
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

Genetic Regulation of Maize and Sorghum under
Abiotic Stress
Alexandar Lewis Renaud
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Renaud, Alexandar Lewis, "Genetic Regulation of Maize and Sorghum under Abiotic Stress" (2015). Open Access Dissertations. 1195.
https://docs.lib.purdue.edu/open_access_dissertations/1195

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1195?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages


30
 08 14

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

Department 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, 
Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation  
adheres to the  provisions of Purdue University’s “Policy on Integrity in Research” and the use of 
copyrighted material. 

Alexandar Lewis Renaud

GENETIC REGULATION OF MAIZE AND SORGHUM UNDER ABIOTIC STRESS

Doctor of Philosophy

Mitchell Tuinstra

Michael Mickelbart

Guri Johal

Hyonho Chun

Mitchell Tuinstra

Joe Anderson 01/20/2015



 
 
  i 

GENETIC REGULATION OF MAIZE AND SORGHUM UNDER ABIOTIC STRESS 

A Dissertation 

Submitted to the Faculty 

of 

Purdue University 

by 

Alexandar Lewis Renaud 

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Doctor of Philosophy 

May 2015  

Purdue University 

West Lafayette, Indiana

 

 
 



 
 
  ii 

“I grew up on the land, on a small farm in northeast Iowa. Life was not always easy. I 

experienced the economic depressions of the 1930s, and from the experience, I felt that 

families on the land needed help from scientists, and I dedicated my life to science, and 

especially to food production.” – Norman Borlaug  
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ABSTRACT 

Renaud, Alexandar L Ph.D., Purdue University, May 2015. Genetic Regulation of Maize 
and Sorghum under Abiotic Stress. Major Professor: Mitchell Tuinstra. 
 
 

Climate extremes of temperature, drought and flooding continue to challenge 

global agricultural production and food security.  If modeling studies are accurate, 

climate variability and drought will be a more prevalent occurrence in the future, not only 

inhibiting grain yield but also stressing water resources.  Thus, it is critical to breed for 

improved climate resilience in agronomic crops and understand the genetic mechanisms 

conferring adaptation to water-limited environments. 

Sorghum is an important crop grown in drought prone locations around the world 

and serves as a model crop for studying plant adaptation to water-limited environments.  

Sorghum breeders have been successful in developing drought-tolerant sorghum hybrids 

using stay-green as a phenotype.  The ability of annual crop species to delay senescence 

or “stay-green” throughout the grain filling period has been associated with increased 

yield, decreased lodging, and stalk rot resistance.  Genetic analyses of stay-green in 

sorghum suggest the trait is controlled by four to six loci that have been integrated into 

commercial programs by marker-assisted breeding.  

The goal of my research is to characterize the genetic architecture of stay-green in 

maize.  Maize exhibits substantial genetic variation for stay-green.  We evaluated the  
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Nested Association Mapping (NAM) populations of maize and testcross hybrids with 

PHZ51 for variation in stay-green in multi-location trials.  Joint linkage mapping was 

used to identify multiple QTL for stay-green across several linkage groups with sources 

of stay-green alleles coming from diverse genetic backgrounds.  Association mapping 

was conducted using maize stay-green data to characterize gene families potentially 

associated with these phenotypes.  Genetic associations from these studies were validated 

in the Ames Diversity Panel.  Advancements in comparative genomics and statistics 

provide powerful tools for examining the biological relationships between maize and 

sorghum.  Comparisons between maize and sorghum indicate that several genomic 

regions associated with stay-green are similar including major sorghum QTL Stg1, Stg2, 

Stg3, and Stg4.  Identification and integration of stay-green genes into commercial 

programs may provide the opportunity to sustainably enhance the productivity of maize 

and sorghum in drought environments. 

Additionally, our research examined the genetic regulation of premature 

senescence associated with sink-inhibition and hyper-senescence.  When the ear of B73 is 

covered or removed to eliminate the sink, the plant prematurely and rapidly senesces 

around 800 growing degree days (GDD) post anthesis. The NAM populations of maize 

were used to identify candidate genes associated with this premature senescence trait and 

develop a potential model for the expression and regulation of the phenotype. 
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CHAPTER 1. BIOCHEMICAL, MOLECULAR, AND PHYSIOLOGICAL 
REGULATION OF ABIOTIC STRESS RESPONSES IN PLANTS 

1.1 Introduction 

Climate variability and abiotic stresses are detrimental forces to global agriculture 

production and food security.  Abiotic stresses such as flooding, temperature extremes, 

and drought will continue to challenge the ability of scientists to develop stress tolerant 

hybrids and varieties, especially as food demand is expected to double within the next 30 

years (Solomon et al., 2007; Foley et al., 2011).  Scientific efforts to engineer climate 

resilient crops are slowed by the complex, quantitative nature of breeding for both yield 

and abiotic stress adaptation in hybrids and varieties (Duvick, 1996; Bruce et al., 2002).  

However, yield and production have continued to increase over time, as plants have 

become adapted to increased temperatures, drought and flooding (Solomon et al., 2007).  

New technological advances are ushering in a promising age of engineering climate 

resilient crops.  In the area of biotechnology, advances in genome editing, marker assisted 

selection, and transgenics form a powerful suite of tools to combat climate variability.  

Advances in statistical modeling provide breeders and researchers alike with improved 

climate modeling and enhanced predictive power from genomic selection.  In tandem, 

these two forms of modelling provide a robust platform for plant breeding. 
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Global production and demand for crops are continuing to increase in conjunction 

with climate variability.  In order to meet the demands of the future, a second Green 

Revolution is needed.  Plant breeders must combine knowledge of the biochemical, 

molecular, physiological, and genetic responses of plants under abiotic stresses with new 

technology to meet the demands of a variable climate.  

1.2 Drought Stress Responses 

Heightened global climate variability has brought forth devastating droughts in 

agricultural production areas and has led to a renewed focus on breeding and release of 

drought tolerant varieties and hybrids.  In the United States, the summers of 2012 and 

2013 served as a case study demonstrating the necessity for drought tolerant crop 

varieties and research.  The United States experienced the second worst drought on 

record in 2012, when much of the Corn Belt was subjected to drought stress in July.  This 

time period coincided with the majority of maize flowering time, when the crop is most 

susceptible to drought damage.  The drought intensified throughout the grain filling 

months of August and September resulting in below average grain yields.  The 2013 

drought was significantly different than 2012.  During the flowering period in July, no 

drought occurred in the Eastern and Central Corn Belt.  However, a “flash drought” 

occurred during the grain filling months, negatively impacting yields (United States 

Drought Monitor, USDA-ARS Quick Stats).  National United States maize yields were 

significantly lower in 2012, 123bu/ac, and 2013, 160bu/ac, compared to 2014, 174.2bu/ac 

(USDA-ARS Quick Stats).  In 2014, there was little drought stress present on the United 

States Corn Belt correlating to higher yields (United States Drought Monitor). Therefore, 

drought variability and intensity, as demonstrated in this United States case study, can 
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result in different plant responses and adaptation resulting in lower grain yields.  The 

Drought Monitor consists of 350 expert observers throughout the United States.  Various 

calculations of drought are used to create the Drought Monitor Index (Palmer Drought 

Index, CPC Soil Moisture Model, USGS Weekly Streamflow, Standardized Precipitation 

Index (SPI), and blending of long-term and short-term drought indicator blends).  

Mountain streams and snow melt are difficult to predict and variable by nature and 

weighting of the data is common to accurately predict drought conditions.   

 Drought tolerance can be primarily attributed to maintaining and/or recreating the 

osmotic and ionic equilibrium of the plant cell.  Osmotic adjustment is the accumulation 

of solutes that lower the osmotic potential of the cell thereby increasing water retention 

and providing turgor for cell expansion.  Accumulation of osmolytes impact the water 

potential of the plant allowing for continued water uptake during a drought stress.  

Osmolyte accumulation manipulates the osmotic potential in the cell to become more 

positive thereby encouraging water update through the pressure potential.  Osmolytes 

additionally interact in the cell through biochemical reactions and result in preventing 

membrane damage, protein degradation, and inactivation of important enzymes.  This 

enables the plant to remain in cellular homeostasis and to repair damages created during 

the stress period.  Specifically, maintaining homeostasis involves initiating a cascade of 

biochemical responses in a cell. This response activates drought-associated genes, 

molecular chaperones, osmolytes, and antioxidants to either confer drought tolerance or 

susceptibility (Zhu, 1998; Ishitani et al., 2000).  Alternatively, plants can avoid drought 

damage through preventing tissue dehydration by reducing transpiration through stomatal 

closure, increasing water uptake (deep and extensive root system), or shedding leaves. 
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Another drought survival mechanism for plants is escape.  Escape allows the plant to 

complete reproductive growth before the drought stress occurs, usually through a 

shortened life cycle.   

 One of the initial anatomical responses to a drought stress is stomatal closure, 

which minimizes water loss to maintain water pressure in the plant.  However, stomatal 

closure decreases the amount of carbon dioxide assimilated into the plant.  Decreased 

carbon dioxide assimilation negatively impacts yield (Schulze, 1986; Cornic, 2000).  

Stomata can either be metabolically regulated by abscisic acid (ABA) via hydroactive 

closure or non-metabolically regulated by evapotranspiration of water in the guard cells 

(Mansfield and Atkinson et al., 1990). 

Plant hormones such as ABA, cytokinin, and ethylene play crucial roles in drought 

stress responses in a plant, especially in root-shoot signaling initiated by drying soils.  

Under drought conditions, the pH of xylem sap increases, encouraging the loading and 

transportation of ABA to the leaves thereby initiating stomatal closure (Wilkinson and 

Davies, 2002).  Additionally, increased pH of the xylem sap increases cytokinin 

concentration leading to increased stomatal opening and decreased sensitivity to ABA. 

As will be discussed later, ABA and cytokinin are phytohormones that interact under 

drought conditions to initiate a specific plant response.  Additionally, ethylene 

concentration increases under drought conditions, and this discourages leaf growth and 

initiates other signaling factors involved in a stress response. 

Plants experiencing drought stress are genetically programmed to preserve 

elements of the photosynthetic chain.  Stomatal closure and a slowed photosynthetic 

capacity under drought stress are due to declining Rubisco activity preservation 
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mechanisms (Bota et al., 2004).  Declining rates of photosynthesis are related to the 

amount of carbon dioxide (CO2) present in the environment. When in low concentrations, 

photosynthesis is impaired.  In the cell, CO2 deficiencies lead to the over-reduction of 

elements in the electron-transport chain, resulting in the formation of reactive oxygen 

species.  The synthesis of reactive oxygen species can lead to photo-oxidation and cell 

death if the plant does not dispose of them in a timely manner.   

Plants can respond to drought by manipulating the membrane fluidity of their cells 

through ion channels, aquaporins, and protein-lipid type interactions.  Ultimately, these 

processes aid in maintaining the homeostasis of a plant by retaining turgor pressure in the 

cell during a drought stress. 

1.3 Heat Stress Responses 

Plants exhibit genetic variation for heat tolerance and susceptibility.  At a certain 

thermal threshold, plant growth and development will become hindered, and if prolonged 

or increased, will result in plant death.  Heat tolerance, defined as the plant’s ability to 

maintain homeostasis and development under a high thermal temperatures, is of growing 

importance in agriculture as temperatures continue to increase worldwide (IPCC, 2007; 

Maplecroft Global Risk Analytics). 

Symptoms of heat stress can present at different levels of a plants phenome.  At a 

morphological level, heat stress presents as leaf firing, tassel blasting, and shoot and root 

growth inhibition.  Both drought and heat stress can result in an extended anthesis-silking 

interval resulting in impaired grain fill. 

Anatomically, heat stress presents as a reduction in cell size as well as increases 

in stomatal closure, trichomal and stomatal densities, and increased number of xylem 
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vessels (Banon et al., 2004).  Additionally, heat stress damages mesophyll cells and 

results in greater fluidity of the plasma membrane (Zhang 2005).  Lower photosynthetic 

capability is associated with structural changes and modification of the thylakoid 

membranes (Karim et al., 1997).   

 Photosynthetic capability is vulnerable under heat stress, primarily the elements 

within the thylakoid lamellae and carbon metabolism (Wise et al., 2004).  Chlorophyll 

fluorescence has been successfully used to characterize heat tolerance and susceptibility 

of photosystem II (PSII) in several species (Lillo et al., 2004; Kadir et al., 2007; Moh’d I, 

2010).  Photosystem II is the most sensitive element of the photosynthetic chain, and 

susceptibility is determined by the turnover rate of the D1 subunit within the element.  

Other measures of heat tolerance in a photosynthetic context are increased 

proportions of chlorophyll a:b and decreased proportions of chlorophyll:carotenoids.  

Chlorophyll a:b degradation is also more likely in younger, underdeveloped leaves 

compared to developed leaves (Karim et al., 1997). 

 Other elements of the photosynthetic chain can be adversely affected by heat 

stress.  The Oxygen-Evolving Complex (OEC) can disassociate, resulting in an 

imbalance of electrons flowing from the OEC to the PSII acceptor side (Bukhov et al., 

1999; De Ronde et al., 2004).  Disassociation of the manganese (Mn)-stabilizing 33-kDa 

protein of PSII prompts release of Mn atoms resulting in impaired photosynthesis 

(Yamane et al., 1998).  

 Carbon metabolism through RuBP regeneration rates is altered during prolonged 

exposure to high temperatures.  RuBP disruption cascades down through the electron 

transport chain, affecting the oxygen evolving enzymes of PSII, thus lowering 
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photosynthetic capacity (Crafts-Brander and Salvucci, 2004).  Heat stress/shock can also 

lower the amount of photosynthetic pigments, soluble proteins, RuBP, and other 

associated enzymes and proteins.  This highlights the role of heat-shock proteins and 

chaperones in providing protection against heat shock/stress which are discussed later in 

this chapter (Kepova et al., 2005).  Sugar production enzymes, sucrose phosphate 

synthase, glucose pyrophoshoylase, and sucrose invertase, exhibit lower activity under 

heat stress (Chaitanya et al., 2001; Vu et al., 2001). 

Cellular membrane stability under heat stress is critical to a plant’s ability to 

maintain photosynthesis and respiration (Blum, 1988).  High temperatures increase 

fluidity of the cellular membrane resulting in increased movement of molecules across 

the lipid bilayer.  Membrane fluidity is further increased by the denaturing of membrane 

proteins and/or increased unsaturated fatty acids (Savchenko et al., 2002).  As membrane 

and protein structures change, the permeability of the membrane is compromised, 

resulting in a loss of electrolytes and increased solute leakage.  Furthermore, membrane 

stability is influenced by plant growth stage, development, and the ability to manipulate 

membrane fluidity (Karim et al., 1997, 1999).  In some plants, lipid content and degree of 

lipid saturation are indicators of membrane stability or instability (Somerville and 

Browse, 1991). 

1.4 Cold Stress Responses 

Plants can withstand extremes in temperatures and are adapted for optimal 

production within a specific temperature range.  Beyond a given threshold, temperatures 

are too low and will damage the plant (Lynch et al., 1990).  Plants exhibit several 
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phenotypic presentations of cold stress, such as reduced leaf expansion, wilting, 

chlorosis, lower reproductive fitness, and necrosis (Wen et al., 2002).  

At a molecular level, the cellular membrane is highly prone to damage during 

cold stress.  The cellular membrane is composed of unsaturated and saturated fatty acids.  

Saturated fatty acids contain more hydrogen bonds as part of their structure and are a 

major influencer of membrane fluidity.  Cold stress affects the transition state in which 

the cellular membrane switches from a semi-fluid state to a semi-crystalline state 

(Steponkus et al., 1993).  The plant is more susceptible to cold stress in the crystalline 

state.  Plants with a higher proportion of saturated fatty acids are more susceptible to cold 

stress because of a higher transition state temperature, which encourages the formation of 

ice (Mahajan, 2005).  Ice formation begins in the apoplastic space and expands as 

unfrozen water from the cytoplasmic space migrates down the gradient into the apoplast.  

This creates a mechanical stress on the cell wall and plasma membrane leading to cellular 

damage and/or rupture (McKersie and Bowley, 1997; Olien and Smith, 1997; Uemura et 

al., 1997).   

Cold stress begins at the anatomical level with the loss of cellular membrane 

integrity which is followed by cellular dehydration.  It cascades into loss of 

compartmentalization, photosynthesis, protein synthesis, and other metabolic processes.  

Therefore, plants that are able to maintain cellular membrane stability in cold 

temperatures are more likely to survive.   

Changes in calcium levels are the first physiological element of cold stress in 

which plants initiate a biochemical response (Monroy et al., 1995).  Initially, a calcium 

increase occurs due to the influx of extracellular fluid containing calcium into the 

 
 



 
 
  9 

apoplastic space. This influx induces cold stress genes like CRT/DRE that are controlled 

by COR6, KIN1 and Cas15 in alfalfa (Monroy and Dhindsa, 1995; Knight et al., 1996). 

 Several genes have been associated with cold stress tolerance in plants.  FAD8 

(fatty acid desaturase) in arabidopsis is involved in manipulating the cellular membrane 

lipid composition and fluidity (Gibson et al., 1994).  Cold-stress induced genes can also 

include molecular chaperones for protein stabilization.  In spinach, hsp70 (Anderson et 

al., 1994) and in Brassica napus, hsp90 (Krishna et al., 1994) are examples of cold-

induced stabilization proteins.  MAPK (mitogen-activated protein kinases) genes control 

and regulate expression of major stress cascades, initiating signal transduction and gene 

activation (Mizoguchi et al., 1993, 1996).  

1.5 Salinity Stress Responses 

High saline soils negatively impact 932 million hectares globally, and often times 

such soils are accompanied by heavy irrigation practices.  Additionally, coastland 

flooding events deposit high salt concentrations after the water recedes (Wong et al., 

2010).  It is reasonable to assume that increased climate variability, with a likely greater 

incidence of flooding, will increase the prevalence of saline soils.  This will lead to an 

accumulation of salts in arable land causing salt sensitive plants to become less 

productive.  Accumulation of salt (Na+) in the soil alters the soil texture and reduces 

porosity, leading to poor aeration and water conductance. Physiologically, saline and 

drought stresses have similar effects on plants. Both stresses create lower water potential 

making it difficult to uptake water and other nutrients from the soil (Manajan, 2005). 

Salt stress prompts hypertonic and hyperosmotoic responses in plant cells.  

Disruption of the ionic equilibrium can occur when an influx of Na+ dissipates the 
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cellular membrane potential causing an uptake of Cl- down the chemical gradient.  A high 

concentration of Na+ can inhibit cellular expansion due to the osmotic imbalance.  Na+ is 

also toxic to cellular metabolism, as it specifically damages enzymes involved in 

photosynthesis and encourages the creation of reactive oxygen species.   

Potassium (K+) is essential to plants under saline stress.  K+ is needed for osmotic 

balance and the opening and closing of stomata. It also serves as a cofactor in enzymes 

such as pyruvate kinase.  Signaling and maintenance of K+ under saline stress can be an 

indicator of a positive plant response. 

Calcium (Ca2+) is a major signaling ion in many abiotic stresses, including salt 

stress.  In high saline situations, Ca2+ increases in the apoplastic space as well as 

intracellular compartments (Knight et al., 1997).  Thus when Ca2+ is present in high 

amounts, it initiates the biochemical signal cascade for a stress response.   

Three salt stress genes have been identified and classified as SOS (salt overly 

sensitive) genes.  SOS3 encodes a protein involved in Ca2+ binding, SOS2 encodes a 

protein kinase required for salt tolerance, and SOS1 encodes a putative Na+/K+ 

antiporter downstream of SOS2/SOS3 in the SOS pathway (Halfter et al., 2000; Ishitani 

et al., 2000; Lui et al., 2000; Qiu et al., 2002).  This collection of genes contributes to 

saline stress tolerance in rice and other plants. 

1.6 Flooding and Excess Water Stress Responses 

Climate variability increases the chance of hydrological extremes in the form of 

excess rainfall and rising ocean levels that result in flooding of coastlands and poorly 

drained production fields.  Agricultural production areas around the world are susceptible 

to excess water events during critical months of plant growth and development. 
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The most well-known breeding and genetics example of combating flooding 

stress is found in rice.  Typically, rice does not tolerate more than one week of flooding.  

However, extreme flooding events can leave rice under water for two weeks or more.  

Recognizing this challenge, breeders at the International Rice Research Institute 

identified an ethylene-response-factor-like gene family conferring flooding tolerance.  

Within this gene family, three alleles were recognized to provide flooding tolerance: 

Sub1A, Sub1B, and Sub1C.  Sub1A is considered the most valuable, as it overproduces 

ethylene upon submergence in flooding situations.  Accumulation of ethylene results in 

dormancy of the rice variety, as cytokine-mediated senescence is slowed through an 

ethylene-cytokinin interaction (Xu et al., 2006).  These breeding efforts have been 

successful agronomically. There is a 1-3 ton yield advantage of tolerant to susceptible 

varieties after 10 to 15 days of submergence.  Flooding-tolerant commercial varieties of 

rice are currently grown in India as Swarna Sub1, in Bangladesh as Samba Mahsuri, and 

as IR64-Sub1 in the Philippines. 

1.7 Stay-green and Senescence 

Maize is most susceptible to drought stress during flowering as the plant is 

reaching peak water-use.  Grain yields of maize are nearly double under optimal 

conditions compared to drought stress at flowering or grain-fill (Zhu, 2001).  Water stress 

during the grain fill period leads to increased leaf senescence, loss of photosynthetic 

activity, reduction in dry matter accumulation, and reduction in yield from lower kernel 

weights (Ort and Baker, 2002; Xoing et al., 2002).  Delaying leaf senescence, known as 

stay-green, under drought stress is associated with increased yields in both maize and 

sorghum (Borrell et al., 2000, Duvick, 2004) 
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   Stay-green is the ability of an annual plant to delay senescence via an extended 

period of greenness and/or photosynthesis compared to a normal plant (Barry 2009; 

Thomas and Howarth 2000).  Stay-green can be considered “functional” when 

photosynthesis and greenness are maintained throughout the grain filling period and 

“non-functional” when there is the loss of photosynthetic capacity.  It is important to note 

that stay-green types are not associated with maturity or removal of reproductive organs 

(Crafts-Brandner et al., 1984). 

Characterization of stay-green can be broken down into five different phenotypic 

and physiological manifestations based on the pattern of senescence.  Types A and B 

stay-green are the most agronomically advantageous phenotypes.  Type A stay-green 

extends from flowering until senescence at a peak photosynthetic capacity and 

chlorophyll content compared to a normally senscencing plant.  Type B is characterized 

by a prolonged period of greenness resulting from high levels of chlorophyll content and 

photosynthetic capacity followed by a slower rate of senescence.  Generally, these two 

phenotypes are correlated with increased yield under drought stress.  Furthermore, types 

A and B are considered to be functional stay-green phenotypes.  Type C stay-green 

occurs when chlorophyll pigments are retained throughout reproductive growth while 

photosynthetic capacity steadily decreases during senescence.  Type D stay-green refers 

to plants harvested during a green stage of development.  Types C and D are considered 

non-functional or visual stay-green types and have little agronomic value.  Type E stay-

green is manifested as an overabundance of chlorophyll where senescence is prolonged 

due to extended metabolization of chlorophyll pigments.  The classification of stay-green 
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types mentioned above were first described and characterized by Thomas and Smart 

(1993; 2000).   

 Stay-green, as a form of delayed senescence, is part of a highly regulated process 

of nutrient remobilization resulting in the eventual programmed cell death of the plant.  

Senescence is age and time dependent and begins with the degradation of the chloroplast, 

which contains roughly 70% of the leaf protein.  Photosynthetic capacity is lost during 

this senescence process.  At a metabolic level, carbon assimilation is replaced by 

catabolism of chlorophyll and macromolecules such as proteins, membrane lipids, and 

RNA.  The primary purpose of this catabolic process is the export of nutrients from the 

source to the sink.  The process of senescence or delaying senescence is altruistic but 

contains some disadvantages.  It is important for the fitness of the plant to remobilize 

nutrients to the sink for reproduction, but environmental factors can limit the yield for 

agronomic purposes (Lim et al., 2007).  Thus, delaying leaf senescence during an abiotic 

stress can confer resistance but hinder agronomic value (del Rio et al., 1998). 

 There are numerous examples of the stay-green phenomenon, both functional and 

non-functional, in agronomic and horticultural systems.  One of the most notable 

examples comes from Gregor Mendel’s pea experiments.  One of the traits examined by 

Mendel was pea seed color, where one genotype appeared green and the other yellow 

(Mendel, 1866).  Recent analyses on this trait identified a relationship between 

senescence and chlorophyll degradation of the seed.  Genetic characterization identified a 

gene, SGR, as a positive regulator of chlorophyll degradation (Darbishire 1911; Sato et 

al., 2007).  SGR in rice is also involved in regulating chlorophyll catabolism via 

pheophorbide a oxygenase (PaO) regulation.  This mechanism involves regular 
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remobilization of all proteins except the light-harvesting complexes (Jiang et al., 2007).  

SGR in rice is syntenous with the locus identified from Mendel’s peas (Armstead et al., 

2007).  This follow-up study exhibits an example of a non-functional, visual form of stay-

green.   

The stay-green trait is observed in several crop species and has contributed to 

increased drought tolerance in pearl millet, barley, maize and most notably, sorghum.  

Extensive genetic characterization of stay-green in sorghum has revealed four to six 

major QTL explaining a majority of the phenotypic variation (Tuinstra et al., 1997; 

Crasta et al., 1999; Subudhi et al., 2000; Tao et al., 2000; Xu et al., 2000; Haussman et 

al., 2002; Harris et al., 2007).  Stay-green sorghum genotypes under post-anthesis 

flowering drought stress maintain higher leaf nitrogen status as well as transpiration 

efficiency, which has translated to higher yield and lodging resistance (Borrell et al., 

2000a, 2000b).  Additionally, stay-green cultivars of sorghum have an increased 

resistance to charcoal rot (Rosenow et al., 1984).  Furthermore, stay-green sorghum types 

have shown an increased amount of chlorophyll during anthesis, increased N content in 

the leaves, and increased leaf thickness.  Thicker leaves are theorized to have more 

mesophyll cells and thus a higher capacity for photosynthesis. Stay-green sorghum Stg 

genotypes also exhibit reduced tillering resulting in increased lower leaf size, smaller 

upper leafs, and in some genotypes, less leaves per culm which all alter the canopy 

structure of the plant.  By altering the canopy structure of sorghum under drought stress, 

stay-green genotypes are limiting pre-anthesis watering use thereby increasing water 

availability under grain-fill drought conditions (Borrell et al., 2014).  Genetic 

characterization of sorghum suggests stay-green is inherited in both dominant and 
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additive manners (Walulu et al., 1994; van Oosterom et al., 1996).  Furthermore, studies 

show increased senescence rates are partially dominant to slower senescence rates in 

sorghum (Walulu et al., 1994; van Oosterom et al., 1996).   

There has been considerable discussion concerning nitrogen content and stay-

green.  Is stay-green a consequence of higher nitrogen content or is higher nitrogen 

content resulting in stay-green?  Most likely, the answer is both.  Higher nitrogen content 

in leaves could be indicative of a more expansive root system and/or a nitrogen balance 

between the sink and source controlling the greenness of the plant (van Oosterom et al., 

2010).  Both of these effects would manifest as delayed remobilization allowing for an 

extended period of delayed leaf senescence. 

Genetic variation for stay-green in maize has been observed in inbred lines and 

hybrids and is commonly observed within elite United States breeding programs (Duvick 

et al., 2004).  Identification of sources of stay-green for breeding has been limited to 

temperate adapted germplasm (Beavis et al., 1994; Coque et al., 2008; Zheng et al., 2009) 

but is beginning to be examined in an exotic and tropical context (Messmer et al., 2009).  

Previous studies suggest maize exhibits both dominant and additive modes of inheritance, 

similar to sorghum.   

Other species have been examined for stay-green in both functional and non-

functional forms in relation to drought such as wheat (Kirigwi et al., 2007; Kumari 2007, 

2010; Bogard et al., 2011), barley (Diab et al., 2004; Tondelli et al., 2008) and rice 

(Campoux et al., 1995; Tripathy et al., 2000; Zhang et al., 2001; Diab et al., 2007). 

Stay-green maize genotypes have exhibited similar genetic and physiological 

qualities as observed in sorghum.  Stay-green genotypes in inbred and hybrid maize 
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combinations show an increase in stalk sucrose (Crafts-Brandner et al., 1984; Ceppi et 

al., 1987), higher nitrogen content in the leaves (Ma and Dwyer, 1998; Mi et al., 2003), 

increased Rubsico and PEC content in leaves (He et al., 2002; Martin et al., 2005), and 

increased PEPC activity and PNsat (He et al., 2002).  Additionally, hybrids show 

increased nitrogen uptake in high and low nitrogen soil environments, but some stay-

green types show equal or lower grain nitrogen content compared to wild type hybrids 

(Mi et al., 2003).  Maize stay-green is associated with increased nitrogen uptake and the 

ability to be transferred into hybrid combinations through breeding (Swank et al., 1982; 

Crafts-Brandner et al., 1984; Crafts-Brandner and Poneleit, 1987; Ma and Dwyer, 1998; 

Bekavac et al., 2008).  Examining alternate sources of genetic variation for stay-green 

will be critical for improving drought stress tolerance in maize.    

An agronomic issue with stay-green hybrids in maize is dry-down.  Certain 

genotypes have shown increased nitrogen uptake but lower nitrogen remobilization.  This 

appears to be limited to environments with ample nitrogen supply (Subedhi and Ma, 

2005).  Therefore, plant breeders actively select appropriate stay-green genotypes to 

maximize drought-tolerance and optimize dry-down. 

1.8 Premature Senescence by Pollination Inhibition  

Maize senescence is a highly regulated process.  In some maize genotypes, 

absence of ear fertilization initiates a hyper-senescence response in the plant.  However, 

other genotypes do not display hyper-senescence responses.   Conversely, they react by 

increasing the amount of photosynthates accumulated in the leaves and stalks (Crafts-

Brandner et al., 1984; Duvick et al., 2004).  
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Crafts-Brandner et al. (1984) described a form of hyper-senescence associated 

with maize ear removal specific to B73.  They observed a rapid, premature senescence 25 

days post-anthesis beginning in the upper leaves of the maize plant descending 

downwards.  When the ear was physically removed in B73xMo17 hybrids, a reddish 

discoloration occurred in plants with no ear, while alternate hybrids remained green 

throughout grain fill with the removal of the ear.  Metabolomics data of B73xMo17 

hybrid showed an accumulation of carbohydrates and a loss of nitrogen from the leaves 

occurring simultaneously with the cessation of nitrate uptake.  Nitrogen flux was 

examined in a follow-up study by observing the leaf above the ear over a set period of 

days after anthesis.  They observed a loss of nitrate reductase activity, reduced nitrogen, 

and lower carboxylating enzyme activity that appeared to be regulated during premature 

senescence.  They concluded that the rate of nitrogen flux was regulating senescence but 

could not rule out effects of growth regulators or other metabolites as possible 

explanations of the phenotype.  Due to the expression of this phenotype in hybrid 

combinations, it appears to be inherited as a dominant trait.  

Sekhon et al. (2012) conducted a transcriptional and metabolic analysis of the 

observed premature senescence phenotype in B73.  They observed an increase in free 

glucose and starch with a loss of chlorophyll in leaves 12 days after anthesis (DAA) from 

the highest ear-leaf.  Whole plant transcriptional changes occurred with the presentation 

of the phenotype at 24 DAA, and transcriptional changes occurred in internodes at 30 

DAA.   
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1.9 Root Structure and Morphology 

Root development and expansion under abiotic stresses play a critical role in plant 

performance in challenging environments.  Plants are dependent on the bulk flow of 

water and nutrients from the soil through the roots for growth and development.  

However, plants are limited in their ability to alter their root systems under abiotic stress 

conditions.  Despite these limitations, they are able to expand the root zone deeper or 

wider to mine beneficial resources or increase the efficiency of absorption in the pre-

existing root zone.  Significant genetic variation exists for root traits in maize, but 

selection on these traits comes with a risk as there are negative implications for above 

ground structures when strongly selecting for root traits (Hochholdinger et al., 2004; 

Giuliani et al., 2005).   

 There are two strategies for expanding the root system, each with advantages and 

disadvantages for plants.  Plants can extend their roots laterally to improve nutrient 

uptake, specifically phosphorus.  While this can improve the stability of the plant, it 

comes at a consequence to primary root growth and depth.  Primary growth tends to be 

the typical reaction of a drought stressed plant.  In search of water and nitrogen at greater 

depth, the plant sacrifices lateral root growth.   

1.10 Biochemical Elements Involved in Abiotic - Stress Signal and Reception 

Crop mitigation of abiotic stresses, such as drought, heat, salt, and oxidative 

stress, are complicated biological processes involving many molecular, biochemical, and 

cellular elements.  In general, biochemical signaling starts with a cellular receptor sensing 

the stress due to differences in calcium levels, metabolites, and cellular messengers 

associated with the stress.  Additionally, secondary messengers such as inositol 
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phosphates, phytohormones, and reactive oxygen species modulate the calcium response 

and initiate other cascade responses.  Secondary messengers often initiate and regulate 

protein phosphorylation pathways and transcription factors further down the signaling 

cascade.  Various hormone responses regulate cascade events alongside previously 

mentioned secondary messengers.  Ultimately, a stress response is elicited by the 

differential expression of ‘stress-responsive’ genes, antioxidants, and osmolytes leading 

to abiotic stress tolerance, growth repression, and/or plant death (Xoing et al., 2002). 

1.10.1 Ion Channels 

A primary signal of abiotic stress at the cellular level is an increase of calcium 

ions in the cell altering the electrochemical potential.  Additionally, an efflux of calcium 

ions out of the cell through calcium ATPases and permeable calcium ion channels 

continues the initial signal reception (Sanders et al., 2002, Boudsocq and Sheen, 2010).  

Calcium ion channels can be activated in a variety of ways including hyper-polarization, 

depolarization, or ligand binding such as glutamate, inositol triphosphate (IP3), cyclic 

ADP ribose (cADPR), and cyclic nucleotide monophosphate (cNMPs) (White and 

Broadly et al., 2003; Hetherington et al., 2004; Boudsocq et al., 2010).  Calcium ions 

interact with several proteins and enzymes, some of which are described below, at 

various stages in the cascade response.  How a plant interacts with calcium and 

associated secondary messengers can influence the ability of the plant to mitigate an 

abiotic stress. 

1.10.2 Histidine Kinases 

Histidine kinases (HK) are at the first level of the cellular signal relay in an 

abiotic stress response.  They primarily sense changes in the osmotic potential of the cell 
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(Xoing et al., 2002).  The majority of HKs are membrane-bound, homodimeric proteins.  

They consist of amino-terminal periplasmic sensing domains coupled to a C-terminal 

cytoplasmic kinase domain.  Throughout the HK family, the sensing domain is not as 

conserved as the kinase domain.  Histidine kinases have conserved motifs designated as 

H, N, G1, F, and G2 boxes (Stock et al., 1989; Parkinson and Kofoid, 1992; West et al., 

2001).  HKs exist in a ‘two component system’ state, where the signal transduction is 

sensed by the kinase, and a subsequent phosphorylation event activates the response 

regulator (RR) protein.  Specifically, the phosphorylation event occurs at His and Asp 

amino acid residues (West et al., 2001).  Under an abiotic stress such as osmotic or water 

stress, increased amounts of calcium ions can be sensed by the HK domains, initiating the 

signaling cascade.  

1.10.3 G-Protein Coupled Receptors  

G-protein coupled receptors (GPCR) are transmembrane proteins that are located 

within the lipid bilayer of a plant cell.  These proteins consist of seven transmembrane 

alpha-helices located throughout the extra- and intracellular spaces. The N-terminus is 

located in the extracellular space and the C-terminus in the intracellular space (Strasser et 

al., 2013).  GPCRs undergo conformational changes during the transition from 

inactivation to activation in the cell (Kobilka and Deupi, 2007).  They interact with G-

protein heterodimers in the intracellular space (Oldham et al., 2006).  This interaction 

initiates a conformational change in the protein thus beginning the signaling cascade due 

to the release of GDP and the binding of GTP to the ternary complex.   Depending on the 

given G-protein interaction with the GPCR, the signal transduction changes the 

conformation of the protein and the subsequent response (Vauquelin et al., 2008; Strasser 
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et al., 2013).  The conformational change in the GPCR begins the signaling cascade by 

phosphorylating target proteins downstream to respond to the corresponding 

physiological event (Strasser et al., 2013). 

1.10.4 Receptor-like Kinases (RLK) 

Receptor-like kinases (RLK) are a large gene family in plants involved in abiotic 

stress reception and signaling.  They contain serine/threonine-like cytosolic domains that 

are similar to their animal counterpart receptor tyrosine kinases (RTKs) (Osakabe et al., 

2013).  Under drought stress, RECEPTOR-LIKE PROTEIN KINASE1 (RPK1), an LRR-

RLK, is activated by ABA, high salt conditions, dehydration events, and/or low 

temperatures events (Osakabe et al., 2005).  Proline-rich extension-like receptor kinases, 

a positive regulator of ABA, and calcium-mediated RLCK proteins are also activated 

during an abiotic stress and confer a positive regulator response (Bai et al., 2009; Yang et 

al., 2010).  Some of these individual families are discussed at further lengths in other 

sections of this chapter, as they are involved in cascade responses past the initial 

signaling event.  RLKs are diverse in both number and function; however, the main 

function of these proteins is the initial perception of an abiotic stress and proper signaling 

to initiate the cascade response through phosphorylation. 

1.11 Biochemical Elements Involved in Abiotic Stress Signaling and Relay 

1.11.1 Inositol Phosphates 

Inositol phosphates (InsP) increase under abiotic stresses and regulate the release 

of calcium ions from intracellular stores (Schumaker et al., 1987; Morse et al., 1989; 

Gilroy et al., 1990; Perera et al., 1999; De Wald et al., 2001).  While it is a complex 

biochemical process involving multiple InsP elements, this section will focus on InsP6, 
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which regulates the release of calcium and gene expression of plants under water stress.  

Previous literature suggested a larger role of InsP3 in response to an abiotic stress. 

Recently, InsP6 was shown to be the essential enzyme involved in water stress response 

and not InsP3.  An increase in the phytohormone ABA results in an increase of InsP6 in 

the guard cells (Lemtiri-Chlieh et al., 2000; 2003).  The ABA increase inhibits stomatal 

opening under stress while also encouraging closure.  InsP6 is readily converted into 

compatible solutes and other molecular components that confer abiotic stress tolerance in 

these circumstances.  InsP3 is readily converted to InsP6 in plants, where it is more 

potent in response to a stress (Lemtiri-Chlieh et al., 2000; 2003).   

1.11.2 Phosphorprotein Cascades 

1.11.2.1 Calcium-dependent Protein Kinases (CDPK) 

There are various calcium sensitive enzymes and transcription factors that are 

induced during plant cell stress.  Major molecular families of these calcium enzymes are 

calcium dependent protein kinases (CDPKs), calmodulins (CaMs), CaM-like proteins, 

and calcineurins B-like proteins.  Asano et al. (2002) describe the composition of CPDKs 

as consisting of a “variable N-terminal domain, a protein kinase domain, an 

autoinhibitory region, and a calmodulin-like domain with EF hand Ca2+ binding sites.”  

CDPKs are directly activated by the binding of Ca2+ to the calmodulin-like domain, and 

activated CDPKs further regulate downstream targets (Harper et al., 1991, 2004, 2005; 

Harmon et al., 2000; Cheng et al., 2002; Hrabak et al., 2003). CDPK location and 

variation is extensive throughout a cell and the plant kingdom. 

CDPK3 and CDPK6 enzymes are positive regulators of stress signaling and in 

tandem with an ABA, regulate stomatal closure and opening.  CDPK10 is involved in 
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calcium regulation and conferring drought tolerance in plants.  Mutants of these kinases 

show an increased sensitivity to abiotic stresses and loss of interaction with ABA.  

CDPK4 and CDPK11 in arabidopsis participate in seedling processes involving ABA-

related transcription factors (ABF1 and ABF4).  Other CDPKs, 21, 23, and 32, are also 

involved in ABA signaling and abiotic stress responses in plants (Asano et al., 2012).  

CDPK4, 5, and 11 are implicated in abiotic stress tolerance by decreasing and regulating 

reactive oxygen species accumulation (Asano et al., 2012).   

1.11.2.2 Salt Overly Sensitive (SOS) 

Another class of signaling relay enzymes is the salt-overly sensitive (SOS) protein 

kinases that are involved in calcium sensing and signaling.  Starting in the cytosol, a 

myristoylated calcium-binding protein, SOS3, receives the salt-elicited calcium signal 

and initiates the downstream responses.  SOS3 then activates threonine/serine protein 

kinase SOS2.  Together, SOS3 and SOS2 regulate SOS1, a calcium/hydrogen antiport.  

This antiport provides tolerance to abiotic stresses by controlling the cellular homeostasis 

through calcium/hydrogen ion exchange (Knight et al., 1997; Liu et al., 1998, 2004; 

Ishitani et al., 2000; Halfter et al., 2000; Shi et al., 2000, 2002; Qiu et al., 2002). 

1.11.2.3 Mitogen Activated Protein Kinases 

The mitogen activated protein kinases (MAPK) cascade from MAPKKK to 

MAPKK to MAPK are activated in abiotic stresses.  These kinases are linked to various 

upstream receptors and downstream targets of signal transduction.  MAPKs are thought 

to be convergence points in stress signaling.  When a signal is detected, a variety of 

defense responses are possible ranging from programmed cell death, production of 

reactive oxygen species, synthesis of pathogen-related proteins/phytoalexins, and/or 
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transcriptional activation of abiotic stress related genes.  SIMK (salt stress inducible 

MAPK) are activated in alfalfa under moderate hyperosmotic stress.  SIPK (salicylic 

acid-induced kinase) is present in tobacco (Munnik et al., 2000).  The complete picture of 

the MAPK cascade is still being determined.   

As previously stated, dehydration of the cell can cause severe damage to a plant 

under drought stress.  Early indicators of drought stress such as inositol 1,4,5-

triphosphate (IP3), diacylglycerol (DAG), and phosphatidic acid (PA) are found in the 

phospholipid membrane.  Studies have suggested that an increase in Ca+ ions under stress 

triggers the cascade of osmotic stress genes in the cell (Wu et al., 1997).  Secondary 

messengers of osmotic stress in the plant such as phosphatidylinositol 4,5-bisphosphate 

(PIP2) are activated by hydrolysis with Phospholipase C (PLC), which creates IP3 and 

DAG.  These compounds accumulate under osmotic stress in plants (De Wald et al., 

1999).  IP3s also increase in plants when ABA is added to guard cells (Lee et al., 1996; 

Xiong et al., 2001). 

Phospholipase D (PLD) cleaves phospholipids, forming PA and free head groups, 

when a cell is osmotically stressed (Maarouf et al., 1999; Munnik et al., 2000).  When the 

production of PLD is inhibited, plants exhibit a heightened tolerance to drought and an 

improved sensitivity to cold stresses.  It is thought that the presence of PA, which is a 

product of PLD, might signal the closure of stomata under stress.  PA would function 

similarly to ABA in this scenario (Jacob et al, 1999). 

1.11.2.4 Protein Phosphatases 

Protein kinases add a phosphate group to a substrate for activation of a cascade 

response. CDPK and MAPK are examples of this kind of enzyme.  Conversely, protein 
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phosphatases remove a phosphate.  These two enzyme groups are antagonistic yet both 

have important functions in abiotic stress response regulation.  There are three protein 

phosphatase families that are involved in plant abiotic stress responses: protein 

phosphatase P (PPP), protein phosphatase M (PPM) and protein tyrosine phosphatase 

(PTP) (Chae et al., 2010). 

Protein phosphatases P are divided into two groups, PP1 and PP2, based on their 

dependence for divalent cations.  PP2 is divided into three subclasses: PP2A 

(independent of divalent cations), PP2B (requires calcium) and PP2C (requires 

magnesium).  PP2C can also fall into the PPM class and consist of serine/threonine 

complexes.  In some species, PP2C regulates MAPK signaling (Luan, 2003).   

In abiotic stress responses, PP2C-type phosphatases are involved in ABA 

signaling and interactions.  Two different phosphatases interact with ABI1 and ABI2 as 

negative regulators of ABA signaling pathways (Rodriguez et al., 1998; Sheen, 1998; 

Gosti et al., 1999; Merlot et al., 2001).  Mutants of ABI1 and ABI2 showed an inhibition 

of the ABA signaling pathway, which presented as lack of stomatal regulation, impaired 

seed dormancy/germination, and increased drought stress response.  ABI1 and ABI2 are 

active only in the phosphorylated form, and thus the loss of phosphatase leaves these 

genes without regulation.   

1.11.3 Transcription Factors 

1.11.3.1 EREBP/AP2 

Ethylene responsive element binding proteins (EREBP) and APETLA2 

transcription factors are found exclusively in plants.  They interact with DREB1 and 

DREB2 proteins in abiotic stress responses.  DREB (dehydration response element 
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binding) proteins are transcription factors involved abiotic stress tolerance.  DREBs are 

ABA independent signal factors (Agarwal et al., 2006).  The interaction of these 

transcription factors are involved in activating LEA-like and rd29A proteins.  DRE cis-

acting elements are directly involved in the activation of these subsequent proteins (Liu et 

al., 2000).    

1.11.3.2 bZip Transcription Factors 

Basic leucine zippers (bZips) are ABA induced DNA-binding factors that interact 

with ABA-responsive promoter elements (ABRE).  RD29A and DRE elements can both 

be activated via ABA-dependent and independent pathways (Uno et al., 2000).  ABRE 

elements interact with bZips in a cis-acting manner and are ABA-dependent (Huang et 

al., 2012). 

1.11.3.3 Zinc Fingers 

Zinc fingers are molecular elements that contain cysteine and histidine motifs that 

form localized peptide structures for the encoded function.  These elements are thought to 

regulate reactive oxygen species scavenger mechanisms involved in abiotic stress 

response (Fujita et al., 2006).  The zinc finger ZAT12 is involved in the repression of 

ascorbate peroxidase 1 (APX1), which increases the production of the reactive oxygen 

species, hydrogen peroxide, during abiotic stress.  There are several examples of different 

zinc fingers that are involved in activating specific genes for an abiotic stress response in 

plants.  Arabidopsis: Zat12 – Oxidative (Davletova et al., 2005), Cys2/His2 – Drought, 

cold, and high salinity (Sakamoto et al., 2004), Zat7 - Oxidative (Chen et al., 2002), Rice: 

OSISAP1 – Cold, dehydration, and salt stress in transgenic tobacco (Mukhopadhyay et 

al., 2004), DST – Drought and salt (Huang et al., 2009). 
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1.11.4 Reactive Oxygen Species 

Reactive oxygen species are vital secondary messengers of an abiotic stress 

response that are oxidatively or osmotically created.  Reactive oxygen species are 

primarily generated in the chloroplasts, peroxisomes, and mitochondria and have 

relationships and interactions with several plant metabolic pathways.  Antioxidants, 

which will be discussed later, are the antagonists of reactive oxygen species and facilitate 

the removal of reactive oxygen species from the plant.  Detrimental effects of reactive 

oxygen species include plant death due to oxidative stress damage and programmed cell 

death. 

The onset of abiotic stresses affects the ability of plants to assimilate carbon 

dioxide.  During low rates of carbon dioxide assimilation and high light intensity, the 

electron transport chain becomes over-reduced, leading to the inactivation of 

photosystem II (PSII).    Photochemical quenching occurs for PSII as the protein passes 

electrons over to acceptors within the chloroplasts.  This process creates free oxygen 

radicals (O2
-) and subsequent reactive oxygen species of H2O2, OH+, and 1O2 (Hideg et 

al., 2002; Ort et al., 2002; Gill et al., 2010). 

Superoxide radicals (O2
-) are generated during photosynthesis in the chloroplasts 

through the partial reduction of oxygen molecules.  Primarily, this process occurs in the 

thylakoid membrane-bound primary electron acceptor of photosystem I.  From O2
-, 

additional reactive oxygen species can be generated. One such example is OH-, which 

can cause the perioxidation of the membrane lipids resulting in cellular weakening and 

possible cell death.  If the O2
- were to undergo protonation, a strong oxidizing agent HO2 

is created and leads to stress damage on cell membrane surfaces (Elstner, 1987; Gill et 
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al., 2010).  Finally, the free oxygen radical can interact with Fe3+ and donate an electron 

to create Fe2+.  This reduced molecule undergoes a Haber-Weiss reaction for the 

formation of an iron-hydrogen peroxide complex.  The iron hydrogen peroxide molecule 

undergoes the Fenton Reaction resulting in the detrimental free radicals OH+ and 1O2.  

Hydroxyl radicals (OH∙) are considered to be the most potent reactive oxygen 

species in plants and in the presence of transitional metals, have the greatest potential for 

detrimental effects on plants.  In the presence of a transitional metal, hydrogen peroxide 

and oxygen radicals generate hydroxyl radicals and create oxygen toxicity under neutral 

pH and ambient temperatures.  These molecules can damage organic molecules and 

cellular structures and must be eliminated by the plant to avert cell and plant death 

(Vranová et al., 2002; Gill et al., 2010).  

While plants are programed to detoxify reactive oxygen species that are produced 

during abiotic stresses, prolonged exposure can break down and damage photosynthetic 

elements.  Chloroplast membranes and the plasma membrane are specifically sensitive to 

reactive oxygen species damage (oxidation stress).  Reactive oxygen species can cause 

peroxidation, de-esterification of membrane lipids, protein degradation and mutations 

(Bowler et al., 1992).  Cellular dehydration causes increased protein-protein interactions 

and toxic increases of solute concentrations leading to enzyme degradation.  If the stress 

is relieved, detoxifying elements such as glutathione reductase and ascorbate peroxidase 

are expressed in high concentrations and can counteract the effects of photo-oxidation. 

1.11.5 Antioxidants 

Antioxidants are involved in the relief of oxidative stress created by drought, salt, 

ozone, and extreme temperatures.  These stresses in combination with high light intensity 
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are ideal environments for the creation of reactive oxygen species.  Reactive oxygen 

species were discussed earlier in this chapter and are detrimental to the growth and 

development of plants.  

In general, antioxidants are metabolites and enzymes that are involved in the 

relief of reactive oxygen species from the plant either by removing or breaking down the 

adverse element.  Several different transgenes in a variety of plants have been shown to 

increase antioxidant production leading to the removal of reactive oxygen species thereby 

providing evidence of the importance of these antioxidants for stress tolerance.  When 

SOD, APX, MnSOD, CuZnSOD and CAT are overexpressed in transgenic constructs, 

thereby increasing the amount of antioxidants, tolerance is conferred.  Some of these 

proteins are valuable under the stress but have a negative effect on yield under no stress 

(Allen, 1995; Van Breusegem et al., 1999; Wang et al., 1999, 2005; Lee et al., 2007). 

Other enzymes that generated antioxidant production are glutathione-S-

transferase (GST), dehydroascorbate reductase (DHAR), and monodehydroascorbate 

reductase (MDAR), where the latter two are part of the ascobate-glutathione pathway.  

Increased expression of DHAR and MDAR correlates to an increased production of 

ascorbic acid (vitamin C), a highly efficient antioxidant.  GST, when overproduced, 

increases expression of SOD and CAR genes for oxidative stress relief (Eltayeb et al., 

2006, 2007; Zhao and Zhang, 2006). 

The final antioxidant class discussed in this section are polyamines (PA) 

molecules.  These molecules are involved in increased activation of nucleic acids 

synthesis and confer oxidative stress tolerance.  S-adenosylmethionine decarboxylase 

(SAMDC) is an enzyme critical in the production of PA and over-expression of SAMDC 
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results in increased tolerance to osmotic, cold, and oxidative stresses.  APX, MnSOD, 

and GST, which have been previously discussed, have higher levels of expression in 

plants that overexpress PA (Walden et al., 1997; Ye et al., 1997; Wi et al., 2006). 

1.12 Stress-Responsive Genes and Compatible Solutes 

1.12.1 LEA-like Proteins 

The exact functions of LEA proteins are unknown.  However, evidence suggests 

they are integral, hydrophilic proteins that are involved in hydration buffering, serving as 

an ion sink and water replacement molecule, and protein renaturing for a variety of 

abiotic stresses (Wise and Tunnacliffe, 2004).  Phytohormones, ABA and ethylene, are 

also implicated in the activation of LEA-proteins (Gechev et al., 2006). 

LEA protein homologs are the largest class of genes involved in cold tolerance 

and are present in late embryogenesis, prior to seed desiccation, and seedling response to 

dehydration (Close, 1996; Ingram and Bartels, 1996; Xu et al., 1996).  Many of these 

proteins are hydrophilic and simple in amino acid composition.  Examples of these genes 

and their components are COR, HOS1, ICE, and associated CBF genes, which are all 

involved in cold tolerance and acclimation.  Esk1 genotypes express excess free proline 

as a cryoprotectant, which serves as a form of negative regulation (Xin, 1998). 

1.12.2 Heat-shock Proteins 

Heat-shock proteins (HSP) are expressed at various stages of plant development 

in rapid response to heat stress.  There are three different classes of heat shock proteins 

based on their molecular weight: HSP90, HSP70, and 15-30kDa. The accumulations of 

HSPs are dependent on the stage of development and type of plant (Wahid, 2007).  Small 
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HSPs are found localized in specific cellular compartments and each corresponds to a 

specific six nuclear gene family (Waters et al., 1996). 

 Generally speaking, HSPs are responsible for prevention of protein denaturation 

and aggregation under high temperatures and are quickly activated to protect and insulate 

proteins within the chloroplast and/or mitochondria (Schoffl et al., 1999; Iba, 2002).  

Small HSPs assemble into heat-shock granules (HSGs) in the cytoplasm to protect 

biosynthetic machinery (Miroshnichenko et al., 2005).  The ability for HSGs to form and 

disperse under constant heat stress correlates to plant survival. 

HSP68 (HSP70 kDa class) is located in the mitochondria and is expressed at a 

higher rate under heat stress in several plants including maize and soybean (Neumann, et 

al., 1993).  HSP101 (HSP 90 kDa class) is located in the nucleus as a campylobacter 

invasion antigen protein.  It functions as a renaturation promoter under heat stress and is 

expressed at a higher rate in reproductive tissue than in vegetative tissue (Young et al., 

2001).  In maize, 64 and 73 kDa HSPs (HSP 70kDa class) accumulate quickly under heat 

stress in male pollen (Dupius and Dumas, 1990), and a 45-kDa HSP (Small HSP class 

protein) in maize correlates to heat stress recovery (Ristic and Cass, 1992).  HSP70 

assists in protein translation and translocation, proteolysis, protein folding/chaperoning, 

suppression of aggregation, and reactivation of denatured proteins (Zhang et al., 2005).  

Iba et al. hypothesizes that HSP70 participates in ATP-dependent protein unfolding or 

assembly/disassembly reactions and prevents protein denaturation during heat stress (Iba, 

2002). HSP21 (Small HSP class protein) in tomato is linked to protecting photosystem II 

from oxidative damage and fruit storage at low temperatures (Neta-Sharir et al., 2005). 
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1.12.3 Osmolytes 

Production of osmolytes can have advantages and disadvantages in plants 

undergoing abiotic stress.  They can provide protection from reactive oxygen species 

during a stress, but when/if the stress is relieved; they can inhibit plant growth and 

development.  Protection is provided by stabilizing protein structures, maintaining 

osmotic equilibrium, or removing reactive oxygen species from the cell (Zhu, 2001).  

Osmotic equilibrium and solute protection is critical for tolerance to water deficits and 

drought conditions.  Under drought conditions, the osmotic equilibrium is readjusted 

towards a decrease in water and an increase in solute concentration from osmolytes.   

Raffinose and galactinol are examples of osmoprotectents that are produced under 

drought stress.  They do not adjust the osmotic balance in the cell.  Mannitol is a sugar 

produced to scavenge and remove reactive oxygen species and hydroxyl radicals from the 

cell.  It can also provide protection and stabilization of proteins under drought stress.  

When drought stress occurs, osmoprotectents form hydrogen bonds with specific 

proteins.  This prevents the formation of intramolecular hydrogen bonds that can 

permanently damage a protein under drought stress.  Trehalose is a non-reducing glucose 

disaccharide that also has stabilization functions for proteins under stress.  Specifically, 

trehalose allows for continued photosynthesis by protecting photosystem II from 

photooxidation (Bohnert et al., 2000; Wahid et al., 2007). 

1.12.4 Glycine Betaine and Proline 

The osmolyte glycine-betaine, formed in a two-step oxidation pathway of choline, 

is synthesized by plants in response to abiotic stresses.  Salt tolerance is conferred in 

plants that express the N-methyl transferase enzymes that are in the glycine-betaine 
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pathway that act to adjust osmotic balance.  This is achieved by limiting the amount of 

Na+ in the cell by the plasma membrane Na+/H+ antiporter, sequestering Na+ ions in the 

plant vacuoles, and accumulating solutes, amino acids and glycine betaine (Wahid et al., 

2007). 

 Proline is an additional compatible osmolyte involved in osmotic adjustment of 

plants under stress (Rhodes et al., 1999, 2002).  Plants overexpressing proline exhibit 

increased water use efficiency in tobacco and accumulate in the leaves and nodules of 

alfalfa under drought stress (Irigoyen et al., 1992; Pospisilova et al., 2011).  However, 

proline is metabolically costly to the plant due to its high molecular weight and is hard 

for the plant to transport (Irigoyen et al., 1992). 

Plants with high levels of glycine betaine and proline in high temperature 

situations confer heat tolerance in arabidopsis (Sakamoto et al., 2002; Kishor et al., 

2005).  Glycine betaine and proline, in higher concentrations, buffer cellular redox 

potential under heat stress (Wahid et al., 2007). 

