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ABSTRACT 

Faust, Kasey Mariko. Ph.D., Purdue University, August 2015. Impact Assessment of Urban 
Decline on Coupled Human and Water Sector Infrastructure Systems. Major Professor: Dulcy M. 
Abraham. 
 

Urban decline in once vibrant cities has introduced many challenges to managing civil 

infrastructure. The fixed infrastructure footprint does not contract with the declining population, 

but remains relatively stable, resulting in underfunded and underutilized infrastructure. The focus 

of this dissertation is on the assessment of urban decline on the coupled human and water sector 

infrastructures. Aspects such as the drivers of population decline and transitioning to a smaller 

city for the current and projected populations in shrinking cities have been well-studied by 

political and social scientists. However, the repercussions of urban decline on underground 

infrastructure systems have thus far been underappreciated. Arising from urban decline are water 

sector infrastructure issues such as, increased water age, operating on reduced personnel, and 

underutilized impervious services contributing to stormwater runoff. As cities begin to right-size, 

understanding the impact of the underutilization on underground infrastructures, and the technical 

viability of retooling alternatives to aid in right-sizing are important to ensure infrastructures 

continue to provide adequate services to the residents. This dissertation aims to fill the gap in the 

body of knowledge and the body of practice regarding the impact of urban decline (and 

underutilization) on the coupled human and water sector infrastructure systems, the technical 

viability of retooling alternatives, and the public views towards these infrastructure systems and 

retooling alternatives.  

To accomplish the research objective, a mixed-method qualitative and quantitative framework is 

demonstrated using two case study cities: Flint, Michigan and Saginaw, Michigan. The two case 

studies demonstrate the applicability of the framework spanning different size classification of 

cities. Flint is a medium sized city with its population peaking at 196,940 in 1960, whereas 

Saginaw is classified as a small city with its population peaking at 98,265 in 1960. As of 2010, 

both cities have since lost over 40% of their population from their peak populations. Qualitative 
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analyses use data from literature, the water infrastructure data from the case study cities, 

interviews with subject matter expert, and survey observations from the residents of shrinking 

cities in the US. First, the dissertation begins with synthesizing the data to identify infrastructure 

issues typical to shrinking cities, discern possible retooling alternatives, establish relationships 

between the water infrastructure system, wastewater/stormwater infrastructure system(s), and the 

types of human-infrastructure interactions relevant to the models. Next, metrics are selected to 

measure individual water and wastewater/stormwater infrastructure performance in the presence 

of physical (retooling alternatives) and non-physical (population dynamics, price elasticity, 

consolidation of demand to more populous areas of the city) disruptors. These metrics include: 

water infrastructure system pressures, fire flow capabilities, and the reduction of runoff. 

Following the qualitative analyses, four quantitative analyses were performed using data provided 

by the case study cities, interviews with subject matter experts, published data, and survey 

observations from residents of US shrinking cities. Network analyses evaluate the impact of non-

physical and physical disrupters on the water infrastructure’s ability to provide adequate service. 

The specific physical disruptor evaluated for the water infrastructure system is decommissioning 

water pipelines. Hydraulic simulations estimate the impact of decommissioning impervious 

surfaces, transitioning land uses, and incorporating low-impact development on the generated 

stormwater runoff entering the wastewater/stormwater infrastructure. After examining the 

individual infrastructures, survey analyses and statistical modeling is used to evaluate the public 

views in 21 US shrinking cities towards water and wastewater infrastructure issues and retooling 

alternatives. Finally, the aforementioned three components are integrated into the 

interdependency analysis to evaluate the water, wastewater, and stormwater infrastructures and 

human-infrastructure interaction interdependencies.  

This study demonstrates that the retooling alternatives evaluated are technically viable for 

proactively right-sizing water and wastewater/stormwater infrastructure. The statistical modeling 

framework estimated the demographic and geographic variables influencing the support (or 

opposition) of different water retooling alternatives. For instance, the statistical models indicated 

that residents in Flint, Michigan are more likely to support decommissioning, whereas, residents 

in Ohio’s shrinking cities are more likely to oppose decommissioning. Age of residents is an 

example of a recurring demographic variable in the statistical models, since the analyses indicates 

that residents over the age of 50 are more likely to oppose repurposing infrastructure and 

residents younger than 35 are more like to support maintaining the current infrastructure. The 

statistical analyses demonstrate a method for incorporating public opinion into the pre-planning 
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process for potentially reducing public opposition. The interdependency analyses component 

demonstrates a framework for evaluating the impacts of urban decline on the coupled human-

infrastructure systems. The interdependency analysis model can predict future water and 

wastewater needs based on projected rate increases and population trends, as well as the complex 

interaction between billing rates, financial return, and water demand. This model can be applied 

to different size classification of cities, as well as different decline/growth trajectories by updating 

the parameters in the model to reflect the characteristics of the city. Emergent behavior is 

captured in this model that is absent from other models in literature, such as the impact of water 

price elasticity cascading into the wastewater system, impacting the total generated revenues and 

the systemic interaction of agents to generated desired levels of support. Furthermore, the 

developed hybrid agent based-system dynamics model enables the estimation of the maximum 

achievable level of support that may be gained in a time period using market adoption strategies. 

In conclusion, this dissertation provides a framework for insight into right-sizing water sector 

infrastructure operations and management in shrinking cities. 
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CHAPTER 1. INTRODUCTION  

“We keep moving forward, opening up new doors and doing new things, because we're curious… 

and curiosity keeps leading us down new paths.” 

-Walt Disney 

 

Shrinking cities are cities that have experienced a substantial population decline from their peak 

populations. Contrary to growth patterns typically assumed by engineers and planners, shrinking 

cities are plagued by increasing numbers of vacant properties (e.g., homes, businesses, brownfield 

sites) and decreasing demands for infrastructure services. During these economic contractions, 

the footprint of built infrastructure does not adjust, but rather remains stable, ultimately creating 

an excess of underfunded and underutilized infrastructure.  

 

1.1. Motivation 

Traditional infrastructure design has been based on the assumption of growing or static 

populations without future design scenarios that allow for unexpected developments, and 

flexibility of demand needs. Flexibility of demand needs is defined as the ability of the fixed 

infrastructure system to handle either significant increases or decreases in demands that differ 

from the system’s designed capacity. Studies have identified challenges within cities arising from 

the inability to effectively accommodate decreased demands, such as rising per capita 

infrastructure costs, increased abandoned and vacant areas, decreased aesthetics, or increased 

crimes (Kabisch et al. 2006; Hollander et al. 2009; Schilling and Logan 2009; USEPA 2014). 

Previous studies have discussed right-sizing the footprints of shrinking cities by transforming the 

vacated and abandoned areas to other land uses with minimal attention towards the repercussions 

of underutilization on the underground infrastructure systems (e.g., Bontje 2004; Armbost et al. 

2008; Masi 2008; Pallagst 2009). The performance of individual infrastructures operating at or 

above design capacity is well understood; however, the impacts of underutilization and how to 

manage underutilization have not been addressed. Furthermore, retooling alternatives, such as 
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decommissioning excess infrastructure and impervious surfaces, that have been qualitatively 

discussed in literature have not been evaluated to determine the technically viability of 

implementing such efforts to right-size a shrinking city’s physical infrastructure footprint.  

 

As cities explore right-sizing and implementing various retooling alternatives to transition to 

sustainable infrastructure management, identifying drivers of opposition and which retooling 

alternatives the community may support allows for incorporating the community vision and while 

possibly mitigating opposition. Literature pertaining to public views in the context of urban 

decline has examined quality of life in the context of perceptions towards abandonment and 

vacancies, without considering underground water and wastewater infrastructure (e.g., Greenberg 

and Schneider 1996; Bright 2000; Hollander 2010; Hollander 2011). There is a need to assess the 

public’s knowledge, perceptions, awareness and attitudes towards water and 

wastewater/stormwater infrastructure alternatives in shrinking cities to identify alternatives that 

may be implemented within minimal opposition.  

 

The decisions made about above-ground infrastructure may have repercussions on below-ground 

infrastructure. An example of such a decision is transiting land use from residential to green 

space, which essentially eliminates demands on the water infrastructure in the area, with the 

possibility of impacting operations of the fixed water infrastructure network. Conversely, the 

decisions made about below-ground infrastructure may impact above-ground life. For instance, 

decommissioning underground water infrastructure can remove or limit the capability of using the 

particular land parcel for residential purposes due to lack of water service in the area. With the 

tight coupling of community needs and infrastructure management, decision-makers must 

consider both the technical viability, as well as the projected needs of the population. 

 

1.2. Key Terminology 

Many terms are recurrent throughout this dissertation. Key terminology is defined in this section 

with relevant examples for each term.  

 

Shrinking city: The term ‘shrinking’ city in this dissertation refers to a city experiencing chronic 

decline over many decades that has resulted in a loss of at least 30% of the population from the 

peak population. Flint, Michigan and Saginaw, Michigan, the cities used as case studies, are 

example cities that have lost over 40% of their populations since their peak populations in 1960. 
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Urban decline/shrinkage: Decline of populations within city boundaries is referred to as urban 

decline or urban shrinkage. Urban decline/shrinkage may also be used to describe decline in 

economic development, which may contribute to decreasing populations. 

 

Retooling alternative: A physical, managerial, or operational change to the infrastructure that is 

intended to move the infrastructure system towards right-sizing the infrastructure in the shrinking 

city. 

 

Decommissioning pipelines: Decommissioning pipelines is a retooling alternative that refers to 

ceasing to use the pipeline and either cleaning and capping the pipeline or removing the pipeline 

from underground. 

 

Decommissioning impervious surfaces: Decommissioning impervious surfaces is a retooling 

alternative that refers to pavement removal of an area and shifting the land to a natural state.  

 

Physical disrupter: A physical disrupter is a tangible change impacting the state of the 

infrastructure system, such as decommissioning infrastructure components or decreasing the 

physical quantity of consumed water entering the wastewater system.  It is important to note that 

a disrupter does not necessary cause a disruption in service or a negative impact, but simply 

causes a change in or to the system. For instance, decommissioning infrastructure components 

will physically change the fixed network, but may improve operations or save money in 

maintenance.  

 

Non-physical disrupter: An intangible change impacting the state of the infrastructure is 

referred to as a non-physical disrupter, such as consumer behavioral changes due to price 

elasticity, or the decreased number of consumers inherent to urban decline. As mentioned above, 

the term disrupter does not indicate a disruption to the service or a negative impact, necessarily, 

but a change to the status quo infrastructure state.  

 

Human-infrastructure interaction: In this dissertation, human-infrastructure interaction is the 

interface of the public/consumers with the infrastructure system and service (which in the scope 

of this dissertation is, water, wastewater, and stormwater) provided by the infrastructure system. 

The difference in daily water use trends based on socioeconomic status is an example of the 



4  
 

human interaction with the water infrastructure system. Another interaction between the human-

infrastructure in regard to the resource provided is price elasticity. In the context of interactions 

between the public and the physical infrastructure, an example is the level of support or 

opposition towards implementing a retooling alternative impacting the implementation time of 

the alternative. Human-infrastructure interaction may also come in the form of population 

dynamics, impacting the total infrastructure demands, such as urban decline resulting in 

decreased water demands citywide, or urban growth leading to built-up areas, resulting in more 

impervious surfaces generating runoff that enters the wastewater/stormwater system. 

 

Physical Interdependency: Physical interdependencies refer to when the infrastructure is 

dependent on the material output of another infrastructure. For instance, wastewater infrastructure 

is dependent on the output of the water demanded that is then entering the wastewater system.  

 

1.3. Research Questions 

The dissertation demonstrates an analytical framework to evaluate the impact of underutilization 

on the water and wastewater/stormwater infrastructures, as well as the public views within 

shrinking cities towards water and wastewater/stormwater infrastructure issues and retooling 

alternatives. The research questions answered in this dissertation fall into four categories as 

follows: water infrastructure, wastewater/stormwater infrastructure, public views, and 

interdependencies. 

 

Water Infrastructure: What is the impact of continued urban decline and consolidation of 

demand on the water infrastructure system? What is the impact of retooling alternatives when 

assessing the individual water infrastructure system? In the context of the decommissioning 

within each case study, what size pipelines may be decommissioned without compromising the 

infrastructure’s ability to provide services?  

 

Wastewater/Stormwater Infrastructure: What is the impact of implementing retooling 

alternatives on the generated stormwater runoff? How do these retooling alternatives perform 

under synthetic storm conditions? Which retooling alternative yields the highest reduction in 

runoff for financial investment within each case study? 

 

Public Views: What are the public’s knowledge, awareness, perceptions, and attitudes toward 
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water and wastewater/stormwater infrastructure issues and retooling alternatives? What are the 

demographic and location characteristics significant for supporting or opposing various water 

retooling alternatives? 

 

Interdependencies: What are the emergent behaviors observed due to the interactions between 

the physical water, wastewater, and stormwater infrastructure systems and the public in shrinking 

cities? How long does it take to generate the desired level of public support for decommissioning 

pipelines and decommissioning impervious surfaces? 

 

1.4. Research Objectives 

The aim of this research is to fill the gap in the body of knowledge and the body of practice 

regarding underutilization of infrastructure by exploring the impact of urban decline on the water 

and wastewater/stormwater infrastructure systems and public views towards these infrastructure 

systems.  Specifically the research objectives for this study are: 

1) Identify a set of metrics to analyze the impact of (a) non-physical and physical disruptors 

on the water infrastructure system and (b) physical disruptors on the wastewater/stormwater 

infrastructure system.  

2) Create and evaluate a model, employing the metrics developed in Objective 1, for 

evaluating the viability of implementing water and wastewater/stormwater infrastructure 

retooling alternatives. 

3) Assess the impact of the retooling alternatives on: (a) the ability to provide adequate 

service by the water infrastructure system and (b) the generated stormwater runoff entering 

the wastewater/stormwater infrastructure system. 

4) Quantify the influence of demographics and location parameters on the public perceptions 

and attitudes towards water and wastewater infrastructure issues and retooling alternatives 

in shrinking cities.  

5) Evaluate the physical interdependencies between the water, wastewater, and stormwater 

infrastructure systems and the impact of the human-infrastructure interaction on the 

support/opposition of retooling alternatives, population dynamics, and price elasticity.  

 

1.5. Research Overview 

The research methodology (shown in Figure 1.1) employs a mixed method approach, 

incorporating qualitative and quantitative analyses to accomplish the research objectives (shown 
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in Figure 1.1). The methodology is applied using two shrinking cities as case studies, Flint, 

Michigan and Saginaw, Michigan, in order to demonstrate the applicability across different size 

classifications for cities. Flint is a medium-sized city (population peaking at 196,940 in 1960), 

whereas Saginaw is classified as a small city (population peaking at 98,265 in 1960). Both cities 

have declined over 40% since there peak population, consequentially resulting in an infrastructure 

footprint that is larger than necessary for the current population. 

 

Qualitative analyses of the data collected from literature, the case study cities, subject matter 

expert (SME) interviews, and survey data from residents of US shrinking cities is synthesized to 

form the foundation of the quantitative analyses. Qualitative analyses were used to identify: (1) 

the infrastructure issues typical to shrinking cities, (2) possible retooling alternatives to mitigate 

these issues, (3) relationships between the water infrastructure system, wastewater/stormwater 

infrastructure system(s), and the types of human-infrastructure interactions relevant to the 

models, and (4) metrics to measure infrastructure performance under continued urban decline or 

after the implementation of retooling alternatives.  

 

The quantitative analyses consist of four primary components, shown in Figure 1.1. First, 

network analyses were conducted to evaluate the impact of non-physical and physical disrupters 

resulting from urban decline and retooling alternatives on the water infrastructure’s ability to 

provide adequate service. Second, hydraulic simulations were used to estimate the impact of 

retooling alternatives on generated stormwater runoff entering the wastewater/stormwater 

infrastructures. After examining the individual water and wastewater/stormwater infrastructures, 

survey analyses and statistical modeling are used to evaluate the public views in 21 US shrinking 

cities towards water and wastewater infrastructure issues and retooling alternatives. The final 

quantitative component of this dissertation ties together the previous three components, 

evaluating the water, wastewater, and stormwater infrastructures and human-infrastructure 

interaction interdependencies. The causal loop diagram was used to develop a hybrid agent based-

system dynamics model to capture the emergent interdependencies, such as the systemic behavior 

of the public supporting/opposing alternatives, and the impact of price elasticity, population, and 

urban decline on revenues generated from utility bills and residential water and wastewater 

demands.  
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Figure 1.1. Methodology 

 

1.5. Organization 

This dissertation is organized into a total of nine chapters. Chapter 1 discusses the motivation, 

and the research questions, objectives, and overview of the methodology and key terminology.  

Chapter 2 synthesizes previous research in the domain of critical infrastructure in shrinking cities 

and infrastructure interdependencies. Sections from Chapter 2 (indicated as such) are 

reprinted in part from the Urban Water Journal, 2015, Kasey M. Faust, Fred L. 

Mannering, and Dulcy M. Abraham, Statistical analysis of public perceptions of water 
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infrastructure sustainability in shrinking cities, Copyright (2015), with permission from 

Taylor & Francis (see Appendix A). Chapter 3 introduces issues typical to the underutilization 

of water and wastewater infrastructure in cities facing urban decline, as well as potential 

infrastructure retooling alternatives to mitigate these issues. Chapter 4 describes the methodology 

used to accomplish the proposed research questions and discusses the case study cities used to 

demonstrate the proposed methodology. Chapter 5 evaluates the impact of non-physical 

disruptors (consolidation of and decline of population) and physical disrupters (decommissioning 

pipelines) on the water infrastructure within the analysis areas of two shrinking cities (Flint and 

Saginaw). Sections of Chapter 5 (indicated as such) are reprinted in part from the 

Construction Research Congress 2014: Construction in a Global Network, 2014, Kasey M. 

Faust and Dulcy M. Abraham, Evaluating the feasibility of decommissioning residential 

water infrastructure in cities facing urban decline, Copyright (2014), with permission from 

the American Society of Civil Engineers (see Appendix B).   Chapter 6 examines the impact of 

retooling alternatives on the generated stormwater runoff. Chapter 7 examines the public views of 

residents in shrinking cities towards water and wastewater infrastructure issues and infrastructure 

retooling alternatives.  Chapter 7 is reprinted in part from the Urban Water Journal, 2015, 

Kasey M. Faust, Fred L. Mannering, and Dulcy M. Abraham, Statistical analysis of public 

perceptions of water infrastructure sustainability in shrinking cities, Copyright (2015), with 

permission from Taylor & Francis. To maintain the format of the dissertation, tables, 

figures, and captions have been modified (see Appendix A).   Chapter 8 combines the analyses 

from the Chapters 5, 6, and 7 to evaluate the physical interdependencies between the water 

infrastructure and wastewater infrastructure system and the impact of human interaction with 

these infrastructure systems. Chapter 9 concludes the dissertation by presenting a summary of the 

work, contributions to the body of knowledge and to the body of practice, discusses the 

limitations of the research and provides recommendations for future research.  
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CHAPTER 2. PRIOR RESEARCH 

“An effective review creates a firm foundation for advancing knowledge.” 
- Webster and Watson (2002) 

 

2.1. Shrinking Cities 

The term “shrinking cities” is used to define substantial declines in urban populations 

(Rybczynski and Linneman 1999; Bontje 2004; Pallagst 2008). The “shrinking cities” 

phenomenon has been well studied by social and political scientists (e.g., Bontje 2004; Armbost 

et al. 2008; Masi 2008; Pallagst 2009; Martinez-Fernandez and Wu 2009; Moraes 2009; 

Wiechmann 2009; Martinez-Fernandez et al. 2012), yet the impacts on engineering and systems 

management are only beginning to be appreciated (e.g., McDougall 2008; Schillining 2009; 

Schlör et al. 2009; USEPA 2014).  

 

2.1.1. Drivers of Shrinking Cities and Patterns of Urban Decline 

Martinez-Fernandez and Wu (2009) discuss five drivers of shrinking cities (Table 2.1): 

industrialization, de-industrialization/post-industrialization, globalization, population transition, 

and climate change. These driving forces causing population decline are the same driving forces 

(economic, social and political) that cause population growth. It is important to note that a 

shrinking city may have more than one driver instigating population decline at any given time 

(Martinez-Fernandez and Wu 2009). Typical to shrinking cities are the increasing numbers of 

vacant residential areas, which often pose a challenge when/if trying to re-grow the population. 

Abandoned neighborhoods are seen as blighted areas, associated with higher crime rates 

(Rybczynski and Linneman 1999; Frazier et al 2013). High vacancies rates are also associated 

with costly, deteriorating urban infrastructure that must be rehabilitated or rebuilt  (Martinez-

Fernandez and Wu 2009).  
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Table 2.1. Drivers of shrinking cities (Martinez-Fernandez and Wu 2009) 

Model/ 
Classification Driver Economic/ Social /Environmental 

Indications 

Industrialization 

Concentration of public/private 
investments and industries that attracts 
innovations, investments and educated 
population, periphery (e.g., suburbs, 
smaller cities, towns) less capable of 
developing 

Rapid development of population 
centers, industrial zones, pollution 

De-
industrialization
/ post-
industrialization 

Industrial reconstructing, global industrial 
competition spurring outsourcing, 
technology changes/development with 
different labor demands (quantity and 
skill) 

Downtown decline, inner city 
decline, brownfield sites, increased 
socio-economic inequality 

Globalization 

Expansion of export-oriented economies 
(e.g., Asia), corporatization of cities, 
global city formation, competition between 
world city regions, shift towards 
professional services employment, 
concentration of innovations and 
knowledge workers, new mega-city 

Global cities (shifting employment 
structure), decline and/or 
abandonment of cities or portions of 
cities, increase in socio-economic 
inequality 

Population 
Transition 

Decline in birth rate, aging population, 
absolute population decline (e.g., young, 
educated and/or able populations leaving) 

High level of housing vacancy, 
abandonment of residential areas, 
underused infrastructure, 
gentrification, increase in socio-
economic inequality 

Climate Change Extreme droughts, floods, natural disasters, 
changes in climate 

Abandoned farms due to prolonged 
droughts, destroyed infrastructure, 
changing coast lines, shrinkage of 
territories, cultural displacement  

 

Other historic attributed causes to shrinking cities include epidemics (Kabisch et al. 2006; 

Pallagst 2008), agricultural crises (Pallagst 2008) and shifts in political rule (e.g., shift towards 

post-socialist countries after World War II) (Pallagst 2009). Moraes (2009) argues that in addition 

to the aforementioned causes, population is also due to historic social inequality.   

 

The locations of shrinking cities and patterns of the urban decline within the city vary from 

country to country (Pallagst 2008). For instance, in the United States, the Rustbelt cities are the 

most impacted by declining populations. However, the United Kingdom is experiencing loss of 

population in the northern regions, while France is losing population in the center, away from 

inter-country/European transportation networks (Pallagst 2008).  Patterns of population loss also 

differ among international regions (Pallagst 2008). The US is typically seeing a hollowing-out 

effect of the inner cities experiencing low population (Pallagst 2008).  On the contrary, Paris is 

losing population in its suburban regions, while the inner-city remains stable (Pallagst 2008).  
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Historically, this shrinking process has been referred to as an “urban crisis” and is a taboo topic 

(Beauregard 2009; Bernt et al. 2014). Beauregard (2003) refers to shrinking cities as a “stigma” 

that does not fit the natural thought process of a city’s life or the planning process of the city. 

Researchers and planners are now emphasizing focusing on stabilizing growth and resizing the 

city footprint to meet the need of the smaller population and shifting away from population 

regrowth (shown in Table 2.2). Planning efforts in literature discuss how to transform the excess 

area to allow the city to reclaim and reinvent itself. Green spaces, parks, pedestrian walkways, 

and demolition of excess housing are a few of these planning suggestions. With this shift from 

focusing on stabilizing current population and away from re-growth, comes a shift of attitude, 

from forcing/attempting re-growth to accepting a smaller city. Table 2.2 presents examples of 

case studies focused on various regions of the world that place emphasis on urban planning, with 

a focus on stabilizing the current population of the city, within a shrinking city.  

 

Table 2.2. Examples of published case studies in the context of and right-sizing shrinking cities 

Researcher(s) 
(year) 

Case 
study 

Objective/ 
Argument Conclusion 

Bontje (2004) 
Leipzig, 
East 
Germany 

The author 
discusses 
development 
on the question 
“how to fight 
the shrinking 
city.”  

The author proposes shifting focus away from 
growth and towards stabilizing the city for the 
‘shrunk’ population size, similar to Leipzig’s 
example. Stabilization may be accomplished by 
adjusting housing stocks, demolishing excess 
housing and infrastructure for green space and 
attempting to generate employment to maintain 
population. 

Armbost et al. 
(2008) 

Detroit, 
Michigan 

City planners 
should embrace 
the new 
suburbanism, 
and accept the 
fact that the 
city is smaller.   

Presently in shrinking cities like Detroit, Michigan, 
a ‘new suburbanism’ has developed. Residents are 
buying vacant lots surrounding their homes, many 
times demolishing the homes on the lots, and 
expanding their residences to sit on large properties 
known as blots. These blots have developed into 
gardens, expanded garages, playgrounds for 
children and other uses for the homeowners.  

Masi (2008) Cleveland, 
OH 

Cities may use 
extra area for 
agriculture and 
gardens to 
provide for a 
portion of the 
city’s food.  

Cleveland, Ohio is using a portion of its excess 
space for gardens and agricultural purposes. Lots 
and paved areas are being converted to gardens and 
agricultural spaces that are being used for 
educational purposes, food sources or to gain 
revenue for individuals, such as selling food at 
farmers’ markers. By providing for a small portion 
of the city’s food needs, the city itself may retain 
more money within the region.  
 
 
 
 



12  
 

Table 2.2. (continued) 

Researcher(s) 
(year) 

Case 
study 

Objective/ 
Argument Conclusion 

Wiechmann 
(2009) 

Dresden, 
Eastern 
Germany 

Urban planners 
should shift 
away from 
planning for 
population re-
growth, and 
instead plan for 
population 
stabilization. 

Dresden, East Germany is used to exemplify that 
planning strategies for increasing population have 
been unsuccessful and a negligent use of resources. 
Through planning for stabilization and allowing 
flexibility for small increases and declines in 
population, the city has been able to revitalize and 
recreate itself in the past decade to maintain a 
relatively stable population. 

Pallagst (2009) United 
States 

The author 
presents three 
case studies in 
the United 
States and 
discusses 
planning 
strategies. 

The author places emphasis on the positive changes 
that must occur in shifting from population growth 
planning to community, smart growth planning. 
Youngstown, OH is used as an example where the 
city ‘accepted’ being a smaller city and aimed at 
rebuilding the city on a downsized scale, creating 
new parks and green spaces, and strengthening 
businesses in the health, education, public 
administration, and cultural areas. 

Domhardt and 
Troeger-Weiß 
(2009) 

Germany 

Small towns in 
Germany need 
regional 
development 
plans and inter-
municipal 
cooperation. 

Strong regional development plans will help to 
ensure there are equivalent living conditions, 
services are maintained, and resources are available 
to the population.  

Burkholder 
(2012) 

United 
States 

Underutilized 
land should be 
used for 
ecological 
benefits. 

The author reviews recent literature in urban 
ecology to identify potential land uses within 
shrinking cities serving ecological purposes, such as 
combatting the heat island effect or improving air 
pollution.  

Frazier et al. 
(2013) 

Buffalo, 
NY 

Land use 
management 
should be 
considered in 
the context of 
the region.  

Attempting to manage shrinkage through methods 
such as demolition is not removing the crime, but 
shifting crime to other areas of the city.  

Bernt et al. 
(2014) 

Leipzig, 
Germany;  
Liverpool, 
United 
Kingdom; 
Genoa, 
Italy; 
Bytom, 
Poland 

Shrinkage is not 
addressed 
comprehensively, 
but in a 
fragmentary 
fashion due to 
growth oriented 
cultural 
perceptions. 

The authors believe that developing analytical 
frameworks for public policies, with research and 
scientists is necessary to shift the planning and 
funding priorities within cities away from growth 
oriented actions. 
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2.1.2. Critical Infrastructure in Shrinking Cities 

To date, literature related to the domain of critical infrastructure or modeling tools in the context 

of urban decline is limited. There exists a gap in the body of knowledge in understanding the 

impact of underutilization on the performance of infrastructure systems and services. Chapter 3 

discusses the water sector infrastructure systems in the context of urban decline, specifically 

covering the issues arising from underutilization, potential retooling infrastructure alternatives, 

and literature relative to the retooling infrastructure alternatives explored in this study. Table 2.3 

highlights select literature focusing on the underutilization of the critical infrastructure systems, 

irrespective of the infrastructure system. Much of the focus in literature has been on qualitatively 

discussing infrastructure alternatives, and exploring urban decline’s impact on per capita 

infrastructure service costs.    

 

Table 2.3. Critical infrastructure and modeling tools in the context of shrinking cities found in 

published 

Researcher(s) 
(Year) 

Area of 
Emphasis Methodology 

Issues/ 
Metrics 

Analyzed 
Main Findings 

Shortcomings and 
Issues Not 

Considered 
Kabisch et 
al. (2006) 

Urban 
modeling 
for 
shrinking 
cities 

Agent-based 
modeling is used to 
examine urban 
population decline in 
shrinking cities. The 
authors also propose 
predictor variables 
relevant to urban-
decline (e.g., out-
migration, age). 

Urban 
modeling for 
shrinking 
cities to 
examine 
future 
scenarios 
and to test 
theories how 
to reach 
desired 
population 
goals.  

Most urban 
models focus 
heavily on growth 
and are not 
transferable to 
urban decline 
situations. To 
accomplish this, 
predictor 
variables must be 
established 
unique to 
shrinking cities. 

It is not clear what 
data it necessary for 
this model or what 
data the author is 
using for the initial 
model. There is 
mention of household 
surveys, but no 
elaboration if this 
was done or is a 
future 
recommendation.  

McDougall 
(2008) 

Energy 
deficit and 
urban 
decline 

Case study  Urban 
decline 
should be 
embraced to 
meet 
Europe’s 
future 
energy goals 
and needs 
using 
historical 
data and 
trends. 

If the population 
is allowed to 
decline to a more 
sustainable level, 
Europe could 
reduce its 
dependency on 
non-renewable 
energy, imported 
from often, 
unstable 
countries. 

This case study does 
not consider the 
impact of urban 
decline on any other 
infrastructure from a 
holistic point of view. 
Author does not 
consider 
interdependencies 
and issues associated 
with reducing energy 
demand in areas of 
urban decline. 
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Table 2.3. (continued) 

Researcher(s) 
(Year) 

Area of 
Emphasis Methodology 

Issues/ 
Metrics 

Analyzed 
Main Findings 

Shortcomings and 
Issues Not 

Considered 
Schillining 
(2009) 

Green 
infra-
structure 

Regional vacant 
property policy 
assessment, funded 
by Surdna 
Foundation, for the 
city of Buffalo, NY 
completed by five 
national policy 
experts and vacant 
property practitioners 
during two study 
visits, which included 
interviews of 
individuals (e.g., 
government officials, 
developers). 

The findings 
from the 
report 
“Blueprint 
Buffalo” are 
presented, 
which 
recommends 
changes to 
re-size the 
footprint for 
the current 
population 
size.   

The author 
proposes 
shrinking cities 
use green 
infrastructure 
(i.e., the 
transformation of 
vacant properties 
to green space 
like parks, 
conservations 
lands and 
landscapes) and 
land banks (i.e., 
institutions which 
merge multiple 
abandoned 
properties and 
legally transfer to 
a developer for 
redevelopment).   

There is no mention 
of how successful 
this initiative has 
been in NY or PA. In 
addition, there is no 
discussion of any 
infrastructure aside 
from vacant lots from 
homes, business etc.  

Schlor et al. 
(2009) 

Waste-
water 
infra-
structure 

This is a cost 
model running on 
EXCEL and Visual 
Basic using the 
ceteris paribus 
assumption that the 
environment/all 
variables remain 
static except the 
demographic 
structure. Other 
assumptions 
include that the 
infrastructure may 
not be used for a 
different purpose, 
cannot be spatially 
“thinned out,” and 
maintenance must 
occur in upcoming 
years due to aging 
infrastructure.  

Model is 
intended to 
analyze the 
impact of 
demo-
graphic 
changes on 
wastewater 
costs to a 
German 
federal 
state. 

The per-capita 
wastewater 
costs will 
escalate 
between183.4 
percent and 282 
percent, 
depending on 
the scenario and 
region of 
Germany. 
However, the 
regions of 
Germany that 
have the lowest, 
average, 
disposable 
incomes have 
the highest 
wastewater cost 
escalation.  

This tool functions 
under the 
assumption that the 
infrastructure may 
only be used for 
the city 
population’s 
wastewater needs. 
This is 
contradictory to 
Hoornbeek and 
Schwarz’s study 
(2009), which 
suggests using 
excess to generate 
revenue. The 
model is not made 
flexible to allow 
the infrastructure to 
be used in 
alternative ways to 
reflect and/or test 
this theory. 

 
 
 
 
 
 
 



15  
 

Table 2.3. (continued) 

Researcher(s) 
(Year) 

Area of 
Emphasis Methodology 

Issues/ 
Metrics 

Analyzed 
Main Findings 

Shortcomings and 
Issues Not 

Considered 
Hendrickson 
(2009) 

Identifying 
urban 
ecology 
potential in 
shrinking 
cities 

A developed 
GIS–based 
framework is 
used. 

This tool is used 
to examine the 
urban ecology 
potential within 
Pittsburg, as well 
as score vacant 
parcels based on 
the potential. 

The model 
generates scoring 
layers within GIS 
for the 
predetermined 
attributes. Model 
users can 
individually score 
parcels based on 
the ability of the 
parcel to 
contribute to the 
urban ecology of 
the region. 
Scoring is 
accomplished by 
overlaying 
parcels with 
scoring layers. 
The scores allow 
for a way to 
prioritize parcels 
based on urban 
ecology potential. 

This study assumes 
that a small 
percentage of the 
parcels will be 
redeveloped in the 
near-term for 
residential 
development, and 
does not consider 
community 
involvement, which 
is crucial for the 
success of a project. 
Additionally, the 
model’s scoring 
system was 
developed by the 
author using a 
method that has been 
criticized in 
literature.  

Hoornbeek 
and Schwarz 
(2009) 

Sustainable 
infra-
structure in 
shrinking 
cities 

Review of 
recent literature 
regarding 
infrastructure 
management in 
shrinking cities, 
interviews with 
infrastructure 
management 
professionals 
from mainly NE 
Ohio.  

The potential for 
decommissioning 
infrastructure in 
Cleveland, OH, 
as well as other 
infrastructure 
management 
strategies in 
shrinking cities.  

Many aspects 
must be 
considered when 
decommissioning 
infrastructure. 
There is potential 
to use excess 
infrastructure for 
other uses (e.g., 
stormwater 
retention, 
redundancy in 
network).  

This study is purely 
qualitative and 
applies only to 
Cleveland/NE, Ohio. 
Although 
transferability is 
suggested, it has not 
been tested on 
shrinking cities in 
other regions/areas.  
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Table 2.3. (continued) 

Researcher(s) 
(Year) 

Area of 
Emphasis Methodology Issues/Metrics 

Analyzed Main Findings 
Shortcomings and 

Issues Not 
Considered 

Lauf et al. 
(2010) 

Housing 
preference 
and 
housing 
space 

System 
dynamics is 
used to 
examine 
nonlinear 
dynamics and 
feedbacks 
between 
residential 
housing and 
demographics. 

The impact of 
demographics 
and population 
changes, both 
growth and 
decline, on the 
housing stock 
in East 
Germany. 

Albeit urban decline, 
an increase number 
of single households 
yields a total 
residential demand in 
the central parts of 
the study area. In 
addition, there is a 
negative net-demand 
of flats as the 
percentage of low-
income households 
increases. The results 
also indicate that the 
population needs 
during growth and 
decline are vastly 
different, and thus, 
this information may 
help planners made 
appropriate decisions. 

Internal factors 
regarding each 
household and 
population trends 
are considered. 
However, no 
external factors are 
modeled outside of 
the residential sector 
and populations 
(e.g., services, 
infrastructure 
condition).  

Butts and 
Gasteyer 
(2011) 

Social 
equity of 
water rates 
in the 
Michigan’s 
shrinking 
cities 

A literature 
review and 
econometric 
and statistical 
modeling 
(bivariate and 
multivariate 
model) using 
census data for 
83 counties in 
Michigan.  

Examine the 
social inequity 
between races 
(white and 
non-white) in 
different 
regions of 
Michigan in 
regard to the 
prices paid for 
water. 

Due to the patterns of 
urban decline, many 
urban areas are 
disproportionally 
high with non-white 
populations. These 
areas carry a larger 
financial burden 
when considering the 
cost of water. These 
high prices infringe 
on the quality of life 
of the community. 
This study highlights 
the social inequity 
occurring across 
Michigan.  

This study considers 
race, income and 
whether the region 
is inner-city. There 
are likely other 
factors (e.g., age, 
number of people in 
each household, % 
subsidized by 
government) that 
should be 
considered, as well. 
In addition, the 
overall fit of the 
model is poor, 
indicating that other 
variables should be 
considered to 
explain the variation 
in the data.  

USEPA 
(2014) 

Exploring 
methods to 
reuse 
vacant 
properties 
in Saginaw, 
MI 

Interviews and 
engagement 
with the city 
decision-
makers 

This report 
evaluated 
possible 
alternatives for 
a largely 
vacated area in 
Saginaw. 

Saginaw should work 
with local 
stakeholders to 
establish a long-term 
vision of the 
infrastructure. 
Revising current 
codes, identifying 
historic properties, 
and exploring green 
infrastructure are the 
main USEPA 
suggestions for 
moving forward. 

