrontal cortex were detected indicating disturbances in the GABAergic 

and glutamatergic pathways.  

Lastly, since GABA quantification is a much discussed topic in literature with no one, 

clear and best approach, an effort was made to compare some popular fitting approaches 

in LCModel. Semi-synthetic simulated GABA spectra were used to test the accuracy, 

sensitivity and specificity of methods, all of which handled the baseline and 

macromolecules in the GABA spectra differently. Overall, the approaches using a fully 

flexible baseline ranked best in the tested aspects. 
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OUTLINE 

This dissertation consists of projects based on two distinct magnetic resonance (MR) 

methodologies and will be presented in different chapters as outlined below: 

Chapter 1. My PhD was started with a focus on development of MR thermometry using 

paramagnetic lanthanide complexes for evaluation of radio frequency heating in MRI. 

After two years of progress in this study, the experiments were halted due to the major 

professor’s voluntary retirement from academia. Results from the initial experiments 

conducted in this project will be presented in this chapter. 

Chapter 2. Change in major professor led to a change in my PhD research topic. The 

focus of my new research was the application of special edited magnetic resonance 

spectroscopy (MRS) techniques for quantification of gamma-aminobutyric acid (GABA) 

in movement disorders. This chapter will briefly discuss the role of GABA in movement 

disorders and the technique and challenges of GABA MRS.  

Chapter 3. This chapter will focus on the application of GABA MRS in Parkinson’s 

Disease (PD). Particularly the finding of significantly higher thalamic GABA in PD and 

its correlation with motor scores will be discussed as a potential biomarker of PD. 

Chapter 4. Application of GABA MRS in sleep bruxism, which is also a movement 

disorder, will be discussed in this chapter. The significant findings of changes in levels of
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 GABA and glutamate in the dorso-lateral prefrontal cortex will be presented and 

discussed. 

Chapter 5. The concluding chapter will focus on the comparison of GABA quantification 

strategies using different fitting methods in LCModel to determine their accuracy, 

sensitivity and specificity. A recommendation based on a current study will be made for 

future studies using GABA MRS. 
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 IMAGING SPECIFIC ABSORPTION RATE USING HYPERFINE CHAPTER 1.
SHIFTED RESONANCE OF PARAMAGNETIC LANTHANIDE COMPLEX 

“Evaluation of RF safety by high temperature resolution MR thermometry using a 

paramagnetic lanthanide complex” 

Submitted to Magnetic Resonance in Medicine, Minor revision pending. 

 INTRODUCTION 1.1

1.1.1 Radio frequency heating in MRI 

Magnetic Resonance Imaging (MRI) uses radio-frequency (RF) pulses to excite MR-

sensitive nuclei in the body. When RF pulses are used for altering the state of the spins, 

the energy exchange between the nuclei and pulses causes some power to be deposited in 

the material being excited. Due to T1 relaxation this absorbed RF power converts to heat 

inside the patient (M. A. Brown & Semelka, 2011). Moreover, the eddy currents induced 

due to the RF pulses can cause tissue heating which can become a safety hazard if not 

monitored. Specific absorption rate (SAR) is a dosimetric measure of the absorption of 

electromagnetic energy in the body. It is defined as the rate of energy absorbed per unit 

mass of material and is typically measured in watts per kilogram (W/kg). National and 

International agencies like the Food and Drug Administration (FDA), American Society
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 for Testing and Materials (ASTM), International Electrotechnical Commission (IEC) etc. 

have recommendations and guidelines to ensure that SAR is not exceeded beyond certain

 limits (ASTM, 2011; FDA, 2014; IEC, 2010). For instance, the current FDA limits for 

significant risk are as shown in  

Table 1. 

Table 1. FDA SAR limits for significant risk 

Specific Absorption Rate (SAR) is a measure of the RF power deposited and is dependent 

on several factors that affect energy deposition. It depends on the resonance frequency 

(dependent on the magnetic field strength and the nuclei of interest), the RF pulse 

characteristics (type, amplitude, duration, duty cycle, etc.), the pulse repetition time, the 

type of RF coil used (linear vs. quadrature transmission, receive only vs. transmit and 

receive, etc.), the presence of conducting structures like implants and prosthetic devices 

and so on (Shellock, 2001). Hence accurate prediction of SAR is highly challenging with 

so many variables. SAR is used for determination of RF safety in MRI. With the 

availability of high-field MRI systems, special pulse sequences, and increasing usage of 

Site Dose 
Time (min) equal to or 

greater than 
SAR (W/kg) 

whole body averaged over 15 4 

head averaged over 10 3.2 
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implanted devices, it is critical to evaluate SAR better so as to increase the benefit to risk 

ratio to patient population. 

1.1.2 SAR measurement concerns 

The recommended method to measure SAR is based on measurement of temperature rise 

induced by the RF field over time. One such recommendation by ASTM, standard 

F2182-11a, describes a test procedure for evaluating the RF-induced temperature rise 

associated with an MR procedure that involves irradiation of an implant. This is done by 

applying an RF field capable of producing SAR of 2 W/kg or more for about 15 min and 

using fiber optic probes to measure implant heating. The local SAR is then estimated 

based upon the local temperature change measurements according to the equation 

        𝑆𝑆𝑆 = 𝑐 ∆𝑇/∆𝑡                          [1] 

where c is the specific heat capacity of the phantom material (4,160 J/kg °C for water) 

and ∆T is the change in temperature (°C) over time ∆t (s). The SAR is determined by 

calculating ∆𝑇 ∆𝑡�  using a linear fit over the 15 min period.

Although this method offers a straightforward way of measuring SAR, it is limited to a 

local measurement. Temperature measurements made with temperature probes suffer 

from several drawbacks including the effect of probe sensitivity on the measurement, 

probe area in contact with material, probe location, etc. as shown in earlier studies 

(Bassen, Kainz, Mendoza, & Kellom, 2006; Mattei et al., 2007). Hence local 

measurements of temperature using physical probes may not be adequate in the presence 

of hotspots or large temperature gradients. Studies have shown that local SAR increases 
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can be as high as 14% for high-field systems (Wolf, Diehl, Gebhardt, Mallow, & Speck, 

2013) and hence spatial SAR information is crucial for comprehensive determination of 

RF safety. The current recommended calorimetric methods based on temperature probe 

measurements do not have sufficient spatial resolution. Similarly, the RF dosimeters that 

use transducers for measuring SAR are limited to whole body SAR measurement and are 

incapable of identifying local SAR increase (Qian, El-Sharkawy, Bottomley, & Edelstein, 

2013). Lack of spatial temperature information could potentially miss hotspots leading to 

an underestimated SAR.  

While simulation and numerical modeling methods like Finite Difference Time Domain 

(FDTD) may provide the needed spatial temperature distribution (Cao, Park, Cho, & 

Collins, 2014; Jin & et al., 1996; S.-M. Park, Kamondetdacha, & Nyenhuis, 2007; S. M. 

Park, Kamondetdacha, Amjad, & Nyenhuis, 2005), accurate computation of the fields 

near the implants is a challenging task due to the presence of extremely high spatial 

gradients at these locations and the need for very fine computational structures (Bassen et 

al., 2006). Methods based on temperature dependence of T1 have good temporal 

resolution but the temperature sensitivity is only ~10 ms/K making it challenging to 

detect small changes in temperature in the T1 maps (Gensler et al., 2012). MR 

thermometry methods based on water proton frequency shift have been proposed for 

temperature mapping (Ishihara et al., 1995; Liu et al., 2014; Poorter et al., 1995; Rieke & 

Butts Pauly, 2008). These methods can provide high spatial and temporal resolution, but 

still do not have enough temperature resolution necessary for evaluation of RF heating 

during MRI. Since water proton chemical shift sensitivity is only ~0.01 ppm/°C, such 
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small temperature changes produce very small changes in chemical shifts (~0.0022 ppm) 

which can be challenging to measure. 

1.1.3 MR Thermometry using Paramagnetic Lanthanide Complex for measurement of 

SAR 

MR Thermometry using paramagnetic lanthanide complexes can provide the high spatial 

and temperature resolution needed for SAR measurement. One of the complexes of 

interest to MR thermometry is Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis 

(methylene phosphonate) or TmDOTP5-. TmDOTP5- has six magnetically non-equivalent 

groups of protons (H1-H6) and four magnetically equivalent phosphorus atoms due to its 

fourfold symmetry as depicted in (C. S. Zuo, Metz, Sun, & Sherry, 1998). All the six 

groups of protons have different chemical shifts and sensitivity to temperature as shown 

in Table 2 . The chemical shift of a proton signal H6 at -155.7 ppm is much more 

sensitive to temperature (0.87 ppm/°C) than the water proton chemical shift (0.01 ppm/°C) 

(Hindman, 1966; Schneider, Bernstein, & Pople, 1958; C S. Zuo et al., 1996). 

Figure 1.1 Structure of TmDOTP5- molecule 
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Additionally, MR thermometry with the paramagnetic lanthanide complexes is less 

susceptible to magnetic field inhomogeneity and instrumental instabilities compared to 

water and can provide absolute temperature measurements using water as reference 

(James, Gao, Miller, Babsky, & Bansal, 2009; C S. Zuo et al., 1996; C. S. Zuo et al., 

1998). All these properties make MR thermometry using TmDOTP5- well-suited for SAR 

measurement. Furthermore, the current methods of SAR calculation do not account for 

any heat losses that may contribute to the temperature changes occurring during MRI. 

Hence, there is a critical need for a method that can provide sufficient temperature and 

spatial resolution, and model the heat exchange effectively. 

Table 2. Chemical shift and temperature co-efficient (CT) of TmDOTP5- proton groups 
(adapted from (C. S. Zuo et al., 1998)) 

H1 H2 H3 H4 H5 H6 

Shift (ppm) at 25 °C -193.7 92.8 72.7 513.6 -398.9 -155.7 

CT (ppm/°C) 1.08 -0.54 -0.42 -2.88 2.19 0.87 

The overall goal of this project was to develop, validate and apply a MR thermometry 

technique using a paramagnetic lanthanide complex Thulium 1, 4, 7, 10-

tetraazacyclododecane-1, 4, 7, 10-tetrakis (methylene phosphonate) (TmDOTP5-) for 

evaluation of SAR.  

The specific aims of this project were: 
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Aim 1(a): To develop a high temperature and high spatial resolution MR thermometry 

technique using the paramagnetic lanthanide complex TmDOTP5- for imaging absolute 

temperature in phantoms.  

Hypothesis 1(a): 3D absolute temperature images with high spatial and temperature 

resolution can be obtained using TmDOTP5- which can be further used to accurately 

meassure SAR with high spatial resolution. 

Aim 1(b): To develop and apply a mathematical model for imaging SAR from absolute 

temperature images obtained in phantoms. 

Hypothesis 1(b): The temperature change produced in phantoms during MRI is a 

combined effect of RF heating as well as heat loss due to heat dissipation. Use of high 

resolution absolute temperature images with an improved model accounting for heat 

dissipation for SAR calculation will enable accurate and high resolution imaging of SAR. 

Aim 2: To apply the SAR imaging method to determine the effects of a) a metallic wire 

(conductor) and b) a SAR-intensive pulse sequence, in a phantom for evaluating RF 

safety. 

Hypothesis 2: Introduction of a metal conductor perturbs the electric field in the phantom 

causing localized areas of heating (hot-spots). Pulse sequences that have intrinsically high 

SAR need to be evaluated for RF safety. The ability to image SAR will provide 

knowledge of the spatial heating patterns produced in these cases. 
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  MATERIALS AND METHODS 1.2

1.2.1 MR System and phantom 

MR experiments were performed on a Varian 9.4 T, 31-cm diameter horizontal bore 

system (Varian, Palo Alto, CA, USA) using a quadrature birdcage RF coil (40-mm 

diameter, 80-mm length) dual tuned to 400 MHz for 1H and 106 MHz for 23Na. A 30-ml 

cylindrical vial (25-mm diameter and 6 mm in length) filled with 50 mM TmDOTP5- 

(formula: TmC₁₂H₂₄N₄O₁₂P₄Na₅•5H₂O) (Macrocyclics, Dallas, TX, USA) in 4% 

agarose gel prepared in normal saline was used as the phantom. 