1.12.5 Carotenoids and Anthocyanins 

Carotenoids are actively involved in abiotic stress tolerance, specifically heat 

stress.  They serve as photoprotectants from the xanthophyll pathway, specifically 

zeaxanthin.  Zeaxanthin is hydrophobic and localizes in the periphery of the light-

harvesting complexes to prevent peroxidative damages from reactive oxygen species to 

the membrane lipids (Horton, 2002).  Other lipid membrane protectants from the 

carotenoid pathway are terpnoids (tetraterpenoids) such as 40C-isoprene and α-

tocopherol (Havaux, 1998).  These photoprotectant elements allow for membrane 
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stability by lowering susceptibility to lipid peroxidation and decreasing the fluidity of the 

membrane under heat stress (Havaux, 1998). 

Anthocyanins are secondary metabolites involved in stress responses.  Low levels 

of anthocyanin concentration in plants result in membrane instability and increased 

fluidity.  Alternatively, when expressed in high amounts, anthocyanins confer stability 

(Wahid and Ghazanfar, 2006).  Anthocyanins may contribute to reduced leaf osmotic 

potential.  Lower leaf osmotic potential increases water uptake and reduces 

transcriptional losses under heat.  This allows the plant to adapt quickly to changing 

environmental conditions (Chalker-Scott, 2002). 

1.13 Plant Hormones and Abiotic Stresses 

1.13.1 ABA 

Under water stress, ABA is rapidly produced and controls plant responses through 

changes in gene regulation and expression.  Additionally, ABA needs to be degraded 

promptly upon alleviation of the stress to allow the plant to return to normal metabolism 

and homeostasis (Zhang et al., 2006).  Transcription factors ZEP, AAO, and NCED are 

upregulated under drought and salt stresses, which elicits an ABA response.  ABA 

receptors induce the expression of ABA response genes.  Physiologically, ABA 

encourages plant stomatal closure and prevents opening to inhibit the effects of 

photooxidation (Zhang et al., 2006).  ABA has been discussed at length in several 

sections of this chapter.  

1.13.2 Salicylic Acid 

Salicylic acid (SA) is a phytohormone involved in stabilization of heat shock 

transcription factors, allowing them to bind to heat shock proteins and related genes.  SA 
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confers long term tolerance as calcium ion homeostasis and antioxidant systems are in 

full effect.  A derivative of SA, sulfo-salicylic acid (SSA), is involved in the removal of 

reactive oxygen species thereby conferring heat tolerance (Shi et al., 2006).  Methyl 

salicylate (MeSA) functions as a signaling molecule for antioxidant related elements 

(Llusia et al., 2005). 

1.13.3 Ethylene 

Ethylene is involved in several stages of plant growth and development in normal 

and abiotic stress situations.  ACC synthase is the precursory enzyme involved in the 

synthesis of ethylene.  Under a drought stress, ACC activity is increased and corresponds 

to an increase in ethylene production (Apelbaum and Yang, 1981).  Additionally, solar 

radiation can affect the amount of ACC present in the plant (Munne-Bosch et al., 2002).  

To confirm the relationship between ethylene and ACC, two ACC synthase enzymes 

were knocked out of the maize inbred B73.  Ethylene synthesis in these plants decreased.  

An additional ACC synthase mutant, Zmac6, grown under drought situations showed 

increase stomatal conductance, transpiration, and carbon dioxide assimilation (Young et 

al., 2004).  These studies suggested that ethylene is involved in regulating leaf physiology 

under drought conditions.  Ethylene also appears to have a role in regulating senescence 

in arabidopsis, where ethylene sensing knockout mutant etr1-1 showed delayed 

senescence compared to wild-type plants (Grbic and Bleeker, 1995). 

1.13.4 Cytokinin 

Cytokinin and its precursor molecules are well-studied hormones involved in 

abiotic stress responses and plant senescence.  Furthermore, stay-green genotypes 

exhibited excess amounts of cytokinin (He et al., 2005).  Additionally, cytokinin 
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signaling increases nitrogen availability from the roots to the leaves in maize (Igarashi et 

al., 2009).  In transgenic maize, cytokinin synthesizing genes, behind an enhanced 

promoter, displayed a Type A form of stay-green (Robson et al., 2004).   

1.13.5 Auxin 

Auxin is involved in many aspects of a plant’s growth and development.  In 

association with ABA, auxin can regulate the water status of a plant (Mansfield and 

McAinsh, 1995).  Under certain concentrations and environmental conditions, auxin can 

aid in regulating the closure and opening of stomata, while ABA controls the stomatal 

aperture (Snaith and Mansfield 1982; Lohse and Hedrich 1992; Grabov and Blatt 1998; 

Tanaka et al., 2006).  Additionally, waterflow/water-loss can be regulated by auxin 

(Albacete et al., 2008).  

1.13.6 Hormone Cross-Talk in Abiotic Stress Conditions 

Plant hormones are complex compounds that individually impact the response of 

a plant under abiotic stress (Peleg et al., 2011).  However, interactions between these 

hormones increase the complexity of plant responses.  For example, lateral root 

differentiation appears to be initiated by ethylene, which leads to a buildup of auxin in the 

pericycle followed by formation of lateral root primordial.  Continuing with this model, 

cytokinin is predicted to deregulate lateral root differentiation and control gravitropism.  

Under drought conditions, ABA increases primary root growth.  Thus, at least four 

hormones are involved in root development in plants in an abiotic stress. 

 Auxin production in transgenic arabidopsis enhanced the expression of LEA 

genes.  However, ethylene appears to be regulating genes related to auxin synthesis, 

perception, and signaling (Zhang et al., 2009).  The following auxin gene families are 
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proposed to be involved in this relationship with ethylene: auxin-responsive factors, 

auxin transporters, and auxin biosynthesis (Li et al., 2004, 2006; Stepanova et al., 2005, 

2008; Růžička et al., 2007).  Additionally, ethylene synthesis appears to be regulated by 

auxin.  1-amino-cyclopropane-1-carboxylate synthase (ACS) genes are rate-limiting 

enzymes involved in ethylene biosynthesis and also appear to be regulated by auxin 

(Tsuchisaka et al., 2004).  Cytokinins are regulators of auxin biosynthesis where a 

homeostatic feedback loop exists between the two hormones to regulate root and shoot 

growth (Tsuchisaka et al., 2004).  Each signaling group acts to maintain an appropriate 

concentration of the other in developing roots and shoots.   

ABA is a major player by itself in regulating plant responses to abiotic stresses, 

primarily through governance of stomatal opening and closing. Furthermore, ABA 

interacts with several other hormones during abiotic stresses. Other plant hormones such 

as cytokinin, ethylene, brassinosteroids, jasomonic acid, salicylic acid, and nitric oxide 

are all involved to some degree with stomatal function. Nitric oxide interacts with ABA 

to regulate stomatal opening and closure as an intermediate in an ABA-mediating 

pathway. ABA and cytokinin interact under drought and senescence conditions in 

tobacco. Cytokinin synthesis was associated with gene expression in general hormone 

activity. Additional interactions between different hormones are brassinosteroids and 

cytokinin individually, brassinosteroids and cytokinins via protein phosphatase 2c, ABA 

and brassinosteroids under abiotic stresses, and cytokinins and brassinosteroids both 

indirectly and directly with ABA (Ribeiro et al., 2009; Lopez-Raez et al., 2010; Rivero et 

al., 2010; Peleg et al., 2011). 
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1.14 Conclusion 

Climate variability and ensuing abiotic stress events will continue to challenge the 

ability of plants to adapt to adverse environments.  Plants must maximize available 

resources and optimize biochemical responses to overcome drought, temperature, and 

flooding stresses and the resulting oxidative and osmotic implications.  Thus far, plant 

breeders have been successful in engineering climate resilient crops for multiple locations 

and stresses.  However, implementation of new technologies and selection criteria will be 

critical to enabling development of even higher yielding and more tolerant varieties.  

Because of this, plant breeders must be multifaceted in their approach to climate 

variability.  Breeders must utilize transgenic and conventional traits in combination with 

genomic selection and advanced marker-assisted selection to maximize resources for 

product development.   

 The following chapters in this dissertation will discuss stay-green and sink-

inhibition phenotypes in maize and sorghum.  Objectively, this research sought to dissect 

the stay-green and sink-inhibition traits using multiple diverse populations of maize and 

powerful forms of association mapping.  In chapter two, phenotypic characterization of 

three maize populations and association mapping were combined in an effort to identify 

potential causative gene(s) regulating the phenotypic expression of stay-green.  In chapter 

three, data from stay-green in maize was leveraged in sorghum to examine the genomic 

relationships between these crop species.  In chapter four, association mapping was 

conducted in the Nested Association Mapping Panel of maize in an effort to identify 

causative genes involved in premature senescence via sink-inhibition.  All together, these 
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data provide a substantial contribution to the scientific community working to understand 

and develop climate resilient crops.
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CHAPTER 2. GENETIC REGULATION OF STAY-GREEN IN MAIZE 

2.1 Abstract 

Climate variability will continue to challenge researchers and plant breeders in 

efforts to increase yield.  Stay-green is an advantageous trait for plant breeders to exploit 

for yield gains under drought stress.  In this study, we characterized three diverse 

populations of maize for stay-green under stress conditions and identified several gene 

families that appear to be specifically coordinated under drought stress.  Specifically, 

calcium signaling and relay, phytohormone, general stress and transcription factors, 

vesicular transportation, sugar transportation, secondary messengers, and cell wall 

structure gene families are associated with the expression of stay-green.  We report 

specific candidate genes, primarily related to ethylene and pectin formation that are 

implicated in two or more populations.  Further genetic and molecular characterization of 

specific candidate genes as well as agronomic evaluation are needed to confirm the yield 

and stress advantages of specific stay-green genotypes.  Once established, specific alleles 

and donor lines can be deployed into private and public sector breeding programs to 

enhance the ability of elite germplasm to mitigate drought stress.  Additionally, a 

substantial contribution to understanding drought-stress responses in plants can be made 

building from these data.  Finally, leveraging genomic information from maize stay-green 
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into other cereal species provides an avenue to further characterize and understand 

drought adaptation using comparative genomics.   

2.2 Introduction 

Agriculture and food production are highly vulnerable to climate variability.  Past 

experiences in the United States such as the Dust Bowl of the 1930s and the 2012 drought 

have encouraged plant scientists to develop new technologies and practices to meet the 

challenges of stable food production and sustainable farming practices.   Plant breeders 

have successfully met this challenge, most notable in the work of Dr. Norman Borlaug, 

by leveraging native genetic diversity of a crop into elite germplasm to combat a specific 

abiotic or biotic stress.  It is important to note that these scientific improvements were 

accompanied by improved management and cultural practices in the target production 

area. 

 Climate variability is forecasted to increase the prevalence of abiotic and biotic 

stresses in food production areas (IPCC, 2007).  The United States is expected to 

experience increased climate variability and potentially has the resources to successfully 

mitigate ensuing negative effects.  However, underdeveloped countries, where food 

production is already difficult, are expected to take the brunt of negative climate effects. 

 In light of these challenges, plant breeders are being called to continue developing 

climate resilient crops.  This will require introducing new biotechnology and statistical 

methods, agricultural management practices, and native genetic variation to begin what 

some have called the Second Green Revolution or the Blue Revolution (Renaud et al., 

2013). 
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 Maize is a global staple crop and is consequently grown in areas exposed to 

increased climate variability primarily drought and heat.  Worldwide, maize is grown on 

over 177 million hectares producing over 872 million tonnes of grain (FAOSTAT, 2012).  

Additionally, maize exhibits exceptional genetic variation, which plant breeders are 

exploiting for crop improvement (Chia et al., 2012).  Plant breeders across the world have 

access to both temperate and tropical sources of germplasm that can be implemented in 

crop improvement.  However, it is critical that breeders identify potential yield 

components for crops under abiotic stress in lieu of breeding for a complex trait like 

yield.  Additionally, breeders require genetic variation for successful genetic gain in 

production.  Sorghum breeders have increased yield through indirect selection for stay-

green under drought conditions (Borrell et al., 2000).  Stay-green is a potential trait for 

maize drought tolerance breeding programs. 

 Stay-green is the ability of an annual crop species to delay senescence or “stay-

green” throughout the grain filling period under stress and maintain or increase yield.  

Plant breeders desire functional stay-green where both chlorophyll content and 

photosynthetic activity are active and maintained under abiotic stress.  Plant breeders 

anticipate that the maintenance of chlorophyll content and photosynthesis correlates to an 

increase in yield potential from the synthesis of additional photosynthates (Thomas and 

Howarth, 2000).  Sorghum breeders have shown that several positive physiological and 

agronomic characteristics are associated with stay-green genotypes, such as increased 

yield and resistance to stalk lodging (Rosenow, 1984; Borrell et al., 2000).  Additionally, 

genetic mapping suggests the trait is controlled by four to six major genetic loci and 

potentially smaller effect loci contributing in an additive nature (Crasta et al., 1999; 
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Subudhi et al., 2000; Tao et al., 2000; Xu et al., 2000; Kebede et al., 2001; Haussmann et 

al., 2002; Srinvias et al., 2009). 

 United States’ maize breeding programs have utilized stay-green in inbred and 

hybrid development in both normal and stressful environments (Duvick et al., 2004).  

However, characterization of stay-green in maize has been limited to temperate sources 

of germplasm, and utilizing additional sources of genetic variation will be critical to 

improve yield under stressful situations (Duvick et al., 2004). 

 The Nested Association Mapping (NAM) panel and the AMES Diversity Panel 

are excellent sources of genetic variation and can be used to study genetic linkage (Yu et 

al., 2006; Romay et al., 2013).  The NAM population consists of 25 founder lines that, 

when individually crossed to B73, to create 25 recombinant inbred families consisting of 

200 individuals each.  Thus the entire population is 5000 recombinant inbred lines (RILs) 

that have an anchor in the reference genome, B73.  This population encompasses ~57% 

of the genetic diversity of maize (Romay et al., 2013).  The population structure of the 

NAM allows for joint-linkage mapping of recent recombinations across all inbred 

families as well as a form of association mapping maximizing the ancestral 

recombinations of the diverse founder lines.  This population has been successfully 

characterized for several traits in maize such as flowering time, flower and leaf 

architecture, and leaf diseases (Buckler et al, 2009; Tian et al., 2011, Poland et al., 2011, 

Kump et al., 2011; Cook et al., 2012).  Genotypic data is publically available for linkage 

mapping with 1106 SNPs with 10cM resolution.  HapMapv2 representing millions of 

SNPs is available for association mapping (www.panzea.org). 

 
 



 
 
  44 

 The AMES diversity panel represents an even larger source of genetic diversity 

(Romay et al., 2013).  Consisting of all germplasm available in the North Central 

Regional Plant Introduction Station in Ames, Iowa, this population represents a broad 

swathe of the temperate maize germplasm and is a strong sample of tropical and exotic 

germplasm.  This population is represented genotypically by almost one million GBS 

SNPs (www.panzea.org). 

The goal of this study is to identify QTL and SNP-associations for stay-green in 

multiple populations of maize.  Additionally, we expect this study to provide a platform 

for examining comparative genome relationships of stay-green alleles for drought in 

sorghum.  Our hypothesis for this study is that stay-green alleles are present in multiple 

populations of maize representing a large portion of the genetic variation for the trait. 

2.3 Materials and Methods 

2.3.1 Genetic Materials and Experimental Design 

2.3.1.1 Population One – Nested Association Mapping (NAM) Panel                       

PHZ51 Testcrosses 

A subset of the NAM population was grown for testcross hybrid production.  

Lines with flowering dates similar to B73 (+/- 7 days) were testcrossed with the ex-PVP 

inbred PHZ51, a Pioneer HiBred Oh7B-Midland type pollinator (Mikel and Dudley, 

2006).  RILs from twenty-two of the twenty-five NAM families were selected for 

testcrossing (P39, IL14H, and Hp301 were excluded).  Families selected were equally 

represented and the experimental population consisted of 1241 NAM testcross hybrids.   

Field trials of the NAM testcrosses were grown in four environments in 2010: 

Sandhills, NC; Slater, IA; Columbia, MO; and West Lafayette, IN.  Two-row plots were 
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used in each experiment.  For each environment, an augmented block design (Federer 

1961, 1975) was used with B73 and the founder inbreds included for replication within 

sub-blocks.  The NAM testcrosses were nested by RIL family and were randomly added 

in the overall augmented design.  Some environments split the experiment into different 

fields.  Best linear unbiased estimators (BLUEs) were calculated across environment 

using ASReml (ASReml 3.0, VSN International).  

2.3.1.2 Population Two – Nested Association Mapping (NAM) Panel RILs 

We evaluated 1295 NAM RILs representing twenty-four of the twenty-five NAM 

families excluding Hp301 in 2012 and 2013.  Evaluations occurred in West Lafayette, IN 

with two replications each year.  RILs were selected from the entries used for the 

testcross experiment with flowering times similar to B73. Lines were planted as single-

row plots 3.81m in length with 0.76m alleys between ranges and 0.76m spacing between 

the rows.  A randomized complete block field design was used in the experiment with 

RILs randomized within their respective families and families randomized across the 

replications.  Best linear unbiased estimators (BLUEs) were calculated across years and 

within years for spatial correction using ASReml.   

2.3.1.3 Population Three – AMES Diversity Panel 

The AMES Diversity Panel consists of 2813 inbreds representing a large portion 

of the known genetic diversity of maize.  A subset of this population (n=2424) was tested 

in 2012 and 2013 in West Lafayette using an augmented design (Federer 1961, 1975).  

Genotypes were grouped into blocks based on their relative maturity in Indiana.  There 

were six maturity groups consisting of ~400 individuals each.  Lines were planted as 

single-row plots 3.81m in length with 0.76m alleys between ranges and 0.76m spacing 
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between the rows.  B73 was used as a field check in both years.  In 2012, P39, Mo17, 

B97, NC258, Mo18W, CML247, and in 2013, PHJ40, Mo17, PHG35, PHG39, CML247, 

DK3IH6, were used as maturity checks for each experiment. 

2.3.2 Phenotypic Evaluation of Stay-green 

Stay-green was measured using a ratio vegetation index (RVI) using a 

Chlorophyll Content Meter (CCM-200, Opti-Sciences, Inc.) that measures the ratio of 

transmitted light at 660nm and 940nm.  Four plants from each plot were measured on the 

leaf above the ear-leaf, midway between the leaf tip and collar and between the midrib 

and leaf edge.  A whole plot score was calculated as the mean of the four measurements.  

Testcrosses were measured in each environment at approximately 1250 growing degree 

days (GDDs) after the average silking date of the entire population.  RILs and AMES 

individuals were measured twice, once at anthesis and then at approximately 1050 GDDs 

after the average flowering date of a given family in the NAM and on an individual 

inbred basis in the AMES.  Families in the NAM and individuals in the AMES were 

measured at anthesis when half of the observed lines in the family were flowering. GDDs 

were calculated using Method 2 from McMaster and Wilhelm (McMaster and Wilhelm, 

1997).   

Four different phenotypic measurements were calculated for analysis (Table 2-1).
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Table 2-1 Stay-green phenotypes collected for the NAM RILs, NAM testcrosses, and AMES Diversity Panel 

Stay-green Phenotype Population  Measurement Time Points Calculation  
Anthesis NAM RILs Flowering RVI Flowering 

(Referred to as Stay-green Anthesis) AMES Flowering RVI Flowering 

Terminal  
(Referred to as Stay-green Terminal) 

NAM RILs 1050GDDs RVI 1050GDDs 
AMES 1050GDDs RVI 1050GDDs 

NAM Testcrosses 1250GDDs RVI 1250GDDs 
Difference NAM RILs Flowering and 1050GDDs (RVI Flowering - RVI 1050GDDs) 

(Referred to as Stay-green Difference) AMES Flowering and 1050GDDs (RVI Flowering - RVI 1050GDDs) 

Ratio 
(Referred to as Stay-green Ratio) 

NAM RILs Flowering and 1050GDDs (RVI Flowering - RVI 1050GDDs)/   
RVI Flowering 

AMES Flowering and 1050GDDs (RVI Flowering - RVI 1050GDDs)/   
RVI Flowering 
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2.3.3 General Weather Information 

The NAM testcrosses were planted on different dates in 2010 at four locations: 

May 27th in Columbia, Missouri, April 21st in Sandhills, North Carolina, May 6th in 

West Lafayette, Indiana, and April 22nd in Slater, Iowa.  On a temperature basis, Iowa 

experienced its 10th warmest year of 116 years; Missouri experienced its 3rd warmest 

year; North Carolina and Indiana experienced the warmest year between the months of 

April to September.  In terms of accumulated precipitation during the same time window, 

Iowa had its 115th wettest period, Indiana its 60th, North Carolina its 41st, and Missouri 

is 107th.  At the beginning of the growing season, North Carolina was experiencing 

drought conditions (D1) based on the United States Drought Monitor 

(http://droughtmonitor.unl.edu).  However, by the end of May, none of the testing 

locations were under any form of drought. This situation persisted throughout the rest of 

the growing season (Drought information - United States Drought Monitor; Weather 

information - NOAA). 

 The NAM RILs were planted on May 6, 2012 and May 20, 2013.  The AMES 

population was planted on May 14, 2012 and May 20, 2013.  During the growing season 

from April to September, Indiana experienced its 10th warmest year in 118 years in 2012 

and 64th warmest year in 119 years in 2013.  Indiana had its 15th driest year on record in 

2012 and its 85th driest year in 2013.  According to the Drought Monitor, West Lafayette 

started the growing season in 2012 in a D1 drought situation.  By the end of May, the 

drought progressed into a D2 status and this condition persisted throughout June.  By the 

end of July, West Lafayette had deteriorated into a D3 drought.  However, by the end of 

August, the drought status slightly improved to a D2 state.  In 2013, the effects of the 
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2012 drought were no longer present and West Lafayette started the season in a non-

drought condition.  This condition persisted through the end of July; however, West 

Lafayette was on the verge of a D1 drought status by the end of August. 

2.3.4 Genotypic Information 

2.3.4.1 Populations One and Two 

Joint-linkage mapping was conducted using a genetic map with 1 cM resolution, 

based on GBS v2.3 SNPs available at www.panzea.org.  For association mapping, 

HapMapV2 SNPs (Chia et al., 2012) were projected onto the NAM RILs based on 

linkage information.  HapMap V2 consists of random-sheared, paired-end Illumina GAII 

reads from 103 maize inbreds, teosinte, and landraces with 4-30x coverage.  Overall, 55+ 

million SNPs and indels were generated for genetic analyses. For each SNP, its values for 

a RIL were assigned based on the SNP value of the RIL parents and on the genotype of 

the flanking NAM markers in that RIL. 

2.3.4.2 Population Three 

Genotypic analysis of the AMES population consisted of genotype-by-sequencing 

SNPs aligned to B73 and distributed throughout the genome.  The entire collection of 

GBS 2.7 SNPs is around one million individual markers (www.panzea.org).  However, 

based in the minor allele frequency distribution within this subset, ~370,000 SNPs were 

used in the evaluation of stay-green phenotypes.  Differing amounts of SNPs were used 

in each model depending on the phenotype based on the number of genotypes evaluated 

and quality control filtering. 
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2.3.5 Statistical Analyses 

2.3.5.1 Spatial Analysis for Best Linear Unbiased Estimators 

Best Linear Unbiased Estimators (BLUE)s were calculated to account for year 

and field effects using a weighted multivariate mixed model in ASReml (ASReml 3.0, 

VSN International).  Within the model, the effects of blocks, rows, ranges, replications, 

and number of observations per plot were fit to identify the best model as appropriate.  

Additionally, first-order autoregressive for range and row were included as needed in the 

populations for a phenotype.  When appropriate, likelihood ratio tests or Akaike’s 

Bayesian Information Criteria for the random effects or the F-tests for the fixed effects 

were used to identify which factors were significant in the model for a given phenotype 

and thus were retained in the model.  When statistical comparison between different 

models were not possible, the best model was chosen based on the highest significance 

for the variety F-test and the lowest pairwise variety mean comparison standard error. A 

combined mixed model across years was fitted for the NAM and AMES populations and 

across locations for the NAM testcrosses.  

2.3.5.2 Heritability Calculations 

Heritabilities were calculated on a plot and mean basis for all populations (Hung 

et al., 2011).  Plot-based heritabilities were calculated for NAM populations, both RILs 

and testcrosses, using the following general equation which was modified to correctly 

account for the number of families, individuals, and environments used in each 

population: 

h2
p = 

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126  ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝

226
𝑝𝑝=1

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126  ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝
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𝑝𝑝=1 + 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒∗𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

2 + 𝜎𝜎∈ 
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Line-mean heritabilities were calculated for the AMES population using an 

equation described by Cullis et al. (2006) shown below which was modified to correctly 

account for the number of families, individuals, and environments used in each 

population: 

h2
c = 1 -  𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃

2 �𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅∗𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

2 �
 

VPPE (genetic variance) is the average prediction error variance for all possible 

pairwise comparisons which includes the checks, obtained directly from the ASReml 

prediction output. 

Line-mean heritabilities were calculated for the NAM RILS, testcrosses, and 

AMES population using the following equation which was modified to correctly account 

for the number of families, individuals, and environment used in each population. 

h2
l = 

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126  ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝

226
𝑝𝑝=1

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126  ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝

226
𝑝𝑝=1 + 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒∗𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 
2

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒(𝑙𝑙)
+ 

𝜎𝜎∈ 
2

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

Harmonic means were used to account for unbalanced data in the experiment.  

nenvl is the harmonic mean of the number of environments in which each RIL was 

observed and nplot is the harmonic mean of the total number of plots in which each RIL 

was observed.  For equations h2
l and h2

p, heritability equations were calculated based on 

the model selection for an individual trait.  Each heritability calculation was specific to 

the field and location of each experiment.    Heritabilities are reported in the results 

section in Table 2-2.
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2.3.5.3 Joint-linkage Stepwise Regression (NAM Linkage Analysis) 

QTL identification utilized a joint stepwise regression model described by 

Buckler et al. (2009) for mapping flowering time traits in the NAM populations.  This 

method combines all NAM families evaluated to test for QTL associated with a given 

trait.  To account for variation associated with maturity, the residual of the model below 

was used to obtain covariate value for days to anthesis (DTA): 

y = b0 + b1×DTA + ε 

y is the BLUE of the stay-green trait.  DTA is the statistical covariate.  b0 is the intercept 

estimate and b1 is the slope estimate.  ε is the residual. 

Backward stepwise selection in Tassel 4 (Bradbury et al., 2007) was used to 

determine which markers would be selected or removed from the model.  Permutation 

analysis to determine the p-value threshold was conducted by permuting RVI values for a 

phenotype 1000 times.  The lowest p-values of a single marker scan were collected after 

each permutation and a threshold p-value was determined at an experimental α of 0.05. 

QTL were identified using a genome-wide joint linkage scan where significant 

markers from the stepwise regression were used as covariates in the model when 

analyzing family and marker within family as fixed effects.  The joint-linkage protocol 

removed covariates in the model when a marker was within 10cM of the original 

covariate markers.  QTL intervals were determined using a 0.01 confidence interval. 

2.3.5.4 Genome-wide SNP Association (NAM Populations) 

We used the statistical power of the NAM to leverage both the ancestral 

recombination events from the diversity of the founders and the linkage of individual 

recombinant inbred populations to conduct genome-wide association for stay-green.  
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Using HapMapV2 SNPs, we obtained SNPs projected onto the RIL progeny using 

linkage marker information and pedigree knowledge which is described in detail in 

section 2.3.4.  

 The protocol used for the GWAS followed the one proposed by Tian et al. 

(2012). For the first step, individual chromosome residuals for each trait were calculated 

from a model where the population term and all significant markers from the joint-

linkage analysis in the other chromosomes were fitted against the mapping trait. Later, 

those residuals were used as phenotypes and fit into 100 stepwise linear models using a 

bootstrapping resampling protocol.  A test statistic, bootstrap posterior probability (BPP 

or RMIP), was calculated corresponding to how many times a SNP was deemed 

significant out of the 100 total runs.  Each of these 100 model runs were analyzed using 

80% of the genotypes randomly subsampled from the population. 

2.3.5.5 Genome-wide SNP Association (AMES Panel) 

Genome-wide associations were performed for all stay-green phenotypes using a 

subset of the individuals from North Central Regional Plant Introduction Station in 

Ames, Iowa.  As in the previous population, residuals from the regression model where 

the trait was the response variable and days to anthesis was the covariate were used as 

mapping traits to account for possible spurious associations with maturity. SNPs were 

tested using a mixed linear model without compression implemented in the GAPIT R 

package (Lipka et al., 2012).  Population structure (Q) was accounted by including the 

first three principal components as covariates. A kinship matrix calculated following 

VanRaden (2008) was used to account for relationships between individuals. Both PC 

and kinship were calculated using a random sample of 10% of the SNPs from a dataset 
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where SNPs with two alleles and at least 20 individuals homozygous for the minor allele 

were kept (369,362 SNPs). For the GWAS, only those markers with MAF >10% were 

tested (229,460 SNPs). 

2.3.5.6 Linkage Disequilibrium Analysis 

Linkage disequilibrium (LD) was examined using TASSEL 5.0 and published 

NAM and AMES GBS SNPs (www.panzea.org).  R-squared and p-values were generated 

using this software.  LD was examined 20kb in each direction of the SNP association for 

an individual population.  From the NAM population, linkage disequilibrium was 

examined using the NAM HapMapV2 SNPs available at www.panzea.org.  In the AMES 

panel, linkage disequilibrium was examined using a subset of the AMES GBS SNPs 

specific to the lines tested in the stay-green experiment and is also available online at 

www.panzea.org.   

2.4 Results 

2.4.1 Stay-green Heritabilities  

Significant genetic variation was detected for all stay-green phenotypes 

(Appendix B – ASReml Output; Appendix C – Phenotypic Distribution of Stay-green 

Phenotypes).  Heritabilities were calculated for all stay-green phenotypes and flowering 

phenotypes on a line-means basis and a plot basis depending on the population.    

Reasonable heritabilities were detected in the NAM populations as flowering time 

phenotypes exhibited high values and stay-green phenotypes were generally lower.  The 

AMES diversity panel exhibited lower heritabilities for stay-green and flowering traits.  

The breadth of maturity in the AMES panel introduces substantial variation in the dataset 
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making heritability calculations and assessment difficult for flowering and stay-green 

traits.  Heritabilities for all populations and phenotypes are recorded in Table 2-2. 
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Table 2-2 Heritabilities for flowering and stay-green phenotypes in three diverse maize populations.  Plot and line-means 
heritabilities were calculated for the respective populations. 

 

NAM RILs Days to 
Anthesis 

Days to 
Silking 

Stay-green 
Anthesis 

Stay-green 
Terminal 

Stay-green 
Difference 

Stay-green 
Ratio 

       

Plot-Basis (Hung et al.) 0.848 
 

0.816 
 

0.263 
 

0.224 
 

0.104 
 

0.116 
 

Line-Means Basis 
(Cullis et al.) 0.947 0.936 0.548 0.483 0.274 0.308 

       

NAM Testcrosses Days to 
Anthesis   Stay-green 

Terminal   

Plot-Basis (Hung et al.) 0.933   0.360 
 
 
 

 

AMES Days to 
Anthesis 

Days to 
Silking 

Stay-green 
Anthesis 

Stay-green 
Terminal 

Stay-green 
Difference 

Stay-green 
Ratio 

 
Plot-Basis (Hung et al.) 

 
0.445 

 
0.519 

 
0.307 

 
0.249 

 
0.125 

 
0.157 

       
Line-Means Basis  

(Hung et al.) 0.486 0.560 0.361 0.310 0.018 0.195 

Line-Means Basis 
(Cullis et al.) 0.493 0.561 0.620 0.357 0.159 

 
0.216 
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2.4.2 Stay-green Phenotype Correlations 

2.4.2.1 NAM RILs 

 The flowering traits Days to Silking and Anthesis were highly correlated as 

expected (0.93136, p = <0.0001).  All stay-green phenotypes were negatively correlated 

with days to silking and anthesis except for stay-green ratio. Stay-green ratio was 

correlated with days to anthesis but not to silking.  Stay-green at anthesis was positively 

correlated to all stay-green traits except stay-green ratio.  Stay-green terminal was 

correlated with all other traits.  Stay-green difference and ratio were positively correlated 

with one another (Table 2-3). 

2.4.2.2 NAM Testcrosses 

Only two traits were examined in the NAM testcrosses: stay-green terminal and 

days to anthesis.  These two traits were significantly correlated with an R-squared value 

of 0.4515 (p= <0.0001). 

2.4.2.3 AMES Panel 

As in the NAM RILs, the flowering traits were highly correlated in the AMES 

panel.  All stay-green phenotypes, except stay-green ratio, were negatively and 

significantly correlated with flowering traits.  Stay-green ratio was not significantly 

correlated to the flowering traits.  Stay-green at anthesis was significantly correlated to 

stay-green terminal and difference but not correlated to stay-green ratio.  Stay-green 

terminal was significantly correlated to both stay-green difference and ratio, while 

difference and ratio themselves were highly correlated (Table 2-4). 
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Table 2-3 Phenotypic correlations of stay-green phenotypes and flowering traits in the NAM RILs 

 Days to 
Anthesis 

Days to 
Silking 

Stay-green 
Anthesis 

Stay-green 
Terminal 

Stay-green 
Difference 

Stay-green 
Ratio 

       
Days to Anthesis       

       
       
       

Days to Silking 0.93136      
 <.0001      
       
       

Stay-green Anthesis -0.17638 -0.18681     
 <.0001 <.0001     
       
       

Stay-green Terminal -0.12695 -0.14205 0.56096    
 <.0001 <.0001 <.0001    
       
       

Stay-green Difference -0.06046 -0.05039 0.32332 -0.59159   
 0.0229 0.0578 <.0001 <.0001   
       
       

Stay-green Ratio 0.00573 0.01823 0.03279 -0.78006 0.92566  
 0.8295 0.4927 0.2172 <.0001 <.0001  
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Table 2-4 Phenotypic correlations of stay-green phenotypes and flowering traits in the AMES Diversity Panel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Days to 
Anthesis 

Days to 
Silking 

Stay-green 
Anthesis 

Stay-green 
Terminal 

Stay-green 
Difference 

Stay-green 
Ratio 

       
Days to Anthesis       

       
       
       

Days to Silking 0.96864      
 <.0001      
       
       

Stay-green Anthesis -0.22902 -0.22188     
 <.0001 <.0001     
       
       

Stay-green Terminal -0.05556 -0.10145 0.41632    
 0.0039 <.0001 <.0001    
       
       

Stay-green Difference -0.09725 -0.05223 0.39236 -0.67296   
 <.0001 0.0071 <.0001 <.0001   
       
       

Stay-green Ratio -0.03698 0.01338 -0.00677 -0.87397 0.87865  
 0.0566 0.491 0.7273 <.0001 <.0001  
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2.4.3 Linkage and Association Mapping Results 

2.4.3.1 Population One – NAM RILs 

2.4.3.1.1 Stay-green Anthesis 

The stay-green anthesis phenotype exhibited significant variation and was 

normally distributed.  Values for RVI at anthesis were as low as 15.25 and as high as 

80.5.  Significant genetic variation was associated with this trait (P = <0.001, F = 5.25).  

Joint-linkage analysis was conducted to identify QTL for stay-green anthesis.  

Permutation analysis indicated a QTL significance threshold value of 6.1x10-5.  Using 

this threshold, joint-linkage analysis using days-to-anthesis as a covariate identified five 

QTLs for stay-green anthesis.  QTLs were identified on chromosome 1, 2, 3, and 5 and 

explained 35.24% of the phenotypic variation associated with the trait (Figure 2-1).   

 NAM GWAS was conducted to identify SNP associations for stay-green anthesis.  

88 SNP associations were detected with RMIP >4 (Figure 2-1). Candidate genes were 

identified in a genomic interval of 20,000 bp flanking each significant SNP.  We report 

annotated genes for stay-green at anthesis in Table 2-5 in the discussion section of this 

chapter.  
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Figure 2-1 Manhattan plot for stay-green anthesis in the NAM RILs.  QTL detected by joint-linkage analysis are shown as red 
bars.  SNP associations with stay-green anthesis with a RMIP > 4 are shown as green dots. 
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2.4.3.1.2 Stay-green Terminal 

Stay-green terminal phenotype was not normally distributed.  Due to the nature of 

stay-green and maturity, there was a peak in low RVI values due to senescence of ~70 

individuals.  The frequency distribution indicated values for this trait as low as 0 and as 

high as 84.25. The use of the residuals of the trait against days to anthesis highly reduced 

this problem and normalized the distribution. Significant genetic variation was associated 

with this trait (P = <0.001, F = 7.24).   

The QTL threshold value for the stay-green terminal phenotype was defined by 

permutation analysis as 8.1x10-5. Joint linkage analysis identified four QTLs for the stay-

green terminal phenotype. QTLs were identified on chromosome 3, 4, 6, and 9 and 

explained 42.6% of the phenotypic variation associated with the trait (Figure 2-2). 

NAM GWAS for the stay-green terminal phenotype identified 70 SNP 

associations with RMIP >4 (Figure 2-2). Candidate genes were identified in a genomic 

interval of 20,000 bp flanking significant SNPs. We report annotated genes for stay-green 

terminal in Table 2-6 in the discussion section of this chapter.  
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Figure 2-2 Manhattan plot for stay-green terminal in the NAM RILs.  QTL detected by joint-linkage analysis are shown as purple 
bars.  SNP associations with stay-green terminal with a RMIP > 4 are shown as blue dots. 
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2.4.3.1.3 Stay-green Difference 

Stay-green difference phenotype was normally distributed and values ranged as 

low as -25.9, an indicator of increased greenness of a genotype during grain fill, and as 

high as 63. Significant genetic variation was associated with this trait (P = <0.001, F = 

6.8).   

The QTL threshold value for stay-green difference was defined by permutation 

analysis as 6.2x10-5.  Using this threshold, joint linkage analysis identified three QTLs 

for stay-green difference using days-to-anthesis as a covariate in the model.  QTLs were 

identified on chromosome 1, 3, and 5 and explained 35.3% of the phenotypic variation 

associated with the trait (Figure 2-3).   

NAM GWAS for stay-green difference identified 57 SNP associations with RMIP 

>4 (Figure 2-3).  Candidate genes were identified in a genomic interval of 20,000 bp 

flanking the each significant SNP.  We report annotated genes for stay-green difference 

in Table 2-8 in the discussion section of this chapter.  
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Figure 2-3 Manhattan plot for stay-green difference in the NAM RILs.  QTL detected by joint-linkage analysis are shown as grey 
bars.  SNP associations with stay-green difference with a RMIP > 4 are shown as pink dots. 
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2.4.3.1.4 Stay-green Ratio 

Stay-green ratio exhibited normally distributed data with values as low as -1.839 

and as high as 1.  Significant genetic variation was associated with this trait (P = <0.001, 

F = 9.48).  The QTL threshold value for stay-green difference was defined by 

permutation analysis as 5.7x10-5.  Using this threshold, joint linkage analysis identified 

two QTLs for stay-green ratio using days-to-anthesis as a covariate in the model.  QTLs 

were identified on chromosomes 1 and 3 and explained 35.8% of the phenotypic variation 

associated with the trait (Figure 2-4).  

NAM GWAS for stay-green ratio identified 60 SNP associations with RMIP >4 

(Figure 2-4). Candidate genes were identified in a genomic interval of 20,000 bp flanking 

the significant SNPs.  We report annotated genes for stay-green ratio in Table 2-9 in the 

discussion section of this chapter.  
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Figure 2-4 Manhattan plot for stay-green ratio in the NAM RILs.  QTL detected by joint-linkage analysis are shown as orange 
bars.  SNP associations with stay-green difference with a RMIP > 4 are shown as salmon dots. 
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2.4.3.2 Population Two – NAM Testcrosses 

Stay-green terminal values in the NAM Testcrosses were normally distributed and 

were as low as -6.96 RVI (negative value due to BLUEs correction) and as high as 38.8.  

Significant genetic variation was associated with this trait (P = <0.001, F = 29.9).  Joint-

linkage analysis for stay-green terminal identified a single QTL on chromosome 2 

explaining 35.3% of the phenotypic variation associated with the trait using a p-value 

threshold of 5.5x10-5 (Figure 2-5). NAM GWAS for stay-green ratio identified 37 SNP 

associations using a RMIP > 4 (Figure 2-5). Candidate genes were identified in a 

genomic interval of 20,000 bp flanking the significant SNP. We report annotated genes 

for stay-green terminal in Table 2-9 in the discussion section of this chapter.   
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Figure 2-5 Manhattan plot for stay-green terminal in the NAM testcrosses.  QTL detected by joint-linkage analysis are shown as 
orange bars.  SNP associations with stay-green difference with a RMIP > 4 are shown as purple dots. 
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2.4.3.3 Population Three – AMES Panel 

No significant marker associations were detected for the four stay-green 

phenotypes measured in the AMES in either combined or individual year analysis after 

false-discovery rate (FDR) correction. 

 We arbitrarily chose to further analyze the top fifty most significant SNPs for 

each trait to test for coincidence in the NAM RILs and NAM testcrosses according to the 

highest p-value prior to FDR correction.  However, since none of these SNPs were 

significant after FDR correction, we were skeptical of any associations that did not 

collocate with the NAM RILs, testcrosses, or known sorghum stay-green positions 

(Chapter 3).  We report the positions of AMES SNPs in Figures 2-6 to 2-9. 
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Figure 2-6 Manhattan plot from the GWAS of stay-green anthesis in the AMES Panel.  SNPs (yellow dots) are reported as LODs 
converted from p-values before FDR correction. The top fifty most significant SNPs were selected for further characterization.  
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Figure 2-7 Manhattan plot from the GWAS of stay-green terminal in the AMES Panel.  SNPs (orange dots) are reported as LODs 
converted from p-values before FDR correction. The top fifty most significant SNPs were selected for further characterization.  
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Figure 2-8 Manhattan plot from the GWAS of stay-green difference in the AMES Panel.  SNPs (purple dots are reported as LODs 
converted from p-values before FDR correction. The top fifty most significant SNPs were selected for further characterization. 
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Figure 2-9 Manhattan plot from the GWAS of stay-green ratio in the AMES Panel stay-green ratio.  SNPs (blue dots) are reported 
as LODs converted from p-values before FDR correction. The top fifty most significant SNPs were selected for further 
characterization. 
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2.4.4 Comparison of Candidate SNPs between Diverse Maize Populations 

2.4.4.1 NAM RILs and AMES Panel Comparisons 

2.4.4.1.1 Stay-green Anthesis 

Two overlapping regions were identified for stay-green anthesis in comparisons 

of the NAM RILs and the AMES Diversity Panel on chromosome 1 (Figure 2-10).  The 

first region contained RHOMBOID-like protein 15 (GRMZM2G093855) and D-

arabinono-1,4-lactone oxidase family protein (GRMZM2G446350) where candidate 

SNPs were 53,135bp apart.  The second region contained an ethylene insensitive-like 3 

(AC234203.1_FG011) that was 9,315bp apart from the AMES and NAM SNPs.  

GRMZM2G093855 and GRMZM2G446350 were identified in the AMES population and 

the associated SNPs were in LD with NAM RIL SNPs.  Therefore, these candidate genes 

would not be found in Table 2-5.   
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Figure 2-10 Manhattan plot showing associations for stay-green anthesis in the AMES Diversity Panel and NAM RILs.  Linkage 
peaks are shown for the NAM RILs (red) and SNP associations (RILs – Salmon; AMES – Grey).  SNP values are reported as 
RMIP for the RILs SNPs and LODs from p-value conversion for the AMES. 

 

 

 

 

 

 76  
 



  77 
 

2.4.4.1.2 Stay-green Terminal 

 Two overlapping genomic regions were detected for stay-green terminal in 

comparisons of the NAM RILs and AMES Diversity Panel.  An ethylene responsive 

binding element was detected on chromosome 10 (GRMZM2G080516) and a plant 

invertase/pectin methylesterase inhibitor was detected on chromosome 7 

(GRMZM2G137676) (Figure 2-11).  These genes can be further examined in Table 2-6.
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Figure 2-11 Manhattan plot showing associations for stay-green terminal in the AMES Diversity Panel and NAM RILs.  Linkage 
peaks are shown for the NAM RILs (purple) and SNP associations (RILs – Red; AMES – Pink).  SNP values are reported as 
RMIP for the RILs SNPs and LODs from p-value conversion for the AMES. 
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2.4.4.1.3 Stay-green Difference 

Two overlapping genomic regions on chromosome 3 were identified for stay-

green difference in comparisons of the NAM RILs and AMES panel (Figure 2-12).  The 

first region is between the genomic positions 221,689,981 and 222,025,874 where four 

significant SNPs with a RMIP greater than 4 are located.  Candidate genes for this region 

include aldehyde dehydrogenase 2C34, FTSH protease 11, and alpha/beta-hydrolases.  

The second region is near genomic positions 175,222,001 in the NAM RILs and 

176,456,984 in the AMES Diversity Panel.  A candidate gene for this region is the 

senescence regulator PF04520.  These candidate genes can be found in Table 2-8. 
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Figure 2-12 Manhattan plot showing genetic associations for stay-green difference in the AMES Diversity Panel and NAM RILs.  
Linkage peaks are shown for the NAM RILs (blue) and SNP associations (RILs – brown; AMES – yellow).  SNP values are 
reported as RMIP for the RILs SNPs and LODs from p-value conversion for the AMES. 
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2.4.4.1.4 Stay-green Ratio 

Few overlapping regions were detected for stay-green ratio in comparisons among 

populations.  Only four regions appeared to have some genomic similarity, but the 

genomic distances between the SNPs mostly exceeded 1.5mb.  While it is possible that 

these regions could be in linkage disequilibrium with one another, initial characterization 

did not appear promising (Figure 2-13).  Candidate genes and significant SNP 

associations can be further examined in Table 2-9. 
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Figure 2-13 Manhattan plot showing genetic associations for stay-green difference in the AMES Diversity Panel and NAM RILs.  
Linkage peaks are shown for the NAM RILs (orange) and SNP associations (RILs – purple; AMES – blue).  SNP values are 
reported as RMIP for the RILs SNPs and LODs from p-value conversion for the AMES. 
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2.4.4.2 Comparisons of Stay-green Terminal in the NAM RILs and NAM Testcrosses 

 Three overlapping genomic regions were detected for stay-green terminal in 

comparisons of the NAM RILs and NAM testcrosses (Figure 2-14).  Chromosome 2 

contained two SNPs from the NAM testcrosses (193,772,001 and 194,066,031) that were 

just over 1 Mb from a SNP in the NAM RILs (192,854,841).  Chromosome 6 contained 

two SNPs from the NAM RILs (115,387,886 and 115,552,825) that were 2.5 Mb from a 

SNP in the NAM testcrosses 118,501,027.  Chromosome 10 contained SNPs from the 

NAM testcrosses (NAM TC – 127,938,727) that were 2.5 Mb from a SNP from the NAM 

RILs (NAM RILs – 124,262,019).  While it is possible that these regions could be in 

linkage disequilibrium with one another, initial characterization did not appear promising 

(Figure 2-14).    These genes can be further examined in Table 2-6.
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Figure 2-14 Manhattan plot showing genetic associations for stay-green terminal in the NAM RILs and NAM testcrosses.  Linkage 
peaks are shown for the NAM testcrosses (yellow) and RILs (purple) and SNP associations (Testcrosses – Green; RILs – Red).  
SNP values are reported as RMIP. 

 

 

 84  
 



  85 
 

2.4.4.3 Comparisons of Stay-green Terminal in the NAM Testcrosses and AMES Panel  

 Two overlapping genomic regions were detected for stay-green terminal in the 

NAM testcrosses and the AMES panel.  On chromosome 1, a SNP from the NAM 

testcrosses (NAM TC SNP 22,205,962) was less than 1 Mb from a SNP detected in the 

AMES Diversity Panel (AMES SNP 23,116,667).  On chromosome 8, another SNP from 

the NAM testcrosses (NAM TC – 151,920,141) was approximately 2 Mb away from a 

SNP detected in the AMES Diversity Panel (AMES – 153,858,854).  While it is possible 

that these regions could be in linkage disequilibrium with one another, initial 

characterization did not appear promising (Figure 2-15).  These candidate SNPs can be 

examined further in Table 2-6. 
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Figure 2-15 Manhattan plot showing genetic associations for stay-green terminal in the AMES Diversity Panel and NAM 
testcrosses.  Linkage peaks are shown for the NAM testcrosses (yellow) and SNP associations (Testcrosses – Green; AMES – 
Pink).  SNP values are reported as RMIP for the testcross SNPs and LODs from p-value conversion for the AMES. 
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2.4.4.4 All Maize Population Stay-green Terminal Comparisons 

 Stay-green terminal was the only phenotype taken in all three populations.  

Surprisingly, no associations occurred across all three populations within linkage 

disequilibrium to correlate any SNP associations (Figure 2-16).   
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Figure 2-16 AMES Manhattan plot showing genetic associations for stay-green terminal in the AMES Diversity Panel, NAM 
RILs, and NAM testcrosses.  Linkage peaks are shown for the NAM testcrosses (yellow) and NAM RILs (purple) and SNP 
associations (Testcrosses – Green; RILs – Red; AMES – Pink).  SNP values are reported as RMIP for the NAM testcrosses and 
NAM RILs and LODs from p-value conversion for the AMES. 
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2.5 Discussion 

In this study, the NAM population and Ames Diversity Panel were used to study 

the genetic variation for stay-green, a drought-related phenotype.  These populations 

represent a large portion of the genetic diversity of maize and have been extensively 

characterized at a genetic and phenotypic level (Yu et al., 2006; Buckler et al, 2009; Tian 

et al., 2011, Poland et al., 2011, Kump et al., 2011; Cook et al., 2012).  However, neither 

of these populations has been characterized for drought stress tolerance.   Characterizing 

maize populations with such phenotypic diversity and sample size provides a powerful 

platform to dissect the genetic architecture of stay-green at a gene by gene level (Yu et 

al., 2006).  Additionally, compelling relationships can be examined between these 

populations, and a model can be developed for the genetic regulation of stay-green in 

maize.  Finally, this study provides excellent basis for examining stay-green expression 

and regulation in other crop species.   

 In our mapping process and experimental design, we accounted for variation 

associated with maturity because this can be a confounding factor in expression of stay-

green.  In the NAM populations, we constrained maturity to +/-7 days of B73. 

Additionally, we analyzed all of the data using days to anthesis as a covariate in our 

models to alleviate some of the potential statistical influence of maturity.  We chose not 

to use days to silking as a covariate because silking is greatly influenced by drought 

stress (Bolanos and Edmeades, 1996). In the NAM testcrosses, flowering was further 

constrained by use of a common tester. 

 Four different phenotypic measures of stay-green were examined in this study.  

Each of the traits was highly heritable.  We identified several SNP associations for each 
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stay-green phenotype throughout all populations.  It can be daunting to adequately 

describe the annotated gene information for each association for every population.  For 

our analyses, we focused on characterizing genes that fit the following criteria.  A SNP 

association that only aligned in one population needed to be one of the most significant 

SNPs using RMIP in the NAM or p-value (prior to FDR correction) in the AMES.  

Additionally, genes under a SNP would be characterized if they were associated in two or 

more of the populations and contained collocating support from linkage mapping and LD 

information.  It is important to note that initial characterization of linkage disequilibrium 

(LD) was examined within a 20 kb interval.  Our analyses showed that LD blocks were 

less than 20 kb in all populations.  Previous research suggests that LD in diverse maize 

lines is around 2 kb (Yu et al., 2008).  For this analysis, we considered 20 kb an adequate 

window to examine for candidate genes unless a LD block extended past 20 kb.   

 In our association analyses, we organized candidate gene results into several gene 

families for each stay-green phenotype.  These gene families suggest a potential 

regulation model of stay-green expression, as they are all involved in abiotic stress 

response or cellular signaling.  These families are calcium signaling and relay, stress-

related transcription factors, cell-wall related genes, phytohormones, vesicular 

transportation, sugar transportation, and secondary stress messengers as well as 

confounding gene families related to heat and disease expression. 

2.5.1 Stay-green Candidate Genes 

2.5.1.1 Candidate Genes for Stay-green Anthesis  

Association analyses for stay-green anthesis indicated several common genomic 

regions in the NAM RILs and AMES Diversity Panel.  NAM SNP 188,056,108 and 
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AMES SNP 188,065,423 are 9,315 bp away from one another on chromosome 1.  There 

were eight genes that were in the region of interest, and seven of these genes did not have 

an annotated gene function.  However, AC234203.1_FG011 encoded a gene annotated as 

ethylene-insenstive-like-3 protein (Arabidopsis best hit: AT1G73730.1) as shown in 

Table 2-5. 

2.5.1.1.1 Ethylene Insensitive like 3 - AC234203.1_FG011 

Ethylene is a well-known phytohormone involved in regulating senescence.  In 

arabidopsis, Solano et al. (1998) showed ethylene-insensitive-3 (EIN3) and ethylene-

response-factor-1 (ERF1) are sequentially activated by ethylene gas to initiate a 

transcriptional cascade response.  Both of these are nuclear proteins, and EIN3 is 

necessary for ERF1 expression.  This study occurred under normal conditions and was 

primarily concerned with dissecting the complex transcriptional hierarchy of ethylene 

signaling (Solano et al., 1998).  Chao et al. (1997) showed that EIN3 was critical for 

sensing a plant response to ethylene. The inability to detect ethylene in mutants showed 

inhibited growth and accelerated arabidopsis senescence.  This gene can be further 

examined in Table 2-5. 

2.5.1.1.2 Candidate Genes for Stay-green Anthesis on Chromosome 1 Cluster 

NAM SNP 259,884,001 and AMES SNP 259,937,136 are the second pair of 

SNPs in close proximity located 53,135 bp from each other on chromosome 1.  There are 

eight genes near these SNPs, and six of them do not have any associated annotation.  

However, GRMZM2G093855 encodes a (AT3G58460.1) RHOMBOID-like protein 15, 

and GRMZM2G446350 encodes a (AT2G46760.1) D-arabinono-1,4-lactone oxidase 

family protein.  
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2.5.1.1.2.1 RHOMBOID-like protein 15 - GRMZM2G093855 

Rhomboid proteins are present in almost all species and are involved in cleaving 

polypeptide chains as proteases.  The proteolytic cleavage is irreversible and typically 

occurs within the lipid bilayer of the cellular membrane (EMBL-EBI, Brown et al., 

2000).  There has been very little characterization of these proteins in plants, and no 

research has associated these proteins with an abiotic stress response. This gene is not 

included in Table 2-5 as it was not detected in the NAM RILs dataset but was in LD with 

the AMES dataset. 

2.5.1.1.2.2 D-arabinono-1,4-lactone oxidase family protein - GRMZM2G446350 

D-arabinono-1,4-lactone oxidase family proteins are involved in catalyzing the 

following chemical reaction (EMBL-EBI). 

D-arabinono-1,4-lactone + O2  D-erythro-ascorbate + H2O2 

Little has been reported about this enzyme family in the scientific literature.  

However, it is specifically located in the mitochondrial membrane and is suggested to 

play some role in a cellular response to an oxidative stress, specifically hydrogen 

peroxide (Huh et al., 1994).  This gene is not included in Table 2-5 as it was not detected 

in the NAM RILs dataset but was in LD with the AMES dataset. 

2.5.1.1.3 Chromosome 4 Candidate Genes 

A pair of SNPs on chromosome 4 were the next closest relationship between the 

NAM RILs and the AMES Diversity Panel for stay-green at anthesis.  NAM SNP 

4,992,844 is 83,635bp away from AMES SNP 4,909,209.  There are twelve genes within 

this genomic region, eight of which did not have any annotated function.  The four 
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remaining genes had the following annotations: GRMZM2G058447 – (AT4G34190.1 

(SEP1)) stress enhanced protein 1, GRMZM5G877647 – (AT2G06255.1 (ELF4-L3)) 

ELF4-like 3, GRMZM2G058340 – (AT3G49310.1) Major facilitator superfamily 

protein, and GRMZM2G123996 – (AT1G51090.1) Heavy metal transport/detoxification 

superfamily protein. These genes are not included in Table 2-5 as they were not within an 

LD block initially examined. 

2.5.1.1.3.1 Stress Enhanced Protein (SEP1) 

 In arabidopsis, stress enhanced protein 1 is localized to the thylakoid membrane 

and is upregulated in response to high light intensity.   SEP1 is a transmembrane protein.  

Under high light conditions, SEP1 and SEP2 proteins were expressed 4 and 10 fold 

higher.  Additionally, SEP1 is involved in chlorophyll binding and is involved in 

stabilizing photosystem II under high light stress (Heddad et al., 2000). 

2.5.1.1.3.2 Early-Flowering (4) – like – 3 

 ELF4-like 3 is a transcription factor suggested to participate in the circadian clock 

input pathway to initiate flowering independent of phytochromeB.  Research suggests 

that this protein has less expression when long day conditions persist.  This gene is up-

regulated by auxin and cytokinin and down-regulated by ABA and temperature stress.  

Even though flowering and maturity were controlled for in the model selection and 

experimental design, appearance of a flowering trait is not surprising, especially a gene 

implicated in abiotic stress (NCBI, Hicks et al., 2001). 

2.5.1.1.3.3 Major Facilitator Superfamily Protein 

 The general nature of this annotation makes it difficult to ascribe any specific 

function.  These proteins are involved in general substrate transport possibly within the 
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Golgi apparatus, endosome, plasma membrane, and/or trans-Golgi network (EMBL-EBI, 

NCBI). 

2.5.1.1.3.4 Heavy Metal Transport/Detoxification Superfamily Protein 

 Arabidopsis provides the best insight into the potential function of this gene.  

Specifically, this gene is involved in response to fungal presence, in response to an ABA 

stimulus, and cold and drought stresses.  Interestingly, this gene appears to be expressed 

most often during anthesis and throughout normal senescence patterns in arabidopsis 

(EMBL-EBI).   