The research is a 
qualitative 
discussion of 
management 
alternatives that 
does not look at the 
technical viability of 
implementing the 
retooling 
alternatives in 
specific areas. 
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2.2. Critical Infrastructure Interdependency Analyses 

Critical infrastructure is the lifeline providing goods and services to our cities, regions, and 

nation, which the “…incapacity or destruction would have a debilitating impact on our defense 

and economic security.” (PCCIP 1997). Over its service life, infrastructures may experience 

many stresses and threats, such as fluctuating demands, natural disasters, and targeted attacks.  

Consequences from these stresses and threats may include significantly decreasing the service 

life of an infrastructure system, debilitation of the infrastructure, or infrastructure failure. 

Zimmerman (2004, p.3) states that “[i]nfrastructure interdependencies are now recognized as 

both opportunities as well as points of vulnerability.” Interdependency analyses approaches 

examine infrastructures to identify vulnerabilities, increase sustainability, increase resilience, 

provide insight into the infrastructure and infrastructure environment, and to attempt to ensure 

efficient, constant flow of goods and services.  

 

The occurrences of critical infrastructure failing or their inability to function efficiently and 

effectively threatens the stability of the city, state, region or nation.  A failure in one 

infrastructure may potentially cause failures in multiple infrastructures with severe 

consequences, such as decreased service life or the inability to provide services (Rinaldi et al. 

2001; Church et al. 2004; Hoyt 2004; Oliva and Setola 2015).  Interdependencies among 

infrastructures increase the risk of these failures (Rinaldi et al. 2001; Pederson et al. 2006; Oliva 

and Setola 2015). These interdependencies that are not well understood range in types and are a 

result of the multiple connections between infrastructures, in which the state of one infrastructure 

is influenced or impacted by the state of another infrastructure (Rinaldi et al. 2001; Dudenhoeffer 

et al. 2006; Oliva and Setola 2015).  

 
2.2.1. Qualitative Analysis 

The results from the qualitative analyses can often be discussed or shown visually, such as 

through causal loop diagrams, indicating the relationships between the infrastructure systems. 

Throughout the qualitative analyses, many relationships and factors necessary for the 

quantitative interdependency analysis are uncovered. This section discusses factors evaluated in 

the qualitative analysis. Data for interdependencies analyses approaches are typically obtained 

through interviews with or questionnaires distributed to experts (in addition to literature and 

operations data), which may lead to missing hidden elements if complete information/data is not 

gathered (Panzieri et al. 2004; Panzieri et al. 2005). 



 

18  
 

In the context of interdependencies, coupling refers to the degree of dependency between two 

infrastructures (Rinaldi et al. 2001; Perrow 2007; Oliva and Setola 2015). Tight coupling 

indicates that the infrastructures are highly dependent on one another and a disruption in one 

infrastructure impacts and propagates quickly to another infrastructure (Rinaldi et al. 2001; 

Perrow 2007). On the contrary, loose coupling is indicative of a low-degree dependence between 

two infrastructures (Rinaldi et al. 2001; Perrow 2007; Oliva and Setola 2015). There is typically a 

time delay when disturbances in one infrastructure impact another loose-coupled infrastructure.  

 

The scale of the infrastructure interdependencies analyses may vary from a very granular, local 

leveled, to a high level, such as regional. If the objective of the analysis is to examine a facility or 

city, a higher level of granularity is required then necessary for examining national infrastructure 

networks, altering the spatial scale to accomplish various objectives (Pederson et al. 2006). Other 

scales that are often examined in infrastructure analysis are geographical and temporal. 

Geographical scales refer to the physical spaces under analysis, such as the cities, regions, 

national or international (Rinaldi et al. 2001). Temporal scales consider different time scales that 

may be of interest, such as milliseconds in power system operations to years for infrastructure 

upgrades (Rinaldi et al. 2001).  

 

An infrastructure’s environment is defined by the owners and operators who establish objectives, 

delineate the businesses, examine operations, and make the decisions, which directly impact the 

infrastructure’s architecture and operations (Rinaldi et al. 2001).  When considering the business 

aspect of infrastructure, economic and business goals may impact the evolution and operation of 

an infrastructure. Heavily regulated infrastructures are more constrained in this aspect (Rinaldi et 

al. 2001).  Policy may also impact the environment an infrastructure is operating within, as policy 

may regulate operations for both private and public infrastructures (Rinaldi et al. 2001). 

Technical advances in infrastructures also force the infrastructure to evolve. Technology may 

improve efficiency while creating more interdependencies (Rinaldi et al. 2001).  

 

The state of operation indicates the operating state of the infrastructure. This may include normal, 

stressed, disrupted, restored, or repaired. This state may range, abstractly, from the design-

operational state, which is the optimal state the infrastructure is designed to operate, to a failure 

state with no services available via the infrastructure under analysis.  
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2.2.2. Quantitative Methods 

Quantitative methods for examining infrastructure typically use computer simulations to 

generate predictive information and to uncover hidden interdependencies (Panzieri et al. 2004; 

Panzieri et al. 2005). Pederson et al. (2006) categorizes quantitative analyses into two classes: 

integrated system modeling and coupling individual infrastructure models. An integrated system 

modeling approach models multiple infrastructures and infrastructure interdependencies in one 

network (such as is the case in Chapter 8). The latter approach simulates infrastructure networks 

individually and couples the simulations together to identify the dependencies between the 

networks.  

 

The complexity of many models from the numerous networks and components, however, poses 

difficulty in creating models that have the ability to predict interdependencies accurately, as well 

as obtaining data necessary for the model to run, such as sensitive data like financial 

infrastructure or large quantities of data (Panzieri et al. 2005; Dunn and Mauer 2006).   

Furthermore, Dunn and Mauer (2006) stated that this complexity and subjective inputs has the 

potential to obscure the underlying assumptions of the modeling procedure, which ultimately 

may lead to inaccurate results. 

 

Emphasis has been placed on the importance of infrastructure interdependencies and critical 

infrastructure analysis since the mid-1990s, spurring the development of numerous modeling 

tools. A synopsis of modeling tools under development and developed, which are used for system 

analysis is provided in the following section.  

 

2.2.3. Current Research and Modeling Examining Critical Infrastructure 

Events worldwide, such as hurricanes Katrina and Rita, 9/11, and the London Bombings, have 

brought awareness to the importance of protecting and improving the resilience and sustainability 

of our critical infrastructure (Pederson et al. 2006). In addition to safety, national security, and the 

ability to provide services, Heller (2001) briefly discusses the immense costs associated with 

failures due to critical infrastructure interdependencies. Cascading failures due to power 

blackouts in the United States during two months in 1996 cost approximately $1.4 billion dollars 

to both infrastructures and the environment (Amin 2000). The cost of earthquakes averages $4.4 

billion per year (FEMA 1999). Recognizing the importance of maintaining and protecting critical 

infrastructure to provide goods, services, and resources throughout the nation (and world) has 
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motivated researchers and modelers internationally to develop innovative models and frameworks 

to examine critical infrastructure and critical infrastructure interdependencies. 

 

These approaches employing a wide array of tools include, but are not limited to, agent-based 

modeling, Fuzzy Logic, game theory, system dynamics, and GIS to model infrastructures, such as 

transportation, water, power, natural gas, telecommunications, financial, and oil (Pederson et al. 

2006; Oliva and Setola 2015).  In 2006, the Idaho National Laboratory published a review of 

current (as of 2006) research and models developed and under development for analyzing critical 

infrastructure and critical infrastructure interdependencies. This survey includes both national 

models as well as international models with the goal of compiling a single source for critical 

infrastructure interdependency modeling tools (Pederson et al. 2006). In Table 2.4, Peralta (2009) 

divides the models surveyed by Pederson et al. (2006) on the basis of metrics used in the models 

for interdependency analysis. Metrics for examining critical infrastructure interdependencies and 

critical infrastructure will differ depending on the modeling goal, infrastructure being examined 

and variables being measured. The metrics considered are grouped into four categories: 

economic, risk, time and environmental and human effects. A fifth category is shown below, 

which was proposed in Peralta (2009) for examining the operating states of infrastructure in 

developing countries. For each metric, Peralta (2009) summarizes examples of these models, 

metric, infrastructure systems analyzed, and possible scenarios simulated.  

 
Table 2.4. Metrics used in models for the analysis of interdependencies (Peralta 2009) 

  Type 
Example of models 
and/or authors that 
use the metrics 

Example of metrics Infrastructure 
Systems Analyzed 

Disruptors/ 
scenarios 
simulated 

Economic 
metrics 

• COMM- ASPEN 
• N-ABLE 
• Critical 

Infrastructure 
Protection 
(CIP) 
Modeling and 
Analysis 
(CIPMA) 
Program 

•  Changes in 
segments in the 
economy: banks, 
households, 
industries, and 
Federal Reserve 

•  Cost of restoration 
•  Repair priorities 

(budget allocation) 

Electric power, water 
supply, gas and oil 
supply, 
telecommunications, 
banking and finance, 
highway networks 

• Natural 
disaster 
events  

• Terrorist 
attacks 

• Policies and 
regulations 
regarding 
infrastructures. 

Risk 
metrics 

• CARVER 2 TM 
• NGtools  
• Fort Future 

• Criticalities of 
nodes and linkages 

• Rank of priorities of 
potential terrorist 
targets 

Electric power, water 
supply, gas and oil 
supply, 
telecommunications 

• Natural disaster 
events 

• Terrorist attacks 
• Response plans 
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Table 2.4. (continued) 

  Type 
Example of models 
and/or authors that 
use the metrics 

Example of metrics Infrastructure 
Systems Analyzed 

Disruptors/ 
scenarios 
simulated 

Time 
metrics 

• CI 3  - Critical 
Infrastructure 
Interdependencie
s Integrator 

• MUNICIPAL 
• NEXUS Fusion 

Framework TM 

• Time for repairs 

Electric power, water 
supply, gas and oil 
supply, 
telecommunications, 
banking and finance 

• Response plans 
• Natural disaster 

events 
• Terrorist attacks 

Environ-
mental and 
human 
effects 
metrics 

• TRANSIM 
• CIP/DSS – The 

Critical 
Infrastructure 
Protection 
Decision Support 
System 

• TRAGIS 

• Effects on 
populations and 
human health 

• Environmental 
impacts: noise, 
traffic congestion, 
threat to 
endangered 
species 

Emergency services, 
electric power, water 
supply, airport 
facilities, 
transportation 

• Natural disaster 
events  

• Terrorist attacks 

Operating 
States of 
Critical 
Infrastruc-
ture in 
Developing 
Countries 

• Peralta (2009) 

• Travel time 
• Volume to 

capacity ratio 
• Capacity Margin 
• Unsatisfied 

demand 

Transportation, electric 
power 

• Growth in 
number of 
vehicle trips 

• Addition of 
high- rise 
buildings 

• Demand changes  
 

 

To date, the research efforts for critical infrastructure interdependencies have largely focused on 

natural disasters, terrorist/intentional attacks, response plans to major failures, or policies 

pertaining to infrastructure (e.g., Pederson et al. 2006; Brown et al. 2004; Wijnia and Herder 

2004; McDaniels et al. 2007; Zhang and Peeta 2010; Chou and Tseng 2010; Chang et al. 2014; 

Ehlen and Vargas 2013; Atef and Moselhi et al. 2014). This study examines critical infrastructure 

interdependencies in the context of underutilization and the impact of physical and non-physical 

disrupters.  

 

A set of metrics used for examining infrastructure interdependencies and infrastructure in 

shrinking cities is defined in Chapter 4. The current categories of metrics used for analyzing 

infrastructure and measuring various variables, are not appropriate or directly applicable in their 

current form for examining interdependencies in shrinking cities. These categories of metrics 

shown in Table 2.4, with the exception of the type of metric proposed by Peralta (2009), are used 

to measure reactive scenarios, such as natural disaster or terrorist attacks, as opposed to the non-
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disrupters occurring during the status quo. Through defining a metric set tailored for shrinking 

cities, variables may be measured that give insight into the operating state of infrastructure in 

shrinking cities and the impacts of underutilization on users and managers of the infrastructures. 

For example, the criticality of links in water systems indicated by pressures may allow for 

identification of potential infrastructure that may be removed or indicate the necessity of the link 

or node. The operating states of critical infrastructure in shrinking cities will be examined, under 

the status quo and infrastructure retooling alternatives (e.g., razing of infrastructure, 

decommissioning portions of the city) to gain insight into how the different scenarios affect the 

resiliency of the city or the ability to provide services.  

 

2.4. Summary and Departure Point 

Critical infrastructure systems provide products and services essential to the health, security, and 

economic well-being of society. These infrastructure systems are constantly increasing in 

complexity and mutual independence, which poses potential new vulnerabilities, such as 

cascading failures when a disruptor, either physical (e.g., removing components of the 

infrastructure system) or non-physical (e.g., changes in demand), alters the infrastructure. The 

current methods for examining critical infrastructure and infrastructure interdependencies are 

primarily reactive in nature and focus on the response time for emergencies, terrorist attacks, or 

natural disasters.   

 

As previously mentioned, when the population declines in shrinking cities, the number and size of 

infrastructures systems (e.g., roads, wastewater systems) remain the same. Approximately 75-80 

percent of the costs associated with these infrastructures are fixed costs, unchanging with the 

population, resulting in a higher per capita cost for the individuals residing in the city (Herz 2006; 

Schlör et al. 2009). The higher per capita cost contributes to further migration from the already 

shrinking city (Rybczynski and Linneman 1999; Herz 2006). In addition, many times the areas 

affected by the increase in per capita costs are regions that are low-income and cannot afford the 

increase in costs (Schlör et al. 2009; Moraes 2009; Butts and Gasteyer 2011). Razing or 

decommissioning infrastructure have been proposed in order to address the excess infrastructure 

issues (Hoornbeek and Schwarz 2009; Martinez-Fernandez and Wu 2009; USEPA 2014). These 

measures are intended to lower the per capita cost to maintain the infrastructure, regulate crime, 

or improve its aesthetic appeal in an attempt to stimulate re-growth (Rybczynski and Linneman 

1999; Martinez-Fernandez and Wu 2009; Hoornbeek and Schwarz 2009).  
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To date, research in the context of shrinking cities has focused on a) methods to stabilize a 

shrinking city and to resize the footprint of the city to meet the needs of the new, smaller 

population, and b) causes and experiences of urban decline internationally. Presently, a need 

exists to comprehensively understand the impact of underutilization on infrastructure systems and 

interdependencies, and the technical viability of retooling infrastructure alternatives. In 

conjunction with identifying viable retooling alternatives, the public views in shrinking cities in 

the context of infrastructure issues and retooling alternatives should be evaluated. Gauging and 

incorporating the community’s attitudes and perceptions into infrastructure decision-making, and 

understanding the elements of public concern, may allow for sustainable, implementable 

alternatives that aid in transitioning shrinking cities towards right-sizing their infrastructure for a 

smaller population.  The remaining chapters in this dissertation fill these gaps in the body of 

knowledge and the body of practice to understand the impacts of underutilization of water sector 

infrastructure, water sector infrastructure interdependencies, and public views regarding water 

sector issues arising from urban decline and water sector retooling alternatives. 
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CHAPTER 3. WATER AND WASTEWATER INFRASTRUCTURE IN THE CONTEXT 

OF SHRINKING CITIES 

 “Safe drinking water and properly treated wastewater are critical to modern life. The former is a 

prerequisite for all human activity—physical, economic, and cultural. Wastewater treatment is 

important for preventing disease and protecting the environment.” 

-Department of Homeland Security 2012 

 

Contrary to growth patterns typically assumed by engineers and planners, shrinking cities are 

plagued by increasing numbers of vacant properties (e.g., homes, businesses, brownfield sites) 

and decreasing demands for infrastructure services. During economic contractions, the footprint 

of built infrastructure does not adjust, but rather remains stable, ultimately creating an excess of 

underfunded and underutilized infrastructure. Current infrastructure life-cycle considerations do 

not include the costs or planning associated with the end of the useful life of infrastructure, when 

the infrastructure is degraded to the point that it can no longer provide service or that the 

infrastructure is no longer needed to meet the population demands.  

 

Chapter 3 provides context for water and wastewater/stormwater infrastructure retooling 

alternatives and interdependencies evaluated in this dissertation, as well as the motivation for 

exploring this underappreciated area of infrastructure management. This chapter (1) identifies and 

discusses common challenges for infrastructure management within shrinking cities; (2) suggests 

possible infrastructure management alternatives that may mitigate these challenges; and (3) 

provides a departure point for these alternatives.   

 

3.1. Water and Wastewater Infrastructure Issues Characteristic to Shrinking Cities 

Water and wastewater infrastructures have unique characteristics that constrain their responses to 

the dynamics present in shrinking cities. First, because these systems are underground and 

unseen, the residents lack the same level of awareness about operations and conditions of these 
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systems as compared to other infrastructure systems, such as roads and bridges. Second, these 

systems provide services that have major public health and environmental implications. Providing 

potable water to communities and conveying wastewater to treatment plants prevents the spread 

of disease while simultaneously protecting the environment.  

 

The declining service quality resulting from decreased demands and aging infrastructure, along 

with high service costs, may exacerbate deindustrialization, thereby, continuing a cycle that may 

decrease the quality of the water and the efficiency of operations while increasing the per capita 

costs of the infrastructure system. Nonetheless, shrinking cities have the potential to implement 

alternatives in operations and management, such as reductions in the physical footprint, which 

may stabilize or reduce costs, while improving the water quality by decreasing stagnant water and 

the age of the water delivered through the system. As shrinking cities attempt to right-size the 

city’s footprint to meet the needs of the current and projected populations, efforts must be focused 

on how to retool these buried infrastructures while considering issues affecting shrinking cities.  

 

Socioeconomic data (income, population, etc.) collected from the 2010 census (US Census 

Bureau 2011) were used to identify shrinking cities in the Midwestern US for follow-up 

interviews with subject matter experts (SMEs) to fill in the knowledge gaps about current water 

infrastructure management. Personnel from Gary, IN; Akron, OH; Saginaw, MI; and Flint, MI 

were selected for additional interviews, as these four cities use different, yet representative, water 

infrastructure management approaches typical to cities throughout the US. Three to four phone 

calls were conducted with city officials from these cities between August 2012 and September 

2013. Up to four face-to-face follow-up meetings that included more detailed questions and 

discussions were also conducted in Gary, Flint, and Saginaw between October 2012 and October 

2014. 

 

A private water supply company that employs a regional service approach manages Gary’s water 

system, while its wastewater system is municipal and managed within the city. On the other hand, 

Akron has municipal wastewater and water supply providers that manage both of their systems 

from a regional approach. Saginaw and Flint have different providers for their municipal 

wastewater treatment and their water systems. The contrasts in management approaches provide 

insight into issues that are unique to each approach, as well as issues that are common across the 
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different organizational and management structures of the systems (e.g., privately managed vs. 

publicly managed).   

 

3.1.1. Issues Spanning the Water and Wastewater Infrastructures 

Although each infrastructure system has unique challenges, many issues, such as fiscal distress, 

number of personnel, and aging infrastructure affect the management of both water and 

wastewater infrastructure.  

 

3.1.1.1. Financial Issues 

In shrinking cities, the cost of maintaining the aging infrastructure intended for use by larger 

populations remains constant or increases, while the tax base declines (Rybczynski and Linneman 

1999; Beazley et al. 2011; Butt and Gasteyer 2011). For instance, Detroit has an excess of aging 

water infrastructure, some of which are over two centuries old and were originally intended to 

support over twice the present population and a water-intensive manufacturing industry. 

However, since the 1950s, Detroit’s population and manufacturing industry have been shrinking, 

leaving the city with far fewer people who utilize the water infrastructure and fewer water-rate-

payers. Yet, the infrastructure must be maintained to provide services for the current population 

(Southeast Michigan Council of Governments 2011).  

 

The four cities investigated in this study (Akron, Flint, Gary, and Saginaw) indicated that water 

and wastewater systems need to be self-sustaining, and the current financial challenges were 

going to be met by decreasing their operation and maintenance costs or by increasing rates to 

consumers. Approximately 75-80% of the water sector infrastructure costs are fixed (e.g., capital, 

operations) (Herz 2006; Hummel and Lux 2007; Schlör et al. 2009); and the financial burden of 

capital replacements, in conjunction with the heightened costs of treatment and regulatory 

compliance therefore, falls upon the residents of the community. The recovery of costs in the 

event of shrinking city populations (i.e., reduced number of customers) results in municipal 

services becoming more expensive per capita (Herz 2006; Rybczynski and Linneman 1999; 

Beazley et al. 2011; Butts and Gasteyer 2011).  

 

However, rate increases to meet financial challenges may not be uniform across all water users as 

different classes of consumers may be billed differently, due to wholesale agreements between 

utilities and municipalities. For instance, in Akron, the water rates for suburban customers are 
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higher than those for residents within the city boundaries. In Saginaw, the rates for both 

residential and wholesale customers are derived based on the distance required to transport the 

water. Gary’s regional rates are derived based on a “cost of service study,” to determine the 

appropriate billing for wholesale and residential customers. Previous studies (Schlör et al. 2009; 

Butts and Gasteyer 2011) indicate these increased costs for both water and wastewater are not 

insignificant, impacting regions in Michigan and Germany, where population decline has been the 

highest and the incomes are the lowest, highlighting the social inequity occurring due to 

population decline patterns.  

 

Income inequity in shrinking cities is illustrated in Table 3.1. These cities are representative of 

classes of cities that use different water supply infrastructure management approaches typical to 

cities throughout the U.S., and span multiple states, illustrating that the income inequity 

challenges are not isolated to select states or management approaches. The values in parentheses 

compare the income of a shrinking city with the income for a city in the same state with a typical 

growth pattern (identified in that table by italics), as well as the average income for the state 

where the shrinking city is located. These shrinking cities have a per capita annual income that is 

between $3,954 and $8,659 lower than the average annual income for the associated state’s cities 

with a typical growth pattern, and between $5,954 and $11,325 less than the average per capita 

annual income for the state (US Census Bureau 2011). The median household income for each 

shrinking city was $4,269 to $19,634 lower than the average median household income for a city 

with a typical growth pattern in the same state, and $13,712 to $21,618 less than the associated 

state average. Due to this income inequity, shrinking cities not only face a decline in customers, 

but the inability of the existing customers to afford drastically increasing rates, as the cost of 

services is a higher percentage of the residents’ average income. For other infrastructure services, 

which rely largely on tax bases, the lower average income results in a tax base that is not only 

decreasing due to urban decline but also due to lower incomes of the existing residents.  
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Table 3.1. Comparisons of incomes between select shrinking cities, cities with typical growth 

patterns, and state averages (Data based on 2010 census (US Census Bureau 2011)) 

 2010 
Population 

Per capita money income 
in past 12 months (2010 

dollars) 2006-2010 

Median household 
income 2006-2010 

Flint, MI 102,434 
$14,910 

(City: -$7,906) 
(State: -$10,572) 

$27,199 
(City: -$19,486) 
(State: -$21,618) 

Saginaw, MI 51,508 
$14,157 

(City: -$8,659) 
(State: -$11,325) 

$27,051 
(City: -$19,634) 
(State: -$21,618) 

Dearborn, MI 98,153 $22,816 $46,685 
Michigan  $25,482 $48,669 

Gary, In 80,294 
$15,383 

(City: -$7,917) 
(State: -$9,114) 

$27,846 
(City: -$16,751) 
(State: -$20,547) 

Fort Wayne, IN 253,691 $23,300 $44,597 
Indiana  $24,497 $48,393 

Akron, OH 199,110 
$19,664 

(City: -$3,954) 
(State: -$5,954) 

$34,359 
(City: -$4,269) 

(State: -$13,712) 
Columbus, OH 787,033 $23,618 $43,348 

Ohio  $25,618 $48,071 
 

3.1.1.2. Personnel 

Due to the dramatic decrease in available funds within shrinking cities, one of the common cost 

saving strategies indicated by SMEs in Flint, Saginaw, and Akron was a reduction in personnel. 

However, completing non-urgent repairs, providing system upgrades, and pursuing long-term 

planning is difficult with a reduced level of staffing so performing all the necessary maintenance 

then may not be feasible with the existing personnel resources. For instance, one city recruits the 

public to flush the neighborhood hydrants annually.   

 

Further straining the fiscal operations of these systems is the retirement of personnel and the 

ensuing obligations to pay retirement benefits. For example, one city was paying retirement 

benefits to approximately four times more people than were currently working. Additionally, 

Detroit’s Chapter 9 bankruptcy filing in July 2013 included the fiscal burdens associated with 

retired personnel across municipal departments (Helms and Guillen 2013).  

 

The private, regional water provider in Gary did not cite personnel reductions due to declining 

funds within shrinking cities as a major problem. Contrary to municipal systems, the private 
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water supply provider reported needing to dedicate personnel resources to more instances of 

disconnecting and reconnecting services due to nonpayment of utility bills in the shrinking city 

than in other cities within the region. This expense for the increased personnel is distributed 

throughout the region served by the water provider and drives up operation costs for the entire 

system.  

 

3.1.1.3. Aging Infrastructure and Maintenance 

Water and wastewater infrastructure systems have finite lives, with their condition deteriorating 

over time that result in failures, decreased performance, or decreased service. Maintenance and 

reinvestment in infrastructure is necessary to extend their service lives (NAE 2009). ASCE 

(2013) predicts a nationwide funding gap of $84 billion by 2020 between investment needs and 

available funds, resulting in “…higher costs to businesses and households as a consequence of 

less efficient and more costly infrastructure services.” Underinvesting in infrastructure is 

occurring nationwide (ASCE 2013). Many cities, although currently maintaining water and 

wastewater infrastructure reactively, are attempting to transition to proactive approaches (e.g., 

Durrans et al. 2004; USEPA 2013), which is a difficult task to accomplish in fiscally strained, 

shrinking cities.  

 

Interviews with personnel in shrinking cities indicated that due to fiscal constraints and reduced 

personnel, proactive maintenance is difficult and largely occurs on an as-needed basis. Typically, 

in these cities, water mains receive attention when they fail and are only replaced when absolutely 

necessary due to the costs associated with replacing these major components. Based on both the 

published literature and our interviews, very few shrinking cities appear to have shifted to 

proactive attempts to identify solutions to manage and maintain excess infrastructure. The 

personnel interviewed from one shrinking city indicated that their municipal department has spent 

time and resources to explore addressing infrastructure issues through decommissioning and are 

actively looking for ways to resize their infrastructure for the current population. However, our 

interviews with SMEs indicate that this strategy appeared to be the exception rather than common 

practice.  

 

3.1.1.4. Increasingly Stringent Regulatory Requirements 

Water and wastewater providers must constantly meet increasing standards set by the state and 

federal government. These standards, put in place for consumer safety, have become increasingly 
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stringent throughout the years (Roberson 2011). In order to maintain the safety of the public and 

continue to meet the federal and state requirements, investments and regular maintenance that 

require financial capital are necessary. The cost of meeting more stringent regulations is 

increasingly difficult for water and wastewater systems within shrinking cities due to the 

declining tax base and being fiscally strained. For instance, in order to obtain a National Pollutant 

Discharge Elimination System (NPDES) permit, the U.S. Environmental Protection Agency 

(USEPA) requires any municipality with a population greater than 100,000 to have separate storm 

sewer systems (USEPA 2013). However, since many shrinking cities have combined sewer 

systems, creating a separate storm water management program requires extensive financial 

resources, which is beyond the reach of cities experiencing population decline.   

 
3.1.2. Issues Specific to Water Infrastructure  

Water infrastructure is a critical infrastructure providing irreplaceable services necessary for the 

health and livelihood of the community as well as maintaining a sustainable, diverse 

environment. Underutilization has created challenges in delivering high quality potable water 

throughout shrinking communities.  

 

3.1.2.1. Quality Issues 

Decreased demand may reduce the flow through the pipeline system, causing the pipelines to 

degrade faster. This deterioration and low flows may reduce the quality of the water reaching the 

residents due to stagnant water or the interaction between the pipeline wall and the water. 

Additionally, the age of water within the distribution system is a major consideration in water 

quality deterioration due to the interaction between the pipeline wall and water, as well as the 

reaction within the bulk water. Lower demands in cities with systems intended to operate at 

higher demands may increase the water age. Based on a survey of 800 utilities, the average 

distribution system retention time is 1.3 days, and the average maximum time is three days 

(AWWA and AwwaRF 1992). Although the average water age across shrinking cities is not 

specifically published, Rink et al. (2010), Barr (2013) and Cubillo and Ibanez  (2014) discuss that 

water age has increased due to declining demands, creating water quality challenges and changes 

to water treatment plant operations. Cruickshank (2010) and Barr (2013) suggest flushing, 

increasing tank turnover, optimizing the pumps, using control valves, closing valves changing 

storage volumes, and changing operational methods as ways to reduce water age. Of interest to 

shrinking cities, Barr (2013) suggests abandoning or reducing piping to reduce water age, a 
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retooling alternative referred throughout this document as decommissioning. Reducing tank 

volumes is another alternative that may apply to many shrinking cities as the decline in 

population, and additional changes in water demand due to water use changes, have significantly 

reduced demands on a system intended for a much larger population.  Table 3.2 summarizes 

water quality problems associated with water age and long detentions times.  

 

Table 3.2. Water quality issues associated with water age 

Chemical Issues Biological Issues Physical Issues 
Disinfection by-product formation Nitrification Temperature increases 
Corrosion control effectiveness Microbial regrowth Sediment deposition 
Taste and odor  Color 

 

3.1.3. Issues Specific to Wastewater Infrastructure 

Methods of collection and treatment of wastewater systems vary both within and across 

communities. Wastewater may be treated in a decentralized system near the origin (e.g., septic 

tanks, biofilters, aerobic treatment systems) or transported to a treatment plant for treatment or 

disposal. Systems that convey the greywater and blackwater from the point of origin to a 

treatment plant fall into two main categories: (1) combined sewer systems that transport 

stormwater, greywater, and blackwater together and (2) sanitary sewer systems, which do not 

transport stormwater, and solely transport greywater and blackwater. Sanitary sewers are operated 

independently from storm drains that transport rain and runoff from streets and other impervious 

surfaces. (USEPA 2008).  

 

3.1.3.1. Quality Issues 

Combined sewer systems serve approximately 770 communities containing approximately 40 

million people, largely concentrated in the Pacific Northwest, Northeast, and the Great Lakes 

Region (USEPA 2008). Combined sewer systems are characteristic of older communities 

(USEPA 2008), including many shrinking cities in the Midwest. During wet weather, the systems 

may exceed their storage capacity or the capacity of the treatment plant, discharging untreated 

wastewater into surrounding streams, rivers, lakes, and oceans. Depending on the capacity of the 

combined sewer system, precipitation as little as 0.1 inches may result in overflows (Lijklema and 

Tyson 1993). This untreated wastewater degrades the quality of the water and can present a 

public health threat, environmental degradation, and lead to discoloration of the water, as the 
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overflows introduce a source of pathogens and pollutants into the receiving water.  The National 

Combined Sewer Overflow (CSO) Control Policy (USEPA 1994) states:  

“CSOs consist of mixtures of domestic sewage, industrial and commercial 

wastewater, and storm runoff. CSOs often contain high levels of suspended 

solids, pathogenic microorganisms, toxic pollutants, floatables, nutrients, 

oxygen-demanding compounds, oil and grease, and other pollutants. CSOs can 

cause exceedances of water quality standards. Such exceedances may pose risk 

to human health, threaten aquatic life and its habitat, and impair the use and 

enjoyment of the Nation’s waterways.”  

 

Further exasperating the issues posed by combined sewer systems is during dry periods, 

wastewater solids may settle within the system due to low flows, and are subsequently discharged 

during wet weather events. During wet weather, generated runoff travels across the land, 

amassing non-point source pollutants and debris, further contributing to the pollutant challenge 

present.  

 

The Clean Water Act, a federal law, which established environmental programs such as the 

National Pollutant Discharge Elimination permit program, regulates pollutant discharges in 

waters, significantly improving water quality since the early 1970’s (USEPA 2009). Suggested 

methods to mitigate overflows include increasing the capacity of the CSS, and implementing 

stormwater management alternatives to reduce the regenerated runoff entering the CSS.  

 

The application of stormwater management to reduce generated runoff has been explored recent 

decades. Carter and Jackson (2007) consider implementing stormwater management in urbanized 

areas, evaluating the most effective practices in densely populated areas.  Using spatial analysis 

of an urban watershed in Athens, Georgia between 2003 and 2004, they identified green roofs as 

significantly reducing stormwater runoff. Montalto et al. (2007) presents a low impact 

development rapid assessment tool to estimate the cost-effectiveness of various forms of LID 

practices. Similar to Carter and Jackson (2007), Montalto et al. (2007) considered densely, 

urbanized areas where lot-level investments are viable.  Montalto et al. (2007) state that their 

model is intended to provide more general information for planners than that provided by more 

complicated hydraulic models, such as SWMM. Jia et al. (2015) proposes a decision-making tool 

using ArcGIS and optimization, to aid in low-impact development (LID) design practices. This 
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tool evaluates both the highest performing (in terms of quantity of runoff and water quality), and 

the most cost-effective low-impact development alternative. Many of the alternatives explore lot-

level practices, such as rain gardens, and rain barrels. The tool does not replace existing, zoned 

parcels with LID practices or consider decommissioning existing structures/pavements, but 

optimizes the potential LID alternative to coexist with the proposed or existing development. 

Carter and Jackson (2007), Montalto et al. (2007), and Jai et al. (2015) explore integrating LID 

practices in urban areas, with dense populations. However, this study explores integrating 

stormwater management within shrinking cities where there is an abundance of underutilized, 

vacant land and limited opportunity for lot-level investment due to the high vacancy rates. 
 

One alternative, widely studied in literature is the impact of permeable pavements on water 

quality and runoff quantities (Rushton 2001; Brattebo and Booth 2003; Bean et al. 2007; Scholz 

and Grabowiecki 2007; Collins et al. 2008). This low-impact development (LID) alternative is 

unlikely to be implemented in a fiscally strained, shrinking city due to the large-scale repaving 

effort necessary in the severely declining areas.  

 

Philadelphia, PA is an example of a city that is operating on a CSS.  The city is attempting to 

combat overflows by investing in management methods to treat stormwater onsite using green 

infrastructure, such as bioswales and rain gardens (Green City, Clean Waters plan) (PWD, 2015; 

McRandle 2012; Baker 2011). The Philadelphia Water Department (2015) states that meeting 

wastewater and stormwater needs “… requires either a significant new investment in “grey” 

infrastructure (underground storage tanks and pipes) or a paradigm shift in our approach to 

urban water resources” Prior to investing in such grey water infrastructure, Philadelphia is 

attempting to treat stormwater using green infrastructure (PWD 2015). The Green City, Clean 

Waters effort not only avoids large hikes in rate increases as seen when Portland, OR invested in 

an overflow tunnel, but also creates jobs and improves aesthetics of the neighborhoods in 

Philadelphia (Baker 2011). 

 

 It should be noted that in the presence of extensive impervious surfaces, it is difficult to reduce 

stormwater runoff with solely green infrastructure (Baker 2011). One SME interviewed identified 

similar concerns in regard to green infrastructure, stating that underutilized impervious surfaces 

create challenges in effectively reducing large quantities of runoff, and in order to decommission 

these surfaces, the city must commit to rezoning or transitioning portions of the city’s land. A 
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separate option may be to repave the underutilized area with porous pavement, an alternative that 

SMEs interviewed stated is often infeasible in sparsely populated areas within fiscally strained 

cities. Thus, a combination of strategies may be appropriate depending on the severity of the 

overflow problem in the city.   

 

3.1.3.2. Impervious Surfaces 

Further contributing to the problem of capacity within wastewater systems is the number of 

impervious surfaces in shrinking cities. Many vacant properties and brownfields leave concrete 

and asphalt foundations, vast parking lots, and other surfaces that hinder the ability of water to 

enter the groundwater system during rainfall. These surfaces create runoff that enters the 

stormwater or combined sewer systems, which ultimately contributes to increasing the quantity 

and volume of discharges as the systems reach and exceed capacity. 

 

3.2. Technical and Managerial Water and Wastewater/Stormwater Infrastructure 

Management Alternatives 

Engineers, researchers, planners, and decision-makers are now beginning to emphasize stabilizing 

growth and resizing the city footprint to meet the need of the smaller population, thereby moving 

away from the attitude of awaiting population regrowth. Planning efforts in the literature (e.g., 

Bontje 2004; Armbost et al. 2008; Wiechmann 2009; Cunningham-Sabot and Fol 2009; Pallagst 

2009) discuss how to transform the excess area to allow the city to reclaim and reinvent itself, 

which would be a shift from focusing on stabilizing current population.  

 

As shrinking cities in the US begin to explore the options of right-sizing their infrastructure to 

meet the projected population needs, technical and management alternatives need to be explored. 

The feasibility of such alternatives to provide essential water and wastewater services to the 

community in a cost-effective manner should be considered. Changes to the systems, whether 

physical, operational, or managerial, may have the potential to reduce or stabilize the cost or 

increase the level of service of the systems. Various alternatives may be more viable in different 

locations due to factors such as population decline patterns, financial and personnel resources 

available, structure of the management of the infrastructure system (e.g., private vs. public, 

regional vs. city), and state and city laws, regulations, and ordinances.  
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Reducing the physical footprint of the aging infrastructure, either through the removal or 

abandonment of infrastructure, is considered as an option for retooling underutilized or ‘extra’ 

infrastructure (discussed in Table 3.3). However, there are also physical constraints that 

downsizing infrastructure networks pose. Infrastructure components, such as sewers or power 

lines often link portions of cities through areas of severe population decline, and the redundancy 

poses a benefit for aging infrastructure, such as providing back up to maintain service when a 

water main fails (Hoornbeek and Schwarz 2009; USEPA 2014). Additionally, the immediate cost 

of removing or shutting down infrastructures has a high initial capital cost, while the costs to 

maintain existing infrastructure may be lower (Hoornbeek and Schwarz 2009; USEPA 2014).  