1.2.2 Set-up and data acquisition 

The phantom was equilibrated to the scanner temperature by keeping it in the magnet 

bore overnight before the experiment. A temperature probe taped outside the phantom 

was used to monitor the ambient temperature throughout the experiment. The phantom 

Figure 1.2 a) Schematic of phantom setup and b) actual photo 50 mM TmDOTP5- in 
4% agarose gel with c) bare-ended insulated wire inserted in it. The dashed lines in 
(b) show three representative regions for comparison of SAR. 
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was firmly wrapped in paper to minimize losses to surrounding. Before each experiment, 

the magnet was shimmed to a line width of ≈100 Hz for water resonance (4.7 ppm). 

1.2.3 Calibration of temperature coefficient of TmDOTP5- 

TmDOTP5- contains six magnetically non-equivalent groups of protons (H1 to H6), each 

of which has a different chemical shift and temperature coefficient (C. S. Zuo et al., 

1998). The H6 resonance from TmDOTP5- was used because of its desirable combination 

of chemical shift temperature dependence and line width (C. S. Zuo et al., 1998). 

Temperature dependence of the chemical shift difference between the H6 proton 

resonance from TmDOTP5- and water was determined by MR spectroscopy using a 

phantom inserted with a fiberoptic probe. The fiberoptic probe (Photon Control Inc., 

Canada) used for calibration experiments had an accuracy = ± 0.01 °C. The transmitter 

offsets (tof) for on-resonance condition for the H6 resonance from TmDOTP5- (-155 ppm) 

(C S. Zuo et al., 1996) and water (4.7 ppm) were noted as tofTmDOTP5
- and tofH2O, 

respectively, and kept constant throughout the experiment. 1H water and TmDOTP5- 

spectra were obtained alternatively using a 500 µs sinc-shaped 90° excitation RF pulse 

followed by acquisition of 2000 data points for TmDOTP5- and 8000 data points for 

water over a spectral width of 40 kHz. Phantom temperature was recorded from the 

fiberoptic probe after each TmDOTP5- spectrum. A plot of the difference in chemical 

shifts of water and TmDOTP5- signals (∆F (ppm)) as a function of the measured 

temperature (°C) was made and the intercept (c0) and the slope (c1) were obtained from 

the plot. The calibration constants were used in future imaging experiments to compute 

absolute temperature images from differences in chemical shifts of TmDOTP5- and water. 
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1.2.4 Absolute temperature imaging using TmDOTP5- 

3D MR images were acquired using the same phantom (control) as used in the calibration 

experiments. Before each experiment, shimming was done to achieve a line width of 

about 100 Hz for water resonance (4.7 ppm). After shimming, water and TmDOTP5- 

spectra were obtained and the resonance frequencies were determined. The on-resonance 

tofH2O and tofTmDOTP5
- were noted and kept constant for water and TmDOTP5- imaging. 

Phase-sensitive 3D 1H water and TmDOTP5- images were acquired one after the other 

using a 3D GRE imaging sequence with a 500 µs sinc-shaped 90° excitation RF pulse 

and the following parameters: repetition time (TR) = 150 ms, echo time (TE) = 1.1 ms, 

data matrix = 64 (x-axis) × 64 (y-axis) × 128 (z-axis), and field of view (FOV) = 32 × 32 

× 64 mm3. One transient was collected for each phase-encoding step for water imaging. 

Weighted signal summation technique was employed in two phase encode directions to 

improve signal to noise ratio (SNR) during TmDOTP5- imaging (Bansal & Seshan, 1995). 

In this technique, the number of signal transients summed at different phase-encoding 

steps are varied such so as to obtain similar signal conditioning effects as produced by 

apodization with a Gaussian function. The time for acquisition of each 3D 1H water and 

TmDOTP5- image pair was approximately 4 min. The average phantom temperature was 

also monitored by collecting pulse-acquire spectra of water and TmDOTP5- using the 

same parameters as used in the calibration experiments. Repeated sets of 3D water and 

TmDOTP5- images and spectra were collected continuously. The ambient temperature 

was measured using a fiberoptic probe placed in the proximity of the phantom throughout 
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the experiment. The experiments were conducted until the measured phantom 

temperature plateaued. 

To demonstrate the effects of a bare-ended insulated metallic conductor on SAR 

distribution, a piece of a coaxial wire (AWG 22, 35-mm in length) was introduced in the 

control phantom. The outer plastic sheath and metallic shield were completely removed 

and 3-4 mm of the inner electric insulation at the ends was stripped to expose bare ends. 

The wire was placed in the phantom along the long axis away from the center as shown 

in Figure 1.2. 3D 1H water and TmDOTP5- images were acquired using the same imaging 

parameters and repeating the same steps as described in the above experiment. 

Additionally, a high SAR 3D T1rho sequence was used to demonstrate the ability to 

image the effect of pulse sequence parameters on absolute temperature and SAR. The 3D 

GRE sequence for water was modified by addition of a pre-encoded pulse cluster 

consisting of a pair of non-selective 90° pulses separated by an on-resonance, long 

duration spin lock (SL) pulse cluster. The same control phantom as used in calibration 

experiments was used. 3D 1H water and TmDOTP5- images and spectra were acquired 

continuously using the same parameters as used in the above experiments, in addition to 

the SL pulse cluster in the 1H MRI experiment. Separate experiments were conducted to 

evaluate the effect of increasing SL pulse duration (0 (equivalent to conventional GRE), 

50 and 100 ms) on SAR. 

All the data processing and analysis was done using MATLAB (ver. R2009b, Mathworks, 

Natick, MA, USA). 3D images of difference in chemical shifts of water and TmDOTP5- 
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(∆F) were calculated from the differences in phase shifts (∆Φ) of the collected 3D water 

and TmDOTP5- images, using the relationship (James et al., 2009)  

∆𝐹 = 1
𝑓0
�(𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑤 − 𝑡𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇5−) + � ∆𝜙

360∗𝜏
� + �𝑛𝑤𝑤𝑤𝑤

𝜏
��              [2] 

where f0= 400.395 MHz was the spectrometer frequency, tofH2O and tofTmDOTP
5- were the 

transmitter offsets used for collecting water and TmDOTP5- images, respectively, t was 

the echo time for imaging sequence and nwrap = 0, 1, 2,...n was the number of phase wraps. 

3D absolute temperature images were calculated from the ∆F images using the 

relationship 

𝑇 = (𝑐1 ∗ Δ𝑡) + 𝑐0            [3] 

where c0 and c1 were the calibration constants derived from calibration experiments. 

1.2.5 Calculation of SAR from absolute temperature images 

The temperature changes in the phantom are due to the competing mechanisms of RF 

heat deposition and heat loss to the environment (Gorny & et al., 2008). Hence, to 

compute the SAR images from the absolute temperature images, a cooling term was also 

incorporated in the model in addition to the RF heat deposition. The recommended model 

as in Eq. [1] was modified to the form  

( )
( ( ) )a

dT t SAR
k T t T

dt c
= − ∗ − +

[1]

where ( ) /dT t dt is the rate of change in temperature (°C/s), T(t) is the measured phantom 

temperature (°C), Ta is the ambient temperature (°C), k is a cooling constant (s-1), and c is 
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the specific heat capacity of water (4186 J/kg °C) (Gorny & et al., 2008). 

A voxel-by-voxel fitting of the change in absolute temperature in consecutive images 

over time ( ( ) /dT t dt ) as a function of difference between the sample and ambient 

temperature ( ( ) ( )T t T a− ) was performed using the above model and 3D SAR and 

cooling constant images were obtained. 

 RESULTS 1.3

1.3.1 Calibration experiment 

In our experiments, a temperature co-efficient (CT ) of 1.03 ppm/°C, almost 102 times that 

of water was obtained for TmDPTP5- (Figure 1.3) similar to that obtained by others (Sun 

et al., 2000). The difference in chemical shifts of water and TmDOTP5- (∆F, ppm) were 

plotted against the phantom temperatures measured using fiberoptic probe (T, °C) as seen 

Figure 1.3 Change in 1H chemical shift of water and TmDOTP5- signal with temperature. 
The chemical shift of TmDOTP5- is ≈102 times more sensitive than water. 
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in Figure 1.4 and calibration constants were obtained by repeating the experiments twice. 

The plots yielded a slope (c1) of −1.1035 (± 0.0005) ppm/°C, and an intercept (c0) of 

182.25 (± 0.0005) which were then used to compute the absolute temperature images as 

per Eq. [3].  

1.3.2 Effect of an insulated bare-ended metallic conductor on SAR 

Figure 1.5 shows the computed 3D absolute temperature and SAR images in a control 

phantom (top row) and a phantom with a wire (bottom row) acquired using a 3D GRE 

sequence. The SAR of the control phantom was seen to be more or less homogenous 

except slightly higher SAR near the top of the phantom and sides compared to the bottom 

and center of phantom. Introduction of a conductive wire to the phantom altered the SAR 

distribution and a sharp local SAR increase was seen near the exposed ends of the wire 

(Figure 1.5).  

The average SAR profile was computed in a 3 x 3 voxel neighborhood along the 

phantom’s long axis where a wire was be inserted later as shown in Figure 1.6. About 29% 

Figure 1.4 Plot for obtaining calibration constants between difference in chemical shift of 
TmDOTP5- and water and measured temperature. 
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elevation in average SAR was observed around the exposed end of the wire (1.8 W/g), 

compared to the rest of the phantom (1.4 W/kg) and at same location in the control 

phantom (1.4 W/kg). The average SAR profile was also computed along the phantom’s 

diameter (x-y plane) in a 3 x 3 voxel neighborhood at three axial slice locations as 

represented in Figure 1.7 in both the phantoms. At region 1, which was the axial slice 

corresponding to the top exposed end of the wire, and along the diameter, the average 

SAR in the control phantom and the phantom with wire had a similar distribution with 

slightly higher SAR in phantom with wire (Figure 1.7a). However, along a plane through 

the wire, an elevation in average SAR (1.8 W/kg) was observed compared to the center 

(1.6 W/kg) as well as to the control phantom in same plane (1.4 W/kg) (Figure 1.7b).  

Figure 1.5 Representative sagittal slices of a phantom without (top) and with (bottom) a 
bare-ended insulated wire, acquired using a 3D GRE sequence. Figure shows a) 1H 
image, b) and c) temperature images at the start and end of experiment, and d) SAR 
image. 
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At region 2, which corresponded to the central axial slice, the average SAR in the 

Figure 1.7 A plot of average SAR, computed in a 3 x 3 voxel neighborhood around 
the length of the wire as seen in the representative slice (inset) in control phantom 
(gray) and phantom with wire (black).  

Figure 1.6 Average SAR profile in the top axial slice of the phantom (near the top 
exposed end) computed in a 3x3 voxel neighborhood along a) phantom diameter and 
b) off-set from phantom diameter near wire exposed end in the phantom with wire 
(black) and control phantom (gray). 
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phantom with wire as well as control phantom was higher along the edges compared to 

the center (Figure 1.8). At region 3, which was the axial slice corresponding to the lower 

exposed end of the wire, along the diameter, the average SAR in the control was higher at 

the surface and lower in the middle whereas in the phantom with the wire, it was higher 

in the center (Figure 1.9a). However, along a plane through the wire, an elevation in 

Figure 1.9 Average SAR profile in the middle axial slice of the phantom (away from the 
exposed ends) computed in a 3x3 voxel neighborhood along a) phantom diameter and 
b) off-set from phantom diameter near wire exposed end in the phantom with wire 
(black) and control phantom (gray). 

Figure 1.8 Average SAR profile in the bottom axial slice of the phantom (near the 
bottom exposed end) computed in a 3x3 voxel neighborhood along a) phantom 
diameter and b) off-set from phantom diameter near wire exposed end in the phantom 
with wire (black) and control phantom (gray). 
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average SAR (1.2 W/kg) was observed compared to the same location in the control (0.9 

W/kg) (Figure 1.9b). The overall average SAR of the entire phantom with the wire was 

higher than that of the control (wire=1.42 ± 0.13 W/kg vs control= 1.3 ± 0.03 W/kg). 

1.3.3 Effect of SAR-intensive pulse sequence on SAR 

Figure 1.10 shows representative sagittal SAR images computed in the control phantom 

for increasing pulse duration. The T1rho sequence revealed small but higher overall 

average SAR with increasing SL pulse duration. For SL = 0, 50, and 100 ms, average 

SAR was 1.3 ± 0.03, 1.79 ± 0.26, and 1.97 ± 0.17 W/kg, respectively. 

 DISCUSSION AND CONCLUSION 1.4

The computed temperature and SAR images were found to be sensitive to small spatial 

variations in temperature and SAR. The insulated metallic wire with bare ends was used 

to simulate the presence of a lead-wire or implant in the phantom. It was used mainly to 

demonstrate the feasibility of detecting RF heating effects of such a conducting wire 

inside a phantom during MRI and did not necessarily cause maximal heating condition. 