2.5.1.1.4 Stay-green Anthesis Candidate Gene Summary 

Additionally, several genes related to calcium signaling and transduction, general-

stress, growth regulators and transcription factors, sugar and secondary messengers, 

vesicle transport, cell-wall formation, and phytohormones were identified in individual 

populations (Table 2-5).  Groups of genes related to disease, heat stress, expressed 

proteins, and unannotated proteins were also identified in the population.  Only stay-

green anthesis in the NAM RILs is reported in Table 2-5 as there were no significant 

SNPs in the AMES diversity panel and the phenotype was not collected in the NAM 

testcrosses.  It appears that these gene groups are intimately involved in stay-green 

response to abiotic stress.  It is important to note that significant genes in a single 

population can still be vital to understanding the expression of stay-green and should be 

thoroughly examined.  These candidate genes might only be present or detectable in 

individual populations and characterization is needed to understand the stay-green 

phenotypes.  Nevertheless, candidate genes present in two or more populations are 
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critical to the analysis of stay-green as detection in two independent dataset provides 

powerful insight into the expression and regulation of the phenotype.  
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Table 2-5 Candidate genes for stay-green anthesis in the NAM RILs.  

 

Candidate Gene 
Family 

Chr 
SNP 

Position 
RMIP Gene ID Arabidopsis/Rice/PFAM Ortholog 

Calcium Signaling 
and Relay 

10 143,670,200 15 GRMZM2G180471 
AT1G34750.1: Protein phosphatase 2C family 

protein 

3 17,433,280 6 GRMZM2G151087 
AT5G10480.3(PAS2,PEP): Protein-tyrosine 

phosphatase-like, PTPLA 

General stress-
related and 

transcription factors 

1 58,475,918 21 GRMZM2G075502 
AT3G06130.1: Heavy metal 

transport/detoxification superfamily protein 

5 181,386,025 18 GRMZM2G029583 
AT4G24820.1: 26S proteasome, regulatory subunit 

Rpn7;Proteasome component (PCI) domain 

1 287,270,801 13 GRMZM2G342856 
AT2G32030.1: Acyl-CoA N-acyltransferases 

(NAT) superfamily protein 

5 122,046,355 11 AC186500.3_FG001 
AT2G42490.1: Copper amine oxidase family 

protein 

6 34,893,105 9 GRMZM2G305856 
AT3G46130.1(ATMYB48,ATMYB48-

1,ATMYB48-2,ATMYB48-3,MYB48): myb 
domain protein 48 

1 53,630,920 8 GRMZM2G011598 
AT3G04070.1(anac047,NAC047): NAC domain 

containing protein 47 

1 53,630,920 8 GRMZM2G020940 
AT2G39050.1: hydroxyproline-rich glycoprotein 

family protein 

3 17,030,869 5 AC215260.3_FG004 
AT5G16450.1: Ribonuclease E inhibitor 

RraA/Dimethylmenaquinone methyltransferase 
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Table 2-5 Continued 

Sugar Transport and 
Secondary 
Messengers 

  9 18,334,400 9 GRMZM5G838414 
AT1G53290.1: Galactosyltransferase family 

protein 
9 19,163,887 6 GRMZM2G443985 AT4G26270.1(PFK3): phosphofructokinase 3 

9 20,459,109 6 GRMZM2G173641 
AT5G11380.1(DXPS3): 1-deoxy-D-xylulose 5-

phosphate synthase 3 

4 4,448,482 5 GRMZM2G039408 
AT3G18830.1(ATPLT5,ATPMT5,PMT5): 

polyol/monosaccharide transporter 5 

9 8,020,744 5 GRMZM2G080696 
AT2G03220.1(ATFT1,ATFUT1,FT1,MUR2): 

fucosyltransferase 1 

10 1,728,072 5 GRMZM2G130062 
AT1G74040.1(IMS1,IPMS2,MAML-3): 2-

isopropylmalate synthase 1 

Vesicular Transport 

1 183,804,764 18 GRMZM2G113840 
AT4G39170.1: Sec14p-like phosphatidylinositol 

transfer family protein 

9 18,334,400 9 AC231745.1_FG003 
AT5G45910.1: GDSL-like Lipase/Acylhydrolase 

superfamily protein 

1 296,649,227 8 GRMZM2G167428 
PFAM ID: PF03364: Polyketide cyclase / 
dehydrase and lipid transport , PF10604: 

Polyketide cyclase / dehydrase and lipid transport 

3 17,433,280 6 GRMZM2G451327 
AT2G39550.1(ATGGT-IB,GGB,PGGT-I): 

Prenyltransferase family protein 

Phytohormone 2 185,691,621 47 GRMZM2G110107 
AT1G68130.1(AtIDD14,IDD14): 

indeterminate(ID)-domain 14 
 1 188,056,108 5 AC234203.1_FG011 AT1G73730.1: ethylene insensitive-like 3 
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Table 2-5 Continued 

 
Cell Wall Structure 

5 5,005,874 26 AC191251.3_FG005 
AT3G20800.1: Cell differentiation, Rcd1-like 

protein 
4 230,895,626 16 GRMZM2G080056 AT1G14420.1(AT59): Pectate lyase family protein 

3 219,827,756 10 GRMZM2G074466 
AT1G49040.1(SCD1): stomatal cytokinesis 

defective / SCD1 protein (SCD1) 

8 13,790,821 9 GRMZM2G477503 
AT5G01220.1(SQD2): 

sulfoquinovosyldiacylglycerol 2 

5 204,317,772 8 GRMZM2G012044 
AT1G55850.1(ATCSLE1,CSLE1): cellulose 

synthase like E1 

5 182,133,946 7 GRMZM2G137399 
AT1G28580.1: GDSL-like Lipase/Acylhydrolase 

superfamily protein 

5 182,133,946 7 GRMZM2G137409 
AT5G60600.1(CLB4,CSB3,GCPE,HDS,ISPG): 4-
hydroxy-3-methylbut-2-enyl diphosphate synthase 

1 285,941,597 5 GRMZM2G434533 
AT3G11780.1: MD-2-related lipid recognition 

domain-containing protein / ML domain-
containing protein 

3 17,030,869 5 AC215260.3_FG003 
AT5G48930.1(HCT): hydroxycinnamoyl-CoA 

shikimate/quinate hydroxycinnamoyl transferase 

Heat 

2 186,183,071 36 GRMZM2G002131 
AT4G36990.1(AT-

HSFB1,ATHSF4,HSF4,HSFB1):heat shock factor4 
1 285,904,918 7 GRMZM2G134917 AT5G22060.1(ATJ2,J2): DNAJ homologue 2 
2 233,674,088 7 GRMZM2G469477 AT4G14830.1(HSP1): 
9 20,459,109 6 GRMZM2G173628 AT5G23310.1(FSD3): Fe superoxide dismutase 3 
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Table 2-5 Continued 

Disease 

5 204,317,772 8 GRMZM2G011951 
AT5G55850.1(NOI): RPM1-interacting protein 4 

(RIN4) family protein 

7 2,360,774 8 GRMZM2G128693 
AT3G50950.1(ZAR1): HOPZ-ACTIVATED 

RESISTANCE 1 
1 187,592,684 7 GRMZM2G132763 AT1G17750.1(AtPEPR2,PEPR2): PEP1 receptor 2 

Other 

5 119,472,884 8 GRMZM2G052654 AT2G02880.1: mucin-related 

5 4,944,136 14 GRMZM2G089361 
AT4G18390.1(TCP2): TEOSINTE BRANCHED 

1, cycloidea and PCF transcription factor 2 
3 22,568,001 9 GRMZM2G337815 AT4G34555.1: Ribosomal protein S25 family  

5 91,602,155 5 GRMZM2G174785 
AT5G25060.1: RNA recognition motif (RRM)-

containing protein 

7 172,488,742 7 GRMZM2G113863 
AT5G27690.1: Heavy metal 

transport/detoxification superfamily protein 

5 204,914,413 5 GRMZM2G089454 
AT5G37680.1(ARLA1A,ATARLA1A): ADP-

ribosylation factor-like A1A 
9 140,431,872 6 GRMZM2G131539 AT2G29560.1(ENOC): cytosolic enolase 

5 204,317,772 8 GRMZM2G012213 
AT4G16835.1: Tetratricopeptide repeat (TPR)-like 

superfamily protein 

8 27,648,546 5 GRMZM2G058491 
AT1G64110.2: P-loop containing nucleoside 
triphosphate hydrolases superfamily protein 

10 1,728,072 5 GRMZM2G129954 AT3G57040.1(ARR9,ATRR4):response regulator9 
9 20,459,109 6 GRMZM2G173693 AT5G37370.1(ATSRL1): PRP38 family protein 

4 239,498,890 10 GRMZM2G169998 
AT5G58130.1(ROS3): RNA-binding 

(RRM/RBD/RNP motifs) family protein 
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Table 2-5 Continued 

Other 

10 143,670,200 15 GRMZM2G480282 
LOC_Os06g30760.1: transposon protein, putative, 

CACTA, En/Spm sub-class, expressed 

5 199,972,074 5 AC233960.1_FG005 
AT1G06170.1: basic helix-loop-helix (bHLH) 

DNA-binding superfamily protein 
8 161,388,771 6 GRMZM2G423456 AT1G27320.1(AHK3,HK3): histidine kinase 3 

2 185,691,621 47 GRMZM2G110107 
AT1G68130.1(AtIDD14,IDD14): 

indeterminate(ID)-domain 14 
4 4,992,844 13 GRMZM5G877647 AT2G06255.1(ELF4-L3): ELF4-like 3 

5 59,254,396 5 GRMZM2G084521 
AT2G29960.1(ATCYP5,CYP19-4,CYP5): 

cyclophilin 5 

2 233,674,088 7 GRMZM2G469469 
AT2G32040.1: Major facilitator superfamily 

protein 

8 13,790,821 9 GRMZM2G079458 
AT2G38090.1: Duplicated homeodomain-like 

superfamily protein 

1 53,630,920 8 GRMZM2G020940 
AT2G39050.1: hydroxyproline-rich glycoprotein 

family protein 

5 59,254,396 5 GRMZM2G385945 
AT3G02790.1: zinc finger (C2H2 type) family 

pron 
1 297,962,777 6 AC207546.3_FG004 AT3G08947.1: ARM repeat superfamily protein 

1 183,804,764 18 GRMZM2G113726 
AT3G13340.1: Transducin/WD40 repeat-like 

superfamily protein 
2 233,674,088 7 GRMZM2G170934 AT3G22440.1: FRIGIDA-like protein 

6 34,893,105 9 GRMZM2G305856 
AT3G46130.1(ATMYB48,ATMYB48-

1,ATMYB48-2,ATMYB48-3,MYB48): myb 
domain protein 48 
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Table 2-5 Continued 

Other 

4 4,992,844 13 GRMZM2G058340 
AT3G49310.1: Major facilitator superfamily 

protein 

4 239,498,890 10 GRMZM2G169871 
AT3G54170.1(ATFIP37,FIP37): FKBP12 

interacting protein 37 

4 239,498,890 10 GRMZM2G169927 
AT4G31120.1(ATPRMT5,PRMT5,SKB1): SHK1 

binding protein 1 

5 175,865,828 11 GRMZM2G072146 
AT4G39910.1(ATUBP3,UBP3): ubiquitin-specific 

protease 3 

1 297,962,777 6 GRMZM2G001661 
AT5G16490.1(RIC4): ROP-interactive CRIB 

motif-containing protein 4 
3 209,021,937 6 GRMZM2G164674 AT5G19580.1: glyoxal oxidase-related protein 

5 199,972,074 5 GRMZM5G861093 
AT5G27080.1: Transducin family protein / WD-40 

repeat family protein 

10 1,728,072 5 GRMZM2G129907 
AT5G43210.1: Excinuclease ABC, C subunit, N-

terminal 
5 199,972,074 5 AC233960.1_FG003 AT5G45580.1: Homeodomain-like superfamily 

5 181,386,025 18 GRMZM2G031496 
AT5G50960.1(ATNBP35,NBP35): nucleotide 

binding protein 35 

5 181,386,025 18 GRMZM2G031107 
AT5G50960.1(ATNBP35,NBP35): nucleotide 

binding protein 35 

3 219,484,321 5 GRMZM2G306357 
AT5G56930.1(emb1789): CCCH-type zinc finger 

family protein 

3 219,827,756 10 GRMZM5G849600 
AT5G56960.1: basic helix-loop-helix (bHLH) 

DNA-binding family protein 
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Table 2-5 Continued 

Other 

8 13,790,821 9 GRMZM2G176568 
AT5G58900.1: Homeodomain-like transcriptional 

regulator 

4 179,091,367 11 GRMZM2G107414 
LOC_Os02g52300.1: CPuORF38 - conserved 
peptide uORF-containing transcript, expressed 

1 289,518,674 7 GRMZM2G101682 
LOC_Os03g58850.1: uncharacterized PE-PGRS 
family protein PE_PGRS3 precursor, putative,  

Expressed Proteins 

6 34,893,105 9 GRMZM2G700901 
PFAM ID: PF06813: Nodulin-like , PF00579: 

tRNA synthetases class I (W and Y) 
8 161,790,610 5 GRMZM2G481103 PFAM ID: PF10163: Transcription factor e(y)2 
5 204,928,300 6 GRMZM5G824439 PFAM ID: PF11573: Mediator complex subunit 23 
9 18,521,596 16 GRMZM5G800535 PFAM ID: PF05678: VQ motif 
5 182,133,946 7 GRMZM2G137375 LOC_Os02g39180.1: expressed protein 
3 209,021,937 6 GRMZM5G866432 LOC_Os01g48570.1: expressed protein 
5 204,928,300 6 GRMZM5G883043 LOC_Os02g49992.1: expressed protein 
1 188,056,108 5 AC234203.1_FG009 LOC_Os03g58340.1: expressed protein 
1 188,056,108 5 AC234203.1_FG011 AT1G73730.1: ethylene insensitive-like 3 
8 26,625,353 5 GRMZM2G413717 LOC_Os01g12190.1: expressed protein 
8 27,648,546 5 GRMZM2G058366 LOC_Os01g12670.2: expressed protein 
8 161,790,610 5 GRMZM2G180372 LOC_Os01g69100.1: expressed protein 

No Annotation 

2 185,691,621 47 GRMZM2G548414  
2 186,183,071 36 GRMZM2G301582  
2 186,183,071 36 GRMZM2G483390  
5 5,005,874 26 GRMZM2G460635  
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Table 2-5 Continued 

No Annotation 

5 5,005,874 26 GRMZM2G159253  
1 58,475,918 21 GRMZM2G528064  
1 58,475,918 21 GRMZM2G376395  
5 120,073,399 21 No annotated genes  
1 58,983,957 19 No annotated genes  
1 183,804,764 18 GRMZM2G113895  
1 183,804,764 18 GRMZM2G414241  
1 183,804,764 18 GRMZM5G835781  
1 183,804,764 18 GRMZM2G113718  
1 183,804,764 18 GRMZM5G831355  
1 183,804,764 18 GRMZM2G113722  
1 183,804,764 18 GRMZM2G113724  
5 181,386,025 18 GRMZM2G030606  
5 181,386,025 18 GRMZM2G331844  
5 202,484,001 15 GRMZM2G123944  
10 143,670,200 15 AC216807.3_FG009  
4 229,374,063 14 No annotated genes  
5 4,944,136 14 GRMZM2G535148  
5 4,944,136 14 GRMZM2G089425  
10 141,534,896 14 AC214233.4_FG015  
10 141,534,896 14 GRMZM2G057551  
10 141,534,896 14 GRMZM2G515381  
10 141,534,896 14 GRMZM2G515383  
1 244,459,902 13 GRMZM2G586692  
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Table 2-5 Continued 

No Annotation 

4 4,992,844 13 GRMZM2G517786  
5 66,086,001 12 No annotated genes  
3 11,032,882 11 GRMZM2G701322  
5 122,046,355 11 GRMZM2G393629  
5 122,046,355 11 GRMZM2G580248  
9 18,397,972 11 No annotated genes  
3 11,032,448 10 GRMZM2G701322  
7 115,897,484 10 GRMZM2G373937  
1 58,502,398 9 No annotated genes  
1 248,650,001 9 GRMZM2G361087  
1 248,650,001 9 GRMZM2G060718  
1 248,650,001 9 GRMZM2G519100  
3 22,568,001 9 GRMZM2G505202  
4 226,591,487 9 GRMZM2G394266  
4 239,547,934 9 No annotated genes  
6 34,893,105 9 GRMZM2G305839  
6 34,893,105 9 GRMZM2G305804  
8 13,790,821 9 GRMZM2G176562  
1 53,630,920 8 GRMZM2G587377  
5 204,317,772 8 GRMZM2G312980  
7 2,360,774 8 AC231379.2_FG010  
7 2,360,774 8 GRMZM2G704310  
7 2,360,774 8 GRMZM2G033408  
7 2,360,774 8 GRMZM2G128707  
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Table 2-5 Continued 

No Annotation 

1 58,323,293 7 No annotated genes  
1 289,518,674 7 GRMZM2G101783  
2 233,674,088 7 GRMZM2G469486  
2 233,674,088 7 GRMZM2G584410  
2 233,674,088 7 GRMZM2G584415  
2 233,674,088 7 GRMZM2G703445  
3 11,032,046 7 GRMZM2G701322  
3 217,074,714 7 No annotated genes  
5 182,133,946 7 GRMZM2G564851  
5 182,133,946 7 GRMZM2G564831  
5 182,133,946 7 GRMZM2G137371  
7 172,488,742 7 GRMZM2G414446  
7 172,488,742 7 GRMZM2G550852  
7 172,488,742 7 GRMZM2G511855  
8 10,392,672 7 GRMZM2G374085  
8 10,392,672 7 GRMZM2G526579  
8 10,392,672 7 GRMZM2G526575  
8 10,392,672 7 GRMZM2G500279  
8 26,604,001 7 GRMZM2G550451  
8 26,604,001 7 AC195899.3_FG001  
1 297,962,777 6 GRMZM2G482887  
1 297,962,777 6 GRMZM2G300698  
1 297,962,777 6 GRMZM2G300702  
1 297,962,777 6 GRMZM2G001718  
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Table 2-5 Continued 

No Annotation 

3 17,433,280 6 GRMZM2G411241  
3 17,433,280 6 GRMZM2G411238  
3 17,433,280 6 GRMZM2G573274  
3 209,021,937 6 GRMZM2G464741  
5 181,401,920 6 GRMZM2G501655  
5 181,401,920 6 GRMZM2G031496  
5 181,401,920 6 GRMZM2G331844  
5 181,401,920 6 GRMZM2G031107  
5 204,928,300 6 AC203365.3_FG007  
8 161,388,771 6 GRMZM5G872549  
8 161,388,771 6 GRMZM2G556207  
9 18,131,145 6 No annotated genes  
9 19,163,887 6 GRMZM5G861581  
9 20,459,109 6 GRMZM2G173678  
9 20,459,109 6 GRMZM2G173685  
9 20,459,109 6 GRMZM2G587636  
9 20,459,109 6 GRMZM5G807872  
9 140,431,872 6 GRMZM5G839429  
9 140,431,872 6 GRMZM2G431975  
1 154,131,933 5 GRMZM2G029936  
1 154,131,933 5 GRMZM2G500408  
1 188,056,108 5 GRMZM5G861100  
1 188,056,108 5 AC234203.1_FG008  
1 248,554,309 5 No annotated genes  
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Table 2-5 Continued 

No Annotation  

1 259,884,001 5 GRMZM5G871118  
3 17,030,869 5 GRMZM2G701355  
3 35,825,703 5 GRMZM5G820780  
3 219,484,321 5 GRMZM2G306413  
3 219,484,321 5 GRMZM2G486236  
4 4,448,482 5 GRMZM5G873972  
4 4,448,482 5 GRMZM2G333732  
4 230,907,639 5 AC186499.3_FG003  
4 230,907,639 5 GRMZM2G080050  
4 230,946,598 5 GRMZM2G078799  
4 230,946,598 5 GRMZM2G530744  
5 59,254,396 5 GRMZM5G806227  
5 199,972,074 5 GRMZM5G871673  
5 204,914,413 5 AC203365.3_FG004  
7 102,253,051 5 No annotated genes  
8 26,625,353 5 AC195899.3_FG002  
8 27,648,546 5 GRMZM2G517902  
8 27,648,546 5 GRMZM2G358977  
8 27,648,546 5 AC200099.4_FG006  
8 27,648,546 5 GRMZM2G014354  
8 31,465,928 5 No annotated genes  
8 161,790,610 5 GRMZM2G590971  
8 161,790,610 5 GRMZM5G863390  
8 161,790,610 5 GRMZM2G590973  
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Table 2-5 Continued 

No Annotation  

8 173,825,200 5 No annotated genes  
9 8,020,744 5 GRMZM2G080686  
10 1,728,072 5 GRMZM2G560695  
10 1,728,072 5 AC195137.2_FG009  
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2.5.1.2 Candidates Genes for Stay-green Terminal 

Linkage disequilibrium for all SNPs associated with stay-green terminal were less 

than 20 kb in all three populations.  Therefore, we considered only candidate genes 

within the 20 kb window as previously described in the materials and methods.  

Candidate genes associated with stay-green terminal in the NAM RILs are shown in 

Table 2-6. Candidate genes associated with stay-green terminal in the NAM RIL 

testcrosses are shown in Table 2-7. 

We were most interested in candidate genes that had genomic relationships across 

two or more of the independent populations phenotyped.  However, for stay-green 

terminal, there were no relationships across all three populations, and only the NAM 

RILs and AMES populations shared any genomic relationships.  Therefore, the most 

efficient way of analyzing this phenotype is to focus on the most frequently called 

significant SNPs in the NAM.  Further characterization of genes identified in the NAM 

can be supported using the AMES data.   

There were two genomic regions associated with stay-green terminal that 

overlapped between the NAM RILs and the AMES population.  On chromosome 7, 

NAM RIL SNPs 119,978,049 and 119,978,519 were less than 3kb away from AMES 

SNP 119,975,995 (Table 2-6).  On chromosome 10, NAM SNP 139,882,304 was ~3kb 

away from AMES SNP 139,879,255.  There was a single gene within the LD block on 

chromosome 7: GRMZM2G137676 -Plant invertase/pectin methylesterase inhibitor 

superfamily and a single gene in the LD block on chromosome ten: GRMZM2G080516 – 

ethylene response element binding factor 1 (Table 2-6). 
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No other extremely tight genomic relationships existed between any of the stay-

green terminal populations.  However, a cluster of seven SNPs were identified in the 

NAM RILs on chromosome 9 ranging from 150,815,418 to 152,316,001 that centered 

around a single AMES SNP: 151,986,054 (Table 2-6).  Further characterization of stay-

green terminal is needed to identify potential candidate genes from this gene-heavy 

region on chromosome 9. 

2.5.1.2.1 Plant invertase/pectin methylesterase inhibitor superfamily – 

GRMZM2G137676 

Golgi apparatus related genes were identified across the three populations.  While 

there is little evidence to relate these genes to abiotic stress, they are potentially involved 

in regulation of pectin secretion and remodeling in conjunction with pectin 

methylesterases and related inhibitors.  This gene can be further examined in Table 2-6. 

Plant invertases/pectin methylesterases are involved in demethylesterification of 

cell wall polygalacturonans (Micheli, 2001).  Most of these enzymes are at the beginning 

of the pectin biosynthetic pathway where pectin is synthesized in the Golgi apparatus and 

secreted into the cell wall.  Additionally, in relation to abiotic stress, pectin 

methylesterases can regulate pectin structure in accordance to stem elongation cellular 

adhesion, plasticity, pH, and ionic contents of the cell wall (Pelloux et al., 2007).  Thus, 

pectin remodeling under an abiotic stress can be critical to survival of a plant.  

Additionally, it highlights other association mapping results where Golgi apparatus genes 

(vesicular transportation family) were identified as significantly correlated with stay-

green phenotypes (Tables 2-5 to 2-9). 
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Plant invertase/pectin methylesterase inhibitors have a direct role in regulating 

kiwi fruit development, carbohydrate metabolism, and cell wall extension (Giovane et al., 

1995).  In wheat, pectin methyl esterases and their related inhibitors were regulated under 

stress responses by intron retention of different alleles (Rocchi et al., 2011).  French et al. 

(2014) identified a link between auxin, and cell wall invertases and inhibitors during 

grain development in rice. 

2.5.1.2.2 Ethylene responsive element binding factor 1 - GRMZM2G080516 

Ethylene is a major phytohormone involved in regulating gene expression and 

senescence under normal and abiotic stress conditions.  Ethylene response elements 

binding factors are regulated in tandem with ethylene insensitive genes (EIN).  

Specifically, ethylene response factor, ERF1, activates GCC-box dependent transcription 

in arabidopsis leaves.  It is differentially expressed in drought, salt, cold, and wounding 

situations by ethylene in arabidopsis via EIN2 or independent pathways (Fujimoto et al., 

2000).  Different alleles of ERF1 under abiotic stress could directly correspond to 

whether or not a plant is stay-green via modulation of ethylene response under abiotic 

stress conditions.  This gene can be further examined in Table 2-6. 

2.5.1.2.3 Stay-green Terminal Candidate Gene Summary 

Candidate genes for stay-green terminal were identified and reported by their 

potential gene families in Table 2-5.  Additional groups of genes related to disease, heat 

stress, expressed proteins, and unannotated proteins were identified in the NAM RILs and 

NAM testcrosses (Table 2-6: NAM RILs, Table 2-7: NAM testcrosses).
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Table 2-6 Candidate genes associated with stay-green terminal in the NAM RILs  
 

Candidate Gene 
Family Chr SNP 

Position RMIP Gene ID Arabidopsis/Rice/PFAM Ortholog 

Calcium Signaling 
and Relay 

3 217,726,001 16 GRMZM5G856738 AT4G23650.1(CDPK6,CPK3): calcium-dependent 
protein kinase 6 

10 146,585,004 5 GRMZM2G084586 AT3G13530.1(MAP3KE1,MAPKKK7): mitogen-
activated protein kinase kinase kinase 7 

General stress-
related and 

transcription 
factors 

3 208,618,360 7 GRMZM2G022052 LOC_Os01g48810.1: transcription initiation factor 
TFIID subunit 11, putative, expressed 

Sugar Transport 
and Secondary 

Messengers 

4 240,798,443 7 GRMZM5G878607 AT1G78570.1(ATRHM1,RHM1,ROL1): rhamnose 
biosynthesis 1 

2 192,854,841 6 GRMZM2G181018 LOC_Os09g33800.1: arabinogalactan protein, 
putative, expressed 

2 27,999,843 5 GRMZM2G122618 Glucose-6-phosphate/phosphate and 
phosphoenolpyruvate/phosphate antiporter 

Phytohormone 

2 27,979,793 7 GRMZM2G122614 AT4G30080.1(ARF16): auxin response factor 16 
3 217,695,045 7 GRMZM2G041015 AT2G46225.2(ABIL1): ABI-1-like 1 

2 27,999,843 5 GRMZM2G471931 AT2G28305.1(ATLOG1,LOG1): Putative lysine 
decarboxylase family protein 

10 146,585,004 5 GRMZM2G084576 AT2G43060.1(IBH1): ILI1 binding bHLH 1 
 

 10 139,882,304 5 GRMZM2G080516 AT4G17500.1(ATERF-1,ERF-1): ethylene 
responsive element binding factor 1 
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Table 2-6 Continued  

Cell Wall Structure 

9 152,203,791 37 GRMZM5G865819 AT2G20370.1(KAM1,MUR3): Exostosin family 
protein 

6 115,552,825 30 GRMZM2G156255 AT3G02850.1(SKOR): STELAR K+ outward 
rectifier 

6 115,552,825 30 GRMZM2G156310 AT1G47480.1: alpha/beta-Hydrolases superfamily 
protein 

2 5,217,793 18 GRMZM2G160523 AT1G73880.1(UGT89B1): UDP-glucosyl transferase 
89B1 

9 152,252,288 14 GRMZM2G137779 
LOC_Os03g05110.1: xyloglucan 

galactosyltransferase KATAMARI1, putative, 
expressed 

4 238,056,024 7 GRMZM5G846811 AT4G35020.1(ARAC3,ATROP6,RAC3,RHO1PS,R
OP6): RAC-like 3 

9 151,735,364 6 GRMZM2G126682 (CVP1,FRL1,SMT2): sterol methyltransferase 2 

Vesicular 
Transport 

2 213,233,048 39 GRMZM2G021129 AT1G26690.1: emp24/gp25L/p24 family/GOLD 
family protein 

9 152,316,001 28 GRMZM2G107651 AT2G20320.1: DENN (AEX-3) domain-containing  
4 36,048,211 17 GRMZM2G131329 AT4G21060.2: Galactosyltransferase family protein 

6 109,837,285 13 GRMZM2G136058 AT1G09580.1: emp24/gp25L/p24 family/GOLD 
family protein 

Disease 
5 211,767,155 23 GRMZM2G463904 AT2G26330.1(ER,QRP1): Leucine-rich receptor-like 

protein kinase family protein 

9 152,252,288 14 GRMZM2G438840 AT4G28650.1: Leucine-rich repeat transmembrane 
protein kinase family protein 

Other 

9 152,203,791 37 GRMZM2G178072 AT3G24010.1(ATING1,ING1): RING/FYVE/PHD 
zinc finger superfamily protein 

5 211,767,155 23 GRMZM2G166024 AT1G23790.1: Plant protein of unknown function 
(DUF936) 

5 211,767,155 23 GRMZM2G166027 AT2G05940.1: Protein kinase superfamily protein 
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Table 2-6 Continued  

Other 

3 35,736,981 21 GRMZM2G122656 AT4G18590.1: Nucleic acid-binding, OB-fold-like 
protein 

3 35,736,981 21 GRMZM2G421742 AT5G49350.1: Glycine-rich protein family 

7 1,291,451 20 GRMZM2G120574 AT5G53890.1(AtPSKR2,PSKR2): phytosylfokine-
alpha receptor 2 

7 1,291,451 20 GRMZM2G120575 LOC_Os11g16480.1: transposon protein, putative, 
unclassified, expressed 

10 12,542,065 20 GRMZM2G001195 AT4G33140.1: Haloacid dehalogenase-like hydrolase 
(HAD) superfamily protein 

4 36,048,211 17 GRMZM2G131378 AT2G38110.1(ATGPAT6,GPAT6): glycerol-3-
phosphate acyltransferase 6 

9 152,138,627 17 GRMZM2G089421 AT1G57860.1: Translation protein SH3-like family 
protein 

9 152,138,627 17 GRMZM2G089699 AT1G65680.1(ATEXPB2,ATHEXP BETA 
1.4,EXPB2): expansin B2 

9 152,138,627 17 GRMZM2G089686 AT3G24310.1(ATMYB71,MYB305): myb domain 
protein 305 

10 12,744,140 15 GRMZM2G063394 AT1G76390.1: ARM repeat superfamily protein 
8 166,681,172 13 GRMZM2G169412 AT5G06140.1(ATSNX1,SNX1): sorting nexin 1 
8 166,681,172 13 GRMZM2G169398 alcohol O-acetyltransferase activity 

3 23,893,603 8 GRMZM2G114552 LOC_Os01g03680.1: BBTI8 - Bowman-Birk type 
bran trypsin inhibitor precursor, expressed 

7 2,970,401 8 GRMZM2G350205 LOC_Os07g03140.1: ternary complex factor MIP1, 
putative, expressed 

8 173,028,725 8 GRMZM2G124047 AT5G65760.1: Serine carboxypeptidase S28 family 
protein 

2 217,010,357 7 GRMZM2G473709 LOC_Os07g48244.1: ubiquinol-cytochrome c 
reductase complex 6.7 kDa protein, putative,  

3 23,009,435 7 AC182482.3_FG003 AT1G16310.1: Cation efflux family protein 
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Table 2-6 Continued  

Other  

4 238,056,024 7 AC233922.1_FG004 AT5G64050.1(ATERS,ERS,OVA3): glutamate 
tRNA synthetase 

4 238,056,024 7 AC233922.1_FG005 LOC_Os02g02850.1: bifunctional protein folD  

6 148,247,279 7 AC214451.3_FG005 LOC_Os03g21660.1: transposon protein, putative, 
unclassified, expressed 

6 148,247,279 7 GRMZM2G175676 RNA recognition motif. (a.k.a. RRM, RBD, or RNP 
domain) 

4 226,356,022 6 GRMZM2G319056 AT4G10150.1: RING/U-box superfamily protein 
6 6,320,084 6 GRMZM2G412470 AT5G63190.1: MA3 domain-containing protein 

7 1,287,427 6 GRMZM2G120652 AT5G01410.1(ATPDX1,ATPDX1.3,PDX1,PDX1.3,
RSR4): Aldolase-type TIM barrel family protein 

7 119,978,049 6 GRMZM2G137676 AT2G26450.1: Plant invertase/pectin methylesterase 
inhibitor superfamily 

1 248,154,405 5 GRMZM2G110298 AT5G47630.1(mtACP3): mitochondrial acyl carrier3 

3 30,054,765 5 GRMZM2G171677 Tyrosine kinase specific for activated (GTP-bound) 
p21cdc42Hs 

3 217,879,923 5 GRMZM2G148532 LOC_Os01g43340.1: retrotransposon protein, 
putative, unclassified, expressed 

5 140,089,289 5 GRMZM2G060253 AT4G23800.2: HMG (high mobility group) box  

5 140,089,289 5 GRMZM2G060167 LOC_Os02g15820.1: extra-large G-protein-related, 
putative, expressed 

6 5,438,107 5 GRMZM2G054946 AT3G14470.1: NB-ARC domain-containing disease 
resistance protein 

6 151,456,265 5 GRMZM2G059314 AT2G37790.1: NAD(P)-linked oxidoreductase 
superfamily protein 

6 151,456,265 5 GRMZM2G059624 AT5G59850.1: Ribosomal protein S8 family protein 

7 119,978,519 5 GRMZM2G137676 AT2G26450.1: Plant invertase/pectin methylesterase 
inhibitor superfamily 
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Table 2-6 Continued 

Other 

8 166,714,891 5 AC232238.2_FG008 LOC_Os01g64250.1: hemerythrin family protein, 
expressed 

9 150,815,418 5 GRMZM2G169384 LOC_Os09g04670.1: DAG protein, chloroplast 
precursor, putative, expressed 

9 150,815,418 5 GRMZM2G169365 AT5G12040.1: Nitrilase/cyanide hydratase and 
apolipoprotein N-acyltransferase family protein 

     

Expressed Proteins 
1 248,154,405 5 GRMZM2G408967 LOC_Os03g39820.1: expressed protein 
1 248,154,405 5 GRMZM2G110294 LOC_Os03g39830.1: expressed protein 
6 151,456,265 5 GRMZM2G059306 LOC_Os05g38219.1: expressed protein 

No Annotation 

2 213,233,048 39 GRMZM2G021088 No annotated gene 
2 213,233,048 39 GRMZM2G497929 No annotated gene 
2 213,233,048 39 GRMZM2G021020 No annotated gene 
2 213,233,048 39 GRMZM2G497916 No annotated gene 
2 213,233,048 39 GRMZM2G497925 No annotated gene 
2 213,233,048 39 GRMZM2G497920 No annotated gene 
2 213,233,048 39 GRMZM2G559338 No annotated gene 
2 213,233,048 39 GRMZM2G559334 No annotated gene 
2 213,233,048 39 GRMZM2G559330 No annotated gene 
2 213,233,048 39 GRMZM2G559326 No annotated gene 
2 213,233,048 39 GRMZM2G428549 No annotated gene 
2 213,233,048 39 GRMZM2G559318 No annotated gene 
9 152,203,791 37 GRMZM2G478691 No annotated gene 
5 145,727,222 23 GRMZM2G359320 No annotated gene 
5 145,727,222 23 GRMZM2G518061 No annotated gene 
5 145,727,222 23 GRMZM2G022044 No annotated gene 
5 145,727,222 23 GRMZM2G021980 No annotated gene 
5 211,767,155 23 GRMZM2G463935 No annotated gene 
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Table 2-6 Continued 

No annotation  

1 185,530,739 22 No annotated genes No annotated gene 
7 1,291,451 20 GRMZM2G421707 No annotated gene 
7 1,291,451 20 GRMZM5G895139 No annotated gene 
10 12,542,065 20 GRMZM2G001194 No annotated gene 
6 105,842,426 19 AC219020.4_FG001 No annotated gene 
7 2,490,915 19 GRMZM2G026060 No annotated gene 
9 152,138,627 17 GRMZM2G390336 No annotated gene 
9 152,138,627 17 GRMZM5G897009 No annotated gene 
10 12,744,140 15 GRMZM2G361791 No annotated gene 
8 166,681,172 13 AC209737.3_FG009 No annotated gene 
8 166,681,172 13 GRMZM2G169391 No annotated gene 
8 166,681,172 13 GRMZM2G584348 No annotated gene 
8 166,681,172 13 GRMZM2G169405 No annotated gene 
5 211,558,679 11 GRMZM2G533819 No annotated gene 
5 211,558,679 11 AC186372.4_FG001 No annotated gene 
3 23,893,603 8 GRMZM2G114528 No annotated gene 
3 23,893,603 8 AC191265.3_FG003 No annotated gene 
3 23,893,603 8 GRMZM2G114535 No annotated gene 
3 23,893,603 8 GRMZM2G114506 No annotated gene 
7 2,970,401 8 GRMZM5G891809 No annotated gene 
7 2,970,401 8 GRMZM2G512595 No annotated gene 
8 173,028,725 8 GRMZM2G424778 No annotated gene 
2 217,010,357 7 GRMZM5G808987 No annotated gene 
2 217,010,357 7 GRMZM2G172485 No annotated gene 
3 23,009,435 7 GRMZM2G550431 No annotated gene 
3 23,009,435 7 GRMZM2G133187 No annotated gene 
3 43,150,001 7 GRMZM2G485275 No annotated gene 
3 208,618,360 7 GRMZM2G077607 No annotated gene 
3 208,618,360 7 GRMZM2G325956 No annotated gene 
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Table 2-6 Continued  

No annotation  

3 208,618,360 7 GRMZM2G078072 No annotated gene 
3 217,695,045 7 GRMZM2G500795 No annotated gene 
4 240,798,443 7 GRMZM2G549568 No annotated gene 
4 240,798,443 7 AC210218.2_FG005 No annotated gene 
6 148,247,279 7 AC214451.3_FG004 No annotated gene 
6 148,247,279 7 GRMZM2G478307 No annotated gene 
2 27,961,469 6 No annotated genes No annotated gene 
2 192,854,841 6 GRMZM2G590927 No annotated gene 
3 209,200,001 6 GRMZM2G037789 No annotated gene 
4 226,356,022 6 GRMZM5G843584 No annotated gene 
6 6,320,084 6 GRMZM2G412459 No annotated gene 
6 151,493,339 6 AC215688.3_FG010 No annotated gene 
6 151,493,339 6 GRMZM2G036479 No annotated gene 
3 10,624,916 5 GRMZM2G113606 No annotated gene 
3 10,624,916 5 GRMZM2G113552 No annotated gene 
3 10,624,916 5 GRMZM2G113603 No annotated gene 
3 30,054,765 5 GRMZM2G585447 No annotated gene 
3 217,879,923 5 GRMZM2G571445 No annotated gene 
4 146,441,331 5 GRMZM2G536547 No annotated gene 
5 140,089,289 5 AC191751.3_FG003 No annotated gene 
6 115,387,886 5 AC212465.3_FG011 No annotated gene 
6 115,387,886 5 GRMZM2G166390 No annotated gene 
6 115,387,886 5 GRMZM2G467529 No annotated gene 
9 150,815,418 5 GRMZM2G700128 No annotated gene 
10 146,585,004 5 GRMZM2G532898 No annotated gene 
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Table 2-7 Candidate genes associated with stay-green terminal in the NAM Testcrosses  

Candidate 
Gene Family Chr SNP 

Position RMIP Gene ID Arabidopsis/Rice/PFAM Ortholog 

Calcium Signal 
and Relay 

4 173,557,720 16 GRMZM2G108147 AT2G25620.1(AtDBP1,DBP1): DNA-binding protein 
phosphatase 1 

9 137,496,465 11 GRMZM2G378852 AT2G30040.1(MAPKKK14): mitogen-activated protein 
kinase kinase kinase 14 

General stress-
related and 

transcription 
factors 

2 12,267,754 27 GRMZM2G074743 AT3G22370.1(AOX1A,ATAOX1A): alternative oxidase 
1A 

2 45,779,710 18 GRMZM2G021831 AT3G14180.1: sequence-specific DNA binding 
transcription factors 

8 11,455,569 11 GRMZM2G096358 AT1G68320.1(AtMYB62,BW62B,BW62C,MYB62): 
myb domain protein 62 

9 143,188,888 10 GRMZM2G147671 AT4G38630.1(ATMCB1,MBP1,MCB1,RPN10): 
regulatory particle non-ATPase 10 

5 170,164,966 8 GRMZM2G071484 AT3G52450.1(PUB22): plant U-box 22 
10 130,303,000 7 GRMZM2G031721 AT4G13670.1(PTAC5): plastid transcriptionally active 5 
7 171,497,509 6 GRMZM2G330690 AT4G30890.1(UBP24): ubiquitin-specific protease 24 

1 22,318,797 5 GRMZM2G107395 AT1G78300.1(14-3-3OMEGA,GF14 OMEGA,GRF2): 
general regulatory factor 2 

5 4,034,012 5 GRMZM2G121221 AT2G30620.2: winged-helix DNA-binding transcription 
factor family protein 
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Table 2-7 Continued  

Phytohormones 

2 12,267,754 27 GRMZM2G374203 PFAM ID: PF08381: Transcription factor regulating root 
and shoot growth via Pin3 

9 143,188,888 10 GRMZM2G156388 AT5G64813.1(LIP1): Ras-related small GTP-binding 
family protein 

1 16,784,972 9 GRMZM5G838098 AT1G19180.1(JAZ1,TIFY10A): jasmonate-zim-domain 
protein 1 

1 16,784,972 9 GRMZM2G445634 AT1G19180.1(JAZ1,TIFY10A): jasmonate-zim-domain 
protein 1 

1 16,784,972 9 GRMZM2G343157 AT3G43440.1(JAZ11,TIFY3A): jasmonate-zim-domain 
protein 11 

Cell Wall 
Structure 

6 134,840,844 20 GRMZM2G170646 AT1G28580.1: GDSL-like Lipase/Acylhydrolase 
superfamily protein 

5 24,216,926 16 GRMZM2G436710 LOC_Os10g35810.1: thylakoid lumenal protein, putative, 
expressed 

4 180,346,001 5 GRMZM2G041699 AT1G22360.1(AtUGT85A2,UGT85A2): UDP-glucosyl 
transferase 85A2 

Disease 

3 230,256,704 12 GRMZM2G439784 AT2G34930.1: disease resistance family protein / LRR 
family protein 

3 230,256,704 12 GRMZM2G439799 AT3G47570.1: Leucine-rich repeat protein kinase family 
protein 

10 131,044,766 6 GRMZM2G146809 LOC_Os02g41904.1: DEF7 - Defensin and Defensin-like 
DEFL family, expressed 

Vesicular 
Transport 

8 174,814,948 23 GRMZM2G055219 AT2G19950.2(GC1): golgin candidate 1 

9 136,918,065 5 GRMZM2G487359 AT4G02030.1: Vps51/Vps67 family (components of 
vesicular transport) protein 

6 132,416,088 5 GRMZM2G328859 AT2G18180.1: Sec14p-like phosphatidylinositol transfer 
family protein 
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Table 2-7 Continued  

Other 

5 24,216,926 16 GRMZM2G436707 AT1G07280.1: Tetratricopeptide repeat (TPR)-like 
superfamily protein 

8 151,920,141 10 GRMZM2G445338 AT1G18390.2: Protein kinase superfamily protein 
5 4,619,657 7 GRMZM2G124290 AT1G21326.1: VQ motif-containing protein 
3 229,546,961 5 GRMZM2G467086 AT1G25260.1: Ribosomal protein L10 family protein 

10 115,684,636 15 GRMZM2G042782 AT1G43690.1: ubiquitin interaction motif-containing 
protein 

6 134,840,844 20 GRMZM2G162702 AT1G56720.1: Protein kinase superfamily protein 
10 130,303,000 7 GRMZM2G031660 AT1G61820.1(BGLU46): beta glucosidase 46 

2 194,066,031 5 GRMZM2G530263 AT2G16030.1: S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

10 115,684,636 15 GRMZM2G042811 AT2G19130.1: S-locus lectin protein kinase family 
protein 

9 136,918,065 5 GRMZM2G007590 AT2G30260.1(U2B\'\'): U2 small nuclear 
ribonucleoprotein B 

9 136,918,065 5 GRMZM2G007514 AT2G38440.1(ATSCAR2,DIS3,ITB1,SCAR2,WAVE4): 
SCAR homolog 2 

9 136,918,065 5 GRMZM2G007475 AT2G38480.1: Uncharacterised protein family 
(UPF0497) 

8 113,868,245 8 GRMZM2G139574 AT2G41640.1: Glycosyltransferase family 61 protein 

2 45,779,710 18 GRMZM2G021464 AT3G14080.1: Small nuclear ribonucleoprotein family 
protein 

3 230,384,225 5 GRMZM2G054610 AT3G25100.1(CDC45): cell division cycle 45 
3 230,384,225 5 GRMZM2G353076 AT3G28917.1(MIF2): mini zinc finger 2 
10 130,303,000 7 GRMZM2G031628 AT4G21760.1(BGLU47): beta-glucosidase 47 

5 4,619,657 7 GRMZM2G124284 AT5G01230.1: S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

5 4,619,657 7 GRMZM2G124243 AT5G06560.1: Protein of unknown function, DUF593 
4 173,557,720 16 GRMZM2G344376 AT5G11090.1: serine-rich protein-related 
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Table 2-7 Continued  

Other 

4 173,557,720 16 GRMZM2G043921 AT5G11090.1: serine-rich protein-related 

5 149,752,575 25 GRMZM2G173674 AT5G17530.3: phosphoglucosamine mutase family 
protein 

6 118,501,027 5 GRMZM2G054468 AT5G37720.1(ALY4): ALWAYS EARLY 4 
8 151,920,141 10 GRMZM2G144021 AT5G38220.1: alpha/beta-Hydrolases superfamily protein 
3 229,546,961 5 GRMZM2G467123 AT5G45275.1: Major facilitator superfamily protein 
10 127,938,727 5 AC233888.1_FG002 AT5G57660.1(ATCOL5,COL5): CONSTANS-like 5 
9 137,496,465 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN binding protein 1 

10 127,938,727 5 AC233888.1_FG001 PFAM ID: PF05703: Auxin canalisation , PF08458: Plant 
pleckstrin homology-like region 

10 131,044,766 6 GRMZM2G446737 PFAM ID: PF05757: Oxygen evolving enhancer protein 3  

8 151,920,141 10 GRMZM2G144028 LOC_Os01g49529.2: OsWAK10d - OsWAK receptor-
like cytoplasmic kinase OsWAK-RLCK, expressed 

4 179,080,608 5 GRMZM2G107414 LOC_Os02g52300.1: CPuORF38 - conserved peptide 
uORF-containing transcript, expressed 

Expressed 
Proteins 

4 173,557,720 16 AC200065.5_FG009 LOC_Os02g55580.1: hypothetical protein 
9 143,188,888 10 GRMZM2G147787 LOC_Os03g13870.1: expressed protein 
2 12,267,754 27 GRMZM5G856943 LOC_Os04g51166.1: expressed protein 
3 229,546,961 5 GRMZM2G467134 LOC_Os11g01594.1: expressed protein 

No annotation 

5 149,752,575 25 GRMZM2G327226 No annotated gene 
5 149,752,575 25 GRMZM2G516562 No annotated gene 
6 134,840,844 20 GRMZM2G170653 No annotated gene 
6 134,840,844 20 GRMZM2G583866 No annotated gene 
6 134,840,844 20 GRMZM2G583859 No annotated gene 
6 134,840,844 20 GRMZM5G856969 No annotated gene 
2 45,779,710 18 GRMZM2G006638 No annotated gene 
2 45,779,710 18 GRMZM2G314173 No annotated gene 
4 173,557,720 16 GRMZM5G822849 No annotated gene 
4 173,557,720 16 GRMZM2G508996 No annotated gene 
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Table 2-7 Continued  

No annotation  

4 173,557,720 16 GRMZM2G043910 No annotated gene 
4 173,557,720 16 GRMZM2G043902 No annotated gene 
4 173,557,720 16 GRMZM2G508969 No annotated gene 
4 173,557,720 16 GRMZM2G508968 No annotated gene 
5 24,216,926 16 AC196432.3_FG007 No annotated gene 
10 115,684,636 15 GRMZM2G509143 No annotated gene 
3 230,256,704 12 GRMZM2G139840 No annotated gene 
3 230,256,704 12 GRMZM2G439816 No annotated gene 
9 137,496,465 11 GRMZM2G378853 No annotated gene 
9 137,496,465 11 GRMZM5G808578 No annotated gene 
9 137,496,465 11 GRMZM2G529645 No annotated gene 
9 137,496,465 11 GRMZM2G079027 No annotated gene 
8 151,920,141 10 GRMZM2G569684 No annotated gene 
8 151,920,141 10 GRMZM2G569681 No annotated gene 
8 151,920,141 10 GRMZM2G569679 No annotated gene 
9 143,188,888 10 AC203209.3_FG004 No annotated gene 
9 143,188,888 10 GRMZM5G876445 No annotated gene 
9 143,188,888 10 GRMZM2G572049 No annotated gene 
1 16,784,972 9 AC177911.4_FG005 No annotated gene 
2 193,772,001 9 AC191363.3_FG006 No annotated gene 
2 193,772,001 9 GRMZM2G523256 No annotated gene 
5 170,164,966 8 GRMZM2G071528 No annotated gene 
5 170,164,966 8 GRMZM2G525430 No annotated gene 
5 4,619,657 7 GRMZM5G810402 No annotated gene 
5 4,619,657 7 GRMZM2G124249 No annotated gene 
5 4,619,657 7 GRMZM2G124280 No annotated gene 
6 132,329,046 7 No annotated genes No annotated gene 
9 137,496,298 7 GRMZM5G808578 No annotated gene 
9 137,496,298 7 GRMZM2G529645 No annotated gene 
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Table 2-7 Continued  

No annotation 

9 137,496,298 7 GRMZM2G079027 No annotated gene 
9 137,496,298 7 GRMZM2G378853 No annotated gene 
10 130,303,000 7 AC195682.4_FG008 No annotated gene 
3 229,457,305 6 No annotated genes No annotated gene 
7 171,497,509 6 GRMZM2G313742 No annotated gene 
7 171,497,509 6 GRMZM5G837729 No annotated gene 
7 171,497,509 6 GRMZM2G014754 No annotated gene 
2 194,066,031 5 GRMZM2G114022 No annotated gene 
3 229,546,961 5 GRMZM2G583006 No annotated gene 
3 229,546,961 5 GRMZM2G583003 No annotated gene 
4 179,080,608 5 AC185630.3_FG002 No annotated gene 
4 179,080,608 5 GRMZM2G107410 No annotated gene 
4 179,080,608 5 GRMZM2G546531 No annotated gene 
5 4,034,012 5 GRMZM2G555375 No annotated gene 
5 4,034,012 5 GRMZM2G555372 No annotated gene 
6 132,416,088 5 GRMZM2G516171 No annotated gene 
6 132,416,088 5 AC203331.4_FG006 No annotated gene 
6 132,416,088 5 GRMZM2G499741 No annotated gene 
9 136,918,065 5 AC203300.3_FG004 No annotated gene 
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2.5.1.3 Stay-green Difference Candidate Genes 

The stay-green difference phenotype captures the variation of delayed plant 

senescence.  This would be classified as either a Type A or B stay-green.   