 

Water infrastructure systems traditionally are designed based on deterministic water demand 

projections with the assumption that the system’s operational capability and capacity will be able 

to provide service to the consumers for the infrastructure’s design life (Basupi and Kapelin 2015).  

Flexible design of water infrastructure systems, specifically, the ability of the system to alter the 

infrastructure topology as new information becomes known (such as changing population 

dynamics as seen in shrinking cities), has not been widely explored in literature (Spiller et al. 

2015). Previous studies (e.g., Kapelan et al. 2005; Babayan et al. 2005; Huang et al. 2010) in 

general, consider the flexibility of new system designs by incorporating stochastic future demand 

projections as opposed to existing, in-place systems. Specifically of interest to this study are those 

systems that have become underutilized due to population dynamics.  

 

Kapelan et al. (2005) and Babayan et al. (2005) explored designing pipes within the network 

using a RNSGAII optimization approach based on genetic algorithms, and genetic algorithms, 

respectively. Using Pareto optimal solutions, Kapelan et al. (2005) and Babayan et al. (2005) 

identified the tradeoff between cost and robustness of a new system or rehabilitation. However, 

the analysis does not consider alternative demand patterns or fire flow capabilities, or discuss 

possible reconfigurations of the existing systems. Huang et al. (2010) proposed modeling 

different system scenarios for uncertain future water demand using a scenario tree and applying 

genetic algorithms to minimize the life cycle cost. In Huang et al. (2010) flexibility refers to the 

development and expansion of the physical system and capacity. The existing, in-place 

infrastructure in the model is rigid, with defined topology additions to the existing system based 

on varying increased in demand, and does not consider fire flow capabilities. Using decision 

trees, Marques et al. (2014) applied a real options approach to consider uncertainties regarding 
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water distribution network that represents future strategies, in attempt to minimize 60-year 

planning horizon costs. Marques et al. (2014) acknowledges the possibility of depopulation in one 

of eight scenarios and addresses this through altering the pumps and required energy costs, 

leaving the network in place. Basupi and Kapelan (2015) combined genetic algorithms and 

sampling techniques, such as Monte Carlo simulation, to provide design solutions for unexpected 

demands that vary from the deterministic demand assumptions made during the design phase of 

new infrastructure. In this study, the planning horizon occurs in stages, delaying the physical 

changes made to the water infrastructure system (e.g., additional pipelines, increased capacity) 

until increased capacity is needed. However, this study considered that no changes may be made 

to the in-place infrastructure, only additional components may be added to expand the 

infrastructure system. 

 

In April 2012, USEPA Region 5 hosted a workshop with SMEs spanning a variety of disciplines 

and professions to gain insight into potential methods for managing infrastructure in shrinking 

cities and developing tools to aid shrinking cities in reconfiguring infrastructure for the current 

populations. Other options proposed at the USEPA workshop included alternatives that have the 

potential to generate revenues, such as contracting out the excess capacity of existing 

infrastructure systems. In addition to discussing alternatives, potential consequences and barriers 

to these alternatives were further developed by the USEPA Region 5 post workshop. Tables 3.3 

and 3.4 show potential water and wastewater/stormwater infrastructure retooling alternatives 

which were developed from the review of the published literature, interviews with city managers 

from five Midwestern shrinking cities, the USEPA retooling workshop, and discussions with 

academics with expertise in infrastructure or issues related to shrinking cities.  
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Table 3.3. Water infrastructure retooling alternatives 

ALTERNATIVES CONSIDERATIONS POSSIBLE CONSEQUENCES 
OR BARRIERS 

Status Quo Physical Network 
Consolidate demand (e.g., 
residences, businesses) to 
certain city blocks while 
maintaining status quo 
physical network 

*This alternative may be 
appropriate if the city stops 
services to an area, such as, 
garbage collection or 
lighting  

• Maintenance cost 
• Intended purpose for future 

land use 
• Impact on the water quality, 

capacity of the system, and 
operational integrity of the 
existing pipes 

• Relocating sparsely populated 
areas 

• Vacancies and vacancy 
patterns within potential area 

• Ability to maintain fire flows  
• Existing establishments (e.g., 

churches, business, schools) 
• Environmental impact 

• Cost of relocating residents and 
stopping service to the area 

• May have to implement eminent 
domain to relocate resistant 
customers 

Do not fix system 
component failures: do 
nothing, allow to function 
until end of useful life 

• Cost of deferring maintenance until 
absolutely necessary 

• Decreased water quality 
• Increased number of failures 
• Increased number of complaints 
• Environment impact from failures 
• Impact on bond rating 
• Nuisance liability 

Have residents absorb costs 
to fix failures if failures 
occur in a sparsely 
populated area of city 

• Cost of altering billing structure 
• Increased number of complaints 
• Nuisance liability 
• Legal barriers for different pricing 

structures based on vacancy 
patterns 

Alternative ways of providing services or improve efficiency 

Trucking water in 

*Remove residents from the 
network and bring in water 
separately 

• Cost(s) 
• Logistical feasibility and 

available resources (e.g., 
trucks) 

• Adequate supply for 
emergency services 

• Cost of trucking in water 
• Further straining limited personnel 

resources if regulated by the 
municipality 

• Difficulty maintaining flows to 
hydrants 

Water ATM 

*Remove residents from the 
network and have a stand-
alone system 

• Cost(s) 
• Logistical feasibility and 

available resources (e.g., 
trucks) 

• Adequate supply for 
emergency services 

• Costs of installing ATMs 
• Further straining limited personnel 

resources if maintained, operated, 
or regulated by the municipality 

• Impact on bond rating 
• Difficulty maintaining flows to 

hydrants 

Wells (New, currently used, 
out of service) 

*Water drawn from a 
structure built to access 
groundwater 

• Availability and quality of 
ground water 

• Installation and maintenance 
costs 

• Environmental impacts 
• Treatment required of water  
• USEPA does not regulate 

privately owned wells 

• Costs of installing or reopening 
wells 

• Further straining limited personnel 
resources if maintained or 
regulated by the municipality 

• Impact on bond rating 
• Difficulty maintaining flows to 

hydrants 
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Table 3.3. (continued) 

ALTERNATIVES CONSIDERATIONS POSSIBLE CONSEQUENCES 
OR BARRIERS 

Water loss programs 
 
*Decrease water loss in the 
system to lessen water 
withdrawals and operation 
and maintenance costs 
(USEPA 2010)  

• Cost(s) 
• Logistical feasibility and 

available resources 
 

• Cost of implementing program 
• Further straining limited personnel 

resources 

Energy management 
conservation program 
 
*Identify cost savings 
available through energy 
management via technology 
as 25-30% of operation and 
maintenance costs are 
linked of energy usage for 
water treatment and 
distribution (USEPA 2012) 

• Cost(s) 
• Logistical feasibility and 

available resources 
 

• Cost of implementing program 
• Further straining limited personnel 

resources 

 Decommissioning Options 
Decommissioning pipes, 
while maintaining 
redundancies in the network 

*By maintaining 
redundancy loops, the 
system is able to provide 
service during a failure 

• Cost 
• Intended purpose for future 

land use 
• Impact on the water quality, 

capacity of the system, and 
operational integrity of the 
existing pipes 

• Criticality of pipes (e.g., are 
they connecting two densely 
populated regions?) 

• Vacancies and vacancy 
patterns within potential area 

• Risk of main system failure 
• Length of time it would take to 

fix a main system failure 
• Ability to maintain fire flows 

with retooling configuration. 
• Current zoning of the area 
• Existing establishments (e.g., 

churches, business, community 
centers, schools) 

• Environmental impact 

• Cost of capping decommissioned 
pipes 

• Legal implications of downsizing 
infrastructure 

• Difficulty maintaining flows to 
hydrants if critical pipelines are 
removed 

• Nuisance liability 
• Barriers that may require 

negotiation for decommissioning 
pipelines on private property 

Decommissioning pipes 
from periphery of city 
Scale back the redundancy 
within the system by 
decommissioning excess 
pipes, including redundancy 
loops  

*By removing all pipelines, 
there is an increased chance 
of service disruption during 
a failure 
Consolidate residences and 
services along a main 
service corridor, 
decommission excess 
infrastructure 

*This option considers 
multiple neighborhoods and 
large areas with a high 
number of vacancies  
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Table 3.4. Wastewater/Stormwater infrastructure retooling alternatives 

ALTERNATIVES CONSIDERATIONS POSSIBLE CONSEQUENCES 
OR BARRIERS 

Alternatives Impacting Wastewater 
Removing impervious, 
abandoned surfaces 
 
*Repaving/renovating 
parking lots and sidewalks 
with permeable paving and 
pervious concrete 

• Cost and benefits  
• Intended purpose for land in 

vision 
• Soil type in area 
• Impact on the water quality,  
• Environmental impact 

• Cost of modeling and 
decommissioning 

• Further straining limited personnel 
resources for design and 
maintenance 

• Impact on watershed and 
environment 

Rainwater harvesting  
 
*Storage of rainwater for 
reuse for purposes such as 
irrigation 

• Cost and benefits  
• Intended purpose for land in 

vision 
• Regulations by city or state 

regarding use or ownership of 
rainwater 

• Environmental impact 

• Cost of modeling 
• Further straining limited personnel 

resources for design and 
maintenance 

• Impact on watershed and 
environment 

Greywater collection and on 
site use 
 
*Wastewater generated 
from household activities 
that may be reused onsite 
for applications like 
irrigation 

• Cost and benefits  
• Regulations by city or state 

regarding use of grey water 
• Chemicals used in the 

generation of grey water (e.g., 
detergents) 

• Environmental impact 

• Cost of modeling 
• Further straining limited personnel 

resources for design and 
maintenance 

• Impact on watershed and 
environment 

• Legal barriers for use of greywater 

Install green infrastructure 
to offset stormwater flows 
and to help existing system 
meet current demands 
 
*e.g., stormwater wetland, 
bioretention options, 
permeable pavements, green 
roofs 

• Costs and Benefits 
• Long-term land use vision 
• System’s capacity-is system 

near or above capacity during 
wet weather 

• Soils in proposed area 
• Maintenance costs 
• Environmental impact 

• Cost of modeling 
• Further straining limited personnel 

resources for design and 
maintenance 

• Impact on watershed and 
environment 

• Legal restrictions on type and size 
of green infrastructure, as well as 
aesthetic city ordinances 

Individual septic systems or 
septage hauler, Onsite 
sewage facility 

• Costs and benefits 
• Maintenance and regular 

cleaning 
• Water quality 
• Ground water availability  
• Environmental issues resulting 

from leaks 
• Public health risks 
• Logistical feasibility 
• Homeowner responsibility to 

maintain system 

• Cost of implementing program 
• Further straining limited personnel 

resources 
• Impact on watershed and 

environment 
• Meeting federal, state, and city 

public health standards 
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Table 3.4. (continued) 

ALTERNATIVES CONSIDERATIONS POSSIBLE CONSEQUENCES 
OR BARRIERS 

Energy management 
conservation program 
 
* Identify cost savings 
available through energy 
management via technology 
as 25-30% of operation and 
maintenance costs are 
linked of energy usage for 
water treatment and 
distribution (USEPA 2012 

• Cost and benefits 
• Logistical feasibility and 

available resources 
 

• Cost of implementing program 
• Further straining limited personnel 

resources 

Repurpose Infrastructure 

Contract out excess capacity 
of sewer system to 
neighboring communities 
 
 

• Benefit if contracting to the 
shrinking city 

• Amount of excess capacity 
• Projected needs of community 
• Cost to tie pipes into 

surrounding communities 
• Environmental impact • Cost of negotiations for contacts 

• Further straining limited personnel 
resources for negotiations 

• Further straining limited personnel 
resources for operating a system 
with higher demands 

Contract excess wastewater 
treatment plant space to 
surrounding communities 
 
*If a city has a wastewater 
treatment plant, excess 
capacity may be used as a 
revenue generating option. 

• Benefit if contracting to the 
shrinking city 

• Amount of excess capacity 
• Projected needs of community 
• City/town has local waste 

water treatment plant 
• Cost to tie pipes into 

surrounding communities 
• Cost of trucking in wastewater 
• Environmental Impact 

 

It should be noted that community vision is often overlooked when discussing infrastructure 

alternatives. Aside from the technical viability of these infrastructure alternatives, there have not 

been any studies, to the author’s knowledge, that gauge public perceptions and attitudes towards 

possible infrastructure retooling alternatives. Prior studies pertaining to the public’s stance in the 

context of declining urban populations have examined quality of life, and perceptions towards 

abandonment and vacancies, without considering infrastructure related issues (e.g., Greenberg 

and Schneider 1996; Bright 2000; Hollander 2010; Hollander 2011). Understanding public 

perception is critical for the success of any infrastructure project because making infrastructure 

decisions that do not have adequate public support may pose risks such as inefficient or 

unsuccessful implementation, or unsustainable solutions due to public opposition (Susskind and 

Cruikshank 1987; Global Water Partnership Technical Advisory Committee 2000, Gerasidi et al. 

2009, Nancarrow et al. 2010, Faust et al. 2013).  Gauging and incorporating public opinion into 
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infrastructure decision-making, and understanding the elements of public concern, may allow for 

sustainable, implementable alternatives that aid in transitioning shrinking cities towards right-

sizing their infrastructure for a smaller population. 1  

 

3.3. Summary and Departure Point for Evaluated Infrastructure Retooling Alternatives 

Shrinking cities face a multitude of infrastructure issues, exasperated by the city’s current 

economic condition. Although this dissertation focuses on water and wastewater, similar issues 

may span other infrastructure services, such as roads or power.  Faced with a declining tax base, 

further diminished by the income inequity occurring within the city, and reduced numbers of 

customers, utility providers are challenged with providing adequate service, while meeting 

increasingly stringent legal and environmental regulations. Operating with minimal personnel and 

the loss of institutional knowledge due to retirements and staff reductions further challenges these 

utilities in maintaining consistent and efficient services. 

 

Underutilized infrastructure may result in reduced water quality and wastewater infrastructure 

performance. Decreased demands can result in increased water age and stagnant water throughout 

the system. Unused impervious surfaces generate runoff, which enters the combined sewer 

systems in many older, Midwestern communities, contributing to the volume of each sewer 

overflow and the number of sewer overflows, worsening the quality of water and the source.  

 

By identifying challenges associated with water and wastewater infrastructure and existing 

interdependencies between the infrastructure systems, technical and managerial management 

strategies can be examined to facilitate the transition to sustainable services. Considerations, such 

as technical feasibility, existing condition of the infrastructure, and declining patterns must be 

assessed within each city. Decommissioning water infrastructure and consolidating demands are 

the two retooling alternatives evaluated in Chapter 5. Impacts of decommissioning impervious 

surfaces that generate runoff, transitioning land uses, and incorporating low-impact development 

alternatives are evaluated in Chapter 6. The impact of urban decline and implementing new 

management alternatives on the interdependencies between water and wastewater infrastructures 

are evaluated in Chapter 8.  

 

                                                        
1 Paragraph adapted from Faust et al. (2015b) 
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Each community must not only assess the viability of different management alternatives in the 

context of technical feasibility, but also frame these alternatives within the context of community 

vision. To mitigate potential opposition, the utility provider should incorporate participatory 

processes when implementing infrastructure retooling alternatives. The decisions made about 

infrastructure below ground may have implications for the above ground life of the community, 

such as shifting land uses or consolidating neighborhoods to more populous areas.  This 

dissertation provides a framework to evaluate the (1) technical viability of select water and 

wastewater/stormwater retooling alternatives and (2) public views towards water and wastewater 

infrastructure issues and stormwater management to aid in participatory processes. 

 

SMEs identified a need for understanding the technical and operational infrastructure issues that 

are spanning shrinking cities and not unique to one city. Many issues common to urban decline 

were identified via literature and interviews with four Midwestern shrinking cities, such as rising 

per capita costs, fulfilling obligations to retired personnel, increased water age, and runoff from 

vacant land entering the combined sewer systems present in many of these cities. Previous work 

has focused on a limited scope of issues, such as the financial burden of water and wastewater 

utilities falling on the consumer (Schlor et al. 2009; Butts and Gasteyer 2011) or water age (Barr 

2013), without holistically looking at multiple problems arising from urban decline. Select issues 

spanning shrinking cities were characteristic to the type of provider. For instance, drastic 

personnel reductions were found in public water utilities, whereas private utilities did not face the 

challenge of operating on minimal personnel. Instead, private utilities highlighted the issue of 

dedicating more resources to connecting/disconnecting water service in shrinking cities than other 

cities served. Beyond the technical and operational issues spanning shrinking cities, interview 

with SMEs indicated that they were not aware of many alternatives that were being discussed or 

could be considered for the underutilization of infrastructure. Additionally, due to limited work 

force, shrinking cities cannot typically afford the resources to explore and identify plausible 

management alternatives. 

 

Challenges faced when synthesizing the information presented in this chapter include the lack of 

published literature pertaining to underground infrastructure in shrinking cities and the 

underutilization of infrastructure. Additionally, there was no indication that shrinking cities 

shared information or had knowledge of how other cities were managing infrastructure in the 

context the urban decline. Typically, the end of life-cycle for infrastructure refers to the end of the 
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functional life, as opposed to the end of useful life in terms of necessity to meet population 

demands. This chapter compiled not only the issues in shrinking cities, but provided a list of 

potential retooling alternatives, including applicable scenarios and barriers that can be explored, 

depending on the future land use and decline patterns of the city, to shift towards managing 

infrastructure in this new paradigm for the end of the life-cycle of infrastructure.  
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CHAPTER 4. METHODOLOGY 

 “Research is formalized curiosity. It’s poking and prying with a purpose.” 

-Zora Neale Hurston 

 

This chapter describes the methodology to accomplish the research goals presented in Chapter 1 

and the departure point in Chapter 2. This dissertation has four related, yet independent 

components, shown in Figure 4.1: 1) analysis of the performance of the water infrastructure 

system under different retooling alternatives; 2) evaluation of the runoff generated for different 

retooling alternatives; 3) quantifying the public views towards water and wastewater 

infrastructure issues and retooling infrastructure alternatives; and 4) examining the 

interdependencies between water, wastewater, and stormwater infrastructure and human-

infrastructure interactions.  

 

 
Figure 4.1. Methodology Components 

 
4.1.  Case Study Cities 

Two US cities serve as test beds to demonstrate the proposed methodology: 1) Flint, Michigan 

and 2) Saginaw, Michigan. Flint is a medium-sized city, peaking at over 100,000, with a 

population of 196,940 in 1960. Saginaw is classified as a small city with its population peaking 

below 100,000 at 98,265 people in 1960.  
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4.1.1. Case Study Cities 

According to the US Census Bureau data from 1940 to 2010, Flint and Saginaw have experienced 

a decline in population of 43.4% and 47.5%, respectively, since each city’s peak population (US 

Census Bureau 2011). As illustrated in Figures 4.2, their population decline is not tied solely to 

the economic cycle that follows a trend of rise and fall in the short term (e.g., the US economic 

downturn since 2007), but rather has been a chronic decline over multiple decades. The 

populations in these cities peaked in the 1960s when industries such as automotive, steel and 

manufacturing brought jobs and growth.  However, due to industrial decline, these cities, as well 

as other US industrial cities, began a steady decline from the 1960s until present day, in some 

instances, losing over half of their population. Juxtaposed with four shrinking cities in Figure 4.2 

are three cities (Fort Wayne, Indiana; Dearborn, Michigan; and Hamilton, Ohio) that follow the 

typical city growth trends, shown by grey-dashed lines, to illustrate the chronic decline seen in 

shrinking cities. 

 

 
Figure 4.2. Population dynamics: Cities experiencing urban shrinkage juxtaposed with “typical” 

city growth trends 

 

Figures 4.3 (a) and (b) depict the “urban crisis” occurring in Michigan, which was the only state 

in the US to lose total population in the past decade, according to the US Census Bureau (2011). 

Shrinking cities are experiencing increased vacancies and abandonment, disinvestment in the 

neighborhoods, and increased per capita costs for infrastructure operation and maintenance. The 

USEPA (2014) describes the impact this decline on Saginaw’s community as having 

approximately 5,500 vacant or abandoned properties comprising 25% of Saginaw’s land area.  
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    (a)         (b) 

Figure 4.3. Michigan’s urban crisis: (a) Flint and (b) Saginaw  

 

Often times, shrinking cities, especially those resulting from industrial decline, are plagued by a 

decrease in the average incomes of residents. Individuals with the means, skills, and abilities 

often leave the city in pursuit of opportunities.  This inequity is present in the case study cities 

where median income for Flint is $27,199 with 36.6% of the population below poverty. Similarly, 

Saginaw’s median income is $27,051 with 37.4% of the population below poverty. This 

information indicates that a given neighborhood may or may not be low-income. When 

evaluating the performance of the water infrastructure system, water use demand patterns that 

vary due to socioeconomic status (discussed in Section 4.2.2.1) must be considered to ensure that 

the appropriate water usage patterns are applied and this income inequity is captured.  

 

In the context of water and wastewater infrastructures, the management and operational aspects 

vary between cities, as shown in Table 4.1. One important difference between the two case study 

cities is that Saginaw is attempting to transition towards proactive management styles, whereas 

Flint remains primarily reactionary. To the author’s knowledge, as of March 2015, Flint has not 

performed formal analyses for the cost and benefits of retooling alternatives nor have areas been 

formally selected by city officials to examine the feasibility of retooling alternatives. However, 

discussions with representatives from Flint’s water utility (in May 2013) revealed that the city is 

open to exploring retooling alternatives to lower infrastructure costs, and they are currently 

developing a future land use plan for the city. Saginaw has considered decommissioning 

infrastructure and has developed a vision for future land use.  
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Table 4.1. Water and wastewater infrastructure management and operational characteristics 

Parameter Saginaw, MI Flint, MI 
WATER INFRASTRUCTURE SYSTEM 

Ownership/management Municipal Municipal 
Asset management strategies Proactive Reactionary 

Age Approximately 80 years 

• Major upgrades occurred in 
the 1980s 

• Some pipe in place and 
functioning from the 1800s 

Material issues highlighted in 
conference calls and 
discussions 

Internal corrosion, tuberculation 

• High failure of galvanized 
pipe 

• Copper pipe theft on vacant 
properties 

Demand Citywide, 600 million gallons 
per month on average - 

Water source Lake Huron City of Detroit 

Maintenance and 
replacement 

Replace as necessary, 
maintenance investment is 

determined on an annual basis  
Replace as necessary 

Percentage of failures causing 
service disruptions 10% - 

Average service disruption 8 hours total - 
Number of households 
impacted 

Approximately 20-30 
households - 

Rate increase 3-year rotation to re-evaluate 
rates 

Annual evaluation occurs; 25% 
increase in 2012 (previously no 
changes in the last decade) 

Financial components Self-sustaining Self-sustaining 

Personnel issues Supporting a significant number 
of retired workers 

Reduced personnel 
considerably  

WASTERWATER/STORMWATER INFRASTRUCTURE SYSTEM 
Ownership/management Public Public 
Type Combined sewer system Separate stormwater systems 

Issues Highlighted 

• Would like to transition to 
green infrastructure to capture 
and clean stormwater onsite 
wherever deemed appropriate 
to reduce the quantity of water 
entering the system 

• Stormwater contributes 
approximately 30% of the 
daily wastewater 

• 40% of water into sanitary 
system comes from footing 
drains (15mgd during dry 
weather, over 100 mgd in wet 
weather entered the system) 

• Collection system is old, 
ground water table is rising, 
sewers and interceptors are 
located along river banks 
(river is coming into the 
treatment system) 

• Could close one part of the 
plant if the wet weather 
issues were not present 
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4.1.1. City of Flint Analysis Area 

To observe the population decline patterns throughout Flint and to identify appropriate locations 

to test the methodology, maps of Flint were divided into sections aligning with the 2000 census 

tracts. Census tracts are used to bound geographical regions of a city into comparatively 

homogeneous areas with regard to population characteristics, economic status, and living 

conditions (US Census Bureau 2011). The boundaries of census tracts may change every ten 

years with each census in an attempt to maintain homogeneity among the tracts within the city 

and to accommodate geographic changes to the city. The 2000 census tracts were used as the 

defining boundaries within each city to allow for the comparison between the 2000 and 2010 

populations in the same defined area. The 2010 census data are available for both the 2000 and 

2010 tracts, whereas the 2000 census data are available for the 1990 and 2000 tracts. 

 

These thematic maps use both “Equal” breaks and “Jenks”/“Natural” breaks (referred to as 

“Jenks” throughout the thematic maps). Equal breaks take the range of data and breaks down the 

data into categories that all have the same length (e.g., 1-10 broken into two equal categories 

yields 1-5 and 6-10). “Jenks” defines the breaks by clusters of data. The number of categories is 

the number of clusters. Jenks minimizes the variability within a cluster while maximizing the 

variability between each cluster.  

 

Categories (depicted by various colors) are used to divide the population and population decline 

(growth) by tracts that exhibit similar patterns. Decline (growth) is represented by the ratio of the 

2010 population to the 2000 population in an individual tract. If the population reported for 2010 

in a particular tract is less than that reported for the same tract in 2000, the ratio yields a value 

that is less than one. Conversely, if the population reported for 2010 in a particular tract is greater 

than reported for the same tract in 2000, the ratio yields a value that is greater than 1, indicating 

growth within the boundaries of that particular tract. The Equal and Jenks breaks have been 

slightly modified to ensure that 1.0 is the boundary for two of the levels to distinguish between 

growth and decline.  

 

As shown in Figures 4.4-4.7, Flint appears to have low population pockets amidst larger 

population pockets, showing a pattern coined as a Swiss cheese appearance. The lowest area of 

population appears to be in the center of the city, and the highest areas of population are in the 

southwest portion of the city. When observing the population decline between 2000 and 2010, the 
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west portion of the Flint is shown to have experienced higher declines and the eastern portion is 

shown to have experienced growth. The tracts experiencing growth, however, are among pockets 

experiencing decline. Interestingly enough, two of the tracts, Tracts 21 and 25, with the lowest 

population, have experienced growth since 2000. By increasing the population in Tract 21 by a 

mere 20 people, Tract 21 has the appearance of growth, due to the tract’s low population.   

 

 
Figure 4.4. 2010 Population (Jenks Breaks) 

 

 
Figure 4.5. 2010 Population (Equal Breaks) 
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Figure 4.6. Population decline between the 2000 census and 2010 census (Jenks Breaks) 

 

 
Figure 4.7. Population decline between the 2000 census and 2010 census (Equal Breaks) 

 

The city blocks used in the analyses for this study are located in Tract 20. This area of the city is 

among the lowest populated and is amidst the tracts experiencing the highest population decline. 

In addition, this area is zoned primarily for residential parcels, many of which are owned by the 

Genesee County Land Bank. Figure 4.8 shows the specific area used to test the methodology. The 

dark blue parcels indicate privately owned residential parcels. The green parcels indicate Genesee 

County Land Bank owned parcels, as of January 2012, as indicated by the Genesee County Land 

Bank GIS layer, provided by the Genesee County Land Bank.   
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Figure 4.8. Analysis area in Flint 

 
4.1.2. City of Saginaw Analysis Area 

The Green Zone (Figure 4.9) is a primarily residential zone within Saginaw that was identified as 

a candidate by the city for retooling alternatives, specifically incorporating green infrastructure 

and recreating the area. This Green Zone is bounded by I-675 to the south, the Saginaw River to 

the west, North Washington Avenue to the north, and a rail yard to the east. Approximately 70% 

of the land is considered vacant, with the Saginaw County Land Bank owning approximately 370 

of the 800 properties in the area (USEPA 2014). The green parcels in Figure 4.9 are known, 

vacant parcels, many of which are owned by the Saginaw County Land Bank as 2011.  

 

 
Figure 4.9. Location of the Green Zone within Saginaw’s city boundaries  
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This area is referred to as the “Green Zone” for its potential candidacy for installing green 

infrastructure, thereby reducing the amount of impervious surfaces that flood during wet weather 

and making the area more aesthetically appealing (USEPA 2014). Due to the high vacancy rates 

and pre-identified potential for retooling this area by Saginaw, analyses will take place in the 

neighborhoods within the Green Zone. The Green Zone is primarily residentially zoned as R-2 or 

two-family residential, which typically allows for up to two family dwellings. The future land use 

plan for this area in Saginaw will not include residences in these areas and is intended to 

transition to green opportunity areas. The specific analysis area for this study within the Green 

Zone is depicted in Figure 4.10. 

 

 
Figure 4.10. Analysis area in Saginaw’s Green Zone 

 

4.2. Water and Wastewater/Stormwater Infrastructure Analyses 

The metrics and tools used to evaluate the performance of water and wastewater/stormwater 

infrastructures in Flint and Saginaw are described in Sections 4.2.1 and 4.2.2, respectively. Model 

development specific to each city is presented in Chapters 5 and 6 with the analysis results.  

 

4.2.1. Metrics Used in Water and Stormwater Analyses 

A set of metrics was defined and applied to evaluate the performance of the infrastructure 

systems.  Performance metrics are used to evaluate whether a specific function is accomplished in 

a desired manner (Sinha and Labi 2007) and may be expressed either qualitatively or 

quantitatively, as well as applied for varying spatial scales. According to Sinha and Labi (2007), a 

well-defined performance measure should exhibit the following characteristics:  
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• Appropriateness. The metric should represent one or more of the system’s goals. 

• Measurability. The metric should be easily evaluated in an unbiased, objective manner.  

• Dimensionality. The metric should be applicable for the appropriate scale (e.g., temporal, 

spatial, geographic) of the analysis.  

• Realistic. Data necessary for the metric should be accessible without extensive time or 

resources. 

• Defensible. The metric should be clear, concise, and easily interpretable.   

• Forecastable: The metric should be applicable for future use. 

To identify appropriate metrics for the analysis of infrastructures in shrinking cities, it is useful to 

review the metrics that are applied in current infrastructure analysis models.  Previously discussed 

in Chapter 2’s Table 2.4, Peralta (2009) categorized the models surveyed by Pederson et al. 

(2006) into four groups of metrics: economic, risk, time, and environmental and human effects. A 

fifth category, which was proposed in Peralta (2009) for examining the operating states of 

infrastructure in developing countries, is also included in Table 2.4. These metrics used in 

previous models were not capable of measuring the impact of both physical and non-physical 

disruptors on the infrastructure systems, and were primarily used to measure physical disruptors, 

such as intentional attacks or natural disasters. Different from previous studies, this study 

examines critical infrastructure and infrastructure interdependencies in the context of shrinking 

cities (that is the presence of non-physical disruptors in the form of urban decline), and retooling 

alternatives (physical disruptors due to reconfiguring existing infrastructure). Table 4.2 

summarizes the metrics used in this study.  

 

Table 4.2. Metric justification 

 Water Infrastructure Wastewater/Stormwater Infrastructure 

Metric(s) 

Pressures at nodes are between 20-80 
psi (ideally above 35 psi) and the 
system has the ability to provide 
adequate fire flows, defined as 250 
gpm for two consecutive hours  

Change in generated runoff due to the 
removal of impervious surfaces 

Relevance 
Evaluates the system’s ability to 
function and operate at an acceptable 
level  

Examines the changes runoff entering the 
wastewater/stormwater system, 
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Table 4.2. (continued) 

 Water Infrastructure Wastewater/Stormwater Infrastructure 

Data Sets 

The data necessary include the 
characteristics of the system’s 
components (e.g., elevations, 
diameters, pipeline material, and 
average demands) 

The data necessary include the 
characteristics of the area and 
infrastructure zoning (e.g., elevations, 
impervious surfaces, current land use, 
intended land use, soil), water demand, and 
wet weather events  

Comparison 
Functionality of the system can be 
examined and compared under 
various retooling scenarios 

Functionality of the system can be 
examined and compared under various 
retooling scenarios 

Adequate 
Measurement 
of Goals 

Metric reflects the system’s operation 
under various demands, capacities, 
and scenarios 

Metric reflects the generated runoff 
entering the system  

Measurability Pressures and fire flow scenarios may 
be calculated using EPANET 

The generated runoff (and characteristics 
of that runoff such as, non-point source 
pollutants) may be estimated using L-
THIA and SWMM 

Realistic in 
terms of data 
availability 

Data are available from the city GIS 
layer and published material  

Data are available from the city GIS layers 
and published material 

Dimensionality: 
comparable 
across time and 
geography  

Metrics can be calculated at various 
times, days, months, etc., as well as 
in various locations of the city 

This metric can be calculated for various 
locations of the city, as well as times and 
storm intensities 

Defensible in 
terms of 
calculation 

The values are characteristic of the 
system (e.g., pipeline diameter, 
pipeline materials, location of 
junctions) or from published material  

The values are characteristic of the area 
and wet weather events in the area 

Forecastable 
Historic trends in demand decline (or 
growth) may be used to predict future 
conditions of the neighborhood(s) 

Historic trends in demand decline (or 
growth) may be used to predict future 
potential for retooling impervious surfaces 
and incorporating green infrastructure 

Appropriate 
for modeling 
and validation 

EPANET is used to estimate these 
metrics, and the pressures and fire 
flows are verified by the city as 
reasonable values 

L-THIA and SWMM have the capability to 
model this metric and the results of the 
stormwater produced, and wet weather 
events may be verified by local weather 
station data 

 

4.2.2. Water Infrastructure Retooling Alternatives Analyses 

EPANET was used for network analysis. This network model provides a representation of the 

physical network as a set of links and nodes with the information about the location, the direction 

of flows, and the connectivity. Specifically, it allows for editing network data, running hydraulic 

and water quality simulations, and viewing the results in various formats like color-coded 

network maps, data tables, time series graphs, or contour plots. EPANET was used in this study 

to evaluate the pressure changes in the system as a result of retooling the infrastructure, and 

assess the system’s ability to provide adequate fire flow under various retooling alternatives. 
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The specific inputs used for the EPANET are shown in Table 4.3. The inputs were based on the 

availability of data and the published literature. Data for the pipelines, consisting of the relative 

location, length, and diameter and the geographic location of the nodes, were imported directly 

from each city’s water distribution system GIS layer for use in the EPANET models. Since the 

water distribution GIS layer did not include elevation or slope data for the pipelines throughout 

the city, the relative elevations of the nodes and reservoir were determined from US Geological 

Survey (USGS) topographic maps. In the analyses, water entered the water infrastructure 

distribution system via the pipelines located nearest to the reservoir located on a USGS 

topographic map.  

 

Table 4.3. EPANET inputs and sources 

Inputs Source 
Pipeline Characteristics 
• Material 
• Length 
• Diameter 
• Intersecting pipelines 
• Relative location 

GIS layer from each city 

Node locations GIS layer from each city 
Elevation of Nodes US topographic map 
Reservoir location and Elevation US topographic map 
Pump curve Determined as a typical pump used in EPANET examples 
Water use trends Aquacraft, Inc. (2011) (discussed in Section 3.2) 
Water Demand AWWA (1999) 

 

4.2.2.1. Water Use Trends and Demands Used In EPANET 

The estimated daily demand patterns, accounting for the variations of water demand throughout 

the day, as developed by Aquacraft, Inc. (2011), were used in this study as an input for EPANET.  

Usage variations throughout the day are an important consideration to ensure that water demands 

are met during peak periods. Aquacraft Inc. (2011) developed two demand patterns based on 

household incomes: 1) Single Family Homes and 2) Single Low-Income Family Homes. These 

demand patterns were created for the California Public Utilities Commission Energy Division to 

obtain more accurate water use profiles than previously available. Single Family Homes are those 

that are occupied by one family as opposed to a multi-unit apartment complex. The total water 

consumption did not vary significantly for total demand, but water usage varied throughout the 

day across socioeconomic boundaries, as shown in the demand patterns in Figure 4.11. Therefore, 

the time of or the number of peak demands in a community may differ if the socioeconomic 

status of the area is predominately middle/upper-income versus low-income.  
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While evaluating the impact of physical changes on the water system in shrinking cities, these 

cities need to determine which water use trends are appropriate for their analyses.  In cities 

experiencing urban decline, the financial burden of maintaining the water infrastructure often 

falls on those who cannot afford increased service charges and may likely be in the low-income 

bracket (Rybczynski and Linneman 1999; Beazley et al. 2011; Butt and Gasteyer 2011). Thus, 

single low-income family water use trends may be more applicable for such analyses. The 

average income of a city may be obtained from census data to identify the demand pattern that is 

most appropriate for the area.  

 

 
Figure 4.11. Socioeconomic daily water use demand pattern 

 

4.2.2.2. Fire Flow Analyses  

Providing adequate fire flow to the area during peak times is critical for the safety of the residents 

in the area. Hickey (2008) stated that for a fire hydrant to be recognized by the city, it must be 

able to maintain a flow of 250 gpm for two consecutive hours without reducing the pressure of 

any node below 20 psi. Fire Flow 2.1, a tool developed by Optiwater used with EPANET, 

modeled the increase in the flow at each node individually until the established pressure threshold 

for any node in the network was violated. The fire flow ability of the network was analyzed by 

determining the maximum flow available for two consecutive hours and the maximum flow 

available for any instantaneous moment in time. The maximum flow available was determined for 

peak times using the Single Family Homes and Low-Income Single Family Homes demand 
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patterns to examine if the difference in peak demands significantly impacts the fire flow 

capabilities of the network. Additionally, each fire flow analysis was performed under further 

decline (termed demand alternative in Chapter 5) to evaluate the impact that further urban decline 

may have on the ability to provide fire flows. 