Figure 1.10 Left to right, representative SAR images of a control phantom acquired with 
3D T1rho sequence and SL pulse duration of 0, 50 and 100 ms, respectively. 
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Nevertheless, high temperature and elevated SAR at the wire exposed end was identified, 

which is in agreement with the previously shown higher rate of temperature change 

produced at the implant lead (Mohsin, Nyenhuis, & Masood, 2010; S.-M. Park et al., 

2007; Yeo, Wang, Loew, Vogel, & Hancu, 2011). The SAR of the control phantom was 

higher at the top compared to the bottom (Figure 6a and 8a). Similarly, the SAR at the 

top exposed end of the wire was higher than that at the lower exposed end (Figure 6b and 

8b) indicating a difference in energy deposition of the coil itself. This RF coil energy 

deposition heterogeneity may be attributed to the presence of capacitors gaps on that part 

of the RF coil. To investigate the effects of a high-SAR sequence, the T1rho sequence 

was chosen due to its high SAR characteristic, simplicity and similarity to a GRE. T1rho 

pulse sequences require more RF power than the conventional sequences due to the 

addition of a long duration SL pulse (Regatte, Akella, Borthakur, Kneeland, & Reddy, 

2003; Wheaton, Borthakur, Corbo, Charagundla, & Reddy, 2004) and the computed SAR 

images were sensitive to detect small changes in SL duration.  

In our proposed model, heat losses to the environment were accounted for by including a 

general cooling term. However, it is possible that certain heat losses occurred within the 

phantom as a result of longer imaging times due to thermal diffusion, although heating as 

a result of imaging was continuous. Since RF heating is dependent on the pulse sequence 

parameters, different temperature and SAR patterns could emerge if different parameters 

were adopted (lower flip angle, low-resolution imaging plane resulting in shorter scan 

times, etc). Furthermore, due to the complexity involved in estimating the heat 
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dissipation by different mechanisms like perfusion, perspiration, etc. in actual patients, it 

may be reasonable to exclude such heat losses and to calculate the worst-case SAR.  

A few limitations of the study include low temporal resolution of SAR images, the 

development of the technique on an ultra-high field system and the use of TmDOTP5- 

among other Tm3+ complexes. Due to the pilot nature of this study, the imaging 

parameters were optimized for obtaining 3D images with good SNR and spatial 

resolution. This resulted in a temporal resolution of 4 min for the computed temperature 

and SAR images.Although the current study was conducted only on a preclinical, high 

field strength scanner, earlier studies by Coman et. al and Zuo et. al. have shown that the 

lanthanide complexes of Thulium retain their high chemical shift sensitivity to 

temperature even at clinically relevant field strengths with only nominal SNR loss 

(Coman, Trubel, & Hyder, 2010; Chun S Zuo, Mahmood, & Sherry, 2001). Further 

experiments are needed to evaluate and establish this technique at a clinical field strength. 

One of the advantages of using TmDOTP5- for SAR measurement is the high temperature 

sensitivity of 1H chemical shift compared to other Tm3+ complexes. In addition, 31P 

chemical shifts in TmDOTP5- also exhibit high temperature sensitivity and hence can be 

used for testing 31P coils and pulse sequences (C S. Zuo et al., 1996). TmDOTP5- has 

been used to induce temperature-dependent hyperfine shifts in 23Na signals for MR 

thermometry (Shapiro, Borthakur, & Reddy, 2000) and hence may also be used for 

testing 23Na coils and sequences. These were the primary reasons for selection of 

TmDOTP5- in our study. Currently, the use of TmDOTP5- is limited to phantom 

experiments due to its possible toxic effect in animals. However, the same technique may 
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be applied in vivo using another paramagnetic lanthanide complex, TmDOTMA-, which 

is ≈60 times more sensitive to temperature than water and which has been used for 

absolute temperature measurements.  

The presence of a large number of variables influencing the RF heating process makes it 

tedious to perform extensive and exhaustive experimental measurements. While 

simulation approaches based on numerical tools may be useful to limit the actual number 

of experimental measurements required, such methods need appropriate experimental 

validation to get reliable results (Mattei, Calcagnini, Censi, Triventi, & Bartolini, 2010). 

This can be facilitated by using MR thermometry with paramagnetic lanthanide 

complexes. While MRI artifacts were not detected for the specific conductor used, some 

metal implants may cause substantial image artifacts including signal loss. Careful 

selection of parameter and pulse sequences can be used to avoid or reduce such artifacts, 

thus, enabling the use of the proposed method for evaluation of heating due to implant 

(Hargreaves et al., 2011; Lu, Pauly, Gold, Pauly, & Hargreaves, 2009). 

We propose a novel method for calorimetric measurement of SAR using hyperfine 

shifted resonance from TmDOTP5-. The developed MR technique for imaging of absolute 

temperature and SAR with a superior temperature and spatial resolution will have great 

potential in providing accurate understanding of RF heating during MRI and can be of 

significant interest for evaluation of RF coils, medical implants and devices and new 

pulse sequences. 
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 GAMMA-AMINOBUTYRIC ACID (GABA) MR SPECTROSCOPY IN CHAPTER 2.
MOVEMENT DISORDERS 

 GABA AND ITS LINK TO MOVEMENT DISORDERS 2.1

Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the 

mammalian brain. It is synthesized from glutamate by the enzyme glutamic acid 

decarboxylase in the GABAergic neurons. Although the typical GABA concentration in 

the brain is only approximately 1 millimolar (mM), it plays a vital role in the control of 

movement. Alterations in GABA levels have been linked to several movement

Figure 2.1 Representation of basal ganglia 
and surrounding structures involved in motor 
control. 
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and psychiatric disorders (Emir, Tuite, & Öz, 2012; Z Long et al., 2013; Öngür, Prescot, 

McCarthy, Cohen, & Renshaw, 2010; Öz et al., 2006; Isabelle M Rosso et al., 2013).  

The basal ganglia (BG) are a group of structures in the brain that are involved in motor 

and cognitive processing and are part of a neuronal network organized in parallel circuits 

(Obeso, Rodríguez-Oroz, Rodríguez, Arbizu, & Giménez-Amaya, 2002). The BG 

comprise the caudate nucleus and putamen (neostriatum), the ventral striatum, the 

external and internal pallidal segment (GPe and GPi, respectively), the subthalamic 

nucleus (STN), and the substantia nigra with its pars reticulata and pars compacta (SNr 

and SNc, respectively) (Galvan & Wichmann, 2007) (Figure 2.1). The BG are 

components of larger circuits (motor circuit) that involve thalamus and cortex whose 

major inhibitory and excitatory neurotransmitters are GABA and glutamate (Glu), 

Figure 2.2 Direct and indirect pathway of basal-ganglia. 



26 

respectively. The motor circuit is most relevant to the pathophysiology of movement. 

Motor control is governed by basal ganglia-thalamocortical circuits via two major 

pathways – the direct pathway and the indirect pathway. The direct pathway involves 

sequential GABAergic inhibitory synapses in the SNr and the thalamic nuclei, releasing 

excitatory glutaminergic thalamo-cortical projections (P. Brown & Marsden, 1998). The 

direct pathway, therefore, results in the excitation of the motor cortex by the thalamus. 

Once stimulated, the cortex projects its own excitatory outputs to the brain stem and 

ultimately muscle fibers via the lateral corticospinal tract. The indirect route, on the other 

hand, facilitates suppression of thalamo-cortical activity via the STN and the GPi/SNr (P. 

Brown & Marsden, 1998). This results in decreased stimulation of the motor cortex by 

the thalamus and reduced muscle activity (Galvan & Wichmann, 2007). Thus, the 

indirect and direct pathways have opposite and highly balanced effects on motor activity. 

These pathways are illustrated in Figure 2.2. 

Both the BG pathways are modulated by the SNc, which produces the neurotransmitter 

dopamine (DA). DA has an excitatory effect on the direct pathway (causing movement) 

but an inhibitory effect on the indirect pathway (preventing movement). Thus, in the 

presence of DA, D1-receptors in the basal ganglia stimulate the GABAergic neurons 

increasing movement, while the D2-receptors in the basal ganglia inhibit these 

GABAergic neurons, reducing the inhibitory effect of the indirect pathway. The control 

of movement is thus achieved via interactions between the direct and indirect pathways 

(Wichmann & Delong, 2007). Abnormal increment or reduction in the inhibitory output 
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activity of BG gives rise, respectively, to poverty and slowness of movement (i.e., 

Parkinson's disease) or dyskinesias (Obeso et al., 2002).  

 DETECTION OF GABA USING MRS 2.2

1H magnetic resonance spectroscopy (MRS) is a very useful tool for the in vivo study of 

brain metabolism and physiology. It provides information about energy metabolism (in 

the form of creatine, phosphocreatine, etc.), about neurotransmission (through the 

detection of glutamate, GABA, etc.), neuronal integrity (through measurement of N-

acetylaspartate) and about membrane metabolism and integrity via choline detection. The 

signal amplitudes of an MRS acquisition and the resultant peaks in the reconstructed 

spectrum are directly related with the number of resonating nuclei and the amount of 

substance seen by the MRS experiment. Thus the spectral peaks and patterns provide a 

direct, but not absolute, measure for the concentration of the metabolites (Stagg & 

Rothman, 2013). Figure 2.3 shows a such representative 1H brain spectrum at 7T.  

Figure 2.3 A representative short echo time brain spectrum 
acquired at 7 T.
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However, in vivo brain MRS has some challenges. At lower field strengths, one 

prominent limitation is the spectral overlap that can hinder the identification of individual 

components. Peak broadening due to field inhomogenities and the millimolar 

concentrations of metabolites, which can be difficult to detect in low signal to noise 

spectra are some of the other challenges that need to be overcome for successful in vivo 

acquisition. Detection of low concentration GABA is, thus, difficult by conventional 

MRS at a field strength of 3T since the NMR-detectable GABA peak at 3 ppm is 

overlapped by the much larger creatine peak, and is not well resolved at lower field 

strengths and in the presence of magnetic field inhomogenities.  

A special editing technique based on the spin-spin coupling of the molecules was 

introduced by Rothman and has become popular for GABA spectroscopy (D L Rothman, 

Behar, Hetherington, & Shulman, 1984) (D. L. Rothman, Petroff, Behar, & Mattson, 

1993). Spectral editing is typically defined as a technique that utilizes scalar coupling to 

achieve spectral simplification (de Graaf, 2014). The electronic shielding of a nucleus 

depends on the chemical bonding and its perturbation by the spins of neighboring nuclei. 

Nuclei in a molecule may not only couple directly, but also indirectly via their chemical 

bindings. Since the linkage of these nuclear spins is provided by their binding electrons, 

the interaction has been named J-coupling. Coupling constants of this weak scalar 

interaction are in the range of 1–15 Hz for 1H–1H couplings, and the corresponding shifts 

split the individual resonances into characteristic multiplet structures (Stagg & Rothman, 

2013). Unlike absolute values of the chemical shift, J-couplings do not depend on the 
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magnetic field strength. Many 1H brain metabolites exhibit J-couplings and one such 

example is GABA. 

The GABA molecule (molecular formula: C4H9NO2) is made of six NMR observable 

protons in three methylene groups (H2, H3 and H4) (Figure 2.4). At lower magnetic field 

strengths, the GABA-H4 is strongly coupled to two protons of GABA-H3. The triplet 

resonances for GABA-H4 and H2 appear at 3.01 ppm and 2.28 ppm while the GABA-H3 

quintet appears at 1.89 ppm (Figure 2.5). During a Hahn-spin echo sequence, the spins 

evolve in the transverse plane, termed phase evolution or J-modulation. This J-

modulation depends on TE and gives rise to distinct resonance patterns. In the GABA 

spin system, the outer resonances of GABA-H4 and H2 undergo modulation (completely 

inverted at TE=1/2J = 68 ms) while the inner resonance does not undergo modulation. 

Spectral editing, by alternately allowing and inhibiting the spin evolution, makes use of 

this coupling difference to differentiate between scalar-coupled and uncoupled spin 

systems (de Graaf, 2014).  