Additional groups of genes related to disease, heat stress, expressed proteins, and 

unannotated proteins were identified in the populations.  Only candidate genes for stay-

green difference in the NAM RILs are reported in Table 2-8 as there were no significant 

SNPs in the AMES diversity panel and the phenotype was not collected in the NAM 

testcrosses. 
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Table 2-8 Stay-green Difference Candidate Genes in the NAM RILs 

Candidate Gene 
Family Chr SNP 

Position RMIP Gene ID Arabidopsis/Rice/PFAM Ortholog 

Calcium Signaling 
and Relay 6 110,612,431 10 GRMZM2G009703 AT4G28980.1(CAK1AT,CDKF;1): CDK-

activating kinase 1AT 

General stress-
related and 

transcription 
factors 

5 198,207,996 43 GRMZM2G044851 AT1G32450.1(NRT1.5): nitrate transporter 1.5 
5 198,207,996 43 GRMZM2G058930 AT4G14030.1(SBP1): selenium-binding protein 1 

1 108,563,398 24 GRMZM2G036567 Rice best hit: LOC_Os10g01290.1: PHLOEM 2-
LIKE A10, putative, expressed 

7 129,439,412 21 GRMZM2G063517 AT2G22400.1: S-adenosyl-L-methionine-
dependent methyltransferases superfamily protein 

2 215,944,843 12 GRMZM2G458437 AT5G18560.1(PUCHI): Integrase-type DNA-
binding superfamily protein 

1 40,916,063 10 AC233935.1_FG005 AT3G55370.3(OBP3): OBF-binding protein 3 

5 70,689,438 7 GRMZM2G120578 AT5G53120.1(ATSPDS3,SPDS3,SPMS): 
spermidine synthase 3 

3 150,837,092 6 GRMZM2G082387 Rice best hit: LOC_Os01g71970.1: GRAS family 
transcription factor containing protein, expressed 

7 172,501,891 6 GRMZM2G113863 AT5G27690.1: Heavy metal 
transport/detoxification superfamily protein 

Cell Wall Structure 

7 302,735 21 GRMZM5G800488 AT3G09220.1(LAC7): laccase 7 
6 103,645,832 20 AC194852.3_FG007 AT1G14420.1(AT59): Pectate lyase family protein 
2 215,944,843 12 GRMZM2G158766 AT4G02620.1: vacuolar ATPase subunit F family  

4 166,980,842 8 GRMZM2G063316 AT1G24610.1: Rubisco methyltransferase family 
protein 

3 13,538,705 7 GRMZM5G832229 AT2G06520.1(PSBX): photosystem II subunit X 

3 13,538,705 7 GRMZM2G146627 AT2G25810.1(TIP4;1): tonoplast intrinsic protein 
4;1 

8 163,904,027 5 AC233916.1_FG002 AT1G05800.1(DGL): alpha/beta-Hydrolases 
superfamily protein 
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Table 2-8 Continued  

Sugar Transport 
and Secondary 

Messengers 

7 302,735 21 GRMZM2G152059 AT5G01090.1: Concanavalin A-like lectin family 
protein 

2 233,015,071 11 GRMZM2G381766 AT2G37710.1(RLK): receptor lectin kinase 

Phytohormone 

1 299,119,738 18 GRMZM2G176612 AT4G17890.1(AGD8): ARF-GAP domain 8 

6 93,208,896 18 GRMZM2G048092 AT1G16540.1(ABA3,ACI2,ATABA3,LOS5,SIR3): 
molybdenum cofactor sulfurase (LOS5) (ABA3) 

5 70,689,438 7 GRMZM2G120539 AT1G20560.1(AAE1): acyl activating enzyme 1 

7 172,501,891 6 GRMZM2G414460 AT2G47750.1(GH3.9): putative indole-3-acetic 
acid-amido synthetase GH3.9 

7 120,764,288 5 GRMZM2G099049 AT1G56220.4: Dormancy/auxin associated family 
protein 

Heat 3 9,242,298 22 GRMZM2G151444 AT4G39410.1(ATWRKY13,WRKY13): WRKY 
DNA-binding protein 13 

Disease 

1 299,119,738 18 GRMZM2G479249 AT3G02910.1: AIG2-like (avirulence induced gene) 
family protein 

7 127,251,952 12 GRMZM2G072240 AT3G63470.1(scpl40): serine carboxypeptidase-like 
40 

7 127,251,952 12 GRMZM2G072218 AT3G63470.1(scpl40): serine carboxypeptidase-like 
40 

7 2,504,001 10 GRMZM2G026083 AT3G14470.1: NB-ARC domain-containing disease 
resistance protein 

10 9,846,957 6 GRMZM2G388776 AT3G47580.1: Leucine-rich repeat protein kinase 
family protein 

Other 

8 163,904,027 5 GRMZM5G821267 AT1G24330.1: ARM repeat superfamily protein 

4 15,932,903 8 GRMZM2G181422 AT1G05730.1: Eukaryotic protein of unknown 
function (DUF842) 

5 197,603,889 6 GRMZM2G029815 
AT1G65920.1: Regulator of chromosome 

condensation (RCC1) family with FYVE zinc finger 
domain 
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Table 2-8 Continued  

Other 

8 163,904,027 5 GRMZM2G700757 AT2G19490.1: recA DNA recombination family 
protein 

2 233,685,369 5 GRMZM2G469469 AT2G32040.1: Major facilitator superfamily protein 

7 3,008,523 7 GRMZM2G044060 AT3G18860.1: transducin family protein / WD-40 
repeat family protein 

3 9,382,001 31 GRMZM5G832672 AT3G22440.1: FRIGIDA-like protein 

3 221,690,562 9 GRMZM2G071021 AT3G24503.1(ALDH1A,ALDH2C4,REF1): 
aldehyde dehydrogenase 2C4 

3 221,690,562 9 GRMZM2G097706 AT3G24503.1(ALDH1A,ALDH2C4,REF1): 
aldehyde dehydrogenase 2C4 

10 9,846,957 6 GRMZM2G388776 AT3G47580.1: Leucine-rich repeat protein kinase 
family protein 

7 127,251,952 12 GRMZM2G072240 AT3G63470.1(scpl40): serine carboxypeptidase-like 
40 

7 127,251,952 12 GRMZM2G072218 AT3G63470.1(scpl40): serine carboxypeptidase-like 
40 

2 233,685,369 5 GRMZM2G469477 AT4G14830.1(HSP1): 

3 221,690,562 9 GRMZM2G366935 AT4G32660.1(AME3): Protein kinase superfamily 
protein 

2 233,685,369 5 GRMZM2G170896 AT5G03800.1(EMB166,EMB175,emb1899): 
Pentatricopeptide repeat (PPR) superfamily protein 

1 62,555,292 8 GRMZM5G822100 AT5G07990.1(CYP75B1,D501,TT7): Cytochrome 
P450 superfamily protein 

5 197,603,889 6 GRMZM2G029850 AT5G17300.1(RVE1): Homeodomain-like 
superfamily protein 

6 160,332,779 5 GRMZM2G043943 AT5G19730.1: Pectin lyase-like superfamily protein 

3 13,538,705 7 GRMZM2G447857 AT5G66631.1: Tetratricopeptide repeat (TPR)-like 
superfamily protein 
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Table 2-8 Continued  

Other  

2 233,685,369 5 GRMZM2G170934 Arabidopsis best hit: AT3G22440.1: FRIGIDA-like 
protein 

3 9,382,001 31 GRMZM5G871126 Rice best hit: LOC_Os01g08550.1: aminoacyl-
tRNA synthetase, putative, expressed 

1 299,119,738 18 GRMZM2G590033 Rice best hit: LOC_Os01g13730.1: WD domain, G-
beta repeat domain containing protein, expressed 

7 3,008,523 7 GRMZM2G044174 Rice best hit: LOC_Os07g03180.1: GCRP3 - 
Glycine and cysteine rich family protein precursor,  

Expressed Proteins 

3 150,837,092 6 GRMZM2G530589 Rice best hit: LOC_Os02g48600.1: expressed 
protein 

4 166,980,842 8 GRMZM2G362823 Rice best hit: LOC_Os02g50110.1: expressed 
protein 

7 302,735 21 GRMZM2G152028 Rice best hit: LOC_Os03g01008.1: expressed 
protein 

6 160,332,779 5 GRMZM5G846097 Rice best hit: LOC_Os05g01330.1: expressed 
protein 

6 93,208,896 18 GRMZM2G047969 Rice best hit: LOC_Os06g45870.1: expressed 
protein 

No annotation 

5 198,207,996 43 GRMZM2G058943 No candidate gene 
5 198,207,996 43 AC216070.2_FG005 No candidate gene 
5 198,207,996 43 GRMZM2G517996 No candidate gene 
9 84,661,869 40 GRMZM2G396156 No candidate gene 
9 84,661,869 40 AC190675.3_FG002 No candidate gene 
3 9,242,298 22 AC204707.4_FG003 No candidate gene 
3 9,242,298 22 GRMZM2G573370 No candidate gene 
3 9,242,298 22 GRMZM2G573365 No candidate gene 
3 9,242,298 22 GRMZM2G573364 No candidate gene 
3 9,242,298 22 GRMZM2G451364 No candidate gene 
9 105,634,001 22 GRMZM5G848174 No candidate gene 
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Table 2-8 Continued  

No annotation  

7 302,735 21 GRMZM2G512515 No candidate gene 
7 129,439,412 21 AC214533.2_FG001 No candidate gene 
6 103,645,832 20 AC186818.3_FG003 No candidate gene 
2 215,944,843 12 GRMZM5G855326 No candidate gene 
7 127,251,952 12 GRMZM2G373247 No candidate gene 
7 127,251,952 12 GRMZM2G526122 No candidate gene 
7 127,251,952 12 GRMZM2G373252 No candidate gene 
7 127,251,952 12 GRMZM2G373258 No candidate gene 
2 233,015,071 11 GRMZM2G530304 No candidate gene 
1 40,916,063 10 AC233935.1_FG004 No candidate gene 
4 223,131,660 10 GRMZM2G359213 No candidate gene 
6 110,612,431 10 GRMZM2G309822 No candidate gene 
7 2,504,001 10 GRMZM5G873482 No candidate gene 
7 2,504,001 10 GRMZM2G026063 No candidate gene 
7 2,504,001 10 GRMZM2G026081 No candidate gene 
7 2,504,001 10 GRMZM2G497991 No candidate gene 
3 221,690,562 9 GRMZM2G522545 No candidate gene 
8 31,502,768 9 GRMZM2G518305 No candidate gene 
9 72,271 9 GRMZM2G354611 No candidate gene 
1 62,555,292 8 GRMZM5G864088 No candidate gene 
1 62,555,292 8 GRMZM2G358594 No candidate gene 
1 62,555,292 8 GRMZM5G830483 No candidate gene 
1 62,555,292 8 GRMZM5G802598 No candidate gene 
1 62,555,292 8 GRMZM2G703590 No candidate gene 
1 154,159,228 8 GRMZM2G029981 No candidate gene 
4 15,932,903 8 GRMZM2G591492 No candidate gene 
4 166,980,842 8 AC185474.3_FG005 No candidate gene 
4 166,980,842 8 GRMZM2G063344 No candidate gene 
1 154,094,060 7 AC196058.3_FG002 No candidate gene 
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Table 2-8 Continued  

No annotation  

3 8,568,869 7 GRMZM2G131001 No candidate gene 
3 8,568,869 7 GRMZM2G561056 No candidate gene 
3 8,568,869 7 GRMZM2G051348 No candidate gene 
3 13,538,705 7 GRMZM2G146743 No candidate gene 
3 13,538,705 7 GRMZM2G146740 No candidate gene 
3 13,538,705 7 GRMZM2G447869 No candidate gene 
3 13,538,705 7 GRMZM2G146679 No candidate gene 
3 13,538,705 7 GRMZM2G146661 No candidate gene 
5 70,689,438 7 GRMZM5G894801 No candidate gene 
5 70,689,438 7 GRMZM2G120654 No candidate gene 
7 3,008,523 7 AC204845.3_FG008 No candidate gene 
1 93,097,477 6 GRMZM2G571899 No candidate gene 
3 150,837,092 6 GRMZM2G082381 No candidate gene 
3 150,837,092 6 GRMZM2G530586 No candidate gene 
3 150,837,092 6 GRMZM2G380368 No candidate gene 
3 222,025,874 6 GRMZM2G576662 No candidate gene 
5 197,603,889 6 GRMZM2G501053 No candidate gene 
7 172,501,891 6 GRMZM2G414473 No candidate gene 
8 33,585,313 6 AC204714.3_FG001 No candidate gene 
10 9,846,957 6 GRMZM5G856076 No candidate gene 
10 9,846,957 6 GRMZM2G110374 No candidate gene 
10 9,846,957 6 GRMZM2G544885 No candidate gene 
10 9,846,957 6 GRMZM2G582312 No candidate gene 
2 233,685,369 5 GRMZM2G584410 No candidate gene 
2 233,685,369 5 GRMZM2G469486 No candidate gene 
2 233,685,369 5 GRMZM2G584415 No candidate gene 
6 160,332,779 5 GRMZM2G345798 No candidate gene 
6 160,332,779 5 GRMZM2G044048 No candidate gene 
7 120,764,288 5 GRMZM5G821047 No candidate gene 

 131 

 
 



  132 
 

2.5.1.4 Candidate Genes for Stay-green Ratio 

 There was not a tight overlap in candidate genes for stay-green ratio in the NAM 

RILs and AMES Diversity panel.  Gene families similar to those described for the other 

stay-green phenotypes were identified and characterized for this phenotype in the NAM 

RILs.  Additional groups of genes related to disease, heat stress, expressed proteins, and 

unannotated proteins were identified in the populations.  Only candidate genes for stay-

green ratio in the NAM RILs are reported in Table 2-9 as there were no significant SNPs 

in the AMES diversity panel and the phenotype was not collected in the NAM 

testcrosses. 
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Table 2-9 Candidate genes for stay-green ratio in the NAM RILs  

Candidate 
Gene Family Chr SNP Position RMIP Gene ID Arabidopsis/Rice/PFAM Ortholog 

Calcium 
Signaling and 

Relay 

6 110,611,882 6 GRMZM2G009703 AT4G28980.1(CAK1AT,CDKF;1): CDK-activating 
kinase 1AT 

7 1,294,057 5 GRMZM2G120563 AT3G17980.1: Calcium-dependent lipid-binding  

General 
stress-related 

and 
transcription 

factors 

5 197,634,001 27 GRMZM2G029850 LOC_Os02g46030.1: MYB family transcription factor, 
putative, expressed 

5 197,634,001 27 GRMZM2G029815 

Regulator of chromosome condensation (RCC1) 
repeat , PF01363: FYVE zinc finger , PF08381: 

Transcription factor regulating root and shoot growth via 
Pin3 

3 24,265,645 19 GRMZM2G011436 LOC_Os01g03570.1: transcription factor X1, putative,  
5 198,207,996 13 GRMZM2G058930 AT4G14030.1(SBP1): selenium-binding protein 1 
5 198,207,996 13 GRMZM2G044851 AT1G32450.1(NRT1.5): nitrate transporter 1.5 

1 175,638,951 12 GRMZM2G141955 AT2G45190.1(AFO,FIL,YAB1): Plant-specific 
transcription factor YABBY family protein 

2 215,944,843 11 GRMZM2G458437 AT5G18560.1(PUCHI): Integrase-type DNA-binding  
3 216,815,460 10 GRMZM2G064283 AT4G39370.3(UBP27): ubiquitin-specific protease 27 
4 183,922,262 9 GRMZM5G822947 AT5G27760.1: Hypoxia-responsive family protein 

8 167,982,452 9 GRMZM2G169316 AT3G55730.1(AtMYB109,MYB109): myb domain 
protein 109 

3 48,937,505 8 GRMZM2G420199 LOC_Os01g51140.2: helix-loop-helix DNA-binding 
domain containing protein, expressed 

4 185,306,610 7 GRMZM2G131516 AT3G54220.1(SCR,SGR1): GRAS family transcription 
factor 
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Table 2-9 Continued 

General 
stress-related 

and 
transcription 

factors 

3 41,606,364 6 GRMZM2G013378 AT1G03350.1: BSD domain-containing protein 
3 150,837,092 6 GRMZM2G082387 LOC_Os01g71970.1: GRAS family transcription factor  
4 27,763,282 6 GRMZM2G171311 AT5G65630.1(GTE7): global transcription factor group E7 

3 190,318,172 5 GRMZM2G440529 AT1G61660.1: basic helix-loop-helix (bHLH) DNA-
binding superfamily protein 

3 190,318,172 5 GRMZM2G138800 AT5G54500.1(FQR1): flavodoxin-like quinone reductase 1 

10 4,676,058 5 GRMZM2G003762 AT5G19140.1(AILP1,ATAILP1): Aluminum induced 
protein with YGL and LRDR motifs 

Vesicular 
Transport 8 166,834,738 6 GRMZM2G316534 AT1G08280.1: Glycosyltransferase family 29 

(sialyltransferase) family protein 

Cell Wall 
Structure 

2 215,944,843 11 GRMZM2G158766 PFAM ID: PF01990: ATP synthase (F/14-kDa) subunit 

2 24,397,510 8 GRMZM2G434557 AT3G43660.1: Vacuolar iron transporter (VIT) family 
protein 

3 44,662,742 6 GRMZM5G840699 AT5G04930.1(ALA1): aminophospholipid ATPase 1 
4 174,920,478 5 GRMZM2G146346 AT3G49750.1(AtRLP44,RLP44): receptor like protein 44 

7 1,291,451 13 GRMZM2G120652 AT5G01410.1(ATPDX1,ATPDX1.3,PDX1,PDX1.3,RSR4): 
Aldolase-type TIM barrel family protein 

7 1,291,451 13 GRMZM2G120574 AT5G53890.1(AtPSKR2,PSKR2): phytosylfokine-alpha 
receptor 2 

10 4,676,058 5 GRMZM2G004414 AT1G08960.1(ATCAX11,CAX11): cation exchanger 11 
Sugar 

Transport and 
Secondary 

Messengers 

4 174,954,655 5 GRMZM2G312521 AT2G18700.1(ATTPS11,ATTPSB,TPS11): trehalose 
phosphatase/synthase 11 

9 146,210,771 5 GRMZM5G824920 AT2G01630.1: O-Glycosyl hydrolases family 17 protein 

Phytohormone 

2 215,636,276 12 GRMZM2G070563 AT5G65980.1: Auxin efflux carrier family protein 
3 15,048,001 7 GRMZM5G862219 AT3G51840.1(ACX4,ATG6,ATSCX): acyl-CoA oxidase 4 

4 174,920,478 5 GRMZM2G446313 AT5G57740.1(XBAT32): XB3 ortholog 2 in Arabidopsis 
thaliana 
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Table 2-9 Continued 

Disease 

7 2,311,738 14 GRMZM2G337881 PFAM ID: PF00931: NB-ARC domain 
2 215,644,483 6 GRMZM2G005493 AT5G57655.2: xylose isomerase family protein 

1 93,266,541 5 GRMZM2G365134 AT4G16790.1: hydroxyproline-rich glycoprotein family 
protein 

Other 

1 289,526,191 8 GRMZM2G101682 LOC_Os03g58850.1: uncharacterized PE-PGRS family 
protein PE_PGRS3 precursor, putative, expressed 

7 1,294,057 5 GRMZM2G120575 LOC_Os11g16480.1: transposon protein, putative, 
unclassified, expressed 

2 215,636,276 12 GRMZM5G873277 AT1G54610.1: Protein kinase superfamily protein 

9 155,976,827 7 GRMZM2G148090 AT2G05160.1: CCCH-type zinc fingerfamily protein with 
RNA-binding domain 

3 15,048,001 7 GRMZM2G165044 AT2G15530.1: RING/U-box superfamily protein 
4 174,954,655 5 GRMZM2G016362 AT2G18650.1(MEE16): RING/U-box superfamily protein 

8 167,982,452 9 GRMZM2G169329 AT2G37970.1(SOUL-1): SOUL heme-binding family 
protein 

2 216,690,121 16 GRMZM2G001297 AT3G06810.1(IBR3): acyl-CoA dehydrogenase-related 
10 4,676,058 5 GRMZM2G003750 AT3G26085.3: CAAX amino terminal protease family  

2 215,644,483 6 GRMZM2G306998 AT3G26330.1(CYP71B37): cytochrome P450, family 71, 
subfamily B, polypeptide 37 

8 166,834,738 6 GRMZM2G020728 AT4G21110.1: G10 family protein 

3 48,937,505 8 GRMZM2G420199 LOC_Os01g51140.2: helix-loop-helix DNA-binding 
domain containing protein, expressed 

Expressed 
Proteins 

3 150,837,092 6 GRMZM2G530589 LOC_Os02g48600.1: expressed protein 
9 155,976,827 7 GRMZM2G158293 LOC_Os03g39740.1: expressed protein 
7 1,291,451 13 GRMZM2G120572 LOC_Os07g01720.1: expressed protein 
3 222,475,972 7 GRMZM5G840887 LOC_Os01g40990.2: expressed protein 
3 222,475,972 7 GRMZM2G135120 LOC_Os01g40990.2: expressed protein 
7 1,294,057 5 GRMZM2G120572 LOC_Os07g01720.1: expressed protein 
4 183,922,262 9 GRMZM2G138936 LOC_Os11g02090.2: expressed protein 
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Table 2-9 Continued 

No annotation 

6 31,997,036 20 GRMZM2G481592 No annotated gene 
6 31,997,036 20 GRMZM2G181120 No annotated gene 
6 31,997,036 20 GRMZM2G481586 No annotated gene 
6 31,997,036 20 GRMZM2G589668 No annotated gene 
5 197,670,001 15 GRMZM2G518693 No annotated gene 
6 79,420,001 15 GRMZM2G444194 No annotated gene 
7 2,311,738 14 GRMZM2G505238 No annotated gene 
7 2,311,738 14 GRMZM2G496998 No annotated gene 
1 93,097,477 13 GRMZM2G571899 No annotated gene 
5 198,207,996 13 GRMZM2G058943 No annotated gene 
5 198,207,996 13 AC216070.2_FG005 No annotated gene 
5 198,207,996 13 GRMZM2G509724 No annotated gene 
5 198,207,996 13 GRMZM2G517996 No annotated gene 
7 1,291,451 13 GRMZM5G895139 No annotated gene 
7 1,291,451 13 GRMZM2G421707 No annotated gene 
1 175,638,951 12 AC186234.3_FG005 No annotated gene 
1 175,638,951 12 GRMZM2G568405 No annotated gene 
1 175,638,951 12 AC186234.3_FG003 No annotated gene 
1 175,638,951 12 GRMZM2G568380 No annotated gene 
2 215,636,276 12 GRMZM2G524252 No annotated gene 
2 215,636,276 12 GRMZM5G811899 No annotated gene 
2 215,636,276 12 GRMZM2G070558 No annotated gene 
2 215,636,276 12 GRMZM2G070551 No annotated gene 
2 215,636,276 12 GRMZM2G524232 No annotated gene 
3 43,280,587 12 GRMZM2G390664 No annotated gene 
3 43,280,587 12 GRMZM2G120905 No annotated gene 
3 43,280,587 12 GRMZM2G120899 No annotated gene 
1 207,811,343 11 GRMZM2G552005 No annotated gene 
2 215,944,843 11 GRMZM5G855326 No annotated gene 
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Table 2-9 Continued 

No annotation  

6 110,648,930 11 GRMZM5G840543 No annotated gene 
6 110,648,930 11 GRMZM2G066444 No annotated gene 
2 24,487,007 10 GRMZM2G026594 No annotated gene 
2 24,487,007 10 GRMZM2G499324 No annotated gene 
1 91,751,628 9 GRMZM2G038034 No annotated gene 
7 2,310,408 9 GRMZM2G505238 No annotated gene 
8 167,982,452 9 GRMZM2G584833 No annotated gene 
1 289,526,191 8 GRMZM2G101783 No annotated gene 
2 25,776,205 8 AC218093.3_FG005 No annotated gene 
3 48,937,505 8 GRMZM2G554254 No annotated gene 
3 48,937,505 8 GRMZM2G554247 No annotated gene 
3 48,937,505 8 GRMZM2G119597 No annotated gene 
3 48,937,505 8 GRMZM2G420188 No annotated gene 
1 93,098,542 7 GRMZM2G571899 No annotated gene 
2 11,116,907 7 GRMZM2G535245 No annotated gene 
4 185,306,610 7 GRMZM5G857119 No annotated gene 
4 185,306,610 7 GRMZM5G877428 No annotated gene 
4 185,306,610 7 GRMZM2G561218 No annotated gene 
9 76,962 7 GRMZM2G354611 No annotated gene 
1 93,098,238 6 GRMZM2G571899 No annotated gene 
2 215,644,483 6 GRMZM2G524232 No annotated gene 
2 215,644,483 6 GRMZM2G070551 No annotated gene 
2 215,644,483 6 GRMZM2G070558 No annotated gene 
3 41,606,364 6 GRMZM2G161613 No annotated gene 
3 44,662,742 6 GRMZM5G886583 No annotated gene 
3 44,662,742 6 GRMZM5G899881 No annotated gene 
4 185,290,753 5 No annotated genes No annotated gene 
6 36,379,331 5 GRMZM2G400716 No annotated gene 
6 36,379,331 5 GRMZM5G871576 No annotated gene 
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Table 2-9 Continued 

No annotation  

6 36,379,331 5 GRMZM2G400683 No annotated gene 
6 97,861,447 5 GRMZM2G047775 No annotated gene 
6 97,861,447 5 GRMZM2G486900 No annotated gene 
7 1,294,057 5 GRMZM5G895139 No annotated gene 
7 1,294,057 5 GRMZM2G421707 No annotated gene 
9 135,688,774 5 GRMZM2G351951 No annotated gene 
9 135,763,373 5 No annotated genes No annotated gene 
9 146,210,771 5 GRMZM5G820832 No annotated gene 
9 146,210,771 5 GRMZM5G844692 No annotated gene 
10 4,676,058 5 GRMZM2G485603 No annotated gene 
10 4,676,058 5 GRMZM2G485601 No annotated gene 
3 150,837,092 6 GRMZM2G082381 No annotated gene 
3 150,837,092 6 GRMZM2G530586 No annotated gene 
3 150,837,092 6 GRMZM2G380368 No annotated gene 
6 110,611,882 6 GRMZM2G309822 No annotated gene 
7 121,657,758 6 GRMZM2G431219 No annotated gene 
8 166,834,738 6 GRMZM2G485959 No annotated gene 
8 166,834,738 6 AC206610.4_FG013 No annotated gene 
8 166,834,738 6 GRMZM2G328239 No annotated gene 
8 166,834,738 6 GRMZM2G026847 No annotated gene 
9 476,632 6 GRMZM2G567592 No annotated gene 
9 476,632 6 GRMZM2G142178 No annotated gene 
9 476,632 6 GRMZM2G142185 No annotated gene 
2 27,567,458 5 GRMZM5G806743 No annotated gene 
2 27,567,458 5 GRMZM2G306735 No annotated gene 
2 27,567,458 5 GRMZM2G486496 No annotated gene 
2 27,567,458 5 GRMZM5G812121 No annotated gene 
2 27,567,458 5 GRMZM2G486490 No annotated gene 
3 44,620,604 5 No annotated genes No annotated gene 
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Table 2-9 Continued 

No annotation 

3 190,318,172 5 GRMZM2G138802 No annotated gene 
3 190,318,172 5 AC195817.3_FG002 No annotated gene 
4 174,920,478 5 GRMZM2G570369 No annotated gene 
4 174,920,478 5 GRMZM2G146330 No annotated gene 
4 174,954,655 5 GRMZM5G893801 No annotated gene 
4 183,922,262 9 AC204776.3_FG003 No annotated gene 
4 183,922,262 9 GRMZM2G138931 No annotated gene 
4 183,922,262 9 GRMZM2G138918 No annotated gene 
6 105,842,426 7 AC219020.4_FG001 No annotated gene 
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2.5.2 Summarization of Candidate Genes 

2.5.2.1 Challenges of Characterizing Stay-green 

 Stay-green is a complex, quantitative trait.  Further complicating stay-green is the 

intricacy of accurately phenotyping and analyzing data from multiple populations and 

models.  The AMES diversity panel utilizes a standard association mapping model 

accounting for population structure using principle components and kinship using 

background markers and days-to-anthesis as covariates in the model.  The NAM 

populations uses QTL identified from joint-linkage analysis as cofactors in the 

association mapping model.  This regression model also controls population structure.   

The two methods for analyzing stay-green data increases the complexity of drawing 

relationships between the populations. 

 In the NAM analysis, association mapping results can be supported by linkage 

peaks from joint-linkage QTL mapping.  However, we observed significant SNPs that did 

not contain any linkage support.  These association mapping peaks may represent 

potential false positives and should be carefully examined. 

Phenotyping stay-green presents unique challenges.  First, obtaining enough stress 

on the population can be difficult in certain locations where drought does not occur 

regularly.  While stress was present in most of these studies, the types of drought stress 

can alter the genetic characterization and expression of stay-green.  Phenotyping 

efficiently at peak segregation can also be difficult for stay-green, where disease 

symptoms and heat-stress related phenotypes can distort stay-green measurements.  

Finally, testing both inbreds and testcrosses can make comparing association mapping 

results difficult and is further complicated by using only one tester. 
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 The stay-green traits of maize exhibit low heritability that make genetic and 

association mapping difficult.  However, there appears to be four to ten major QTL 

controlling the trait across four different phenotypes in maize.  It is remarkable that a trait 

so difficult to phenotype and characterize exhibited collocating SNPs between different 

maize populations using different analytical models.   

 Based on the characterization of annotated candidate genes, stay-green appears to 

be regulated by several stress-related gene families.  These gene families are: calcium 

signaling and relay, stress-related transcription factors, cell-wall related genes, 

phytohormones, vesicular transportation, sugar transportation, and secondary stress 

messengers.  Disease related gene families were identified in the NAM RILs and NAM 

testcrosses.  The presence of disease related gene families supports visual evidence of 

disease in 2012 and 2013 in Indiana.  Common rust and gray leaf spot were identified in 

the inbred populations in 2012 and 2013 (Dr. Kiersten Wise, personal communication).  

No information is available about the field and disease conditions in the NAM 

testcrosses, however; SNP associations for disease resistance were identified in 

association mapping results.  Heat stress-related gene families and some maturity related 

genes were also identified and it is reasonable to detect these families based on 

environmental conditions present at the time of the experiment. 

 Another factor influencing interpretation of association mapping in maize is the 

characterization of annotated and non-annotated genes.  For our analyses, only genes with 

annotations were considered as candidates regardless if non-annotated genes were closer 

to the significant SNP in an LD block.  Therefore, while there are many encouraging 

 
 



  142 
 

annotated candidate genes, non-annotated genes could potentially be involved to various 

degrees in regulating stay-green on a genetic and physiological level. 

2.5.2.2 Gene Families Regulating Stay-green Expression 

Stay-green phenotypes appear to be regulated by several gene families.  

Significant SNPs were identified across all phenotypes and QTL provided linkage 

support.  However, there were SNP associations that did not have linkage support but 

contained candidate genes related to stay-green and abiotic stress responses.  Therefore, 

SNPs without any linkage support cannot be immediately discarded as false positives.  It 

is reasonable to conclude that stay-green is regulated in part by calcium-related signaling 

and transduction genes that sense a dynamic change in the plant cell equilibrium 

initiating a cascade response. Cell wall related genes involved in manipulating the 

cellular membrane and structure along with vesicular transport genes.  Additionally, 

sugar transporters and other secondary messengers, general stress transcription factors, 

and phytohormones are actively regulating expression of stay-green. 

 While there are over 250+ genes identified across four stay-green phenotypes in 

maize, some candidates are more interesting than others because of their detection in 

more than one maize population.  An ethylene response element binding factor associated 

with stay-green terminal in the AMES and NAM RIL populations is an interesting 

candidate since it is a phytohormone involved in regulating senescence.  A pectin 

methyltransferase inhibitor was also associated with terminal stay-green in the AMES 

and NAM RIL populations.  While not as compelling of a candidate gene as an ethylene-

related protein, pectin and other cell wall genes are interesting candidates for a phenotype 

such as stay-green terminal.  It is hard to speculate the causative or response nature of 
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this gene.  Stay-green anthesis was the only other phenotype with close enough genomic 

relationships between two populations to speculate the nature of candidate genes as 

discussed previously in this section.   

2.5.2.3 Implications and Future Characterization of Stay-green in Maize 

Identification of stay-green candidate genes ushers in an exciting era for crop 

improvement for challenging environments.  Elite temperate material has a genetic gain 

ceiling to yield and abiotic stress tolerance.  Enhancing elite germplasm with stay-green 

alleles from tropical and temperate donors promises to increase the genetic diversity of 

maize while increasing abiotic stress tolerance, thereby indirectly increasing yield.  

Future work in maize stay-green requires the following steps to successfully enhance 

germplasm sources. 

1. Cloning and functional characterization of major stay-green alleles 

We have identified a few hundred SNP associations corresponding to annotated 

genes for four stay-green phenotypes.  Follow up work to identify and functional 

characterize the major influencers of stay-green, most likely the genes identified in 

multiple populations and/or from linkage populations, will be critical for future success.  

Near-isogenic lines will need to be developed to characterize the candidate genes in 

multiple genetic backgrounds and testcrosses to account for the genetic mode of 

inheritance and agronomic value.  This process will also identify the ideal lines to release 

into breeding programs.  Molecular characterization will be essential to confirming the 

relationship of the candidate genes to the agronomic and physiological response.  

Additionally, this project increases the scientific knowledge of plant adaptation to abiotic 

stresses, specifically utilizing stay-green.  Once this process is complete, donor lines from 

 
 



  144 
 

either the NAM population, AMES panel, or breeding populations can be made available 

per se or in hybrid combination to the private and public sectors to enhance maize 

germplasm for abiotic stress tolerance. 

2. Leveraging genomic information into other cereals 

Maize is a highly invested crop in terms of research support and agronomic value 

globally.  Its relationship to other cereal species provides a powerful platform for 

leveraging scientific knowledge into other cereal genomes.  We examined stay-green 

relationships in other cereal species, specifically sorghum, and report the results in 

chapter three of this dissertation. 

The potential benefits from leveraging genomic knowledge between species are 

limitless.  Genomic information is quickly becoming overwhelming to analyze, but once 

harnessed, lesser invested crop species can be dissected and evaluated using comparative 

genomics.  The ability for crop improvement is greatly enhanced through this process, 

and we provide evidence that this is a reliable and cost-effective method of crop 

improvement in the areas of climate variability and genomics in Chapter 3. 

2.6 Conclusion 

Climate variability is challenging crop improvement efforts and will continue to 

hinder the progress of researchers to develop varieties and hybrids for complex traits.  In 

an effort to further understand maize responses to drought and other abiotic stresses, we 

characterized three diverse populations of maize for stay-green.  Stay-green is the ability 

of annual crop species to delay senescence throughout the grain fill period and is 

associated with an increase in yield and decreased lodging under drought stress.  We 

leveraged multiple association mapping approaches to maximize the discovery of SNP 
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associations to identify potential candidate genes.  We report around 250 candidate genes 

for four stay-green phenotypes and highlight major genomic relationships of regions 

consistently shown to be significant between two or more populations.   

 We propose that the stay-green response in maize is orchestrated by specific gene 

families under drought stress.  These families are: calcium signaling and transduction, 

cell wall structure and function, sugar transportation and other secondary messengers, 

vesicular transportation, general abiotic stress and transcription factors, and 

phytohormone-related genes.  Additionally, we have identified disease-related and heat 

response genes that coincide with an abiotic stress like drought in maize. 

 Further characterization and agronomic evaluation will be needed to better 

understand the potential impacts of stay-green candidate genes in maize.  Once properly 

understood, advantageous alleles and donors can be deployed for germplasm 

enhancement and make a substantial contribution to understanding abiotic stress 

regulation in maize.  
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CHAPTER 3. COMPARATIVE GENOMIC RELATIONSHIPS OF STAY-GREEN IN 
MAIZE AND SORGHUM 

3.1 Abstract 

Substantial investments in comparative genomics and breeding for climate resilient 

crops have been made over the last 15 years.  However, leveraging comparative 

genomics between crops for abiotic stress traits has been underutilized in modern plant 

breeding.  In this study, we report important genomic relationships between maize and 

sorghum for the drought-stress phenotype stay-green.  Stay-green, or delayed plant 

senescence under drought-stress, has been well characterized genetically and 

agronomically in sorghum.  There appears to be four to six major QTL modulating the 

expression of stay-green in sorghum.  We characterized the Nested Association Mapping 

panel (NAM) of maize for stay-green at anthesis and the end of season and uncovered 

substantial genetic variation for the trait.  Upon examining the candidate genes identified 

from association mapping studies in maize, we leveraged the genomic information into 

sorghum.  We identified substantial genomic relationships between maize and sorghum 

stay-green QTL based on reported sorghum QTL positions in the available literature and 

maize genomic information from mapping studies.  Furthermore, we detected 

associations in maize for all four of the major stay-green sorghum QTL, Stg1, Stg2, Stg3, 

and Stg4, that are commercially selected for yield under drought stress conditions.  

Additional characterization is required for both of these crops to fine-tune the   
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genetic, physiological, and agronomic value of breeding for stay-green for challenging 

environments. 

3.2 Introduction 

Advances in high throughput sequencing and an increased focus on genetic 

characterization of alternative crops have led to a higher capacity for comparative 

genomics in crop species.  Comparative genomics has successfully estimated the 

biological similarity or synteny of two or more species with some level of organization.  

Successful organization and comparison of these species leads to a better understanding 

of the evolution, genetic structure, and future applications for crop improvement.  

Additionally, comparative genomics studies provide insight into crop species of less 

economic importance.  Increased marker density and improving online database 

resources will contribute to increasing the power of comparative genomics.  The field 

will continue to evolve as new technologies are developed and researchers continue to 

increase the amount of knowledge in individual crops species that then can be leveraged 

into comparative studies. 

 Since the advent of molecular markers and other genotyping systems, 

comparative chromosomal maps have been constructed for several members of the 

Poaceae family across multiple agronomic traits.  Examples of successful comparative 

genomics studies in grass species are dwarfing, shattering, flowering, and seed color.  

Seed shattering has been successfully characterized in rice, sorghum, wheat, and maize 

(Lin et al., 2012).  Comparative studies have shown rice, sorghum, and maize share 

orthologs of YABBY-like transcription factors for shattering (Lin et al., 2012).  

Furthermore, sorghum grain color is conditioned by differing alleles of Tannin1 which 
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has orthologs in arabidopsis (Wu et al., 2012).  Understanding this relationship through 

comparative mapping presents potential nutritional applications of phenolic compounds 

for human health.  Additionally, comparative maps for maize and sorghum flowering 

times showed 40 QTLs, where 24 of these QTL collocated to previously known positions 

in sorghum and 16 were novel (Mace et al., 2013).  Two-thirds of the QTL in this study 

were syntenous with maize QTL identified from the NAM population.  Finally, RFLP 

markers showed orthologous relationships for plant height between maize and sorghum 

(Multani et al., 2003).  Four different genomic regions were identified as syntenous for 

plant height and represented 63.4% of the phenotypic variation for the trait. 

 Comparative genomics has an exciting future in the understanding of abiotic 

stress tolerance and contains direct implications for breeding programs.  Increased 

climate variability throughout the world is creating new challenges to breed climate 

resilient crops in areas where abiotic stress has previously been unknown.  

 There have been successful contributions to comparative abiotic stress genomics 

in crop species.  Diab et al. (2007) creatively identified several drought related genomic 

regions between durum wheat, barley, and rice.  Combining several crop-specific QTL 

studies and aligning them to consensus maps, they were able to construct synteny 

intervals for several drought related traits.  They showed a relationship between barley 

chromosome 5H and durum wheat chromosomes 5A and 5B for chlorophyll content, 

water soluble carbohydrates, accumulation of water soluble carbohydrates at full turgor, 

and water index.  These relationships were highly conserved.   Additionally, they showed 

unique QTL that were orthologous for one species of durum wheat on chromosome 1A 

and 1B for chlorophyll content, canopy temperature depression, photosynthetic active 
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radiation, transpiration, and osmotic potential.  They also showed unrelated drought traits 

that were collocating to the same location in two species.  Specifically, they showed this 

for durum wheat 1B and rice 10 for transpiration and root penetration index/root 

thickness.  Similarly, they showed collocated QTL for durum 2B and barley 2H for 

quantum yield, carbon isotope discrimination, water soluble carbohydrates, osmotic 

potential, and accumulation of water soluble content at full turgor (Diab et al., 2007). 

 Early comparisons between maize and sorghum revealed a high amount of 

synteny between the two species.  These two species diverged around 12 million years 

ago.  Modern maize is a functionally acting diploid consisting of 10 chromosomes that all 

pair normally.  However, substantial evidence shows that maize descended as an ancient 

polyploid in tetraploidy form.  Around the same time as the divergence from sorghum, 

maize experienced a form of allopolyploidy resulting in a tetraploid, thus creating two 

subgenomes of maize.  Sorghum is closely aligned with both subgenomes of maize.  

Confirming these relationships between sorghum and maize is relatively simple to test as 

there should be two genomic positions in maize for each locus in sorghum.   

 Advances in comparative genomics of maize and sorghum and improving 

knowledge of abiotic stresses are allowing scientists to increase the knowledge and 

breeding capacity for crop improvement.  In this study, we examine the genomic 

relationships between maize and sorghum for stay-green.  We hypothesize that there will 

be several genomic relationships for QTL and SNP associations between the two species 

based on the knowledge we have of existing synteny and comparative biology for stay-

green from the NAM and reported sorghum literature.  
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3.3 Materials and Methods 

Marker data for sequence information, synteny/comparative biology, genomic or 

linkage position, and any other pertinent information were found at the following 

databases depending on the species being analyzed.   

Marker Information 

Maize - www.maizegdb.org 

Maize - www.panzea.org 

All species - www.wheat.pw.usda.gov/GG2/index.shtml 

All species - http://www.gramene.org  

Sequence Information  

Maize - www.maizegdb.org 

Sorghum - www.phytozome.net/sorghum 

Rice – www.rice.plantbiology.msu.edu/index.shtml 

All species - www.ncbi.nlm.nih.gov 

All species - http://www.gramene.org  

Synteny/Comparative Biology 

http://www.gramene.org 

BLAST and Sequence Comparisons  

www.phytozome.net/sorghum 

 Candidate genes from maize association mapping studies were BLASTed into the 

sorghum genome.  Only significant hits into protein containing regions of sorghum were 

considered potential comparative associations of stay-green between the two species.  

These genomic regions were compared to the stay-green sorghum literature. 

 
 

http://www.maizegdb.org/
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http://www.wheat.pw.usda.gov/GG2/index.shtml
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http://www.gramene.org/
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3.4 Results 

3.4.1 General Sorghum Stay-green Genetic Information 

Substantial genetic information is available in the scientific literature cataloging 

the extent of stay-green characterization in sorghum.  For comparison analyses, we 

compiled a comprehensive review of the literature for sorghum stay-green (Table 3-1, 3-

2).  Flanking marker information, genetic distance, QTL LOD and R2, and published 

QTL name (published symbol) were leveraged in predicting the physical positions on the 

sorghum map.  Sorghum information was provided courtesy of Drs. Emma Mace, David 

Jordan, Andrew Borrell, and Barbara George-Jaeggli (Mace et al., Unpublished).  
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Table 3-1 Summary of sorghum studies mapping genes for stay-green. 

 

Reference Population 
pedigree 

Population 
size 

No. loci 
mapped 

No. 
LGs 

Map 
length 

Marker 
density 

Mapping 
Functionᶧ Analysis methodᶲ 

Crasta et al. 1999 B35/Tx430 96 128 14 1602  K CIM 
Haussmann et al. 2002 IS9830/E36-1 226 128 10 1291.2 10.0875 H CIM 
Haussmann et al. 2002 N13/E36-1 226 146 12 1438.1 9.85 H CIM 

Kebede et al. 2001 SC56/Tx7000 125 144 10 1355 9.40972 K CIM 
Srinivas et al. 2009 296B/IS18551 168 152 15 1098.7 7.22829 K SMA, IM, MQM 
Subudhi et al. 2000 B35/Tx7000 98 232 10 - - H SIM, CIM 

Tao et al. 2000 QL39/QL41 160 311 10 ~2750 8.84244 U SMA, IM 
Xu et al. 2000 B35/Tx7000 98 145 10 837 5.77241 H SIM 

ᶧ Mapping Function: K (Kosambi), H (Haldene), and U (Unknown) 
ᶲAnalysis Method: CIM (Composite Interval Mapping), IM (Interval Mapping), SMA (Single Marker Analysis), MQM (Multiple QTL Mapping), and SIM 
(Simple Interval Mapping).   
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Table 3-2 Reported stay-green QTL in sorghum.  Genetic positions, LODS, and R^2 are reported from the literature.  Physical 
positions are predicted from linkage data and markers from literature. 

  Genetic Positions Physical Positions         
LG CI Start CI End CI Start CI End LOD R^2 Publication Published symbol 

SBI-01 

18.432 21.568 7,305,943 7,498,895 12 23 Hausmann et al 2002 %GL15 #2 
17.160 22.840 6,957,503 7,789,286 6.2 12.7 Hausmann et al 2002 %GL30 #4 
15.655 24.345 6,601,819 8,599,598 4 8.3 Hausmann et al 2002 %GL45 #3 
34.209 40.791 13,340,116 16,835,360 5.8 25.8 Crasta et al 1999 SGG 
45.565 59.435 20,023,900 46,286,695 2.6 5.2 Hausmann et al 2002 %GL30 #1 
46.282 58.718 20,498,918 45,698,158 2.9 5.8 Hausmann et al 2002 %GL45 #2 
61.122 68.878 47,444,531 51,453,672 4.8 9.3 Hausmann et al 2002 %GL30 #2 
66.112 73.888 50,338,344 52,612,025 3.08 13.1 Tao et al 2000 not named 
93.389 101.611 55,163,162 57,460,960 3.97 11.8 Srinivas et al 2009 QGlaa-sbi01 
91.924 103.076 54,713,042 57,506,577 3.31 8.7 Srinivas et al 2009 QGlam-sbi01-2 
125.944 139.056 61,293,458 66,636,190 2.69 7.4 Srinivas et al 2009 QGlam-sbi01-1 
143.684 155.316 67,073,183 68,342,385 3.1 6.2 Hausmann et al 2002 %GL15 #1 
143.388 155.612 67,038,796 68,386,222 3 5.9 Hausmann et al 2002 %GL30 #1 
143.388 155.612 67,038,796 68,386,222 3 5.9 Hausmann et al 2002 %GL45 #1 

SBI-02 

70.414 83.586 14,203,578 56,181,567 2.66 9.9 Kebede et al 2001 Stg D 
114.770 125.230 60,089,659 61,594,335 2.86 15.9 Xu et al 2000 Chl3 
121.487 128.513 60,438,145 61,675,900 3.71 14.5 Tao et al 2000 not named 
123.598 133.102 61,412,988 62,121,125 3.49 17.5 Subudhi et al 2000 stg3 
121.643 135.057 60,450,213 62,383,481 2.8 12.4 Subudhi et al 2000 stg3 
123.398 133.602 61,324,258 62,193,365 3.34 16.3 Xu et al 2000 Stg3 
124.078 139.622 61,572,631 63,435,887 1.9 10.7 Subudhi et al 2000 stg3 
130.640 145.360 61,754,092 65,036,819 2.5 4.9 Hausmann et al 2002 %GL15 #3 
131.782 144.218 61,923,733 64,284,484 3 5.8 Hausmann et al 2002 %GL30 #5 
134.204 141.796 62,261,965 63,634,080 4.9 9.5 Hausmann et al 2002 %GL45 #4 
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Table 3-2 Continued 

SBI-03 

31.671 38.329 7,570,337 9,835,674 3.88 15.3 Tao et al 2000 not named 
71.108 83.892 55,204,764 56,500,632 2.63 10.2 Kebede et al 2001 Stg A 
79.060 90.940 55,814,195 58,046,499 2.65 14 Subudhi et al 2000 stg2 
82.047 97.953 56,228,544 58,305,138 2.65 6.1 Srinivas et al 2009 QGlaa-sbi03 
83.532 96.468 56,443,470 58,281,040 2.6 5.2 Srinivas et al 2009 QPglam-sbi03 
85.821 94.179 56,775,084 58,252,295 3.66 19.9 Subudhi et al 2000 stg2 
87.152 92.848 56,993,522 58,240,511 5.52 29.2 Subudhi et al 2000 stg2 
86.320 93.680 56,856,140 58,252,295 5.44 22.6 Subudhi et al 2000 stg2 
92.147 98.853 58,234,385 58,305,138 5.6 24.8 Xu et al 2000 Chl2 
92.755 98.245 58,234,385 58,305,138 6.23 30.3 Xu et al 2000 Stg2 
92.882 98.818 58,240,511 58,305,138 6.6 28.6 Crasta et al 1999 SGA 
92.060 104.940 58,234,385 59,052,530 2.8 5.6 Hausmann et al 2002 %GL45 #5 
120.570 134.430 62,207,313 67,212,079 2.69 12 Xu et al 2000 Chl1 
123.257 131.743 62,841,197 66,318,409 4.59 19.6 Xu et al 2000 Stg1 
124.600 135.400 63,241,387 67,694,738 3.18 15.4 Subudhi et al 2000 Stg1 
125.405 134.595 63,482,399 67,351,512 3.61 18.1 Subudhi et al 2000 Stg1 
131.129 133.871 66,129,723 66,758,123 14.9 26.3 Hausmann et al 2002 %GL15 #1 
129.592 135.408 65,303,733 67,694,738 6.5 12.4 Hausmann et al 2002 %GL30 #2 

SBI-04 

0.000 12.031 83,230 1,751,452 2.52 6.9 Srinivas et al 2009 QGlaa-sbi04 
73.622 80.378 48,579,647 50,150,591 4.66 19.3 Kebede et al 2001 s C 
85.134 94.866 52,570,786 53,840,245 3.63 13.4 Kebede et al 2001 Stg C.1 
84.088 95.912 51,761,082 55,097,491 3.1 6.1 Hausmann et al 2002 %GL15 #2 
83.443 96.557 51,175,809 55,150,649 2.8 5.5 Hausmann et al 2002 %GL30 #3 
82.929 97.071 50,866,536 55,194,144 2.6 5.1 Hausmann et al 2002 %GL45 #4 
85.682 94.318 52,570,786 53,138,114 4.11 15.1 Kebede et al 2001 Stg C.2 
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Table 3-2 Continued 

SBI-05 

54.181 68.819 9,942,964 47,138,942 2.3 11.6 Crasta et al 1999 SGJ 
54.508 69.492 10,116,867 48,435,793 2.23 11.1 Xu et al 2000 Stg4 
55.153 72.847 10,407,015 52,892,020 1.81 9.4 Subudhi et al 2000 stg4 
62.566 71.034 13,115,727 52,038,094 4.21 15.4 Kebede et al 2001 Stg J 
77.244 86.756 57,411,681 57,420,675 3.42 10.2 Srinivas et al 2009 QGlaa-sbi05 

SBI-06 
38.781 50.219 8,015,809 41,422,674 2.86 11.4 Kebede et al 2001 Stg F 
41.913 47.087 18,873,510 39,257,769 6.36 25.2 Kebede et al 2001 Prf F 
76.650 91.350 47,853,564 51,863,938 2.85 6.6 Srinivas et al 2009 QGlam-sbi06 

SBI-07 
 

17.885 30.115 1,635,890 2,774,392 2.22 13.6 Subudhi et al 2000 not named 
57.726 63.274 4,559,583 7,617,971 6.8 13 Hausmann et al 2002 %GL15 #4 
57.942 63.058 4,584,864 7,547,514 7.5 14.1 Hausmann et al 2002 %GL30 #6 
57.978 63.022 4,587,055 7,547,514 7.6 14.3 Hausmann et al 2002 %GL45 #7 
62.485 72.515 7,435,638 43,742,113 3.53 13 Kebede et al 2001 Stg E 
62.065 75.935 7,347,284 53,641,687 2.6 5.2 Hausmann et al 2002 %GL15 #3 
121.560 134.440 61,205,894 63,776,848 2.8 5.6 Hausmann et al 2002 %GL15 #5 
122.618 133.382 61,393,105 63,776,848 3.4 6.7 Hausmann et al 2002 %GL30 #7 
121.782 134.218 61,243,343 63,776,848 2.9 5.8 Hausmann et al 2002 %GL45 #8 

SBI-08 

51.888 64.112 4,755,254 7,734,326 2.6 5.9 Hausmann et al 2002 %GL30 #6 
51.990 64.010 4,770,017 7,700,210 2.6 6 Hausmann et al 2002 %GL45 #6 
97.196 110.804 52,218,412 54,277,680 2.6 5.3 Hausmann et al 2002 %GL30 #7 
98.536 109.464 52,400,642 54,057,570 3.3 6.6 Hausmann et al 2002 %GL45 #7 

SBI-09 
43.600 56.537 3,032,531 5,260,505 2.9 7.5 Srinivas et al 2009 QPglam-sbi09 
64.611 77.005 7,330,224 46,593,685 2.9 13.7 Crasta et al 1999 SGI.2 
66.820 76.166 7,894,112 45,357,691 2.46 10.9 Tao et al 2000 not named 
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Table 3-2 Continued 

SBI-10 

21.475 30.925 1,280,253 2,902,322 3.65 13.8 Kebede et al 2001 Stg B 
41.452 50.548 7,736,603 8,963,984 2.76 11.2 Tao et al 2000 not named 
58.848 69.152 44,984,327 51,757,522 3.5 7 Hausmann et al 2002 %GL15 #4 
57.888 70.112 15,445,079 52,026,416 2.9 5.9 Hausmann et al 2002 %GL30 #4 
84.943 98.057 56,038,744 57,800,351 2.7 5.5 Hausmann et al 2002 %GL30 #8 
84.565 98.435 55,994,289 57,849,024 2.6 5.2 Hausmann et al 2002 %GL45 #9 
92.036 102.964 56,952,356 58,549,190 3.3 6.6 Hausmann et al 2002 %GL15 #5 
91.388 103.612 56,924,176 60,140,101 2.9 5.9 Hausmann et al 2002 %GL30 #5 
91.49 103.51 56,924,176 59,861,785 3 6 Hausmann et al 2002 %GL45 #5 
98.604 110.396 57,880,377 60,382,370 3 14.4 Crasta et al 1999 SGB 
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Stay-green QTL from each of these studies represented a specific proportion of 

the sorghum genome.   When all QTL are included in the dataset regardless of size, 

45.86% of the genome is represented by sorghum stay-green QTL.  To improve 

precision, excessively large linkage QTL (>20mb) were removed from consideration and 

the remaining stay-green QTL represented 8.8% of the sorghum genome (Table 3-3).  

Removal of excessively large QTL (>20mb) is justified by the lack of marker coverage in 

earlier mapping studies as well as small population sizes used in field studies, which 

increase interval size (Table 3-3). 

Table 3-3 Sorghum stay-green QTL expressed as a percentage of the entire genome.  To 
improve precision, QTL that contained predicted genomic distances greater than 20mb 
were removed in the Major QTL and all QTL were included in the combined row. 

 Stay-green Genome 
Representation (bp) 

Genome 
Coverage 

Major QTL (<20mb) 64,569,979 8.89% 
All Reported QTL 333,239,660 45.86% 

Sb Genome Size (2.1) 726,616,606  
   

3.4.2 Maize and Sorghum Stay-green Genomic Comparisons 

The maize NAM RILs and testcrosses indicated several significant QTL for stay-

green.  The AMES dataset (reported in Chapter 2) did not contain any significant SNPs 

from association mapping and was used as a validation set for confirming and supporting 

associations identified in the NAM populations.  

 For comparison analyses, we used maize stay-green anthesis (NAM RILs) and 

terminal (NAM RILs and NAM testcrosses) for evaluation because these phenotypes are 

commonly assessed in mapping stay-green QTL in sorghum.  The maize stay-green 

phenotypes difference and ratio, which were mapped in the NAM RILs and AMES, were 

not compared to sorghum as there is no reported phenotype for comparison in sorghum.  
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In the following tables, we report the genomic relationships for three maize phenotypes 

and the associated sorghum genomic relationships (Table 3-4: NAM RILs Anthesis. 

Table 3-5: NAM RILs Terminal. Table 3-6: NAM Testcrosses Terminal). 
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Table 3-4 Summary of Maize candidate gene associations from the NAM RILs anthesis phenotype compared to reported sorghum 
stay-green QTL.  