 

4.2.3. Stormwater Infrastructure Retooling Alternatives Analyses  

Long-Term Hydrologic Impact Assessment (L-THIA), and Storm Water Management Model 

(SWMM) were the primary tools used for the stormwater runoff analysis.  Purdue University, the 

USEPA, the Local Government Environmental Assistance Network (LGEAN), and the 

International City/County Management Association for the states of Indiana, Illinois, Wisconsin, 

Michigan, and Ohio jointly developed L-THIA. L-THIA has a user interface in which the area of 

land, current land use, changes in land use, soil type, and incorporation of low-impact 

development (LID) practices are selected by the user. L-THIA estimates runoff with curve 

number analysis, which incorporates the Natural Resource Conservation Service’s (NRCS) 

classification system of four hydraulic soil groups, Groups A through D. Group A has the lowest 

potential for runoff and D has the greatest potential for runoff.  

 

SWMM, a tool developed by the USEPA, is a dynamic simulation model for estimating runoff 

quality and quantity based on precipitation. For this analysis, base models of the status quo 

candidate areas were developed in SWMM. The base models were altered by changing land uses 

at a subcatchment level or incorporating LID practices. The runoff estimates from SWMM used 

the curve number analysis approach (one of three available infiltration methods available in 

SWMM), allowing for uniform infiltrate estimation methods between tools.  

 

The two tools, L-THIA and SWMM, were used for comparison of estimated changes in runoff 

and infiltration for the candidate area, to understand the impacts various alternatives would have 

on the area, and more specifically the wastewater/stormwater system. Both tools estimate the 

quantity of runoff, based on historical rainfall data and soil types in the candidate area.  The 

effects of development and urbanization on the naturally categorized soil group was considered 

due to activities such as heavy equipment during construction or daily activity on the land (Town 

of Bluffton 2011). Thus, all alternatives were evaluated under the assumption that development 

has caused the soil to compact to Category D (in addition to the soil categories characteristic to 
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the area), resulting in the soil having the greatest runoff potential. Specific inputs and sources are 

for these analyses are shown in Table 4.4. 

 

Table 4.4. L-THIA and SWMM inputs and sources 

Inputs Source 
Size of changing land use GoogleEarthPro  
Soil type USDA: NCRS (2013) and GIS layers  
Current land use  City provided GIS layers 
Status quo percent impervious USDA (1986) 
Precipitation data National Climate Data Center (NCDC) (2014) 

Land use scenarios and BMPs L-THIA: Pre-defined, based on literature 
SWMM: USDA (1986), SEMCOG (2008) 

Underground infrastructure in candidate area City provided GIS layers 
 

4.2.3.1. Using L-THIA to Model Retooling Alternatives 

In L-THIA, land use was divided into individual cells, with hydraulic soil groups assigned to each 

cell. Each cell had a curve number assigned based on the land use, and either contributed to the 

total runoff or infiltrated the land. Runoff was then estimated using Eqns. 4.1- 4.3 (USDA 1986): 

 

Q= ((P-Ia)2)/(P-Ia+S)        [Eqn. 4.1] 

S= 100/CN-10            [Eqn. 4.2] 

Ia = 0.2S       [Eqn. 4.3] 

 

where, Q was the total runoff, P was the rainfall, S was the soil moisture, Ia was the initial 

abstraction (i.e., amount of water prior to runoff), and CN was the assigned curve number. The 

runoff depth over the area is then converted to a volume (by multiplying by the area of the cell). 

Figure 4.12 summarizes L-THIA’s methodology. 
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Figure 4.12. L-THIA methodology summary (adapted from Lim et al. 1999) 

 

L-THIA assumes that the water flowing across a surface is equally distributed across the 

landscape (i.e., there is no routing of the water), and there is not subsurface drainage system. 

Additionally, the rainfall is evenly spread across the county, as historical precipitation data is 

determined on a county-by-county basis, L-THIA does not account for rainfall duration or 

intensity, and the accuracy in predicting runoff is not high when the runoff is less than 0.5 inches.  

  

4.2.3.2. Using SWMM to Model Retooling Alternatives 

SWMM models the drainage systems as subcatchments (where precipitation and runoff are 

generated) and routes the runoff through a conveyance system. Subcatchments account for 

variations in land uses, allows for assigning the percentage of pervious and impervious surface, 

and is the location for the incorporation of LID practices. The conveyance system has the ability 

to transport external flows (e.g., runoff, base flows in pipelines, household wastewater) to model 

the performance of the underground infrastructure and drainage systems. The simulation is a 

discrete-time model, based on conservation of mass, energy, or momentum, by conceptual 

representing the surface (e.g., natural infiltration, LID alternatives) and sub-surface drainage 

system (e.g., wastewater infrastructure, stormwater infrastructure). For this analysis, SWMM was 

used to model the change in runoff by decommissioning impervious surfaces (e.g., driveways, 

sidewalks, foundations), changing land uses, and incorporating LID practices.  

 

Data for the pipelines, consisting of the relative location, length, and diameter and the geographic 

location of the nodes, were determined from each city’s stormwater/wastewater system GIS layer. 

As the GIS layer obtained from the case study cities did not include elevation or slope data for the 
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pipelines throughout the city, the relative elevations of the land/subcatchments were determined 

using GoogleEarthPro, and the sewer slopes were based on published design recommendations 

from the Wastewater Committee of the Great Lakes (2004). In the analyses, runoff from each 

subcatchment was assumed to enter the conveyance system via the pipelines located within the 

proximity and transported to a single outfall.  

 

The SWMM models developed in this study assumed that the conveyance system was in good 

condition. If the design diameter is no longer correct (or there is change in ovality of the pipe), 

the roughness coefficient is considerably different from published estimates, or there are many 

breaks in the underground pipelines, the SWMM results may not accurately represent the runoff 

entering the system. Breaks in the pipelines cause infiltration into the conveyance system, 

underestimating the quantity of stormwater entering the conveyance system during each 

simulation.   

 

4.2.3.3. Precipitation and Storm Data 

Precipitation data varied across source and geographical scale (i.e., city versus county), impacting 

the total runoff estimated (discussed in Chapter 6). Countywide data is used to estimate runoff in 

L-THIA. SWMM allows for the incorporation of local weather station data or user defined data. 

Due to the availability of National Climate Data Center (NCDC) weather station data, Vassar, 

MI, a neighboring city to Saginaw, which has a more extensive database, was used. Similarly for 

Flint, L-THIA used Genesee county averages, whereas the SWMM model incorporated city 

specific precipitation data, reducing the variation that may occur over the county. 

 

Contrary to L-THIA that simulated the alternatives using daily precipitation averages, SWMM 

simulated the alternatives using precipitation data in 30-minute increments, providing more 

accurate time steps that were a closer reflection of the intensity and duration of the storm. 

Additionally, SWMM’s capabilities allowed for incorporating the wastewater/stormwater 

infrastructure system, topography of the land, and LID alternatives. L-THIA incorporated 30 

years of countywide precipitation data, whereas this SWMM results were estimated using the 

most recent 10 years of city-specific precipitation data.  

 

Following the simulations based on historic precipitation specific to that country/city, all 

alternatives were simulated using a 2-year and 10-year, 24-hour design storm in SWMM. 
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Additionally, the performance of different alternatives in Saginaw was evaluated for a 2-year and 

a 10-year, 10-minute design storm, due to the combined sewer system (CSS) in the city. The 10-

minute storms measured the effectiveness of the retooling alternatives to manage stormwater 

during short duration, high intensity storms, as this is a challenge for CSS due to the risk of 

overflows from the abrupt volume of runoff entering the system in a short period of time. As of 

October 2014, L-THIA did not have the capability to model storms or user defined rainfall data. 

The precipitation depths of the storms were from NOAA (2014) and relative to the location of 

Flint and Saginaw. The storm’s intensity was determined using National Resource Conservation 

Service developed distributions using National Weather Service duration-frequency data or storm 

data. Michigan is categorized as Type II design storms, with the most intense storms of the four 

distributions (USDA 1986).  

 

4.3. Survey Analyses of Public Views in Shrinking Cities 

A survey was deployed to residents of US shrinking cities with the purpose of gaining insight into 

the perceptions, knowledge, awareness, and attitudes concerning water and wastewater 

infrastructure issues and infrastructure retooling alternatives. Information gained from this survey 

may serve as a jumping block for further assessing viable infrastructure retooling alternatives 

with public opinion considered, as well as provide framework for estimating the drivers of 

attitudes and perceptions towards retooling alternatives in shrinking cities.  

 

4.3.1 Survey development and deployment2 

Qualtrics, a web-based survey software, was used to format and deploy the survey. Responses 

were voluntary, and all respondents were over the age of 18. The survey’s validity was 

determined through content review by 11 SMEs with backgrounds in issues inherent to shrinking 

cities, water and wastewater infrastructure management, or in the development and deployment of 

public perception surveys. Following content validation, the survey was pre-deployed to 25 

people with limited knowledge of water sector infrastructure issues to ensure that a population 

with limited knowledge could easily respond to, and understand the survey (the responses from 

the pre-deployment were not included in the final sample pool). Prior to pre-deployment, the 

survey underwent IRB review at Purdue University (see Appendix E). The feedback from the 

SMEs and pre-deployment was incorporated in the final survey instrument, to ensure that the 

survey gathered the desired data. 
                                                        
2 Section adapted from Faust et al. (2015a; 2015b) 
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The respondent pool consisted of residents from 21 US shrinking cities (listed in Table 4.5) that 

are classified as medium or large cities, had a peak population greater than 100,000, and have 

experienced a decline of at least 30% of their population (with the exception of Saginaw, 

Michigan which peaked just under 100,000). As of the 2010 census, the total population of 

targeted cities was approximately 4.6 million (US Census Bureau 2011). To obtain a confidence 

level of 95% with a confidence interval of 5%, more than 450 complete surveys comprised the 

sample population, with a minimum of 10 responses from each city. Responses were sought from 

cities in multiple states to: a) reduce the potential that responses only reflect specific state, 

regional, or city policies, and b) allow comparison of the public perceptions, knowledge, 

awareness, and attitudes across cities/states. It should be noted that due to dynamic changes in 

perceptions and attitude for reasons such as, imperfect information, increase in awareness, and 

media coverage, perceptions and attitudes may evolve over time.  

 

Table 4.5. Targeted cities comprising survey response pool (Faust et al. 2015b) 

City 
Percent decline 

from peak 
population 

Peak Population 
(Year) 2010 Population 

(US Census Bureau) 

Akron, Ohio 34.5% 290,351 (1960) 199,110 
Baltimore, Maryland 34.6% 949,708 (1950) 620,961 

Birmingham, Alabama 37.7% 340,887 (1950) 212,237 
Buffalo, New York 53.4% 580,132 (1950) 270,240 

Camden, New Jersey 37.9% 124,555 (1950) 77,344 
Canton, Ohio 37.6% 116,912 (1950) 73,007 

Cincinnati, Ohio 41.1% 503,998 (1950) 296,943 
Cleveland, Ohio 56.6% 914,808 (1950) 396,815 

Dayton, Ohio 46.1% 262,332 (1960) 141,527 
Detroit, Michigan 61.4% 1,849,568 (1950) 713,777 
Flint, Michigan 43.4% 196,940 (1960) 84,465 
Gary, Indiana 55.0% 178,320 (1960) 98,026 

Niagara Falls, New York 51.0% 102,394 (1960) 52,200 
Pittsburgh, Pennsylvania 54.8% 676,806 (1950) 371,102 

Rochester, New York 36.7% 332,488 (1950) 121,923 
Saginaw, Michigan 47.5% 98,265 (1960) 51,508 

Scranton, Pennsylvania 46.9% 143,333 (1930) 67,244 
St. Louis, Missouri 62.7% 856,796 (1950) 537,502 

Syracuse, New York 34.2% 220,583 (1950) 75,413 
Trenton, New Jersey 33.7% 128,009 (1950) 43,096 
Youngstown, Ohio 60.6% 170,002 (1930) 103,020 
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4.3.2. Statistical Models 

Survey questions were modeled using binary probit and binary logit models with random 

parameters, depending on the model type that was the best fit. Marginal effects are used to 

interpret the results of each model. 

 

4.3.2.1. Binary Probit3 

The binary probit models were estimated with the standard maximum likelihood method and 

assumed normally distributed error terms (ε) with a mean of zero. The binary probit model 

equation: 

 

𝑃! 𝑌𝐸𝑆 = 𝜙 !!"#!!"#$
!

                             [Eqn. 4.4] 

 

estimates the probability of outcome 1 for observation i. Phi (Φ) is the standardized cumulative 

normal distribution,  𝛽!   are the estimable parameters for outcome i, and  X1i are the vectors of the 

observable characteristics (e.g., respondent demographics, cities, states) that determine if “1” is 

the suggested outcome of observation i (Washington et al. 2011).  

 

4.3.2.2. Binary Logit with Random Parameters4 

For the binary logit with random-parameters models, a function that determines the probability of 

opposing an option is defined as, 

 

𝑂! = 𝛽𝑋! + 𝜀!,                        [Eqn. 4.5] 

 

where Oi is a function determining the probability that respondent i will oppose the sustainability 

option, Xi is a vector of explanatory variables that affect the likelihood that respondent i will 

oppose the sustainability option, βi is a vector of estimable parameters for, and εi is an error term 

which is assumed to be generalized extreme value distributed (McFadden 1981).  To arrive at the 

random-parameters binary logit model, random parameters are introduced with 𝑓(𝛽!|𝜑), where 𝜑 

is a vector of parameters of the chosen density function (mean and variance).  The resulting 

binary logit with random parameters opposition probabilities are (McFadden and Train 2000; 

Train 2009): 
                                                        
3 Section adapted from Faust et al. (2015a) 
4 Section adapted from Faust et al. (2015b) 
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𝑃! 𝑜 𝜑
!

!!!!!!!
𝑓 𝛽! 𝜑 𝑑𝛽!                  [Eqn. 4.6] 

 

where, 𝑃!(𝑜|𝜑) is the probability of respondent i opposing (o) conditional on 𝑓(𝛽!"|𝜑).  If the 

variance in 𝜑 is determined to be significantly different from zero, there will be respondent-

specific variations of the effect of X on the probability of opposing, with the density function 

𝑓(𝛽!|𝜑) used to determine the values of βi across respondents (Train 2009). 

 

Simulated maximum likelihood is used to estimate random-parameters logit models with logit 

probabilities approximated by drawing values of βi from 𝑓(𝛽!|𝜑) for given values of φ.  Research 

by Bhat (2003) has shown that an efficient way of drawing values of βi from 𝑓(𝛽!|𝜑)  to compute 

logit probabilities is to use a Halton sequence approach (Bhat 2003; Train 2009). 500 Halton 

draws were used for accurate parameter estimation (this number of Halton draws will be used in 

forthcoming model estimations).  For the functional form of the parameter density functions, 

consideration is given to normal, lognormal, triangular, uniform and weibull distributions.  With 

the functional forms of the parameter density functions specified, values of βi are drawn 

from  𝑓(𝛽!|𝜑), logit probabilities are computed, and the simulated likelihood function is 

maximized.  

 

To assess the effect of individual parameter estimates on injury-severity outcome probabilities, 

marginal effects can be readily computed (Washington et al. 2011) from the partial derivative for 

each respondent i (i subscripting omitted for simplicity) as: 

 

 

𝑀𝐸! ! ! = !" ! !
!!!

                [Eqn. 4.7] 

 

where xk is the kth included variable and other terms are as previously defined.   

 

4.3.2.3. Marginal Effects 

Marginal effects are used to interpret the results, with each variable’s marginal effect being the 

average of the individual marginal effect for all observations. The marginal effect yields the 

average change in probability yielded from a one-unit change in the independent variable 

(Washington et al. 2011).   The marginal effects of indicator variables (i.e., variables that have a 



 

65  
 

value of zero or one) indicate the change when the indicator variable changes from zero to one 

(Washington et al. 2011).  

 

4.3.2.4. Akaike Information Criterion and the Bayesian Information Criterion 

For model selection, the Akaike information criterion (AIC) and the Bayesian information 

criterion (BIC) were used. Both criterion incorporate the same goodness- of-fit term and, with k 

equal to the number of parameters in the model and log-likelihood function f (y|.), the is 

𝐴𝐼𝐶 = −2 ln 𝑓(𝑦|𝛽!) + 2𝑘 and 𝐵𝐼𝐶 = −2 ln 𝑓(𝑦|𝛽!) + 𝑘  ln  𝑛 (Cavanaugh 2012). Although 

both terms are partially based on the log-likelihood function, BIC penalizes over fitting to a 

greater degree than AIC, therefore favoring parsimonious models. AIC yields an unbiased 

estimator of the Kullback-Leiber divergence between the candidate model and the true model, 

whereas BIC yields an estimator of the Bayesian posterior probability.  AIC is asymptotically 

efficient, selecting the model that minimizes the mean square error, and thus, is appropriate as a 

predictive criterion (identifying via a pairwise comparison which model via a pairwise 

comparison, most efficiently predicts the outcomes). BIC is consistent, identifying the model with 

the factors that are the most influential, and thus is appropriate as a descriptive criterion 

(Cavanaugh 2012). When selecting models, the smallest AIC and BIC are indicative of the best 

fitted models (Schneider and Schneider 2009).  

 

4.4. Interdependency Analyses 

Object oriented programming, using the tool AnyLogic, was used to model water, wastewater, 

and stormwater interdependencies while incorporating the human interaction with the 

infrastructure systems and retooling alternatives. AnyLogic allows for modeling different 

simulation types, specifically agent based modeling, discrete event simulation, and system 

dynamics, in a single interface.  AnyLogic capabilities used for this analysis include integrating 

agent based and system dynamics (AB-SD) modeling methods into a hybrid model, to capture the 

dynamic behavior of these infrastructure systems and human-infrastructure interactions under 

parameter variations, such as price elasticity, declining populations, levels of support for different 

alternatives, and decreasing impervious surfaces. The system dynamics portion of the model 

focused on the stocks and flow of resources (such as, water demand, wastewater produced, runoff 

generated), under different conditions. The agent based model centered on the public perception 

of the residents towards retooling alternatives impacting these infrastructure systems. Within the 

agent based model, each individual agent maintained his/her own level of support or opposition, 
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which in real-time impacts the implementation of the retooling alternatives in the system 

dynamics model. The model development and data inputs for Flint and Saginaw is discussed in 

depth in Chapter 8.  

 

4.4.1 Causal Loop Diagrams 

After identifying the scope of the analysis, which in this case is the water, wastewater, and 

stormwater infrastructure systems, and human-infrastructure interactions, primarily at the 

neighborhood level, a causal loop diagram was developed. The casual loop diagram 

conceptualized the system(s) modeled into the components relevant and quantifiable for the 

analysis, as well as depicted the relationship between variables. The signs (+/-) within the 

influence diagrams indicate whether the beginning node/variable will have a positive or negative 

impact on the end node/variable. A complete loop within the influence diagram is termed a 

feedback loop, which is the algebraic product of the sum of the links (Kirkwoord 1998). Positive 

feedback loops yield reinforced change within a model, where as a negative loop, balances the 

system, converging the system towards a goal (Kirkwood 1998). The individual causal loop 

diagrams for Flint and Saginaw are presented in Chapter 8. Separate influence diagrams are 

necessary as the two cities differ in wastewater system, with Flint operating a separate stormwater 

system and Saginaw having a combine sewer overflow system. 

 

4.4.2. System Dynamics Modeling 

System dynamic models represent the complex system as a series of stocks, flows, and feedback 

loops. Stocks are the level/accumulations of the variables, and flows are the rates at which the 

stocks change. Variables and parameters are used to contain the information necessary to change 

the stocks, flows, and feedback loops (Kirkwood 1998). The user may vary variables and 

parameters to observe the system under varying circumstances and to assess feedback loops 

within the system. System dynamics allows users to control the variables within the systems and 

examine the system under various circumstances. Winz and Brierly (2007) states that a model’s  

“…usefulness lies in the fact that they allow us to test real world behavior in an artificial setting, 

thus being easy and inexpensive to perform in repetition.” Forrester (1987) discusses that people 

can accurately understand the structure of the system, but cannot predict the behavior of complex 

systems. System dynamics allows for evaluating and viewing the complex interaction and the 

behavior between the behavior to capture patterns and relationships that may otherwise not be 

seen. Of interest to system dynamics modeling was these patterns of behavior over time and the 
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relationships between parameters that may not otherwise been seen, not necessarily a singular 

output.  

 

4.4.3. Agent Based Modeling 

Agent based modeling allows for modeling the actions and interactions of autonomous agents, 

while viewing the agents functioning within their environment. This individual-centric 

methodology allows the user to define the agents, agents’ behavior, connections or transitions 

between states the agents exist within, and the overarching environment. Resulting from the 

interactions between agents and the transitions between states, global behavior emerges between 

the agents, within the environment. The agent based portion of the AB-SD hybrid model focused 

on the support and opposition of various retooling alternatives. Each agent is assigned a level of 

support for a retooling alternative evaluated in the AB-SD model, based on the survey data 

discussed in Chapter 7. Agents have the ability to move between the support and opposition states 

as well as exit the agent-based model based on the city’s historic decline patterns. When the 

desired number of agents has moved to the support state, the retooling infrastructure alternatives 

transitions into the infrastructure budget in the system dynamics model.   

 

4.5. Summary 

This chapter provides an overview of the methodology used to accomplish the research goals 

presented in Chapter 1 and the departure point in Chapter 2. Water sector infrastructure systems 

in Flint and Saginaw, two cities in Michigan, were used to demonstrate the methodology, assess 

the viability of different retooling alternatives, and evaluate the water, wastewater, stormwater, 

and human interaction interdependencies. These cities represent two classes of cities, with Flint 

being a medium shrinking city and Saginaw representing a small shrinking city. Within each city, 

in Section 4.1, the analysis areas used in Chapters 5, 6, and 8 are identified.  

 

EPANET, the tool used to evaluate the impact of urban decline and retooling alternatives on the 

individual water infrastructure system, is described this chapter.  EPANET was used specifically 

to evaluate the pressure changes to the system as a result of retooling alternatives, and assess the 

system’s ability to provide adequate fire flows under various retooling alternatives. 

 

Chapter 6 used L-THIA and SWMM to assess how retooling alternatives may reduce generated 

stormwater runoff in shrinking cities. The curve number approach was the infiltration estimation 
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method used for both tools. The retooling alternatives evaluated were considered under soil 

conditions native to the area (identified using NRCS (2013)), as well as fully compact, Category 

D soils, resulting from the areas’ land development.  

 

A survey was deployed to 21 US shrinking cities to gain insight into the residential public views 

concerning water and wastewater infrastructure issues and infrastructure retooling alternatives. 

Responses were gathered from cities in multiple states to mitigate the potential that responses 

only reflect specific state, regional, or city policies, as well as allow comparison of the public 

perceptions attitudes across different cities and states. Binary probit models and binary logit 

models with random parameters, were used to assess the perceptions and attitudes of the residents 

towards select water retooling alternatives.  

 

AnyLogic, an object-oriented tool, was used to develop a hybrid agent based-system dynamics 

model to evaluate water, wastewater, and stormwater interdependencies, and human behavior 

interaction with the infrastructure systems and retooling alternatives in Chapter 8. The system 

dynamics component of the model focused on the stocks and flow of resources, while the agent 

based component centered on the public support towards retooling alternatives. The agent based 

component of the model interacts in ‘real-time’ with the system dynamics component of the 

model throughout the simulation.  
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CHAPTER 5. ANALYSIS OF WATER INFRASTRUCTURE RETOOLING 

ALTERNATIVES 

 “Although the challenge to our water infrastructure has been less visible than other 

infrastructure concerns, it’s no less important. Our water treatment and delivery systems provide 

public health protection, fire protection, economic prosperity and the high quality of life we 

enjoy.” 

-AWWA (2012) 

 

In shrinking cities, the per capita cost for infrastructure increases due to the reduced population 

maintaining an infrastructure footprint designed for a larger population. Water retooling 

alternatives may potentially reduce costs and improve a community’s public health by decreasing 

the presence of stagnant water or slowing pipeline deterioration rates that result from reduced 

flows. However, retooling alternatives present challenges, such as maintaining adequate services 

and emergency demands. Additionally, criteria such as future land use and network connectivity 

must be considered to determine if the retooling alternatives is feasible. Chapter 5 evaluates the 

viability of two categories of retooling alternatives for water infrastructure in shrinking cities: (1) 

consolidating demand, and (2) decommissioning water pipelines. Retooling alternatives are 

examined in the context of the water infrastructure in Flint and Saginaw using water network 

models developed using EPANET. As discussed in Section 4.2, much of the excess capacity lies 

in the piped network due to the high number of vacancies throughout the city that no longer 

require water service. Discussions with SMEs indicated that pipelines up to 12 inches in diameter 

are the underused components of the water infrastructure system that would tend not to alter the 

pressures of the system upon decommissioning. The impact of decommissioning two categories 

of water pipelines was evaluated considering: 

1) Small diameter pipelines: those less than 12 inches in diameter.  

2) Large diameter pipelines: those equal to or greater than 12 inches in diameter.5

                                                        
5 Paragraph adapted from Faust and Abraham (2014) 
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5.1. Small Diameter Pipeline Network Analysis 

The small diameter pipeline analyses tests the hypothesis that pipelines less than 12 inches in 

diameter may be removed from the network in vacant areas of the city without significantly 

altering the water pressures or fire flow capabilities. Additionally, Section 5.1.1 evaluates the 

impact of consolidating demand to certain sections of the analysis area. Consolidating demand is 

an applicable alternative if the city wishes to stop services to the area, such as mail delivery, 

garbage collection, street maintenance, lighting, or water. The network remains in place and fully 

functional, but homes on vacant blocks are not tied to the water system. 

 

5.1.1. Model Development and Results for Flint’s Small Diameter Pipeline Analysis 

The pipeline network in a selected section of Flint was used to demonstrate the methodology, test 

that the hypotheses for the small diameter analysis, and evaluate the impact of consolidating 

demand.  The description of the model and the analyses results are discussed in this section.  

 

5.1.1.1. Pipeline Diameters  

As discussed in Section 4.1 a 20-block portion of a primarily residentially zoned area in Flint is 

used within the EPANET model. The analysis area has a high number of vacancies, with many of 

the pipelines having diameters of less than 12 inches. The diameters of pipes within the bounded 

area of interest are shown in Figure 5.1. 

  

 
Figure 5.1. Diameter of water infrastructure pipelines within analysis area 

 
5.1.1.2. Assessing Demand 

The demand for the analysis area was loaded on the nodes located at the pipeline junctions, 

represented by black dots in Figure 5.2. The area containing the parcels contributing to the water 

demand to each node is delineated by dashed lines, with the numerical identifier of the node 

within each delineated area. For example, 33977 is the node in the uppermost left-hand corner. 

Houses privately owned were assumed to be occupied and houses owned by the Genesee County 
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Land Bank were assumed to be vacant. A vacant home contributes no demand to the respective 

node. Daily demand was approximated for each parcel, by multiplying the average household size 

by the per capita indoor and outdoor daily water use. The average household size used for Flint is 

2.48, as determined by the 2010 US Census (US Census Bureau 2011). AWWA (1999) estimated 

water use to be, on average, 69.3 gallons per capita per day and 101 gallons per capita per day, 

for indoor and outdoor water use, respectively.  

 

 
Figure 5.2. Demand nodes and contributing areas 

 

5.1.1.3. Retooling Alternatives 

The infrastructure network within the analysis area was examined under different retooling 

scenarios, discussed in Table 5.1. Specific considerations for each retooling scenario are 

summarized in Table 5.2.  Scenarios (1), 2(a), and 2(b) assume that the total demand in the 

analysis area remains the same but is reallocated within the analysis area. I.e., when a housing 

swap occurs, a resident moves from a sparsely populated area to a more densely populated area 

within the analysis area. All scenarios were simulated under normal operations, using the typical 

daily residential demand, as well as under fire flow/emergency conditions. Simulations were also 

performed to examine if fire flows and pressures remain adequate under reduced demand within 

the area, which may represent residents moving away from the neighborhood, continued 

population decline, or changing water use behavior.  
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Table 5.1. Retooling scenarios evaluated (Faust and Abraham 2014) 

Description Demand Rationale  
BASE CASE: The status quo 
bounded distribution network 
and demand 

Demand is based on per capita 
averages and the average 
household size in the city 

This case represents the status quo of 
the system within the analysis area 

SCENARIO 1: The status quo 
bounded distribution network 
with consolidated demand  

Demand was consolidated 
west of the 18-inch diameter 
pipeline, running north to 
south in the center of the 
bounded region 
 
Demand was consolidated to 
the western portion of the 
network as the residential area 
to the east was more sparsely 
populated 
 
This assumes that housing 
swaps have occurred within 
the bounded network of 
interest in this study, and the 
total number of residents is 
static 

Applicable scenario if the city wishes 
to stop services to the area, such as 
mail delivery, garbage collection, 
street maintenance, lighting, or water 
 
The network remains in place and 
fully functional, but does not have 
homes on vacant blocks tied to the 
water system 

SCENARIO 2 (a): 
Decommissioning of all of 
pipelines (i.e., there is no 
redundancy loop) in the vacant 
area, east of the 18-inch 
diameter pipeline 

By removing all pipelines east of the 
18-inch diameter pipeline, including 
the redundancy loop, there is an 
increased chance of service 
disruption as there is no alternative 
path to provide service 

SCENARIO 2 (b): 
Redundancy loop left in place 
to provide service to the 
western portion of the network 
in the instance of failure 
 
Decommissioning of all 
pipelines in the vacant area 
within the redundancy loop, 
east of the 18-inch diameter 
pipeline 

Scenario 2(b) has a redundancy loop 
within the network to address 
possible pipeline failures, thereby 
ensuring a more resilient system 

 

Table 5.2. Incorporation of considerations for each modeled retooling scenario 

Scenario Consideration Addressing Consideration 

SCENARIO 1: 
The status quo 
bounded 
distribution 
network with 
consolidated 
demand 

Maintenance cost 
There will be no change in maintenance costs for this 
option as the network remains the same and only the 
demand is relocated 

Intended purpose for land in 
vision 

As of October 2014, Flint does not have a future land 
use plan for the analysis area 

Impact on the water quality 
(e.g., is water age increased 
beyond an acceptable 
range), capacity of the 
system (i.e., can the system 
meet the current and 
projected demands with 
fewer pipes), and 
operational integrity (e.g., is 
adequate pressure within the 
system maintained with the 
retooling option) of the 
existing pipes 

Water Quality: Since the analysis area is limited to the 
neighborhood level, water age was not considered 
 
During the simulation, there is not the presence of 
stagnant water in the pipelines due to the granular, 
neighborhood level of the analysis and the constant 
water demand throughout the simulation time (the 
capacity of the water treatment plant and the water 
age at the water treatment plant is not considered) 
 
Capacity of system and operational integrity: Pressure 
is used as a metric to determine the impact of the 
scenario on the system 
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Table 5.2. (continued) 

Scenario Consideration Addressing Consideration 

SCENARIO 1: 
The status quo 
bounded 
distribution 
network with 
consolidated 
demand 

Relocating sparsely 
populated areas Assumes that relocation has occurred 

Vacancies and vacancy 
patterns within potential 
area 

The analysis area was determined based on the 
number and density of vacant residences as well as 
historic decline patterns using US census data 

Ability to maintain fire 
flows 

A fire flow analysis examines the ability of the system 
to maintain adequate, emergency flows under each 
configuration 

Existing establishments 
(e.g., churches, businesses, 
schools) 

 Neighborhoods which are zoned residential, are the 
subject of this analysis  

SCENARIO 2 
(a): 
Decommissioning 
of all of pipelines 
in the non-
populated area, 
east of the 
secondary feeder  
 
Pipelines less 
than 12 inches in 
diameter are 
eligible for 
decommissioning 

Cost 

Saginaw is the only shrinking city known to the 
author to have estimated costs for decommissioning 
infrastructure and maintenance savings in the US 
 
The water utility in Saginaw estimated that 
decommissioning pipelines with diameters less than 
12 inches would save approximately $375 per block 
in fixed costs per year 

Intended purpose for land in 
vision 

As of June 2014, Flint does not have a future land use 
plan for the analysis area 

Impact on the water quality 
(e.g., is water age increased 
beyond an acceptable 
range), capacity of the 
system (i.e., can the system 
meet the current and 
projected demands with 
fewer pipes), and 
operational integrity (e.g., is 
adequate pressure within the 
system maintained with the 
retooling option) of the 
existing pipes 

Water Quality: Since the analysis area is limited to the 
neighborhood level, water age was not considered 
 
During the simulation, there was no evidence of 
stagnant water in the pipelines due to the granular, 
neighborhood level of the analysis and the constant 
water demand throughout the simulation time (the 
capacity of the water treatment plant and the water 
age at the water treatment plant is not considered) 
 
Capacity of system and operational integrity: Pressure 
is used as a metric to determine the impact of the 
scenario on the system 

Relocating sparsely 
populated areas Assumes that relocation has occurred 

Vacancies and vacancy 
patterns within potential 
area 

The analysis area was determined based on the 
number and density of vacant residences as well as 
historic decline patterns using US census data 

Ability to maintain fire 
flows 

A fire flow analysis examines the ability of the system 
to maintain adequate, emergency flows under each 
configuration 

Existing establishments 
(e.g., churches, businesses, 
schools) 

Neighborhoods which are zoned residential, are the 
subject of this analysis 

Risk of main system failure 
 
Length of time it would take 
to fix a main system failure 

This is not considered in the scope of the study 
 
Based on discussion with SMEs from Saginaw, 
Michigan; Akron, Ohio; Gary, Indiana; Lafayette, 
Indiana; and Indianapolis, Indiana when a failure 
occurs, service disruptions may be up to eight hours 
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Table 5.2. (continued) 

Scenario Consideration Addressing Consideration 
SCENARIO 2 (a): 
Decommissioning 
of all of pipelines in 
the non-populated 
area, east of the 
secondary feeder  
 
Pipelines less than 
12 inches in 
diameter are 
eligible for 
decommissioning 

Presence of and location 
of pipes with diameters 
less than 12 inches that 
are eligible for 
decommissioning 

Residential areas with pipelines smaller than12-inch 
diameter pipelines were considered for this analysis 

SCENARIO 2 
(b): Redundancy 
loop pipelines left 
in place to provide 
service to the 
western portion of 
the network in the 
instance of failure 
  
Decommissioning 
of all of pipeline 
in the non-
populated area 
within the 
redundancy loop, 
east of the 
secondary feeder 
 
Select pipelines 
less than 12-inch 
in diameter are 
eligible for 
decommissioning 

Cost 

Saginaw is the only shrinking city known to the author 
to have estimated costs for decommissioning 
infrastructure and maintenance savings in the US 
 
The water utility in Saginaw estimated that 
decommissioning pipelines with diameters less than 12 
inches would save approximately $375 per block in 
fixed costs per year 

Intended purpose for land 
in vision 

As of June 2014, Flint does not have a future land use 
plan for the analysis area 

Impact on the water 
quality (e.g., water age), 
capacity of the system 
(i.e., can the system meet 
the current and projected 
demands with fewer 
pipes), and operational 
integrity (e.g., is adequate 
pressure within the 
system maintained with 
the retooling option) of 
the existing pipes 

Water Quality: Since the analysis area is limited to the 
neighborhood level, water age was not considered 
 
During the simulation, there was no evidence of 
stagnant water in the pipelines due to the granular, 
neighborhood level of the analysis and the constant 
water demand throughout the simulation time (the 
capacity of the water treatment plant and the water age 
at the water treatment plant is not considered) 
 
Capacity of system and operational integrity: Pressures 
at the nodes of the pipeline network is used as a metric 
to determine the impact of the scenario on the system 

Relocating sparsely 
populated areas Assumes that relocation has occurred 

Vacancies and vacancy 
patterns within potential 
area 

The analysis area was determined based on the number 
and density of vacant residences as well as historic 
decline patterns using US census data 

Ability to maintain fire 
flows 

A fire flow analysis examines the ability of the system 
to maintain adequate, emergency flows 

Existing establishments 
(e.g., businesses, schools) 

Neighborhoods which are zoned residential, are the 
subject of this analysis 

Presence of and location of 
pipes with diameters less 
than 12 inches that are 
eligible for 
decommissioning 

Residential areas with pipelines smaller than12-inch 
diameter pipelines were considered for this analysis  
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Figures 5.3-5.4 show the different decommissioning configurations of this network. Acceptable 

operating ranges for pressure throughout the water system vary from 20 psi to above 80 psi (e.g., 

LVVWD 2012; City of Brentwood Public Works 2012; City of College Station 2012). Hickey 

(2008) stated that the minimal working pressure in the distribution system should be no less than 

35 psi, which was confirmed by two SMEs from Indiana, each with over 10 years of experience 

in water system modeling. 

 

 
Figure 5.3. Scenario 2(a): Decommissioning of small diameter pipelines east of the secondary 

feeder, demand consolidated west of secondary feeder 

 

 
Figure 5.4. Scenario 2(b): Decommissioning of small diameter pipelines east of the secondary 

feeder, demand consolidated west of secondary feeder with redundancy loop in place 

 

5.1.1.4. Metric 1: Pressures at Nodes  

One metric to examine the operational capability of the system under various configurations used 

in this study is the pressure at each node in the network. The number of nodes for any scenario 

varies from 57 to 95; however, the base demand is loaded on the 24 intersecting nodes illustrated 

in Figure 5.2. The remaining 33 to 71 nodes (dependent on the retooling scenario being modeled) 

connect pipelines in a linear fashion, run along each block, or connect the reservoir to the piped 

network. These remaining nodes have a base demand of 0 gallons per minute (gpm) as they are 

not located at pipeline intersections.  

 

The scenarios are simulated for a seven-day period in EPANET. However, the graphs illustrate 

24-hours, since the demand patterns (i.e., the Single Family Demand Pattern and the Low-Income 

Single Family Demand Pattern described in Section 4.1.2.) developed by Aquacraft, Inc. (2011) 
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are for a 24-hour/1-day cycle, and the demand is based on a daily per capita average over the 

calendar year. Thus, during each 24-hour period, the pressure patterns at each node repeat. 