Figure 2.4 Representative structure of GABA molecule.
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A popular pulse sequence for J-editing of GABA is the MEscher-Garwood Point 

RESolved Spectroscopy (MEGA-PRESS) sequence, as shown below (M Mescher, H 

Merkle, J Kirsch, M Garwood, & R Gruetter, 1998b). It consists of a conventional 

PRESS localization with added water suppression pulses (MEGA, Chemical Shift 

Selective (CHESS) or VAriable Pulse power and Optimized Relaxation (VAPOR)) and 

dual-banded, narrow, frequency selective pulses. For GABA editing, one band of the 

frequency selective pulses is placed at the H3 resonance (1.9 ppm) and the other band is 

placed at water (4.7 ppm) in one scan (ON scan). In the next scan, the double banded 

editing pulse is turned off/ placed symmetric to water at 7.5 ppm (OFF) and 4.7 ppm. 

Such spectra are acquired as ON and OFF spectra alternately at TE = 68 ms. The 

Figure 2.5 MEGA-PRESS pulse sequence representation 

Figure 2.6 Three methylene groups provide three GABA 
resonances 
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subtraction of the ON and OFF spectra gives a GABA difference spectrum which 

theoretically has only the outer GABA-H4 resonances at 3 ppm, since the inner resonance 

and overlapping creatine signal is nulled during subtraction. Current implementation of 

MEGA-PRESS includes addition of two editing pulses to PRESS localization, targeting 

1.9 ppm (ON) and 7.5 (or 1.5) ppm.(de Graaf, 2014; Mullins et al., 2014; Puts & Edden, 

2012). 

 QUANTIFICATION OF GABA MRS 2.3

Macromolecules are high molecular weight molecules like protein amino acids or lipids 

that have shorter relaxation times than the metabolites. These macromolecules contribute 

to the baseline of in vivo spectra due to their broad resonances and also exhibit coupling 

effects. One such macromolecule resonance appears at 3 ppm (MM30) and is mainly 

attributed to lysine. It also has a coupling partner at 1.7 ppm. Due to field drifts and 

editing inefficiencies, the frequency selective pulses in the MEGA-PRESS sequence, 

although narrow, are still capable of exciting MM30 by affecting its coupling partner at 

1.7 ppm. MM30 can then be co-edited with GABA and appear in the GABA signal at 

3ppm. Thus, in reality, the edited GABA signal in the MEGA-PRESS scan with water-

symmetric pulses may contain up to 50% contribution from MM30 (Harris, Puts, Barker, 

& Edden, 2014; Near, Simpson, Cowen, & Jezzard, 2011). In addition, homocarnosine, a 

dipeptide of GABA and histidine may also be present and contribute to the GABA signal 

giving rise to a “GABA+” peak in the difference spectra (Puts & Edden, 2012; Douglas L. 

Rothman, Behar, Prichard, & Petroff, 1997).  
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While removal of homocarnosine is difficult due to its similarity with the GABA spin 

structure, several different approaches have been proposed to eliminate the 

macromolecule contribution to the GABA signal. In the Henry approach (Henry, Dautry, 

Hantraye, & Bloch, 2001), the MM30 signal is nulled by placing the editing pulses 

symmetric to the MM30 resonance, which lies at 1.7 ppm, in the OFF scan. The 

difference spectrum then contains negligible MM30 contribution since MM is affected 

similarly in the ON and OFF scans. However, due to the necessity of the editing pulse to 

have sufficient editing efficiency to affect spins only at 1.5 ppm in the OFF scan, this 

method is limited by the typical pulse duration of ~14 ms at 3 T (Edden, Puts, & Barker, 

2012). Another method of handling macromolecules in the GABA spectra includes 

separately acquiring metabolite-nulled spectra using an inversion recovery sequence with 

appropriate inversion time (TI) and then subtracting it to get “pure” GABA signal. 

However, this method increases the acquisition time. It is also dependent on the choice of 

TI since the relaxation times of different metabolites are different and hence all 

metabolites cannot be nulled at one TI (Mlynárik, Gruber, & Moser, 2001).  

Macromolecule contamination can be also handled during quantification by mathematical 

estimation of macromolecule resonance. LCModel is one such MRS quantification tool 

that uses linear combination of basis sets acquired for different metabolites and estimates 

macromolecules mathematically (S. W. Provencher, 1993; Stephen W Provencher, 2001). 

In a recent work, mathematical estimation by LCModel has been shown to work equally 

well as experimentally acquired macromolecule data for estimating in vivo metabolites 
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(Schaller, Xin, Cudalbu, & Gruetter, 2013). However, for GABA, it was suggested that a 

more reliable quantification could be possible using a measured macromolecule baseline. 

Regardless of these challenges, GABA MRS continues to be a valuable tool for studying 

several disorders including schizophrenia, panic and anxiety disorder, depression, 

movement disorders, multiple sclerosis, etc. (Emir et al., 2012; Andrew W Goddard et al., 

2001; Gregor Hasler et al., 2007; Mader et al., 2001; Yoon et al., 2010). We used this 

technique to assess GABA changes in Idiopathic Parkinson’s Disease and sleep bruxism 

as discussed in the following chapters. 
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 GABA MRS IN PARKINSONS DISEASE CHAPTER 3.

“Striatal and thalamic GABA levels in Parkinson’s disease and their correlation to 

disease severity” 

Prepared for submission to Movement Disorders 

 INTRODUCTION 3.1

Idiopathic Parkinson’s disease (here onwards referred to as PD) is the second most 

common progressive neurodegenerative disorder, with an annual incidence of around 16–

19 cases per 100,000 (Twelves, Perkins, & Counsell, 2003). Movement abnormalities 

seen in PD are due to the degeneration of nigrostriatal dopaminergic neurons resulting 

clinically in the combination of akinesia (poverty of movement), bradykinesia (slowness), 

rigidity (muscle stiffness) and a 4–6 Hz low frequency tremor at rest (Brooks, 2012; 

Wichmann & Delong, 2007). PD is classified mainly as a movement disorder but it is 

also associated with a spectrum of non-motor symptoms like cognitive impairment, 

depression, etc. which can be debilitating (K. R. Chaudhuri, Healy, & Schapira, 2006).  

The basal ganglia are a complex network of neuronal circuits that regulate motor activity. 

These are comprised of the striatum (caudate and putamen), globus pallidus (internal 

(GPi) and external (GPe)), subthalamic nucleus, the substantia nigra (pars compacta and 

pars reticulata) and the pedunculopontine tegmental nucleus (Obeso et al., 2002). The 
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basal ganglia control movement via two main pathways – direct pathway and indirect 

pathway. Both nigral and pallidal neurons modulate the activity of the thalamus which 

acts as a major relay for bringing basal ganglia information back to the cortex, thus 

completing the cortico-basal ganglia-thalamo-cortical loop (Parent & Hazrati, 1995). The 

dopaminergic systemexerts control over the motor circuit mainly by inhibiting the 

indirect pathway and facilitating the direct pathway (Obeso et al., 2002). GABA is the 

main inhibitory neurotransmitter in the basal ganglia. The striato-pallidal and pallido-

thalamic projections of the indirect pathway are GABAergic (Parent & Hazrati, 1995). In 

PD, loss of dopaminergic modulatory control causes an increase in the neuronal activity 

of the indirect pathway (Albin, Young, & Penney, 1989; Gerlach et al., 1996; Obeso et al., 

2000). This leads to an over inhibition of the thalamo-cortical loop and consequently, a 

decrease in the neuronal excitation of the cortex (Obeso et al., 2002; Obeso et al., 2000). 

Thus, loss of DA in PD can been perceived to be causal to an elevation in GABA at the 

striatal output as well as pallidal (GPi) output going to thalamus.  

Increased GABA levels in the basal ganglia are known to be associated with movement 

disorders (Galvan & Wichmann, 2007). An increase in striatal GABA has been reported 

in several MRS studies of animal-models of PD (Bagga, Chugani, Varadarajan, & Patel, 

2013; Chassain et al., 2008; Coune et al., 2013; Gao et al., 2013; Perry, Javoy‐Agid, Agid, 

& Fibiger, 1983) while human MRS studies have reported higher levels of GABA in the 

substantia nigra (Gröger, Kolb, Schäfer, & Klose, 2014; Öz et al., 2006), pons as well as 

the putamen (Emir et al., 2012) in mild-moderate PD patients. Elevated levels of GABA 
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have also been reported in the striatum and putamen of autopsied PD subjects (Kish et al., 

1986; Perry et al., 1983).  

There exists another form of Parkinsonism that has been linked to excess exposure to 

manganese (Mn). Mn is an essential trace metal important for neuronal function, but in 

high exposure scenarios, Mn can lead to a movement disorder called Mn-induced 

Parkinsonism or “manganism” which shares some symptoms of PD. Studies of 

occupational Mn exposure have revealed changes in the levels of GABA. Recently, our 

group studied workers with high Mn exposure and detected changes in brain chemistry 

before the onset of clinical symptoms in these workers (Dydak et al., 2010). Some of 

these workers developed tremor, rigidity, and bradykinesia which resembled PD. Also, 

one of the recent studies on Mn-exposed welders has shown increase in thalamic GABA 

in asymptomatic workers which also correlated with subtle measures of motor function 

suggesting that increased GABA may serve as an early biomarker of motor dysfunction 

(Long et al., 2014). Due to the similarities between manganism and PD, it is assumed that 

several pathophysiological pathways are shared between these two disorders.  

Besides controlling movement, the basal ganglia along with cerebral cortex also play a 

role in planning, working memory and emotion (Monchi, Petrides, Mejia-Constain, & 

Strafella, 2007; Obeso et al., 2000). In PD, early involvement of the cerebral cortex has 

been shown to contribute to multiple metabolic defects (Ferrer, 2009; Hu et al., 1999). 

Several MRS studies have investigated cortical regions for neurochemical changes in PD. 

Some animal studies have reported a decrease in striatal N-acetyl aspartate (NAA) which 

is a neuronal marker (Brownell et al., 1998; Choi et al., 2011; Coune et al., 2013; Öz et 
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al., 2006; Pizzi et al., 2013) whereas reduced NAA has been found in cortical structures 

as well as the substantia nigra and striatum in human studies (K. Chaudhuri et al., 1996; 

Choe et al., 1998; Holshouser et al., 1995; Nie et al., 2013; Seraji-Bozorgzad et al., 2014; 

Zhou, Yuan, He, & Tan, 2014). Changes in creatine (Cr) have been reported in the 

striatum (Hattingen et al., 2009) and substantia nigra (O'Neill et al., 2002), indicating 

altered metabolism. These findings indicate that the symptoms of PD are linked to 

alterations in neurochemistry of cortico-basal ganglia-thalamo-cortical loop. 

The clinical motor symptoms of PD appear when more than 50% of the striatal 

dopaminergic neurons have been lost and become more severe with increased neuron loss 

(Zhou et al., 2014). Hence the identification of sensitive and specific biomarkers that may 

slow disease progression is important for early and differential diagnosis, and for 

monitoring disease progression (Ciurleo, Di Lorenzo, Bramanti, & Marino, 2014). 

Furthermore, in PD, studies of Deep Brain Simulation (DBS) of subthalamic nucleus 

(STN) have indicated that for an effective therapeutic intervention, it is critical to 

understand the effect of the basal ganglia output to the thalamus (Alessandro Stefani et al., 

2011). It is also of interest to investigate the importance of thalamic and striatal GABA 

levels for the modulation of sensorimotor integration and response selection processes by 

proprioceptive information in healthy subjects and PD patients.  

Currently, there is a critical unmet need for biomarkers in PD. A desirable marker is one 

that is non-invasive, improves diagnostic accuracy, facilitates earlier diagnosis, and most 

importantly, monitors disease progression and responses to therapeutic interventions. The 

overall objective of this project was to examine neurochemical alterations in different 
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regions implicated in PD – basal ganglia, thalamus, and regions of cerebral cortex 

(frontal and motor cortex), and to determine whether GABA levels measured by in vivo 

MRS could serve as biomarker for PD.  

The specific aims of the study were: 

Aim 1: To determine the impact of PD on brain GABA levels in the basal ganglia and 

cortical regions. 

Hypothesis: Levels of GABA in thalamus and striatum as measured by MRS will be 

higher in PD patients compared to controls. 

Aim 2: To determine the alterations in NAA in the basal ganglia and cortical regions. 

Hypothesis: Due to neuronal loss, PD patients will have lower levels of NAA compared 

to controls. 

Aim 3: To determine the relationship between severity of motor symptoms and basal 

ganglia, thalamic and frontal GABA levels, in PD. 

Hypothesis: GABA levels will be correlated with disease severity as measured by the 

Unified Parkinson Disease Rating Scale (UPDRS) and motor tests. 