Maize 
LG 

SNP 
Position RMIP Maize ID Description Sb 

LG 
Sb Genomic 

Position Publication Published 
symbol 

2 185,691,621 47 GRMZM2G110107 

AT1G68130.1(AtIDD14,
IDD14): 

indeterminate(ID)-
domain 14 

2 61368078-
61372487 

Xu et al 
2000 Chl3 

2 185,691,621 47 GRMZM2G110107 

AT1G68130.1(AtIDD14,
IDD14): 

indeterminate(ID)-
domain 14 

2 61368078-
61372487 

Tao et al 
2000 not named 

2 185,691,621 47 GRMZM2G110107 

AT1G68130.1(AtIDD14,
IDD14): 

indeterminate(ID)-
domain 14 

2 61368078-
61372487 

Subudhi et 
al 2000 stg3 

2 185,691,621 47 GRMZM2G110107 

AT1G68130.1(AtIDD14,
IDD14): 

indeterminate(ID)-
domain 14 

2 61368078-
61372487 

Xu et al 
2000 Stg3 
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Table 3-4 Continued 

2 185,691,621 47 GRMZM2G110107 

AT1G68130.1(AtIDD14,I
DD14): 

indeterminate(ID)-
domain 14 

7 57388305-
57391408 

No 
Relationship  

2 186,183,071 36 GRMZM2G002131 
AT4G36990.1(AT-

HSFB1,ATHSF4,HSF4,H
SFB1): heat shock factor4 

2 61754036-
61758207 

Subudhi et 
al 2000 stg3 

2 186,183,071 36 GRMZM2G002131 
AT4G36990.1(AT-

HSFB1,ATHSF4,HSF4,H
SFB1): heat shock factor4 

2 61754036-
61758207 

Xu et al 
2000 Stg3 

2 186,183,071 36 GRMZM2G002131 
AT4G36990.1(AT-

HSFB1,ATHSF4,HSF4,H
SFB1): heat shock factor4 

2 61754036-
61758207 

Hausmann 
et al 2002 %GL15 #3 

5 5,005,874 26 AC191251.3_FG005 
AT3G20800.1: Cell 

differentiation, Rcd1-like 
protein 

1 5077035-
5081214 

No 
Relationship  

1 58,475,918 21 GRMZM2G075502 

AT3G06130.1: Heavy 
metal 

transport/detoxification 
superfamily protein 

1 59192242-
59193491 

No 
Relationship  

1 183,804,764 18 GRMZM2G113726 
AT3G13340.1: 

Transducin/WD40 repeat-
like superfamily protein 

7 63521275-
63524843 

No 
Relationship  
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Table 3-4 Continued 

1 183,804,764 18 GRMZM2G113726 
AT3G13340.1: 

Transducin/WD40 repeat-
like superfamily protein 

4 59688441-
59691245 

No 
Relationship  

1 183,804,764 18 GRMZM2G113840 
AT4G39170.1: Sec14p-
like phosphatidylinositol 
transfer family protein 

7 60976744-
60981646 

No 
Relationship  

1 183,804,764 18 GRMZM2G113840 
AT4G39170.1: Sec14p-
like phosphatidylinositol 
transfer family protein 

2 63166278-
63168330 

Subudhi et 
al 2000 stg3 

1 183,804,764 18 GRMZM2G113840 
AT4G39170.1: Sec14p-
like phosphatidylinositol 
transfer family protein 

2 63166278-
63168330 

Hausmann 
et al 2002 %GL15 #3 

1 183,804,764 18 GRMZM2G113840 
AT4G39170.1: Sec14p-
like phosphatidylinositol 
transfer family protein 

2 63166278-
63168330 

Hausmann 
et al 2002 %GL30 #5 

1 183,804,764 18 GRMZM2G113840 AT4G39170.1: Sec14p-
like phosphatidylinositol  2 63166278-

63168330 
Hausmann 
et al 2002 %GL45 #4 

5 181,386,025 18 GRMZM2G029583 

AT4G24820.1: 26S 
proteasome, regulatory 

subunit Rpn7;Proteasome 
component (PCI) domain 

4 54946225-
54949288 

Hausmann 
et al 2002 %GL15 #2 

5 181,386,025 18 GRMZM2G029583 

AT4G24820.1: 26S 
proteasome, regulatory 

subunit Rpn7;Proteasome 
component (PCI) domain 

4 54946225-
54949288 

Hausmann 
et al 2002 %GL30 #3 

5 181,386,025 18 GRMZM2G029583 

AT4G24820.1: 26S 
proteasome, regulatory 

subunit Rpn7;Proteasome 
component (PCI) domain 

4 54946225-
54949288 

Hausmann 
et al 2002 %GL45 #4 
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Table 3-4 Continued 

5 181,386,025 18 GRMZM2G029583 

AT4G24820.1: 26S 
proteasome, regulatory 

subunit Rpn7;Proteasome 
component (PCI) domain 

4 54946225-
54949288 

Kebede et al 
2001 Stg C.2 

5 181,386,025 18 GRMZM2G029583 

AT4G24820.1: 26S 
proteasome, regulatory 

subunit Rpn7;Proteasome 
component (PCI) domain 

4 54946225-
54949288 

Srinivas et 
al 2009 

QGlam-
sbi06 

5 181,386,025 18 GRMZM2G031496 
AT5G50960.1(ATNBP35

,NBP35): nucleotide 
binding protein 35 

4 54963829-
54967694 

Hausmann 
et al 2002 %GL15 #2 

5 181,386,025 18 GRMZM2G031496 
AT5G50960.1(ATNBP35

,NBP35): nucleotide 
binding protein 35 

4 54963829-
54967694 

Hausmann 
et al 2002 %GL30 #3 

5 181,386,025 18 GRMZM2G031496 
AT5G50960.1(ATNBP35

,NBP35): nucleotide 
binding protein 35 

4 54963829-
54967694 

Hausmann 
et al 2002 %GL45 #4 

4 230,895,626 16 GRMZM2G080056 AT1G14420.1(AT59): 
Pectate lyase family  4 7791363-

7793358 
No 

Relationship  

4 230,895,626 16 GRMZM2G080056 AT1G14420.1(AT59): 
Pectate lyase family  10 51161633-

51162707 
Hausmann 
et al 2002 %GL15 #4 

4 230,895,626 16 GRMZM2G080056 
AT1G14420.1(AT59): 

Pectate lyase family 
protein 

10 51161633-
51162707 

Hausmann 
et al 2002 %GL30 #4 

4 230,895,626 16 GRMZM2G080056 
AT1G14420.1(AT59): 

Pectate lyase family 
protein 

1 22320239-
22321787 

Hausmann 
et al 2002 %GL30 #1 
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Table 3-4 Continued 

4 230,895,626 16 GRMZM2G080056 
AT1G14420.1(AT59): 

Pectate lyase family 
protein 

1 22320239-
22321787 

Hausmann 
et al 2002 %GL45 #2 

4 230,895,626 16 GRMZM2G080056 
AT1G14420.1(AT59): 

Pectate lyase family 
protein 

6 2054207-
2055548 

No 
Relationship  

9 18,521,596 16 GRMZM5G800535 PFAM ID: PF05678: VQ 
motif 10 3446598-

3447010 
No 

Relationship  

10 143,670,200 15 GRMZM2G180471 
AT1G34750.1: Protein 
phosphatase 2C family 

protein 
6 58068926-

58072700 
No 

Relationship  

10 143,670,200 15 GRMZM2G480282 

LOC_Os06g30760.1: 
transposon protein, 
putative, CACTA, 
En/Spm sub-class, 

expressed 

7 37433156-
37433213 

Kebede et al 
2001 Stg E 

10 143,670,200 15 GRMZM2G480282 

LOC_Os06g30760.1: 
transposon protein, 
putative, CACTA, 
En/Spm sub-class, 

expressed 

7 37433156-
37433213 

Hausmann 
et al 2002 %GL15 #3 

5 4,944,136 14 GRMZM2G089361 

AT4G18390.1(TCP2): 
TEOSINTE 

BRANCHED 1, 
cycloidea and PCF 

transcription factor 2 

1 5025646-
5027065 

No 
Relationship  
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Table 3-4 Continued 

5 4,944,136 14 GRMZM2G089361 

AT4G18390.1(TCP2): 
TEOSINTE 

BRANCHED 1, 
cycloidea and PCF 

transcription factor 2 

2 3348415-
3348415 

No 
Relationship  

1 287,270,801 13 GRMZM2G342856 
AT2G32030.1: Acyl-CoA 
N-acyltransferases (NAT) 

superfamily protein 
1 4450852-

4456632 
No 

Relationship  

4 4,992,844 13 GRMZM5G877647 AT2G06255.1(ELF4-L3): 
ELF4-like 3 5 58229716-

58230888 
No 

Relationship  

4 4,992,844 13 GRMZM2G058340 
AT3G49310.1: Major 
facilitator superfamily 

protein 
4 83908-

84500 
Srinivas et 

al 2009 
QGlaa-
sbi04 

4 179,091,367 11 GRMZM2G107414 

LOC_Os02g52300.1: 
CPuORF38 - conserved 

peptide uORF-containing 
transcript, expressed 

4 63819968-
63822410 

No 
Relationship  

5 122,046,355 11 AC186500.3_FG001 
AT2G42490.1: Copper 
amine oxidase family 

protein 
6 49542037-

49543118 
Srinivas et 

al 2009 
QGlam-

sbi06 

5 175,865,828 11 GRMZM2G072146 
AT4G39910.1(ATUBP3,
UBP3): ubiquitin-specific 

protease 3 
4 53375804-

53381020 
No 

Relationship  

5 175,865,828 11 GRMZM2G072146 
AT4G39910.1(ATUBP3,
UBP3): ubiquitin-specific 

protease 3 
6 48123031-

48129764 
Srinivas et 

al 2009 
QGlam-

sbi06 

5 175,865,828 11 GRMZM2G072146 
AT4G39910.1(ATUBP3,
UBP3): ubiquitin-specific 

protease 3 
1 62205339-

62208784 
Srinivas et 

al 2009 
QGlam-
sbi01-1 
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Table 3-4 Continued 

3 11,032,448 10 GRMZM2G074466 

AT1G49040.1(SCD1): 
stomatal cytokinesis 

defective / SCD1 protein 
(SCD1) 

3 52030777-
52038166 

No 
Relationship  

3 11,032,448 10 GRMZM2G074466 
AT1G49040.1(SCD1): 

stomatal cytokinesis 
defective / SCD1 protein  

8 4558998-
4559320 

No 
Relationship  

3 11,032,448 10 GRMZM5G849600 
AT5G56960.1: basic 

helix-loop-helix (bHLH) 
DNA-binding family  

3 52013142-
52016767 

No 
Relationship  

4 239,498,890 10 GRMZM2G169871 
AT3G54170.1(ATFIP37,

FIP37): FKBP12 
interacting protein 37 

4 2677015-
2684918 

No 
Relationship  

4 239,498,890 10 GRMZM2G169998 

AT5G58130.1(ROS3): 
RNA-binding 

(RRM/RBD/RNP motifs) 
family protein 

4 2936328-
2939154 

No 
Relationship  

4 239,498,890 10 GRMZM2G169927 
AT4G31120.1(ATPRMT
5,PRMT5,SKB1): SHK1 

binding protein 1 
4 2950192-

2960459 
No 

Relationship  

3 22,568,001 9 GRMZM2G337815 
AT4G34555.1: 

Ribosomal protein S25 
family protein 

3 64941263-
64941906 

Xu et al 
2000 Chl1 

3 22,568,001 9 GRMZM2G337815 
AT4G34555.1: 

Ribosomal protein S25 
family protein 

3 64941263-
64941906 

Xu et al 
2000 Stg1 

3 22,568,001 9 GRMZM2G337815 
AT4G34555.1: 

Ribosomal protein S25 
family protein 

3 64941263-
64941906 

Subudhi et 
al 2000 Stg1 
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Table 3-4 Continued 

3 22,568,001 9 GRMZM2G337815 
AT4G34555.1: 

Ribosomal protein S25 
family protein 

3 64941263-
64941906 

Hausmann 
et al 2002 %GL15 #1 

3 22,568,001 9 GRMZM2G337815 
AT4G34555.1: 

Ribosomal protein S25 
family protein 

3 64941263-
64941906 

Hausmann 
et al 2002 %GL30 #2 

3 22,568,001 9 GRMZM2G032107 LOC_Os01g04010.1: 
expressed protein 3 7460254-

7461414 
No 

Relationship  

6 34,893,105 9 GRMZM2G700901 

PFAM ID: PF06813: 
Nodulin-like , PF00579: 
tRNA synthetases class I 

(W and Y) 

3 62492603-
62493321 

Xu et al 
2000 Chl1 

6 34,893,105 9 GRMZM2G305856 

AT3G46130.1(ATMYB4
8,ATMYB48-
1,ATMYB48-

2,ATMYB48-3,MYB48): 
myb domain protein 48 

9 1546626-
1548493 

No 
Relationship  

8 13,790,821 9 GRMZM2G477503 
AT5G01220.1(SQD2): 

sulfoquinovosyldiacylgly
cerol 2 

3 6617797-
6621899 

No 
Relationship  

8 13,790,821 9 GRMZM2G477503 
AT5G01220.1(SQD2): 

sulfoquinovosyldiacylgly
cerol 2 

2 138869-
141647 

No 
Relationship  

8 13,790,821 9 GRMZM2G176568 
AT5G58900.1: 

Homeodomain-like 
transcriptional regulator 

3 6605257-
6606239 

No 
Relationship  
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Table 3-4 Continued 

8 13,790,821 9 GRMZM2G079458 

AT2G38090.1: 
Duplicated 

homeodomain-like 
superfamily protein 

3 6589536-
6592429 

No 
Relationship  

9 18,334,400 9 GRMZM5G838414 
AT1G53290.1: 

Galactosyltransferase 
family protein 

10 3429104-
3434799 

No 
Relationship  

9 18,334,400 9 AC231745.1_FG003 

AT5G45910.1: GDSL-
like 

Lipase/Acylhydrolase 
superfamily protein 

10 3436008-
3438395 

No 
Relationship  

1 53,630,920 8 GRMZM2G011598 
AT3G04070.1(anac047,N

AC047): NAC domain 
containing protein 47 

3 9665554-
9666868 

Tao et al 
2000 not named 

1 53,630,920 8 GRMZM2G011598 
AT3G04070.1(anac047,N

AC047): NAC domain 
containing protein 47 

1 60188250-
60190515 

No 
Relationship  

1 53,630,920 8 GRMZM2G011598 
AT3G04070.1(anac047,N

AC047): NAC domain 
containing protein 47 

2 73839404-
73840631 

No 
Relationship  

1 53,630,920 8 GRMZM2G020940 

AT2G39050.1: 
hydroxyproline-rich 
glycoprotein family 

protein 

1 60201668-
60203540 

No 
Relationship  

1 53,630,920 8 GRMZM2G020940 

AT2G39050.1: 
hydroxyproline-rich 
glycoprotein family 

protein 

2 73832201-
73840631 

No 
Relationship  
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Table 3-4 Continued 

1 296,649,227 8 GRMZM2G167428 
LOC_Os03g62170.1: 

cyclase/dehydrase family 
protein, expressed 

1 1713107-
1717885 

No 
Relationship  

5 119,472,884 8 GRMZM2G052654 AT2G02880.1: mucin-
related 1 57398576-

57401785 
Srinivas et 

al 2009 
QGlaa-
sbi01 

5 119,472,884 8 GRMZM2G052654 AT2G02880.1: mucin-
related 1 57398576-

57401785 
Srinivas et 

al 2009 
QGlam-
sbi01-2 

5 204,317,772 8 GRMZM2G012213 

AT4G16835.1: 
Tetratricopeptide repeat 
(TPR)-like superfamily 

protein 

4 59508301-
59510417 

No 
Relationship  

5 204,317,772 8 GRMZM2G012044 
AT1G55850.1(ATCSLE1

,CSLE1): cellulose 
synthase like E1 

4 59504139-
59507781 

No 
Relationship  

5 204,317,772 8 GRMZM2G011951 
AT5G55850.1(NOI): 

RPM1-interacting protein 
4 (RIN4) family protein 

4 59502383-
59504001 

No 
Relationship  

7 2,360,774 8 GRMZM2G128693 
AT3G50950.1(ZAR1): 
HOPZ-ACTIVATED 

RESISTANCE 1 
2 1126432-

1127885 
No 

Relationship  

1 187,592,684 7 GRMZM2G132763 AT1G17750.1(AtPEPR2,
PEPR2): PEP1 receptor 2 7 62882190-

62885649 
Hausmann 
et al 2002 %GL15 #5 

1 187,592,684 7 GRMZM2G132763 AT1G17750.1(AtPEPR2,
PEPR2): PEP1 receptor 2 7 62882190-

62885649 
Hausmann 
et al 2002 %GL30 #7 

1 187,592,684 7 GRMZM2G132763 AT1G17750.1(AtPEPR2,
PEPR2): PEP1 receptor 2 7 62882190-

62885649 
Hausmann 
et al 2002 %GL45 #8 

1 285,904,918 7 GRMZM2G134917 AT5G22060.1(ATJ2,J2): 
DNAJ homologue 2 1 4880000-

4883216 
No 

Relationship  
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Table 3-4 Continued 

1 289,518,674 7 GRMZM2G101682 

LOC_Os03g58850.1: 
uncharacterized PE-
PGRS family protein 
PE_PGRS3 precursor, 

putative, expressed 

1 3758486-
3759280 

No 
Relationship  

2 233,674,088 7 GRMZM2G170934 AT3G22440.1: 
FRIGIDA-like protein 2 4646463-

4653632 
No 

Relationship  

2 233,674,088 7 GRMZM2G469469 
AT2G32040.1: Major 
facilitator superfamily 

protein 
2 4624645-

4630564 
No 

Relationship  

2 233,674,088 7 GRMZM2G469469 
AT2G32040.1: Major 
facilitator superfamily 

protein 
1 4417412-

4420996 
No 

Relationship  

5 182,133,946 7 GRMZM2G137399 

AT1G28580.1: GDSL-
like 

Lipase/Acylhydrolase 
superfamily protein 

4 55110278-
55115720 

Hausmann 
et al 2002 %GL30 #3 

5 182,133,946 7 GRMZM2G137409 

AT5G60600.1(CLB4,CS
B3,GCPE,HDS,ISPG): 4-
hydroxy-3-methylbut-2-

enyl diphosphate synthase 

4 55097586-
55104013 

Hausmann 
et al 2002 %GL45 #4 

7 172,488,742 7 GRMZM2G113863 

AT5G27690.1: Heavy 
metal 

transport/detoxification 
superfamily protein 

2 68032888-
68034345 

No 
Relationship  

1 297,962,777 6 GRMZM2G001661 

AT5G16490.1(RIC4): 
ROP-interactive CRIB 

motif-containing protein 
4 

1 1274640-
1276680 

No 
Relationship  
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Table 3-4 Continued 

1 297,962,777 6 AC207546.3_FG004 
AT3G08947.1: ARM 

repeat superfamily 
protein 

1 1274640-
1276680 

No 
Relationship  

3 17,433,280 6 GRMZM2G451327 
AT2G39550.1(ATGGT-

IB,GGB,PGGT-I): 
Prenyltransferase family  

3 6139305-
6153146 

No 
Relationship  

3 17,433,280 6 GRMZM2G151087 
AT5G10480.3(PAS2,PEP

): Protein-tyrosine 
phosphatase-like, PTPLA 

3 6139305-
6153146 

No 
Relationship  

3 209,021,937 6 GRMZM2G164674 AT5G19580.1: glyoxal 
oxidase-related protein 3 59356868-

59359229 
No 

Relationship  

3 209,021,937 6 GRMZM2G164674 AT5G19580.1: glyoxal 
oxidase-related protein 9 57225717-

57227462 
No 

Relationship  

5 204,928,300 6 GRMZM5G824439 
PFAM ID: PF11573: 

Mediator complex 
subunit 23 

4 58916633-
58925419 

No 
Relationship  

8 161,388,771 6 GRMZM2G423456 AT1G27320.1(AHK3,HK
3): histidine kinase 3 3 68028418-

68034345 
No 

Relationship  

9 19,163,887 6 GRMZM2G443985 AT4G26270.1(PFK3): 
phosphofructokinase 3 10 3056731-

3077162 
No 

Relationship  

9 20,459,109 6 GRMZM2G173693 AT5G37370.1(ATSRL1): 
PRP38 family protein 10 2608009-

2611580 
Kebede et al 

2001 Stg B 

9 20,459,109 6 GRMZM2G173641 
AT5G11380.1(DXPS3): 
1-deoxy-D-xylulose 5-
phosphate synthase 3 

10 2574863-
2579870 

Kebede et al 
2001 Stg B 

9 20,459,109 6 GRMZM2G173628 AT5G23310.1(FSD3): Fe 
superoxide dismutase 3 10 2581328-

2583532 
Kebede et al 

2001 Stg B 

9 140,431,872 6 GRMZM2G131539 AT2G29560.1(ENOC): 
cytosolic enolase 1 60977443-

60981646 
No 

Relationship  
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Table 3-4 Continued 

1 285,941,597 5 GRMZM2G434533 

AT3G11780.1: MD-2-
related lipid recognition 

domain-containing 
protein / ML domain-

containing protein 

8 52424514-
52426469 

No 
Relationship  

1 285,941,597 5 GRMZM2G434533 

AT3G11780.1: MD-2-
related lipid recognition 

domain-containing 
protein / ML domain-

containing protein 

3 4451342-
4452714 

No 
Relationship  

1 285,941,597 5 GRMZM2G434533 

AT3G11780.1: MD-2-
related lipid recognition 

domain-containing 
protein / ML domain-

containing protein 

1 4787177-
4790160 

No 
Relationship  

3 17,030,869 5 AC215260.3_FG004 

AT5G16450.1: 
Ribonuclease E inhibitor 
RraA/Dimethylmenaquin

one methyltransferase 

3 6011633-
6011723 

No 
Relationship  

3 17,030,869 5 AC215260.3_FG003 

AT5G48930.1(HCT): 
hydroxycinnamoyl-CoA 

shikimate/quinate 
hydroxycinnamoyl 

transferase 

3 6011633-
6011723 

No 
Relationship  

4 4,448,482 5 GRMZM2G039408 

AT3G18830.1(ATPLT5,
ATPMT5,PMT5): 

polyol/monosaccharide 
transporter 5 

5 58598972-
58600771 

No 
Relationship  
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Table 3-4 Continued 

4 4,448,482 5 GRMZM2G039408 

AT3G18830.1(ATPLT5,
ATPMT5,PMT5): 

polyol/monosaccharide 
transporter 5 

2 13278297-
13280038 

No 
Relationship  

5 59,254,396 5 GRMZM2G084521 
AT2G29960.1(ATCYP5,

CYP19-4,CYP5): 
cyclophilin 5 

10 59276049-
59287698 

Hausmann 
et al 2002 %GL30 #5 

5 59,254,396 5 GRMZM2G385945 
AT3G02790.1: zinc 
finger (C2H2 type) 

family protein 
10 59289995-

59291725 
Hausmann 
et al 2002 %GL30 #5 

5 91,602,155 5 GRMZM2G174785 
AT5G25060.1: RNA 

recognition motif (RRM)-
containing protein 

4 5271716-
5280709 

No 
Relationship  

5 199,972,074 5 AC233960.1_FG005 

AT1G06170.1: basic 
helix-loop-helix (bHLH) 

DNA-binding 
superfamily protein 

4 60841878-
60843904 

No 
Relationship  

5 199,972,074 5 GRMZM5G861093 

AT5G27080.1: 
Transducin family protein 

/ WD-40 repeat family 
protein 

4 60835987-
60839090 

No 
Relationship  

5 199,972,074 5 GRMZM5G861093 

AT5G27080.1: 
Transducin family protein 

/ WD-40 repeat family 
protein 

6 56293977-
56295543 

No 
Relationship  

5 199,972,074 5 AC233960.1_FG003 
AT5G45580.1: 

Homeodomain-like 
superfamily protein 

4 60829285-
60831667 

No 
Relationship  
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Table 3-4 Continued 

5 204,914,413 5 GRMZM2G089454 
AT5G37680.1(ARLA1A,

ATARLA1A): ADP-
ribosylation factor-like  

4 58940294-
58943162 

No 
Relationship  

8 27,648,546 5 GRMZM2G058491 

AT1G64110.2: P-loop 
containing nucleoside 

triphosphate hydrolases 
superfamily protein 

3 957049-
964951 

No 
Relationship  

8 27,648,546 5 GRMZM2G058491 

AT1G64110.2: P-loop 
containing nucleoside 

triphosphate hydrolases 
superfamily protein 

9 58516984-
58522078 

No 
Relationship  

9 8,020,744 5 GRMZM2G080696 
AT2G03220.1(ATFT1,A

TFUT1,FT1,MUR2): 
fucosyltransferase 1 

10 6956300-
6958077 

No 
Relationship  

9 8,020,744 5 GRMZM2G080696 
AT2G03220.1(ATFT1,A

TFUT1,FT1,MUR2): 
fucosyltransferase 1 

4 60976514-
60981646 

No 
Relationship  

9 18,332,206 5 GRMZM5G838414 
AT1G53290.1: 

Galactosyltransferase 
family protein 

10 3429104-
3434799 

No 
Relationship  

9 18,332,206 5 AC231745.1_FG003 
AT5G45910.1: GDSL- 
Lipase/Acylhydrolase 
superfamily protein 

10 3436008-
3438395 

No 
Relationship  

10 1,728,072 5 GRMZM2G129954 
AT3G57040.1(ARR9,AT
RR4): response regulator 

9 
8 1082610-

1084957 
No 

Relationship  

10 1,728,072 5 GRMZM2G129954 
AT3G57040.1(ARR9,AT
RR4): response regulator 

9 
5 2752276-

2754263 
No 

Relationship  
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Table 3-4 Continued 

10 1,728,072 5 GRMZM2G130062 

AT1G74040.1(IMS1,IPM
S2,MAML-3): 2-

isopropylmalate synthase 
1 

8 1096996-
1102868 

No 
Relationship  

10 1,728,072 5 GRMZM2G130062 

AT1G74040.1(IMS1,IPM
S2,MAML-3): 2-

isopropylmalate synthase 
1 

5 2691891-
2696552 

No 
Relationship  

10 1,728,072 5 GRMZM2G129907 
AT5G43210.1: 

Excinuclease ABC, C 
subunit, N-terminal 

8 982316-
984390 

No 
Relationship  
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Table 3-5 Summary of candidate gene associations for maize stay-green terminal from the NAM RILs compared to reported 
sorghum stay-green QTL.  

Maize 
LG RMIP Maize ID Description Sb 

LG 
Sb Genomic 

Position Publication Published 
symbol 

2 39 GRMZM2G021129 AT1G26690.1: emp24/gp25L/p24 
family/GOLD family protein 2 55458809-

55460251 
Kebede et al 

2001 Stg D 

2 39 GRMZM2G021129 AT1G26690.1: emp24/gp25L/p24 
family/GOLD family protein 1 26419739-

26422832 
Hausmann et 

al 2002 %GL30 #1 

2 39 GRMZM2G021129 AT1G26690.1: emp24/gp25L/p24 
family/GOLD family protein 1 26419739-

26422832 
Hausmann et 

al 2002 %GL45 #2 

9 37 GRMZM5G865819 AT2G20370.1(KAM1,MUR3): 
Exostosin family protein 1 70389010-

70390665 
No 

Relationship  

9 37 GRMZM5G865819 AT2G20370.1(KAM1,MUR3): 
Exostosin family protein 8 49358197-

49359316 
No 

Relationship  

9 37 GRMZM2G178072 
AT3G24010.1(ATING1,ING1): 
RING/FYVE/PHD zinc finger 

superfamily protein 
1 55457063-

55460251 
Srinivas et al 

2009 
QGlaa-
sbi01 

9 37 GRMZM2G178072 
AT3G24010.1(ATING1,ING1): 
RING/FYVE/PHD zinc finger 

superfamily protein 
1 55457063-

55460251 
Srinivas et al 

2009 
QGlam-
sbi01-2 

6 30 GRMZM2G156255 AT3G02850.1(SKOR): STELAR 
K+ outward rectifier 10 9471103-

9477532 
No 

Relationship  

6 30 GRMZM2G156255 AT3G02850.1(SKOR): STELAR 
K+ outward rectifier 6 47245325-

47247967 
No 

Relationship  

6 30 GRMZM2G156310 AT1G47480.1: alpha/beta-
Hydrolases superfamily protein 2 62009104-

62009408 
Subudhi et al 

2000 stg3 
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Table 3-5 Continued  

6 30 GRMZM2G156310 AT1G47480.1: alpha/beta-
Hydrolases superfamily protein 2 62009104-

62009408 Xu et al 2000 Stg3 

6 30 GRMZM2G156310 AT1G47480.1: alpha/beta-
Hydrolases superfamily protein 2 62009104-

62009408 
Subudhi et al 

2000 stg3 

6 30 GRMZM2G156310 AT1G47480.1: alpha/beta-
Hydrolases superfamily protein 2 62009104-

62009408 
Hausmann et 

al 2002 %GL15 #3 

6 30 GRMZM2G156310 AT1G47480.1: alpha/beta-
Hydrolases superfamily protein 2 62009104-

62009408 
Hausmann et 

al 2002 %GL30 #5 

9 28 GRMZM2G107651 AT2G20320.1: DENN (AEX-3) 
domain-containing protein 1 70297442-

70305481 
No 

Relationship  

5 23 GRMZM2G166027 AT2G05940.1: Protein kinase 
superfamily protein 4 64705811-

64709498 
No 

Relationship  

5 23 GRMZM2G463904 
AT2G26330.1(ER,QRP1): 

Leucine-rich receptor-like protein 
kinase family protein 

4 64674255-
64681191 

No 
Relationship  

5 23 GRMZM2G463904 
AT2G26330.1(ER,QRP1): 

Leucine-rich receptor-like protein 
kinase family protein 

10 6248199-
6254351 

No 
Relationship  

3 21 GRMZM2G122656 AT4G18590.1: Nucleic acid-
binding, OB-fold-like protein 3 10474067-

10476759 
No 

Relationship  

3 21 GRMZM2G421742 AT5G49350.1: Glycine-rich 
protein family 3 10490075-

10490799 
No 

Relationship  

7 20 GRMZM2G120574 AT5G53890.1(AtPSKR2,PSKR2)
: phytosylfokine-alpha receptor 2 2 598353-

602274 
No 

Relationship  

10 20 GRMZM2G001195 
AT4G33140.1: Haloacid 

dehalogenase-like hydrolase 
(HAD) superfamily protein 

10 5620661-
5621855 

No 
Relationship  

2 18 GRMZM2G160523 AT1G73880.1(UGT89B1): UDP-
glucosyl transferase 89B1 6 59270739-

59273589 
No 

Relationship  
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Table 3-5 Continued  

2 18 GRMZM2G160523 AT1G73880.1(UGT89B1): UDP-
glucosyl transferase 89B1 10 12730662-

12731886 
No 

Relationship  

2 18 GRMZM2G160523 AT1G73880.1(UGT89B1): UDP-
glucosyl transferase 89B1 7 60980340-

60981646 
No 

Relationship  

4 17 GRMZM2G131329 
AT4G21060.2: 

Galactosyltransferase family 
protein 

7 2842107-
2846704 

No 
Relationship  

4 17 GRMZM2G131378 
AT2G38110.1(ATGPAT6,GPAT

6): glycerol-3-phosphate 
acyltransferase 6 

9 52101160-
52101993 

No 
Relationship  

4 17 GRMZM2G131378 
AT2G38110.1(ATGPAT6,GPAT

6): glycerol-3-phosphate 
acyltransferase 6 

3 56944241-
56945073 

Subudhi et al 
2000 stg2 

4 17 GRMZM2G131378 
AT2G38110.1(ATGPAT6,GPAT

6): glycerol-3-phosphate 
acyltransferase 6 

3 56944241-
56945073 

Srinivas et al 
2009 

QGlaa-
sbi03 

4 17 GRMZM2G131378 
AT2G38110.1(ATGPAT6,GPAT

6): glycerol-3-phosphate 
acyltransferase 6 

3 56944241-
56945073 

Srinivas et al 
2009 

QPglam-
sbi03 

4 17 GRMZM2G131378 
AT2G38110.1(ATGPAT6,GPAT

6): glycerol-3-phosphate 
acyltransferase 6 

3 56944241-
56945073 

Subudhi et al 
2000 stg2 
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Table 3-5 Continued  

4 17 GRMZM2G131378 
AT2G38110.1(ATGPAT6,GPAT

6): glycerol-3-phosphate 
acyltransferase 6 

7 2867975-
2869614 

No 
Relationship  

4 17 GRMZM2G089421 AT1G57860.1: Translation 
protein SH3-like family protein 1 64339789-

64342021 
Srinivas et al 

2009 
QGlam-
sbi01-1 

9 17 GRMZM2G089686 AT3G24310.1(ATMYB71,MYB
305): myb domain protein 305 1 70563106-

70564580 
No 

Relationship  

9 17 GRMZM2G089686 AT3G24310.1(ATMYB71,MYB
305): myb domain protein 305 6 48621508-

48622859 
Srinivas et al 

2009 
QGlam-

sbi06 

9 17 GRMZM2G089699 AT1G65680.1(ATEXPB2,ATHE
XPBETA1.4,EXPB2): expansin 1 62208003-

62208784 
Srinivas et al 

2009 
QGlam-
sbi01-1 

3 16 GRMZM5G856738 
AT4G23650.1(CDPK6,CPK3): 

calcium-dependent protein kinase 
6 

3 56124094-
56128697 

Kebede et al 
2001 Stg A 

3 16 GRMZM5G856738 
AT4G23650.1(CDPK6,CPK3): 

calcium-dependent protein kinase 
6 

3 56124094-
56128697 

Subudhi et al 
2000 stg2 

3 16 GRMZM5G856738 
AT4G23650.1(CDPK6,CPK3): 

calcium-dependent protein kinase 
6 

9 58613859-
58616901 

No 
Relationship  

3 16 GRMZM5G856738 
AT4G23650.1(CDPK6,CPK3): 

calcium-dependent protein kinase 
6 

8 1344788-
1346924 

No 
Relationship  

3 16 GRMZM5G856738 
AT4G23650.1(CDPK6,CPK3): 

calcium-dependent protein kinase 
6 

5 2284302-
2286332 

No 
Relationship  

3 16 GRMZM5G856738 
AT4G23650.1(CDPK6,CPK3): 

calcium-dependent protein kinase 
6 

6 55593503-
55595641 

No 
Relationship  
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Table 3-5 Continued  

10 15 GRMZM2G063394 AT1G76390.1: ARM repeat 
superfamily protein 8 24301730-

24307012 
No 

Relationship  

9 14 GRMZM2G137779 
LOC_Os03g05110.1: xyloglucan 

galactosyltransferase 
KATAMARI1, putative,  

1 70357565-
70360177 

No 
Relationship  

9 14 GRMZM2G438840 
AT4G28650.1: Leucine-rich 
repeat transmembrane protein 

kinase family protein 
1 68030886-

68034345 
Hausmann et 

al 2002 %GL15 #1 

9 14 GRMZM2G438840 
AT4G28650.1: Leucine-rich 
repeat transmembrane protein 

kinase family protein 
1 68030886-

68034345 
Hausmann et 

al 2002 %GL30 #1 

9 14 GRMZM2G438840 
AT4G28650.1: Leucine-rich 
repeat transmembrane protein 

kinase family protein 
1 68030886-

68034345 
Hausmann et 

al 2002 %GL45 #1 

9 14 GRMZM2G438840 
AT4G28650.1: Leucine-rich 
repeat transmembrane protein 

kinase family protein 
4 763649-

766771 
Srinivas et al 

2009 
QGlaa-
sbi04 

6 13 GRMZM2G136058 AT1G09580.1: emp24/gp25L/p24 
family/GOLD family protein 10 6750688-

6753852 
No 

Relationship  

8 13 GRMZM2G169398 alcohol O-acetyltransferase  3 60979810-
60981646 

No 
Relationship  

8 13 GRMZM2G169412 AT5G06140.1(ATSNX1,SNX1): 
sorting nexin 1 3 68239828-

68242480 
No 

Relationship  

3 8 GRMZM2G114552 
LOC_Os01g03680.1: BBTI8 - 
Bowman-Birk type bran trypsin 
inhibitor precursor, expressed 

3 68239828-
68242480 

No 
Relationship  

7 8 GRMZM2G350205 
LOC_Os07g03140.1: ternary 

complex factor MIP1, putative, 
expressed 

2 1925842-
1930101 

No 
Relationship  
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Table 3-5 Continued  

8 8 GRMZM2G124047 
AT5G65760.1: Serine 

carboxypeptidase S28 family 
protein 

3 63680513-
63684777 Xu et al 2000 Chl1 

8 8 GRMZM2G124047 
AT5G65760.1: Serine 

carboxypeptidase S28 family 
protein 

3 63680513-
63684777 Xu et al 2000 Stg1 

8 8 GRMZM2G124047 
AT5G65760.1: Serine 

carboxypeptidase S28 family 
protein 

3 63680513-
63684777 

Subudhi et al 
2000 Stg1 

2 7 GRMZM2G122614 AT4G30080.1(ARF16): auxin 
response factor 16 2 66974211-

66975373 
No 

Relationship  

2 7 GRMZM2G122614 AT4G30080.1(ARF16): auxin 
response factor 16 6 52026582-

52027932 
No 

Relationship  

2 7 GRMZM2G473709 

LOC_Os07g48244.1: ubiquinol-
cytochrome c reductase complex 

6.7 kDa protein, putative, 
expressed 

2 62206967-
62208784 

Subudhi et al 
2000 stg3 

2 7 GRMZM2G473709 

LOC_Os07g48244.1: ubiquinol-
cytochrome c reductase complex 

6.7 kDa protein, putative, 
expressed 

2 62206967-
62208784 

Hausmann et 
al 2002 %GL15 #3 
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Table 3-5 Continued  

2 7 GRMZM2G473709 

LOC_Os07g48244.1: ubiquinol-
cytochrome c reductase complex 

6.7 kDa protein, putative, 
expressed 

2 62206967-
62208784 

Hausmann et 
al 2002 %GL30 #5 

3 7 AC182482.3_FG003 AT1G16310.1: Cation efflux 
family protein 3 7540778-

7544143 
No 

Relationship  

3 7 GRMZM2G022052 

LOC_Os01g48810.1: 
transcription initiation factor 
TFIID subunit 11, putative, 

expressed 

3 59582691-
59585182 

No 
Relationship  

3 7 GRMZM2G041015 AT2G46225.2(ABIL1): ABI-1-
like 1 3 56129320-

56132961 
Kebede et al 

2001 Stg A 

3 7 GRMZM5G856738 Ca2+/calmodulin-dependent 
protein kinase, EF-Hand protein  3 56124094-

56128697 
Subudhi et al 

2000 stg2 

4 7 AC233922.1_FG004 AT5G64050.1(ATERS,ERS,OV
A3): glutamate tRNA synthetase 4 1438505-

1438733 
Srinivas et al 

2009 
QGlaa-
sbi04 

4 7 AC233922.1_FG005 LOC_Os02g02850.1: bifunctional 
protein folD, putative, expressed 4 1434239-

1437382 
No 

Relationship  

4 7 GRMZM5G846811 
AT4G35020.1(ARAC3,ATROP6,

RAC3,RHO1PS,ROP6): RAC-
like 3 

4 1428147-
1432056 

No 
Relationship  

4 7 GRMZM5G878607 AT1G78570.1(ATRHM1,RHM1,
ROL1): rhamnose biosynthesis 1 1 62767665-

62768669 
Srinivas et al 

2009 
QGlam-
sbi01-1 

4 7 GRMZM5G878607 AT1G78570.1(ATRHM1,RHM1,
ROL1): rhamnose biosynthesis 1 9 15520516-

15521523 
Crasta et al 

1999 SGI.2 

4 7 GRMZM5G878607 AT1G78570.1(ATRHM1,RHM1,
ROL1): rhamnose biosynthesis 1 9 15520516-

15521523 
Tao et al 

2000 not named 

6 7 GRMZM2G175676 RNA recognition motif. (a.k.a. 
RRM, RBD, or RNP domain) 9 50515460-

50518998 
No 

Relationship  
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Table 3-5 Continued  

4 6 GRMZM2G319056 AT4G10150.1: RING/U-box 
superfamily protein 4 10718953-

10719725 
No 

Relationship  

6 6 GRMZM2G412470 AT5G63190.1: MA3 domain-
containing protein 7 2230093-

2235422 
Subudhi et al 

2000 not named 

6 6 GRMZM2G412470 AT5G63190.1: MA3 domain-
containing protein 6 49958897-

49960583 
Srinivas et al 

2009 
QGlam-

sbi06 

7 6 GRMZM2G120652 

AT5G01410.1(ATPDX1,ATPDX
1.3,PDX1,PDX1.3,RSR4): 

Aldolase-type TIM barrel family 
protein 

2 571811-
573542 

No 
Relationship  

7 6 GRMZM2G120574 
LEUCINE-RICH REPEAT 

RECEPTOR-LIKE PROTEIN 
KINASE 

2 598353-
602274 

No 
Relationship  

7 6 GRMZM2G137676 
AT2G26450.1: Plant 

invertase/pectin methylesterase 
inhibitor superfamily 

2 60346475-
60348983 Xu et al 2000 Chl3 

7 6 GRMZM2G137676 
AT2G26450.1: Plant 

invertase/pectin methylesterase 
inhibitor superfamily 

7 56379675-
56381798 

No 
Relationship  

7 6 GRMZM2G137676 
AT2G26450.1: Plant 

invertase/pectin methylesterase 
inhibitor superfamily 

6 48489499-
48490503 

Srinivas et al 
2009 

QGlam-
sbi06 

9 6 GRMZM2G126682 24-methylenesterol C-
methyltransferase 1 62206947-

62208784 
Srinivas et al 

2009 
QGlam-
sbi01-1 

1 5 GRMZM2G110298 AT5G47630.1(mtACP3): 
mitochondrial acyl carrier protein  1 14753530-

14758382 
Crasta et al 

1999 SGG 

2 5 GRMZM2G471931 
AT2G28305.1(ATLOG1,LOG1): 

Putative lysine decarboxylase 
family protein 

6 52003894-
52007409 

No 
Relationship  
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Table 3-5 Continued  

2 5 GRMZM2G122618 

Glucose-6-phosphate/phosphate 
and 

phosphoenolpyruvate/phosphate 
antiporter 

6 52010744-
52016141 

No 
Relationship  

2 5 GRMZM2G122618 
Glucose-6-phosphate/phosphate 
phosphoenolpyruvate/phosphate 

antiporter 
4 56495357-

56497337 
No 

Relationship  

3 5 GRMZM2G171677 
Tyrosine kinase specific for 

activated (GTP-bound) 
p21cdc42Hs 

3 9237657-
9243340 

Tao et al 
2000 not named 

5 5 GRMZM2G060253 AT4G23800.2: HMG (high 
mobility group) box protein 4 12111925-

12114165 
No 

Relationship  

5 5 GRMZM2G060167 
LOC_Os02g15820.1: extra-large 

G-protein-related, putative, 
expressed 

4 12120082-
12125173 

No 
Relationship  

5 5 GRMZM2G060167 
LOC_Os02g15820.1: extra-large 

G-protein-related, putative, 
expressed 

10 43914629-
43918413 

No 
Relationship  

6 5 GRMZM2G054946 
AT3G14470.1: NB-ARC domain-

containing disease resistance 
protein 

10 43914629-
43918413 

No 
Relationship  

6 5 GRMZM2G059314 
AT2G37790.1: NAD(P)-linked 

oxidoreductase superfamily 
protein 

9 52026350-
52037477 

No 
Relationship  

6 5 GRMZM2G059314 
AT2G37790.1: NAD(P)-linked 

oxidoreductase superfamily 
protein 

3 67425562-
67437932 

Hausmann et 
al 2002 %GL30 #2 

6 5 GRMZM2G059624 AT5G59850.1: Ribosomal 
protein S8 family protein 9 52044924-

52045541 
No 

Relationship  
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Table 3-5 Continued  

7 5 GRMZM2G137676 
AT2G26450.1: Plant 

invertase/pectin methylesterase 
inhibitor superfamily 

2 60346475-
60348983 Xu et al 2000 Chl3 

7 5 GRMZM2G137676 
AT2G26450.1: Plant 

invertase/pectin methylesterase 
inhibitor superfamily 

7 56379675-
56381798 

No 
Relationship  

8 5 AC232238.2_FG008 
LOC_Os01g64250.1: 

hemerythrin family protein, 
expressed 

2 64340186-
64342021 

Hausmann et 
al 2002 %GL15 #3 

8 5 AC232238.2_FG008 
LOC_Os01g64250.1: 

hemerythrin family protein, 
expressed 

5 34662847-
34665172 Xu et al 2000 Stg4 

8 5 AC232238.2_FG008 
LOC_Os01g64250.1: 

hemerythrin family protein, 
expressed 

5 34662847-
34665172 

Subudhi et al 
2000 stg4 

8 5 AC232238.2_FG008 
LOC_Os01g64250.1: 

hemerythrin family protein, 
expressed 

5 34662847-
34665172 

Kebede et al 
2001 Stg J 

8 5 AC232238.2_FG008 
LOC_Os01g64250.1: 

hemerythrin family protein, 
expressed 

3 68221744-
68223579 

No 
Relationship  

9 5 GRMZM2G169365 
AT5G12040.1: Nitrilase/cyanide 
hydratase and apolipoprotein N-
acyltransferase family protein 

1 68568757-
68573014 

No 
Relationship  

9 5 GRMZM2G169384 
LOC_Os09g04670.1: DAG 

protein, chloroplast precursor, 
putative, expressed 

1 68558366-
68568013 

No 
Relationship  

9 5 GRMZM2G107651 AT2G20320.1: DENN (AEX-3) 
domain-containing protein 1 70297442-

70305481 
No 

Relationship  
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Table 3-5 Continued  

10 5 GRMZM2G080516 
AT4G17500.1(ATERF-1,ERF-1): 

ethylene responsive element 
binding factor 1 

6 53447205-
53449740 

No 
Relationship  

10 5 GRMZM2G084586 
AT3G13530.1(MAP3KE1,MAP

KKK7): mitogen-activated 
protein kinase kinase kinase 7 

6 59938234-
59942713 

No 
Relationship  

10 5 GRMZM2G084576 AT2G43060.1(IBH1): ILI1 
binding bHLH 1 6 59908096-

59909157 
No 

Relationship  
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Table 3-6 Summary of maize candidate gene associations for stay-green terminal from the NAM Testcrosses compared to reported 
sorghum stay-green QTL.  

Maize 
LG RMIP Maize ID Description Sb 

LG 
Sb Genomic 

Position Publication Published 
symbol 

2 27 GRMZM2G374203 
PFAM ID: PF08381: Transcription 

factor regulating root and shoot growth 
via Pin3 

6 56338195-
56345720 

No 
Relationship  

2 27 GRMZM2G074743 AT3G22370.1(AOX1A,ATAOX1A): 
alternative oxidase 1A 6 56332430-

56332700 
No 

Relationship  

5 25 GRMZM2G173674 AT5G17530.3: phosphoglucosamine 
mutase family protein 2 17048717-

17051775 
Kebede et al 

2001 Stg D 

8 23 GRMZM2G055219 AT2G19950.2(GC1): golgin candidate 
1 3 62544904-

62551856 
Xu et al 

2000 Chl1 

6 20 GRMZM2G170646 
AT1G28580.1: GDSL-like 

Lipase/Acylhydrolase superfamily 
protein 

3 1479900-
1490112 

No 
Relationship  

6 20 GRMZM2G170646 
AT1G28580.1: GDSL-like 

Lipase/Acylhydrolase superfamily 
protein 

9 10655297-
10658206 

Crasta et al 
1999 SGI.2 

6 20 GRMZM2G162702 AT1G56720.1: Protein kinase 
superfamily protein 9 10696640-

10700524 
Tao et al 

2000 not named 

2 18 GRMZM2G021831 AT3G14180.1: sequence-specific DNA 
binding transcription factors 6 47401201-

47402842 
No 

Relationship  

2 18 GRMZM2G021464 AT3G14080.1: Small nuclear 
ribonucleoprotein family protein 6 47406107-

47411017 
No 

Relationship  

4 16 GRMZM2G108147 AT2G25620.1(AtDBP1,DBP1): DNA-
binding protein phosphatase 1 10 4838243-

4840662 
No 

Relationship  

4 16 GRMZM2G344376 AT5G11090.1: serine-rich protein-
related 4 60981111-

60981646 
No 

Relationship  
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Table 3-6 Continued 

4 16 GRMZM2G344376 AT5G11090.1: serine-rich protein-
related 4 65965620-

65966719 
No 

Relationship  

5 16 GRMZM2G436710 LOC_Os10g35810.1: thylakoid 
lumenal protein, putative, expressed 1 18525710-

18528791 
No 

Relationship  

5 16 GRMZM2G436707 AT1G07280.1: Tetratricopeptide repeat 
(TPR)-like superfamily protein 1 18528268-

18529939 
No 

Relationship  

10 15 GRMZM2G042782 AT1G43690.1: ubiquitin interaction 
motif-containing protein 6 45236301-

45237998 
No 

Relationship  

10 15 GRMZM2G042811 AT2G19130.1: S-locus lectin protein 
kinase family protein 6 45214678-

45216608 
No 

Relationship  

3 12 GRMZM2G439784 AT2G34930.1: disease resistance 
family protein / LRR family protein 7 9520372-

9523288 
Kebede et al 

2001 Stg E 

3 12 GRMZM2G439784 AT2G34930.1: disease resistance 
family protein / LRR family protein 7 9520372-

9523288 
Hausmann 
et al 2002 

%GL15 
#3 

3 12 GRMZM2G439784 AT2G34930.1: disease resistance 
family protein / LRR family protein 5 53213094-

53217196 
No 

Relationship  

3 12 GRMZM2G439799 AT3G47570.1: Leucine-rich repeat 
protein kinase family protein 6 6486616-

6495047 
No 

Relationship  

8 11 GRMZM2G096358 AT1G68320.1(AtMYB62,BW62B,BW
62C,MYB62): myb domain protein 62 3 7677202-

7679048 
Tao et al 

2000 not named 

9 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN 
binding protein 1 1 61912082-

61914993 
No 

Relationship  

9 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN 
binding protein 1 9 42101221-

42101806 
Crasta et al 

1999 SGI.2 

9 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN 
binding protein 1 9 42101221-

42101806 
Tao et al 

2000 not named 

9 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN 
binding protein 1 3 65699538-

65700373 
Xu et al 

2000 Chl1 
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Table 3-6 Continued 

9 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN 
binding protein 1 3 65699538-

65700373 
Xu et al 

2000 Stg1 

9 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN 
binding protein 1 3 65699538-

65700373 
Subudhi et 

al 2000 Stg1 

9 11 GRMZM2G078933 AT5G58590.1(RANBP1): RAN 
binding protein 1 3 65699538-

65700373 
Hausmann 
et al 2002 

%GL30 
#2 

9 11 GRMZM2G378852 AT2G30040.1(MAPKKK14): mitogen-
activated protein kinasekinasekinase 14 1 61916897-

61918785 
No 

Relationship  

8 10 GRMZM2G445338 AT1G18390.2: Protein kinase 
superfamily protein 3 60075074-

60076715 
No 

Relationship  

8 10 GRMZM2G144021 AT5G38220.1: alpha/beta-Hydrolases 
superfamily protein 3 60053879-

60058397 
No 

Relationship  

8 10 GRMZM2G144028 
LOC_Os01g49529.2: OsWAK10d - 
OsWAK receptor-like cytoplasmic 
kinase OsWAK-RLCK, expressed 

3 60057699-
60070819 

No 
Relationship  

8 10 GRMZM2G144028 
LOC_Os01g49529.2: OsWAK10d - 
OsWAK receptor-like cytoplasmic 
kinase OsWAK-RLCK, expressed 

9 56669583-
56674848 

No 
Relationship  

9 10 GRMZM2G147671 
AT4G38630.1(ATMCB1,MBP1,MCB

1,RPN10): regulatory particle non-
ATPase 10 

1 59630506-
59635592 

No 
Relationship  

9 10 GRMZM2G156388 AT5G64813.1(LIP1): Ras-related small 
GTP-binding family protein 1 64671213-

64675902 
Srinivas et 

al 2009 
QGlam-
sbi01-1 

1 9 GRMZM2G343157 AT3G43440.1(JAZ11,TIFY3A): 
jasmonate-zim-domain protein 11 1 68348009-

68349336 
Hausmann 
et al 2002 

%GL15 
#1 

1 9 GRMZM5G838098 AT1G19180.1(JAZ1,TIFY10A): 
jasmonate-zim-domain protein 1 1 68342384-

68343847 
Hausmann 
et al 2002 

%GL30 
#1 
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1 9 GRMZM5G838098 AT1G19180.1(JAZ1,TIFY10A): 
jasmonate-zim-domain protein 1 1 68334761-

68335711 
Hausmann 
et al 2002 

%GL45 
#1 

5 8 GRMZM2G071484 AT3G52450.1(PUB22): plant U-box 
22 4 51302099-

51303468 
Hausmann 
et al 2002 

%GL30 
#3 

5 8 GRMZM2G071484 AT3G52450.1(PUB22): plant U-box 
22 4 51302099-

51303468 
Hausmann 
et al 2002 

%GL45 
#4 

5 8 GRMZM2G071484 AT3G52450.1(PUB22): plant U-box 
22 6 44859659-

44860989 
No 

Relationship  

5 8 GRMZM2G071484 AT3G52450.1(PUB22): plant U-box 
22 3 62207724-

62208784 
No 

Relationship  

8 8 GRMZM2G139574 AT2G41640.1: Glycosyltransferase 
family 61 protein 9 48132658-

48140986 
No 

Relationship  

8 8 GRMZM2G139574 AT2G41640.1: Glycosyltransferase 
family 61 protein 2 59634559-

59635592 
No 

Relationship  

5 7 GRMZM2G124284 
AT5G01230.1: S-adenosyl-L-

methionine-dependent 
methyltransferases superfamily protein 

4 65997207-
65998773 

No 
Relationship  

5 7 GRMZM2G124290 AT1G21326.1: VQ motif-containing 
protein 1 4718524-

4719317 
No 

Relationship  

9 7 GRMZM2G378852 AT2G30040.1(MAPKKK14): mitogen-
activated protein kinasekinasekinase 14 1 61916897-

61918785 
Srinivas et 

al 2009 
QGlam-
sbi01-1 

10 7 GRMZM2G031721 AT4G13670.1(PTAC5): plastid 
transcriptionally active 5 6 51740613-

51748799 
No 

Relationship  

10 7 GRMZM2G031628 AT4G21760.1(BGLU47): beta-
glucosidase 47 6 51733501-

51734083 
No 

Relationship  

10 7 GRMZM2G031660 AT1G61820.1(BGLU46): beta 
glucosidase 46 6 51733501-

51734083 
No 

Relationship  

7 6 GRMZM2G330690 AT4G30890.1(UBP24): ubiquitin-
specific protease 24 2 62205791-

62208784 
Subudhi et 

al 2000 stg3 
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Table 3-6 Continued 

7 6 GRMZM2G330690 AT4G30890.1(UBP24): ubiquitin-
specific protease 24 2 62205791-

62208784 
Hausmann 
et al 2002 

%GL15 
#3 

7 6 GRMZM2G330690 AT4G30890.1(UBP24): ubiquitin-
specific protease 24 2 62205791-

62208784 
Hausmann 
et al 2002 

%GL30 
#5 

7 6 GRMZM2G330690 AT4G30890.1(UBP24): ubiquitin-
specific protease 24 2 62205791-

62208784 
Subudhi et 

al 2000 stg3 

10 6 GRMZM2G446737 PFAM ID: PF05757: Oxygen evolving 
enhancer protein 3 (PsbQ) 6 52108732-

52112831 
No 

Relationship  

10 6 GRMZM2G146809 LOC_Os02g41904.1: DEF7 - Defensin 
and Defensin-like DEFL family,  6 52085272-

52086238 
No 

Relationship  

1 5 GRMZM2G107395 
AT1G78300.1(14-3-3OMEGA,GF14 
OMEGA,GRF2): general regulatory 

factor 2 
7 61684402-

61684907 
Hausmann 
et al 2002 

%GL15 
#5 

1 5 GRMZM2G107395 
AT1G78300.1(14-3-3OMEGA,GF14 
OMEGA,GRF2): general regulatory 

factor 2 
7 61684402-

61684907 
Hausmann 
et al 2002 

%GL30 
#7 

1 5 GRMZM2G107395 
AT1G78300.1(14-3-3OMEGA,GF14 
OMEGA,GRF2): general regulatory 

factor 2 
7 61684402-

61684907 
Hausmann 
et al 2002 

%GL45 
#8 

1 5 GRMZM2G107395 
AT1G78300.1(14-3-3OMEGA,GF14 
OMEGA,GRF2): general regulatory 

factor 2 
5 51517137-

51519016 
Subudhi et 

al 2000 stg4 

1 5 GRMZM2G107395 AT1G78300.1(14-3-3OMEGA,GF14 
OMEGA,GRF2): general regulatory  5 51517137-

51519016 
Kebede et al 

2001 Stg J 

2 5 GRMZM2G530263 
AT2G16030.1: S-adenosyl-L-

methionine-dependent 
methyltransferases superfamily protein 

7 61684402-
61684907 

Hausmann 
et al 2002 

%GL15 
#5 

 

 190 

 
 



  191 
 

Table 3-6 Continued 

2 5 GRMZM2G530263 
AT2G16030.1: S-adenosyl-L-

methionine-dependent 
methyltransferases superfamily protein 

7 61684402-
61684907 

Hausmann 
et al 2002 

%GL30 
#7 

2 5 GRMZM2G530263 
AT2G16030.1: S-adenosyl-L-

methionine-dependent 
methyltransferases superfamily protein 

7 61684402-
61684907 

Hausmann 
et al 2002 

%GL45 
#8 

3 5 GRMZM2G467086 AT1G25260.1: Ribosomal protein L10  8 434873-
437341 

No 
Relationship  

3 5 GRMZM2G467086 AT1G25260.1: Ribosomal protein L10  5 321146-
323706 

No 
Relationship  

3 5 GRMZM2G467123 AT5G45275.1: Major facilitator  8 563311-
567438 

No 
Relationship  

3 5 GRMZM2G467123 AT5G45275.1: Major facilitator 
superfamily protein 5 423230-

428112 
No 

Relationship  

3 5 GRMZM2G054610 AT3G25100.1(CDC45): cell division 
cycle 45 8 1813024-

1814559 
No 

Relationship  

3 5 GRMZM2G054610 AT3G25100.1(CDC45): cell division 
cycle 45 5 1865248-

1866812 
No 

Relationship  

3 5 GRMZM2G353076 AT3G28917.1(MIF2): mini zinc finger  8 1858071-
1860694 

No 
Relationship  

4 5 GRMZM2G107414 
LOC_Os02g52300.1: CPuORF38 - 
conserved peptide uORF-containing 

transcript, expressed 
4 55457809-

55460251 
No 

Relationship  

4 5 GRMZM2G041699 AT1G22360.1(AtUGT85A2,UGT85A2
): UDP-glucosyl transferase 85A2 4 57333427-

57335258 
No 

Relationship  

4 5 GRMZM2G041699 AT1G22360.1(AtUGT85A2,UGT85A2
): UDP-glucosyl transferase 85A2 6 48069891-

48071375 
Srinivas et 

al 2009 
QGlam-

sbi06 

4 5 GRMZM2G041699 AT1G22360.1(AtUGT85A2,UGT85A2
): UDP-glucosyl transferase 85A2 7 54762753-

54764102 
No 

Relationship  
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4 5 GRMZM2G041699 AT1G22360.1(AtUGT85A2,UGT85A2
): UDP-glucosyl transferase 85A2 10 11669228-

11670615 
No 

Relationship  

4 5 GRMZM2G041699 AT1G22360.1(AtUGT85A2,UGT85A2
): UDP-glucosyl transferase 85A2 2 60980278-

60981646 
Xu et al 

2000 Chl3 

5 5 GRMZM2G121221 
AT2G30620.2: winged-helix DNA-
binding transcription factor family 

protein 
1 4084076-

4085583 
No 

Relationship  

6 5 GRMZM2G054468 AT5G37720.1(ALY4): ALWAYS 
EARLY 4 10 9965183-

9972666 
No 

Relationship  

6 5 GRMZM2G328859 
AT2G18180.1: Sec14p-like 

phosphatidylinositol transfer family 
protein 

4 1659223-
1659662 

Srinivas et 
al 2009 

QGlaa-
sbi04 

9 5 GRMZM2G007514 AT2G38440.1(ATSCAR2,DIS3,ITB1,
SCAR2,WAVE4): SCAR homolog 2 1 61667355-

61673428 
Srinivas et 

al 2009 
QGlam-
sbi01-1 

9 5 GRMZM2G007590 AT2G30260.1(U2B): U2 small nuclear 
ribonucleoprotein B 1 61660465-

61665574 
Srinivas et 

al 2009 
QGlam-
sbi01-1 

9 5 GRMZM2G487359 AT4G02030.1: Vps51/Vps67 family 
(components of vesicular transport)  1 7557185-

7558119 
Hausmann 
et al 2002 

%GL30 
#4 

9 5 GRMZM2G487359 AT4G02030.1: Vps51/Vps67 family 
(components of vesicular transport)  1 7557185-

7558119 
Hausmann 
et al 2002 

%GL45 
#3 

9 5 GRMZM2G487359 AT4G02030.1: Vps51/Vps67 family 
(components of vesicular transport)  8 5563825-

5565387 
No 

Relationship  

10 5 AC233888.1_FG001 
PFAM ID: PF05703: Auxin 

canalisation , PF08458: Plant pleckstrin 
homology-like region 

6 50745192-
50747356 

Srinivas et 
al 2009 

QGlam-
sbi06 

10 5 AC233888.1_FG002 AT5G57660.1(ATCOL5,COL5): 
CONSTANS-like 5 6 50736218-

50737298 
Srinivas et 

al 2009 
QGlam-

sbi06 
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3.4.3 General Sorghum Stay-green Genetic Information 

We identified several comparative relationships between maize and sorghum for 

stay-green loci.  Maize candidate genes were BLASTed into the sorghum genome to 

provide an avenue of examining stay-green relationships.  Sorghum genomic intervals 

were determined from predicted base-pair positions and flanking markers from the 

scientific literature.  In Table 3-7, we provide the percent of maize associations for all 

sorghum QTL and removal of large QTL from sorghum linkage studies to examine the 

comparative relationship of stay-green in the two species.  Maize genic regions 

BLASTed into the sorghum genome identified multiple locations of genome similarity.  
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Table 3-7 Summary of maize and sorghum stay-green associations.  Number of maize genes evaluated are only annotated 
candidates from association mapping results for the specific population.  Multiple sorghum positions are detected when BLASTing 
maize genic regions into the sorghum genome.  Both the entire sorghum stay-green genome representation and a subset of all large 
intervals removed were examined for maize stay-green genomic associations.  

Maize Population  Number of  Maize 
Genes Evaluated  Sorghum Positions Detected  Stay-green Anthesis 

Associations (All Sb QTL) 
Percent of Stay-

green Association   
NAM RILs 79 102 25 24.50% 

Total  79 102 25 24.50% 

Maize Population Number of  Maize 
Genes Evaluated  Sorghum Positions Detected  

Stay-green Anthesis 
Associations (Large Sb 

Intervals Removed) 

Percent of Stay-
green Association   

NAM RILs 79 102 22 21.57% 
Total  79 102 22 21.57% 

          

Maize Population Number of  Maize 
Genes Evaluated  Sorghum Positions Detected  Stay-green Terminal 

Associations (All Sb QTL) 
Percent of Stay-

green Association  
NAM RILs 62 85 29 34.10% 

NAM Testcrosses 53 74 25 33.70% 
Total  115 159 54 33.90% 

Maize Population Number of  Maize 
Genes Evaluated  Sorghum Positions Detected  

Stay-green Terminal 
Associations (Large Sb 

Intervals Removed) 

Percent of Stay-
green Association  

NAM RILs 62 85 25 29.41% 
NAM Testcrosses 53 74 20 27.03% 

Total  115 159 45 28.22% 
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3.5 Discussion  

 Comparative genomics is an increasingly powerful resource for plant breeders and 

geneticists.  The ability to leverage genomic data from maize into sorghum has been 

greatly underutilized in plant breeding for abiotic stress traits.  Maize and sorghum are 

closely related crop species that are adapted to several agronomic and climatic 

environments.  Maize possesses a large genomic and agronomic investment globally, 

whereas sorghum does not have the same support even though it is a staple crop in 

developing areas of the world.    

 Sorghum has been characterized and commercialized in challenging 

environments.  Extensive evaluation of the stay-green phenotype has led to yield 

increases and improvement for drought environments over the last thirty years.  

Primarily, stay-green at anthesis and end of season are positively correlated to yield 

increases and/or stability in drought situations (Borrell et al., 2000a, 2000b, 2001).  83 

QTL were identified in eight genetic studies of stay-green under drought situations 

utilizing varying measurements of stay-green in sorghum (Table 3-1, 3-2).  However, 

these studies employed classical linkage mapping methods, where confidence intervals 

can extend several million base pairs making molecular characterization difficult.  