Depicting 24-hour periods along the graph also allows for viewing the pressure changes 

throughout each day at a higher level of detail.  

 

Different daily total demands are modeled for each scenario, which are referred to as “demand 

alternatives,” to provide insight about the impact of further urban decline on the system at a 

neighborhood level, under each retooling scenario. The difference in daily demand may not only 

represent population decline, but may be interpreted as decline due to behavioral changes, such as 

reduced usage due to increased water rates, and technological advances, such as the use of water 

conserving toilets or showers. The demand alternatives analyzed are as follows:  

• The base demand, which is the total daily demand for the analysis region for the current 

number of occupied residences.  

• The total expected daily demand after 10 years of urban decline. The population decline 

(14.6%) in the analysis was determined from historical US census data with the 

assumption that the per capita daily water demand established by AWWA (1999) 

remained constant over the 10-year period and that the decrease in demand within the 

analysis region was due to urban decline. 

• The total expected daily demand after 20 years of urban decline. The population decline  

(29.2%) in the analysis area was determined from historical US census data with the 

assumption that the per capita daily water demand established by AWWA (1999) 

remained constant over the 20-year period and that the decrease in demand within the 

analysis region was due to urban decline. 

 

The trends of the pressures at the nodes vary between the Single Family Demand Pattern and the 

Low-Income Single Family Demand Pattern for each demand alternative, but do not vary 

significantly between retooling scenarios.  The pressure drops illustrated in Figures 5.5 and 5.6, 

as expected, mimic the peak demand hours of each demand pattern. For instance, the Low-

Income Single Family Demand Pattern has two peak demand periods each day, one in the 

morning and one in the evening, reflected in Figure 5.6 as drops in the pressures. These drops in 

the node pressure become less pronounced as the demand declines for the different demand 

alternatives. The pressures decreases in correlation with the nodes located further northwest, 

away from the pump and in the direction of increasing elevation. Many of the nodes within the 
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same region of the network have very similar pressures and thus, the nodes appear to essentially 

overlap in the graphs, leaving indistinguishable pressure trend lines. 

 

For the retooling alternatives examined, regardless of demand pattern or demand alternative, all 

nodes fell within the acceptable range of 20-80 psi. Furthermore, the pressures of all nodes, for 

each scenario were greater than the ideal minimum pressure of 35 psi. These results indicate that 

each alternative is able to provide service at an acceptable level for normal operating conditions. 

Table 5.3 is a summary of all of the retooling scenarios, demand patterns, and demand 

alternatives evaluated, totaling 24 models. To highlight the results from the models, two graphs 

illustrating the node pressures from the Status Quo Network with Consolidated Demand models 

are shown in Figures 5.5 and 5.6. The remaining node pressure graphs may be found in Appendix 

C. Section 5.1.1.5 evaluates the ability of each scenario, demand pattern, and demand alternative 

to operate under emergency fire flow conditions. 

 

Table 5.3. Summary of all modeled scenarios for Flint 

Retooling Scenario Demand Pattern Demand Alternative 

Base Case: Status Quo Network 

Single Family 
Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

Low-Income Single 
Family 

Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

Scenario 1: Status Quo Network 
with Consolidated Demand 

Single Family 
Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

Low-Income Single 
Family 

Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

Scenario 2(a): Decommissioning 
Scenario with Redundancy Loop 

Single Family 
Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

Low-Income Single 
Family 

Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

Scenario 2(b): Decommissioning 
Scenario with No Redundancy 
Loop 

Single Family 
Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

Low-Income Single 
Family 

Baseline demand 
10 year population decline in demand 
20 year population decline in demand 

 



 

78  
 

 
Figure 5.5. Node pressures (psi) for Scenario 1: Single Family Demand Pattern, base demand 

alternative over 24 hours (each graph is labeled with the nodes corresponding with Figure 5.2) 

 

 
Figure 5.6. Node pressures (psi) for Scenario 1: Low-Income Single Family Demand Pattern, 

base demand alternative over 24 hours (each graph is labeled with the nodes corresponding with 

Figure 5.2) 
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5.1.1.4. Metric 2: Fire Flow Capability 

There are up to 95 nodes in each of the scenarios, although only the 24 nodes identified in Figure 

5.2 are illustrated in the figures due to space constraints. The nodes not explicitly identified 

exceed the minimum, required flows (i.e., 250 gpm for two hours); and fall within the fire flow 

ranges depicted in each figure. All the nodes for each scenario, demand pattern, and demand 

alternative have the ability to provide between 610-690 gpm flow for two hours, exceeding the 

minimum threshold for fire hydrants to be recognized by a city (i.e., 250 gpm for two hours). 

When determining the maximum flow available at each node for an instantaneous moment of 

time (as opposed to the available flow for two consecutive hours), each node has the ability to 

provide between 10 and 20 gpm more flow. The flow available at the individual nodes differs up 

to 60 gpm for the various retooling scenarios evaluated.  

  

As the total demand declined between the base demand alternative through the 20-year decline in 

demand alternative within the analysis area, the system has the ability to provide greater fire 

flows, as expected. Nodes 34093 and 1 consistently provided the lowest fire flows, ranging 

between 610-630 gpm. The lower flows at nodes 34093 and 1 are due to dead ends created at 

these nodes in Scenario 2(a) and 2(b). In the figure of the infrastructure network (such as, Figure 

5.1), nodes 34093 and 1 falsely appear to connect to the secondary feeder that runs north-south, 

when in fact the nodes solely connect the pipeline, running east-west that does not connect to the 

north-south secondary feeder in a grid fashion. One method to ensure circulation of water, avoid 

sedimentation and maintain higher pressures at these nodes would be to connect the east-west 

pipeline to the secondary feeder at these nodes.  

 

The fire flow analyses demonstrate that retooling the infrastructure at a neighborhood level 

allows for adequate fire flows in emergency situations. Consolidating demand by moving 

residents to more densely populated locations and leaving the infrastructure functional also allows 

for adequate fire flows at this neighborhood level. To highlight the results obtained from the 

models, two graphs illustrating the fire flows for all retooling scenarios from the Single Family 

Demand Pattern with the base demand alternative are shown in Figures 5.7 and 5.8. The 

remaining graphs may be found in Appendix C.  
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Figure 5.7. Maximum flow available at each node for a two-hour duration while maintaining all 

nodes at 20 psi minimum: Single Family Demand Pattern, base demand alternative 

 

 
Figure 5.8. Maximum flow available at each node for an instantaneous moment of time while 

maintaining a 20 psi minimum: Single Family Demand Pattern, base demand alternative 
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5.1.2. Model Development and Results for Saginaw’s Small Diameter Pipeline Analysis 

The pipeline network in a selected section of Saginaw was used to demonstrate the methodology, 

and test that the hypotheses for the small diameter analysis.  A brief description of the model (as 

its development is similar to that of Flint) and the analyses results are discussed in this section.  

 

5.1.2.1. Pipeline Diameters and Assessing Demand  

Similar to the analysis area for Flint, the analysis area in Saginaw has a high number of 

vacancies, with many of the pipelines having diameters of less than 12 inches. The demand for 

the analysis area was loaded on the nodes located at the pipeline junctions. A GIS layer provided 

by Saginaw indicated which homes were vacant. A vacant home contributes no demand. 

Analogous to Flint, daily demand was approximated for each occupied parcel by multiplying the 

average household size by the per capita indoor and outdoor daily water use. The average 

household size used for Saginaw was 2.59, based on the 2010 US census (US Census Bureau 

2011). AWWA (1999) estimated that the water use would be, on average, 69.3 gallons per capita 

per day and 101 gallons per capita per day, for indoor and outdoor water use, respectively.  

 

5.1.2.2. Retooling Alternatives 

The infrastructure network within the analysis area was examined under different retooling 

scenarios, discussed in Table 5.4, and Figure 5.9. Specific considerations for each retooling 

scenario are summarized in Table 5.5. Scenarios 1(a), 1(b), and 2 have been tested under normal 

operations, using the typical daily residential demand, as well as under fire flow conditions. Each 

retooling scenario represents residents moving away from the neighborhood in the area where 

pipelines are decommissioned.  As discussed in Chapter 4, the analysis area has a future land use 

plan of transitioning to green reserve opportunity areas, implying that the future land use plan for 

Saginaw will not include residences in these areas, altering the considered retooling options from 

that of Flint. Demand will not be consolidated or rearranged within the analysis area in Saginaw, 

as was done in Flint. Additionally, reduced demand over time (i.e., different demand alternatives) 

will not be considered as the Green Zone is transitioning away from residential zoning and long-

term residential alternatives are not within Saginaw’s future land use plan. The water demand will 

be removed and not reallocated within the analysis area, representing that the families leave the 

Green Zone entirely.  
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Table 5.4. Retooling scenarios evaluated (Faust and Abraham 2014) 

Description Demand  Rationale 
BASE CASE: The status quo 
network and demand Demand is based on per 

capita averages and the 
average household size 
in Saginaw 
 
A GIS layer provided 
by Saginaw was used to 
identify the vacant and 
occupied residences 

This case represents the status quo of 
the system within the analysis area 

SCENARIO 1 (a): The eastern side 
of the network is decommissioned 

By removing small diameter 
pipelines, maintenance costs will be 
reduced 

SCENARIO 1 (b): The center and 
eastern side of the network are 
decommissioned 
SCENARIO 2: All pipelines less 
than 12 inches in diameter are 
eligible for decommissioning 
 

 
Figure 5.9. Decommissioning scenarios (Faust and Abraham 2014) 
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Table 5.5. Incorporation of considerations for each modeled retooling scenario 

Scenario Consideration Addressing Consideration 

SCENARIO 
1(a), 1(b), and 
(2): 
Decommissioning 
of all of sections 
pipelines that are 
less than 12 
inches in 
diameter are 
eligible for 
decommissioning. 

Cost 

The water utility in Saginaw estimated that 
decommissioning pipelines with diameters less 
than 12 inches would save approximately $375 
per block in fixed costs per year 

Intended purpose for 
land in vision 

The analysis area has been selected for green 
opportunities, thus, zoning will no longer be 
residential, and the remaining residents will 
transition out of the area 

Impact on the water 
quality (e.g., is water 
age increased beyond an 
acceptable range), 
capacity of the system 
(i.e., can the system 
meet the current and 
projected demands with 
fewer pipes), and 
operational integrity 
(e.g., is adequate 
pressure within the 
system maintained with 
the retooling option) of 
the existing pipes 

Water Quality: Since the analysis area is limited 
to the neighborhood level, water age was not 
considered 
 
During the simulation, there is not the presence 
of stagnant water in the pipelines due to the 
granular, neighborhood level of the analysis and 
the constant water demand throughout the 
simulation time (the capacity of the water 
treatment plant and the water age at the water 
treatment plant are not considered) 
 
Capacity of system and operational integrity: 
Pressure is used as a metric to determine the 
impact of the scenario on the system 

Relocating sparsely 
populated areas Assumes that relocation has occurred 

Vacancies and vacancy 
patterns within potential 
area 

The analysis area was identified by Saginaw as a 
candidate area for retooling, due to the high 
number of vacancies  

Ability to maintain fire 
flows 

A fire flow analysis examines the ability of the 
system to maintain adequate, emergency flows 
under each configuration 

Existing establishments 
(e.g., churches, 
businesses, schools) 

Neighborhoods which are zoned for residential 
use, are the subject of this analysis 

Risk of main system 
failure 

This is not considered in the scope of the study 
 

Length of time it would 
take to fix a main 
system failure 

Based on discussion with SMEs from Saginaw, 
Michigan; Akron, Ohio; Gary, Indiana; 
Lafayette, Indiana; and Indianapolis, Indiana, 
when a failure occurs, service disruptions may 
be up to eight hours 

Presence of and location 
of pipes with diameters 
less than 12 inches that 
are eligible for 
decommissioning 

Residential areas with pipelines smaller than12-
inch diameter pipelines were considered for this 
analysis  

 

Figures 5.10-5.12 show the different decommissioning configurations of this network. Similar to 

Flint, acceptable operating ranges for pressure throughout the water system varied from 20 psi to 
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above 80 psi (e.g., LVVWD 2012; City of Brentwood Public Works 2012; City of College 

Station 2012).  

 

Figure 5.10 shows the base case (i.e., the status quo network). For each retooling scenario, it was 

assumed that approximately one-third of the residential area was decomissioned at a time. The 

decommissioned regions were removed in logical full blocks to represent decommisioning 

neighborhoods over time, as opposed to decommissioning all neighborhoods at once.  

 

 
Figure 5.10. Status quo network 

 

Figure 5.11 depicts Scenario 1(a), which is the infrastructure network with the eastern side 

decommissioned. This scenario assumes this land has been vacated of all residences and pipelines 

are no longer necessary for the green reserve area.  

 

 
Figure 5.11. Scenario 1(a): Eastern side decommissioned 

 

Figure 5.12 shows Scenario 1(b), which is the network with the center and eastern side 

decommissioned.  
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Figure 5.12. Scenario 1(b): Center and Eastern side decommissioned 

 

In Scenario 2 (Figure 5.13), all small diameter pipelines within the analysis area are 

decommissioned. This scenario assumes that the land has been vacated of all residences and the 

pipelines are no longer necessary for the green reserve area. Water demand was placed on the 

westernmost node of the secondary feeders (located in the Western side), to ensure that water 

flow is capable of being transported to areas of the network outside of the analysis area. 

 

 
Figure 5.13. Scenario 2: All small diameter pipelines decommissioned 

 

5.1.2.3. Metric 1: Pressures at Nodes 

Similar to analysis performed for the small diameter pipeline analysis in Flint, Saginaw’s analysis 

area was examined using pressure as one metric to evaluate the operational capability of the 

system under various decommissioning configurations. The nodes’ pressures vary between the 

Single Family Demand Pattern and the Low-Income Single Family Demand Pattern, but they do 

not vary significantly between the decommissioning scenarios. The pressures decreases in 

correlation with the nodes located further northwest, away from the pump and in the direction of 

increasing elevation. Many of the nodes within the same region of the network have very similar 

pressures and thus, the nodes appear to essentially overlap in the graphs, leaving indistinguishable 

pressure trend lines.  
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For all modeled scenarios (summarized in Table 5.6), the nodes’ pressures fell within the 

acceptable range of 20-80 psi, and were greater than the ideal minimum pressure of 35 psi, 

providing service at an acceptable level for normal operating conditions. Figures 5.14 and 5.15 

illustrate node pressures in the network with Scenario 1(a) incorporating the Single Family 

Demand Pattern and the Low-Income Single Family Demand Pattern, respectively. The pressures 

for all nodes are within 57-60 psi throughout the 24-hour day. The remaining graphs for Metric 1 

may be found in Appendix D.  

 

Table 5.6. Summary of all modeled scenarios for Saginaw 

Retooling alternative Demand Pattern 

Base Case: Status Quo Network Single Family 
Low-Income Single Family 

Scenario 1 (a): The western side decommissioned Single Family 
Low-Income Single Family 

Scenario 1 (b): Center and eastern side 
decommissioned 

Single Family 
Low-Income Single Family 

Scenario 2: All pipelines less than 12 inches in 
diameter are eligible for decommissioning 

Single Family 
Low-Income Single Family 

 

 
Figure 5.14. Scenario 1(a): Single Family Demand Pattern pressures (psi) over 24 hours 
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Figure 5.15. Scenario 1(a): Low-Income Single Family Demand Pattern pressures (psi) over 24 

hours 

 

5.1.2.4. Metric 2: Fire Flow Capability 

The fire flow analysis shows that all the nodes, for each decommissioning scenario and demand 

pattern, have the ability to provide between 840-960 gpm flows for two hours, exceeding the 

minimum threshold for fire hydrants to be recognized by a city. When determining the maximum 

flow available at each node for an instantaneous moment of time, each node has the ability of 

providing an additional 10-20 gpm. The fire flow analysis demonstrates that retooling the 

infrastructure at a neighborhood level allows for adequate fire flows in emergency situations. 

Figures 5.16 and 5.17 illustrate the fire flows for the Single Family Demand Pattern. The 

remaining graphs may be found in Appendix D.  
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Figure 5.16. Maximum flow available at each intersecting node for two-hour duration while 

maintaining all nodes at a 20 psi minimum: Single Family Demand Pattern 

 

 
Figure 5.17. Maximum flow available at each intersecting node while maintaining all nodes at a 

20 psi minimum: Single Family Demand Pattern 

 

5.2. Large Pipeline Diameter Network Analysis 

As discussed in Section 4.1.2, the distribution and secondary lines, up to 12-inch diameter, were 

the most likely underused components of the water infrastructure system and were thus 
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considered for decommissioning. Furthermore, SMEs confirmed that pipelines with diameters of 

less than 12 inches are those pipelines that are likely to be eligible candidates for 

decommissioning as these pipelines are underused and, theoretically, should not significantly 

alter the flows, pressures, connectivity, or fire flow capabilities of the water infrastructure 

network serving customers throughout the city. Section 5.1 tested the hypothesis that pipelines 

less than 12 inches in diameter may be decommissioned without significantly altering the 

pressures or fire flow capabilities. This section extends the analysis to include the hypothesis that 

large diameter pipelines may not be decommissioned without impacting service, and uses the 

same metrics: (1) system pressures and (2) fire flow capability. 

 

5.2.1. Analysis Area 

The water network in Flint was used to evaluate the impact of decommissioning large diamter 

pipelines. Flint was appropriate for this portion of the analysis because the location of Tract 20 

(i.e., the original analysis area) is in the center of the city where large diamater pipelines travel 

through to provide connectivity throughout the city. The original analysis area within Tract 20 

(described in Section 4.2) that was used in the small diameter pipeline network analysis was 

extended to include the surroudning tracts, as illustrated in Figure 5.18, to include a sufficient 

number of large diameter pipelines. The tract to the east of Tract 20, Tract 21, was not included in 

this analysis since this tract is primarily composed of industrial areas, most of which are vacant 

due to the decline in the automotive industry in the area. 

 

  
Figure 5.18.  Large diameter pipelines in the analysis area 
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5.2.2. Demand for Analysis Area 

Similar to the small diameter pipeline network analysis, the demand was determined at each of 

the nodes located at the pipeline junctions, represented by black dots in Figure 5.19. The area 

contributing demand to each node is delineated by hashed lines with the node’s numerical 

identifier. Residential demand was considered in the analysis due to the primarily residential 

zoning within the analysis area. Privately owned houses were assumed occupied and houses 

owned by the Genesee County Land Bank were assumed to be vacant, contributing no demand to 

its respective node. Daily demand was approximated for each parcel by multiplying the average 

household size by the per capita indoor and outdoor daily water use. The average household size 

used for Flint was 2.48, as determined by the 2010 US Census (US Census Bureau 2011). 

AWWA (1999) estimated the water use to be, on average, 69.3 gallons per capita per day and 101 

gallons per capita per day, for indoor and outdoor water use, respectively.  

 

  
Figure 5.19. Demand nodes and contributing areas  

 

5.2.3. Retooling Alternatives 

Figure 5.20 depicts the status quo model developed in EPANET and the retooling scenarios 

evaluated. Table 5.7 discusses each retooling scenario and the rationale for the scenario.   All 

scenarios were tested under normal operations, as well as under fire flow/emergency conditions.  
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Table 5.7. Decommissioning scenarios evaluated (Faust and Abraham 2014) 

Description Rationale 

BASE CASE: The status quo bounded 
distribution network and demand 

This case represents the status quo of the network within the 
analysis area, and is used as a basis for comparison for all 
other scenarios 

SCENARIO 1: Decommission 18-inch 
pipelines running north-south Scenarios 1 and 2 examine the impact of removing large 

diameter (12 inches or greater in diameter) pipelines from 
the analysis and surrounding areas 

SCENARIO 2: Decommission 18-inch 
pipelines running north-south, and 
northern 18-inch pipeline running west-
east 
SCENARIO 3: Decommission 18-inch 
pipelines running north-south and 
select 6-inch pipelines  Scenarios 3 and 4 build upon Scenarios 1 and 2 to evaluate 

whether decommissioning additional small diameter (less 
than 12 inches in diameter) pipelines further alters the 
pressures or fire flow capabilities within the analysis area 

SCENARIO 4: Decommission 18-inch 
pipelines running north-south, northern 
18-inch pipeline running west-east, and 
select 6-inch pipelines  

 

 
Figure 5.20. Retooling scenarios considered (Scenario numbers correspond to Table 5.7) (Faust 

and Abraham 2014) 

 

5.2.4. Metric 1: Pressures at Nodes and Metric 2: Fire Flow Capability 

Analogous to the small diameter pipeline network analysis, the decommissioning scenarios in 

Table 5.7 and were simulated for seven days in EPANET, and the figures depicting pressure 

throughout the system illustrate a 24-hour period (Figures 5.21-5.30). Removing pipelines greater 

than or equal to 12 inches in diameter from the network altered the system’s pressure 

significantly such that the pressures of select nodes within the analysis area fell below the 

acceptable operating range of 20-80 psi. This result indicates that the large diameter pipelines are 
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integral for providing connectivity and sufficient pressure throughout the network. Removing the 

small diameter pipelines in conjunction with the large diameter pipelines caused negligible 

change in the water pressure within the analysis area, beyond the pressure changes caused by 

removing the large pipelines. I.e., the removal of the small diameter pipelines in Scenarios 3 and 

4 did not further lower the pressures significantly within the network from the pressure changes 

cause by Scenarios 1 and 2. Conversely, when only the small diameter pipelines were removed 

and the large diameter pipelines were left in place, the network was able to provide sufficient 

pressures to all nodes, which supports the previous findings that small diameter pipelines may be 

decommissioned in vacant areas of the city or areas with changing land uses.  

 

The nodes most impacted by the removal of large pipelines are those with connectivity to the 

large pipelines in the northern portion of the network. The 18-inch diameter pipelines were 

integral, in this configuration, to supply water for the demand at these nodes at an acceptable 

pressure. Their removal reduced the water pressure during typical peak demand periods, 

hindering the ability to provide emergency fire flows. Thus, connectivity of the network’s large 

diameter pipelines to populated or high demand areas of the city, outside of the vacant regions, is 

an important factor to be considered in decommissioning decisions. 

 

When the scenarios were modeled using the Single Family Demand Pattern, the nodes within the 

analysis area north of the decommissioned 18-inch diameter pipelines experienced pressures 

below the acceptable pressure range during peak periods. However, when the same scenarios 

were modeled using the Low-Income Single Family Demand Pattern, the pressures at these nodes 

approached the lower bound of the acceptable pressure range, but they did not fall out of the 

acceptable pressure range. This result is linked to the two smaller demand peak periods in a 24-

hour time frame, as opposed to one larger peak period at hour “7” for the Single Family Demand 

Pattern.  

 

The different patterns in daily use exhibited by varying socioeconomic statuses may change the 

ability to provide emergency fire flows to the city. Fire flow needs were not met during peak 

hours for the Single Family Demand Pattern when the large diameter pipelines were 

decommissioned. When modeling the scenarios using the Low-Income Single Family Demand 

Pattern, fire flow needs were met for Scenarios (1) and (3), but were NOT met for Scenarios (2) 

and (4). Scenarios (1) and (3) removed only one large diameter pipeline, as opposed to Scenarios 
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(2) and (4), which removed multiple large diameter pipelines. This result indicates that the two 

small peak demands throughout the day associated with the Low-Income Single Family Demand 

Pattern, allows for decommissioning select large diameter pipelines. Furthermore, it illustrates 

that considering the socioeconomic status of an area is important for determining the eligibility of 

decommissioning scenarios. 

 

 
Figure 5.21. Status quo network: Single Family Demand Pattern 
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Figure 5.22. Status quo network: Low-Income Single Family Demand Pattern 

 

 
Figure 5.23. Scenario (1): Single Family Demand Pattern  
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Figure 5.24. Scenario (1): Low-Income Single Family Demand Pattern 

 

 
Figure 5.25. Scenario (2): Single Family Demand Pattern  
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Figure 5.26. Scenario (2): Low-Income Single Family Demand Pattern 

 

 
Figure 5.27. Scenario (3): Single Family Demand Pattern  
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Figure 5.28. Scenario (3): Low-Income Single Family Demand Pattern 

 

 
Figure 5.29. Scenario (4): Single Family Demand Pattern 

 

Pressure at nodes 3, 4, and 33977 drops below 20 psi to 17 psi, 17 psi, and 18 psi, respectively, 

during peak demand times. A third node, 33977, drops below 20 psi due to the location. In this 
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particular configuration, connectivity to node 33977 is critical for providing water to the northern 

and western areas of the network. The removal of small diameter pipelines altered the available 

paths for water to reach this node, decreasing the pressure below the 20 psi threshold, with the 

pressure decreasing further as water travels past this node (node 32977) to nodes 3 and 4. 

 

 
Figure 5.30. Scenario (4): Low-Income Single Family Demand Pattern 

 

5.3. Validation and Verification 

This model was validated and verified using four primary steps (Sargent 2004) outlined in Table 

5.8. The model, the assumptions made, the data used as input, and the initial outputs were 

validated as technically correct and reasonable by five SMEs from Indiana and Michigan, each 

with over 10 years of water system modeling or management experience during the model 

development. Post development and results 4 SMEs (1 of which was involved in the development 

process) were asked to provide quantitative feedback on difference aspects of the stormwater 

infrastructure analysis in the October 2014, of which the average of the quantitative values for 

different model components are shown in Table 5.9. The SMEs providing quantified scores to 

validate this model have had a minimum of 15 years experience working with the city water or 

wastewater utilities from the operations or management side.  
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Table 5.8. Validation and verification steps 

Validation and Verification Components Justification 
Data Validity (Sargent 2004) 
Data is correct, reliable, and able to 
sufficiently represent system or population  

Data used is provided by the cities, and published 
literature from reliable sources (e.g., AWWA 1999, US 
Topographic Maps) 

Conceptual Model Validation (Sargent 
2004) 
The theories, assumptions, and 
representations of the problem are accurate 
 

During the model development, the model, assumptions, 
data, and initial outputs were validated as technically 
correct by 5 SMES from Indiana and Michigan. The 
final model was validated for assumptions and 
representation by 4 SMEs from Flint and Saginaw (1 
SME was involved in the model development process).  

Computerized Model (Sargent 2004) 
The computer model accurately represents 
the conceptual model 
 

The results obtained by applying the model were 
consistent across the two case studies 4 SMEs from Flint 
and Saginaw reviewed the final models and indicated 
that they accurately represent the water infrastructure 
system.  

Operational Validity (Sargent 2004) 
The behavior of the model accurately 
represents the system 
 

The behavior of the model is deemed reasonable by 4 
SMEs from Flint and Saginaw in terms of pressures at 
the pipeline nodes throughout the water infrastructure 
system, demands, and fire flow capabilities.  

Operational Validity (Sargent 2004): 
Degenerate Tests 
Behavior of model responds appropriately 
to changes in parameters 

Different retooling alternatives (decommissioning 
pipelines and consolidating demand) were evaluated. 
The changes in pressures and fire flow capabilities in 
these alternatives were expected when compared to the 
results of the status quo/base alternative. 

Operational Validity (Sargent 2004): 
Extreme Condition Tests 
The model behaves appropriately when the 
extreme ends of parameter ranges are used 

As population decline occurs throughout the analysis 
area, the model responded appropriately by decreasing 
the pressures throughout the system at the peak demand 
times. 

Operational Validity (Sargent 2004): 
Internal Validation 
Multiple run replications occur to ensure 
consistency  

Multiple runs using different demands occurred prior to 
the retooling alternative analysis to ensure model 
stability.   

 

Table 5.9. Quantitative feedback from SMEs for validation and verification purposes 

 Aspect of the Stormwater Model Averages* 
The components of the model represent the most critical aspects 
of the system needed for modeling the goal.  4.5 

The behavior of the model is reasonable. 5 
The theories and assumptions underlying the model are correct. 4.75 
The model’s representation of the system is reasonable. 4.75 
The assumptions regarding the model’s parameters and 
variables are reasonable. 4.75 

The level of detail used for the model is appropriate for the 
intended purpose of providing information regarding the impact 
of decommissioning water pipelines on the system performance. 

4.75 

The output of the model has the accuracy required for the 
model’s intended purpose. 4.5 

The model could be helpful for water management and produces 
useful results. 5 

*(1: poor, 2: needs significant improvements, 3: needs modifications to be useful, 4: good enough, 5: 
excellent) 
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5.4. Summary 

Chapter 5 evaluates the impact of two retooling alternatives, decommissioning pipelines and 

consolidating demand, using EPANET to examine how altering the topology of and changing 

demands within the infrastructure network impacts the water infrastructure’s performance. The 

infrastructure’s performance is evaluated using the following metrics: (1) the ability to provide 

operational pressures throughout the system during typical daily demands, and (2) the ability to 

provide adequate fire flows during emergency demands. Decommissioning two categories of 

water pipelines was evaluated: small diameter pipelines (less than 12 inches in diameter) and 

large diameter pipelines (greater or equal to 12 inches in diameter). The model development and 

assumptions were verified by five SMEs, each with more than 10 years of experience in hydraulic 

modeling or management. The most current data (as of May 2013) provided by the cities were 

used in this study, and the results of the status quo/base case models (e.g., fire flows, typical 

operating pressures) were confirmed as reasonable values for what is observed within the water 

distribution networks in Flint and Saginaw.  

 

This study demonstrates that consolidating demands and decommissioning small diameter 

pipelines are viable retooling scenarios in cities experiencing urban decline. Pipelines less than 12 

inches in diameter that were removed from the network did not hinder the ability of the system to 

provide adequate pressures during typical daily demands or to address emergency fire flow 

demands. Decommissioning large diameter pipelines is a case-dependent alternative. The 

viability of decommissioning large diameter pipelines, based on the metrics used in this study, 

depends on the location/connectivity of the particular pipeline, as well as the socioeconomic 

status of the area. Decommissioning scenarios using the Single Family Demand Pattern were not 

able to provide adequate pressures for typical daily use or fire flows. However, when using the 

Low-Income Single Family Demand Pattern, certain decommissioning alternatives provided 

adequate services and may be feasible alternatives for consideration. Other considerations to 

determine the feasibility of reconfiguring each infrastructure system by decommissioning 

includes, but is not limited to, examining the necessary changes to the pumps and valves, as well 

as the possibility of surge or hammer effect, sedimentation, or stagnant water occurring at 

possible dead ends resulting from the decommissioning scenarios.6 

 

                                                        
6 Paragraph adapted from Faust and Abraham (2014)  
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Decommissioning scenarios that result in dead-end pipelines, such as Scenario 2(a) in the Flint 

case study may result in surge or hammer effect at nodes 34093 and 1, as these nodes are not tied 

to the secondary feeder running north-south. Tying these nodes to the secondary feeder may 

mitigate this possibility, as well as make the remaining system more resilient, providing alternate 

paths to reach nodes 34093 and 1 in the instance of failure. However, as the depth of the nodes 

with reference to the secondary feeder is not known, the possibility of tying pipelines to the 

secondary feeder may not be viable.  Other issues that may occur at these dead ends may include 

sedimentation and stagnant water from reduced flows reaches the end of the pipeline with no 

circulation. Although, surge and hammer effects were not seen during simulations, if a drastic 

change in demand occurs at a dead-end or if the network configuration is changed temporarily 

due to repairs or maintenance, surge or hammer effect is a possibility that may be exasperated due 

to decommissioning.  

 

Extensive reconfiguration of the city water networks may require making changes to the pumps 

or valves to regulate flows and pressures. If technical upgrades are required for these components 

or if the components are nearing the end of their lifecycle, changing pumps or valves may be an 

additional cost already required by the city. However, if these infrastructure components are not 

near the end of their lifecycle, the costs required for altering other system components should be 

incorporated in the cost feasibility consideration of the alternative. No changes were necessary to 

the pumps or pump curves incorporated in EPANET between the base case or retooling scenarios 

considered in this chapter to maintain adequate pressure for normal operations or emergency 

flows for the small pipeline diameter network analysis. As demonstrated in the decommissioning 

large diameter pipeline analysis for the Single Family Demand Pattern, changes to the pumps and 

valves may be necessary to provide adequate pressures, dependent on the socioeconomic status of 

the area.   

 

Decreased demand may reduce the flow through the pipeline network, causing the pipelines to 

degrade faster. This deterioration, as well as low flow rates, may reduce the quality of the water 

reaching the residents, which could have impacts on the health of the residents due to stagnant 

water or water reacting to the deteriorating walls of the pipelines. Although stagnant water was 

not observed during the simulations, local conditions could cause such risks. The water use trends 

incorporated into EPANET are based on average behavior associated with socioeconomic status 

(as discussed in Chapter 4). In the instance that daily use trends differ significantly, or demands 
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unique to a particular neighborhood are reduced drastically from factors such as higher than 

anticipated decline rates or behavior changes from drastic increases in costs, there is a possibility 

for the occurrence of stagnant water.    

 

Decommissioning infrastructure may potentially improve the water quality for both drinking 

water and surface water. By decommissioning decaying infrastructure, the city is reducing the 

footprint of aging pipes that are internally corroded, failing, leaking, and sometimes vandalized 

by thieves to recover and resell the metal. Additionally, as discussed in Chapter 3, lower demands 

in cities with systems intended to operate at higher demands may increase the water age, 

especially if the water treatment plant is drastically oversized for the current population, causing 

chemical (e.g., disinfection by-product formation), biological (e.g., nitrification, microbial 

regrowth), and physical issues in the system (e.g., sediment deposition, color). SMEs from 2 

shrinking cities conjectured that the removal of excess infrastructure may reduce the risk of 

stagnant water and improve the age of the water in the system, thereby, further improving the 

water quality beyond solely reducing the number of corroding and deteriorating pipelines.7  

 

Previous studies have discussed resizing the footprints of cities facing urban decline by 

transforming the area to other land uses with minimal attention towards the repercussions of 

underutilization of the underground infrastructure systems and methods to resize the underground 

infrastructure systems. The performance of individual infrastructure systems operating at or 

above design capacity is well understood; however, the impacts of underutilization and how to 

manage underutilization is not addressed in practice or in literature.  Using network analysis, this 

study provides a framework for evaluating the impact of applying retooling alternatives by 

evaluating the capability of the water network to provide adequate pressures and fire flows to the 

remaining residents. By retooling decaying infrastructure, the city is able to reduce the built 

infrastructure footprint of aging pipes that are internally corroded, failing, leaking, and sometimes 

vandalized by thieves to recover and resell the metal. Additionally, retooling alternatives have the 

potential to stabilize or reduce per capita costs by reducing the fixed costs associated with the 

water infrastructure system, such as maintenance costs.  

 

Different daily use patterns of infrastructure services by individuals of varying socioeconomic 

statuses changes the viability of retooling alternatives. The coupling of human interaction with 
                                                        
7 Paragraph adapted from Faust and Abraham (2014) 
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water infrastructure performance is demonstrated by the inability of the system to provide 

adequate water pressures and fire flows when retooling alternatives, such as decommissioning 

large diameter pipelines are applied. Furthermore, this human-infrastructure coupling impacts 

which management alternatives may be implemented to retool the infrastructure system for a 

smaller population. Having knowledge of the intended future needs of the area can assist decision 

makers in ensuring that retooling alternatives do not impede the performance of the system for 

the current or projected population.   
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CHAPTER 6. ANALYSIS OF STORMWATER INFRASTRUCTURE RETOOLING 

ALTERNATIVES 

“The association between watercourse degradation and landscape alteration in general, and 

urban development in particular, seems inexorable. The scientific and regulatory challenge of the 

last three decades has been to decouple this relationship...” 

-National Research Council (2009) 

 

In shrinking cities, the number of abandoned and vacant properties increases as the population 

declines. These impervious surfaces and compacted soils from urbanization impact the hydrology 

of developed areas, generating runoff during precipitation. The runoff picks up non-point source 

(NPS) pollutants while traveling across impervious surfaces, and impacts the performance of the 

stormwater/wastewater system by contributing to the number of and volume of overflows as the 

system reaches and exceeds its capacity. Cities experiencing drastic urban decline have the 

potential to shift land uses, selectively transition excess land from impervious to pervious 

surfaces, or implement low impact development (LID) practices that treat stormwater onsite, to 

reduce the quantity of runoff and pollutants entering the stormwater/wastewater system. This 

chapter analyzes the impact of three categories of stormwater retooling alternatives: 

1) Decommissioning impervious surfaces. This retooling alternative decommissions 

vacant or abandoned impervious surfaces to allow onsite infiltration.  

2) Transitioning land uses. Post removal of impervious surfaces, the city may wish to 

transition the land use for community or aesthetic purposes, such as a wooded or grass 

area for the residents.  

3) Incorporating bioretention cells at the neighborhood level, with runoff from the 

candidate area diverted to the bioretention cells. Bioretention cells, the LID practice 

evaluated in this chapter, may be installed onsite to avoid removal of impervious surfaces 

by redirecting the water to the bioretention cell using methods such as, the natural 

topography or creating channels, to allow the water to infiltrate onsite. 
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6.1. Model Development 

The model inputs and the retooling alternatives are described in this section.  L-THIA and 

SWMM are used for comparison of estimated changes in runoff for the analysis areas in Flint and 

Saginaw to evaluate the impact of various retooling alternatives on the stormwater/wastewater 

system.  

 

6.1.1. Retooling Alternatives in Flint  

The input for retooling alternatives for the Flint study are shown in Table 6.1. L-THIA utilizes a 

graphical user interface (GUI) with little flexibility for customization of characteristics specific to 

an area. Figure 6.1 shows the SWMM model used for simulating retooling alternatives impacting 

stormwater runoff generation in analysis area chosen for the Flint case study (as discussed in 

Section 4.1). The separate stormwater system is illustrated as arcs and nodes between the 

subcatchments. Each subcatchment has an area of one city-block. 