 MATERIALS AND METHODS 3.2

3.2.1 Subject Recruitment 

Nineteen subjects with mild-moderate PD and eighteen age-matched healthy controls 

were recruited for the study (refer  
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Table 3). Three PD patients were medication-naïve (i.e. never used any Parkinson’s 

medication) whereas the remaining did not take any Parkinson’s medication for at least 

12 hours before the study. Subjects with previous history of neurological disorder, 

dementia or using any GABA-ergic drugs like GABApentin were excluded from the 

study. Written informed consent approved by the Indiana University Institutional Review 

Board was obtained from all subjects prior to participation  

Table 3. Subject demographics and clinical information. 

PD Control 

Age (y) 63.68 ± 9.12 59.63 ± 10.24 

Number of subjects and gender 19 (10 males) 18 (11 males) 

Disease duration range (yrs) < 1 - 11 N/A 

UPDRS total 33.34 ± 10.9 5.43 ± 3.36 

Tremor subscore 4.13 ± 3.62 0.47 ± 0.90 

Bradykinesia subscore 1.78 ± 0.71 0.05 ± 0.22 

Rigidity subscore 6.79 ± 3.55 1.15 ± 2.06 

Hoehn and Yahr score 2.05 ± 0.62 0 
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3.2.2 Neurological and motor testing 

Prior to MRS, disease severity was assessed in all subjects by a neurologist by 

administering a health questionnaire and using the motor part of the Modified 

Parkinson’s Disease Rating Scale (MDS UPDRS-III). Sub-scores of rigidity, tremor, and 

bradykinesia were also recorded (table 1). Motor performance was tested using the 

Grooved Pegboard test (Lafayette Instrument, IN, USA) which is a sensitive visual-motor 

coordination test used to assess gross movements of the fingers, hands and arms, as well 

as fine fingertip dexterity necessary in assembly tasks. In a series of test batteries, 

subjects were asked to place pegs in the pegboard as quickly as possible with dominant 

hand and non-dominant hand alternately. The time to complete the task and the number 

of drops was recorded and scored. The Finger Tapping test, a measure of bilateral 

psychomotor speed was also included in which subjects were asked to tap as fast as 

possible using the index finger of their dominant and non-dominant hand alternately for 

one minute each. The number of finger taps and hand movement was recorded and scored. 

Figure 3.1(A) Set-up of finger taping test and (B) Grooved 
pegboard. 
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3.2.3 MRS and MRI data acquisition, post-processing and analysis 

MR scans were performed on a whole body 3-T Siemens Magnetom Tim Trio MR 

scanner (Siemens Healthcare, Erlangen, Germany) using a standard head coil. Fast T2 

weighted images were obtained in the axial plane angled along the anterior commissure – 

posterior commissure (AC-PC) line, along with orthogonal sagittal and coronal images 

for planning the MRS volumes of interest (VOIs). Higher order shimming was performed 

either manually or using FASTMAP (Gruetter, 1993). Single voxel short echo-time (TE) 

Point RESolved Spectroscopy (PRESS) spectra were obtained from all the VOIs placed 

in the frontal cortex, motor cortex, right striatum, and right thalamus (refer Figure 3.2) 

using repetition time (TR) = 2000 ms, TE = 35 ms, averages = 32 (thalamus and striatum) 

or 96 (frontal and motor), and spectral BW = 1200 Hz. In addition, MEGA-PRESS (R. A. 

Edden & P. B. Barker, 2007; M Mescher, H Merkle, J Kirsch, M Garwood, & R Gruetter, 

Figure 3.2 Representative placement of volumes of interest 
(VOI), PRESS spectrum (topcenter) and MEGA-PRESS 
GABA spectrum (bottom center). 
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1998a) edited GABA spectra were also obtained separately using TR = 2000 ms, TE = 68 

ms, averages = 256, edit pulse BW = 44 Hz, and edit ON/OFF pulses at 1.9/7.5 ppm from 

the thalamus, striatum, and frontal cortex. Following each PRESS and MEGA-PRESS 

acquisition, a reference spectrum without water suppression was obtained for phase, 

frequency correction and eddy current correction. In addition, 3D T1-w High resolution 

T1-weighted Magnetization Prepared RApid Gradient Echo (MPRAGE) images were 

also obtained for segmentation and co-registration. 

All post-processing and quantification of spectra was performed using LCModel (v 6.2-

0R) (S. W. Provencher, 1993) . Appropriate basis sets were generated using density 

matrix simulations obtained by using published values of chemical shifts and coupling 

constants (L. Kaiser, K. Young, D. Meyerhoff, S. Mueller, & G. Matson, 2008). The 

parameter “dkntmn” which defines the node spacing of the spline function for estimation 

of baseline was set to 0.15. The metabolites quantified from PRESS spectra included N-

acetyl aspartate (NAA), N-acetylaspartylglutamic acid (NAAG), Cr, myo-inositol (mIns), 

glutamate (Glu), and glutamine (Gln). Segmentation of the MPRAGE images into grey 

matter, white matter and cerebrospinal fluid was done using Statistical Parametric 

Mapping (SPM) and voxel co-registration was implemented using an in-house tool 

written in MATLAB. Metabolite values were corrected for cerebrospinal fluid content to 

yield absolute concentrations of metabolites in millimoles (mM) (Chowdhury, O'Gorman, 

Nashef, & al., 2014). Statistical analysis was done in SPSS (version 22).  

The metabolite data was analyzed using a one-way ANOVA with group as a factor and 

age as a covariate. Post-hoc tests were bonferroni-corrected, when necessary. To assess 
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the relationship between GABA and motor/cognitive scores, linear regression or 

correlation analyses was performed with GABA. Results with p values <0.05 were 

considered to be statistically significant. 

 RESULTS 3.3

3.3.1 MRS data quality 

The quality of spectra obtained in patients and controls was not significantly different 

between groups, in any region. Representative GABA spectra from both groups are 

shown in Figure 3.3. The average SNR for thalamus and striatum was 20 and 18 

respectively whereas the FWHM was 20 Hz and 24 Hz, respectively. Overall the shims 

were marginally better in controls than the PD subjects (p=0.05) due to the PD tremor.  

Figure 3.3 Representative LCModel output GABA spectra in the striatum (left) and 
thalamus (right) of a control and PD subject. 
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3.3.2 Neurochemical Differences 

Significantly higher GABA was detected in the thalamus of the PD subjects compared to 

controls (F=6.645, p=0.016, PD=2.06±0.37 mM, controls=1.72±0.30 mM) (Figure 3.4). 

In contrast, no differences in striatal or frontal GABA were detected between the groups.  

In the frontal cortex, a trend for lower tNAA was seen in the PD subjects compared to 

controls (F=3.698, p=0.06). Motor cortex showed no difference in any metabolite levels. 

Age and tissue-composition of VOI were not significantly different between the groups. 

Glu and Gln were quantified together as Glx while sum of NAA and NAAG were 

reported as tNAA. 

3.3.3 Motor scores and correlation with GABA 

The PD patients had significantly lower finger-tapping scores when using dominant hand 

(F=5.053, p=0.031) as well as non-dominant hand (F=14.871, p<0.001) compared to 

controls. Similarly, the pegboard scores for dominant and non-dominant hands of PD 

Figure 3.4 Levels of GABA in thalamus, 
striatum, and frontal cortex in both groups 
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subjects were lower than the scores of controls (dominant: F=14.169 p=0.001, non-

dominant: F=29.64, p<0.001).  

The regression of thalamic GABA was significant with the UPDRS scores (B=14.57, 

t=2.25, p=0.032) (Figure 3.5) and rigidity sub-scores (B=3.775, t=2.188, p=0.036) 

(Figure 3.6). Although striatal GABA was not significantly different between the groups, 

regression of striatal GABA with total UPDRS scores was significant in the PD group 

(B=24.825, t=14, p<0.001) (Figure 3.5). The regression of frontal GABA and UPDRS 

was significant in the PD group (B=-18.299, t=-2.61, p=0.03) (Figure 3.7). The 

Figure 3.5. Correlation of total UPDRS-III scores with thalamic and striatal GABA 

Figure 3.6 Correlation of UPDRS rigidity sub-
scores with thalamic GABA 
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regression of frontal GABA and the time for pegboard using the dominant hand was also 

significant in the PD group (B=-0.09, t= -3.38, p=0.01). 

 DISCUSSION AND CONCLUSION 3.4

Our results indicate that thalamic GABA is elevated in PD patients that are withheld 

medication for about 12 hours or are medication-naive. In the PD patients, thalamic 

GABA is specifically associated with worsening rigidity. We further find that within the 

PD group itself, striatal and frontal GABA levels have strong but opposite association 

with disease severity as measured by the UPDRS. Thus, disease severity is worse with 

increasing thalamic and striatal GABA but decreasing frontal GABA which is in 

agreement with the understood mechanism of hypokinetic symptoms seen in PD. This 

was also confirmed with lower frontal GABA levels associated with worsening dexterity 

and motor speed. Lower levels of NAA in the frontal cortex in the PD patients are 

indicative of neuronal loss. 

Figure 3.7 Correlation of UPDRS scores 
with frontal GABA 
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Recently, thalamic GABA has been of interest in DBS studies of STN. STN which is 

used for alleviating motor symptoms in advanced PD. Studies have shown that during 

effective DBS of STN, thalamic levels of GABA are reduced significantly (Alessandro 

Stefani et al., 2011). This is also the outcome after taking levodopa, during the ON status 

(Alessandro Stefani et al., 2011; A. Stefani et al., 2011). Thus, our findings support the 

idea of thalamic dis-inhibition as a therapeutic strategy for motor improvement.  

In our study, we do not see significant striatal GABA differences in PD, unlike previous 

MRS studies (Emir et al., 2012; Öz et al., 2006). Small sample size and a larger VOI 

(necessary for the GABA scan in order to obtain sufficient signal to noise ratio) are some 

limitations of this study. Irrespective of that, there is a strong evidence of the role of 

elevations in striatal and thalamic GABA being related to worsening of PD symptoms. 

Future studies are planned to investigate the impact of dopaminergic drugs on thalamic 

and striatal GABA, and sensitivity of GABA to changes over time. Given our findings of 

altered GABA in asymptomatic welders, however, we hypothesize that GABA MRS may 

be useful as a non-invasive tool to detect changes in the premotor phase of PD. 
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 CORTICAL GABA AND GLUTAMATE CHANGES IN SLEEP CHAPTER 4.
BRUXISM 

“GABA and Glutamate Levels in Occlusal Splint-Wearing Males with Possible Bruxism” 

Published in Achives of Oral Biology 

 INTRODUCTION 4.1

The oral parafunction generally known as bruxism (clenching and grinding of teeth 

during both sleep and while awake) is commonly encountered by clinicians in psychiatry, 

neurology, and dentistry. Sleep bruxism (SB) has been reclassified in recent years as a 

sleep-related movement disorder; this category also includes periodic limb movement and 

rhythmic movement disorders (Medicine). SB has been estimated at 10-20% of the 

pediatric population, 5-8% of the adult population, with a decrease to 3% in geriatric 

populations; no sex differences have been documented to date (Laberge, Tremblay, 

Vitaro, & Montplaisir, 2000; Lavigne & Montplaisir, 1994; Ohayon, Li, & Guilleminault, 

2001). Clenching and grinding of teeth parafunctions are often seen in individuals with 

stress and anxiety disorders (Manfredini, Landi, Fantoni, Segu, & Bosco, 2005; Petit, 

Touchette, Tremblay, Boivin, & Montplaisir, 2007; Pingitore, Chrobak, & Petrie, 1991) 

and are comorbid with restless leg syndrome, sleep apnea, and other parasomnias (Kato 

& Lavigne, 2010; Lavigne, Manzini, & Kato, 2005). Iatrogenic secondary causes of such
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 oral parafunctions may include delivery/cessation of neuroactive medications (Lavigne, 

Khoury, Abe, Yamaguchi, & Raphael, 2008), certain dental procedures, and treatment for 

temporomandibular disorder (TMD) (Baba, Haketa, Sasaki, Ohyama, & Clark, 2005; 

Lobbezoo, Brouwers, Cune, & Naeije, 2006; Tosun, Karabuda, & Cuhadaroglu, 2003). A 

high occurrence of TMD pain has been documented in persons exhibiting (1) the 

behaviors of both SB and daytime clenching (awake bruxism), and (2) the sleep disorders 

of sleep apnea, insomnia, and bruxism (Lavigne et al., 2008; Lavigne et al., 2005; 

Lobbezoo & Lavigne, 1997; Manfredini, Cantini, Romagnoli, & Bosco, 2003; 

Manfredini & Lobbezoo, 2009; Raphael, Marbach, Klausner, Teaford, & Fischoff, 2003; 

Raphael et al., 2012; Smith et al., 2009).  