 In comparison to sorghum, maize has not been extensively evaluated for stay-

green at genetic and agronomic levels.  We examined the comparative relationships of 

stay-green in maize discussed in Chapter 2 with reported sorghum literature.  By 

identifying these relationships, we propose that candidate genes and functions for stay-

green under drought conditions are potentially expressed in both maize and sorghum.  

Understanding the specific gene function of these candidate genes will aid breeders and 
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researchers in developing climate resilient crops and leveraging genomic data for crop 

improvement. 

We identified several genomic relationships for stay-green that appear to be 

similar in maize and sorghum.  Sorghum breeders and scientists are actively selecting and 

characterizing four stay-green QTL identified as Stg1, Stg2, Stg3, and Stg4 (Table 3-1).  

These QTL provide a baseline for examining the biological relationship of stay-green 

with maize.  Stg1 and Stg2 are located on sorghum chromosome 3 and account for ~20% 

and ~ 30% of the phenotype variation, while Stg3 and Stg4 encompass ~16% and ~10% 

of the phenotypic variation.  Depending on the population, phenotypic contribution of Stg 

loci rank as Stg2>Stg1>Stg3>Stg4 (Harris et al., 2007).  However, additional minor QTL 

can modulate the expression of stay-green in different backgrounds and environments.  

For the three maize populations corresponding to stay-green at anthesis and end-of-

season, we report the comparative relationships of stay-green for major sorghum stay-

green QTL. 

3.5.1 Characterization and Evaluation of Stg1 in Sorghum 

The sorghum Stg1 QTLs were associated with numerous genomic regions and 

candidate genes for stay-green anthesis and stay-green terminal in maize.  Markers for all 

of the sorghum Stg1 QTL were associated with a region for stay-green anthesis in the 

maize NAM RILs (Table 3-8). A maize candidate gene was identified for this region on 

chromosome 3 (Table 3-4). GRMZM2G337815 (Ribosomal protein S25 family protein - 

AT4G34555.1) (3:22,566,318-22,568,842) and had a RMIP of nine (Table 3-4).  

Ribosomal protein S25 does not have any known genomic and physiological role in 

drought tolerance or delayed senescence in plants (Table 3-8).   
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The sorghum Stg1.1 QTL (Published symbol: Chl1) was also associated with a 

maize candidate gene for stay-green terminal in the maize NAM RILs (Table 3-8).  

GRMZM2G700901 (3:34,894,177-34,897,527) encodes a HEAT repeat domain (Table 3-

5).  HEAT repeat domains are similar to ARM proteins in both molecular structure and 

function (Andrade et al., 2001).   HEAT domains are common to the protein phosphatase 

2A gene families that are involved in signal transduction of stress responses under water 

limited situations (Samuel et al., 2008).   However, not enough is known about the 

function of this gene to speculate a specific role related to abiotic stress tolerance (Table 

3-8). 

Sorghum Stg1.1, 1.2, 1.3, and 1.4 QTLs were associated with a region for stay-

green terminal in the maize NAM RILs on chromosome 8 (Table 3-8). A maize candidate 

gene was identified in this region (Table 3-5).  GRMZM2G124047 (8:173,029,283-

173,035,156) encodes a Serine carboxypeptidase S28 family protein (AT5G65760.1) 

(Table 3-5).  Very little is known about this gene or its function in plants. 

 Sorghum Stg1.1 1.2, 1.3, 1.4, and 1.6 were associated with a region for stay-green 

terminal in the NAM Testcrosses on chromosome 9 (Table 3-8).  A maize candidate gene 

was identified in this region (Table 3-6).   GRMZM2G078933 (9:137,487,958-

137,491,564) encoding a (RANBP1): RAN binding protein 1 (AT5G58590.1) (Table 3-

6).  RAN proteins are known to be involved in HEAT repeats.  HEAT repeats contain 

many diverse functions, one of which is involved in regulating transportation in the cell 

from the nucleus to the cytoplasm.  RANBP1 is known to be involved in mediating the 

hydrolysis of GTP in the nucleus by interacting with karyopherin B for nuclear import 
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(Lounsbery and Macara, 1997).  The relationship between this process and stay-green 

remains unclear (Table 3-8).   

 Sorghum Stg1.1 was associated with a region for stay-green terminal in the NAM 

testcrosses on chromosome 8 (Table 3-8).  A maize candidate gene was identified in this 

region (Table 3-6).  GRMZM2G055219 (8:174,780,979-174,788,170) encodes (GC1): 

golgin candidate 1 (AT2G19950.2) (Table 3-6).  Very preliminary research suggests that 

golgin candidate 1 is involved in maintenance of the Golgi apparatus or tethering vesicles 

to the organelle (UniProt) (Table 3-8).
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Table 3-8 Stg1 QTL reported from the literature.  Genomic positions are generated through prediction of the linkage positions 
previously reported. 
 

 

 

 

 

 

 

 

 

Stg1 
QTL Pop Source allele Additive effect Flanking markers  Published symbol Publication 

Stg1.1 B35/Tx7000 B35 -6.403 bnl6.16/txs1114 Chl1 Xu et al 2000 
Stg1.2 B35/Tx7000 B35 0.071 bnl6.16/txs1114 Stg1 Xu et al 2000 
Stg1.3 B35/Tx7000 B35 0.2333 NPI414/bnl15.20 Stg1 Subudhi et al 2000 
Stg1.4 B35/Tx7000 B35 0.0205 NPI414/bnl15.20 Stg1 Subudhi et al 2000 
Stg1.5 IS9830/E36-1 IS9830 -4.4 umc7/txp114 %GL15 #1 Hausmann et al 2002 
Stg1.6 IS9830/E36-1 IS9830 -2.7 umc7/txp114 %GL30 #2 Hausmann et al 2002 
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Table 3-8 Continued 

 

 

 

 

 

 

Stg1 QTL LG CI Start CI End QTL size CI Start CI End QTL size LOD R^2 
Stg1.1 SBI-3 120.56 134.43 13.86 62,207,313 67,212,079 5,004,766 2.69 12 
Stg1.2 SBI-3 123.25 131.74 8.49 62,841,197 66,318,409 3,477,212 4.59 19.6 
Stg1.3 SBI-3 124.59 135.40 10.80 63,241,387 67,694,738 4,453,351 3.18 15.4 
Stg1.4 SBI-3 125.41 134.59 9.19 63,482,399 67,351,512 3,869,113 3.61 18.1 
Stg1.5 SBI-3 131.13 133.87 2.74 66,129,723 66,758,123 628,400 14.9 26.3 
Stg1.6 SBI-3 129.59 135.41 5.82 65,303,733 67,694,738 2,391,005 6.5 12.4 
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3.5.2 Characterization and Evaluation of Stg2 in Sorghum 

The sorghum Stg2 genomic region overlapped with maize markers on that were 

associated with stay-green terminal in the NAM RILs (Table 3-9).  Sorghum Stg2.2, 2.3, 

2.4, 2.5, 2.6 and 2.7 overlapped with maize markers associated with stay-green terminal 

on chromosome 4 (Table 3-9).  A single maize candidate gene was identified in this 

region (Table 3.5).  GRMZM2G131378 (4:36,040,438-36,042,330) encodes a glycerol-3-

phosphate acyltransferase 6 (AT2G38110.1 (ATGPAT6, GPAT6)) and the associated 

SNP was significant at a RMIP = 17 (Table 3-5).  GPAT6 is involved in cutin formation 

in plants, which is associated with cuticle formation (TAIR).   The cuticle, a waxy layer 

on the aerial surface of plants, is associated with water-use efficiency in plants, making it 

an interesting candidate for stay-green in maize and sorghum (Yoo et al., 2009). 

 Sorghum Stg2.1 and Stg2.2 also overlapped with maize markers associated with 

stay-green terminal on chromosome 3 (Table 3-9).  Two maize candidate gene were 

identified in this region (Table 3.5).  GRMZM2G041015 (3:217,692,785-

217,696,057/RMIP = 7) encodes an ABI-1-like protein (AT2G46225.2 (ABIL1)), and 

GRMZM5G856738 (3:217,700,066-217,705,147/RMIP = 7) encodes a calcium-

dependent protein kinase 6 protein (AT4G23650.1 (CDPK6, CPK3)) (Table 3-5). 

 The first candidate gene was abscisic acid insensitive 1 (ABI1).  ABI1 is involved 

in regulating and signaling global plant responses for growth and development (Leung et 

al., 1994, 1997).   This protein is involved in regulating stomatal aperture and mitotic 

activity in the root meristem and differs from other serine-threonine phosphatases 2C 

proteins by its possession of an amino-terminal extension with an EF hand calcium-

binding site (Leung et al., 1994, 1997).   This unique motif allows ABI1 to interact 
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intimately with calcium signaling and ties together ABA and calcium responses (Leung et 

al., 1994, 1997).  The ABI1 mutation is dominant, which made follow up experiments 

determining regulation characteristics difficult (Leung et al., 1994, 1997).   Further 

characterization of the ABI1 loci showed that this gene is a negative regulator of ABA 

responses in plants (Gosti et al., 1999).  ABI1 and homologous ABI2 wild type plants 

were tolerant to drought conditions, while mutant plants were susceptible to water-limited 

conditions (Chak et al., 2000).  ABA and its role in regulating plant responses to drought 

and senescence are well described, and ABI1 is a plausible candidate gene for stay-green 

in maize and sorghum.  

 The second candidate gene was a calcium-dependent protein kinase 6/EF-hand 

calcium domain.  These proteins contain a calcium activation domain and additional EF 

hand domains and have been implicated in multiple plant signaling and downstream 

transduction cascades of calcium responses.  CPK3 is involved in regulating guard cell 

ion channeling and is active in both the guard and mesophyll cells.  ABA is also involved 

in regulating the expression of CPK3, and double mutants of cpk3cpk6 exhibited 

impaired stomatal closing (Mori et al., 2003).  CPK3 is involved in salt-stress acclimation 

in arabidopsis through signal relay and transduction (Mehlmer et al., 2010).  Furthermore, 

CPK3 has been implicated in drought stress response in arabidopsis, whereby the 

inactivation of the gene expression led to a reduction of ion channel activation, impaired 

ability to sense ABA, and decreased stomata sensitivity to ABA (Kwak et al., 2002). 
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Table 3-9 Stg2 QTL reported from the literature.  Genomic positions are generated through prediction of the linkage positions  

 

 

 

 

 

 

 

 

Stg2 
QTL  Pop Source allele Additive effect Flanking markers  Published symbol Publication 

Stg2.1 SC56/Tx7000 SC56 0.146 txs584/csu58 Stg A Kebede et al 2001 
Stg2.2 B35/Tx7000 B35 0.0838 rz323/A12RFLP stg2 Subudhi et al 2000 
Stg2.3 296B/IS18551 296B 60.29 txp59/Stgnhsbm21 QGlaa-sbi03 Srinivas et al 2009 
Stg2.4 296B/IS18551 296B 3.54 txp59/Stgnhsbm21 QPglam-sbi03 Srinivas et al 2009 
Stg2.5 B35/Tx7000 B35 0.2677 wg889/txs584 stg2 Subudhi et al 2000 
Stg2.6 B35/Tx7000 B35 0.0703 wg889/txs584 stg2 Subudhi et al 2000 
Stg2.7 B35/Tx7000 Tx7000 -5.2845 wg889/txs584 stg2 Subudhi et al 2000 
Stg2.8 B35/Tx7000 Tx7000 -7.082 wg889/R Chl2 Xu et al 2000 
Stg2.9 B35/Tx7000 B35 0.089 wg889/R Stg2 Xu et al 2000 
Stg2.10 B35/Tx430 B35 0.27 txs307 SGA Crasta et al 1999 
Stg2.11 N13/E36-1 E36-1 2 11/49-320 / umc63 %GL45 #5 Hausmann et al 2002 
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Table 3-9 Continued 

 

 

 

Stg2 QTL  LG CI Start CI End QTL size CI Start CI End QTL size LOD R^2 
Stg2.1 SBI-03 71.11 83.89  12.78  55,204,764 56,500,632 1,295,868 2.63 10.2 
Stg2.2 SBI-03 79.06 90.94  11.88  55,814,195 58,046,499 2,232,304 2.65 14 
Stg2.3 SBI-03 82.05 97.95  15.91 56,228,544 58,305,138 2,076,594 2.65 6.1 
Stg2.4 SBI-03 83.53  96.47 12.94 56,443,470 58,281,040 1,837,570 2.6 5.2 
Stg2.5 SBI-03 85.82  94.18 8.358  56,775,084 58,252,295 1,477,211 3.66 19.9 
Stg2.6 SBI-03 87.15  92.85 5.696  56,993,522 58,240,511 1,246,989 5.52 29.2 
Stg2.7 SBI-03 86.32  93.68 7.359  56,856,140 58,252,295 1,396,155 5.44 22.6 
Stg2.8 SBI-03 92.15 98.85  6.71 58,234,385 58,305,138 70,753 5.6 24.8 
Stg2.9 SBI-03 92.76 98.24  5.49 58,234,385 58,305,138 70,753 6.23 30.3 
Stg2.10 SBI-03 92.88  98.82 5.94 58,240,511 58,305,138 64,627 6.6 28.6 
Stg2.11 SBI-03 92.06  104.94 12.88 58,234,385 59,052,530 818,145 2.8 5.6 
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3.5.3 Characterization and Evaluation of Stg3 in Sorghum 

The Stg3 locus of sorghum was detected in numerous genetic mapping studies 

(Table 3-10). This region also exhibited considerable overlap with QTL detected for stay-

green in maize (Table 3-4).   

The Sorghum Stg3 QTL overlapped with maize markers associated with the stay-

green anthesis trait on chromosomes 1 and 2 (Table 3-4). GRMZM2G110107 (2: 

185,690,953-185,695,004) encodes an indeterminate (ID)-domain 14 protein 

(AT1G68130.1 (AtIDD14,IDD14)) and was in the most significant SNP in the NAM 

RILs anthesis analysis with an RMIP of 47 (Table 3-4). Indeterminate (ID)-domain 14 

protein contains two splicing variants that differentially regulate starch metabolism in 

cold conditions in arabidopsis (Seo et al., 2011).  These proteins functioned to 

competitively inhibit starch metabolism.  Ultimately, Seo et al. proposed that IDD14 

generates a self-controlled regulatory loop that modulates starch accumulation in cold 

stress situations.  Furthermore, in conjunction with IDD15 and IDD16, IDD14 works to 

regulate lateral organ morphogenesis and gravitropism by encouraging auxin biosynthesis 

and transport in arabidopsis (Cui et al., 2013).  Phenotypic presentations of IDD proteins 

in this study included alter leaf shape, flower development, gravitropic responses, 

fertility, and plant architecture.  Thus these proteins, with the assistance of auxin, are 

regulating plant growth and development by targeting downstream proteins involved in 

anatomical plant formation, such as YUCCA5, TAA1, and PIN1 genes.  In conclusion, 

IDD14 and other indeterminate domains, are involved in regulating plant growth and 

development during the transition from vegetative to reproductive growth.  Ultimately, it 

is plausible that these genes are modulating stay-green expression at anthesis through 
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phytohormone regulation and expression of other plant growth and development-related 

gene families.  This domain genomically corresponds to sorghum Stg3.1-3.5 (Table 3-

10).  

GRMZM2G002131 (2: 186,183,204-186,187,268) is the second maize candidate 

that overlapped with Stg3 of sorghum (Table 3-4).  GRMZM2G002131 encodes a heat 

shock factor 4 protein (AT4G36990.1(AT-HSFB1,ATHSF4,HSF4,HSFB1)) and was the 

second most significant SNP in this study with an RMIP of 36 (Table 3-4).  Heat shock 

protein 4 is involved in regulating the expression of heat shock proteins in response to 

heat shock, but it did not have increased or decreased expression of heat shock protein 

(HSP) when overexpressed in arabidopsis (TAIR).   Detection of a heat-related gene such 

as HSP4 is not surprising due to excessive high temperatures present in the NAM RILs 

study in 2012.  This protein is genomically related to sorghum Stg3.3-3.7 (Table 3-10).  

GRMZM2G113840 is the third maize candidate that overlapped with Stg3 of 

sorghum (Table 3-4).  GRMZM2G113840 was identified on chromosome 1 with a RMIP 

of 18 (Table 3-4).  GRMZM2G113840 (1: 183,806,997-183,811,541) encodes a Sec14p-

like phosphatidylinositol transfer family protein (AT4G39170.1) (Table 3-4).  Sec14p-

like phosphatidylinositol transfer family protein was characterized in yeast as regulating 

lipid transport and phosphoinositide homeostasis (Mousley et al., 2007).  Translating this 

function into plants under abiotic stress suggests that this protein could be involved in 

manipulating the plant cell under water-deficit conditions to overcome cellular damage, 

thereby conferring stay-green.  The second candidate gene was a calcium-dependent 

protein kinase 6/EF-hand calcium domain.  These proteins contain a calcium activation 

domain and additional EF hand domains and have been implicated in multiple plant 
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signaling and downstream transduction cascades of calcium responses.  CPK3 is involved 

in regulating guard cell ion channeling and is active in both the guard and mesophyll 

cells.  ABA is also involved in regulating the expression of CPK3, and double mutants of 

cpk3cpk6 exhibited impaired stomatal closing (Mori et al., 2003).  CPK3 is involved in 

salt-stress acclimation in arabidopsis through signal relay and transduction (Mehlmer et 

al., 2010).  Furthermore, CPK3 has been implicated in drought stress response in 

arabidopsis, whereby the inactivation of the gene expression led to a reduction of ion 

channel activation, impaired ability to sense ABA, and decreased stomata sensitivity to 

ABA (Kwak et al., 2002) evidence, the exact relationship of this protein to stay-green at 

anthesis remains unclear. This protein is genomically related to sorghum Stg3.6-3.9 

(Table 3-10). 

The Sorghum Stg3 QTL also overlapped with maize markers associated with the 

stay-green terminal trait on chromosomes 2, 6, and 7 (Table 3-5). GRMZM2G156310 (6: 

115,546,691-115,548,383) is the maize candidate gene on chromosome 6 that encodes an 

alpha/beta-hydrolase superfamily protein (AT1G47480.1) and is closely linked to the 

third most significant SNP for this phenotype with a RMIP of 30 (Table 3-5).  Alpha/beta 

hydrolases are a large family of proteins involved in numerous plant functions.  It is 

unclear at this time what the specific function of this hydrolase would be in relation to 

stay-green. This protein is genomically related to sorghum Stg3.3-3.8 (Table 3-10).  

GRMZM2G473709 (2:217,008,458-217,009,689) is the maize candidate gene on 

chromosome 2 and encodes an ubiquinol-cytochrome c reductase complex 6.7 kDa 

protein (LOC_Os07g48244.1) (Table 3-5).  Ubiquinol-cytochrome c reductase complex 

6.7 kDa protein is located in the mitochondria of a plant cell and is involved in the 
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mitochondrial respiratory chain (TAIR).   It is related to sorghum Stg3.5-3.8(Table 3-10).  

No known function associated with an abiotic stress is reported for this protein. 

GRMZM2G137676 (7:119,973,818-119,976,271) is the maize candidate on chromosome 

7 and encodes a plant invertase/pectin methylesterase inhibitor superfamily 

(AT2G26450.1) (Table 3-5).  Plant invertases/pectin methylesterases are involved in 

demethylesterification of cell wall polygalacturonans (Micheli et al., 2001).  Most of 

these enzymes are at the beginning of the pectin biosynthetic pathway, where it is 

synthesized in the Golgi apparatus and secreted into the cell wall.  Additionally, in 

relation to abiotic stress, pectin methylesterases can regulate pectin structure through 

stem elongation, cellular adhesion, plasticity, pH, and ionic contents of the cell wall 

(Pelloux et al., 2007).   Thus pectin remodeling under an abiotic stress can be critical to 

survival of a plant.  Additionally, it highlights other association mapping results where 

Golgi apparatus genes were identified as significantly correlated with stay-green 

phenotypes in maize (Table 3-10).  Plant invertase/pectin methylesterase inhibitors have a 

direct role in regulating kiwi fruit development, carbohydrate metabolism, and cell wall 

extension (Giovane et al., 1995).  In wheat, pectin methyl esterases and their related 

inhibitors were regulated under stress responses by intron retention of different alleles 

(Rocchi et al., 2011).  French et al. (2014) identified a link between auxin, and cell wall 

invertases and inhibitors during grain development in rice.  The link between stay-green 

and end of season greenness is plausible based on the known genomic and physiological 

characterization of this gene (Table 3-10).  This specific plant invertase/pectin 

methylesterase inhibitor was detected in both the NAM RILs terminal and AMES 

terminal phenotypes genomewide association mapping studies. 
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 The Sorghum Stg3 QTL also overlapped with maize markers associated with the 

stay-green terminal trait of the NAM testcrosses (Table 3-6). A maize candidate gene was 

identified near marker on chromosome 7 that corresponds to Stg3.3, 3.4, and 3.6-3.8 

(Table 3-10).  GRMZM2G330690 (7: 171,482,361-171,486,120) encodes an ubiquitin-

specific protease 24 (AT4G30890.1(UBP24), RMIP = 6) (Table 3-6).  UBP24 is an 

uncharacterized, putative protein with no known physiological role in plants (Table 3-

10). 
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Table 3-10 Stg3 QTL reported from the literature.  Genomic positions are generated through prediction of the linkage positions 

 

 

 

 

 

 

 

 

 

Stg3 QTL  Pop Source allele Additive effect Flanking markers  Published symbol Publication 
Stg3.1 B35/Tx7000 Tx7000 -5.713 bnl15.40/umc5 Chl3 Xu et al 2000 
Stg3.2 QL39/QL41 QL41 - MB6-84/TS136 not named Tao et al 2000 
Stg3.3 B35/Tx7000 B35 0.0573 txs1307/umc5 stg3 Subudhi et al 2000 
Stg3.4 B35/Tx7000 B35 -4.4913 txs1307/umc5 stg3 Subudhi et al 2000 
Stg3.5 B35/Tx7000 B35 0.065 txs1307/umc116 Stg3 Xu et al 2000 
Stg3.6 B35/Tx7000 B35 0.0728 umc5/umc116 stg3 Subudhi et al 2000 
Stg3.7 N13/E36-1 N13 -1.4 txp1 / 14/61-115 %GL15 #3 Hausmann et al 2002 
Stg3.8 N13/E36-1 N13 -1.6 14/61-115 / 13/61-259 %GL30 #5 Hausmann et al 2002 
Stg3.9 N13/E36-1 N13 -2.5 14/61-115 / 13/61-259 %GL45 #4 Hausmann et al 2002 
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Table 3-10 Continued 

Stg3 QTL LG CI Start CI End QTL size CI Start CI End QTL size LOD R^2 
Stg3.1 SBI-02 114.77 125.23 10.46 60,089,659 61,594,335 1,504,676 2.86 15.9 
Stg3.2 SBI-02 121.49 128.51 7.03 60,438,145 61,675,900 1,237,755 3.71 14.5 
Stg3.3 SBI-02 123.59 133.10 9.50 61,412,988 62,121,125 708,137 3.49 17.5 
Stg3.4 SBI-02 121.64 135.069 13.41 60,450,213 62,383,481 1,933,268 2.8 12.4 
Stg3.5 SBI-02 123.39 133.60 10.20 61,324,258 62,193,365 869,107 3.34 16.3 
Stg3.6 SBI-02 124.08 139.62 15.54 61,572,631 63,435,887 1,863,256 1.9 10.7 
Stg3.7 SBI-02 130.64 145.36 14.72 61,754,092 65,036,819 3,282,727 2.5 4.9 
Stg3.8 SBI-02 131.78 144.22 12.44 61,923,733 64,284,484 2,360,751 3 5.8 
Stg3.9 SBI-02 134.20 141.79 7.592 62,261,965 63,634,080 1,372,115 4.9 9.5 
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3.5.4 Characterization and Evaluation of Stg4 in Sorghum 

The Stg4 locus of sorghum was detected in several genetic mapping studies 

(Table 3-11). This region also exhibited considerable overlap with QTL detected for stay-

green terminal in the NAM RILs and NAM testcrosses.   

The sorghum Stg4 QTL overlapped with maize markers associated with the stay-

green terminal trait on chromosomes 1 and 8. The candidate gene on chromosome 8 was 

detected in the NAM RILs (Table 3-5).  AC232238.2_FG008 (8: 166,713,976-

166,743,525; RMIP = 5) encodes a hemerythrin family protein (LOC_Os01g64250.1) 

(Table 3-5).  Hemerythrin proteins are involved in regulating oxygen and iron 

homeostasis in plant cells (TAIR).  Although it is well described in human and 

mammalian physiology, little characterization is known about hemerythrin in plant 

physiology.  This protein is genomically related to sorghum Stg4.2, 4.3, and 4.4 (Table 3-

11).  The candidate gene on chromosome 1 was detected in the NAM testcrosses (Table 

3-6).  GRMZM2G107395 (1:22,283,210-22,284,981; RMIP = 5) encodes a general 

regulatory factor 2 (AT1G78300.1(14-3-3OMEGA,GF14 OMEGA,GRF2)) (Table 3-6). 

General regulatory factor 2 is a G-box binding factor encoding a 14-3-3 protein, which is 

expressed in a variety of plant tissues throughout the growth and development of a plant 

(Denison et al., 2011).   14-3-3 proteins are a relatively small molecule family with 300 

individuals represented (Denison et al., 2011).  Denison et al., provides a summary of 14-

3-3 functions in plant growth and development.  Denison et al. (2011) show 14-3-3 

protein involvement in abiotic stresses through interaction with KAT1, ABFs, and H-

ATPases, biotic stress responses through APX3, MAPKKK, MAPKK, NtrBohD, 

RPW8.2, primary metabolism through protein interactions with GS, NR, SS, and SPS, 
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light responses through Hd3A/FT/SP, CO, and PHOT1, regulation of growth and cell 

division through EDE1, WEE1, CDC25, and PNek1, and finally related hormones ABF1, 

2, and 5, BRZ1 and BRZ2, VP1, RSG, and ABF3.  Needless to say, these proteins are 

critical in many plant stress responses and the list of functions will only continue to 

increase with further characterization of this gene family.  This protein is genomically 

related to Stg4.3 and 4.4 (Table 3-11).
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Table 3-11 Stg4 QTL reported from the literature.  Genomic positions are generated through prediction of the linkage positions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stg4 QTL  Pop Source allele Additive effect Flanking markers  Published symbol Publication 
Stg4.1 B35/Tx430 B35 0.14 txs713 SGJ Crasta et al 1999 
Stg4.2 B35/Tx7000 B35 0.056 txs713/rcb Stg4 Xu et al 2000 
Stg4.3 B35/Tx7000 B35 0.0305 txs387/csu166C stg4 Subudhi et al 2000 
Stg4.4 SC56/Tx7000 SC56 0.171 csu166/txs173 Stg J Kebede et al 2001 
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Table 3-11 Continued 
 

Stg4 QTL  LG CI Start CI End QTL size CI Start CI End QTL size LOD R^2 
Stg4.1 SBI-05 54.18  68.82 14.64 9,942,964 47,138,942 37,195,978 2.3 11.6 
Stg4.2 SBI-05 54.51 69.49  14.98  10,116,867 48,435,793 38,318,926 2.23 11.1 
Stg4.3 SBI-05 55.15  72.85 17.69  10,407,015 52,892,020 42,485,005 1.81 9.4 
Stg4.4 SBI-05 62.57 71.03  8.47 13,115,727 52,038,094 38,922,367 4.21 15.4 

 215 

 
 



  216 
 

Table 3-12 Summary of maize and sorghum stay-green associations for major sorghum stay-green QTL.  NAM RILs – A  
(Anthesis), NAM RILs – T (Terminal), and NAM TC (Testcrosses)  

Sb 
QTL 

Sb 
LG 

Sb Stg 
QTL 

Maize 
Population 

Maize Candidate 
Gene 

ZM 
LG 

Arabidopsis/Rice 
Ortholog Description RMIP 

Stg1 3 1.1 NAM RILs - A GRMZM2G700901 6 Os07g38760.1 HEAT repeat family protein, 
putative, expressed 9 

  1.1 – 1.4 NAM RILs - T  GRMZM2G124047 8 AT5G65760.1 Serine carboxypeptidase S28 9 

  1.1 - 1.4 
1.6 NAM TC GRMZM2G078933 9 AT5G58590.1 (RANBP1):RAN binding protein 

1 11 

  1.1 NAM TC GRMZM2G055219 8 AT2G19950.2 (GC1): golgin candidate 1 23 

Stg2 3 2.2 - 2.7 NAM RILs - T GRMZM2G131378 4 AT2G38110.1 (ATGPAT6,GPAT6): glycerol-3-
phosphate acyltransferase 6 17 

  2.1, 2.2 NAM RILs - T GRMZM2G041015 3 AT2G46225.2 (ABIL1): ABI-1-like 1 7 

  2.1, 2.2 NAM RILs - T GRMZM5G856738 3 AT4G23650.1 (CDPK6,CPK3): calcium-
dependent protein kinase 6 7 

Stg3 2 3.1 - 3.5 NAM RILs - A GRMZM2G110107 2 AT1G68130.1 (AtIDD14,IDD14): indeterminate 
(ID)-domain 14 protein 47 

  3.3 - 3.7 NAM RILs - A GRMZM2G002131 2 AT4G36990.1 (AT-HSFB1,ATHSF4,HSF4): 
heat shock factor 4 protein 36 

  3.6 - 3.9 NAM RILs - A GRMZM2G113840 1 AT4G39170.1 Sec14p-like phosphatidylinositol 
transfer family protein 18 

  3.3 - 3.8 NAM RILs - T GRMZM2G156310 6 AT1G47480.1 alpha/beta-hydrolase superfamily 30 

  3.5 - 3.8 NAM RILs - T GRMZM2G473709 2 Os07g48244.1 ubiquinol-cytochrome c reductase 
complex 6.7 kDa protein 7 

  3.1 NAM RILs - T GRMZM2G137676 7 AT2G26450.1 plant invertase/pectin 
methylesterase inhibitor 6 

  3.3 - 3.8 NAM TC GRMZM2G330690 7 AT4G30890.1 (UBP24): ubiquitin protease 24 6 
Stg4 5 4.2 - 4.4 NAM RILs - T AC232238.2_FG008 8 Os01g64250.1 hemerythrin family protein 5 

  4.3, 4.4 NAM TC GRMZM2G107395 1 AT1G78300.1 
(14-3-3OMEGA,GF14 

OMEGA,): general regulatory 
factor 2 
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Stg2 
Stg3 
Stg4 

NAM Testcrosses Terminal 
NAM RILs Terminal 
NAM RILs Anthesis 

Reported Sorghum Stay-green QTL 

 
 

Figure 3-1 Summary of genomic relationships between NAM stay-green terminal and anthesis phenotypes to reported sorghum 
linkage positions and Stg QTL.  All sorghum stay-green QTL are denoted as yellow bars on the figure.  Stg QTL are 
represented as linkage blocks and consist of several studies combined to encompass the maximum genomic representation.  
Annotated maize genic regions blasted into sorghum are represented for their respective populations.  Non annotated genes are 
not included.  Refer to Table 3-7 for the further information in regards to genomic representation of maize genes. 

 

 217 

 
 



  218 
 

3.5.5 Further Characterization of Stay-green in Maize and Sorghum 

We provide substantial evidence for a genomic and potential physiological 

relationship between maize and sorghum for stay-green under abiotic stress conditions.  

A summary of all maize annotated candidate genes associated with sorghum stay-green 

QTL is provided in Table 3-12 and Figure 3-1.  Our initial analysis potentially 

underestimates the amount of genomic relation between the two species.  Only annotated 

genes from two populations examining two phenotypes were used to compare against 

sorghum.  There are several unannotated genes that upon further characterization and 

genetic analysis could be regulating and modulating stay-green in maize and sorghum.  

Additionally, stay-green generally exhibited lower heritabilities than other traits makings 

it harder to detect comparative relationships between species.  However, improvements in 

phenotyping and modelling will enhance heritability of stay-green in the future.  

 Maize and sorghum on a cytogenetic level are similar, as maize is a duplicative 

genome compared to sorghum.  In an analysis of sorghum and maize flowering time 

(Mace et al., 2013), known QTL from maize were generally located in two positions on 

two chromosomes compared to a single location in sorghum.  In the characterization of 

stay-green, there appears to be similar trends with the duplicative genome of maize to 

sorghum albeit a weaker association.  Additionally, a comprehensive BLASTing protocol 

was used in these analyses, where maize genes were examined in the sorghum genome 

and only BLAST hits into genes were considered for potential associations between the 

two species.   

 Further genetic analysis is required to confirm and support the stay-green 

associations in maize and sorghum.  While sorghum contains a comprehensive genomic 
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database for stay-green characterization, these positions are massive in genomic size.  

Precise genetic mapping using new and more statistically powerful plant populations are 

needed to precisely narrow the genomic regions of stay-green to a more manageable size.  

Maize stay-green is less developed agronomically, physiologically, and genetically 

compared to sorghum.  More research is needed to confirm the genetic associations 

reported in this dissertation.  Additionally, better physiological and agronomic 

characterization is needed to understand the mechanisms of drought and yield that are 

either improved or non-advantageous in maize.  Improvements in phenotyping and 

agronomic characterization of stay-green in maize is needed to provide better genomic 

and agronomic support to compare to sorghum. 

 Validation studies are needed to confirm the candidate genes listed above.  Stg1-4 

are commercially relevant QTL for sorghum production in drought-stressed conditions.  

Knowing the genetic architecture of the trait allows plant breeders to select on a specific 

gene(s) and better characterize the agronomic advantages and disadvantages of stay-

green.  Substantial progress has been made in this area; however, fine mapping and 

characterization of major and subsequent minor stay-green QTL in sorghum presents an 

outstanding opportunity for crop improvement for challenging environments.  

3.6 Conclusion 

Maize and sorghum represent globally important cereals that are grown in a variety 

of challenging environments.  Both crops are grown in drought-prone environments and 

substantial research investments are supporting the development of climate resilient 

hybrids and varieties.  Additionally, the genetic relatedness of maize and sorghum 
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provides another angle for crop improvement, as comparative genomics becomes an 

increasing powerful tool for plant breeders. 

 Delayed plant senescence, also known as stay-green, is a commercially relevant 

trait in sorghum crop improvement and breeding in drought stress environments.  

Extensive genetic mapping has revealed four to six major genetic loci modulating the 

expression of the trait.  Phenotypic characterization of stay-green in maize revealed 

substantial genetic variation for multiple traits in the Nested Association Mapping 

populations and testcrosses. 

 Stay-green at anthesis and terminal are critical components of stay-green sorghum 

cultivars and were characterized in maize.  Leveraging candidate genes from linkage 

disequilibrium blocks in maize uncovered substantial genomic relationships for stay-

green QTL reported in sorghum.  Furthermore, major sorghum Stg1, Stg2, Stg3, and Stg4 

displayed maize representation in one or more populations and phenotypes. Further 

validation and characterization of sorghum and maize stay-green relationships is 

warranted to understand the genetic and agronomic value of breeding for drought stress 

tolerance.   
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CHAPTER 4. GENETIC CONSTITUTION OF MAIZE PREMATURE SENESCENCE 
THROUGH SINK-INHIBITION 

4.1 Abstract 

The demand for climate resilient crops for environmental extremes continues to 

increase globally.  Drought and other abiotic stresses during maize reproduction can 

result in an extended lag period between anthesis and silking resulting in lower yields.  

B73 is a major contributor to the seed parent heterotic pattern in elite maize breeding 

programs.  However, it is susceptible to abiotic stress conditions.  B73 rapidly and 

prematurely senesces when pollination is disrupted.  We examined the phenotyping 

protocols of ear removal and pollination inhibition to disrupt seed set in maize.  The onset 

of the hyper-senescence phenotype occurred 800 GDDs post anthesis and was initiated 

from the top of the plant before descending downward.   Complete senescence occurs 

within four to six days of the onset of the phenotype.  Our studies showed no significant 

difference in early onset senescence between ear removal and inhibition treatments in 

maize, while both forms are significantly different compared to open-pollinated plants.  

These results suggest that absence of pollination of the ear initiates varying plant 

responses, resulting in different forms of remobilization and senescence in maize.  We 

characterized the inheritance of this premature hyper-senescence phenotype in the Nested 

Association Mapping (NAM) population of maize.
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Association mapping in the NAM population identified genes involved in regulating 

genes involved in light perception and signal transduction. FAR1 (far-red light), CRY1 

and NPH3/BTBN NYP1 (blue light), and DLF1 and APRR5 (red light interaction with 

auxin) in tandem with COP1 (second level of light regulation and signal – all three types 

of light modulate COP1 expression) were associated with expression of the premature 

senescent phenotype.  These results suggested a potential model for premature 

senescence in maize involving light perception and signaling with auxin.  We propose 

that light signaling interacts with DFL1, a rapidly induced auxin-responsive gene known 

to interact with COP1, Spotted Leaf Protein 11, and light regulating genes involved in 

photomorphogenesis and skotomorphogenesis to orchestrate the premature senescence 

phenotype.  In this model, plants sense the lack of remobilization to the sink during 

shortening days and produce auxin to induce the expression of SPL11 and 

skotomorphogensis.  Further characterization of the premature senescence phenotype is 

critical in understanding the role of these candidate genes.  Selection against allele(s) for 

premature senescence in B73 presents a substantial opportunity to enhance active 

breeding germplasm to engineer climate resilient crops 

4.2 Introduction 

Effects of climate variability constrain global agricultural production and food 

security.  Extreme weather and climate events such as excess heat, drought and flooding 

negate potential positive plant improvements (Easterling et al., 2007).  Food demand is 

expected to double within the next 30 years, and the effects of climate change will impact 

the ability of scientists to combat the detrimental outcomes of adverse environmental 

conditions (Foley et al., 2011).  Abiotic stress events already have major socioeconomical 
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and economic impacts on crop production throughout the world (Bänziger et al., 2006).  

Scientific efforts to adapt crops to climate variability have been slowed by the complexity 

of breeding for both yield and abiotic stress adaptation traits in crop plants (Bruce et al., 

2002; Duvick, 1997).  Nevertheless, production has continued to increase despite these 

challenges (FAOSTAT).  As global demand for food crops continues to increase, efforts 

to understand the biochemical and genetic elements of abiotic stress tolerance will be 

critical in mitigating future challenges. 

Maize is most susceptible to drought stress during flowering as the plant is 

reaching peak water-use.  Grain yield of maize is nearly double under optimal conditions 

compared to maize under flowering or grain-fill drought stress (Duvick et al., 2004b).  

Water stress during the grain fill period leads to increased leaf senescence, loss of 

photosynthetic activity, reduced dry matter accumulation, and reduced yield resulting 

from lower kernel weights (Baker et al., 2005; Caker, 2004).  Additionally, maize lines 

under drought stress exhibit extended anthesis-silking intervals (ASI), which have a high 

negative correlation with yield.  This coincides with the increased water use necessary for 

maize reproductive physiology (Bolanos and Edmeades, 1993; 1996). 

Maize senescence is a highly regulated process and during an extended ASI, 

pollination of the sink is missed.  The lack of a sink can initiate premature senescence in 

maize that is genotype dependent.  Some genotypes will prematurely senesce in the 

absence of a sink, while others will continue to undergo normal senescence rates (Crafts-

Brander et al., 1984).  

Crafts-Brandner et al. (1984) described a form of rapid, premature senescence 

associated with maize ear removal.  They observed a premature senescence, beginning in 
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the upper leaves of maize hybrids, when the ear was physically removed. After 25 days 

post-anthesis, a reddish discoloration occurred in plants with no ear in B73xMo17 

hybrids, while alternate hybrids remained green throughout grain fill even after the 

removal of the sink.  Metabolomics data of B73xMo17 hybrids showed an accumulation 

of carbohydrates in the leaves and a loss of nitrogen from the leaves with the cessation of 

nitrate uptake.  Nitrogen flux was examined in a follow-up study by observing the leaf 

above the ear over a set period of days after anthesis.  They observed the loss of nitrate 

reductase activity, reduced nitrogen, and lower carboxylating enzyme activity which 

appeared to be regulated during the premature senescence.  They concluded that the rate 

of nitrogen flux was a regulating factor for the phenotype but could not rule out effects of 

growth regulators and other metabolites as possible explanations of the premature 

senescence phenotype (Crafts-Brandener et al., 1984).   

Sekhon et al. (2012) conducted a transcriptional and metabolic analysis of the 

premature senescence phenotype through pollination prevention of B73.  They observed 

an increase in free glucose and starch occurring with the loss of chlorophyll 12 days after 

anthesis from the highest ear-leaf.  Whole plant gene transcription changed with the onset 

of premature senescence at 24 DAA and internodal gene transcription changed at 30 

DAA.  

We characterized a subset of the Nested Association Mapping (NAM) population 

of maize for sink-inhibited senescence phenotypes.  Understanding the genetic bases of 

this phenotype is relevant in hybrid production systems where premature senescence can 

devastate yields under prolonged ASI.  We hypothesize that there are different alleles 
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controlling the expression of this trait and genetic modifiers regulating the expression of 

the phenotype in the NAM populations of maize. 

4.3 Materials and Methods 

4.3.1 Genetic Materials and Experimental Design 

4.3.1.1 Genome-wide Mapping Experiment 

We evaluated 1295 NAM RILs representing 24 of the 25 NAM families 

excluding Hp301.  RILs from each NAM family were selected based on flowering 

relative to B73.  Lines were selected with equal representation of each RIL family in the 

experiment.  RILs were evaluated at flowering using Ratio Vegetation Index (RVI) on a 

family average basis and measured again on a family basis at 800 GDDs post-anthesis.   

4.3.1.2 Comparison of Sink-Inhibition and Removal 

B73 (rapid senescence pattern) and Mo17 (normal senescence pattern) genotypes 

were used to study the effects of sink-inhibition and ear removal on premature 

senescence. 

4.3.2 Phenotypic Evaluation for Sink-Inhibited Senescence 

4.3.2.1 Genome-wide Mapping Experiment 

Field trials were conducted in 2012 and 2013 at the Agronomy Center for 

Research and Education in West Lafayette, Indiana USA.  Trials were planted on May 6, 

2012 and May 20, 2013.  RILs were planted as single-row plots 3.81 m in length with 

0.76 m alleys between ranges and 0.76 m spacing between the rows.  Trials were laid out 

in a randomized complete block design with two replications per year.  NAM families 

were nested and randomized within replications and lines were randomized within each 
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NAM family.  Each family contained two checks: B73 as a field check and a purple-

maize line as a planting check. 

Characterization of sink-inhibited senescence required the shoot-capping (glassine 

bags) of three random plants per plot to prevent pollination of all ears.  Plants were 

phenotyped for ratio of vegetation index (RVI) using a CCM-200 chlorophyll meter 

(Opti-Sciences, Inc.) at 800 GDD after anthesis.  Three non-shoot-capped (NSC) plants 

were measured for RVI along with three shoot-capped (SC) plants per plot.  Each plant 

was measured at the leaf above the ear-leaf, midway between the leaf tip and collar and 

between the midrib and leaf edge.  Open-pollinated Senescence (OPS), Shoot-cap 

Induced Senescence (SIS), Senescence Difference (SD), and Senescence Ratio (SR) were 

calculated and used as senescence phenotypes as described in Table 4-1. Plot scores was 

calculated as the mean of each trait measured at 800GDDs post silking. GDDs were 

calculated using Method 2 from McMaster and Wilhelm (McMaster and Wilhelm, 1997). 
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Table 4-1 Sink-inhibited senescence phenotypes collected in the NAM RILs 

Senescence Phenotype Measurement Time Points Calculation  
Open-pollinated 

Senescence (OPS) RVI of open-pollinated plants at 800 GDDs RVI at 800GDDs 

Shoot-cap Induced 
Senescence (SIS) RVI of shoot-capped plants at 800 GDDs RVI at 800GDDs 

Senescence Difference 
(SD) 

Shootcapped RVI at 800 GDDs       Non-
shootcapped RVI at 800 GDDs 

RVI of open-pollinated plants -  
RVI of shoot-capped plants 

Senescence Ratio (SR) Shootcapped RVI at 800 GDDs       Non-
shootcapped RVI at 800 GDDs 

(RVI of open-pollinated plants - RVI of 
shoot-capped plants)/ RVI of open-

pollinated plants 
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4.3.2.2 Comparison of Sink Inhibition and Removal  

A field trial was conducted to compare senescence phenotypes of plants allowed 

to open pollinate (open-pollinated), plants with ears removed (sink-removal), and plants 

with ears shoot-capped to inhibit pollination (sink-inhibition).  The trial was planted on 

May 20, 2013 at the Agronomy Center for Research and Education in West Lafayette, 

Indiana USA in 2013.  B73 and Mo17 were planted as single-row plots 3.81 m in length 

with 0.76 m alleys between ranges and 0.76 m spacing between the rows with five 

replications.  Nine plants were randomly selected for comparison in each plot.  Three 

plants were tagged and were allowed to open pollinate, three plants were shoot-capped to 

inhibit pollination, and three plants had their ear(s) removed.  Individual plants were 

phenotyped for ratio of vegetation index (RVI) using a CCM-200 chlorophyll meter 

(Opti-Sciences, Inc.) at 800 GDD after anthesis as described above. 

4.3.3 General Weather Information 

During the 2012 growing season, Indiana experienced the 10th warmest year in 

118 years of records.  Conversely, the 2013 growing season was moderate with Indiana 

experiencing the 64th warmest year in 119 years of records.  Indiana had the 15th driest 

year on record in 2012 and the 85th driest year on record in 2013.  According to the 

Drought Monitor (http://droughtmonitor.unl.edu), West Lafayette started the growing 

season in 2012 in a D1 drought situation.  By the end of May, the drought progressed into 

a D2 situation and this condition persisted through the month of June.  By the end of July, 

West Lafayette had deteriorated into a D3 drought.  By the end of August, the drought 

conditions only slightly improved to a D2 situation.  In 2013, the effects of the 2012 

drought were no longer present, and West Lafayette started the season in a non-drought 
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condition.  This condition endured through the end of July.  However, by the end of 

August, West Lafayette was on the verge of a D1 drought condition (Drought information 

- United States Drought Monitor; Weather information – NOAA). 

4.3.4 Genotypic Information 

Joint-linkage mapping was conducted using a genetic map with 1 cM resolution 

based on GBS v2.3 SNPs available at www.panzea.org.  For association mapping, 

HapMapV2 SNPs (Chia et al., 2012) were projected onto the NAM RILs based on 

linkage information.  HapMap V2 consists of random-sheared, paired-end Illumina GAII 

reads from 103 maize inbreds, teosinte, and landraces with 4-30x coverage.  Overall, 55+ 

million SNPs and indels were generated for genetic analyses. For each SNP, the values 

for a RIL were assigned based on the SNP value of the RIL parents and on the genotype 

of the flanking NAM markers in that RIL. 

4.3.5 Statistical Analyses 

4.3.5.1 Spatial Analysis for Best Linear Unbiased Estimators (NAM RILs) 

A combined mixed model across years was fitted for the NAM experiment.  Best 

Linear Unbiased Estimators (BLUE)s were calculated to account for year and field 

effects using a weighted multivariate mixed model in ASReml (ASReml 3.0, VSN 

International).  Within the model, the effects of blocks, rows, ranges, replications, and 

number of observations per plot were fit to identify the best model as appropriate.  

Additionally, first-order autoregressive for range and row were included as needed in the 

populations for spatial correction.  When appropriate, likelihood ratio tests or Akaike’s 

Bayesian Information Criteria for the random effects or the F-tests for the fixed effects 

were used to identify which factors were significant for a given phenotype and thus were 
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retained in the model.  When statistical comparisons between different models were not 

possible, the best model was chosen based on the highest significance for the variety F-

test and the lowest pairwise variety mean comparison standard error. 

4.3.5.2 Heritability Calculations 

Heritabilities were calculated on a plot and mean basis for all populations (Hung 

et al., 2011).  Plot-basis heritabilities were calculated on the entire NAM population, 

using the following general equation which was modified to correctly account for the 

number of families, individuals, and environment used in each population: 

h2
p = 

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126 ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝
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𝑝𝑝=1

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126  ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝
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𝑝𝑝=1 + 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒∗𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

2 + 𝜎𝜎∈ 
2  

Line-mean heritabilities were calculated for the NAM experiment using an 

equation described by Cullis et al., (2006) shown below.  We modified this equation to 

correctly account for the number of families, individuals, and environment used in each 

population: 

h2
c = 1 -  𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃

2 �𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅∗𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

2 �
 

In the equation above, VPPE is the average prediction error variance for all 

possible pairwise comparisons, which includes the checks, obtained directly from the 

ASReml prediction output. 

Line-mean heritabilities were calculated using a modified form of the following 

equation to correctly account for the number of families, individuals, and environment 

used in each population: 

h2
l = 

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126  ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝

226
𝑝𝑝=1

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2  + 126  ∑ σ𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑝𝑝

226
𝑝𝑝=1 + 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒∗𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 
2

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒(𝑙𝑙)
+ 𝜎𝜎∈ 

2

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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Harmonic means were used to account for unbalanced data in the experiment.  

Nenvl is the harmonic mean of the number of environments in which each RIL was 

observed and nplot is the harmonic mean of the total number of plots in which each RIL 

was observed. 

For equations h2
l and h2

p, heritability equations were calculated based on the 

model selection for an individual trait.  Some components for heritability were not 

calculated in the model selection and therefore were not included in the heritability 

calculations. 

4.3.5.3 Joint-Linkage Stepwise Regression (NAM RILs) 

QTL identification utilized a joint stepwise regression model described by 

Buckler et al., (2009) for mapping flowering time traits in the NAM populations.  This 

method combines all NAM families evaluated to test for QTL associated with a given 

trait.  To account for variation associated with maturity, the residual of the model: 

y = b0 + b1×DTA + ε 

y is the BLUE of the stay-green trait and days to anthesis (DTA) is the covariate.  b0 is 

the intercept estimate and b1 is the slope estimate.  ε is the residual. 

Backward stepwise selection in Tassel 4 (Bradbury et al., 2007) was used to 

determine which markers would be selected or removed from the model.  Permutation 

analyses were used to determine the p-value threshold by permuting RVI values for a 

phenotype 1000 times.  The lowest p-values of a single marker scan were collected after 

each permutation and a threshold p-value was determined at an experimental α of 0.05. 

QTL were identified using a genome-wide joint linkage scan where significant 

markers from the stepwise regression were used as covariates in the model when 
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analyzing family and marker within family as fixed effects.  The joint-linkage protocol 

removed covariates in the model when a marker was within 10cM of the original 

covariate markers.  QTL intervals were determined using a 0.01 confidence interval. 

4.3.5.4 Genome-wide SNP Association 

 We used the statistical power of the NAM to leverage both the ancestral 

recombination events from the diversity of the founders and the linkage of individual 

recombinant inbred populations to conduct genome-wide association for premature 

senescence.  Using HapMapV2, we projected SNPs onto the RIL progeny using linkage 

marker information and pedigree knowledge which is described in detail in section 4.3.4.  

The protocol used for the GWAS followed the one proposed by Tian et al. (2012). 

For the first step, individual chromosome residuals for each trait were calculated from a 

model where the population term and all significant markers from the joint-linkage 

analysis in the other chromosomes were fitted against the mapping trait. Later, those 

residuals were used as phenotypes and fit into 100 stepwise linear models using a 

bootstrapping resampling protocol.  Bootstrap posterior probability (BBP or RMIP) 

corresponding to how many times a SNP was deemed significant out of the 100 total runs 

was calculated as the test statistic.  Each of these 100 model runs were analyzed using 

80% of the genotypes randomly subsampled from the population. 

4.3.5.5 Statistical Analysis of Sink-Inhibition versus Ear Removal  

PROC ANOVA (SAS 9.3, SAS Institute) was used to compare senescence 

phenotypes of B73 and Mo17 with open-pollinated, sink-removal, and sink-inhibition 

treatments.  Least-significant difference values were calculated for each genotype and 

treatment with an alpha of 0.05.   
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4.3.5.6 Linkage Disequilibrium Analysis 

Linkage disequilibrium (LD) was examined using TASSEL 5.0 and published 

NAM and AMES GBS SNPs.  R-squared and p-values were generated using this 

software.  LD was examined 20 kb in each direction of the SNP association for an 

individual population.  From the NAM population, linkage disequilibrium was examined 

using the NAM HapMapV2 SNPs available at www.panzea.org.   

4.4 Results 

4.4.1 Sink Removal versus Sink Inhibition  

We examined the RVI phenotypes of B73 and Mo17 with open-pollinated, sink-

removal, and sink-inhibition treatments (Figure 4-1).  We observed no significant 

differences between sink-removal and sink-inhibition treatments indicating a similar 

physiological response for premature senescence in both genotypes (Tables 4-2, 4-3).  

The RVI values of plants with sink-removal and sink-inhibition treatments were 

significantly lower than open-pollinated plants with normal ear development.  For B73, 

we observed a high RVI score in the open pollinated plants but RVI values were 

significantly lower in plants with ear covered or ear removed. A similar pattern was 

observed in Mo17 where the RVI values of open pollinated plants was significantly 

higher than plants with ear covered and ear removed. However, the RVI values for both 

removal types were higher in Mo17 than B73 indicating a slower rate of premature 

senescence. 

 
 



  234 
 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

50

Open Pollinated Sink-Inhibition Sink-Removal

R
V

I

Mechanism of Sink Inhibtion

B73

0

5

10

15

20

25

30

35

40

45

Open Pollinated Sink-Inhibition Sink-Removal

R
V

I

Mechanism of Sink Inhibition 

Mo17

Figure 4-1 Comparison of RVI values of B73 and Mo17 plants with open-pollinated, sink-removal, and sink-
inhibition treatments.  Error bars indicate least significant difference (LSD) between treatments. 
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Table 4-2 Analysis of Variance Table for the B73 genotype comparing open pollinated, ear covered, and ear removal treatments.   

B73 ANOVA and Pairwise Multiple Comparisons 
Source DF Sums of Squares Mean Square F-Value Pr > F 

Treatment 2 12114.27 6057.14 152.49 <0.0001 
Error 38 1509.41 39.721   

Corrected Total 40 13623.67    
      

R-Square Coeff Var Root MSE B73 Mean   
0.889 33.97 6.302 18.55   

     
Treatment Comparison Difference between Means 95% Confidence Limits   

Open-pollinated vs Sink-inhibition  33.480 28.645 38.315 ***  
Open-pollinated vs Sink-removal 37.572 32.738 42.407 ***  
Sink-inhibition vs Sink-removal 4.092 -0.912 9.097   

*** Significant at 0.001 
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Table 4-3 Analysis of Variance Table for the Mo17 genotype comparing open pollinated, ear covered, and ear removal treatments.   

*** Significant at 0.001 

 

Mo17 ANOVA and Pairwise Multiple Comparisons 
Source  DF Sums of Squares Mean Square F-Value  Pr > F 

Treatment 2 2504.414 1252.21 29.37 <0.0001 
Error 41 1748.217 42.64   

Corrected Total 43 4251.63    
      

R-Square Coeff Var Root MSE Mo17 Mean   
0.589 29.43 6.53 22.19   

     
Treatment Comparison Difference between Means 95% Confidence Limits   

Open-pollinated vs Sink-inhibition  17.500 12.685 22.315 ***  
Open-pollinated vs Sink-removal 13.413 8.512 18.313 ***  
Sink-inhibition vs Sink-removal 4.087 -0.813 8.988    
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4.4.2 Phenotypic Correlations in the NAM RILs  

Days to anthesis and silking were significantly correlated (Table 4-4).  These 

flowering traits were also significantly correlated with the senescence traits described in 

Table 4-3.  OPS, SD, and SR were negatively correlated with flowering time traits while 

SIS was positively correlated.  Each of the senescence traits was significantly correlated 

with one another.  OPS, SD, and SR were positively correlated with each other and 

negatively correlated with SIS.  SD and SR exhibited very high positive correlations and 

very high negative correlations with SIS (Table 4-4). 
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Table 4-4 Phenotypic correlations of flowering time and senescence phenotypes in the NAM RILs  

 

 Days to 
Anthesis 

Days to 
Silking SR SIS SD 

      
Days to Silking 0.93136     

 <.0001     
      
      
      

SR -0.34008 -0.37431    
 <.0001 <.0001    
      
      

SIS 0.19417 0.21324 -0.76183   
 <.0001 <.0001 <.0001   
      
      

 SD -0.39445 -0.42458 0.88983 -0.64924  
 <.0001 <.0001 <.0001 <.0001  
       
      

OPS -0.2101 -0.22682 0.08824 0.46802 0.3533 
  <.0001 <.0001 0.0009 <.0001 <.0001 
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4.4.3 Sink-inhibited Senescence Heritabilities  

Significant genetic variation was detected for all sink-inhibited senescence 

phenotypes (Appendix B – ASReml Output; Appendix C – Phenotypic Distribution of 

Sink-Inhibited Senescence Phenotypes).  Heritabilities were calculated for all sink-

inhibited senescence phenotypes on a line-means basis and a plot basis depending on the 

population.  SIS NSC, difference, and ratio contained mixed heritabilities.  Substantial 

variation is introduced when combining two different phenotypic responses (shootcapped 

and non-shootcapped) in the SIS ratio and difference phenotypes.  As seen in stay-green 

in chapter two, confounding factors of maturity can influence the heritability of non-

shootcapped ears resulting in lowering heritabilities.  Heritabilities were generally high 

for SIS SC as the phenotype is extremely penetrant in the NAM.  Heritabilities for all 

phenotypes are recorded in Table 4-5. 

Table 4-5 Heritabilities of the senescence traits measured in the NAM RILs.  Plot and 
line-means heritabilities were calculated for the respective populations. 

 

4.4.4 Genome-wide Association Results 

4.4.4.1 Senescence Difference (SD) 

Senescence Difference (SD) is a normally distributed phenotype with values 

ranging from -34.33 to 80.  Significant genetic variation was associated with this trait (P 

= <0.001, F = 5.57).  Joint-linkage analysis identified five QTLs for SD on chromosomes 

1, 2, 4, 5, and 9 and explained 36.4% of the phenotypic variation associated with the trait. 