 

Table 6.1. Data inputs for Flint 

 Data Source 
Location  Genesee, Flint, MI N/A 
Analysis area size 0.14 square miles (defined in Section 4.1) GoogleEarthPro  

Soil type 

Urban land-Crosier-Williamstown complex, 
0.0974 square miles | Hydraulic group B 
 
Crosier loam, 0.0476 square miles | Hydraulic 
group C 

USDA: NCRS 2013 and GIS 
layers to identify location of 
candidate area with reference to 
the soil surveys 

Current land use  Dense residential, approximately 1/8 acre parcels City provided GIS layers 
Status quo 
impervious area 65% Impervious USDA 1986 

Future land use  Unknown as of October 2014 N/A 

Precipitation data 
L-THIA: 30 years of county-averaged data 
 
SWMM: Local weather station  

National Climate Data Center 
(NCDC) 

Synthetic storm 
depths 

2-year, 24-hour storm: 2.32 inches 
10-year 24-hour storm: 3.29 inches NOAA 2014 

Curve numbers 
and LID designs 

L-THIA: Pre-defined curve numbers associated 
with each LID alternative and land use 
 
SWMM: Land use curve numbers (USDA 1986), 
LID designs (SEMCOG 2008) 

L-THIA: Pre-defined, based on 
literature 
 
SWMM: USDA 1986; 
SEMCOG 2008 

Infrastructure  Separate stormwater system City provided GIS layers 
Slope Varies by subcatchment US Topographic Maps 
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Figure 6.1. SWMM model for analysis area in in Flint 

 

Lot- level investments, such as rain gardens or rain barrels, are not included in this analysis as the 

investment into vacant or abandoned properties is improbable in fiscally strained, shrinking cities. 

Additionally, when the models were simulated with lot-level LID alternatives in SWMM for the 

sparsely located, occupied residences within the analysis area, the reductions in runoff were 

negligible. Since fiscally strained cities are already having difficulty maintaining existing 

infrastructure, porous pavements were not considered in the analysis as this options required 

additional financial investment necessary for repaving. In areas of the city experiencing severe 

decline, the likelihood of investing in a massive re-pavement effort is low, and more likely in new 

developed areas. Tables 6.2 and 6.3 summarize the retooling options for Flint discussed in this 

study and the considerations for each retooling scenario.  

 

Table 6.2.  Flint’s retooling alternatives analyzed in study 

Alternatives Rationale 
Status quo (65% impervious, high density 
residential area) 

Represents the status quo of the analysis area (base 
model) 

Reduction in impervious surfaces (simulations 
ranged from 60% impervious to 5% impervious 
in 5% increments) 

Applicable if the city wishes to decommission 
impervious surfaces (e.g., driveways, foundations, 
sidewalks, roads)  
 
Decommissioned surfaces assumed to transition to 
grass in “good” condition 

Transitioning land uses ((1) grass and pasture, 
(2) brush, (3) woods, (4) meadow) 

Applicable if the city wishes to rezone the area for 
other land uses post decommissioning surfaces 

Bioretention cells1, 2, 3 
 
 
 

Assumes 65% impervious area 
 
Applicable if the city wishes to reduce stormwater 
runoff throughout the neighborhood without 
investing in the removal of impervious surfaces 

1Size is 15% of the impervious area (Atchison et al. 2006, SEMCOG 2008). 2L-THIA does not allow user to 

route a percentage of the runoff. In SWMM, the percentages of the generated runoff routed are 50%, 75%, 

and 100%. 3L-THIA does not allow user to change the storage depth or density of vegetation. In SWMM, 

user defined storage depths of the bioretention cell are 12-inch and 6-inch, as suggested in SEMCOG 

(2008), evaluated with both minimal (0%) and dense (50%) vegetation.  
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Table 6.3. Incorporation of considerations for each modeled retooling scenario in Flint 

Scenario Consideration Addressing Consideration 

Reduction in 
impervious 
surfaces  

Cost and benefits  

Costs include decommissioning surfaces, removal of 
pavement from site, and erosion seeding 
 
Benefits include reduction of runoff and NPS pollutants, 
possible aesthetic improvement to the area 

Intended purpose for 
land in vision 

As of October 2014 Flint did not have a future land use 
plan for the analysis area 

Soil type in area Incorporates area specific soil types and land use curve 
numbers corresponding to specific soil types 

Impact on the water 
quality 

Reduction in impervious surfaces reduces the nonpoint 
source pollutants entering the waterways via overflows 
since runoff is reduced and soil infiltration is increased Environmental impact 

Transitioning 
land uses 

Cost and benefits  

Costs include decommissioning surfaces, removal of 
pavement from site, erosion seeding, and planting for 
future land uses 
 
Benefits include reduction of runoff and NPS pollutants, 
possible aesthetic improvement to the area and ability to 
enhance the community via parks or recreational areas 

Intended purpose for 
land in vision 

As of October 2014 Flint does not have a future land use 
plan for the analysis area 

Soil type in area Incorporates area specific soil types and land use curve 
numbers corresponding to specific soil types 

Impact on the water 
quality 

Reduction in impervious surfaces reduces the nonpoint 
source pollutants entering the waterways via overflows 
since runoff is reduced and soil infiltration is increased Environmental impact  

Bioretention 
cells 
 

Cost and benefits  

Costs include the construction and maintenance of the 
bioretention cell(s) 
 
Benefits include reduction of runoff and NPS pollutants 

Intended purpose for 
land in vision 

As of October 2014 Flint does not have a future land use 
plan for the analysis area 

Soil type in area Incorporates area specific soil types and land use curve 
numbers corresponding to specific soil types 

Impact on the water 
quality 

Routing water to bioretention cell reduces source 
pollutants entering the waterways via overflows due to 
decreased runoff and increased infiltration Environmental impact  

 

6.1.2. Retooling Alternatives in Saginaw 

The inputs for retooling alternatives for the Saginaw study are shown in Table 6.4. The SWMM 

model used for simulating retooling alternatives in Saginaw’s analysis area (analysis area 

discussed in Section 4.1) is shown in Figure 6.2. The combined sewer system is depicted as arcs 

and nodes between the subcatchments. Each subcatchment has an area of one city-block.  
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Table 6.4. Data inputs for Saginaw 

Data  Saginaw, MI Source 
Location  Genesee N/A 
Analysis area size 0.16 square miles (defined in Section 4.1) GoogleEarthPro  

Soil type (0-12 inches) loam, (12-16 inches) clay loam, (16-
80 inches) silty clay loam | Hydraulic group B 

USDA: NCRS 2013 and 
GIS layers to identify 
location of candidate area 
with reference to the soil 
surveys 

Current land use  Dense residential, approximately 1/4 acre parcels City provided GIS layers 
Status quo 
impervious area 38% Impervious USDA 1986 

Future land use  
Green opportunity (i.e., shifting land use from 
residential towards performing in its natural state 
via green infrastructure, and land use transitions) 

N/A 

Precipitation data 
L-THIA: 30 years of county-averaged data 
 
SWMM: Local weather station 

National Climate Data 
Center (NCDC) 

Synthetic storm 
depths 

2-year, 24-hour storm: 2.35 inches 
10-year, 24-hour storm: 3.46 inches 
 
2-year, 10-minute storm: 0.495 inches 
10-year, 10-minute storm: 0.738 inches 

NOAA 2014 

Curve numbers 
and LID designs 

L-THIA: Pre-defined curve numbers associated 
with each LID alternative and land use 
 
SWMM: Land use curve numbers (USDA 1986), 
LID designs (SEMCOG 2008) 

L-THIA: Pre-defined, based 
on literature 
 
SWMM: USDA 1986; 
SEMCOG 2008 

Infrastructure  Combined sewer system City provided GIS layers 
Slope Varies by subcatchment US Topographic Maps 

 

  
Figure 6.2. SWMM model for analysis area in in Saginaw 

 

Similar to Flint, the LID alternatives considered did not include lot-level investments, such as rain 

gardens or porous pavements. The analysis area, known as the Green Zone is in an area of 

Saginaw that is considered approximately 70% vacant (USEPA 2014) and has a future land use to 

transition towards green opportunity. The likelihood of lot-level investments or capital-intensive 

infrastructure investment, such as porous pavements, is unlikely in area transitioning away from 
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residential zoning towards green space. Tables 6.5 and 6.6 summarize the retooling alternatives 

for Saginaw discussed in this study and the considerations for each retooling scenario.  

 

Table 6.5. Saginaw’s retooling alternatives analyzed in study 

Strategy Rationale 
Status quo (38% impervious, high density 
residential area) 

Represents the status quo of the analysis area 
(base model) 

Reduction in impervious surfaces (simulations 
ranged from 33% impervious to 3% impervious in 
5% increments) 

Applicable if the city wishes to decommission 
and raze impervious surfaces (e.g., driveways, 
foundations, sidewalks, roads)  
 
Decommissioned surfaces assumed to transition 
to grass in “good” condition 

Transitioning land uses ((1) grass, (2) brush, (3) 
woods, (4) meadow) 

Applicable if the city wishes to rezone the area 
for parks or wooded areas post decommissioning 
impervious surfaces 

Bioretention cells1, 2, 3 

Assumes 38% impervious area 
 
Applicable if the city wishes to reduce 
stormwater runoff throughout the neighborhood 
without investing in the removal of impervious 
surfaces 

1Size is 15% of the impervious area (Atchison et al. 2006, SEMCOG 2008). 2L-THIA does not allow user to 

route a percentage of the runoff. In SWMM, the percentages of the generated runoff routed are 50%, 75%, 

and 100%. 3L-THIA does not allow user to change the storage depth or density of vegetation. In SWMM, 

user defined storage depths of the bioretention cell are 12-inch and 6-inch, as suggested in SEMCOG 

(2008), evaluated with both minimal (0%) and dense (50%) vegetation.  

 

Table 6.6. Incorporation of considerations for each modeled retooling scenario in Saginaw 

Scenario Consideration Addressing Consideration 

Reduction in 
impervious 
surfaces  

Cost and benefits  

Costs include decommissioning surfaces, removal of 
pavement from site, and erosion seeding 
 
Benefits include reduction of runoff and NPS pollutants, 
possible aesthetic improvement to the area 

Intended purpose for land 
in vision 

The analysis area has been selected for green opportunities, 
thus, zoning will no longer be residential, and the remaining 
residents will transition out of the area 

Soil type in area Incorporates area specific soil types and land use curve 
numbers corresponding to specific soil types 

Impact on the water 
quality 

Reduction in impervious surfaces reduces the nonpoint source 
pollutants entering the waterways via overflows since runoff 
is reduced and soil infiltration is increased Environmental impact 
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Table 6.6 (continued). 

Scenario Consideration Addressing Consideration 

Transitioning 
land uses 

Cost and benefits  

Costs include decommissioning surfaces, removal of 
pavement from site, erosion seeding, and planting for future 
land uses 
 
Benefits include reduction of runoff and NPS pollutants, 
possible aesthetic improvement to the area and ability to 
enhance the community via parks or recreational areas 

Intended purpose for land 
in vision 

The analysis area has been selected for green opportunities, 
thus, zoning will no longer be residential, and the remaining 
residents will transition out of the area 

Soil type in area Incorporates area specific soil types and land use curve 
numbers corresponding to specific soil types 

Impact on the water 
quality 

Reduction in impervious surfaces reduces the nonpoint source 
pollutants entering the waterways via overflows since runoff 
is reduced and soil infiltration is increased Environmental impact  

Bioretention 
cells 
 

Cost and benefits  

Costs include the construction and maintenance of the 
bioretention cell(s) 
 
Benefits include reduction of runoff and NPS pollutants 

Intended purpose for land 
in vision 

The analysis area has been selected for green opportunities, 
thus, zoning will no longer be residential, and the remaining 
residents will transition out of the area 

Soil type in area Incorporates area specific soil types and land use curve 
numbers corresponding to specific soil types 

Impact on the water 
quality 

Routing water to bioretention cell reduces source pollutants 
entering the waterways via overflows due to decreased runoff 
and increased soil infiltration Environmental impact 

 

6.2 Decommissioning Impervious Surfaces Analysis 

The results from decommissioning impervious surfaces are presented in this section. Within each 

subsection, the results for the B/C soils are presented, followed by the results for the 

D/compacted soils. After displaying the results of decommissioning impervious surfaces based on 

historical precipitation data specific to the case study city, the impact of decommissioning 

impervious surfaces during a 2-year and a 10-year, 24-hour storm are presented to evaluate the 

performance of the retooling alternatives during large volume precipitations events.  The analyses 

area is evaluated for a 2-year and a 10-year, 10-minute storm, as well, due to the presence of a 

combined sewer system (CSS) in Saginaw. The 10-minute storms measure the effectiveness of 

the retooling alternatives to manage stormwater during high intensity precipitation events. High 

intensity precipitation events increase the risk of overflows due to the abrupt volume of runoff 

entering the system over a short duration. The storm analyses are only performed in SWMM 

since L-THIA does not allow for user-defined precipitation. When viewing the graphs depicting 
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the reduction in runoff, the percent change is relative to the status quo/base scenario for that 

precipitation event. For instance, the change in runoff from decommissioning impervious surfaces 

during a 10-year, 24-hour storm is compared to runoff generated during that same storm over the 

status quo/base scenario. 

 

6.2.1. Decommissioning Impervious Surfaces in Flint 

The base case in the Flint case study consists of approximately 65% impervious surfaces. These 

impervious surfaces were decommissioned in 5% increments, until all impervious surfaces were 

decommissioned (0%), to examine the impact of varying pavement removal efforts. Grass/pasture 

represents 0% impervious surfaces. Post removal of all impervious surfaces, different land uses 

were simulated to view the generated runoff. 

  

6.2.1.1. Generated Runoff Using Historical Precipitation Data in Flint 

Each retooling alternative was evaluated in L-THIA for B/C soils and D soils using daily 

precipitation averages across Genesee County, and in SWMM using local weather station data at 

30-minute increments. The results (Figures 6.3-6.6) indicate that the runoff in the analysis area 

can be reduced by over 85% when all impervious surfaces are reduced for B/C soils. Brush had 

the greatest reduction in runoff, reducing the runoff in the area by over 95% for B/C soils and 

over 85% for D soils. Brush could not be verified by L-THIA as the use of brush as a land use 

was not available in this tool. L-THIA yielded transitioning the land area to a wooded area as 

having the greatest impact on the runoff reduction for both B/C soils and D soils. L-THIA and 

SWMM yielded a runoff reduction of over 70% and 65% when all surfaces were 

decommissioned, for B/C soils and D soils, respectively. 
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Figure 6.3. Impact of decommissioning impervious surfaces based on historical data (B/C soils) 

 
Figure 6.4. Impact of transitioning land uses based on historical data (B/C soils) 

 

 

Figure 6.5. Impact of decommissioning impervious surfaces based on historical data (D soils) 
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Figure 6.6. Impact of transitioning land uses based on historical data (D soils) 

 
6.2.1.2. Generated Runoff During a 2-year and 10-year, 24-hour Storm in Flint 

Each retooling alternative was evaluated for B/C soils and D soils in SWMM for a 2-year and a 

10-year, 24-hour storm, simulating a large volume precipitation event (Figures 6.7-6.10). 

Decommissioning all impervious surfaces reduces the runoff for the 2-year storm by over 70% 

and 50% for B/C soils and D soils, respectively. For the 10-year storm, the runoff is reduced by 

approximately 60% and over 40% for B/C soils and D soils, respectively. Similar to the analysis 

based on historic precipitation, brush reduces the runoff the most for both B/C soils and D soils. 

 

 
Figure 6.7. Impact of decommissioning impervious surfaces during a 2-year and 10-year, 24-hour 

storm (B/C soils)  
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Figure 6.8. Impact of transitioning land uses during a 2-year and 10-year, 24-hour storm (B/C 

soils) 

 

 
Figure 6.9. Impact of decommissioning impervious surfaces during a 2-year and 10-year, 24-hour 

storm (D soil)  

 

 
Figure 6.10. Impact of transitioning land uses during a 2-year and 10-year, 24-hour storm (D soil) 
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6.2.2. Decommissioning Impervious Surfaces in Saginaw 

The base case in the Saginaw case study consists of approximately 38% impervious surfaces. 

These impervious surfaces were decommissioned in 5% increments (38% through 3%, and 

0%/grass and pasture) to assess the impact of pavement removal efforts. After decommissioning 

all impervious surfaces, different land uses were simulated to view the generated runoff. Similar 

to Flint, the quantity of runoff in Saginaw was evaluated for a 2-year and a 10-year, 24-hour 

storm to assess the performance during a high volume precipitation event. In addition to the 24-

hour storm, Saginaw’s analysis area was evaluated for the quantity of runoff for a 10-minute 

storm due to the CSS in the city, to estimate the effectiveness during high intensity precipitation 

events. 

 

6.2.2.1. Generated Runoff Using Historical Precipitation Data in Saginaw 

Each retooling alternative was evaluated in L-THIA for B soils and D soils using daily 

precipitation averages across Saginaw County, and in SWMM using local weather station data at 

30-minute increments. When all but 3% of impervious surfaces are decommissioned the runoff 

generated in the analysis area, for B soils, can be reduced by over 65% and 85%, in L-THIA and 

SWMM, respectively (Figure 6.11). The reduction in runoff for D soils differed drastically in L-

THIA and SWMM when all impervious surfaces were decommissioned (Figure 6.13). L-THIA 

estimates a reduction in runoff just over 40%, whereas SWMM estimates a reduction in runoff of 

approximately 70%. The status quo/base values for SWMM are in line with literature (discussed 

in Section 6.2.3) and thus, more reliable. 

 

Similar to Flint, the land use brush had the greatest reduction of runoff, reducing the runoff in the 

area by over 95%, assuming B soils, and by over 80% assuming D soils (Figures 6.12 and 6.14). 

L-THIA indicated that transitioning the land area to a wooded area had the greatest impact on the 

runoff reduction, reducing the runoff by over 80% for B soils and by over 60% for D soils.  
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Figure 6.11. Impact of decommissioning impervious surfaces based on historical data (B soils) 

 

 
Figure 6.12. Impact of transitioning land uses based on historical data (B soils) 

 

 
Figure 6.13. Impact of decommissioning impervious surfaces based on historical data (D soils) 
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Figure 6.14. Impact of transitioning land uses based on historical data (D soils) 

 
6.2.2.2. Generated Runoff During a 2-year and 10-year, 24-hour Storm in Saginaw 

Each retooling alternative was evaluated for B soils and D soils in SWMM for a 2-year and a 10-

year, 24-hour storm to simulate the performance of the retooling alternative during large volume 

precipitation events. Decommissioning all but 3% of the impervious surfaces reduces the runoff 

for the 2-year storm by approximately 65% for both B soils and D soils. For the 10-year storm, 

the runoff is reduced by approximately 50% for both B soils and D soils. Similar to the results 

shown for Flint, brush is the land use that reduced runoff the most for both soils. 

 

 
Figure 6.15. Impact of decommissioning impervious surfaces during a 2-year and a 10-year, 24-

hour storm (B soils) 
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Figure 6.16. Impact of transitioning land uses during a 2-year and a 10-year, 24-hour storm (D 

soils) 

 

 
Figure 6.17. Impact of decommissioning impervious surfaces during a 2-year and a 10-year, 24-

hour storm (D soils) 

 

 
Figure 6.18. Impact of transitioning land uses during a 2-year and a 10-year, 24-hour storm (D 

soils) 
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6.2.2.3. Generated Runoff During a 2-year and 10-year, 10-minute Storm in Saginaw 

Each retooling alternative was evaluated during a 2-year and a 10-year, 10-minute storm to 

estimate the effectiveness of the retooling alternative during high intensity precipitation events. 

The findings from this analysis provided interesting results. It should be re-noted here that the 

comparison for the change in runoff is relative to the status/quo base scenario for that particular 

precipitation pattern. This is important to note because the reduction in runoff for the 2-year and 

10-year storm are within 1% and thus, appear to be overlapping in Figures 6.19 and 6.21. By 

decommissioning the impervious surface up to 3% the runoff typically generated during the 

storms can be reduced by over 90%, for both soils types, thus providing a significant reduction in 

stormwater entering the underground infrastructure during the high intensity precipitation events. 

Transitioning land uses, for both soil types, was able to reduce the runoff by over 97% during 

these high intensity storms.   

 

 
Figure 6.19. Impact of decommissioning impervious surfaces during a 2-year and 10-year, 10-

minute storm (B soils) 
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Figure 6.20. Impact of transitioning land uses during a 2-year and 10-year, 10-minute storm (B 

soils) 

 
Figure 6.21. Impact of decommissioning impervious surfaces during a 2-year and 10-year, 10-

minute storm (D soils) 

 

 
Figure 6.22. Impact of transitioning land uses during a 2-year and 10-year, 10-minute storm (D 

soils) 
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6.2.3. Implications of the Decommissioning Impervious Surfaces Analyses 

Figures 6.3-6.22 depict the results of the reduction of impervious surfaces and changing land uses 

(post-removal of impervious surfaces), for B/C soils and D soils, in Flint and Saginaw. L-THIA 

estimates less total runoff for the status quo/base model considerably percent changes in the 

runoff. In some instances, L-THIA estimates the same runoff to precipitation ratio for different 

retooling alternatives. For example, the retooling alternatives for decommissioning 15% and 20% 

of the impervious area in Saginaw yield the same runoff to precipitation ratio for D soils, 

resulting in an inconsistent downward trend of the decrease in runoff corresponding to 

decommissioning impervious surfaces. However, SWMM estimated a consistent decrease in 

runoff correlated with a decrease in the percentage of impervious surfaces. Additionally, SWMM 

estimates higher quantities of runoff for all retooling alternatives evaluated when compared to L-

THIA. However, SWMM’s estimated runoff is comparable to published values from residential 

land uses for 1/4-acre and 1/8-acre residential parcels (Gironás et al. 2009; MDOT 2006).  

Although, the runoff magnitude between the two tools varies, the percentage change between the 

status quo/base model and different alternatives are comparable. Thus, while the models differ for 

average depth of runoff, due to difference in assumptions and models, we can generalize that the 

impact between alternatives is similar.  

 

The land use transformations assume that all impervious surfaces have been decommissioned and 

the land use has undergone transition. As expected, the greater the reduction in impervious 

surfaces across the analysis area, the greater the reduction in runoff. Between the land 

transformation retooling alternatives of grass/pasture and woods (the two options evaluated using 

both tools), transitioning the land to forest or woods has the greatest potential for reduction in 

runoff. The land use options meadow and brush were also evaluated in SWMM, with brush 

yielding the highest reduction of runoff for all land uses. In Saginaw, due to the future land use 

designation to transition to the “Green Zone,” grass/pasture may be more desirable, and does have 

a high reduction in runoff, as well.  

 

The impact on generated runoff for the different soil types becomes more pronounced when the 

2-year and 10-year, 24-hour storms are simulated. The soils in the analysis area that have been 

compacted to D soils have the lowest infiltration capabilities, reaching saturation before category 

A-C soils, thus, generating more runoff. The B/C soils, with high infiltration capabilities, are able 

to infiltrate a larger percentage of the precipitation of the 2-year and 10-year storms. For 
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transitioning land uses, the change to brush had the greatest reduction in runoff for the storms 

evaluated, consistent with the results using historical precipitation data, and grass/pasture 

performed the worst. This indicates that between the best-case (brush) and worst-case land use 

(grass/pasture), the worst-case produces approximately 15% more total runoff (depending on the 

soil type). 

 

The runoff resulting from the 2-year and 10-year, 10-minute storm demonstrated that the 

decommissioning impervious surfaces and transitioning land uses perform very well during high 

intensity, short duration storms. Decommissioning the impervious surfaces in Saginaw, regardless 

of soil type, was able to reduce the runoff typically generated during the storm by over 90%. 

Transitioning land uses yielded a runoff reduction of over 97%, irrespective of soil type. These 

results indicate that these retooling alternatives are technically viable to aid in reducing overflows 

during high intensity, short duration storms.  

 

6.3. Low-Impact Development Analysis 

The results from the low-impact development analyses are presented in this section. Within each 

subsection, the results for the B/C soils are presented, followed by the results for the D soils. 

After displaying the results based on historical precipitation runoff generated during a 2-year and 

a 10-year, 24-hour storm are presented. Similar to Section 6.2, Saginaw’s analysis area was also 

evaluated for generated runoff during a 2-year and a 10-year, 10-minute storm, in addition to the 

24-hour duration storms. 

 

6.3.1. Low-Impact Development in Flint 

The LID analysis performed in Flint assumed that no impervious surface decommissioning has 

occurred. The bioretention cells serve as another retooling alternative aside from 

decommissioning the impervious surfaces, by routing generated runoff to the cells for onsite 

infiltration. The size of the bioretention cells (one for each subcatchment in SWMM) is 15% of 

the impervious area (0.0137 square miles in total) as suggested by Atchison et al. (2006) and 

aligning with SEMCOG (2008) recommendations. In Flint’s analysis area, the bioretention cell is 

slightly more than three lots per block (assuming 1/8 acre lots). L-THIA does not allow user 

defined designs for the bioretention cell as a standard curve number is applied to the area of the 

bioretention cell in L-THIA’s simulation. The bioretention cells in SWMM were evaluated for 
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12-inch and 6-inch storage depths with both minimal and dense vegetation, based on design 

recommendations by SEMCOG (2008).  

 
6.3.1.1. Generated Runoff Using Historical Precipitation Data in Flint 

For B/C soils and D soils, L-THIA estimates an approximate 10% and 35% reduction in the 

runoff, respectively. Due to L-THIA’s inability to customize the bioretention cells, a constant 

value is shown for the reduction in runoff across all bioretention cells assessed in SWMM 

(Figures 6.23-6.26). In SWMM, the storage volume and the percentage of runoff routed to the 

bioretention cell influences the reduction of runoff. A bioretention cell receiving 100% of the 

runoff generated by impervious surfaces with the largest storage area (12-inch and minimal 

vegetation) was capable of reducing the runoff in the analysis area by almost 100% for B/C soils 

and D soils. The storage area for 12-inches, dense vegetation and 6-inches, minimal vegetation 

has negligible differences and appears equivalent in Figures 6.23-6.26. The flat line spanning the 

alternatives with 50% of the runoff routed indicates that all design alternatives were capable of 

capturing and treating the runoff routed to the bioretention cell onsite.  

 

 
Figure 6.23. Impact of bioretention cells based on historical data (B/C soils) 
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Figure 6.24. Impact of bioretention cells based on historical data (D soils) 

 

6.3.1.2. Generated Runoff During a 2-year and a 10-year, 24-hour Storm in Flint  

The bioretention cells were evaluated for B/C soils and D soils using a 2-year and 10-year, 24-

hour storm in SWMM. The ability to treat runoff onsite varies considerably between the 2-year 

and 10-year storm, as well as across the different percentages of runoff that is routed to the 

bioretention cell from the impervious surfaces in the analysis area.  

 

The results (Figures 6.25-6.26) indicate that when 50% of the runoff from the impervious areas is 

routed to the bioretention cell, the runoff from the 2-year storm for all storage designs, except the 

6-inch storage with dense vegetation, may be treated onsite for both soil types. For the 10-year 

storm, only the 12-inch storage design and minimal vegetation is capable of treating the volume 

of runoff for both soil types.  

 

In the instances that 75% of the runoff is routed to the bioretention cell during the 2-year storm, 

all storage designs, except the 6-inch storage and dense vegetation, are capable of treating the 

precipitation onsite for all soils evaluated. During the 10-year storm with 75% of the runoff 

routed to the bioretention cell, the 12-inch storage and minimal vegetation is capable of treating 

the volume of runoff onsite for B/C soils and D soils. 

 

The bioretention cell that routes 100% of the runoff generated across the analysis area’s 

impervious surfaces is only capable of treating the volume of runoff during the 2-year storm, for 

B/C soils, when the storage design is at its maximum capacity of 12-inch storage and minimal 

vegetation. However, although the bioretention cells reach capacity during the storms for most 
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designs assessed, the bioretention cells are still capable of considerably reducing the runoff 

during these synthetic storms. For instance, during the 10-year storm runoff is reduced by at least 

30% for bioretention cells assessed, irrespective of soil type. When the bioretention cell reaches 

capacity, excess water routed to the cell continues to Flint’s separate stormwater system.  

 

 
Figure 6.25. Impact of bioretention cells during a 2-year and a 10-year, 24-hour storm (B/C soils) 

 

 
Figure 6.26. Impact of bioretention cells during a 2-year and a 10-year, 24-hour storm (D soils) 

 
6.3.2. Low-Impact Development in Saginaw 

Analogous to Flint, the LID analysis performed in Saginaw assumes that no impervious surface 

decommissioning has occurred. The size of the bioretention cells (one for each subcatchment in 

SWMM) is 15% of the impervious area (0.0156 square miles in total across the analysis area) as 

suggested by Atchison et al. (2006) and aligning with SEMCOG (2008) recommendations. The 
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average size of the bioretention cells is slightly less than one lot per block in Saginaw’s analysis 

area (assuming 1/4 acre lots).  

 
6.3.2.1. Generated Runoff Using Historical Precipitation Data in Saginaw 

Each bioretention cell was evaluated for B soils and D soils using the similar approach as outline 

above for Flint. Consistent with the SWMM analysis performed in Flint, the reduction of the 

runoff was influenced primarily by the storage area and the percentage of runoff routed to the 

bioretention cell. The bioretention cell that all 100% of the runoff generated was routed to with 

the largest storage area (12-inch storage and minimal vegetation) was capable of reducing the 

runoff by over 95% for B soils and D soils. The alternatives with 50% of the runoff routed (for all 

storage design alternatives) were capable of capturing the volume of runoff routed to the 

bioretention cells and treating the runoff onsite.  

 

 
Figure 6.27. Impact of bioretention cells based on historical data (B soils) 

 

 
Figure 6.28. Impact of bioretention cells based on historical data (D soils) 
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6.3.2.2. Generated Runoff During a 2-year and a 10-year, 24-hour Storm in Saginaw 

The bioretention cells were evaluated for B soils and D soils using a 2-year and 10-year, 24-hour 

storm, to evaluate the bioretention cell performance during high volume precipitation events. All 

findings for the 24-hour storms were consistent with the analysis performed for Flint. The results 

(Figures 6.29-6.30) indicate that when 50% of the runoff is routed to the bioretention cell, the 

runoff generated during a 2-year storm for all storage designs, except the 6-inch storage with 

dense vegetation, may be treated onsite for both B soils and D soils. For the 10-year storm, only 

the 12-inch storage design and minimal vegetation is capable of treating the volume of runoff 

generated during the storm onsite for all soils evaluated.  

 

When 75% of the runoff is routed to the bioretention cell, the runoff from the 2-year storm may 

be treated onsite for all storage designs, except the 6-inch storage and dense vegetation, for both 

soil types. During the 10-year storm, when 75% of the runoff is routed to the bioretention cell, the 

12-inch storage and minimal vegetation is the only design capable of treating the volume of 

runoff onsite. 

 

The designs that route 100% of the runoff generated are capable of treating the volume of runoff 

during the 2-year storm, for B soils, when the storage design is at its maximum capacity of 12-

inch storage with minimal vegetation. Although all bioretention cell designs are not capable of 

treating all runoff during the synthetic storms onsite, the bioretention cells considerably reduce 

the runoff entering the infrastructure system. For all bioretention cell designs, the 10-year storm 

runoff was reduced by over 30%. When the bioretention cell reaches capacity, excess water 

routed to the cell continues to Saginaw’s CSS.  

 

 
Figure 6.29. Impact of bioretention cells during a 2-year and a 10-year, 24-hour storm (B soils) 
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Figure 6.30. Impact of bioretention cells during a 2-year and a 10-year, 24-hour storm (D soils) 

 

6.3.2.3. Generated Runoff During a 2-year and a 10-year, 10-minute Storm in Saginaw 

The bioretention cells performed very well during the high intensity, short duration storms. All 

bioretention cells were capable of treating the runoff generated and routed to the bioretention cell 

during the 2-year and 10-year, 10-minute storms, with the exception of one design. When 100% 

of the runoff is routed to the bioretention cell, the smallest storage design, 6-inch storage with 

dense vegetation, was not capable of treating all runoff onsite, but still reduced the runoff by 

80%, a considerable reduction from the status quo. For the assessed synthetic storms, soil types, 

and storage designs, the runoff was reduced by at least 55%. The runoff reduction is slightly 

higher for D soils as the infiltration capacity of the soil is characteristically less than B soils, thus, 

during status quo conditions more runoff is generated.  

 

 
Figure 6.31. Impact of bioretention cells during a 2-year and a 10-year, 10-minute storm (B soils) 



 

129  
 

 
Figure 6.32. Impact of bioretention cells during a 2-year and a 10-year, 10-minute storm (D soils) 

 
6.3.3. Implications of the Low-Impact Development Analysis 

The use of bioretention cells as a retooling alternative was examined as this option aligned most 

closely with the transition to green space for Saginaw, did not require lot-level investment for 

Flint, and is appropriate for the topography of both candidate areas. The L-THIA model uses a 

pre-defined bioretention cell, whereas SWMM allows for customizable bioretention cell designs. 

The values of the design parameters for the planting soil depth, void ratio of soil were assume to 

be the average of the suggested implementable range identified for Michigan LID alternatives in 

SEMCOG (2008).  The approximate size of the bioretention cell is slightly less than one lot per 

block in Saginaw’s analysis area (with 1/4 acre lots), and slightly more than three lots per block 

in Flint’s analysis area (with 1/8 acre lots). The different in the number of lots is due to Flint 

having a greater percentage of impervious surfaces and smaller lot sizes than Saginaw. 

 

Figures 6.23-6.32 illustrate percent reduction in the runoff between the alternatives and status quo 

conditions/base model. The x-axis states the bioretention cell designs assessed for different 

storage sizes, sparse/dense vegetation, and percentage of the runoff generated in the impervious 

surface within the analysis area that was routed to the bioretention cell.  

 

The L-THIA ratios of runoff to precipitation most closely align with bioretention cells in SWMM 

that routed between 50%-75% of the runoff in the Flint analysis. In the Saginaw analysis, L-

THIA’s ratio of runoff to precipitation most closely aligned with the alternative simulated in 

SWMM that routed 100% of the generated stormwater runoff to the bioretention cell. When 

viewing the percent change in runoff from the status quo, L-THIA consistently estimated a much 
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smaller impact than SWMM for both cities. The discrepancies in the volume of runoff between L-

THIA and SWMM may be a result of the differing precipitation data, or the tools’ methodological 

approach. These values estimated in L-THIA are based on changing the curve number in the area 

designated as a bioretention cell, whereas SWMM allows for the customization of the LID 

alternatives, the incorporation of the land’s topography, and local precipitation data. 

 

The minimal change in runoff estimated by L-THIA was a 10% reduction in the runoff, estimated 

for B/C soils in Flint. The maximum reduction of runoff estimated by L-THIA was a 43% 

reduction in runoff for D soils in Saginaw. When modeling in SWMM, the largest impact 

occurred when all runoff within the analysis area was routed to a bioretention cell with a storage 

depth of 12-inches and minimal vegetation, reducing the runoff by approximately 100% during 

historic precipitation patterns. The different bioretention cell designs presented in this section 

(runoff routing percentages, storage sizing, presence of vegetation) allows a decision-maker to 

design the bioretention cell within the financial and physical constraints of the area. For instance, 

vegetation may be a choice that reduces the storage volume but could function as a potential 

erosion control. Additionally, routing all runoff may be challenging and require financial 

investment due to the urbanization of the areas, resulting in curbs or land with minimal slopes.  

 
Across all designs evaluated within SWMM, the bioretention cells are capable of reducing the 

runoff by at least 50% for historic precipitation patterns. During the 24-hour storms, the 

bioretention cells evaluated in this section are capable of reducing runoff by at least 38% and at 

least 28% for the 2-year and 10-year storm. During in the 10-minute storms, the generated runoff 

was reduced by at least 55% for all storage designs.   

 

6.4. Reduction of Runoff for Investment 

The percent decrease in runoff from the base model, indicating the impact of implementing the 

alternative as compared to the status quo, is shown alongside the conceptual costs for each 

alternative in Figures 6.33-6.36. The costs are estimated using published conceptual cost data for 

each shown in Table 6.7. These costs are not specific to the area, but provide a general 

comparison. Each alternative is represented by letter(s), A-AC, corresponding to entries in the 

tables following the graphs, with the corresponding tool in parenthesis that was use to estimate 

the reduction in the runoff; S for SWMM and L for L-THIA.  More extensive cost analysis of 
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labor, materials, and expected maintenance expenses, would be needed to assess the financial 

viability of these alternatives.  