A link between emotion-induced oral parafunctional behaviors and group I TMD was 

proposed long ago (Keefe & Dolan, 1988; Kight, Gatchel, & Wesley, 1999; McCreary, 

Clark, Merril, Flack, & Oakley, 1991), although the mechanism underpinning this 

association is still unclear. Recent neuroimaging studies of bruxism have identified the 

involvement of the Hypothalamic–Pituitary–Adrenal (HPA) axis system, which is also 

implicated in TMD and Post-Traumatic Stress Disorder (PTSD). Currently, it is thought 

that bruxism, PTSD, and other stress-related psychiatric disorders, are due to a 

dysfunction of a circuit involving the medial prefrontal/anterior cingulate cortical region, 

dorsolateral prefrontal cortex (DLPFC), hippocampus, and amygdala.  

The role of neurochemicals in anxiety-related parafunctions such as bruxism has been 

and continues to be of intense interest for some time now (Lavigne et al., 2001; Lobbezoo, 

Lavigne, Tanguay, & Montplaisir, 1997; Lobbezoo & Naeije, 2001; Lobbezoo, Soucy, 
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Montplaisir, & Lavigne, 1996; Lobbezoo, van Denderen, Verheij, & Naeije, 2001; 

Ranjan, P, & Prabhu, 2006; Sjoholm, Lehtinen, & Piha, 1996; Winocur, Gavish, 

Voikovitch, Emodi-Perlman, & Eli, 2003). The exact neurochemical mechanisms that 

cause certain selective serotonin reuptake inhibitors (SSRIs) to manifest sleep bruxism is 

a focus of research efforts (Lobbezoo et al., 2001; Ranjan et al., 2006; Winocur et al., 

2003) as are those involved in the important comorbid factors of sleep regulation, 

endocrine systems, autonomic functions, stress/anxiety, and motor control (Huynh et al., 

2006; Jones, 2000; Kato & Lavigne, 2010; Lavigne et al., 2008; Van Cauter, 2005). As 

demonstrated by the bruxism-ameliorating effects of the drugs GABApentin, tiagabine, 

gamma-hydroxybutyrate, diazepam, and lorazepam, the major neurotransmitter GABA is 

suggested to play a critical role in bruxism (Winocur et al., 2003).  

MRS techniques allow for a noninvasive examination of in vivo brain function by 

assessing regional concentrations of neurotransmitter metabolites (Bremner, 2007). As 

determined by recent MRS studies (Cameron et al., 2007; G. Hasler et al., 2008), GABA 

plays an important role in the pathophysiology of human anxiety disorders such as panic 

disorder and PTSD (Millan, 2003). A recent study found lower GABA levels in 

individuals with PTSD (Meyerhoff, Mon, Metzler, & Neylan, 2014). Goddard et al. 

discovered lower than normal cortical GABA levels in panic disorder individuals (A. W. 

Goddard et al., 2004; Z. Long et al., 2013). The etiology of oral parafunctions such as 

bruxism and TMD is multifactorial and psychological factors are considered a major 

component in the initiation and progression of these disorders (Manfredini & Lobbezoo, 

2009), which suggests that GABA neuronal system may also be critical in the 
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manifestation of bruxism. The increased incidence of anxiety and depression in these 

patients (Hicks, Conti, & Bragg, 1990; Kight et al., 1999; Mongini, Ciccone, Ceccarelli, 

Baldi, & Ferrero, 2007; J. W. Park, Clark, Kim, & Chung, 2010) has led to a theory that 

psychological factors, such as anxiety, predispose patients to TMD/bruxism by increasing 

tooth grinding and clenching behaviors, which may produce masticatory muscle fatigue 

and soreness (Keefe & Dolan, 1988; Kight et al., 1999; McCreary et al., 1991).  

We hypothesized that the stress-related behavioral disorder of bruxism and anxiety-

related disorders share similar underlying mechanisms involving the inhibitory 

neurotransmitter GABA as well as the metabolites NAA, creatine, choline-containing 

compounds, myo-inositol, glutamate and glutamine (Maddock & Buonocore, 2012). To 

study this cross-link between brux-like parafunctions and anxiety-related disorders, we 

performed a 1H MRS study for metabolite quantification in anxiety-related regions of the 

brain involved in the HPA axis system. HPA axis dysfunction plays a major role in the 

anxiety disorders reported by patients who clench and grind their teeth and suffer with 

TMDs (Burris, Evans, & Carlson, 2010). We focused on two HPA-axis brain regions, the 

right hippocampus and right thalamus and selected the right hemisphere because of the 

documented laterality in stress-regulatory components of the HPA axis. In addition, we 

also investigated the DLPFC because of its role in anxiety-related disorders (Prater, 

Hosanagar, Klumpp, Angstadt, & Phan, 2013) and a dorsal anterior cingulate cortex/pre-

supplementary motor area (dACC/preSMA) involved in motor planning (Byrd, Romito, 

Dzemidzic, Wong, & Talavage, 2009; Wong, Dzemidzic, Talavage, Romito, & Byrd, 
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2011). The dACC has also been implicated in anxiety behavioral disorders such as PTSD 

(Etkin & Wager, 2007; I. M. Rosso et al., 2013). 

The specific aims of this study was to identify parallels in metabolic and neurotransmitter 

changes between the manifestation of brux-like behavior and reported changes in anxiety 

disorders. The long term goal of this imaging-based, noninvasive research of the 

neurochemical mechanisms affecting the manifestation of oral parafunctions such as 

bruxism is to provide improved treatment strategies in the clinical population. 

 MATERIALS AND METHODS 4.2

4.2.1 Subject Recruitment 

Subject group classification was based on an interview that was conducted after self-

reported tooth clenching and grinding history, followed up by evaluation of each 

subject’s protective nightguard and positive responses on the TMD history questionnaire 

(Dworkin & LeResche, 1992). The TMD questionnaire documented subjects’ perception 

of pain, loss of function, and bruxing behavior. Based on this classification, 8 male 

subjects (age: 28.6±3.0 years) were recruited and classified in the Bx group. Subjects 

were classified to exhibit bruxing behavior if currently reporting active clenching and 

grinding of teeth and wearing of a protective nightguard, being right-handed, 20-45 years 

old, not currently under medication for migraine headaches, without previous history of 

brain injury or psychiatric problems, magnetic surgical implants, false teeth, retainers, or 

magnetic braces, having normal hearing sensitivity by self-report, and not being 
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claustrophobic by self-report. The control (NB) group consisted of 9 age-matched 

(25.5±1.9 years) healthy men with the inclusion criteria identical to the Bx group except 

for bruxing behavior and nightguard use. Written informed consent approved by the 

Indiana University Institutional Review Board was obtained from all subjects prior to 

participation and all procedures conformed to international STROBE guidelines. 

4.2.2 MRS data acquisition and analysis 

1H MRS data was acquired on a 3T Siemens Magnetom Tim-Trio MR scanner (Siemens 

Healthcare, Erlangen, Germany) using a 32-channel head array coil. Both single voxel 

short echo time Point RESolved Spectroscopy (PRESS) spectra (TE=30 ms, TR=1500 ms, 

128 averages) and GABA-edited spectra (TR=1500 ms, TE=68 ms) using MEGA-PRESS 

(F. A. Chowdhury et al., 2014; R. A. E. Edden & P. B. Barker, 2007; M. Mescher, H. 

Merkle, J. Kirsch, M. Garwood, & R. Gruetter, 1998) were obtained from four volumes 

of interest (VOIs): thalamus (25×25×25 mm3, 392 averages), hippocampus (17×40×17 

mm3, 512 averages), DLPFC (25×30×22 mm3, 392 averages) and dACC/preSMA 

(25×35×25 mm3, 392 averages). A reference spectrum without water suppression was 

obtained in each brain region for phase and frequency correction. Placements of the VOIs 

and representative spectra from each brain region are illustrated by Figure 4.1. 
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The post-processing and quantification of all spectra was performed with LCModel 

(v6.2-0R) (S. Provencher, 1993). Appropriate basis sets for GABA were generated using 

density matrix simulations with published values of chemical shifts and coupling 

constants (L. Kaiser et al., 2008). PRESS spectra were analyzed for the major metabolites 

N-acetyl aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mIns) and 

glutamate (Glu), whereas GABA levels were obtained from the GABA-edited spectra. 

Quantification results are expressed in institutional units (i.u.) and only the NAA, tCr, 

Figure 4.1. Representative voxel placement (left), short echo time PRESS spectra 
(center) and MEGA-PRESS GABA spectra (right) for all regions of interest. 
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Glu, and mIns metabolites from the PRESS spectrum with LCModel CRLB below 20% 

were used for further statistical analysis. 

All statistical calculations were performed with SPSS (Version 20.0, IBM Corp.). The 

questionnaire data were grouped into three categories: depression, anxiety and pain with 

an overall (summed) score calculated for each category. The scores in each category were 

compared between groups using the Wilcoxon–Mann–Whitney two-sample rank-sum test. 

Spearman’s rank correlations were computed for the questionnaire scores in each of the 

categories and regional metabolite estimates. A Group (2; Bx and NB) × Region (4; 

hippocampus, DLPFC, thalamus and preSMA) × Metabolite (5; NAA, Glu, mIns, tCr, 

and GABA) repeated measures ANOVA was performed with a post-hoc ANOVA F-test 

conducted where effects of Group × Region interaction were significant. In addition, 

questionnaire scores were examined in the regression analysis or as covariates when 

showing significant effects of Group. 

 RESULTS 4.3

4.3.1 TMD Questionnaire 

Questionnaire data from both groups indicated that all nightguard subjects reported 

experiencing daytime and night time tooth clenching/grinding, morning jaw soreness 

/stiffness, and the use of a protective occlusal nightguard obtained from a dentist. Control 

subjects had negative responses to all of the aforementioned questionnaire items.  
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Anxiety and depression scores in all subjects were significantly correlated (Spearman’s 

r=0.736, p<0.01, two-sided). There were no significant group differences in the scores of 

depression (Mann-Whitney U=29, p=0.54, two-tailed) or pain (Mann-Whitney U=24.5, 

p=0.28, two-tailed), while a trend was present for anxiety (Mann-Whitney U=18.5, Bx 

mean=3.88, NB mean=1.00, p=0.09, two-tailed). This trend-level anxiety score 

difference was in the anticipated direction (e.g. higher for the Bx). Therefore, anxiety 

scores were added as a covariate in the MRS data analysis to test whether anxiety 

contributed to the metabolite group differences reported below. 

4.3.2 GABA and metabolite differences 

The multivariate tests in the repeated-measures ANOVA showed significant Group x 

Region interaction (Wilk’s lambda=0.38, F=3.36). In the repeated-measures ANOVA, 

Group x Region interaction was significant for two metabolites, GABA (F(3,55)=6.66, 

p=0.001) and Glu (F(3,55)=3.22, p=0.031). Between-group post-hoc ANOVA showed 

Figure 4.2 Metabolite levels in a) DLPFC and b) thalamus of both groups. 
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significant effects only in the DLPFC, where lower levels of GABA (F(1,12)=14.01, 

p=0.003) and higher levels of Glu (F(1,13)=14.71, p=0.002) were observed in Bx (Figure 

4.2). In the thalamus, compared to controls, Bx showed a trend level increase in GABA+ 

(F(1,14)=3.81, p=0.07) (Figure 4.2). These GABA and Glu group differences in the 

DLPFC were reduced but remained significant (GABA, F(1,13)=5.17, p=0.049; Glu; 

F(1,13)=5.829, p=0.039) after the inclusion of anxiety as a covariate. Furthermore, 

GABA and Glu levels in the DLPFC showed a significant negative relationship 

(Pearson’s r=−0.754, p=0.003 two-sided) as illustrated by Figure 4.3. While no group 

differences in GABA and Glu were present in the hippocampus, these two metabolites 

did show positive relationship (Pearson’s r=0.783, p=0.004 two-sided; Figure 4.3).

Figure 4.3. Correlation plots of GABA and Glu in a) DLPFC and b) hippocampus 
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Table 4. Metabolite concentrations (in i.u.) for four brain regions and both groups. 
Significant (‡, p<0.01) differences are highlighted. 