Permutation analysis was conducted to determine threshold values for each trait using 

NAM RILs OPS SIS SD SR 
Plot-Basis (Hung et al) 0.2531 0.8362 0.2616 0.2378 

Line-Means Basis (Cullis et al) 0.365 0.9646 0.5324 0.8301 
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1000 random iterations.  The QTL identified were used as cofactors within the 

association mapping model.  There were 69 SNP associations identified in the model with 

a RMIP statistic > RMIPx100 = 4.  Candidate genes were identified in a genomic interval 

of 20,000 bp flanking the significant SNP.  Linkage disequilibrium was examined for all 

candidate SNPs using TASSEL 5.0 to identify genomic regions with linkage blocks 

extending past the 20,000bp window (Figure 4-2). 
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Figure 4-2 Manhattan plot of SNPs associated with senescence difference in the NAM RILs.  SNPs with a RMIP > 4 are shown as 
purple dots.  Joint-linkage QTL used as cofactors in the association mapping model are shown as orange bars. 

 

 

 

 

 

 241 

 
 



  242 
 

4.4.4.2 Senescence Ratio (SR) 

Senescence Ratio (SR) is a normally distributed phenotype and utilizes the OPS 

value to standardize the data.  Standardized values measure the rate of premature 

senescence rather than difference only which examines the difference in chlorophyll 

content that could be associated in hyper-senescence or normal senescence. Significant 

genetic variation was associated with this trait (P = <0.001, F = 5.58).  Joint-linkage 

analysis identified four QTLs for SR on chromosomes 1, 2, 4, and 5 and explained 31.2% 

of the phenotypic variation associated with the trait. Permutation analysis was conducted 

to determine threshold values for the trait using 1000 random iterations.  QTL identified 

were used as cofactors within the association mapping model.  Candidate genes were 

identified in a genomic interval of 20,000 bp flanking the significant SNP which is 

roughly the LD block for equal SNP coverage across the maize genome.  Linkage 

disequilibrium was examined for all candidate SNPs using TASSEL 5.0 to identify 

genomic regions with linkage blocks extending past the 20,000bp window (Figure 4-3). 
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Figure 4-3 Manhattan plot of SNPs associated with senescence ratio in the NAM RILs.  SNPs with a RMIP > 4 are shown as 
orange dots.  Joint-linkage QTL used as cofactors in the association mapping model are shown as purple bars. 
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4.4.4.3 Sink-Induced Senescence (SIS) 

Shoot-cap Induced Senescence (SIS) is a normally distributed phenotype.  Joint-

linkage analysis identified six QTLs for SIS located on chromosomes 1, 2, 3, 4, 8, and 10 

and explained 38.3% of the phenotypic variation associated with the trait.  Significant 

genetic variation was associated with this trait (P = <0.001, F = 4.92).  Permutation 

analysis was conducted to determine threshold values for the trait using 1000 random 

iterations.  The QTL identified were used as cofactors within the association mapping 

model.  Candidate genes were identified in a genomic interval of 20,000 bp flanking the 

significant SNP which is roughly the LD block for equal SNP coverage across the maize 

genome.  Additionally, linkage disequilibrium was examined for all candidate SNPs 

using TASSEL 5.0 to identify genomic regions with linkage blocks extending past the 

20,000bp window (Figure 4-4). 
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Figure 4-4 Manhattan plot of SNPs associated with shootcap senescence in the NAM RILs.  SNPs with a RMIP > 4 are shown as 
purple dots.  Joint-linkage QTL used as cofactors in the association mapping model are shown as orange bars. 
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4.5 Discussion 

Premature senescence under abiotic stress presents an agronomic challenge to plant 

breeders.  Advancements in the development of climate resilient crops continue to 

positively impact crop improvement as specific plant populations are developed to 

rapidly dissect complex traits.  The NAM panel provides an excellent platform for rapid 

analysis of diverse germplasm for a variety of climate variability-associated traits (Yu et 

al., 2008, Buckler et al., 2009).  As discussed previously, the backbone of the NAM 

population, B73, exhibits a form of premature senescence associated with the absence of 

pollination (Crafts-Brander et al., 1984).  Therefore, dissecting the genetic nature of this 

form of premature senescence is simply obtained by the extreme expressivity of the trait.  

Additionally, the phenotype is interesting to many plant breeders due to the substantial 

genetic contribution of B73 to the temperate maize female heterotic pool (Mikel et al., 

2006).    

 Evaluating and phenotyping sink-inhibited senescence in the NAM is a daunting 

endeavor.  The NAM population is large and multiple replications are needed to create 

enough power for association mapping.  Additionally, it takes a group of individuals to 

manually remove or shootcap all ears over multiple weeks to accurately produce the 

premature senescent phenotype.  It is critical that all sinks are covered on the plant to 

eliminate confounding factors and obtain the phenotype.  Prior to this study, the scientific 

community was ambiguous concerning sink removal compared to inhibition via 

shootcapping to initiate the desired plant phenotype (Crafts-Brander et al., 1984, Sekhon 

et al., 2012).   However, in this study we demonstrate that there is no difference between 

shootcapping and removing the ear on plant senescence. 
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 Flowering time can potentially confound premature senescence in an experiment 

representing genetically diverse populations.  Therefore, we reduced the number of lines 

used in the experiment to individuals that flowered within a week of B73. We 

additionally ensured that there was an equal representation of individuals within each 

NAM family.  Finally, we used days to anthesis as a covariate to account for statistical 

variation associated with flowering. 

4.5.1 Sink Removal versus Inhibition  

Crafts-Brandner et al. (1984) were the first to report on premature senescence in 

B73 inbreds and hybrids associated with ear removal.  Additionally, they identified 

hybrids and inbreds that did not exhibit the premature senescence phenotype.  However, 

no discussion was given to potential physiological and genetic responses of manual sink 

removal such as wounding and altered carbon partitioning.   

 There may be physiological differences between removing and inhibiting the sink 

of maize that could elicit differing premature senescent responses.  Physical ear removal 

can elicit a wounding response in the plant, leading to altered plant metabolism and 

carbon partitioning as well as reallocation of metabolic energy to create a new sink.  

Inhibiting kernel set by shoot capping can alter plant metabolism and carbon partitioning 

in a different manner than ear removal.  Additionally, inhibition with a shootcap blocks 

or filters the reception of light in the plant and can create a different physiological 

response from altering plant metabolism. 

 We report that there are no significant differences in senescence patterns of plants 

with ears removed and plants with unpollinated ears in B73 and Mo17 based on RVI at 

800 GDDs after flowering (Table 4-2, Table 4-3).  There is no immediate need to test for 
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the phenotype in hybrid combinations since Craft-Brander et al. (1984) demonstrated the 

premature-senescence phenotype in B73xMo17 hybrids.  Therefore, sink removal and 

sink inhibition produce similar premature senescence phenotypes. 

 Significant differences in senescence were observed between open-pollinated 

plants with normal sink development, unpollinated plants with ears covered by shoot 

caps, and unpollinated plants with ears physically removed (Table 4-2, Table 4-3).  Mo17 

plants displayed no visibly premature senescent phenotype and maintained a higher level 

of chlorophyll content in unpollinated plants with ears covered by shoot caps and 

unpollinated plants with ears physically removed (Table 4-3, Figure 4-1).  B73 displayed 

a similar trend; however, sink-impaired B73 plants had lower chlorophyll content than 

Mo17 and presented a premature senescent phenotype (Table 4-2, Figure 4-1).  It is 

reasonable to expect that some form of genetic variation is modulating the premature 

senescent phenotypes in Mo17 and B73.  It is agronomically advantageous to maintain 

chlorophyll content and delay senescence in absence of pollination, especially in stress 

periods of extended anthesis-silking intervals.    

4.5.2 Identification of Candidate Genes in the Nested Association Mapping Panel 

The NAM panel provides an excellent platform for dissecting complex traits in 

maize, especially traits specific to B73.  B73 is a major contributor to the United States 

female heterotic pattern and commonly used in elite temperate hybrids (Mikel et al., 

2006).  Therefore, identifying traits associated with agronomic characteristics specific to 

B73 can shed insight on potential breeding objectives for crop improvement such as 

premature senescence.  All candidate genes linked to SNPs associated with the premature 
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senescence phenotypes are shown in Appendix D-1. In this section, we highlight selected 

genes that might be associated with senescence observed in the NAM population. 

4.5.2.1 Spotted leaf protein 11 – GRMZM2G341166 

Spotted leaf protein 11 on chromosome 8 near NAM SNP 166,561,819 was 

associated with the sink-inhibited shootcapped only phenotype.  With a RMIP of 51, it 

was the most frequently called significant SNP of all four phenotypes evaluated in this 

study.  There were two other genes within the LD block examined.  One gene encoded a 

generic RING/U-Box family protein and the other gene was not annotated. 

 Spotted leaf protein 11 (spl11) was first characterized by Zeng et al. (2004) as a 

negative regulator of plant cell death and defense functioning as a U-box/armadillo repeat 

protein endowed with E3 ubiquitin ligase (Zeng et al., 2004).  Several lesion mimic 

mutants, such as spl11, have been identified across multiple species and encoded several 

different proteins involved in a plethora of molecular functions.  spl11 is involved in 

controlling spontaneous plant cell death through regulation of ubiquitination and plant 

defense.  Furthermore, spl11 was described as a convergence point of plant defense and 

flowering signaling in plants.  For background purposes, there are three classes of 

ubiquitin-proteasome systems in plants: E1 – ubiquitin activating enzymes, E2 – 

ubiquitin conjugating enzymes, and E3 – ubiquitin ligases.  E3 systems are abundant in 

plants and involved in many biological processes; however, these proteins are specific to 

a biological process.  Liu et al. (2012) describe a specific U-box E3 ligase, spl11/PUB13¸ 

that is a convergence point for disease defense and initiation of flower development.  In 

rice, lesion mimic mutants of spl11 were accentuated in short day plants compared to 

long day plants, whereas the PUB13 mutants displayed more lesion formation under long 
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day conditions.  This suggests that both mutations are affected by light and the circadian 

clock (Liu et al., 2012).  Additionally, spl11 appears to be involved in regulating 

flowering time, as mutants in this gene exhibit delayed flowering time in long day 

conditions.   PUB13 appears to act in the opposite manner to spl11 and interacts with 

COP1 through LONG HYPOCOTYL IN FAR-RED LIGHT (HFR1).  HFR1 is 

responsible for promoting photomorphogenesis, plant growth, flowering shape, and 

flowering time (Jang et al., 2008).  However, the regulation mechanism of COP1 by 

HFR1 through PUB13 is unknown.  

 Shikata et al. (2009) showed that spl11 and two other proteins, spl2 and spl10, are 

involved in controlling the morphological change in shoot maturation during 

reproduction in arabidopsis.  These data present a break from the reported literature, 

which showed only a vegetative presentation of spl11 and provided evidence that spl11 is 

involved during reproductive development in plants (Shikata et al., 2009). 

 Taken together, these reports and our data suggest that spl11 is active in 

vegetative and reproductive growth in plants and is regulated by light in conjunction with 

other proteins that are potentially modulating COP1 expression. 

4.5.2.2 (DFL1) indole-3-acetic acid-amido synthetase GH3.1 – GRMZM2G061515 

DFL1 is an auxin-responsive GH3 gene homolog.  Nakazawa et al. (2008) 

described DFL1 as a negative regulator of shoot cell elongation and lateral root 

formation, and as a positive regulator of light response for hypocotyl length.  DFL1 is in 

a genomic region associated with the shootcap-only phenotype.  Located on chromosome 

3 at SNP 190,031,176, it is the third most frequently called significant SNP of all four 

phenotypes with a RMIP of 42 and also had support from joint linkage-mapping. 

 
 



  251 
 

 Auxin is a major phytohormone involved in numerous plant responses.  GH3 

classes of auxin-induced genes are characterized as rapidly expressed in the presence of 

auxin (Hagen et al., 1998).  There already exists a link between auxin and light in the 

form of gravitropism (Hagen et al., 1998).  Furthermore, we hypothesize that loss of sink 

in conjunction with shorter day-length in the growing season results in the premature 

senescence response.   DFL1 is known to be involved in light responses in plants 

resulting in shoot cell elongation and root formation in arabidopsis (Nakazawa et al., 

2008).  Speculatively, the loss of the ability to sense auxin through changing day length 

could initiate a cascade response of gene expression leading to premature senescence.  

GH3 gene WES1 has been implicated in reception of red light in conjunction with 

phytochrome B and regulates hypocotyl growth (Park et al., 2007).  GH3 proteins are 

diverse in plants; however, DFL1 appears to be specific to the light pathway described 

above.  COP1 and DFL1 have an interaction mediated by fin219 in response to light and 

stem growth.  fin219 is a component of the phyA/far-red light sensing pathway.  fin219 

mutants exhibit a long hypocotyl in soybeans when under continuous far-red light and are 

rapidly induced by a GH3 auxin gene(s) (Hsieh et al., 2000).  Thus, fin219 can indirectly 

influence the inactivation/activation of COP1 proteins through light perception and 

changes in auxin.  The identification of fin219 provides a link between auxin, specifically 

GH3 proteins discussed in the previous section, and red light.   

4.5.2.3 COP1 associated protein – GRMAM2G015739 

COP1 is a protein involved in reception of light and a regulator of 

photomorphogenesis and skotomorphogenesis.  Skotomorphogenesis in plants, most 

often in seedlings, is characterized by etiolation from no chlorophyll production, limited 
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leaf growth, radial stem elongation, limited root elongation, limited radial expansion of 

the stem, and limited production of lateral roots.  Photomorphogenesis is characterized by 

de-etiolation and as coleoptile opening, leaf growth promotion, chlorophyll production, 

stem elongation suppression, radial expansion of the stem, root elongation and lateral 

development promotion.  While characterized extensively in seedlings, 

photomorphogenesis and light reception affects the entire plant through reproduction.  

COP1 is part of a complicated pathway involving far-red light, red-light, and blue light in 

conjunction with other genes (Figure 4-5, 4-6).  This gene was associated with the 

senescence difference phenotype and is found on chromosome 7 near SNP 2,631,177 

with a RMIP of 30.  Several other genes described in this section are involved to some 

extent with COP1 and these relationships will be discussed in relation to the specific gene 

of interest. 

4.5.2.4 Cryptochrome 1 – GRMZM2G171736 

Cryptochrome 1 (Cry1) is involved in reception and signal relay of blue light.  

Additionally, cryptochrome 2 is involved in the same signaling transduction pathway.  

Specifically, these enzymes repress the expression of COP1 with the reception of blue 

light through ubiquitin E3 ligase.  In mutant phenotypes, plants exhibit hypocotyl 

elongation.  Cry1 is involved in inducing stomatal opening and electron transportation 

through blue-light interactions.  Furthermore, CRY1 and COP1 molecularly interact to 

regulate photomorphogenesis through the reception of blue light (Yang et al., 2001). 

Cry1 is a candidate gene associated with the senescence ratio phenotype with a RMIP of 

13. 
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4.5.2.5 Phototropic-responsive NPH3 family protein – GRMZM2G40115 

NPH3 is involved in phototropic response of blue light encoding a NPH1 

interacting domain in arabidopsis (Motchoulski and Liscum, 1999).  This interaction 

occurs downstream of NPH1 and encodes a light-activated serine/threonine kinase.  The 

gene annotation for NPH3 is slightly different in rice where it is classified as “BTBN13 - 

Bric-a-Brac, Tramtrack, Broad Complex BTB domain with non-phototropic hypocotyl 3 

NPH3 and coiled-coil domains (www.maizegdb.org).”  BTBN13 –NPH3 in arabidopsis 

has a component classified as NPY1 that is critical to plant organogenesis through auxin 

regulation.  Mutants of NYP1 did not develop any flowers in arabidopsis and resembled 

mutants extremely phenotypically similar that were deficient in auxin transport and 

signaling.  These mutants, classified as NPH3, regulate phototropic responses.  

Additionally, auxin regulates both organogenesis and phototropic responses using auxin 

response factors (ARF) and NPH.  Mutants that did not have these complexes did not 

develop proper plant organs (Cheng et al., 2007).  Phototropic-responsive NPH3 family 

protein was a candidate gene associated with senescence ration in the NAM population 

on chromosome 2 near SNP 2,034,526 with a RMIP of 8. 

4.5.2.6 FAR1 DNA Binding domain – GRMZM2G001663 

Phytochrome A is the main receptor of far-red light and mediates plant responses 

to other sources of light through various regulatory pathways and mechanisms (Figures 4-

5 and 4-6).  FAR1 and FHY3 are proteins critical in responding to far-red light and 

activating gene expression of proteins involved in light-induced phytochrome A nuclear 

accumulation (Wang et al., 2002).  In short, these genes are transcription factors involved 

in regulating photomorphogenesis through far-red light.  FAR1 does not have any 
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sequence similarities to any other known proteins (Hudson et al., 1999).  FAR1 is a 

candidate gene associated with senescence difference phenotype and had a RMIP of 12. 

4.5.2.7 APRR5 – GRMZM2G179024 

APRR5 was a candidate gene for the senescence ratio phenotype with a RMIP of 

5.  APRR5 is part of a gene family involved in the APPR1/TOC1 quintet gene family.  

These genes accumulate at dawn in arabidopsis and continue to accumulate in continuous 

light, controlling early flowering and hypersensitiveness in early photomorphogenesis.  

This gene family is activated rhythmically and increases transcription accumulation in a 

specific order: APRR9  APRR7  APRR5  APRR3  APRR1/TOC1.  

Specifically, APRR5 mutants (overexpressed) exhibited earlier flowering time compared 

to wild type and showed hypersensitiveness to red light in early photomorphogenesis 

(Sato et al., 2002). 
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Figure 4-5 Generic outline of light reception and regulation in plants 
(Current Opinion in Plant Biology) 
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Figure 4-6 Detailed outline of light reception and signaling in plants.  Red boxes 
correspond to NAM RIL candidate genes that interact with red light. Purple boxes 
correspond to far-red light interactions.  Blue boxes correspond to blue light.  Brown 
boxes correspond to second level of light regulation.  The green box corresponds to 
spl11, which is known to interact with COP1.  (Current Opinion in Plant Biology)
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4.5.3 Proposed Model for Genetic Regulation of the Premature Senescence Phenotype 

in Maize 

The premature senescence phenotype presented in B73 appears to be genotype 

specific and a consequence of a mutation coinciding with human selection.  Although 

unfortunate for plant breeding efforts, the mutation provides a unique opportunity to 

examine premature senescence in maize.  This mutation does not appear to provide 

adaptive advantage to maize as there is no fitness advantage to prematurely senescence 

without reproduction.  Conversely, plant fitness is potentially conferred through genetic 

variation in light perception and circadian rhythm to adapt to broader geographical areas 

and changes in environments (Michael et al., 2003).  

Identification of candidate genes associated with light regulation and signaling, in 

addition to auxin and spotted leaf protein 11, suggests a model of premature senescence 

modulated by day-length and light perception coinciding with remobilization to the sink.  

The detection of all major spectra of light candidates in association mapping suggests that 

the plant is responding changing light conditions as day length shortens during the latter 

part of maize development (Figures 4-5, 4-6).   

As maize begins grain fill, considerable photosynthates and leaf proteins are 

remobilized to the ear.  Remobilization begins during the latter half of the summer season 

when day lengths begin to shorten following the summer solstice in June.  As the day 

length begins to shorten, the three wavelengths of light- far-red, red, and blue light - that 

plants interact with decline.   

Therefore, we propose the following model for premature senescence in maize.  

Maize senses the day length shortening coinciding with grain fill post anthesis through 
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the interaction of light with Phytochrome A (far-red light), Phytochrome B (red light), 

and Cryptochrome 1 and 2 (blue light).  FAR1 (far-red light), CRY1 and NPH3/BTBN 

NYP1 (blue light), DLF1 (red light interaction with auxin) and APRR5 (red light), and 

COP1 mediates the response to the changing light conditions. While there are several 

genes involved in light signaling in plants, only a subset were detected in association 

analyses.  An explanation of the limited number of genes detected in association analyses 

lies in the underlying genetic and allelic diversity of the maize population characterized.  

Therefore, in our analyses, we only detected SNP associations that had substantial genetic 

variation associated with premature senescence, resulting in a limited number of gene 

candidates. 

Two candidate genes for premature senescence were extremely compelling.  

DLF1, an auxin GH3 rapid accumulation gene with a RMIP of 42, is capable of detecting 

the light signal relay.  Specifically, auxin interacts with COP1, the second level of light 

reception following red, blue, and far-red interaction, to regulate plant growth and 

development (Figure 4-5, 4-6).  These genes contribute to regulation of 

photomorphogenesis or skotomorphogenesis and the identification of these genes by 

GWAS suggests that premature senescence is conditioned by light regulation and 

perception. 

spl11 is the number one candidate for premature senescence in this population 

with a RMIP of 51 in association with the shootcap only phenotype.  spl11 is involved in 

light regulation and signaling and is associated with rapid senescence when exposed to 

short day conditions in the field.    Likewise, spl11 regulates flowering time through an 
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E3- ubiquitin ligase, which is the same protein involved in regulating the inactivation/ 

activation of COP1. 

This model suggests that premature senescence in B73 is initiated through the 

detection of shorting day lengths through proteins involved in reception and signaling of 

all spectra of photosynthetically active radiation.  Thereby, initiating the expression of 

spl11 conferring premature senescence. 

4.5.4 Future Characterization of Premature Senescence in Maize 

Phenotypically speaking, physically removing or inhibiting the pollination of the 

maize ear result in the premature senescence phenotype.  In our association mapping 

analyses, major candidate genes with high RMIP values were identified in the shootcap 

only phenotype.  Genes that are identified from this phenotype may be directly involved 

in mediating the phenotype whereas other phenotypes are more indirect measures 

premature senescence.  However, it is critical to obtain the difference and ratio 

measurements to detect differences in light regulation and signaling present in the non-

shootcapped plants compared to the shootcapped plants.  Furthermore, the ratio 

phenotype is valuable as it provides a form of standardization of the data set to quantify 

the amount of premature senescence in the plant instead of natural loss of chlorophyll 

from remobilization.  Finally, when working with diverse types of germplasm, utilizing 

population structure and statistical protocols helps alleviate confounding effects of 

maturity.  Candidate genes for premature senescence now require further molecular and 

physiological characterization to better quantify and identify causative alleles for 

selection.  It is critical that specific alleles are identified to allow plant breeders to select 

against premature senescence in plant populations.  Due to B73’s substantial contribution 
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to temperate maize heterotic pools and susceptibility to drought conditions, selection 

against this allele will enhance elite germplasm. 

4.6 Conclusion 

Sink inhibition occurs naturally in periods of stress when the anthesis silking 

interval in maize extends to the point of no pollination of the ear.  In this study, we 

propose a model for regulation of the premature senescence phenotype in maize 

associated with sink inhibition.  This model leverages candidate genes identified in 

association mapping studies and describes a plausible cascade of events leading to the 

premature senescent phenotype.  Implication of the major phytohormone auxin gene 

(DFL1) and a protein involved in spontaneous cell death (spl11) as well as light 

perception and relay proteins, provides an avenue for whole plant response to sink 

inhibition.  Additionally, we show that scientific recreation of the premature phenotype 

can be achieved through sink inhibition or removal, which was previously ambiguous in 

the literature.  Continued characterization of sink-inhibition and premature senescence is 

critical for breeding climate resilient crops.  Further characterization of this phenotype 

will empower plant breeders to select against negative alleles for premature senescence, 

especially in B73 derived lines.  Sustained scientific progress in characterizing premature 

senescence in maize will contribute to engineering climate resilient crops for a 

challenging future. 
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Appendix A Phenotypic Distributions of Stay-green and Sink Inhibited Senescence 

Traits 

 
Figure A-1 Phenotypic distribution of days to anthesis of the NAM RILs from a 
combined year analysis 

 
Figure A-2 Phenotypic distribution of days to silking of the NAM RILs from a    
combined year analysis 
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Figure A-3 Phenotypic distribution of stay-green anthesis of the NAM RILs from a 
combined year analysis 
 

 
Figure A-4 Phenotypic distribution of stay-green terminal of the NAM RILs from a 
combined year analysis 
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Figure A-5 Phenotypic distribution of stay-green difference of the NAM RILs from a 
combined year analysis 
 

 
Figure A-6 Phenotypic distribution of stay-green ratio of the NAM RILs from a  
combined year analysis 
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Figure A-7 Phenotypic distribution of sink-inhibited shootcapped only of the             
NAM RILs from a combined year analysis 
 
 

 
Figure A-8 Phenotypic distribution of sink-inhibited difference of the NAM RILs       
from a combined year analysis 
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Figure A-9 Phenotypic distribution of sink-inhibited ratio of the NAM RILs from a 
combined year analysis 
 

 
Figure A-10 Phenotypic distribution of sink-inhibited non-shootcapped only of the    
NAM RILs from a combined year analysis 
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Figure A-11 Phenotypic distribution of days to anthesis of the AMES Diversity Panel 
from a combined year analysis 
 

 
 
Figure A-12 Phenotypic distribution of days to silking of the AMES Diversity Panel  
from a combined year analysis 
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Figure A-13 Phenotypic distribution of stay-green anthesis of the AMES Diversity    
Panel from a combined year analysis 
 

 
Figure A-14 Phenotypic distribution of stay-green terminal of the AMES Diversity   
Panel from a combined year analysis 
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Figure A-15 Phenotypic distribution of stay-green difference of the AMES Diversity 
Panel from a combined year analysis 
 

 
Figure A-16 Phenotypic distribution of stay-green ratio of the AMES Diversity         
Panel from a combined year analysis 
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Appendix B SAS Code for Chapter 4 

 
Code Used (Supplementary Materials) 
Sink Removal vs. Sink Inhibition 
 
Data Sink Removal vs. Sink Inhibition; 
Input Rep Treatment$ B73 Mo17; 
Datalines; 
1 Open 19.5 27.4 
1 Open 41 38.6 
1 Open 33.6 21.8 
2 Open 48.3 25.5 
2 Open 50 33.2 
2 Open 45.1 25.1 
3 Open 38.9 29.5 
3 Open 40.6 25.4 
3 Open 49.9 42.6 
4 Open 41.7 31.5 
4 Open 35.7 31.4 
4 Open 53.1 31.3 
5 Open 40.3 38.3 
5 Open 43.6 31.5 
5 Open 34.9 53.2 
1 Removed 2.3 15 
1 Removed 3.1 . 
1 Removed . 14.6 
2 Removed 2.4 11.7 
2 Removed 3.6 15.7 
2 Removed 2.5 9.8 
3 Removed 3 19.8 
3 Removed 3.2 21.2 
3 Removed 2.5 10.3 
4 Removed 4.2 23.3 
4 Removed 8.7 34.9 
4 Removed . 27.3 
5 Removed 3.5 19.9 
5 Removed 3.8 19.6 
5 Removed 2.8 23 
1 Shootcap 2.6 14.2 
1 Shootcap 15.5 25.1 
1 Shootcap 2.7 11.8 
2 Shootcap 18.7 16.9 
2 Shootcap 16.2 13.1 
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2 Shootcap . 15.3 
3 Shootcap 5.4 16 
3 Shootcap 3.6 9.5 
3 Shootcap 2.5 14 
4 Shootcap 16.6 13.6 
4 Shootcap 6.2 21.6 
4 Shootcap . 13.2 
5 Shootcap 3.1 11.5 
5 Shootcap 2.1 14.2 
5 Shootcap 3.6 13.8 
; 
Run; 
 
PROC ANOVA DATA= Sink Removal vs. Sink Inhibition; 
 CLASS Treatment; 
 MODEL B73 = Treatment; 
 MEANS Treatment/LSD; 
RUN; 
 
PROC ANOVA DATA= Sink Removal vs. Sink Inhibition; 
 CLASS Treatment; 
 MODEL Mo17 = Treatment; 
 MEANS Treatment/LSD; 
RUN; 
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Appendix C ASReml, R, and SAS Code for Chapter 2 

AMES Model Selection for Stay-green Traits in ASReml 
!WORKSPACE 16000 !NODISPLAY 
!CYCLE 1!JOIN  
 
AMES_ALL_DATA_ASREML 
 
#env,loc,year,row,range,maturity,genocode,dta,wt_dta,dts,wt_dts,sg_ant,wt_sg_ant,sg_p
ost,wt_sg_post,sg_diff,wt_sg_diff,sg_ratio,wt_sg_ratio,ef 
 
 env * 
 #loc  !A   
 year  !I !SKIP 1 
 row  * 
 range  * 
 maturity * 
 genocode  !A 2500  !LL 39  !PRUNE  
 dta 
 wt_dta 
 dts 
 wt_dts 
 sg_ant 
 wt_sg_ant 
 sg_post  
 wt_sg_post 
 sg_diff 
 wt_sg_diff 
 sg_ratio 
 wt_sg_ratio 
 ef * 
  
"C:\Users\arenaud\Desktop\ASReml\5-12-
2014\AMES\BLUPs\BLUPs\ames_All_data_asreml_NoOut4.csv", 
!skip 1 !DOPATH $I !FCON !DENSE !CONTINUE !MAXITER 100 
 
################################################################# 
!PATH 1 # env: comb field: all Model dropped 2 Geno as fixed Reduced poly 
dta !WT wt_dta ~ mu, 
at(ef,1).pol(range,-3), 
at(ef,1).pol(row,-4), 
!r, 
genocode, 
at(ef,2).range, 
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at(ef,2).maturity 
#ef, 
#ef.genocode  
predict  genocode !IGNORE at(ef,1).pol(range,-3) at(ef,1).pol(row,-4) 
 
!PATH 1 # env: comb field: all  Model Dropped 2 Geno as fixed 
dts !WT wt_dts ~ mu, 
at(ef,1).pol(range,-2), 
!r, 
genocode, 
at(ef,2).range, 
at(ef,2).maturity 
#ef 
#ef.genocode  
predict  genocode !IGNORE at(ef,1).pol(range,-2) 
 
!PATH 1 # env: comb field: all  Model Dropped 2 Geno as fixed 
sg_ant !WT wt_sg_ant ~ mu, 
at(ef,1).pol(range,-2), 
at(ef,1).pol(row,-2), 
!r, 
genocode, 
#at(ef,2).range, 
at(ef,2).maturity, 
#ef 
ef.genocode  
predict  genocode !IGNORE at(ef,1).pol(range,-2) at(ef,1).pol(row,-2) 
 
!PATH 1 # env: comb field: all  Model Dropped 2 Geno as fixed 
sg_diff !WT wt_sg_diff ~ mu, 
at(ef,1).pol(row,-2), 
!r, 
genocode, 
at(ef,2).maturity, 
#ef 
ef.genocode  
predict  genocode !IGNORE at(ef,1).pol(row,-2) 
 
!PATH 1 # env: comb field: all  Model Dropped 2 Geno as fixed 
sg_post !WT wt_sg_post ~ mu, 
!r, 
genocode, 
#at(ef,2).range, 
at(ef,2).maturity, 
ef, 
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ef.genocode  
predict  genocode 
 
!PATH 1 # env: comb field: all  Model Dropped 2 Geno as fixed 
sg_ratio !WT wt_sg_ratio ~ mu, 
at(ef,1).pol(row,-3), 
!r, 
genocode, 
#at(ef,2).range, 
at(ef,2).maturity, 
#ef, 
ef.genocode  
predict  genocode !IGNORE at(ef,1).pol(row,-3) 
 
NAM RILs Model Selection for Stay-green and Shootcap Induced Senescence Traits in 
ASReml 
 
!WORKSPACE 16000 !NODISPLAY 
!CYCLE 1 2 3 4 5 6 7 8 9 10 !JOIN 
 
PHENOTYPES_STAYGREEN_NAM_ALL_ASREMLREVISED 
 
#env,field,pblock,pop,entrynum,entity_id,sample_id,range,row,dta,wt_dta,dts,wt_dts,sg_
ant,wt_ant,sg_post, 
#wt_post,sg_diff,wt_sg_diff,sg_ratio,wt_sg_ratio,sis_nsc,wt_sis_nsc,sis_sc,wt_sis_sc,sis
_diff,wt_sis_diff,sis_ratio,wt_sis_ratio,ff,ef 
 
env * 
field * 
pblock * 
pop * 
entrynum !A 2500  !LL 39  !PRUNE   
entity_id !A 2500  !LL 39  !PRUNE 
sample_id !A 2500  !LL 39  !PRUNE 
range * 
row * 
dta 
wt_dta 
dts 
wt_dts 
sg_ant 
wt_ant 
sg_post 
wt_post 
sg_diff 
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wt_sg_diff 
sg_ratio 
wt_sg_ratio 
sis_nsc 
wt_sis_nsc 
sis_sc 
wt_sis_sc 
sis_diff 
wt_sis_diff 
sis_ratio 
wt_sis_ratio 
ff * 
ef * 
 
"C:\Users\arenaud\Desktop\ASReml\5-12-
2014\NAM\phenotypes_staygreen_nam_all_asremlRevised.csv", 
!skip 1 !DOPATH $I !FCON !CONTINUE !MAXITER 100 !DDF 1 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
dta !WT wt_dta ~ mu, 
at(ef,1).at(ff,1).pol(row,-1), 
#at(ef,1).at(ff,1).pol(range,-1), #NS 
at(ef,2).at(ff,3).pol(row,-2), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ef,1).at(ff,2).pblock, 
#at(ef,1).ff, 
at(ef,2).ff, 
#ef, 
ef.pop 
#ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ef,1).at(ff,1).pol(row,-1) at(ef,1).at(ff,1).pol(range,-1) 
at(ef,2).at(ff,3).pol(row,-2) 
 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
dts !WT wt_dts ~ mu, 
#at(ff,1).pol(range,-1),  
at(ff,2).pol(range,-4), 
#at(ff,4).pol(row,-2),    
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ef,1).ff, 
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#at(ef,2).ff, 
#ef, 
ef.pop, 
#ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,1).pol(range,-1) #at(ff,2).pol(range,-4) 
at(ff,4).pol(row,-2)  
 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
sg_ant !WT wt_ant ~ mu, 
at(ff,1).pol(range,-1), 
at(ff,1).pol(row,-3), 
at(ff,2).pol(range,-2), 
at(ff,4).pol(range,-4), 
#at(ff,4).pol(row,-3), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ef,1).ff, 
at(ef,2).ff, 
#ef, 
ef.pop, 
#ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,1).pol(range,-1) at(ff,1).pol(row,-3) 
at(ff,2).pol(range,-2) at(ff,4).pol(range,-4) 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
sg_post !WT wt_post ~ mu, 
at(ff,1).pol(range,-1), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ff,2).pblock, 
at(ff,4).pblock, 
#at(ef,1).ff, 
#at(ef,2).ff, 
#ef, 
ef.pop, 
ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,1).pol(range,-1) 
 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
sg_diff !WT wt_sg_diff ~ mu, 
at(ff,3).pol(range,-4), 
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pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ff,2).pblock, 
at(ff,4).pblock, 
#at(ef,1).ff, 
#at(ef,2).ff, 
#ef, 
ef.pop, 
ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,3).pol(range,-4) 
 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
sg_ratio !WT wt_sg_ratio ~ mu, 
at(ff,2).pol(range,-4), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ff,3).pblock, 
at(ff,4).pblock, 
at(ef,1).ff, 
#at(ef,2).ff, 
#ef, 
ef.pop, 
ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,2).pol(range,-4) 
 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
sis_diff !WT wt_sis_diff ~ mu, 
#at(ff,1).pol(range,-1), 
#at(ff,2).pol(row,-1), 
at(ff,3).pol(range,-4), 
#at(ff,3).pol(row,-4), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
#at(ef,1).ff, 
#at(ef,2).ff, 
ef, 
ef.pop, 
ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,3).pol(range,-4)  
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!PATH 1 # env: combined field: All  Full model: Best model for each field 
sis_ratio !WT wt_sis_ratio ~ mu, 
at(ff,2).pol(row,-1), 
at(ff,3).pol(range,-4), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ff,4).pblock, 
#at(ef,1).ff, 
#at(ef,2).ff, 
ef, 
ef.pop, 
ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,2).pol(row,-1) at(ff,3).pol(range,-4) 
 
 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
sis_sc !WT wt_sis_sc ~ mu, 
at(ff,1).pol(row,-4), 
at(ff,3).pol(range,-4), 
at(ff,4).pol(range,-3), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
#at(ef,1).ff, 
#at(ef,2).ff, 
#ef, 
ef.pop, 
ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,1).pol(row,-4) at(ff,3).pol(range,-4) 
at(ff,4).pol(range,-3) 
 
!PATH 1 # env: combined field: All  Full model: Best model for each field 
sis_nsc !WT wt_sis-nsc ~ mu, 
at(ff,1).pol(range,-1), 
at(ff,2).pol(row,-1), 
at(ff,3).pol(range,-4), 
at(ff,3).pol(row,-4), 
pop, 
at(pop,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27).entrynum, 
!r, 
at(ef,1).ff, 
at(ef,2).ff, 
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#ef, 
ef.pop, 
ef.pop.entrynum 
predict  pop entrynum !IGNORE at(ff,1).pol(range,-1) at(ff,2).pol(row,-1) 
at(ff,3).pol(range,-4) at(ff,3).pol(row,-4) 
 
AMES Heritabilities in ASReml  
 
DTA 
!PIN   !DEFINE    #use this pin definition to get heritability estimate 
#F VarG 3 #cross is 3rd variance component in ouput = genotypic variance, but it is not 
necessary to define this, so flag it out 
F Var_plots 3 + 4 #comp 5 Variance for plot heritability = GxE + MeanError 
H H_plot 3 5 #herit plot basis 
# H_plot       = genocode   3/Var_plot   5=          0.4445    0.0310 
# Cullis heritability for entry mean basis 
#h2 = 1 - ((SED)^2)/2 * geno variance) 
#h2 = 1 - ((2.860)^2)/(2*8.07288) = 0.51 
 
DTS 
!PIN   !DEFINE    #use this pin definition to get heritability estimate 
#F VarG 3 #cross is 3rd variance component in ouput = genotypic variance, but it is not 
necessary to define this, so flag it out 
F Var_plots 3 + 4 #comp 5 Variance for plot heritability = GxE + MeanError 
H H_plot 3 5 #herit plot basis 
# H_plot       = genocode   3/Var_plot   5=          0.5187    0.0277 
# Cullis heritability for entry mean basis 
#h2 = 1 - ((SED)^2)/2 * cross variance) 
#h2 = 1 - ((3.292)^)/(2*12.3510) = 0.622071087 
 
SG_ANT 
!PIN   !DEFINE    #use this pin definition to get heritability estimate 
#F VarG 3 #cross is 3rd variance component in ouput = genotypic variance, but it is not 
necessary to define this, so flag it out 
F Var_plots 2+ 3 + 4 #comp 5 Variance for plot heritability = GxE + MeanError 
H H_plot 2 5 #herit plot basis 
# H_plot       = genocode   2/Var_plot   5=          0.3071    0.0212 
# Cullis heritability for entry mean basis 
#h2 = 1 - ((SED)^2)/2 * cross variance) 
#h2 = 1 - ((6.733 )^)/(2*59.7953) = 0.379070671 
 
SG_POST 
!PIN   !DEFINE    #use this pin definition to get heritability estimate 
#F VarG 3 #cross is 3rd variance component in ouput = genotypic variance, but it is not 
necessary to define this, so flag it out 
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F Var_plots 3 + 4+ 5  #comp 6 Variance for plot heritability = GxE + MeanError 
H H_plot 3 6 #herit plot basis 
# H_plot       = genocode   3/Var_plot   6=          0.2485    0.0221 
# Cullis heritability for entry mean basis 
#h2 = 1 - ((SED)^2)/2 * cross variance) 
#h2 = 1 - (( 8.768 )^2)/(2*65.7975) = 0.58420019 
 
SG_DIFF 
!PIN   !DEFINE    #use this pin definition to get heritability estimate 
#F VarG 3 #cross is 3rd variance component in ouput = genotypic variance, but it is not 
necessary to define this, so flag it out 
F Var_plots 2 + 3+ 4  #comp 5 Variance for plot heritability = GxE + MeanError 
H H_plot 2 5 #herit plot basis 
# H_plot       = genocode   2/Var_plot   5=          0.1245    0.0202 
# Cullis heritability for entry mean basis 
#h2 = 1 - ((SED)^2)/2 * cross variance) 
#h2 = 1 - (( 8.955)^2)/(2*40.8671) = 1 - 0.981131827 = # 
 
SG_RATIO 
!PIN   !DEFINE    #use this pin definition to get heritability estimate 
#F VarG 3 #cross is 3rd variance component in ouput = genotypic variance, but it is not 
necessary to define this, so flag it out 
F Var_plots 2 + 3+ 4  #comp 5 Variance for plot heritability = GxE + MeanError 
H H_plot 2 5 #herit plot basis 
# H_plot       = genocode   2/Var_plot   5=          0.1566    0.0201 
# Cullis heritability for entry mean basis 
#h2 = 1 - ((SED)^2)/2 * cross variance) 
#h2 = 1 - (( 0.1901)^2)/(2*0.230604E-01) = 0.783551239 
 
1 - ((0.1901)^2)/(2*0.230604E-01) 
 
NAM RILs Heritabilities in ASReml 
 
DTA 
         - - - Results from analysis of dta - - - 
 
   1 at(ef                   0.370112     
   2 at(ef                   0.195165     
   3 pop                      14.8174     
   4 ef.pop                  0.363495     
   5 at(pop                  0.762422     
   6 at(pop                   7.08162     
   7 at(pop                   10.8202     
   8 at(pop                   10.6007     
   9 at(pop                   14.9865     
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  10 at(pop                   10.9540     
  11 at(pop                   4.24763     
  12 at(pop                   7.70201     
  13 at(pop                   6.97875     
  14 at(pop                   3.28914     
  15 at(pop                   15.4152     
  16 at(pop                   10.9985     
  17 at(pop                   5.86736     
  18 at(pop                   4.93572     
  19 at(pop                   4.75566     
  20 at(pop                   3.44366     
  21 at(pop                   7.84263     
  22 at(pop                   2.11486     
  23 at(pop                   3.37266     
  24 at(pop                   4.50942     
  25 at(pop                   1.50172     
  26 at(pop                   8.06016     
  27 at(pop                   3.00378     
  28 at(pop                   4.36391     
  29 at(pop                   7.46146     
  30 at(pop                   4.41333     
  31 Variance                 3.49208     
  32 VarG  3                   21.427        4.3491     
  33 Var_plots  4              25.283        4.3492     
     H_plot       = VarG  3   32/Var_plot  33=          0.8475    0.0267 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
H2 means basis: 21.427(VARG) / ((VARG) + 4/(2 - Harmonic Mean) + ef.pop.entrynum 
/ 2 + (Variance) / 3.41 ) 
 
21.427 / (21.427 + (0.363495/2) + (3.49/3.41)) = 0.9467 = H2 Means-Basis 
 
DTS 
 
          - - - Results from analysis of dts - - - 
 
   1 at(ef                   0.387305E-01 
   2 pop                      17.7505     
   3 ef.pop                  0.372610     
   4 at(pop                   3.12348     
   5 at(pop                   7.13447     
   6 at(pop                   13.4221     
   7 at(pop                   13.5777     
   8 at(pop                   19.7904     
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   9 at(pop                   13.8885     
  10 at(pop                   5.01558     
  11 at(pop                   11.4705     
  12 at(pop                   7.30621     
  13 at(pop                   7.99410     
  14 at(pop                   17.8549     
  15 at(pop                   11.9496     
  16 at(pop                   6.06385     
  17 at(pop                   6.54009     
  18 at(pop                   6.64475     
  19 at(pop                   10.5250     
  20 at(pop                   13.0027     
  21 at(pop                   5.21989     
  22 at(pop                   5.36417     
  23 at(pop                   6.37971     
  24 at(pop                   4.60017     
  25 at(pop                   5.73091     
  26 at(pop                   7.87015     
  27 at(pop                   9.08951     
  28 at(pop                   10.2497     
  29 at(pop                   13.3129     
  30 Variance                 5.77751     
  31 VarG  2                   27.232        5.3431     
  32 Var_plots  3              33.382        5.3438     
     H_plot       = VarG  2   31/Var_plot  32=          0.8158    0.0299 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
H2 means basis: 21.427(VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + 
ef.pop.entrynum / 2 + (Variance) / 3.41 ) 
 
27.232 / (27.232 + (0.372610/2) + (5.77751/3.417852679)) = 0.9355 = H2 Means-Basis 
 
SG_ANT 
 
          - - - Results from analysis of sg_ant - - - 
 
   1 at(ef                   0.330879     
   2 at(ef                   0.101993E-04 
   3 pop                      7.71009     
   4 ef.pop                   1.28646     
   5 at(pop                   29.4371     
   6 at(pop                   32.7713     
   7 at(pop                   39.4140     
   8 at(pop                   56.1651     
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   9 at(pop                   48.8294     
  10 at(pop                   51.1942     
  11 at(pop                   19.2640     
  12 at(pop                   58.7892     
  13 at(pop                   32.6721     
  14 at(pop                   52.6952     
  15 at(pop                   50.4898     
  16 at(pop                   45.0764     
  17 at(pop                   46.1588     
  18 at(pop                   18.0182     
  19 at(pop                   40.7022     
  20 at(pop                   47.9548     
  21 at(pop                   36.8566     
  22 at(pop                   32.2941     
  23 at(pop                   42.9649     
  24 at(pop                   68.9274     
  25 at(pop                   25.2676     
  26 at(pop                   55.4592     
  27 at(pop                   60.1942     
  28 at(pop                   47.0168     
  29 at(pop                   36.9645     
  30 at(pop                   26.5625     
  31 Variance                 141.021     
  32 VarG  3                   50.694        3.8489     
  33 Var_plots  4              193.00        4.8595     
     H_plot       = VarG  3   32/Var_plot  33=          0.2627    0.0156 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
H2 means basis: (VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + ef.pop.entrynum / 
2 + (Variance) / 3.41 ) 
 
50.694 / (50.694 + (1.28646/2) + (141.021/3.41922529)) = 0.5475 = H2 Means-Basis 
 
SG_POST 
 
          - - - Results from analysis of sg_post - - - 
 
   1 at(ff                    6.43431     
   2 at(ff                    4.45785     
   3 pop                      19.6069     
   4 ef.pop                   4.86542     
   5 at(pop                   40.7440     
   6 at(pop                   57.4560     
   7 at(pop                   28.9908     
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   8 at(pop                   26.1664     
   9 at(pop                   25.8691     
  10 at(pop                   51.9473     
  11 at(pop                   16.7110     
  12 at(pop                   54.1896     
  13 at(pop                   22.7563     
  14 at(pop                   17.4759     
  15 at(pop                   39.9220     
  16 at(pop                   60.6391     
  17 at(pop                   24.7379     
  18 at(pop                   15.3094     
  19 at(pop                   12.6775     
  20 at(pop                   80.5262     
  21 at(pop                   51.6316     
  22 at(pop                   47.2818     
  23 at(pop                   42.6184     
  24 at(pop                   55.2886     
  25 at(pop                   33.9329     
  26 at(pop                   64.4007     
  27 at(pop                   15.5874     
  28 at(pop                   22.0223     
  29 at(pop                   31.7189     
  30 at(pop                   131.216     
  31 ef.pop.entrynum          10.9654     
  32 Variance                 196.674     
  33 VarG  3                   61.408        11.217     
  34 Var_plots  4              273.91        12.156     
     H_plot       = VarG  3   33/Var_plot  34=          0.2242    0.0322 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
H2 means basis: (VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + ef.pop.entrynum / 
2 + (Variance) / 3.41 ) 
 
61.408 / (61.408 + (4.86542/2) + (10.9654/2) +(196.674/3.402825389)) = 0.4831 = H2 
Means-Basis 
 
SG_DIFF 
 
          - - - Results from analysis of sg_diff - - - 
 
   1 at(ff                    6.86053     
   2 at(ff                    9.75483     
   3 pop                      9.71651     
   4 ef.pop                   7.13821     
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   5 at(pop                   9.40730     
   6 at(pop                   48.5024     
   7 at(pop                   18.2939     
   8 at(pop                   5.64451     
   9 at(pop                   9.79591     
  10 at(pop                   37.8839     
  11 at(pop                  0.259957E-04 
  12 at(pop                   33.2103     
  13 at(pop                   5.33218     
  14 at(pop                   38.4654     
  15 at(pop                   44.6256     
  16 at(pop                   13.1137     
  17 at(pop                   23.1803     
  18 at(pop                   5.29553     
  19 at(pop                   10.8519     
  20 at(pop                   30.5204     
  21 at(pop                   39.5626     
  22 at(pop                   22.8803     
  23 at(pop                   8.25027     
  24 at(pop                   35.7629     
  25 at(pop                   2.96354     
  26 at(pop                   36.0687     
  27 at(pop                   59.4130     
  28 at(pop                   32.9306     
  29 at(pop                   22.3467     
  30 at(pop                   24.5984     
  31 ef.pop.entrynum          12.1026     
  32 Variance                 272.065     
  33 VarG  3                   33.854        5.3617     
  34 Var_plots  4              325.16        8.4421     
     H_plot       = VarG  3   33/Var_plot  34=          0.1041    0.0152 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
H2 means basis: (VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + ef.pop.entrynum / 
2 + (Variance) / 3.41 ) 
 
33.854 / (33.854 + (7.13821/2) + (12.1026 /2) +(272.065/3.402825389)) = 0.2742 = H2 
Means-Basis 
 
SG_RATIO 
 
          - - - Results from analysis of sg_ratio - - - 
 
   1 at(ef                   0.702546E-03 
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   2 at(ff                   0.210510E-02 
   3 at(ff                   0.330717E-02 
   4 pop                     0.744746E-02 
   5 ef.pop                  0.282314E-02 
   6 at(pop                  0.647817E-02 
   7 at(pop                  0.256199E-01 
   8 at(pop                  0.599753E-02 
   9 at(pop                  0.593903E-08 
  10 at(pop                  0.588270E-02 
  11 at(pop                  0.941110E-02 
  12 at(pop                  0.167714E-02 
  13 at(pop                  0.143326E-01 
  14 at(pop                  0.461231E-02 
  15 at(pop                  0.246816E-01 
  16 at(pop                  0.109706E-01 
  17 at(pop                  0.170138E-01 
  18 at(pop                  0.129024E-01 
  19 at(pop                  0.599984E-02 
  20 at(pop                  0.835072E-03 
  21 at(pop                  0.151361E-01 
  22 at(pop                  0.191980E-01 
  23 at(pop                  0.139162E-01 
  24 at(pop                  0.113105E-01 
  25 at(pop                  0.139953E-01 
  26 at(pop                  0.587236E-02 
  27 at(pop                  0.136696E-01 
  28 at(pop                  0.153806E-01 
  29 at(pop                  0.101830E-01 
  30 at(pop                  0.170939E-01 
  31 at(pop                  0.192100E-01 
  32 ef.pop.entrynum         0.632070E-02 
  33 Variance                0.137476     
  34 VarG  4                  0.19201E-01   0.34163E-02 
  35 Var_plots  5             0.16582       0.47362E-02 
     H_plot       = VarG  4   34/Var_plot  35=          0.1158    0.0186 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
H2 means basis: (VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + ef.pop.entrynum / 
2 + (Variance) / 3.41 ) 
 
0.19201E-01 / (0.19201E-01 + (0.282314E-02/2) + (0.282314E-02/2) 
+(0.137476/3.402825389)) = 0.3075 = H2 Means-Basis 
 
SIS_DIFF 
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      - - - Results from analysis of sis_diff - - - 
 
   1 ef                       19.7931     
   2 pop                      17.0832     
   3 ef.pop                   4.68322     
   4 at(pop                   129.244     
   5 at(pop                   78.4153     
   6 at(pop                   58.2800     
   7 at(pop                   34.4417     
   8 at(pop                   44.0940     
   9 at(pop                   118.607     
  10 at(pop                   12.0836     
  11 at(pop                   81.9419     
  12 at(pop                   27.8234     
  13 at(pop                   66.9090     
  14 at(pop                   73.4376     
  15 at(pop                   25.7480     
  16 at(pop                   12.1366     
  17 at(pop                   14.3261     
  18 at(pop                   53.4119     
  19 at(pop                   103.915     
  20 at(pop                   52.3812     
  21 at(pop                   31.9988     
  22 at(pop                   46.4334     
  23 at(pop                   68.0813     
  24 at(pop                   49.2598     
  25 at(pop                   67.5594     
  26 at(pop                   4.51920     
  27 at(pop                   32.2429     
  28 at(pop                   14.6002     
  29 at(pop                   851.871     
  30 ef.pop.entrynum          20.9363     
  31 Variance                 259.701     
  32 VarG  2                   101.08        49.211     
  33 Var_plots  3              386.40        49.544     
     H_plot       = VarG  2   32/Var_plot  33=          0.2616    0.0942 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
 
H2 means basis: (VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + ef.pop.entrynum / 
2 + (Variance) / 3.41 ) 
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101.08 / (101.08 + (4.68322/2) + (20.9363/2) +(259.701/3.419912009)) = 0.5324 = H2 
Means-Basis 
 
SIS_RATIO 
 
   - - - Results from analysis of sis_ratio - - - 
 
   1 ef                      0.914878E-02 
   2 at(ff                   0.335947E-02 
   3 pop                     0.104587E-01 
   4 ef.pop                  0.355337E-02 
   5 at(pop                  0.679071E-01 
   6 at(pop                  0.576289E-01 
   7 at(pop                  0.382190E-01 
   8 at(pop                  0.380796E-01 
   9 at(pop                  0.561052E-01 
  10 at(pop                  0.668841E-01 
  11 at(pop                  0.154536E-01 
  12 at(pop                  0.831541E-01 
  13 at(pop                  0.393739E-01 
  14 at(pop                  0.552513E-01 
  15 at(pop                  0.523152E-01 
  16 at(pop                  0.284231E-01 
  17 at(pop                  0.306621E-01 
  18 at(pop                  0.274955E-01 
  19 at(pop                  0.365142E-01 
  20 at(pop                  0.796945E-01 
  21 at(pop                  0.486771E-01 
  22 at(pop                  0.242568E-01 
  23 at(pop                  0.622251E-01 
  24 at(pop                  0.405297E-01 
  25 at(pop                  0.208359E-01 
  26 at(pop                  0.419855E-01 
  27 at(pop                  0.181950E-01 
  28 at(pop                  0.433207E-01 
  29 at(pop                  0.208820E-01 
  30 at(pop                  0.293567     
  31 ef.pop.entrynum         0.144299E-01 
  32 Variance                0.189035     
  33 VarG  3                  0.64577E-01   0.17968E-01 
  34 Var_plots  4             0.27159       0.18456E-01 
     H_plot       = VarG  3   33/Var_plot  34=          0.2378    0.0508 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
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H2 means basis: (VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + ef.pop.entrynum / 
2 + (Variance) / 3.41 ) 
 
0.064577 / (0.064577 + (0.00355337/2) + (0.0144299/2) +(0.0144299/3.419912009)) = 
0.8301 = H2 Means-Basis 
 
 
 
SIS_NSC 
 
          - - - Results from analysis of sis_nsc - - - 
 
   1 at(ef                    3.17301     
   2 at(ef                    3.66977     
   3 pop                      17.5284     
   4 ef.pop                   2.31406     
   5 at(pop                   47.1836     
   6 at(pop                   31.7313     
   7 at(pop                   32.9171     
   8 at(pop                   26.9076     
   9 at(pop                   48.7658     
  10 at(pop                   39.4849     
  11 at(pop                   36.5306     
  12 at(pop                   59.1980     
  13 at(pop                   20.7507     
  14 at(pop                   41.0421     
  15 at(pop                   54.0673     
  16 at(pop                   65.4136     
  17 at(pop                   29.3688     
  18 at(pop                   25.4188     
  19 at(pop                   25.1172     
  20 at(pop                   91.2928     
  21 at(pop                   36.0359     
  22 at(pop                   43.4048     
  23 at(pop                   49.9738     
  24 at(pop                   61.0791     
  25 at(pop                   37.4711     
  26 at(pop                   74.9392     
  27 at(pop                   32.9953     
  28 at(pop                   34.9424     
  29 at(pop                   43.8098     
  30 at(pop                   116.108     
  31 ef.pop.entrynum          6.51229     
  32 Variance                 181.713     
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  33 VarG  3                   64.560        9.7667     
  34 Var_plots  4              255.10        10.636     
     H_plot       = VarG  3   33/Var_plot  34=          0.2531    0.0291 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
!PIN   !DEFINE 
F VarG 3 + 5 * 0.039 + 6 * 0.039 + 7 * 0.039 + 8 * 0.039 + 9 * 0.039 + 10 * 0.039 + 11 * 
0.039 + 12 * 0.039 + 13 * 0.039 + 14 * 0.039 + 15 * 0.039 + 16 * 0.039 + 17 * 0.039 + 
18 * 0.039 + 19 * 0.039 + 20 * 0.039 + 21 * 0.039 + 22 * 0.039 + 23 * 0.039 + 24 * 
0.039 + 25 * 0.039 + 26 * 0.039 + 27 * 0.039 + 28 * 0.039 + 29 * 0.039 + 30 * 0.039 
#(Comp 33) 
F Var_plots 4 + 32 + 31 + 33#comp33 
H H_plot 33 34 
 
 
# Cullis heritability for entry mean basis 
1 - ((9.051^2)/(2*64.560)) = 0.365 = H_Mean 
# Cullis heritability for entry mean basis 
# Overall Standard Error of Difference    2.860    
#h2 = 1 - ((SED)^2)/2 * G variance) 
 
SIS_SC 
 
          - - - Results from analysis of sis_sc - - - 
 
   1 pop                      16.7785     
   2 ef.pop                   7.84091     
   3 at(pop                   171.567     
   4 at(pop                   115.080     
   5 at(pop                   100.905     
   6 at(pop                   72.3130     
   7 at(pop                   61.1218     
   8 at(pop                   138.083     
   9 at(pop                   45.9184     
  10 at(pop                   95.4822     
  11 at(pop                   68.5242     
  12 at(pop                   90.2964     
  13 at(pop                   68.6927     
  14 at(pop                   77.7211     
  15 at(pop                   41.6504     
  16 at(pop                   38.6781     
  17 at(pop                   44.6447     
  18 at(pop                   101.561     
  19 at(pop                   80.7264     

 
 



341 
 

 

  20 at(pop                   62.0109     
  21 at(pop                   77.9457     
  22 at(pop                   118.482     
  23 at(pop                   43.3140     
  24 at(pop                   100.470     
  25 at(pop                   28.5223     
  26 at(pop                   69.2066     
  27 at(pop                   77.5438     
  28 at(pop                   284.335     
  29 ef.pop.entrynum          15.9161     
  30 Variance                 162.190     
  31 VarG  1                   105.50        18.949     
  32 Var_plots 29              291.44        19.269     
     H_plot       = VarG  1   31/Var_plot  32=          0.3620    0.0422 
 Notice: The parameter estimates are followed by 
          their approximate standard errors. 
 