 

Table 6.7. Conceptual costs 

Conceptual Cost Item  Value Source 

Pavement 
decommissioning 
(values based on one-
city block) 

Pavement removal  $14,667 

USEPA (2014) 

Roadway excavation  $3,911  
Curb removal  $800  

Sidewalk removal  $5,867  
Driveway removal  $2,800  

Fill Placement and compaction  $38,499  
Erosion control seeding  $4,848  

Total per city block  $71,392  

Transitioning land use to 
forest 

Total per acre $300  Lambrecht (1994) 
Total per acre $513  Gorte (2009) 

Total per acre $230  Piedmont Land & 
Timber (2010) 

Average $348  
 Transitioning land use to 

grass, meadow, or brush Cost contained in erosion and control seeding 

Bioretention cells Cost= 7.3*(volume)0.99 Brown and 
Schueler (1997) 

 

6.4.1. Runoff Reduction Versus Investment in Flint 

The reduction of runoff from the status quo/base model is graphed against the conceptual costs 

for each retooling alternative shown in Table 6.8 and Figure 6.33. For B/C soils and D soils, 

transitioning land use post decommissioning consistently provided the highest ratio of reduction 

in stormwater runoff to conceptual costs for the L-THIA and SWMM estimations. Of the four 

land uses evaluated, all of which yielded high runoff reductions for the investment, brush 

performed the best for all soil types as indicated by the letter AB in Figures 6.33 and 6.34. The 

bioretention cell providing the highest return (based on estimates from the SWMM analysis) was 

the 6-inch storage, with dense vegetation and 100% of the runoff routed to the cell, indicated by 

the letter Y. The y-axis is based on the reduction of the runoff during historic precipitation 

patterns. However, the designs storms are consistent with the historic data in that the highest 

performing alternative for historic precipitation was the highest performing retooling alternative 

during the 2-year and 10-year, 24-hour storm. All land uses performed equally well during the 2-

year and 10-year, 10-minute storms. 
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Table 6.8. Conceptual costs of retooling alternatives for Flint key for Figures 6.33 and 6.34 

  B/ C Soils 
  (L) L-THIA (S) SWMM 

65% Impervious: Base Model 
 

% Change 
from Base 

Costs 
(M)  

% Change 
from Base Costs (M) 

60% Impervious A(L) 13% $0.05 A(S) 7% $0.05 

55% Impervious B(L) 25% $0.11 B(S) 14% $0.11 

50% Impervious C(L) 33% $0.16 C(S) 21% $0.16 

45% Impervious D(L) 41% $0.22 D(S) 28% $0.22 

40% Impervious E(L) 46% $0.27 E(S) 35% $0.27 

35% Impervious F(L) 53% $0.33 F(S) 42% $0.33 

30% Impervious G(L) 58% $0.38 G(S) 50% $0.38 

25% Impervious H(L) 62% $0.44 H(S) 56% $0.44 

20% Impervious I(L) 65% $0.49 I(S) 64% $0.49 

15% Impervious J(L) 69% $0.55 J(S) 71% $0.55 

10% Impervious K(L) 71% $0.60 K(S) 77% $0.60 

5% Impervious L(L) 74% $0.66 L(S) 85% $0.66 

Grass and pasture M(L) 86% $0.71 M(S) 93% $0.71 

12", no veg., 75% routed N(L) - - N(S) 77% $1.95 

6", no veg., 75% routed O(L) - - O(S) 77% $0.98 

12 ", 50% veg., 75% routed P(L) - - P(S) 77% $0.98 

6 ", 50% veg., 75% routed Q(L) - - Q(S) 75% $0.49 

12", no veg., 50% routed R(L) - - R(S) 55% $1.95 

6", no veg., 50% routed S(L) - - S(S) 55% $0.98 

12 ", 50% veg., 50  routed T(L) - - T(S) 55% $0.98 

6 ", 50% veg., 50% routed U(L) - - U(S) 54% $0.49 

12", no veg., 100% routed V(L) - - V(S) 100% $1.95 

6", no veg., 100% routed W(L) - - W(S) 98% $0.98 

12 ", 50% veg., 100% routed X(L) - - X(S) 98% $0.98 

6 ", 50% veg., 100% routed Y(L) - - Y(S) 94% $0.49 

Woods Z(L) 91% $0.73 Z(S) 94% $0.73 

Meadow AA(L) - - AA(S) 94% $0.71 

Brush AB(L) - - AB(S) 96% $0.71 

Bioretention Cell AC(L) 10% $1.14 AC(S) 
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Table 6.8. (continued) 

  D Soils 
  (L) L-THIA (S) SWMM 

65% Impervious: Base Model 
 

% Change 
from Base 

Costs 
(M)  

% Change 
from Base Costs (M) 

60% Impervious A(L) 12%  $0.05  A(S) 6%  $0.05  
55% Impervious B(L) 20%  $0.11  B(S) 12%  $0.11  
50% Impervious C(L) 30%  $0.16  C(S) 18%  $0.16  
45% Impervious D(L) 35%  $0.22  D(S) 24%  $0.22  
40% Impervious E(L) 43%  $0.27  E(S) 30%  $0.27  
35% Impervious F(L) 43%  $0.33  F(S) 36%  $0.33  
30% Impervious G(L) 47%  $0.38  G(S) 41%  $0.38  
25% Impervious H(L) 53%  $0.44  H(S) 47%  $0.44  
20% Impervious I(L) 57%  $0.49  I(S) 53%  $0.49  
15% Impervious J(L) 61%  $0.55  J(S) 59%  $0.55  
10% Impervious K(L) 64%  $0.60  K(S) 65%  $0.60  
5% Impervious L(L) 68%  $0.66  L(S) 71%  $0.66  
Grass and pasture M(L) 72%  $0.71  M(S) 79%  $0.71  
12", no veg., 75% routed N(L) - - N(S) 77%  $1.95  
6", no veg., 75% routed O(L) - - O(S) 77%  $0.98  
12 ", 50% veg., 75% routed P(L) - - P(S) 77%  $0.98  
6 ", 50% veg., 75% routed Q(L) - - Q(S) 75%  $0.49  
12", no veg., 50% routed R(L) - - R(S) 55%  $1.95  
6", no veg., 50% routed S(L) - - S(S) 55%  $0.98  
12 ", 50% veg., 50% routed T(L) - - T(S) 55%  $0.98  
6 ", 50% veg., 50% routed U(L) - - U(S) 54%  $0.49  
12", no veg., 100% routed V(L) - - V(S) 99%  $1.95  
6", no veg., 100% routed W(L) - - W(S) 98%  $0.98  
12 ", 50% veg., 100% routed X(L) - - X(S) 98%  $0.98  
6 ", 50% veg., 100% routed Y(L) - - Y(S) 75%  $0.49  
Woods Z(L) 80%  $0.73  Z(S) 81%  $0.73  
Meadow AA(L) - - AA(S) 82%  $0.71  
Brush AB(L) - - AB(S) 88%  $0.71  
Bioretention Cell AC(L) 36%  $1.14  AC(S)     

 

In Flint, when historic precipitation data is considered, transitioning the land use to brush in the 

analysis area would reduce the runoff in the analysis area by 96% and 88% for B/C soils and D 

soils, respectively, as estimated in SWMM. For the same estimated conceptual costs, transitioning 

the land use to a meadow would reduce the runoff by 94% and 82% for B/C soils and D soils, 

respectively (estimated in SWMM). Transitioning the land use to wooded area is estimated by 
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SWMM to reduce runoff by or 94% for B/C soils and 81% for D soils, and 91% for B/C soils and 

80% for D soils in L-THIA. Transitioning the land use to grass (cost of $710,00 for the 0.14 

square mile area) is estimated in SWMM to reduce runoff by 93% for B/C soils and 79% for D 

soils, and 86% for B/C soils and 72% for D soils in L-THIA. The bioretention cell evaluated in 

SWMM with a 6-inch storage, dense vegetation, and 100% of water routed to the bioretention 

cell (cost of $490,000) is estimated to reduce the runoff by 94% and 75% for B soils and D soils, 

respectively.  

 

 
Figure 6.33 Runoff reduction versus financial investment for Flint (B/C soils) 

 

 
Figure 6.34 Runoff reduction versus financial investment for Flint (D soils) 
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6.5.2. Runoff Reduction Versus Investment in Saginaw 

The reduction of runoff from the status quo/base model is graphed against the conceptual costs 

(see Table 6.9) for each retooling alternative for Saginaw in Figures 6.27 and 6.28. For both B 

soils and D soils, transitioning land use post decommissioning consistently provided the highest 

reduction in runoff to the conceptual costs, with brush having the highest reduction in runoff for 

the cost, indicated by W. Consistent with the analysis performed for Flint, the bioretention cell 

providing the highest return is the 6-inch storage with dense vegetation and 100% of the runoff 

routed, indicated by the letter T for all soils.  

 

Table 6.9. Conceptual costs of retooling alternatives for Saginaw and key for Figures 6.35 and 

6.36 

  B Soil 
  (L) L-THIA (S) SWMM 

38% Impervious: Base Model   
% Change 
from Base 

Costs 
(M)   % Change 

from Base Costs (M) 

33% Impervious A(L) 16% $0.15 A(S) 12% $0.15 
28%  Impervious B(L) 33% $0.30 B(S) 24% $0.30 
23% Impervious C(L) 43% $0.45 C(S) 36% $0.45 
18% Impervious D(L) 51% $0.60 D(S) 48% $0.60 
13% Impervious E(L) 56% $0.75 E(S) 60% $0.75 
8% Impervious F(L) 62% $0.90 F(S) 72% $0.90 
3% Impervious G(L) 69% $1.05 G(S) 84% $1.05 
Grass and pasture H(L) 71% $1.14 H(S) 92% $1.14 
12", no veg., 75% routed I(L) - - I(S) 76% $4.27 
6", no veg., 75% routed J(L) - - J(S) 74% $2.15 
12 ", 50% veg., 75%  routed K(L) - - K(S) 74% $2.15 
6 ", 50% veg., 75%  routed L(L) - - L(S) 70% $1.08 
12", no veg., 50% routed M(L) - - M(S) 53% $4.27 
6", no veg., 50% routed N(L) - - N(S) 52% $2.15 
12 ", 50% veg., 50%  routed O(L) - - O(S) 52% $2.15 
6 ", 50% veg., 50%  routed P(L) - - P(S) 50% $1.08 
12", no veg., 100% routed Q(L) - - Q(S) 98% $4.27 
6", no veg., 100% routed R(L) - - R(S) 94% $2.15 
12 ", 50% veg., 100%  routed S(L) - - S(S) 94% $2.15 
6 ", 50% veg., 100%  routed T(L) - - T(S) 87% $1.08 
Woods U(L) 83% $1.18 U(S) 94% $1.178 
Meadow V(L) - - V(S) 94% $1.17 
Brush W(L) - - W(S) 97% $1.17 
Bioretention Cell X(L) 43% $2.41 X(S) - - 
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Table 6.9. (continued) 
 
  D Soil 

38% Impervious: Base Model (L) 
% Change 
from Base Costs (M) (S) 

% Change 
from Base Costs (M) 

33% Impervious 
 

9% $0.15  10% $0.15 
28%  Impervious B(L) 20% $0.30 B(S) 20% $0.30 
23% Impervious C(L) 27% $0.45 C(S) 30% $0.45 
18% Impervious D(L) 27% $0.60 D(S) 40% $0.60 
13% Impervious E(L) 35% $0.75 E(S) 50% $0.75 
8% Impervious F(L) 40% $0.90 F(S) 60% $0.90 
3% Impervious G(L) 47% $1.05 G(S) 70% $1.05 
Grass and pasture H(L) 51% $1.14 H(S) 71% $1.14 
12", no veg., 75% routed I(L) - - I(S) 75% $4.27 
6", no veg., 75% routed J(L) - - J(S) 72% $2.15 
12 ", 50% veg., 75%  routed K(L) - - K(S) 72% $2.15 
6 ", 50% veg., 75%  routed L(L) - - L(S) 67% $1.08 
12", no veg., 50% routed M(L) - - M(S) 53% $4.27 
6", no veg., 50% routed N(L) - - N(S) 51% $2.15 
12 ", 50% veg., 50%  routed O(L) - - O(S) 51% $2.15 
6 ", 50% veg., 50%  routed P(L) - - P(S) 49% $1.08 
12", no veg., 100% routed Q(L) - - Q(S) 96% $4.27 
6", no veg., 100% routed R(L) - - R(S) 90% $2.15 
12 ", 50% veg., 100%  routed S(L) - - S(S) 90% $2.15 
6 ", 50% veg., 100%  routed T(L) - - T(S) 84% $1.08 
Woods U(L) 64% $1.18 U(S) 74% $1.18 
Meadow V(L) - - V(S) 79% $1.17 
Brush W(L) - - W(S) 83% $1.17 
Bioretention Cell X(L) 47% $2.41 X(S) - - 
 

In Saginaw, when historic precipitation data is considered, transitioning the land use to brush 

(cost of $1,170,000) is estimated by SWMM reduce the runoff by 97% and 83% for B soils and D 

soils, respectively. For the same estimated conceptual costs, the SWMM model estimated that 

transitioning the land use to a meadow would reduce the runoff by 94% and 79% for B soils and 

D soils, respectively. Transitioning the land use to wooded area (cost of $1,178,000) is estimated 

to in SWMM reduce runoff by 94% for B soils and 74% for D soils, and by 83% for B soils and 

64% for D soils in L-THIA. Transitioning the land use to grass (cost of $1,140,000 for an area of 

0.16 square miles) is estimated in SWMM to reduce runoff by 92% for B soils and 71% for D 

soils, and by 71% for B soils and 51% for D soils in L-THIA. The bioretention cell with a 6-inch 

storage, dense vegetation, and 100% of water routed to the bioretention cell (cost of $1,083,000) 

is estimated in SWMM to reduce the runoff by 87% and 84% for B soils and D soils, 

respectively.  
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Figure 6.35. Runoff reduction versus financial investment for Saginaw (B soils) 

 

 
Figure 6.36. Runoff reduction versus financial investment for Saginaw (D soils) 

 
 

6.5.3. Implications of the Return on Investment Analyses 

The return on investment analyses for Flint and Saginaw produced consistent results in terms of 

the ratio of the alternatives’ reduction of runoff to the conceptual costs. In general, 

decommissioning all impervious surfaces and transitioning land uses from residential to natural 

landscapes is the most effective retooling alternative for reducing runoff per dollar spent, 
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regardless of soil type. Brush landscape had the highest return on investment for transitioning 

land uses, followed by meadow, woods and grass/pasture. For B/C soils, all transitioning land use 

alternatives were within a 5% range for reduction of runoff in Flint and Saginaw. For D soils, all 

transitioning land use alternatives were within a 10% range for reduction of runoff in both case 

studies.  

 

Due to the low, initial runoff estimate and the inability to design individual bioretention cells for 

the area, the percent change in runoff is understated in L-THIA, as compared to percent change in 

runoff estimates in SWMM.  Based on SWMM estimates, the bioretention cell providing the 

highest return is the 6-inch storage, with dense vegetation, and 100% of the runoff routed to the 

cell, for both Saginaw and Flint, regardless of soil type. 

 

Depending on the goals of the city one retooling alternative may be more appropriate/appealing 

than another. For instance, if the goal is solely reducing the runoff, bioretention cell may be the 

ideal alternative. Whereas, if the city plans to transition the vacant land to a community green 

space or to improve aesthetics, decommissioning all impervious surfaces and transitioning to 

grass may be the alternative that accomplishes the goals.  

 

6.6. Validation and Verification 

This model was validated and verified using three steps: conceptual model validation, 

computerized model verification, operational validation (see Table 6.10). The first meetings for 

validation and verification occurred in October 2014 with five subject matter experts (SMEs) 

from Flint and Saginaw who were asked to provide feedback on difference aspects of the 

stormwater infrastructure analysis. The average of the quantitative values for the assessment of 

different model components are shown in Table 6.11. The experts had a minimum of 15 years 

experience working with the city water or wastewater utilities in operations or management roles. 

In March 2015, the validation and verification process was repeated with 4 subject matter experts 

from the same two cities, with SMEs that had a minimum of 10 years working with urban 

planning or city water or wastewater utilities in operations or management roles. The SMEs 

validated the conceptual model for the assumptions and representation of the underground 

infrastructure and topology of the land.  The operational validation was accomplished by 

confirming that results were consistent across case studies and with published literature (see 
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Table 6.12). Furthermore, the SMEs confirmed that the reductions of runoff were confirmed to be 

reasonable.  

 

Table 6.10. Validation and verification steps 

Validation and Verification Components Justification 
Data Validity (Sargent 2004) 
Data is correct, reliable, and able to 
sufficiently represent system or population  

Data used is provided by the cities, and published 
literature from reliable sources (e.g., NCDC 2014; 
USDA: NRCS 2013, Baird and Jennings 1996). 

Conceptual Model Validation (Sargent 
2004) 
The theories, assumptions, and 
representations of the problem are accurate 

The final model was validated for the assumptions and 
representation of the infrastructure by 5 SMEs in Flint 
and Saginaw. Specific quantitative scores for the 
validation of the final model may be found in Table 6.11. 

Computerized Model (Sargent 2004) 
The computer model accurately represents 
the conceptual model 
 

The results were consistent across case studies, the final 
model was validated that is accurately represents 
infrastructure system discussed conceptually by 5 SMEs 
in Flint and Saginaw. Specific quantitative scores for the 
validation of the final model may be found in Table 6.11. 

Operational Validity (Sargent 2004) 
The behavior of the model accurately 
represents the system 
 

The model’s results were consistent across case studies 
and the status quo alternative was verified by published 
literature. The final model was validated that the 
behavior of the model, in terms of the reductions of 
runoff, is reasonable by 5 SMEs in Flint and Saginaw. 
Specific quantitative scores for the validation of the final 
model may be found in Table 6.11. 

Operational Validity (Sargent 2004): 
Degenerate Tests 
Behavior of model responds appropriately 
to changes in parameters 

Three types of retooling alternatives were evaluated, 
namely, decommissioning impervious surfaces, 
transitioning land uses, and incorporating bioretention 
cells. The results from the retooling alternatives were 
reasonable in comparison to the status quo/base 
alternative. 

Operational Validity (Sargent 2004): 
Extreme Condition Tests 
The model behaves appropriately when the 
extreme ends of ranges for parameters is 
used 

The model estimated the quantity of runoff appropriately 
when all impervious surfaces were decommissioned, as 
well as when the synthetic storms were incorporated into 
the model. 

Operational Validity (Sargent 2004): 
Internal Validation 
Multiple run replications occur to ensure 
consistency  

Multiple simulations with the base model were 
performed to ensure model stability.   

 

Table 6.11. Quantitative feedback from SMEs for validation and verification purposes 

 Aspect of the Stormwater Model Averages* 
The components of the model represent the most critical aspects 
of the system needed for modeling the goal.  4.6 

The behavior of the model is reasonable. 4.6 
The theories and assumptions underlying the model are correct. 4.6 
The model’s representation of the system is reasonable. 5 
The assumptions regarding the model’s parameters and 
variables are reasonable. 4.4 
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Table 6.11. (continued) 

 Aspect of the Stormwater Model Averages* 
The level of detail used for the model is appropriate for the 
intended purpose of providing information regarding the impact 
of decommissioning and LID alternatives on generated runoff. 

4.4 

The output of the model has the accuracy required for the 
model’s intended purpose. 4.6 

The model could be helpful for stormwater management and 
produces useful results. 5 

 
*(1: poor, 2: needs significant improvements, 3: needs modifications to be useful, 4: good enough, 5: 

excellent) 

 
Table 6.12. External validation 

Relevant findings Study 
Status quo/base model runoff comparable for land use and 
percentage of impervious surfaces Gironás et al. (2009); MDOT (2006) 

Decommissioning impervious surfaces can reduce the 
generated runoff USEPA (2014) 

Percentage of reduced runoff in bioretention cells (45-99% 
dependent on study) aligns with estimated runoff reductions 
post bioretention cell implementation 

Davis (2008); Hunt et al. (2008); 
Chapman and Horner (2010); DeBusk 
and Wynn (2011)  

During small precipitation events, bioretention cells modeled 
were capable of capturing inflows, consistent with the findings 
for 10 minute storms from this study  

Davis (2008) 

Sizing of and density/choice of vegetation impact the 
performance of the bioretention cell, consistent with findings in 
this study 

Davis et al. (2009); Brown and Hunt 
(2012) 

 

6.7. Summary 

Chapter 6 evaluates the impact of retooling scenarios using SWMM and L-THIA to examine how 

retooling alternatives may impact the generated stormwater runoff based on: (1) historic 

county/local data, (2) 2-year, 24-hour storm, (3) 10-year, 24-hour, storm, (4) 2-year, 10-minute 

storm (Saginaw only), and (5) 10-year, 10-minute, storm (Saginaw only). Three categories of 

retooling alternatives for stormwater decommissioning were evaluated:  

1) Decommissioning impervious surfaces. 

2) Transitioning land uses. 

3) Incorporating bioretention cells at the neighborhood/lot level, with runoff from the 

candidate area diverted to the bioretention cell. 

 

As expected, all retooling alternatives did reduce the generated runoff within the analysis area. L-

THIA understated the total generated runoff considerably in comparison to SWMM. The ratio of 
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runoff to precipitation estimated in SWMM for the residential zoning aligned with literature, 

whereas L-THIA’s estimated ratios of runoff to precipitation were much lower. The lower ratios 

of runoff to precipitation in L-THIA may be a result of the generalized assumptions of the region, 

as opposed to area specific models, the precipitation data based on daily averages as opposed to 

more granular 30-minute increments, or the inability of the tool to incorporate local subsurface 

drainage systems (i.e., stormwater/wastewater infrastructures). Although, the magnitude of runoff 

varied between the two tools, the percentage change between the status quo/base model and 

different retooling alternatives are comparable. Therefore, while the SWMM and L-THIA differ 

in estimates of the total runoff, we can generalize that the impact between alternatives is similar.  

 

In the context of decommissioning pavement and transitioning land uses, the higher the 

percentage of impervious surfaces that were decommissioned, the greater the reduction in the 

runoff for local precipitation data, for all storms evaluated. The land use transformations assume 

that all impervious surfaces have been decommissioned and the land is undergoing transition.  

Between the land transformation alternatives of grass/pasture and woods (the two options 

evaluated using both tools), transitioning the land to forest or woods has the greatest potential for 

reduction in runoff. The land use options meadow and brush were also evaluated in SWMM, with 

brush yielding the highest reduction of runoff for all land uses, across both tools.  Brush and 

meadow land uses were not assessed in L-THIA since L-THIA does not include these options. In 

Saginaw, due to the future land use designation of transition to the “Green Zone”, grass/pasture 

may be more desirable, and does have a high reduction in runoff, as well. .  

 

Both LTHIA and SWMM assumed that decommissioning had not occurred prior to implementing 

the bioretention cell. The bioretention cells evaluated using SWMM were customized based on 

different percent routing of runoff, storage depth, and presence of vegetation. The bioretention 

cell modeled using L-THIA could not be customized. The results of the analysis using L-THIA 

consistently estimated a lower impact due to incorporating a bioretention cell on the generated 

runoff in comparison to SWMM. In SWMM, the storage area and percentage of runoff routed to 

the cell were the most influential factors determining the bioretention cell’s effectiveness of 

reducing runoff. The greater the percentage of runoff routed to the cell, as well as the greater the 

storage area, the better the bioretention cell performed during typical precipitation patterns, as 

well as, during the storms. When viewing the percent change in runoff from the status quo, L-

THIA consistently estimated a much smaller impact than SWMM for both cities. The minimal 
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change in runoff estimated by L-THIA was a 10% reduction in the runoff, estimated for B/C soils 

in Flint. The maximum change in Flint was a 43% change in the runoff for D soils in Saginaw.  

 

In general, decommissioning all impervious surfaces and transitioning land uses from residential 

to natural landscapes is the most effective retooling alternative for reducing runoff per dollar 

spent, regardless of soil type. Brush landscape had the highest return on investment for 

transitioning land uses, followed by meadow, woods, and finally, grass/pasture. Based on 

SWMM estimates and conceptual costs, the bioretention cell providing the highest return is the 6-

inch storage, with dense vegetation, and 100% of the runoff routed to the cell. Depending on the 

goals of the city one retooling alternative may be more appropriate/appealing than another.  

 

This study demonstrates that retooling alternatives are a viable method for reducing the generated 

stormwater runoff and allow for infiltration or treatment onsite. Within shrinking cities, there is 

potential to transition land uses and incorporate these retooling alternatives to improve the 

aesthetics of the area and to aid in decreasing the number of overflows and volume of each 

overflows occurring in the city. By reducing the generated runoff, the strain on the wastewater 

treatment plant served by the city during wet weather events can be reduced, to mitigate the 

necessity of expanding the plant or underground infrastructure to comply with the Clean Water 

Act.  For instance, 7.5 million gallons per day of stormwater enters Saginaw’s wastewater 

treatment plant. During wet weather the plant may reach capacity, causing combined sewer 

overflows that may be mitigated through reducing the generated runoff from vacant and 

abandoned land.  

 

The effectiveness of re-zoning and transforming land, as well as incorporating bioretention cells 

to proactively manage underutilized infrastructure was analyzed in this study. Previous literature 

discusses the impact of decommissioning underutilized impervious surfaces in shrinking cities 

(e.g., Hendrickson 2009; Burkholder 2012; USEPA 2014) without quantifying the impacts of 

such retooling alternatives. This study presents an approach for quantifying the impact of 

retooling alternatives on the generated runoff. This approach can assist cities on combined sewer 

systems to analyze possible methods to reduce the runoff entering the infrastructure systems, 

possibly reducing the volume of or frequency of overflows. When cities cannot afford the 

financial investment to separate combined sewers, implementing retooling alternatives may be a 

cost effective method for reducing the strain on the wastewater treatment plant. 
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The findings from this study can assist cities operating on separate sewer systems by providing 

strategies for reducing the runoff and non-point source pollutants from entering the stormwater 

system, thereby improving the water source quality.  The viability of retooling alternatives was 

analyzed using open-source software, thus providing fiscally strained cities an economical option 

for analyses. Furthermore, quantifying the area needed for bioretention cells in terms of vacant 

lots provides a reference to the relative area necessary per city block to accomplish the reductions 

in runoff.   
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CHAPTER 7. GAUGING PUBLIC VIEWS TOWARDS WATER AND WASTEWATER 

ISSUES AND RETOOLING ALTERNATIVES 

“Water management is constrained by physical characteristics, regulation, contracts, and 

politics. Thus, integral water management needs to be pluralistic, involving multiple stakeholders 

who represent multiple perspectives.” 

-van der Brugge et al. 2005 

 

Local governing agencies responsible for making decisions regarding public utilities often face 

the difficult task of acquiring and maintaining stakeholder support for their decisions. To better 

understand the views of the general public in shrinking cities, a survey was deployed to assess the 

perceptions, knowledge, awareness, and attitudes regarding water and wastewater infrastructure 

issues and infrastructure retooling alternatives in shrinking cities.  Sudarmadi et al. (2001) defines 

the concepts explored via this survey as follows:  

(1) Perception: the ability to perceive issues in the real world, based on memory and 

influenced by prior experience (e.g., “I have water quality issues in my neighborhood”). 

(2) Knowledge: the understanding of the body of facts and principles concerning the issues 

(e.g., “I know the cause of the water quality issue”). 

(3) Awareness of issues: the attention, concern, and sensitivity to the issue (e.g., “I think 

water quality in my neighborhood is a serious problem”). 

(4) Attitude towards the issues: the values and feelings of concern and the motivation for 

actively participating in support or opposition (e.g., “I think water quality requires 

attention”). 

 

The results of the qualitative and quantitative analyses are presented in this chapter. The IRB 

approval, full survey, and specific statistics that are not shown in Section 7.1 accompanying 

respective graphs may be found in Appendices E, F, and G. Many of the graphs shown in Section 

7.1 are composed of two parts. The first graph depicts the break down of the responses on a five-
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point scale (strongly disagree/oppose, disagree/oppose, neutral, agree/support, strongly 

agree/support) with a sixth option being “I do not know.” The option “I do not know” allowed 

for respondents who did not feel confident in responding to the question or were undergoing 

decision paralysis, to opt out of answering without skipping the question or skewing the results. 

The second graph shows the same results, collapsed from a scale spanning strongly oppose to 

strongly agree, to binary responses, illustrating strongly oppose/disagree, oppose/disagree, and I 

do not know and strongly agree/support, agree/support, and neutral. Often of interest for 

discussion with policy and decision-makers are those individuals who may pose opposition 

(easily viewed in the collapsed, binary graphs) and how to potentially mitigate that opposition.  

 

Statistical modeling was used to identify significant parameters influencing the support or 

opposition towards different water infrastructure retooling alternatives (discussed in Sections 7.2 

and 7.3). Understanding the sources of opposition and identifying retooling alternatives that have 

an increased likelihood of support may facilitate the incorporation of the community’s vision and 

public participation in the selection of retooling alternatives. 

 

7.1. Descriptive Survey Statistics 

Four hundred and fifty-five (455) complete surveys were collected from the 21 US shrinking 

cities. Of the respondents, approximately 60% were male and approximately half were over the 

age of 50 years old. A majority of respondents had either a high school diploma or a college 

degree and had an individual annual income of less than $35,000. Fifty-eight percent (58%) and 

60% of the respondents were born in or raised in the city currently residing in, respectively. 

Descriptive statistics of the significant demographic variable in the statistical models are shown 

in Table 7.1.  

 

Table 7.1. Survey sample pool demographics 

CHARACTERISTIC MIN/ 
MAX AVE. ST. 

DEV. 
Individual Characteristic 

Male (1 if male, otherwise 0) 0/1 0.61 0.49 
Marital Status    Single (1 if single, otherwise 0)  0/1 0.36 0.48 
Married (1 if married, otherwise 0) 0/1 0.45 0.50 
Civil union (1 if in a civil union, otherwise 0) 0/1 0.04 0.20 
Divorced (1 if divorced, otherwise 0) 0/1 0.12 0.33 
Separated (1 if separated, otherwise 0) 0/1 0.02 0.15 
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Table 7.1. (continued) 

CHARACTERISTIC MIN/ 
MAX AVE. ST. 

DEV. 
Age    18-25 years old (1 if 18-25 years old, otherwise 0) 0/1 0.09 0.28 
26-35 years old (1 if 26-35 years old, otherwise 0) 0/1 0.20 0.40 
36-50 years old (1 if 36-50 years old, otherwise 0) 0/1 0.24 0.43 
over 50 years old (1 if over 50 years old, otherwise 0) 0/1 0.47 0.50 
Highest Level of Education    Some high school (1 if some high school is highest level of education, 
otherwise 0) 0/1 0.03 0.17 

High school diploma (1 if high school diploma is highest level of 
education, otherwise 0) 0/1 0.34 0.47 

Technical college degree (1 if technical college degree is highest level of 
education, otherwise 0) 0/1 0.16 0.37 

College degree (1 if college degree is highest level of education, 
otherwise 0) 0/1 0.35 0.48 

Post Graduate Degree (1 if post graduate degree is highest level of 
education, otherwise 0) 0/1 0.12 0.33 

Respondent Approximate Income    No Income (1 if respondent has no income, otherwise 0) 0/1 0.08 0.27 
Under $19,999 (1 if respondent income is less than $19,999, otherwise 0) 0/1 0.26 0.44 
$20,000-$34,999 (1 if respondent income is between $20,000-$34,999, 
otherwise 0) 0/1 0.24 0.42 

$35,000-$49,999 (1 if respondent income is between $35,000-$49,999, 
otherwise 0) 0/1 0.17 0.38 

$50,000-$74,999 (1 if respondent income is between $50,000-$74,999, 
otherwise 0) 0/1 0.87 0.34 

$75,000-$99,999 (1 if respondent income is between $75,000-$99,999, 
otherwise 0) 0/1 0.06 0.24 

$100,000 and above (1 if respondent income is greater than $100,000, 
otherwise 0) 0/1 0.04 0.21 

Employment Status    Employed for wages or salary (1 if employed for wages or salary, 
otherwise 0) 0/1 0.41 0.49 

Self-employed (1 if self-employed, otherwise 0) 0/1 0.09 0.29 
Out of work and looking for work (1 if out of work and looking for work, 
otherwise 0) 0/1 0.05 0.22 

Out of work and not currently looking for work (1 if out of work and not 
looking for work, otherwise 0) 0/1 0.01 0.11 

Homemaker (1 if a homemaker, otherwise 0) 0/1 0.13 0.33 
Student (1 if a student, otherwise 0) 0/1 0.06 0.24 
Retired (1 if a retired, otherwise 0) 0/1 0.21 0.41 
Unable to work (1 if a unable to work, otherwise 0) 0/1 0.10 0.30 
Primary Source of News    Newspaper (1 if primary source of news is the newspaper, otherwise 0) 0/1 0.36 0.48 
Internet (1 if primary source of news is the Internet, otherwise 0) 0/1 0.66 0.47 
Television (1 if primary source of news is the television, otherwise 0) 0/1 0.75 0.43 
Radio (1 if primary source of news is the radio, otherwise 0) 0/1 0.26 0.44 
Social media (1 if primary source of news social media, otherwise 0) 0/1 0.15 0.36 
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Table 7.1. (continued) 

CHARACTERISTIC MIN/ 
MAX AVE. ST. 

DEV. 
Other    Grew-up in city currently reside in (if grew-up in the city currently 
residing in, otherwise 0) 0/1 0.60 0.49 

Born in city currently reside in  (if born  in the city currently residing in, 
otherwise 0) 0/1 0.58 0.49 

Number of years lived in city currently reside in (years) 0.25/
80 32.94 20.69 

Responsible for water bill (1 if responsible for water bill, otherwise 0) 0/1 0.71 0.45 
Household Characteristics 

Household Approximate Income    Under $19,999 (1 if household income is less than $19,999, otherwise 0) 0/1 0.03 0.18 
$20,000-$34,999 (1 if household income is between $20,000-$34,999, 
otherwise 0) 0/1 0.16 0.37 

$35,000-$49,999 (1 if household income is between $35,000-$49,999, 
otherwise 0) 0/1 0.18 0.39 

$50,000-$74,999 (1 if household income is between $50,000-$74,999, 
otherwise 0) 0/1 0.17 0.38 

$75,000-$99,999 (1 if household income is between $75,000-$99,999, 
otherwise 0) 0/1 0.23 0.42 

$100,000 and above (1 if household income is greater than $100,000, 
otherwise 0) 0/1 0.12 0.32 

Under $19,999 (1 if household  income is less than $19,999, otherwise 0) 0/1 0.10 0.30 
Classification of Area Reside In    Urban (1 if reside in an urban area, otherwise 0) 0/1 0.40 0.49 
Suburban (1 if reside in a suburban area, otherwise 0) 0/1 0.50 0.00 
Rural (if reside in a rural area, otherwise 0) 0/1 0.08 0.28 
Ownership of Household    Mortgage or loan (1 if household is owned via a mortgage or a loan, 
otherwise 0) 0/1 0.47 0.50 

Owned free and clear (1 if household is owned free and clear, otherwise 
0) 0/1 0.20 0.40 

Rented (1 if household is rented, otherwise 0) 0/1 0.31 0.46 
Other    First household owned (1 if household is the first household owned, 
otherwise 0) 0/1 0.36 0.48 

Length of time owning household (years) 0/1 16.23 13.64 
Number of people living in household (people) 1/9 2.59 1.34 
Number of children under the age of 18 living in household (children 
under the age of 18) 0/5 0.56 0.93 

Number of children under the age of 5 living in household (children 
under the age of 5) 0/3 0.17 0.49 

Number of cars in household (cars) 0/8 1.49 0.93 
 

While it may seem obvious that residents of shrinking cities would be aware of a shrinking city 

when residing in one, people’s perspectives are often drawn from observations made by highly 

localized conditions. Shrinking cities often have several sub-areas that experience stability or 

even robust growth, and people in these subareas may have a very different view of infrastructure 
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issues. The survey distributed to residents of the shrinking cities did not specify that the targeted 

sample consisted of residents in cities experiencing urban decline, but merely stated that the 

survey was investigating public perceptions of water infrastructure. A question posed at the 

beginning of the survey was, “In the past four decades, my city has: decreased in population; had 

no change in population; increased in population; or I do not know.” As shown in Figure 7.1, only 

53.9% of the residents were aware that population decline had occurred in their city8. 

 

 
Figure 7.1. Survey respondents’ awareness of population dynamics in his/her city 

 

Another interesting finding arising from the final survey results is that over 70% of the survey 

respondents indicated that they would be willing to pay higher rates for improved water or 

wastewater services (Figure 7.2) that may be potentially achieved via implementing the 

infrastructure retooling alternatives. However, although there is a willingness to pay higher rates, 

a majority of respondents did not know their water and wastewater utilities are financially self-

sustaining services or are fiscally strained (shown in Figure 7.3). This may point out a 

communication gap between the public and the utility providers in understanding how the service 

is provided from a financial standpoint and the impact of fewer consumers on the per capita water 

and wastewater infrastructure systems costs. Furthermore, only 20% of respondents stated that 

they trusted their utility providers to make decisions in their (the customers’) best interest. 

Outreach targeting the decision-makers’ reasoning behind decisions may mitigate potential 

opposition from residents who are resistant to implementing changes, such as changes to the 

existing physical infrastructure system or service prices.  
                                                        
8 Paragraph adapted from Faust et al. (2015b) 
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Figure 7.2. Willingness to pay for service 

 

 
(a) 

 
(b) 

Figure 7.3. Water and wastewater questions regarding utility providers: (a) Expanded responses 

and (b) Collapsed, binary responses 
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The survey data indicated that there is support for implementing water and 

wastewater/stormwater infrastructure retooling alternatives (Figures 7.4 and 7.5). However, when 

asked directly what the respondent’s thinks should be done in his or her city, the responses are 

drastically different, as shown in Figure 7.6, which captures the attitude towards select water 

infrastructure alternatives. The differences between attitudes and perceptions may be capturing 

factors such as, the NIMBY theory (“not in my backyard”), or simply that the respondent does 

not have a strong preference for a specific alternative.  The attitude question was posed as a 

binary question, agree or disagree, to avoid decision paralysis and force a stance that is often 

missed when questions are posed on a multi-point scale with a neutral or I do not know option 

(Tversky and Shafir 1992). A simple example highlighting the difference between perception and 

attitude may be the installation of a wastewater treatment plant in a city. A resident in the city of 

the proposed plant may support the effort (“I support that effort of expanding the wastewater 

treatment capacity of my city”) but would not necessarily seek its siting in his/her neighborhood 

(“I do not want a wastewater treatment plant adjacent to my neighborhood, viewable from my 

window”).9 

 

Understanding these perceptions and attitudes among the public towards a decision could aid in 

transitioning management practices or implementing infrastructure retooling alternatives by 

mitigating opposition and incorporating decisions that reflects the community vision. It should be 

noted that the views expressed in Figures 7.4-7.6 illustrate a snapshot in time of the public 

attitude and perception. Attitude and perceptions are dynamic, changing with external factors 

such as, additional information, experience, education, and outreach.  