Region NAA Glu mIns tCr GABA 

NB 

Hippocampus 3.83±0.70 4.64±0.60 4.62±1.02 3.66±0.75 2.32±0.20 

DLPFC 5.20±0.41 4.15±0.49‡ 3.78±0.23 3.93±0.37 2.18±0.24‡ 

Thalamus 5.49±0.77 4.45±1.03 3.59±0.86 4.01±0.62 2.86±0.36* 

PreSMA 5.87±0.57 6.01±0.67 4.68±0.43 4.71±0.17 2.81±0.25 

Bx 

Hippocampus 3.96±0.94 4.46±0.6 3.40±0.79 3.21±0.92 2.40±0.32 

DLPFC 5.21±0.48 4.97±0.31‡ 3.80±0.59 4.25±0.22 1.55±0.35‡ 

Thalamus 5.24±0.48 3.78±0.60 3.55±0.48 4.33±0.36 3.23±0.38* 

PreSMA 6.10±0.55 6.02±0.66 4.73±0.40 4.84±0.43 2.80±0.10 

 CONCLUSION AND DISCUSSION 4.4

While the focus of previous neurochemical studies was on sleep bruxism (SB) (Lavigne 

et al., 2008), there is some evidence that the variability of bruxism symptoms in both 

diurnal and nocturnal forms may have a neurochemical basis, involving different brain 

regions such as the ventral tegmental area and the distribution of striatal dopaminoceptor-

2 (D2R) receptors (Chen, Lu, Lui, & Liu, 2005). In this study, lower GABA levels in 

DLPFC in nightguard-wearing subjects suggest that anxiety-related circuits (Peers, 

Simons, & Lawrence, 2013; Prater et al., 2013) that may affect bruxism were less 

inhibited than in controls. Decreased frontal lobe GABA levels have also been detected in 

panic disorder individuals (Z. Long et al., 2013) albeit in the medial rather than 

dorsolateral prefrontal cortex.  
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A review of earlier studies of DLPFC metabolite levels in anxiety subjects indicates that 

the DLPFC plays an important role in responses to threatening stimuli, particularly in 

anxiety disorders (Bar-Haim, Lamy, Pergamin, Bakermans-Kranenburg, & van, 2007; 

Duncan, 2010; Miller & Cohen, 2001; Peers et al., 2013) . It is currently thought that the 

DLPFC guides control of tasks by providing excitatory feedback to pools of neurons that 

process task-relevant aspects of anxiety-provoking stimuli; in this case the DLPFC may 

enhance the manifestation of bruxism by channeling anxiety-associated stimuli to those 

brain regions actually causing the behavior. Increased DLPFC activity during an 

emotional Stroop task suggests that the DLPFC is important for task control mechanisms 

in the face of emotional distraction (Bishop, Jenkins, & Lawrence, 2007; Compton et al., 

2003; Denkova et al., 2010). The documented decrease of bruxism with increased age 

may also be related to an age-related decrease of DLPFC mechanisms regarding early 

perceptual features (Schmitz, Cheng, & De Rosa, 2010).  

Hippocampus metabolite levels in anxiety subjects have been reported to show higher 

Glx, myo-inositol, and Cr, and to be correlated with psychiatric symptoms and 

mitochondrial disorders (Anglin, Rosebush, Noseworthy, Tarnopolsky, & Mazurek, 

2012). Alterations in hippocampal activity and volume have also been documented in 

anxiety disorders (Etkin & Wager, 2007; Gilbertson et al., 2002). In our study, no 

significant group differences were found for any of the reported metabolites in the 

hippocampus. However, a significant positive correlation between GABA and Glu 

emerged. Interestingly, these two metabolites were negatively related in the DLPFC, 

which may reflect the documented bidirectional interactions between the hippocampus 
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and the DLPFC (Cho et al., 2012). In this sense, our finding might indicate the presence 

of a negative feedback circuit between hippocampus and DLPFC, which may play an 

important role in regulating the manifestation of bruxing behaviors (Ganon-Elazar & 

Akirav, 2013; Herman, Ostrander, Mueller, & Figueiredo, 2005; Jankord & Herman, 

2008). The activity dynamics between the DLPFC and hippocampus in retrieval of facts 

during problem solving (Cho et al., 2012) and our findings may also suggest a role for 

both the DLPFC and hippocampus in motor memory systems (Albouy, King, Maquet, & 

Doyon, 2013; Albouy, Sterpenich, et al., 2013) that might be involved in bruxism 

behaviors. It has also been suggested that epileptic seizures involving limbic structures 

within the temporal lobe (hippocampus) may activate masticatory central pattern 

generators that help cause bruxism behaviors (Meletti et al., 2004). It has been found that 

DLPFC of idiopathic generalized epilepsy patients demonstrate increased levels of 

glutamine and GABA compared with controls (F. A. Chowdhury et al., 2014). This 

differs from our study in that DLPFC of Bx subjects showed significantly lower levels of 

GABA and higher levels of Glu. The precise neurochemical mechanisms and interactive 

relationships between epilepsy and brux behaviors need to be investigated further.  

In this study, we detected no metabolic group differences in the preSMA/dACC; this 

despite our earlier fMRI findings that the preSMA/dACC may play an important role in 

oral parafunctions such as tooth grinding and clenching (Byrd et al., 2009; Wong et al., 

2011). This discrepancy may be due to the passive nature of the MRS scans in the present 

study, while our earlier fMRI studies employed the active, physical tasks of jaw 

clenching and tooth grinding. 
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Limitations of this study include: (1) modest sample size, and (2) nightguard wearer 

inclusion criteria that were based on self-report and were non-specific in bruxing 

classification. In addition, continuing analysis of oral parafunction and pain data in the 

nightguard wearers was not performed. In this study, subject gender selection was 

necessarily driven by a small sample so we focused on males due to the higher incidence 

of PTSD and TBI in men (Evans et al., 2013; Iverson, Pogoda, Gradus, & Street, 2013). 

In the future, we intend to include women and make gender ratios similar and more 

representative of oral parafunctions and bruxing behaviors prevalence. Polysomnography 

(PSG), the current gold standard for determination of bruxism (Koyano, Tsukiyama, 

Ichiki, & Kuwata, 2008; Lavigne et al., 2008) was not used in this study because of 

limited funds. Larger voxel sizes were chosen to compensate for the low signal-to-noise 

ratio of GABA MRS. The geometric limitations of the MRS VOIs preclude complete 

sampling of some neuroanatomical regions or include small contributions of adjacent 

non-targeted regions. The measured GABA levels include some contribution from co-

edited macromolecules (MM30) at 3 ppm and a small contribution from homocarnosine 

and are hence reported together as GABA (GABA+MM30). However, changes in 

macromolecules have not been reported for anxiety-related disorders to date.  

These results in our proof-of-concept study are the first indications of the disturbances in 

GABAergic and glutamatergic systems of nightguard wearers with oral parafunctions. 

Future research in larger samples should improve sensitivity of quantifying GABA and 

other pertinent metabolites and detecting group differences. In addition, results of this 

study indicate a need for a more comprehensive MRS investigation with an emphasis on 
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the coupling of anxiety-related and limbic regions with executive control brain networks. 

The relevance of such research is supported by the observed differences between HPA 

anxiety-related brain areas as indicated by our finding of negative feedback between the 

hippocampus and DLPFC. Careful further investigations may reveal not only the 

neurochemical mechanisms underlying bruxism behaviors and their interactions with 

other anxiety disorders, but also myofascial TMD as recently documented (Gerstner et al., 

2012)
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 GABA QUANTIFICATION USING LCMODEL – ACCURACY, CHAPTER 5.
SENSITIVITY AND SPECIFICITY 

 INTRODUCTION 5.1

5.1.1 What is LCModel? 

LCModel (http://s-provencher.com/pages/lcmodel.shtml) is a tool that enables 

automatic quantitation of in vivo proton MR spectra (S. Provencher, 1993). It utilizes a 

Linear Combination of Model in vitro / simulated spectra for estimating individual 

metabolites. The main advantage of using this approach is that the complete model 

spectra are used for estimation of concentration, in contrast to individual resonances, to 

incorporate maximum prior information into the analysis. This is particularly helpful to 

resolve multiplet structures that evolve due to coupling (e.g. GABA) (Stephen W 

Provencher, 2001). LCModel is not limited to any specific vendor, MRS sequences or 

localization method, or field strength (up to 16.4 T has been used) as long as the basis 

spectra (termed ‘basis set’) are also generated using the same scheme. 

Some of the key elements/features and parameters of LCModel are briefly outlined 

below: 

• Basis set: Basis sets can be either simulated or obtained using phantoms. It is 

advisable to include all metabolites that can be expected in the in vivo spectrum. 
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The basis spectra should have a significantly higher resolution and SNR than in 

vivo spectra.. 

• Control file: A control file includes a list of user-selected parameters used for

fitting. These can include settings for eddy current correction, water scaling, any

optional prior information or constraints (e.g. limiting the peak ratios, omitting

certain metabolites from the fit, etc.), settings for the analysis range, display plot

details, baseline flexibility settings, etc.

• Baseline estimation: A nearly model-free constrained regularization method is

used for estimation of the baseline. It can automatically account for large

unexpected distortions, like residual water, susceptibility artifacts and

macromolecule or lipid signals.

• Cramér-Rao Lower Bounds (CRLB): CRLB is the lower threshold of the error

associated with the model fitting (Kreis, 2015). LCModel outputs these in %SD

as estimated standard deviations expressed in percent of the estimated

concentrations. %CRLB can be useful reliability indicators if interpreted

correctly. Lower %CRLB may be generated using over-simplified models (for

instance, fit a linear baseline plus a Lorentzian to each “peak”), and caution

must be exercised in interpreting the CRLB estimate. Especially in the case of

low concentrations metabolites like GABA, it may not be suitable to use a %

CRLB threshold alone to discard any data since the higher % CRLB could be

due to smaller concentration (small denominator term).

• Water scaling: Absolute metabolite concentrations can be obtained by scaling

metabolite concentrations consistently with the basis set. This is done by using
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the resonance area of the unsuppressed water peak (reference spectrum) 

However, due to uncertainties in the exact NMR visible water concentration and 

the attenuation of the NMR-visible water signal in different tissue types due to 

relaxation effects, the actual concentrations are given in institutional units (i.u). 

• Concentration Ratios: Metabolite concentration ratios can be obtained by

specifying a reference metabolite (e.g. creatine). This is useful as ratios are less

sensitive to relaxation effects and tissue water concentration.

A typical LCModel output is shown in Figure 5.1. 

Figure 5.1 Typical LCModel output showing the data, the fit, the 
residuals, concentration estimates, fit diagnostics and control parameters 
used for fitting (figure from LCModel manual).Shown inset is the 
individual fit for the NAA spectrum. 
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5.1.2 GABA quantification using LCModel 

Earlier versions of LCModel (prior to v 6.3) were mostly suited for short echo time 

spectra. It has been debated in the literature that the default set of macromolecule 

resonances and lineshapes in LCModel may not be optimally designed for difference 

spectra and that better estimation would be possible by including a revised set of 

macromolecule (MM) functions in the fitting (Murdoch & Dydak, 2011; Schaller et al., 

2013). As discussed in chapter 2, handling of baseline is an important step in the 

accurate quantification of GABA owing to the presence of a co-edited macromolecule 

(MM30) peak in the TE=68 MEGA-PRESS GABA difference spectra. 

An important feature of LCModel that makes it attractive for use with GABA spectra is 

the customization capability, which allows the user to choose different settings for 

baseline flexibility and fitting constraints. Stiffer baseline settings have been used in 

some studies using short TE spectra at 4 T and 7 T or using homonuclear difference 

editing for detection of ascorbate (Banerjee et al., 2012; Terpstra, Ugurbil, & Tkac, 

2010; Tkáč, Öz, Adriany, Uğurbil, & Gruetter, 2009). Moreover, in the latest version of 

LCModel (v 6.3), the default baseline stiffness has been increased to double the value 

used in the older versions (v6.2). Exploring firmer baseline settings is of interest also 

for GABA quantification since the difference spectrum ideally is assumed to have a 

relatively flat baseline. However, the LCModel User’s Manual cautions against using a 

completely flat baseline; such an approach can yield more reproducible data, but the 

results may have a systematic bias and can be consistently wrong. Some baseline 

flexibility is recommended to compensate for the inevitable variability in acquiring in 
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vivo spectra (S. W. Provencher, 2008). Recently, while comparing different LCModel 

fitting techniques, Long et al. have shown that a stiffer baseline leads to smaller CRLB 

values but perhaps an overestimation of GABA, whereas a flexible baseline may lead to 

slightly higher CRLB values but better GABA estimates (Long, 2013). Long et al. 

recommended adding a softly constrained MM30 peak to the LCModel fit to explicitly 

handle the macromolecular portion of the difference spectrum peak at 3.0 ppm and 

thereby minimize its effect on the measured GABA level. However, their study was 

done using only one set of in vivo data, of which the “true” GABA concentrations were 

not known.  