H2 means basis: (VARG) / ((VARG) + ef.pop/(2 : Harmonic Mean) + ef.pop.entrynum / 
2 + (Variance) / 3.41 ) 
 
105.50 / (105.50 + (7.84091/2) + (15.9161/2) +(15.9161/3.43786403)) = 0.8646 = H2 
Means-Basis 
 
Joint-Linkage Mapping Code – SAS – Buckler et al., 2009 
 
DATA GENO; 
INFILE 'SCIS SAS.csv' DSD FIRSTOBS=2 LINESIZE=10000; 
LENGTH SAMPLE $3.; 
*/ (Zeno#) (phenotype) pop m1-m1106; 
INPUT genocode nsc sc diff ratio dta dts pop  m1-m1106; 
RUN; 
PROC PRINT DATA=GENO; 
RUN; 
 
/**********************************************/ 
/*      Use GLMSELECT to build a model.       */ 
/*      First create a macro to hold the      */ 
/*      pop and marker*pop terms.             */ 
/**********************************************/ 
%let factor = pop; 
 
%macro makefactor; 
 %do i = 1 %to 1106; 
  %let factor = &factor pop*m&i; 
 %end; 
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%mend; 
%makefactor; 
%put &factor;    /*  checks that factor is correct   */ 
 
/*******************************************************************/ 
/*  Run glmselect.                                                 */ 
/*  The correct significance level to use depends on the markers   */ 
/*  and should be determined using a permutation analysis.         */ 
/*  The stop parameter may be set to a higher or lower value       */ 
/*  to limit the amount of time taken by the analysis.             */ 
/*******************************************************************/ 
proc glmselect data=GENO; 
class pop; 
model ratio = &factor /select=sl sle=1e-4 sls=2e-4 stop=50 showpvalues; 
run;  
 
/***********************************************************************
*/ 
/*  The next section uses the model as background markers (cofactors)   */ 
/*  to perform a scan of all the markers in the data set excluding      */ 
/*  background markers in a window around the marker being tested.      */ 
/*  It uses likelihood ratios to calculate a LOD score for each marker. */ 
/*                                                                      */ 
/*  Replace the numbers in the cards statement with the marker numbers  */ 
/*  from the actual model.                                              */ 
/***********************************************************************
*/ 
 
DATA MAP; 
INFILE 'markers061208.txt' DLM='09'x; 
LENGTH marker $15 name $5; 
INPUT marker chr pos mnum; 
name = 'm'||left(mnum); 
RUN; 
*input markers from previously run model; 
data modelterms; 
length name $5; 
input mnum; 
name = 'm'||left(mnum); 
chr = 0; 
pos = 0; 
cards; 
33 
242 
472 
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; 
run; 
 
proc sql; 
update modelterms set chr=(select chr from map where modelterms.name=map.name); 
update modelterms set pos=(select pos from map where modelterms.name=map.name); 
quit; 
 
%let trait = ratio; 
%global model; 
%global rmodel; 
%macro getreducedmodel(marker, window); 
 %let mname = m&marker; 
 proc sql; 
 select chr,pos into :chr,:pos from map where map.name="&mname"; 
 quit; 
 
 data _null_; 
 set modelterms end=stop; 
 length model $1000; 
 retain model "&trait = pop"; 
 if chr^=&chr then model = trim(model)||" pop*"||left(name); 
 else if abs(pos - &pos) > &window then model = trim(model)||" 
pop*"||left(name); 
 if stop then call symput('model',trim(model)); 
 run; 
%mend; 
 
%macro testAMarker(marker, window); 
 %getreducedmodel(&marker, &window); 
  
 %if "&rmodel"^="&model" %then %do; 
  %put calculating the reduced model for m&marker; 
 
  proc mixed data=geno method=ml; 
  class pop; 
  model &model; 
  ods output "Fit Statistics"=reduced; 
  run; 
  %let rmodel = &model; 
 %end; 
 
 %let model = &model pop*m&marker; 
 %put calculating the full model for m&marker; 
 proc mixed data=geno method=ml; 
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 class pop; 
 model &model; 
 ods output "Fit Statistics"=full; 
 run; 
 
%mend;  
 
%macro scanmarkers(start, finish, window); 
 proc sql; 
 create table scanresults(name char(5), LRreduced num, LRfull num, diff num, lod 
num); 
 quit; 
 %let rmodel = blank; 
 %do i = &start %to &finish; 
  %testAMarker(&i, &window); 
  proc sql; 
  insert into scanresults(name, LRreduced, LRfull, diff, lod)  
   select "m&i",a.value, b.value, a.value-b.value, (a.value-
b.value)/4.61  
   from reduced a, full b 
   where a.descr=b.descr and b.descr="-2 Log Likelihood"; 
  quit; 
 %end; 
%mend; 
 
options nonotes; 
ods listing close; 
ods results off; 
%scanmarkers(1,1106,20); 
ods listing; 
ods results on; 
options notes; 
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Appendix D Sink-Inhibited Senescence Candidate Genes 

Table D-1 Candidate Genes for Sink-Inhibited Senescence Phenotypes  

Phenotype Chr SNP 
Position RMIP Gene ID Arabidopsis/Rice/PFAM Ortholog 

Difference 

7 2,631,177 30 GRMZM2G100176 PFAM ID: PF00249: Myb-like DNA-binding domain 
7 2,631,177 30 GRMZM2G542190 No annotated gene 
7 2,631,177 30 GRMZM2G015739 PFAM ID: PF08507: COPI associated protein 
7 2,631,177 30 GRMZM2G015654 PFAM ID: PF03254: Xyloglucan fucosyltransferase 
7 2,631,177 30 GRMZM2G490613 No annotated gene 
7 2,631,177 30 GRMZM2G490599 No annotated gene 
9 50,589,579 27 GRMZM2G573326 No annotated gene 
9 50,589,579 27 AC204296.3_FG001 No annotated gene 
7 2,585,778 26 GRMZM2G101545 AT5G03970.2: F-box associated ubiquitination effector  
7 2,585,778 26 GRMZM5G879345 No annotated gene 
7 2,585,778 26 GRMZM2G403424 No annotated gene 
7 2,585,778 26 GRMZM2G403426 No annotated gene 
7 2,585,778 26 GRMZM5G827455 PFAM ID: PF00931: NB-ARC domain 

7 2,585,778 26 GRMZM2G341621 AT3G06430.1(EMB2750): Tetratricopeptide repeat (TPR)-
like superfamily protein 

7 2,585,778 26 GRMZM2G043383 PFAM ID: PF00118: TCP-1/cpn60 chaperonin family 
7 2,585,778 26 GRMZM2G043722 No annotated gene 
7 2,585,778 26 GRMZM2G043368 No annotated gene 
7 2,585,778 26 GRMZM2G043301 AT5G66920.1(sks17): SKU5 similar 17 
7 2,585,778 26 GRMZM5G808940 No annotated gene 
9 23,335,558 22 GRMZM2G110158 PF10192: Rhodopsin-like GPCR transmembrane domain 
9 23,335,558 22 GRMZM2G110117 No annotated gene 
9 23,335,558 22 GRMZM2G548056 No annotated gene 
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Table D-1 Continued 

Difference 

9 23,335,558 22 GRMZM2G548053 No annotated gene 
9 23,335,558 22 GRMZM2G548052 No annotated gene 
9 23,335,558 22 GRMZM2G024993 Granule-bound starch synthase - waxy 1 

9 23,335,558 22 GRMZM2G171395 (ANAC043,EMB2301,NST1): NAC (No Apical Meristem) 
domain transcriptional regulator superfamily protein 

9 23,335,558 22 GRMZM2G171376 AT4G14040.1(EDA38,SBP2): selenium-binding protein 2 
4 52,101,633 18 GRMZM2G069922 AT3G10300.1: Calcium-binding EF-hand family protein 
6 167,702,389 18 GRMZM2G310880 No annotated gene 
6 167,702,389 18 GRMZM2G010953 AT1G56720.1: Protein kinase superfamily protein 
6 167,702,389 18 GRMZM2G011091 No annotated gene 
6 167,702,389 18 GRMZM2G021644 No annotated gene 
6 167,702,389 18 GRMZM2G021661 AT3G26360.1: Ribosomal protein S21 family protein 

6 167,702,389 18 GRMZM2G167786 PFAM ID: PF08263: Leucine rich repeat N-terminal 
domain 

6 167,702,389 18 GRMZM2G167860 No annotated gene 
5 26,052,001 17 AC210058.3_FG002 No annotated gene 
5 26,052,001 17 GRMZM2G377735 No annotated gene 
5 26,052,001 17 AC210058.3_FG003 No annotated gene 
6 69,934,096 17 GRMZM2G126057 No annotated gene 
6 69,934,096 17 GRMZM2G126053 No annotated gene 
6 69,934,096 17 AC216268.3_FG001 No annotated gene 
1 33,116,200 16 GRMZM2G108138 AT4G24230.6(ACBP3): acyl-CoA-binding domain 3 
1 33,116,200 16 GRMZM2G108032 AT4G38650.1: Glycosyl hydrolase family 10 protein 
1 33,116,200 16 GRMZM2G546229 No annotated gene 
1 33,116,200 16 GRMZM2G546268 No annotated gene 
9 34,020,915 15 GRMZM2G703960 No annotated gene 
9 34,020,915 15 GRMZM2G106113 No annotated gene 
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Table D-1 Continued 

Difference 

2 150,254,066 14 GRMZM5G874578 No annotated gene 
2 150,254,066 14 GRMZM2G075384 No annotated gene 
1 35,744,241 12 GRMZM2G001696 PFAM ID: PF01293: Phosphoenolpyruvate carboxykinase 
1 35,744,241 12 GRMZM2G001663 PFAM ID: PF03101: FAR1 DNA-binding domain 
1 35,744,241 12 GRMZM2G001814 AT5G57190.1(PSD2): phosphatidylserine decarboxylase 2 
1 35,744,241 12 GRMZM2G484108 No annotated gene 

2 31,831,353 12 GRMZM2G158083 AT5G48930.1(HCT): hydroxycinnamoyl-CoA 
shikimate/quinate hydroxycinnamoyl transferase 

2 31,831,353 12 GRMZM2G321210 AT4G02290.1(AtGH9B13,GH9B13): glycosyl hydrolase 
9B13 

2 31,831,353 12 GRMZM2G020947 No annotated gene 
2 31,831,353 12 AC200505.4_FG005 No annotated gene 
2 31,831,353 12 GRMZM2G321262 No annotated gene 
4 180,242,001 12 AC197274.4_FG004 No annotated gene 

4 180,242,001 13 GRMZM2G149422 PFAM ID: PF04674: Phosphate-induced protein 1 
conserved region 

4 180,242,001 14 GRMZM2G448876 No annotated gene 
4 180,242,001 15 GRMZM2G448881 No annotated gene 

4 180,242,001 16 GRMZM2G448883 PFAM ID: PF04674: Phosphate-induced protein 1 
conserved region 

4 180,242,001 17 GRMZM2G338457 No annotated gene 
4 180,242,001 12 GRMZM2G501303 No annotated gene 
9 22,390,491 12 No annotated genes No annotated gene 

1 33,215,584 11 GRMZM2G346861 AT4G38660.1: Pathogenesis-related thaumatin superfamily 
protein 

1 33,215,584 11 GRMZM2G346861 AT4G38660.1: Pathogenesis-related thaumatin superfamily 
protein 
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Table D-1 Continued 

Difference 

1 246,542,036 11 GRMZM2G012119 (PIFI): post-illumination chlorophyll fluorescence increase 

1 246,542,036 11 GRMZM2G013600 AT5G51940.1(NRPB6A,NRPD6A,NRPE6A): RNA 
polymerase Rpb6 

1 246,542,036 11 GRMZM2G012071 AT4G31490.1: Coatomer, beta subunit 
2 207,836,886 10 GRMZM2G130773 AT5G55580.1: Mitochondrial transcription termination  
2 207,836,886 10 GRMZM2G431309 AT1G50600.1(SCL5): scarecrow-like 5 
2 207,836,886 10 GRMZM2G431309 LOC_Os07g39470.1: gibberellin response modulator  

2 207,836,886 10 GRMZM2G130854 AT4G26640.2(AtWRKY20,WRKY20): WRKY family 
transcription factor family protein 

2 207,836,886 10 GRMZM2G130819 No annotated gene 
5 17,687,519 10 No annotated genes No annotated gene 
6 69,597,861 10 GRMZM5G819899 No annotated gene 
6 69,597,861 10 GRMZM5G894974 No annotated gene 
1 55,526,001 9 No annotated genes No annotated gene 
1 246,493,829 9 GRMZM2G011912 AT2G35610.1(XEG113): xyloglucanase 113 
2 4,160,502 9 GRMZM5G826577 No annotated gene 
2 4,160,502 9 GRMZM2G398057 No annotated gene 
2 4,160,502 9 GRMZM5G846720 No annotated gene 
2 4,160,502 9 GRMZM2G096905 No annotated gene 
6 69,982,294 9 GRMZM2G482736 No annotated gene 
6 69,982,294 9 GRMZM2G482733 No annotated gene 
6 69,982,294 9 GRMZM2G482730 No annotated gene 
7 163,274,001 9 No annotated genes No annotated gene 

2 30,290,372 8 GRMZM2G051952 LOC_Os04g42800.1: photosystem-II repair protein, 
putative, expressed 

2 30,290,372 8 GRMZM2G052009 No annotated gene 
2 30,290,372 8 GRMZM2G051948 No annotated gene 
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Table D-1 Continued 

Difference 

2 174,290,434 8 AC196395.3_FG001 No annotated gene 
4 179,358,319 8 GRMZM2G154389 No annotated gene 
7 161,798,001 8 GRMZM2G179777 AT5G50890.1: alpha/beta-Hydrolases superfamily protein 
7 161,798,001 8 GRMZM2G179779 No annotated gene 
7 161,798,001 8 GRMZM5G888034 No annotated gene 
7 161,798,001 8 GRMZM5G848687 No annotated gene 
7 161,798,001 8 GRMZM2G589996 No annotated gene 
7 161,798,001 8 GRMZM2G396653 No annotated gene 
1 27,254,251 7 No annotated genes No annotated gene 
1 246,409,076 7 GRMZM2G011078 AT1G61250.1(SC3): secretory carrier 3 
1 246,409,076 7 GRMZM2G307908 No annotated gene 
1 246,409,076 7 GRMZM2G010831 No annotated gene 
1 246,409,076 7 GRMZM2G487196 No annotated gene 
2 148,184,812 7 GRMZM2G545106 No annotated gene 
4 68,643,578 7 AC214531.3_FG004 AT2G32560.1: F-box family protein 

4 68,643,578 7 GRMZM2G029184 LOC_Os08g16130.1: fiber protein Fb34, putative, 
expressed 

4 68,643,578 7 GRMZM2G029173 No annotated gene 
4 68,643,578 7 GRMZM2G029165 No annotated gene 
5 39,440,001 7 No annotated genes No annotated gene 
6 69,882,668 7 No annotated genes No annotated gene 
6 69,954,140 7 No annotated genes No annotated gene 

8 118,974,331 7 GRMZM2G034421 AT4G11070.1(AtWRKY41,WRKY41): WRKY family 
transcription factor 

9 5,512,154 7 GRMZM2G152415 PFAM ID: PF00319: SRF-type transcription factor (DNA-
binding and dimerisation domain) 
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Table D-1 Continued 

Difference 

9 5,512,154 7 GRMZM2G152411 AT5G46860.1(ATSYP22,ATVAM3,SGR3,SYP22,VAM3): 
Syntaxin/t-SNARE family protein 

9 143,360,715 7 GRMZM2G175642 No annotated gene 
9 143,360,715 7 GRMZM2G175685 No annotated gene 
9 143,360,715 7 GRMZM2G175738 No annotated gene 
9 143,360,715 7 GRMZM2G175743 No annotated gene 
9 143,360,715 7 GRMZM2G477658 No annotated gene 
9 143,360,715 7 GRMZM2G175758 No annotated gene 
9 143,360,715 7 GRMZM2G477666 No annotated gene 

1 2,541,747 6 GRMZM2G052546 AT3G52180.2(ATPTPKIS1,ATSEX4,DSP4,SEX4): dual 
specificity protein phosphatase (DsPTP1) family protein 

1 23,235,688 6 GRMZM2G005435 PFAM ID: PF05903: PPPDE putative peptidase domain 
1 23,235,688 6 GRMZM2G005624 AT2G18550.1(ATHB21,HB-2,HB21): homeobox protein21 
1 33,042,978 6 No annotated genes No annotated gene 
2 174,342,922 6 AC203957.3_FG001 AT1G68825.1(DVL5,RTFL15): ROTUNDIFOLIA like 15 
2 174,342,922 6 GRMZM2G149022 No annotated gene 
2 174,342,922 6 AC203957.3_FG002 No annotated gene 
2 174,342,922 6 GRMZM5G857422 No annotated gene 
2 174,342,922 6 GRMZM5G825892 No annotated gene 
2 195,013,286 6 No annotated genes No annotated gene 

4 157,614,954 6 GRMZM2G004748 PFAM ID: PF00664: ABC transporter transmembrane 
region , PF00005: ABC transporter 

4 157,614,954 6 GRMZM5G896519 No annotated gene 

4 158,305,199 6 GRMZM2G350157 AT2G31290.1: Ubiquitin carboxyl-terminal hydrolase 
family protein 

4 158,305,199 6 GRMZM2G050405 AT5G28050.2: Cytidine/deoxycytidylate deaminase family  
4 158,305,199 6 AC184172.3_FG004 No annotated gene 
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Table D-1 Continued 

Difference 

4 158,305,199 6 GRMZM2G350106 No annotated gene 
5 362,001 6 No annotated genes No annotated gene 

5 20,199,518 6 GRMZM2G070523 AT2G32460.1(ATM1,ATMYB101,MYB101): myb domain 
protein 101 

5 20,199,518 6 GRMZM5G889027 No annotated gene 
5 20,199,518 6 GRMZM2G369119 No annotated gene 
5 20,199,518 6 GRMZM5G854240 No annotated gene 
6 69,758,139 6 No annotated genes No annotated gene 
6 71,514,973 6 GRMZM2G700957 No annotated gene 
6 71,514,973 6 GRMZM5G815863 No annotated gene 

7 722,100 6 GRMZM2G177104 AT4G21200.1(ATGA2OX8,GA2OX8): gibberellin 2-
oxidase 8 

7 722,100 6 GRMZM2G177091 No annotated gene 
7 722,100 6 GRMZM2G588737 No annotated gene 

7 2,586,382 6 GRMZM2G101545 AT5G03970.2: F-box associated ubiquitination effector 
family protein 

7 2,586,382 6 GRMZM5G879345 No annotated gene 
7 2,586,382 6 GRMZM2G403424 No annotated gene 
7 2,586,382 6 GRMZM2G403426 No annotated gene 
7 2,586,382 6 GRMZM5G827455 PFAM ID: PF00931: NB-ARC domain 

7 2,586,382 6 GRMZM2G341621 AT3G06430.1(EMB2750): Tetratricopeptide repeat (TPR)-
like superfamily protein 

7 2,586,382 6 GRMZM2G043383 PFAM ID: PF00118: TCP-1/cpn60 chaperonin family 
7 2,586,382 6 GRMZM2G043722 No annotated gene 
7 2,586,382 6 GRMZM2G043368 No annotated gene 
7 2,586,382 6 GRMZM2G043301 AT5G66920.1(sks17): SKU5 similar 17 
7 2,586,382 6 GRMZM5G808940 No annotated gene 
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Table D-1 Continued 

Difference 

1 26,573,277 5 GRMZM2G088309 AT1G69180.1(CRC): Plant-specific transcription factor 
YABBY family protein 

1 26,573,277 5 GRMZM2G534604 No annotated gene 
1 33,116,201 5 GRMZM2G108138 AT4G24230.6(ACBP3): acyl-CoA-binding domain 3 
1 33,116,201 5 GRMZM2G108032 AT4G38650.1: Glycosyl hydrolase family 10 protein 
1 33,116,201 5 GRMZM2G546229 No annotated gene 
1 33,116,201 5 GRMZM2G546268 No annotated gene 

1 64,146,869 5 GRMZM2G084407 AT2G46950.1(CYP709B2): cytochrome P450, family 709, 
subfamily B, polypeptide 2 

1 64,146,869 5 GRMZM2G534260 No annotated gene 
2 150,525,724 5 No annotated genes No annotated gene 
4 45,668,829 5 GRMZM2G355806 No annotated gene 
4 45,668,829 5 GRMZM2G052995 No annotated gene 
4 45,668,829 5 GRMZM5G847573 No annotated gene 
4 158,181,853 5 GRMZM2G576495 No annotated gene 
4 158,181,853 5 GRMZM2G156444 No annotated gene 
4 179,802,574 5 GRMZM2G308193 AT5G65290.1: LMBR1-like membrane protein 

4 179,802,574 5 GRMZM2G008691 AT1G72210.1: basic helix-loop-helix (bHLH) DNA-
binding superfamily protein 

4 179,802,574 5 GRMZM2G008819 AT2G32300.1(UCC1): uclacyanin 1 
4 179,802,574 5 GRMZM2G487332 No annotated gene 
5 41,126,001 5 No annotated genes No annotated gene 

7 160,762,001 5 GRMZM2G104204 AT2G18550.1(ATHB21,HB-2,HB21): homeobox protein 
21 

7 161,627,332 5 GRMZM2G066197 No annotated gene 
7 172,818,001 5 GRMZM5G884316 No annotated gene 
7 172,818,001 5 GRMZM2G042347 AT5G05340.1: Peroxidase superfamily protein 
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Table D-1 Continued 

Difference 

7 172,818,001 5 GRMZM2G507784 AT5G05340.1: Peroxidase superfamily protein 
7 172,818,001 5 GRMZM5G899449 AT5G05340.1: Peroxidase superfamily protein 
7 172,818,001 5 AC211735.5_FG008 AT5G05340.1: Peroxidase superfamily protein 
8 118,006,292 5 GRMZM2G179728 PFAM ID: PF00657: GDSL-like Lipase/Acylhydrolase 
8 118,006,292 5 GRMZM2G173874 AT3G47300.1(SELT): SELT-like protein precursor 
8 169,476,475 5 AC233788.2_FG009 No annotated gene 

9 16,488,862 5 GRMZM2G017349 AT4G36930.1(SPT): basic helix-loop-helix (bHLH) DNA-
binding superfamily protein 

9 16,488,862 5 GRMZM2G338056 AT3G53600.1: C2H2-type zinc finger family protein 

9 16,488,862 5 GRMZM2G016930 AT4G11240.1(TOPP7): Calcineurin-like metallo-
phosphoesterase superfamily protein 

9 16,488,862 5 GRMZM2G494762 No annotated gene 
9 16,488,862 5 GRMZM2G494759 No annotated gene 

10 141,004,347 5 GRMZM2G129071 AT1G31410.1: putrescine-binding periplasmic protein-
related 

10 141,004,347 5 GRMZM2G109753 AT2G04940.1: scramblase-related 

Ratio 

9 113,515,721 35 GRMZM2G138429 AT1G32400.1(TOM2A): tobamovirus multiplication 2A 
9 113,515,721 35 GRMZM2G562388 No annotated gene 

9 113,515,721 35 GRMZM2G144841 AT1G32370.2(TOM2B,TTM1): tobamovirus multiplication 
2B 

1 246,542,036 27 GRMZM2G012119 (PIFI): post-illumination chlorophyll fluorescence increase 

1 246,542,036 27 GRMZM2G013600 AT5G51940.1(NRPB6A,NRPD6A,NRPE6A): RNA 
polymerase Rpb6 

1 246,542,036 27 GRMZM2G012071 AT4G31490.1: Coatomer, beta subunit 
2 9,277,549 27 GRMZM2G124560 AT5G21040.1(FBX2): F-box protein 2 
2 9,277,549 27 GRMZM2G107711 No annotated gene 
2 9,277,549 27 GRMZM2G124603 No annotated gene 
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Table D-1 Continued 

Ratio 

2 9,277,549 27 GRMZM2G124600 No annotated gene 
2 9,277,549 27 AC185413.3_FG002 No annotated gene 
2 9,277,549 27 AC185413.3_FG001 No annotated gene 
2 9,277,549 27 GRMZM2G584478 No annotated gene 
2 9,277,549 27 GRMZM2G469521 No annotated gene 
1 25,787,771 22 AC211140.2_FG010 No annotated gene 
1 25,787,771 22 AC211140.2_FG010 No annotated gene 
4 52,101,633 21 GRMZM2G069922 AT3G10300.1: Calcium-binding EF-hand family protein 

8 119,035,095 21 GRMZM2G432583 AT5G01900.1(ATWRKY62,WRKY62): WRKY DNA-
binding protein 62 

8 119,035,095 21 GRMZM2G132759 AT3G08690.1(ATUBC11,UBC11): ubiquitin-conjugating 
enzyme 11 

8 119,035,095 21 GRMZM2G132740 No annotated gene 
6 69,934,096 19 GRMZM2G126057 No annotated gene 
6 69,934,096 19 GRMZM2G126053 No annotated gene 
6 69,934,096 19 AC216268.3_FG001 No annotated gene 
1 33,116,200 17 GRMZM2G108138 AT4G24230.6(ACBP3): acyl-CoA-binding domain 3 
1 33,116,200 17 GRMZM2G108032 AT4G38650.1: Glycosyl hydrolase family 10 protein 
1 33,116,200 17 GRMZM2G546229 No annotated gene 
1 33,116,200 17 GRMZM2G546268 No annotated gene 

4 53,858,511 15 GRMZM2G473869 PFAM ID: PF04570: Protein of unknown function 
(DUF581) 

4 53,858,511 15 GRMZM2G486609 No annotated gene 
2 148,184,812 14 GRMZM2G545106 No annotated gene 
1 34,603,099 13 GRMZM2G089812 AT5G63470.1(NF-YC4): nuclear factor Y, subunit C4 

1 34,603,099 13 GRMZM2G171736 AT4G08920.1(ATCRY1,BLU1,CRY1,HY4,OOP2): 
cryptochrome 1 
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Table D-1 Continued 

Ratio 

1 34,603,099 13 GRMZM5G825312 No annotated gene 
1 34,603,099 13 GRMZM2G089832 No annotated gene 
1 34,603,099 13 GRMZM2G068507 No annotated gene 
6 69,982,294 13 GRMZM2G482736 No annotated gene 
6 69,982,294 13 GRMZM2G482733 No annotated gene 
6 69,982,294 13 GRMZM2G482730 No annotated gene 
1 243,882,001 12 No annotated genes No annotated gene 
3 50,206,375 12 GRMZM2G463340 No annotated gene 
3 50,206,375 12 GRMZM2G463336 No annotated gene 
3 50,206,375 12 GRMZM2G580724 No annotated gene 
3 50,206,375 12 AC190652.3_FG004 No annotated gene 

3 8,220,888 11 GRMZM2G176489 AT5G15130.1(ATWRKY72,WRKY72): WRKY DNA-
binding protein 72 

3 8,220,888 11 GRMZM2G475984 AT5G64810.1(ATWRKY51,WRKY51): WRKY DNA-
binding protein 51 

5 19,777,916 11 GRMZM5G853066 PFAM ID: PF00319: SRF-type transcription factor (DNA-
binding and dimerisation domain) 

5 19,777,916 11 AC192246.2_FG002 No annotated gene 
5 19,777,916 11 GRMZM2G502484 No annotated gene 
5 22,570,177 10 GRMZM2G082160 No annotated gene 

8 153,620,941 10 GRMZM2G138999 AT5G53370.1(ATPMEPCRF,PMEPCRF): pectin 
methylesterase PCR fragment F 

1 26,148,892 9 GRMZM2G009638 AT2G33040.1(ATP3): gamma subunit of Mt ATP synthase 
5 26,052,001 9 AC210058.3_FG002 No annotated gene 
5 26,052,001 9 GRMZM2G377735 No annotated gene 
5 26,052,001 9 AC210058.3_FG003 No annotated gene 
10 137,505,644 9 GRMZM5G884137 AT2G02070.1(AtIDD5,IDD5): indeterminate(ID)-domain 5 
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Table D-1 Continued 

Ratio 

10 137,505,644 9 GRMZM2G702582 No annotated gene 
10 137,505,644 9 AC209206.3_FG009 No annotated gene 
10 137,505,644 9 AC209206.3_FG010 No annotated gene 

2 2,034,526 8 GRMZM2G040115 AT3G19850.1: Phototropic-responsive NPH3 family 
protein 

2 2,034,526 8 GRMZM2G040247 AT1G08190.1(ATVAM2,ATVPS41,VAM2,VPS41,ZIP2): 
vacuolar protein sorting 41 

2 2,034,526 8 GRMZM5G827567 No annotated gene 
2 28,664,390 8 GRMZM2G052644 AT2G33385.2(arpc2b): actin-related protein C2B 
2 28,664,390 8 GRMZM5G889644 No annotated gene 
2 28,664,390 8 GRMZM5G806726 No annotated gene 

2 28,664,390 8 GRMZM2G052688 AT1G04020.1(ATBARD1,BARD1,ROW1): breast cancer 
associated RING 1 

2 28,664,390 8 AC187787.2_FG007 No annotated gene 
3 50,210,647 8 GRMZM2G463340 No annotated gene 
3 50,210,647 8 GRMZM2G463336 No annotated gene 
3 50,210,647 8 GRMZM2G580724 No annotated gene 
3 50,210,647 8 AC190652.3_FG004 No annotated gene 
4 54,363,620 8 GRMZM2G477032 No annotated gene 

5 19,776,980 8 GRMZM5G853066 PFAM ID: PF00319: SRF-type transcription factor (DNA-
binding and dimerisation domain) 

5 19,776,980 8 AC192246.2_FG002 No annotated gene 
5 19,776,980 8 GRMZM2G502484 No annotated gene 
5 22,556,150 8 GRMZM5G869246 AT4G39050.1: Kinesin motor family protein 
6 69,625,973 8 GRMZM2G168299 AT1G02100.1: Leucine carboxyl methyltransferase 
1 229,362,503 7 GRMZM2G108949 PFAM ID: PF05553: Cotton fibre expressed protein 
1 229,362,503 7 GRMZM2G409205 No annotated gene 
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Table D-1 Continued 

Ratio 

1 229,362,503 7 GRMZM2G409193 No annotated gene 
1 229,362,503 7 GRMZM2G547826 No annotated gene 
2 176,356,560 7 GRMZM2G113633 AT5G63870.1(ATPP7,PP7): serine/threonine phosphatase 7 
2 176,356,560 7 GRMZM2G055960 No annotated gene 
2 176,356,560 7 AC229978.2_FG002 No annotated gene 
2 176,356,560 7 GRMZM2G113607 No annotated gene 
2 176,356,560 7 GRMZM2G412081 No annotated gene 
2 176,356,560 7 GRMZM2G549433 No annotated gene 
2 176,356,560 7 GRMZM2G412079 No annotated gene 
4 55,502,889 7 No annotated genes No annotated gene 
5 17,687,519 7 No annotated genes No annotated gene 
8 91,176,928 7 GRMZM2G347248 No annotated gene 
8 91,176,928 7 GRMZM5G893547 No annotated gene 
8 91,176,928 7 GRMZM2G532340 No annotated gene 
8 91,176,928 7 AC195139.3_FG003 No annotated gene 
8 118,058,509 7 No annotated genes No annotated gene 

2 10,658,773 6 GRMZM2G098214 AT5G14600.1: S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

2 10,658,773 6 GRMZM2G098187 AT4G24480.1: Protein kinase superfamily protein 
2 10,658,773 6 GRMZM2G121063 AT5G09400.1(KUP7): K+ uptake permease 7 

2 10,658,773 6 GRMZM5G870342 AT1G03475.1(ATCPO-I,HEMF1,LIN2): 
Coproporphyrinogen III oxidase 

2 10,658,773 6 GRMZM2G554927 No annotated gene 
2 146,547,891 6 GRMZM2G314166 No annotated gene 
2 147,946,642 6 No annotated genes No annotated gene 

2 179,437,964 6 GRMZM2G114681 rabidopsis best hit: AT1G74950.1(JAZ2,TIFY10B): TIFY 
domain/Divergent CCT motif family protein 
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Table D-1 Continued 

Ratio 

2 179,437,964 7 GRMZM2G548783 No annotated gene 
2 179,437,964 8 GRMZM2G498951 No annotated gene 
3 121,043,869 6 No annotated genes No annotated gene 
4 50,729,244 6 GRMZM2G106165 AT2G27920.1(SCPL51): serine carboxypeptidase-like 51 
4 50,729,244 6 GRMZM2G106143 AT5G53300.1(UBC10): ubiquitin-conjugating enzyme 10 
4 50,729,244 6 GRMZM2G546782 No annotated gene 
4 51,402,374 6 No annotated genes No annotated gene 
5 188,477,501 6 GRMZM2G178517 AT5G22300.1(AtNIT4,NIT4): nitrilase 4 

5 188,477,501 6 GRMZM2G178509 AT5G23350.1: GRAM domain-containing protein / ABA-
responsive protein-related 

5 188,477,501 6 AC198169.4_FG007 No annotated gene 
5 188,477,501 6 GRMZM2G480911 No annotated gene 
5 188,477,501 6 GRMZM2G590870 No annotated gene 
5 188,477,501 6 GRMZM2G590871 No annotated gene 
5 188,477,501 6 GRMZM2G178506 No annotated gene 
5 188,477,501 6 GRMZM5G855035 No annotated gene 
5 188,477,501 6 GRMZM2G178592 No annotated gene 
6 69,882,668 6 No annotated genes No annotated gene 
7 160,996,488 6 No annotated genes No annotated gene 
8 118,058,503 6 No annotated genes No annotated gene 
8 119,644,458 6 GRMZM2G300589 AT1G55530.1: RING/U-box superfamily protein 
8 119,644,458 6 GRMZM2G489343 No annotated gene 
8 119,644,458 6 GRMZM2G300586 No annotated gene 
8 119,644,458 6 GRMZM2G012098 No annotated gene 
9 2,810,904 6 No annotated genes No annotated gene 
1 35,744,241 5 GRMZM2G001696 PFAM ID: PF01293: Phosphoenolpyruvate carboxykinase 
1 35,744,241 5 GRMZM2G001663 PFAM ID: PF03101: FAR1 DNA-binding domain 
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Ratio 

1 35,744,241 5 GRMZM2G001814 AT5G57190.1(PSD2): phosphatidylserine decarboxylase 2 
1 35,744,241 5 GRMZM2G484108 No annotated gene 
1 35,744,246 5 GRMZM2G001696 PFAM ID: PF01293: Phosphoenolpyruvate carboxykinase 
1 35,744,246 5 GRMZM2G001663 PFAM ID: PF03101: FAR1 DNA-binding domain 
1 35,744,246 5 GRMZM2G001814 AT5G57190.1(PSD2): phosphatidylserine decarboxylase 2 
1 35,744,246 5 GRMZM2G484108 No annotated gene 

1 191,204,001 5 GRMZM2G076257 AT4G18750.1(DOT4): Pentatricopeptide repeat (PPR) 
superfamily protein 

1 246,409,076 5 GRMZM2G011078 AT1G61250.1(SC3): secretory carrier 3 
1 246,409,076 5 GRMZM2G307908 No annotated gene 
1 246,409,076 5 GRMZM2G010831 No annotated gene 
1 246,409,076 5 GRMZM2G487196 No annotated gene 
2 29,674,584 5 GRMZM2G049608 AT1G21230.1(WAK5): wall associated kinase 5 
2 29,674,584 5 GRMZM2G347361 No annotated gene 
2 29,674,584 5 GRMZM2G171620 AT2G20300.1(ALE2): Protein kinase superfamily protein 
2 29,674,584 5 GRMZM2G085975 No annotated gene 
2 29,674,584 5 GRMZM2G510907 No annotated gene 
2 33,402,437 5 GRMZM2G321354 AT5G11420.1: Protein of unknown function, DUF642 
2 148,228,600 5 AC211891.4_FG001 AT1G02030.1: C2H2-like zinc finger protein 
2 148,228,600 5 GRMZM2G528252 No annotated gene 
3 50,323,040 5 No annotated genes No annotated gene 
3 188,956,961 5 No annotated genes No annotated gene 
4 51,867,230 5 GRMZM2G372457 No annotated gene 
4 51,867,230 5 GRMZM2G525705 No annotated gene 

4 157,482,739 5 GRMZM2G091003 AT3G24140.1(FMA): basic helix-loop-helix (bHLH) DNA-
binding superfamily protein 

4 157,482,739 5 AC186146.3_FG002 No annotated gene 
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Ratio 

4 157,482,739 5 GRMZM2G390050 No annotated gene 
4 183,712,001 5 GRMZM2G088847 AT5G01650.1: Tautomerase/MIF superfamily protein 

4 183,712,001 5 GRMZM2G089819 AT3G56100.1(IMK3,MRLK): meristematic receptor-like 
kinase 

4 183,712,001 5 GRMZM2G089783 AT2G38360.1(PRA1.B4): prenylated RAB acceptor 1.B4 
4 183,712,001 5 GRMZM2G388512 No annotated gene 
4 183,712,001 5 GRMZM5G807550 No annotated gene 
4 183,712,001 5 GRMZM5G878943 No annotated gene 
4 183,712,001 5 GRMZM2G089813 No annotated gene 
5 20,493,495 5 GRMZM2G080231 AT1G05170.1: Galactosyltransferase family protein 
7 143,113,852 5 GRMZM2G179024 AT5G24470.1(APRR5,PRR5): pseudo-response regulator 5 

7 143,113,852 5 GRMZM2G179021 AT5G66350.1(SHI): Lateral root primordium (LRP) 
protein-related 

7 143,113,852 5 GRMZM2G590541 No annotated gene 

8 118,167,591 5 AC197705.4_FG001 AT4G33070.1: Thiamine pyrophosphate dependent 
pyruvate decarboxylase family protein 

9 150,820,164 5 GRMZM2G169365 AT5G12040.1: Nitrilase/cyanide hydratase and 
apolipoprotein N-acyltransferase family protein 

9 150,820,164 5 GRMZM2G169363 AT1G72820.1: Mitochondrial substrate carrier family 
protein 

9 150,820,164 5 GRMZM2G169384 AT3G15000.1: cobalt ion binding 
9 150,820,164 5 GRMZM2G700128 No annotated gene 

Shootcap-
only 

8 166,561,819 51 GRMZM2G341166 AT4G16490.1: ARM repeat superfamily protein/Spotted 
leaf protein 11 

8 166,561,819 51 GRMZM2G341159 AT1G49210.1: RING/U-box superfamily protein 
8 166,561,819 51 GRMZM2G700775 No annotated gene 
3 190,031,176 42 GRMZM2G116632 Early nodulin 20 
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Shootcap- 
only 

3 190,031,176 42 GRMZM2G061515 indole-3-acetic acid-amido synthetase GH3.1 
3 50,210,647 38 AC190652.3_FG004 No annotated gene 
3 50,210,647 38 GRMZM2G580724 No annotated gene 
3 50,210,647 38 GRMZM2G463336 No annotated gene 
3 50,210,647 38 GRMZM2G463340 No annotated gene 
5 6,305,173 24 GRMZM2G035103 AT1G27730.1(STZ,ZAT10): salt tolerance zinc finger 

5 6,305,173 24 GRMZM2G034877 AT5G66850.1(MAPKKK5): mitogen-activated protein 
kinase kinase kinase 5 

5 6,305,173 24 GRMZM2G034968 No annotated gene 
5 6,305,173 24 GRMZM2G332637 No annotated gene 
5 6,305,173 24 GRMZM2G332641 No annotated gene 

5 6,305,173 24 GRMZM2G077034 GASR3 - Gibberellin-regulated GASA/GAST/Snakin 
family protein precursor 

4 239,407,015 23 GRMZM2G073571 AT2G21520.1: Sec14p-like phosphatidylinositol transfer  
4 239,407,015 23 GRMZM2G073731 No annotated gene 
4 239,407,015 23 GRMZM2G374068 No annotated gene 
4 239,407,015 23 GRMZM2G073542 No annotated gene 
4 239,407,015 23 GRMZM2G073532 No annotated gene 
2 29,910,364 22 GRMZM2G173289 AT5G18520.1: Lung seven transmembrane receptor family  
2 29,910,364 22 GRMZM2G473765 No annotated gene 
2 29,910,364 22 GRMZM2G586913 No annotated gene 
2 29,910,364 22 AC208663.3_FG005 No annotated gene 
2 29,910,364 22 GRMZM2G173299 No annotated gene 

4 38,545,804 22 GRMZM2G123246 AT2G02450.2(anac034,ANAC035,LOV1,NAC035): NAC 
domain containing protein 35 

1 23,225,249 20 GRMZM2G005844 AT1G19340.1: Methyltransferase MT-A70 family protein 
1 23,225,249 20 GRMZM2G304841 No annotated gene 
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Table D-1 Continued 

Shootcap-
only 

3 50,309,401 20 GRMZM2G149747 No annotated gene 
3 50,309,401 20 GRMZM2G572820 No annotated gene 
3 50,309,401 20 GRMZM2G572822 No annotated gene 

2 33,402,437 19 GRMZM2G321354 PFAM ID: PF04862: Protein of unknown function 
(DUF642) 

2 6,597,595 17 GRMZM2G339117 No annotated gene 

4 44,770,267 17 GRMZM5G896883 AT4G38800.1(ATMTAN1,ATMTN1,MTAN1,MTN1): 
methylthioadenosine nucleosidase 1 

9 150,815,418 17 GRMZM2G169365 AT5G12040.1: Nitrilase/cyanide hydratase and 
apolipoprotein N-acyltransferase family protein 

9 150,815,418 17 GRMZM2G169384 LOC_Os09g04670.1: DAG protein, chloroplast precursor, 
putative, expressed 

9 150,815,418 17 GRMZM2G584442 No annotated gene 
9 150,815,418 17 GRMZM2G700128 No annotated gene 
2 5,837,290 15 GRMZM5G882708 AT4G32140.1: EamA-like transporter family 
2 5,837,290 15 GRMZM2G023239 AT5G10790.1(UBP22): ubiquitin-specific protease 22 

2 5,837,290 15 GRMZM5G892758 AT1G15290.1: Tetratricopeptide repeat (TPR)-like 
superfamily protein 

2 5,837,290 15 GRMZM2G023921 AT1G80450.1: VQ motif-containing protein 
2 5,837,290 15 GRMZM2G372145 No annotated gene 
2 28,161,965 15 GRMZM2G445655 No annotated gene 

10 136,705,302 15 GRMZM2G077036 AT4G00750.1: S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

10 136,705,302 15 GRMZM2G077069 AT3G61060.1(AtPP2-A13,PP2-A13): phloem protein 2-
A13 

10 136,705,302 15 GRMZM2G077082 AT5G19160.1(TBL11): TRICHOME BIREFRINGENCE-
LIKE 11 

10 136,705,302 15 GRMZM2G529263 No annotated gene 
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Table D-1 Continued 

Shootcap-
only 

8 165,586,261 14 GRMZM2G128248 AT3G08910.1: DNAJ heat shock family protein 
8 165,586,261 14 GRMZM2G128215 AT5G07610.1: F-box family protein 
8 165,586,261 14 GRMZM2G005483 No annotated gene 
1 34,597,029 12 GRMZM2G089812 AT5G63470.1(NF-YC4): nuclear factor Y, subunit C4 
1 34,597,029 12 GRMZM5G825312 No annotated gene 
1 34,597,029 12 GRMZM2G089832 No annotated gene 
1 34,597,029 12 GRMZM2G068507 No annotated gene 
1 193,320,518 12 GRMZM2G424241 AT3G07220.1: SMAD/FHA domain-containing protein 
1 247,399,275 12 GRMZM2G074853 No annotated gene 
1 247,399,275 12 GRMZM2G074809 No annotated gene 
2 25,011,125 12 GRMZM2G081957 AT3G19300.1: Protein kinase superfamily protein 
2 25,011,125 12 GRMZM2G383883 AT5G62950.1: RNA polymerase II, Rpb4, core protein 

4 182,870,585 12 GRMZM2G451325 AT3G55990.1(ESK1,TBL29): Plant protein of unknown 
function (DUF828) 

6 6,269,078 11 GRMZM2G134134 AT5G40650.1(SDH2-2): succinate dehydrogenase 2-2 
6 6,269,078 11 GRMZM2G562746 No annotated gene 

6 6,269,078 11 GRMZM2G134130 LOC_Os08g02630.1: photosystem II core complex proteins 
psbY, chloroplast precursor, putative, expressed 

6 6,269,078 11 GRMZM2G434069 No annotated gene 
8 166,624,558 11 GRMZM2G085035 AT2G36026.1: Ovate family protein 

8 166,624,558 11 GRMZM2G084979 
AT2G35980.1(ATNHL10,NHL10,YLS9): Late 

embryogenesis abundant (LEA) hydroxyproline-rich 
glycoprotein family 

8 166,624,558 11 GRMZM2G143586 No annotated gene 
8 166,624,558 11 GRMZM2G534657 No annotated gene 
8 166,624,558 11 AC209737.3_FG016 No annotated gene 
10 4,763,003 11 GRMZM2G031150 No annotated gene 
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Table D-1 Continued 

Shootcap-
only 

10 4,763,003 11 GRMZM2G031164 No annotated gene 
3 50,315,894 10 No annotated genes No annotated gene 

9 150,815,407 10 GRMZM2G169365 AT5G12040.1: Nitrilase/cyanide hydratase and 
apolipoprotein N-acyltransferase family protein 

9 150,815,407 10 GRMZM2G169384 LOC_Os09g04670.1: DAG protein, chloroplast precursor, 
putative, expressed 

9 150,815,407 10 GRMZM2G584442 No annotated gene 
9 150,815,407 10 GRMZM2G700128 No annotated gene 
10 137,387,236 10 GRMZM2G054078 No annotated gene 
4 238,228,758 9 GRMZM2G042664 No annotated gene 
4 238,228,758 9 GRMZM5G866636 No annotated gene 
4 238,228,758 9 GRMZM2G043011 No annotated gene 
4 238,228,758 9 GRMZM2G042602 No annotated gene 
5 6,305,152 9 GRMZM2G035103 AT1G27730.1(STZ,ZAT10): salt tolerance zinc finger 

5 6,305,152 9 GRMZM2G034877 AT5G66850.1(MAPKKK5): mitogen-activated protein 
kinase kinase kinase 5 

5 6,305,152 9 GRMZM2G034968 No annotated gene 
5 6,305,152 9 GRMZM2G332637 No annotated gene 
5 6,305,152 9 GRMZM2G332641 No annotated gene 
5 167,845,943 9 No annotated genes No annotated gene 
5 198,788,532 9 GRMZM2G004480 AT3G03550.1: RING/U-box superfamily protein 

5 198,788,532 9 GRMZM2G111146 AT1G22490.1: basic helix-loop-helix (bHLH) DNA-
binding superfamily protein 

6 161,288,001 9 GRMZM2G034225 No annotated gene 
6 161,288,001 9 GRMZM2G034128 No annotated gene 
6 161,288,001 9 GRMZM2G501302 No annotated gene 
6 161,288,001 9 GRMZM2G501312 No annotated gene 
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Shootcap-
only 

6 161,797,999 9 GRMZM5G847982 LOC_Os05g46340.1: expressed protein 

6 161,797,999 9 GRMZM2G088995 AT1G09830.1: Glycinamide ribonucleotide (GAR) 
synthetase 

6 161,797,999 9 GRMZM5G899656 AT1G09830.1: Glycinamide ribonucleotide (GAR) 
synthetase 

6 161,797,999 9 GRMZM2G388502 No annotated gene 
6 161,797,999 9 GRMZM2G507562 No annotated gene 
7 141,643,096 9 GRMZM2G073228 AT3G63530.1(BB,BB2): RING/U-box superfamily protein 

7 141,643,096 9 GRMZM2G073377 AT5G52160.1: Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin superfamily protein 

7 141,643,096 9 GRMZM2G073504 AT4G11740.1(SAY1): Ubiquitin-like superfamily protein 
8 117,967,787 9 GRMZM2G173874 AT3G47300.1(SELT): SELT-like protein precursor 

1 23,235,666 8 GRMZM2G005624 AT2G18550.1(ATHB21,HB-2,HB21): homeobox protein 
21 

1 23,235,666 8 GRMZM2G005435 AT1G47740.1: PPPDE putative thiol peptidase family 
protein 

2 193,280,739 8 No annotated genes No annotated gene 
4 182,084,001 8 No annotated genes No annotated gene 
5 204,427,506 8 GRMZM2G145594 AT1G26300.1: BSD domain-containing protein 
10 131,902,889 8 GRMZM5G854655 AT3G53150.1(UGT73D1): UDP-glucosyl transferase 73D1 

1 202,399,165 7 GRMZM2G328309 LOC_Os08g23430.1: starch binding domain containing 
protein, putative, expressed 

2 6,597,292 7 GRMZM2G339117 No annotated gene 
4 47,552,515 7 GRMZM5G893272 No annotated gene 
4 47,814,585 7 GRMZM2G532086 No annotated gene 
7 25,133,700 7 No annotated genes No annotated gene 
7 136,421,257 7 No annotated genes No annotated gene 
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Shootcap-
only 

10 137,538,072 7 GRMZM5G800518 AT1G36160.1(ACC1,AT-ACC1,EMB22,GK,PAS3): 
acetyl-CoA carboxylase 1 

1 23,234,659 6 GRMZM2G005624 AT2G18550.1(ATHB21,HB-2,HB21): homeobox protein 
21 

1 23,234,659 6 GRMZM2G005435 AT1G47740.1: PPPDE putative thiol peptidase family 
protein 

1 26,915,303 6 GRMZM2G178894 AT2G41940.1(ZFP8): zinc finger protein 8 
1 26,915,303 6 GRMZM2G589568 No annotated gene 
1 26,915,303 6 GRMZM2G589559 No annotated gene 
1 187,843,059 6 GRMZM2G580853 No annotated gene 
1 187,843,059 6 GRMZM2G163771 No annotated gene 
1 187,843,059 6 GRMZM2G163783 No annotated gene 
2 6,990,668 6 GRMZM2G106393 AT4G10265.1: Wound-responsive family protein 

2 6,990,668 6 GRMZM2G106384 AT1G03560.1: Pentatricopeptide repeat (PPR-like) 
superfamily protein 

2 6,990,668 6 GRMZM2G106245 AT5G13780.1: Acyl-CoA N-acyltransferases (NAT) 
superfamily protein 

2 6,990,668 6 GRMZM2G106105 AT2G03870.1: Small nuclear ribonucleoprotein family  

2 6,990,668 6 GRMZM2G106056 AT5G54260.1(ATMRE11,MRE11): DNA repair and 
meiosis protein (Mre11) 

2 6,990,668 6 GRMZM2G406977 AT5G42090.1: Lung seven transmembrane receptor family 
protein 

2 29,674,082 6 GRMZM2G049608 AT1G21230.1(WAK5): wall associated kinase 5 
2 29,674,082 6 GRMZM2G171620 AT2G20300.1(ALE2): Protein kinase superfamily protein 
2 29,674,082 6 GRMZM2G347361 No annotated gene 
2 29,674,082 6 GRMZM2G510907 No annotated gene 
4 31,513,039 6 GRMZM2G052670 AT1G77140.1(ATVPS45,VPS45): vacuolar protein sorting  
4 31,513,039 6 GRMZM2G106485 No annotated gene 
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Shootcap-
only 

4 62,243,825 6 GRMZM5G806975 LOC_Os08g34700.1: GDU1, putative, expressed 
4 62,243,825 6 GRMZM2G153176 No annotated gene 
4 182,120,435 6 GRMZM2G702728 No annotated gene 

5 198,788,071 6 GRMZM2G111146 AT1G22490.1: basic helix-loop-helix (bHLH) DNA-
binding superfamily protein 

5 198,788,071 6 GRMZM2G004480 AT3G03550.1: RING/U-box superfamily protein 

6 147,544,749 6 GRMZM2G147867 AT2G02450.2(anac034,ANAC035,LOV1,NAC035): NAC 
domain containing protein 35 

9 151,072,090 6 GRMZM2G065237 AT5G52650.1: RNA binding Plectin/S10 domain- 
9 151,072,090 6 GRMZM2G065259 AT5G47550.1: Cystatin/monellin superfamily protein 
9 151,072,090 6 GRMZM5G839889 No annotated gene 

10 1,724,445 6 GRMZM2G430780 
LOC_Os03g47470.1: STE_PAK_Ste20_STLK.4 - STE 

kinases include homologs to sterile 7, sterile 11 and sterile 
20 from yeast, expressed 

10 1,724,445 6 GRMZM2G129907 AT5G43210.1: Excinuclease ABC, C subunit, N-terminal 
10 1,724,445 6 GRMZM2G129954 AT3G57040.1(ARR9,ATRR4): response regulator 9 

10 1,724,445 6 GRMZM2G130062 AT1G74040.1(IMS1,IPMS2,MAML-3): 2-isopropylmalate 
synthase 1 

10 1,724,445 6 GRMZM2G560695 No annotated gene 
10 1,724,445 6 AC195137.2_FG009 No annotated gene 
10 2,254,468 6 GRMZM2G138659 AT5G65180.1: ENTH/VHS family protein 

10 2,254,468 6 GRMZM2G437314 AT3G46710.1: NB-ARC domain-containing disease 
resistance protein 

10 2,254,468 6 GRMZM2G564717 No annotated gene 
10 134,709,685 6 GRMZM2G018027 AT5G56550.1(ATOXS3,OXS3): oxidative stress 3 
10 134,709,685 6 GRMZM5G887529 No annotated gene 
10 134,709,685 6 GRMZM2G702463 No annotated gene 
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Shootcap-
only 

10 137,457,786 6 AC209206.3_FG014 LOC_Os04g53300.1: polyphenol oxidase, putative, 
expressed 

10 137,457,786 6 AC209206.3_FG001 No annotated gene 
10 142,513,527 6 GRMZM2G354209 AT1G56150.1: SAUR-like auxin-responsive protein family 

10 142,513,527 6 GRMZM2G054537 AT3G06790.2: plastid developmental protein DAG, 
putative 

10 142,513,527 6 GRMZM2G354187 No annotated gene 
1 29,198,985 5 GRMZM2G476914 AT3G49810.1: ARM repeat superfamily protein 
1 29,198,985 5 GRMZM2G588698 No annotated gene 
1 29,198,985 5 AC191623.3_FG006 No annotated gene 
1 29,198,985 5 GRMZM2G588701 No annotated gene 
1 54,722,001 5 GRMZM2G106283 AT2G37975.1: Yos1-like protein 

1 54,722,001 5 GRMZM2G106408 AT5G24910.1(CYP714A1): cytochrome P450, family 714, 
subfamily A, polypeptide 1 

1 193,028,001 5 GRMZM2G012123 AT5G48680.1: Sterile alpha motif (SAM) domain-
containing protein 

2 34,841,474 5 No annotated genes No annotated gene 
2 193,444,001 5 No annotated genes No annotated gene 

3 157,017,224 5 GRMZM5G863364 AT5G07370.1(ATIPK2A,IPK2a): inositol polyphosphate 
kinase 2 alpha 

3 157,017,224 5 GRMZM5G898668 AT1G27440.1(ATGUT1,GUT2,IRX10): Exostosin family 
protein 

3 157,017,224 5 GRMZM2G542752 No annotated gene 
4 44,716,001 5 No annotated genes No annotated gene 
4 185,758,722 5 GRMZM2G174938 AT5G65180.1: ENTH/VHS family protein 
4 185,758,722 5 GRMZM2G588682 No annotated gene 
5 93,000,001 5 AC184705.4_FG001 No annotated gene 
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Shootcap-
only 

6 102,056,646 5 No annotated genes No annotated gene 

8 118,074,951 5 AC197705.4_FG011 LOC_Os05g39230.2: low photochemical bleaching 1 
protein, putative, expressed 

8 118,074,951 5 AC197705.4_FG009 No annotated gene 
8 118,074,951 5 AC197705.4_FG010 No annotated gene 

8 119,035,095 5 GRMZM2G132759 AT3G08690.1(ATUBC11,UBC11): ubiquitin-conjugating 
enzyme 11 

8 119,035,095 5 GRMZM2G432583 AT5G01900.1(ATWRKY62,WRKY62): WRKY DNA-
binding protein 62 

9 8,116,223 5 AC215605.2_FG003 No annotated gene 

10 136,705,817 5 GRMZM2G077036 AT4G00750.1: S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

10 136,705,817 5 GRMZM2G077069 AT3G61060.1(AtPP2-A13,PP2-A13): phloem protein 2-
A13 

10 136,705,817 5 GRMZM2G077082 AT5G19160.1(TBL11): TRICHOME BIREFRINGENCE-
LIKE 11 

10 136,705,817 5 GRMZM2G529263 No annotated gene 
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