The aim of this project was to extend this analysis, by comparing different LCModel 

fitting techniques using semi-synthetically generated GABA spectra with different noise 

levels. Different combinations of GABA, other metabolites, MM and noise levels were 

used to assess the accuracy, sensitivity and specificity of GABA quantification between 

the different methods.  

 MATERIAL AND METHODS 5.2

5.2.1 GABA MRS data acquisition 

A MEGA-PRESS sequence with an added pre-inversion pulse (O'Gorman, Edden, 

Michels, Murdoch, & Martin, 2007) (TI=580 ms, TR=2000 ms, TE=68 ms, 

averages=256, edit pulse BW= 44 Hz, placed at 1.9 and 7.5 ppm in ON and OFF scans) 

was used to obtain metabolite-nulled spectra on a Siemens 3 T Tim Trio MR scanner 
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using a 32-channel head coil. Metabolite-nulled spectra were obtained from a 25x30x25 

mm3 VOI placed in the right thalamus of three healthy subjects. The metabolite-nulled 

difference spectra were averaged and apodized using a 1 Hz Gaussian filter to obtain an 

averaged metabolite-nulled spectrum containing mainly MM30 and MM09 peaks along 

with some residual NAA, as shown in Figure 5.2. 

5.2.2 Simulations 

To begin with, MEGA-PRESS difference spectra were generated by adding NAA (60 

arbitrary units (a.u.)) and Glu (30 and 36 a.u) with different levels of metabolite line 

broadening (5 and 7 Hz) to the average metabolite-nulled spectrum. To these spectra, 

varying levels of GABA were added (0, 2.0, 3.0, and 6.0 a.u.) along with noise that was 

either artificial/white (A) or realistic (B). Noise type ‘A’ was created with a random 

number generator and distributed evenly over a -1 to +1 range in the time domain, 

whereas noise type ‘B’ was real noise from the left-of-water portion of the averaged 

Figure 5.2. Averaged metabolite-nulled 
spectrum from thalamus of three subjects 
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metabolite-nulled spectrum. Each type of noise was added using three different scaling 

factors: 2.0, 4.0, and 6.0. The overall scaling was chosen more-or-less by eye, but the 

relative scaling was consistent (e.g. the spectrum with noise=A4 had twice as much 

added noise as the spectrum with noise=A2). A total of 39 spectra (21 with GABA and 

18 without GABA) were created. The GABA spectra were generated using a 

combination of three GABA levels x two noise types x three noise levels + three with 

no noise, all with one NAA setting (60 a.u.), one Glu setting (30 a.u.), and a metabolite 

linewidth of 5 Hz. The GABA-free spectra consisted of i) six spectra without additional 

noise [one NAA level × three Glu levels (0, 30, and 36 a.u.) × two line broadening 

values] and ii) twelve spectra with added noise [two Glu levels (30 and 36 a.u.) × two 

noise types × three noise levels]. These were used to determine the sensitivity and 

specificity of fitting methods.  

Furthermore, a few spectra without noise or MMs, i.e., pure simulated metabolites with 

different GABA, NAA and Glu levels, were generated to compare the accuracy of 

GABA quantification from all methods. 

Finally, for evaluating the sensitivity of the fitting methods in accurately detecting 

group differences in GABA, two separate cohorts (n=10 each) with GABA levels of 2 

(low-GABA group) and 3 (high-GABA group) were generated. Each spectrum in the 

low-GABA group was replicated for the high-GABA group – the only difference being 

the GABA level.  Three pairs of these simulated spectra were created using the 

averaged and apodized metabolite-nulled spectrum described previously, but with 
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differing noise levels. To get more baseline variability for the remaining seven pairs, the 

three individual metabolite-nulled Siemens spectra were used, as well as an average of 

five metabolite-nulled MEGA-PRESS spectra obtained from the posterior cingulate 

cortex (PCC) and acquired on a 3T Toshiba Vantage Titan scanner (13-channel head 

coil, TI=600 ms, TR = 1560-1800 ms, TE = 68 ms, 512 averages, 14 ms editing pulses 

applied at 1.9 and 7.5 ppm). 

5.2.3 LCModel fitting 

The basis sets used for fitting GABA spectra were generated from density matrix 

simulations using published values of chemical shifts and coupling constants (L. G. 

Kaiser, K. Young, D. J. Meyerhoff, S. G. Mueller, & G. B. Matson, 2008) with an exact 

treatment of metabolite evolution during the two frequency-selective MEGA inversion 

pulses. Only those metabolites with differing edit-ON and edit-OFF spectra were 

included in the basis set: GABA, Glu, Gln, GSH, NAA, and NAAG. 

Different LCModel methods (i.e. fitting techniques with customized parameters) were 

used to analyze the simulated data in LCModel v6.2-0R. The details of the six methods 

(Murdoch & Dydak, 2011) are as follows:  

• Method 1: LCModel’s default fully flexible baseline was used to obtain GABA

estimates. No special handling of the macromolecular peak at 3.0 ppm was

included.
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• Method 1M: The baseline was made slightly stiffer using the LCModel control 

parameter ‘dkntmn,’ which sets the node spacing for the spline baseline function 

– a larger value yielding a flatter baseline. The default setting for dkntmn in 

version 6.2-0R is 0.075 ppm (as used in method 1) but a value of 0.15 (same as 

the default in v6.3) was used for this fitting scheme. The rationale for choosing 

less flexibility is that a difference spectrum should contain a negligible baseline. 

• Method 1V: The baseline was fully restricted by setting the LCModel ‘vitro’ 

parameter to true (corresponds to dkntmn = 0.6). In this technique, the stiff 

baseline contributes little to fitting the MM component of the peak at 3.0 ppm, 

so the resulting GABA signal is more accurately “GABA+” (GABA + 

macromolecules). 

• Method 4: A macromolecular peak at 3.0 ppm (“MM30”) was added to the fit 

using control parameters. Moreover, a soft constraint (MM30/MM09=0.667±0.1) 

was applied to the ratio of the MM30 and MM09 peaks (Bhagwagar et al., 2007; 

Murdoch & Dydak, 2011). Because of this extra peak, the resulting GABA 

values should have minimal contribution from macromolecules at 3.0 ppm. 

• Method 4M: Same as Method 4 but with a stiffer baseline (dkntmn=0.15). 

• Method 4V: Same as Method 4, but with vitro=true. 
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 RESULTS 5.3

Figure 5.3 shows the LCModel fits of the peak at 3.0 ppm obtained using all six 

methods for one of the simulated spectra with GABA=3, Glu=30, NAA=60, the 

averaged MM baseline, and noise level B4.  

For the GABA-free input spectra, all methods reported non-zero “phantom” values for 

GABA, although to a varying degree (Figure 5.4). The smallest amount of GABA was 

reported by Methods 1 and 4, whereas the highest values were generated by fitting 

schemes with the vitro option turned on (Methods 1V and 4V). GABA concentrations 

found by Method 1M were smaller than those of Method 4M. Moreover, all methods 

reported an increase in “phantom” GABA with increasing noise level for both types of 

noise (A and B) (Figure 5.4). This effect was more pronounced for Methods 1M and 

4M, with a linear increase in the reported GABA value (R2= 0.98 and R2=0.96, 

Figure 5.3 A representative simulated GABA spectrum (left) with Glu 
=30, NAA=60 and GABA=3 amd noise =B4. The GABA fits for all 
methods are shown on right. 
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respectively, averaged over the two types of noise). In contrast, vitro=T methods 

Figure 5.5 LCModel GABA values for a GABA-free input spectrum 
reported by different methods under different noise conditions 

 

Figure 5.5 LCModel GABA % CRLB values for a GABA-free input 
spectrum reported by different methods under different noise conditions 
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showed the least dependence on noise. In addition, the minimum fit error (%CRLB) for 

GABA-free spectra was higher for Methods 1 and 4and lowest for vitro methods 

(Figure 5.5).  

For GABA-inclusive spectra, all the methods showed a linear response (R2>0.98) to 

Figure 5.6 Representative charts for noise = A6 (top) and 
B6 (bottom), showing linear response of all methods to 
input GABA. 
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added levels of GABA (2, 3, and 6 a.u.) for all noise levels (Figure 5.6). Moreover, the 

reported GABA values were very similar for Methods 1 and 4 and somewhat higher, 

but again similar for Methods 1M and 4M. The % CRLB for all methods improved (i.e., 

became smaller) with increasing GABA content (Figure 5.7).  

Figure 5.7 Representative charts for noise = A6 (top) and 
B6 (bottom), showing % CRLB for different methods 
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To test the accuracy of the reported GABA levels, the GABA values obtained from the 

noise-free and MM-free (i.e., pure) simulated spectra (e.g. Figure 5.8 a) were used as a 

standard to determine how closely the methods estimated GABA in the presence of 

other metabolites, MMs and noise in the corresponding spectra. Figure 5.8 shows 

representative LCModel output for spectra generated for a GABA level of 3. In fitting 

the metabolite-only spectrum in Figure 5.8 b, results from method 1 and 4 were slightly 

closer to the GABA level reported for the GABA-only spectrum in Figure 5.8a than 

Figure 5.8  LCModel fits using method 1 for spectra with 
same input GABA but different levels of metabolites, 
macromolecules and noise 
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were results for methods with stiffer baselines (ratio > 0.8). Methods 1 and 4 also 

performed better in the presence of increasing noise, reporting values closest to the 

actual GABA level, whereas all the other variants overestimated the GABA content 

(Figure 5.9 and Figure 5.10). 

Finally, for the two simulated cohorts, only the GABA values from methods 1 and 4 

Figure 5.10 Ratio of reported GABA from GABA+met (+MM+noise) 
spectra to (GABA-only spectrum) for method 1 variants 

 

Figure 5.10 Ratio of reported GABA from GABA+met (+MM+noise) 
spectra to (GABA-only spectrum) for method 4 variants 
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were found to be significantly different between the two groups (p<0.05), even though 

by design the GABA was 1.5 times higher in one group than the other (Figure 5.11). 

This illustrates that methods with flexible baseline are perhaps most sensitive for 

determining group differences.  

 CONCLUSION AND DISCUSSION 5.4

The closeness in GABA values reported by methods 1and 4 (and the similar results for 

method 1M vs. method 4M) indicates that the effect of the soft-constrained MM30 peak 

is much smaller compared to the effect of baseline stiffness. However, with increasing 

stiffness of the baseline, the GABA values reported by the two types of fitting (i.e., with 

or without an explicit MM30 peak) differ more. This also indicates that the MM30 peak 

may be well estimated by the flexible baseline and method 4 may not provide a big 

advantage over method 1. 

Figure 5.11 Method 1 and 4 detected group difference 
between low and high GABA cohorts 
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For GABA-free spectra, the high %CRLB values on the left side of the plots in Figure 

5.7 suggest that the results from Method 1 and 4 estimated negligible amount of GABA. 

However, since detected GABA was not entirely zero, these were still wrong since no 

GABA was actually present. On the other hand, the low %CRLB values associated with 

the vitro=T methods would lead to false positives. 

The GABA values reported by methods using a fully flexible baseline were the most 

accurate in estimating actual GABA concentrations and showed the least variation with 

addition of noise. These methods were also able to correctly identify a significant group 

difference between the high-GABA and low-GABA cohorts. These results indicate that 

the LCModel default baseline may be able to handle the presence of MMs in GABA 

difference spectra better than thought earlier, resulting in more accurate levels of 

GABA. Since an increase in noise resulted in an increase in reported GABA by all 

methods, GABA from smaller voxel locations would likely be overestimated. 

If we define sensitivity as the ability to detect real changes in GABA, then the 

sensitivity of all the fitting methods was similar (R2 > 0.98 for measured GABA vs 

input GABA). If we define specificity as the ability to correctly identify the absence of 

GABA, then the specificity of the methods with fully flexible baseline was the highest.  

A method with high accuracy, high specificity and high sensitivity is desirable for 

GABA quantification. Results of the current preliminary simulation study provide 

indication that a flexible baseline with a small knot spacing of the spline function is, in 

fact, the most accurate method for estimating GABA content from MEGA-PRESS 



80 
 

difference spectra with high sensitivity and specificity. Hence, it may be reasonable to 

change the default node spacing setting to the original value in the newer LCModel 

versions.
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