 

 

 

 

                                                        
9 Paragraph adapted from Faust et al. (2015a) 
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(a) 

 
(b) 

Figure 7.4. Responses regarding perceptions of water infrastructure retooling alternatives:  

(a) Expanded responses and (b) Collapsed, binary responses 
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(a) 

 
(b) 

Figure 7.5. Responses regarding perceptions of wastewater/stormwater infrastructure retooling 

alternatives: (a) Expanded responses and (b) Collapsed, binary responses 

 

 
Figure 7.6. Responses regarding attitude towards select water infrastructure retooling alternatives 
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7.2. Attitude towards implementing specific water infrastructure alternatives10 

Five water infrastructure management alternatives were explored to understand the attitudes of 

the shrinking city residents towards these alternatives. In the survey, each respondent was asked 

which alternatives of the following retooling alternatives should be implemented in his/her city:  

1. Invest in expanding the current infrastructure footprint.  

2. Raze or decommission infrastructure.  

3. Repurpose infrastructure.  

4. Invest in maintenance of current infrastructure.  

5. Do nothing. 

 

7.2.1. Statistical Modeling of Attitudes Results 

Binary probit models were used to quantify the significant variables that increase the tendency 

towards agreeing (disagreeing) with the implementation of specific management. In Table 7.2, a 

positive (negative) parameter indicates an increased likelihood of agreeing (disagreeing) with the 

respective alternative. The marginal effects are shown in Table 7.3. 

 

Table 7.2. Significant parameters for survey responses to the statement “I think my city 

should…” as determined by the binary probit models  

 
Invest in More 
Infrastructure 

Raze or 
Decommission 
Infrastructure 

Repurpose 
Infrastructure 

Invest in 
Maintenance 

of Current 
Infrastructure 

Do 
Nothing 

Independent Variable Parameter 
(t-statistic) 

Parameter 
(t-statistic) 

Parameter 
(t-statistic) 

Parameter 
(t-statistic) 

Parameter 
(t-statistic) 

Constant -0.855 (-8.644) -1.652 (-8.701) -1.766 (-6.186) -0.908 (-3.090) 0.751 
(2.231) 

Gender (1 if male, 
otherwise 0) - - 0.284 (1.918) - - 

Age (1 if over 50, 
otherwise 0) - - -.0477 (-3.252) - - 

Age (1 if less than 35, 
otherwise 0) - - - 0.458 (2.029) -0.456  

(-1.893) 
Income indicator (1 if less 
than $35,000, otherwise 0) 0.239 (1.704) - - - -0.284  

(-1.825) 
Employment status (1 if 
out of work and looking 
for work, otherwise 0) 

- - - 0.564 (2.043) - 

Employment status (1 if 
retired, otherwise 0) - - - - -0.328 

 (-1.819) 
Identified race (1 if Black 
or African American, 
otherwise 0) 

0.477 (2.877) - - -0.386 (-2.394) - 

                                                        
10 Section adapted from Faust et al. (2015a) 
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Table 7.2. (continued) 

 
Invest in More 
Infrastructure 

Raze or 
Decommission 
Infrastructure 

Repurpose 
Infrastructure 

Invest in 
Maintenance 

of Current 
Infrastructure 

Do 
Nothing 

Relationship Status (1 if 
single, divorced, or 
separated, otherwise 0) 

- - 0.282 (2.016) - - 

Ownership of household 
(1 if someone in the 
household rents the 
household, otherwise 0) 

-0.370 (-2.372) - - - - 

Ownership of household 
(1 if someone in the 
household owns the house 
with a loan or mortgage, 
otherwise 0) 

- - - - 0.332 
(2.285) 

Number of cars in the 
household (cars) - - - - -0.247  

(-2.820) 
Cars in the household 
indicator (1 if household 
has cars, otherwise 0) 

- - - 0.375 (1.800) - 

Cars in the household 
indicator (1 if household 
has more than two cars, 
otherwise 0) 

- 0.490 (1.917) - - - 

Indicator that city 
currently residing in is the 
same as grew up in (1 if 
grew up in the city 
currently residing in, 
otherwise 0) 

- - - - -0.331  
(-2.444) 

Responsible for water bill 
indicator (1 if responsible, 
otherwise 0) 

- - - - -0.422  
(-2.708) 

Primary news source (1 if 
social media, otherwise 0) 0.453 (2.599) - - - - 

Primary news source (1 if 
internet, otherwise 0) - 0.357 (1.713) 0.359 (2.261) - -0.355  

(-2.462) 
Primary news source (1 if 
newspaper, otherwise 0) - - - 0.276 (2.176) - 

Primary news source (1 if 
television, otherwise 0) - - 0.311 (1.802) - - 

Frequency of following 
the news (1 if daily, 
otherwise 0) 

- - 0.377 (1.913) - - 

Cleveland, Ohio indicator 
(1 if currently residing in 
Cleveland, otherwise 0) 

0.454 (2.419) - - - - 

Flint, Michigan indicator 
(1 if currently residing in 
Flint, otherwise 0) 

- 0.601 (1.713) - - - 

Gary, Indiana indicator (1 
if currently residing in 
Gary, otherwise 0) 

0.702 (1.693) - - - - 

Ohio State indicator (1 if 
currently residing in Ohio, 
otherwise 0) 

- -0.510 (-2.265) - - - 
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Table 7.2. (continued) 

 
Invest in More 
Infrastructure 

Raze or 
Decommission 
Infrastructure 

Repurpose 
Infrastructure 

Invest in 
Maintenance 

of Current 
Infrastructure 

Do 
Nothing 

Pennsylvania State 
indicator (1 if currently 
residing in Pennsylvania, 
otherwise 0) 

- - - -0.402 (-1.984) - 

Scranton, Pennsylvania 
indicator (1 if currently 
residing in Scranton, 
otherwise 0) 

- - - - 0.679 
(1.763) 

Trenton, New Jersey 
indicator (1 if currently 
residing in Trenton, 
otherwise 0) 

0.824 (2.047) - - -1.318 (-2.355) - 

Log Likelihood -250.691 -114.9553 -213.1905 -296.415 -
231.8582 

AIC 517.704 240.044 440.631 609.154 484.211 
BIC 550.345 260.510 469.223 641.792 524.920 

 

Table 7.3. Marginal effects for survey responses to the statement “I think my city should…” as 

determined by the binary probit models 

  

Invest in More 
Infrastructure 

Raze or 
Decommission 
Infrastructure 

Repurpose 
Infrastructure 

Invest in 
Maintenance 
of Current 

Infrastructure 

Do 
Nothing 

Gender (1 if male, 
otherwise 0) - - 0.074 - - 

Age (1 if over 50, 
otherwise 0) - - -0.126 - - 

Age (1 if less than 35, 
otherwise 0) - - - 0.170 -0.153 

Income indicator (1 if less 
than $35,000, otherwise 0) 0.080 - - - -0.082 

Employment status (1 if 
out of work and looking 
for work, otherwise 0) 

- - - 0.221 - 

Employment status (1 if 
retired, otherwise 0) - - - - -0.090 

Identified race (1 if Black 
or African American, 
otherwise 0) 

0.168 - - -0.147 - 

Relationship Status (1 if 
single, divorced, or 
separated, otherwise 0) 

- - 0.075 - - 

Ownership of household 
(1 if someone in the 
household rents the 
household, otherwise 0) 

-0.115 - - - - 

Ownership of household 
(1 if someone in the 
household owns the house 
with a loan or mortgage, 
otherwise 0) 

- - - - 0.099 
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Table 7.3. (continued) 
 

  

Invest in More 
Infrastructure 

Raze or 
Decommission 
Infrastructure 

Repurpose 
Infrastructure 

Invest in 
Maintenance 
of Current 

Infrastructure 

Do 
Nothing 

Number of cars in the 
household (cars) - - - - -0.073 

Cars in the household 
indicator (1 if household 
has cars, otherwise 0) 

- - - 0.142 - 

Cars in the household 
indicator (1 if household 
has more than two cars, 
otherwise 0) 

- 0.083 - - - 

Indicator that city 
currently residing in is the 
same as grew up in (1 if 
grew up in the city, 
otherwise 0) 

- - - - -0.100 

Responsible for water bill 
indicator (1 if responsible, 
otherwise 0) 

- - - - -0.133 

Primary source of news (1 
social media, otherwise 0) 0.160 - - - - 

Primary source of news (1 
if internet, otherwise 0) - 0.041 0.091 - -0.110 

Primary source of news (1 
if newspaper, otherwise 0) - - - 0.109 - 

Primary source of news (1 
if television, otherwise 0) - - 0.077 - - 

Frequency of following 
the news (1 if daily, 
otherwise 0) 

- - 0.090 - - 

Cleveland, Ohio indicator 
(1 if currently residing in 
Cleveland, otherwise 0) 

0.162 - - - - 

Flint, Michigan indicator 
(1 if currently residing in 
Flint, otherwise 0) 

- 0.112 - - - 

Gary, Indiana indicator (1 
if currently residing in 
Gary, otherwise 0) 

0.263 - - - - 

Ohio State indicator (1 if 
currently residing in Ohio, 
otherwise 0) 

- -0.058 - - - 

Pennsylvania State 
indicator (1 if currently 
residing in Pennsylvania, 
otherwise 0) 

- - - -0.151 - 

Scranton, Pennsylvania 
indicator (1 if currently 
residing in Scranton, 
otherwise 0) 

- - - - 0.241 

Trenton, New Jersey 
indicator (1 if currently 
residing in Trenton, 
otherwise 0) 

0.311 - - -0.372 - 
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7.2.2. Discussion of Significant Parameters Impacting Attitude 

When exploring viable infrastructure retooling alternatives, decision-makers may use the 

estimated models to identify which individuals have an increased likelihood of opposition, 

allowing for proactive efforts, such as outreach or incorporating participatory processes (e.g., 

town hall meetings, focus groups), to mitigate any potential resistance. In the statistical analyses, 

locations were recurring, significant variables for indicating an initial propensity to support 

(oppose) the implementation of specific alternatives. Consistent with the previous finding about 

the willingness to pay increased rates for improved reliability of service discussed in Section 7.1, 

individuals were willing to support implementing new retooling alternatives in their cities. 

Specific locations in which residents indicated support of implementation of a management 

alternative included: 

• Cleveland, Ohio. Residents of Cleveland have a 0.162 increase in the probability of 

supporting measures to invest in more physical water infrastructure. 

• Flint, Michigan. Residents of Flint have a 0.112 increase in the probability of supporting 

decommissioning or razing water infrastructure. 

• Gary, Indiana. Residents of Gary have a 0.263 increase in the probability of supporting 

investing in more physical water infrastructure.  

• Scranton, Pennsylvania. Residents of Scranton have indicated a 0.241 increase in the 

probability that the utility providers should maintain the status quo.  

• Trenton, New Jersey. Residents of Trenton have indicated a 0.311 increase in the 

probability of supporting measures to invest in more physical water infrastructure. 

 

The locations in which residents opposed the selected alternatives were: 

• Shrinking cities in Ohio. Residents of shrinking cities in Ohio have a 0.058 decrease in the 

probability of supporting decommissioning or razing water infrastructure. 

• Shrinking cities in Pennsylvania. Residents of shrinking cities in Pennsylvania have a 

0.151 decrease in the probability of supporting the investment of maintenance of current 

water infrastructure.  

• Trenton, New Jersey. Residents of Trenton have a 0.372 decrease in the probability of 

supporting measures that invest in the maintenance of current water infrastructure. 

 

Location variables are important to consider for decision makers when considering viable 

alternatives to explore further for potential implementation. The initial propensity to support or 
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oppose different infrastructure retooling alternatives may be due to a communication gap or lack 

of awareness towards issues inherent to shrinking cities. For instance, Cleveland, Gary, and 

Trenton were significant positive location parameters that are more likely to support investing in 

more infrastructure, indicating a lack of knowledge surrounding the relationship between the 

fixed grid infrastructure system and the declining population. This location specific information 

may be a conversation starter between the residents and utilities on how to move forward within 

the community vision, to dispel incorrect information regarding utilities in a shrinking city, or to 

discuss the viability of infrastructure retooling alternatives with increased likelihood of support.  

 

Many demographics were found significant to influence the attitude towards retooling 

alternatives that were evaluated in the five models. It is important to note that these models 

capture a moment in time, when the survey was deployed, and attitudes are dynamic. 

 

Age was a signification demographic variable, with individuals less the 35 years old being more 

likely to oppose the status quo/doing nothing alternative and more likely to support maintaining 

existing infrastructure. Conversely, individuals over the age of 50 were more likely to oppose 

repurposing infrastructure. These findings may be capturing a resistance to change as openness 

for progressive change has been shown to decline as individuals age (Westerhoff 2008).   

 

Men are more likely to support repurposing infrastructure, possibly reflecting the importance that 

males can play in household incomes and decision-making (Wang et al. 2013). Additionally, 

individuals who are single, divorced, or separated, are more likely to support repurposing 

infrastructure further supporting that retooling alternatives may be viewed as a viable method to 

stabilize costs when living expenses are not shared amongst partners.  

 

Individuals with incomes less than $35,000 are more likely to support increasing investment in 

more infrastructure and less likely to support doing nothing.  African Americans in shrinking 

cities are more likely to support investing in more infrastructure as opposed to investing in 

maintaining current infrastructure. However, those individuals who are out of work are more 

likely to support investing in maintain infrastructure, likely recognizing this retooling alternative 

to be seemingly less financially burdensome on the customers/rate-payers.  

 



 

159  
 

Ownership of cars increased the likelihood of opposition for the ‘do nothing’ alternative. 

Consistent with this finding is that individuals with more than two cars were more likely to 

support decommissioning or razing infrastructure and individuals with any cars (more than zero) 

in the household were more likely to support maintaining existing infrastructure. This finding 

may be capturing some measure of wealth and mobility that would make these people less likely 

to be impacted by increasing investments for maintenance or may simply reflect the economics 

involved in owning additional cars which results in less disposable income and thus, motivation 

to find a way (decommissioning or razing infrastructure or maintain infrastructure) to stabilize 

future utility rates. 

 

Ownership of homes was a significant parameter. Renters were more likely to oppose investing in 

more infrastructure, possibly capturing a disinterest in investing in an area that the renter is not 

permanently tied to or the economics involved in renting a household and having less disposable 

income (as discussed with car ownership). If the home is owned via a loan, the individual is more 

likely to support doing nothing to the water infrastructure, seemingly capturing the decrease in 

disposable income due to loan payments and the view that doing nothing, in the near future, will 

not change rates and further strain the low incomes rampant in shrinking cities.  

 

Those responsible for their water bill were found to be less likely to support doing nothing for 

water infrastructure. Additionally, individuals who grew-up in the city and are retired are also less 

likely to support doing nothing for water infrastructure. As the average income in shrinking cities 

is typically below the average income for the state, these individuals may see retooling 

alternatives as a viable method to stabilize or reduce water service costs, one of many living 

expenses. 

 

The primary source of news of the respondents was a significant variable in many models. The 

significance of the primary source of news may be due to the age group primarily using the 

medium as a source of news (e.g., radio as a primary news source is often reaching older 

generations as discussed by Kohut et al. (2010)), the stories that are highlighted via the medium 

and the flexibility to search for own new stories of interest. For instance, the Internet provides for 

flexibility to choose from a wide range of new stories, whereas the radio provides the listener 

with limited flexibility.  
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7.3. Perception towards specific water infrastructure alternatives11 

Decommissioning water infrastructure components or increasing the cost of service to cover 

additional infrastructure or replacement costs are two retooling alternatives that represent extreme 

ends of the spectrum from the perspective of reducing the physical infrastructure footprint or 

maintaining/increasing the physical infrastructure footprint at increased service costs. This 

section explores the perceptions of residents in shrinking cities of these two extreme ends of the 

management/ retooling alternative spectrum.  

 

7.3.1. Effects of Population-Decline Awareness 

A critical component as to how people might react to these two retooling alternatives 

(decommissioning or increasing costs) is whether or not they are aware that their city is shrinking. 

As previously mentioned, only slightly more than 50% (53.9%) of the residents were aware that 

population decline had occurred in their city (Figure 7.1). To test if the probability that people 

oppose decommissioning, or rate increases, is fundamentally different between respondents who 

are aware that their city’s population is declining and those who are not, likelihood ratio tests are 

conducted.  The test statistic for this is (Washington et al. 2011),  

 

X2 = –2[LL(βT) – LL(βa) – LL(βna)]    [Eqn. 7.1] 

      

where LL(βT) is the log-likelihood at convergence of the model  estimated with the data from all 

respondents (those aware of the population decline and those who are not), LL(βa) is the log-

likelihood at convergence of the model using only respondents aware of the population decline, 

and LL(βna) is the log-likelihood at convergence of the model using only respondents who are not 

aware of the population decline.  This X2 statistic is χ2 distributed with degrees of freedom equal 

to the summation of the number of estimated parameters in the aware and not-aware models 

model minus the number of estimated parameters in the all-respondent model.  The resulting X2 

statistic provides the confidence level that the null hypothesis (that the parameters are the same 

between those who are aware and those who are not) can be rejected.  For the decommissioning 

model the X2 statistic is 26.55. With 8 degrees of freedom, the χ2 test indicates that we can be 

over 99.9% that the aware and not-aware models are not the same. For the cost-raising model, the 

X2 statistic is 27.72 and with 10 degrees of freedom, the χ2 test indicates that we can be about 

                                                        
11 Section adapted from Faust et al. (2015b) 
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99.8% that the aware and not-aware models are not the same.  Given these findings, separate 

models are estimated for respondents who indicated that they were aware of population declines 

in their city and those who are not, for both decommissioning and increased-cost alternatives (a 

total of 4 separate statistical models). 

 

7.3.2. Statistical Modeling of Perceptions Results 

Tables 7.4-7.7 present the model estimation results respectively for:  

1. Decommissioning water infrastructure for residents aware of population decline in their 

city. 

2. Decommissioning water infrastructure for residents unaware of population decline in 

their city. 

3. Increasing costs of water infrastructure service to cover additional infrastructure and 

replacement for residents aware of population decline in their city. 

4. Increasing costs of water infrastructure service to cover additional infrastructure and 

replacement for residents unaware of population decline in their city.  

 

The results show that many variables were found to be statistically significant in determining 

opposition to decommissioning and to cost increases as alternative methods to sustaining 

infrastructure. The effects of some variables were found to vary across the respondent population 

(as indicated by the statistical significance of the standard deviation for random parameters, all of 

which were found to be normally distributed), suggesting considerable heterogeneity across the 

respondent population. 
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Table 7.4. Model of the probability of opposing decommissioning water infrastructure for 

residents aware of population decline (all random parameters are normally distributed)  

Independent Variable Parameter 
 (t-statistic) 

Standard 
Deviation  

(t-statistic) 

Marginal 
Effect 

Fixed Parameters 

Constant 0.454 
(0.825) fixed   

Employment status (1 if unable to work, otherwise 0) -4.365  
(-1.941) fixed -0.012 

Number of cars in household (1 if household has 3 or 
more cars, otherwise 0) 

-13.887  
(-2.964) fixed -0.039 

Buffalo, New York indicator (1 if currently residing 
in Buffalo, otherwise 0) 

2.327 
(2.464) fixed 0.008 

Michigan Indicator (1 if currently live in MI, 
otherwise 0) 

-3.640  
(-2.046) fixed -0.014 

Responsible for Water Service Payment (1 if 
responsible, otherwise 0) 

-2.657  
(-3.392) fixed -0.010 

Random Parameters 

Age (1 if over 50, otherwise 0) -2.009  
(-2.076) 

15.044 
(3.554) -0.006 

Relationship status (1 if married, otherwise 0) -6.773  
(-2.977) 

21.624 
(3.481) -0.012 

Log likelihood at convergence -98.74 
AIC 217.480 
BIC 250.661 

Number of observations 204 
 

 

Table 7.5. Model of the probability of opposing decommissioning water infrastructure for 

residents unaware of population decline (all random parameters are normally distributed) 

Independent Variable Parameter  
(t-statistic) 

Standard 
Deviation  

(t-statistic) 

Marginal 
Effect 

Fixed Parameters 

Constant 0.466  
(0.507) fixed   

Age (1 if over 50, otherwise 0) 2.497  
(3.021) fixed 0.008 

Employment status (1 if retired, otherwise 0) -13.892  
(-1.683) fixed -0.017 

Frequency of following the news (1 if daily, 
otherwise 0) 

-2.340  
(-2.318) fixed -0.008 

Education (1 if educated beyond high school, 
otherwise 0) 

-3.233  
(-3.181) fixed -0.011 

Household Income  (1 if more than $75,000, 
otherwise 0) 

2.383 
(2.696) fixed 0.008 

Primary source of news (1 if newspaper, 
otherwise 0) 

1.846 
(2.317) fixed 0.006 
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Table 7.5. (continued) 

Independent Variable Parameter  
(t-statistic) 

Standard 
Deviation  

(t-statistic) 

Marginal 
Effect 

Random Parameters 

Gender (1 if male, otherwise 0) -4.244  
(-2.783) 

10.630 
(3.513) -0.013 

Length of time owning home (1 if 10 years or 
more, otherwise 0) 

-63.355 
(-2.141) 

171.887 
(2.226) -0.016 

Log likelihood at convergence -78.230 
AIC 178.460 
BIC 213.273 

Number of observations 175 
 

Table 7.6. Model of the probability of opposing increasing the cost of water infrastructure service 

to cover additional infrastructure and replacement for residents aware of population (all random 

parameters are normally distributed) 

Independent Variable Parameter 
(t-statistic) 

Standard 
Deviation 

(t-statistic) 

Marginal 
Effects 

Fixed Parameters 

Constant -1.718 
(-2.742) fixed   

Household Income  (1 if more than $75,000, 
otherwise 0) 

-1.593 
(-2.039) fixed -0.006 

Birmingham, Alabama indicator (1 if currently 
residing in Birmingham, otherwise 0) 

8.220 
(2.512) fixed 0.032 

St. Louis, Missouri indicator (1 if currently residing 
in St. Louis, otherwise 0) 

20.434 
(3.451) fixed 0.08 

Primary source of news (1 if newspaper, otherwise 
0) 

3.125 
(3.710) fixed 0.012 

Random Parameters 

Employment status (1 if retired, otherwise 0) -9.719 
(-3.466) 

16.191 
(3.496) -0.038 

Children present in household (1 if kids under the 
age of 5 live in household, otherwise 0) 

-1.491 
(-1.040) 

12.539 
(2.758) -0.006 

Number of people residing in household (1 if live 
alone, otherwise 0) 

6.002 
(3.288) 

12.351 
(3.429) 0.024 

Location grew up (1 if grew up in city currently 
residing in, otherwise 0) 

-7.301 
(-3.236) 

23.216 
(3.598) -0.029 

Log likelihood at convergence -111.3696 
AIC 248.739 
BIC 291.875 

Number of observations 204 
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Table 7.7. Model of the probability of opposing increasing the cost of water infrastructure service 

to cover additional infrastructure and replacement for residents unaware of population decline (all 

random parameters are normally distributed) 

Independent Variable Parameter  
(t-statistic) 

Standard 
Deviation  

(t-statistic) 

Marginal 
Effects 

Fixed Parameters 

Constant -5.816 
(-2.848) fixed   

Age (1 if over 50, otherwise 0) 3.848 
(2.595) fixed 0.056 

Education (1 if educated beyond high school, 
otherwise 0) 

-2.663 
(-2.346) fixed -0.038 

Employment status (1 if employed for salary or 
wages, otherwise 0) 

-7.163 
(-3.292) fixed -0.103 

Number of people residing in household (1 if live 
alone, otherwise 0) 

8.444 
(3.103) fixed 0.122 

Number of cars in household (cars) 2.087 
(3.072) fixed 0.03 

Relationship status (1 if single, otherwise 0) -5.192 
(-3.186) fixed -0.075 

Location of birth (1 if born in city currently residing 
in, otherwise 0) 

3.146 
(2.522) fixed 0.045 

Random Parameters 

Employment status (1 if retired, otherwise 0) 
-8.161 

(-2.622) 
37.169 
(2.818) -0.118 

Children present in household (1 if kids under the 
age of 5 live in household, otherwise 0) 

8.363  
(3.184) 

6.419 
(2.953) 0.121 

Length of time owning home (1 if 10 years or more, 
otherwise 0) 

5.088 
(2.749) 

3.999 
(2.374) 0.073 

Pittsburgh, Pennsylvania indicator (1 if currently 
residing in Pittsburgh, otherwise 0) 

-10.612  
(-2.311) 

39.752 
(2.746) -0.153 

Primary source of news (1 if newspaper, otherwise 
0) 

-0.348 
(-0.426) 

11.941 
(3.254) -0.005 

Log likelihood at convergence -70.682 
AIC 177.364 
BIC 234.330 

Number of observations 175 
 

7.3.3. Discussion of Significant Parameters Impacting Perceptions 

With regard to the location-parameter findings, all survey respondents from locations other than 

those included in the model are considered the baseline (since their parameter is implicitly zero) 

and the significant locational parameters included in the model are interpreted relative to these. 

Turning first to the locational findings with regard to decommissioning infrastructure, Table 7.4 

shows that residents of Buffalo, New York, who are aware of the urban decline occurring, have 

an increased likelihood of opposing decommissioning water infrastructure and residents of 

shrinking cities in Michigan have a decreased likelihood of opposing decommissioning water 
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infrastructure. The differences in these locations could be the result of a number of factors 

including the economic, political, and social climate. For residents unaware of the population 

decline in their city, no locational distinctions were found to have a statistically significant effect 

on their likelihood of opposing decommissioning of water infrastructure. 

 

With regard to opposition to increasing costs, Table 7.6 shows that, for increasing the cost of 

service to cover additional infrastructure or replacement, residents of Birmingham, Alabama and 

Saint Louis, Missouri who are aware of the urban decline occurring in their cities, both have an 

increased likelihood of opposing increasing the cost of service relative to other locations. In 

addition, residents of Pittsburgh, Pennsylvania, who are unaware of the urban decline occurring in 

their city (Table 7.7) have, on average, a decreased likelihood of opposition towards increasing 

the cost of service, but in this case the Pittsburgh location indicator variable is a normally 

distributed random parameter implying that 60.5% of the residents having a decreased likelihood 

of opposing increasing the cost of service and 39.5% having an increased likelihood of opposing 

increasing the cost of service. Furthermore, Pittsburgh indicator variable has a high marginal 

effect with an average decrease in the probability of opposition of 0.153. Given that the marginal 

effects vary across respondents as do the parameters this finding shows a strong influence of this 

variable on opposition probabilities and considerable heterogeneity among Pittsburgh residents. 

Overall, the locational findings point out specific geographic regions where issues relating to 

infrastructure sustainability must be given careful consideration. 

 

For individuals unaware of the population decline in their cities, individuals over the age of 50 

were found to be more likely to oppose both decommissioning (Table 7.5) and cost increases 

(Table 7.7). These findings may be capturing a resistance to change as openness for progressive 

change has been shown to decline as individuals age (Westerhoff 2008). However, the effect of 

being over 50 years of age has a more ambiguous effect for those individuals who are aware of 

population declines in their city with regard to decommissioning infrastructure (Table 7.4). This 

random-parameter finding for this variable indicates that 55% of the individuals with this 

demographic have a decreased likelihood of opposing decommissioning but that 45% have an 

increased likelihood of opposing decommissioning. This suggests considerable variance with 

respect to age with regard to the likelihood of opposition that seems to interact with the awareness 

regarding the urban decline. 
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Table 7.4 shows that individuals who are aware of population decline in their city and unable to 

work, and those responsible for their water bill, were found to be less likely to oppose 

decommissioning water infrastructure. These individuals may see decommissioning as a viable 

alternative to stabilize or reduce water service costs, one of many living expenses, which may be 

a concern for individuals unable to work or responsible for the water bill, as the average income 

in shrinking cities is typically below the average income for the state. In addition, for those aware 

of population decline in their cities, the random-parameter estimate for relationship status in 

Table 7.4 shows that 62% of married individuals are less likely to oppose decommissioning water 

infrastructure with 38% more likely to oppose suggesting considerable heterogeneity across the 

population with regard to marital status. 

 

Individuals who follow the news daily but were still unaware of population decline in their cities 

were found to be less likely to oppose decommissioning water infrastructure (Table 7.5). This 

may be due to the nationwide focus on aging infrastructure and an active management alternative 

to cease to use portions of the degrading physical footprint. With regard to gender for those 

unaware of population declines in their cities, the estimated parameter was found to be random 

(Table 7.5) with 65.5 % of males being less like to oppose decommissioning water infrastructure 

and 34.5% more likely to oppose.  This suggest considerable heterogeneity in responses among 

males and the significance of this variable may reflect the importance that males can play in 

household incomes and decision-making (Wang et al. 2013). 

 

If respondents grew up in the city in which they currently reside and are aware of population 

declines in their cities, they were more likely to oppose cost increases as a means of achieving 

sustainability (Table 7.6). This may reflect a resistance to change among individuals with long 

histories in the same residential location (with regard to water management) and this finding is 

consistent with the previous work of Kiparsky et al. (2013) with regard to the evolution of water 

management. Along these same lines, a respondent unaware of the population decline who was 

born in the city in which they currently reside also had an increased probability of opposing cost 

increases to achieve sustainability (Table 7.7).  

 

Individuals employed for a salary or wages were found to be less likely to oppose cost increases 

if they were unaware of population declines in their city (Table 7.7). These individuals have a 

presumably reliable income and can afford some increased service costs. Additionally, those 
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individuals who identify themselves as single in their relationship status and are unaware of 

population declines in their city are less likely to oppose increasing costs (Table 7.7), which is in 

contrast to the parameter estimate for those who reside alone who are more likely to oppose 

increasing costs. However, the single-in-relationship parameter estimate may be capturing those 

who live with roommates or unmarried partners, sharing the burden of living expenses. 

 

Individuals owning three or more cars and aware of population declines in their city were less 

likely to oppose decommissioning (Table 7.4).  This is likely capturing some measure of wealth 

and mobility that would make these people less likely to be impacted by decommissioning. In 

contrast, for those unaware of population decline in their city, each additional car they owned was 

found to increase the probability of opposing increasing costs to sustain infrastructure (Table 7.7).  

This may simply reflect the economics involved in owning additional cars which results in less 

disposable income. 

 

Respondents indicating that newspapers were their primary source of news were more likely to 

oppose cost increases if they were aware of population declines in their city (Table 7.6). If they 

were unaware of population declines, the random parameter estimate shows that 51.2% were less 

likely to oppose cost increases while 48.8% were more likely to oppose cost increases (Table 

7.7). These findings show considerable variability across the population in general and 

particularly between groups of individuals that are and are not aware of population declines in 

their cities. 

 

For the length of time owning a home (10 years or more) for those aware of declining populations 

in their city, the random parameter estimate in Table 7.5 shows that 64.4% of people with this 

time of home ownership tenure are less likely to oppose decommissioning and 35.6% are more 

likely to oppose.  For those unaware of population declines in their city, the random parameter 

results in Table 7.7 show that 89.5% are more likely to oppose cost increases and 10.5% are less 

likely to oppose cost increases. These findings again underscore fundamental differences in those 

aware and unaware of the city’s declining population, but also show the heterogeneity across the 

population with respect to home ownership duration. 

 

With regard to household income, those households making more than $75,000 annually were 

more likely to oppose decommissioning if they were unaware of population declines in their city 
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(Table 7.5) and less likely to oppose cost increases if they were aware of population declines in 

their city (Table 7.6). This shows a rather complex relationship among income, awareness, and 

opposition probabilities. 

 

Individuals who were retired and unaware of declining populations in their city were less likely to 

oppose decommissioning (Table 7.5) and, with regard to cost increases, the random-parameter 

estimates in Table 6 show that 58.7% were less likely to oppose prices increases but 41.3% were 

more likely to oppose cost increases (it is noteworthy the marginal effect for this variable is rather 

large, with retired individuals having on average a 0.118 lower probability of opposition with all 

else held constant). For retired individuals aware of their declining populations, 72.6% were less 

likely to oppose prices increases, with 37.4% more likely to oppose cost increases. As with other 

findings, this shows considerable variability over the respondent sample. 

 

The presence of children under 5 years of age in the household was found to produce random 

parameters in both models of the probability of opposing increasing costs.  For the model using 

respondents aware of population declines in their city, the presence of children under 5 years of 

age in the household decreased the probability of opposition for 54.7% of respondents and 

increased the probability of opposition for 45.3% of respondents. For the model using 

respondents unaware of population declines in their city, the presence of children under 5 years of 

age in the household decreased the probability of opposition for only 9.6% of respondents and 

increased the probability of opposition for 90.4% of respondents. While the parameter estimates 

indicate considerable heterogeneity in these results, there is a general trend that respondents with 

small children are going to be opposed to cost increases which is a likely reflection of the 

economic realities of raising a child. 

 
7.4. Summary 

As cities explore implementing various retooling alternatives to transition to sustainable 

infrastructure management, understanding the sources of opposition and which alternatives the 

community may support allows for incorporating the community vision and public participation 

while possibly mitigating opposition to the alternatives. Less than 20% of the survey respondents 

expressed no desire to participate in the decision-making of the water or wastewater infrastructure 

management, indicating that communication avenues must be open between city managers and 

engineers who understand the societal needs and the community’s vision in developing 
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alternatives and incorporating some level of participatory decision-making for sustainable 

outcomes.  

 

The statistical analyses show that a wide variety of factors influence the attitudes and perceptions 

of residents in shrinking cities pertaining to water retooling alternatives. In regard to the 

perception of residents (Section 7.3), the statistical significance of the random parameters 

suggests that there is considerable heterogeneity across the respondent population.  Perhaps the 

most important findings in the context of perception is that it is important to know whether 

residents of shrinking cities are actually aware that their city is experience population declines 

because this single factor has an enormous effect on policy opposition probabilities. In the 

context of attitude, which generates much narrower margins of support of a specific alternative, 

this awareness of whether shrinking is occurring is not necessary. However, arguably, perception 

is what is of interest to policy and decision makers. An individual may support an infrastructure 

effort regardless of his/her attitude. He/she may think decommissioning should be implemented 

(attitude) but would still support repurposing or razing, as these are also progressive management 

changes (perceptions) that accomplish similar goals as decommissioning.   

 

The various model estimation results show that many of the same socioeconomic and 

demographic variables influenced opposition probabilities in attitude and perception models. 

These socio-economic and demographic findings may be used to evaluate resident populations in 

specific shrinking cities to determine the initial viability of different policy alternatives, and to 

target specific groups with information campaigns and political strategies and compromises to 

mitigate potential opposition. Understanding the public perceptions and incorporating the public 

opinions into the decision-making process may allow for sustainable water infrastructure 

retooling alternatives for fiscally strained, shrinking cities.  

 

As mentioned in Chapter 3, previous literature pertaining to the public’s stance in the context of 

declining urban populations have examined quality of life, and perceptions towards abandonment 

and vacancies, without addressing underground infrastructure in any capacity (e.g., Greenberg 

and Schneider 1996; Bright 2000; Hollander 2010; Hollander 2011). Underground infrastructures 

are unseen, and the public generally lacks the same level of awareness of operations and 

conditions of these systems compared to above-ground infrastructure systems, such as roads and 

bridges. However, price elasticity studies (USEPA ND; Espey et al. 1997; Lipsey and Chrystal 
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1999; NRDC 2012) have shown that consumers are sensitive to price changes for water service, 

illustrating that consumer behavior is directly tied to the utility service provided. The retooling 

alternatives explored in this chapter have the potential to reduce or stabilize the costs of service, 

but dependent on how the necessity of these alternatives is perceived, the public may not support 

a specific alternative. Understanding public perception and attitude is critical for an infrastructure 

project’s success as decisions lacking adequate public support may pose risks such as inefficient 

or unsuccessful implementation due to public opposition (Susskind and Cruikshank 1987; Global 

Water Partnership Technical Advisory Committee 2000, Gerasidi et al. 2009, Nancarrow et al. 

2010, Faust et al. 2013).   

 

This chapter addressed the gap within literature and contributes to the body of knowledge by 

illustrating the viability of evaluating public views towards underground infrastructure and 

potential infrastructure retooling alternatives using binary probit models and binary logit models 

with random parameters. Models, which were best fit with random parameters, demonstrated the 

appropriateness for capturing the heterogeneity of the populations in regard to public views 

towards underground infrastructure in shrinking cities.   Further contributing to the body of 

knowledge is quantifying that influential parameters may not be translational across level of 

awareness regarding contextualized surroundings, an aspect not considered in the previous studies 

in urban decline.  
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CHAPTER 8.  INTERDEPENDENCY ANALYSIS OF WATER, WASTEWATER AND 

STORMWATER INFRASTRUCTURES 

“Be it through direct connectivity, policies and procedures, or geospatial proximity, most critical 

infrastructure systems interact. These interactions often create complex relationships, 

dependencies, and interdependencies that cross infrastructure boundaries.” 

-Pederson et al. (2006) 

 

Chapter 8 discusses the evaluation of physical interdependencies between the water, wastewater, 

and stormwater infrastructure systems, and non-physical human-infrastructure interdependencies 

using a hybrid agent based-system dynamics (AB-SD) model. The system dynamics model uses 

feedback loops between the infrastructure systems to assess how the impacts of varying 

parameters, such as water and wastewater billing rates, price elasticity, and urban decline rates, in 

an individual infrastructure system cascade throughout other infrastructure systems. This AB-SD 

model explores the behaviors and implications of these interdependencies and allows for 

evaluating real-world behavior in artificial settings (Winz et al. 2009).  For instance, non-physical 

interdependencies between the infrastructure systems explored within the system dynamics 

component of the model include the impacts of urban decline on the total water demanded and 

wastewater produced. An example of a physical interdependency explored is the wastewater 

produced from residential water demand both within the analysis area and citywide. 

 

Further complicating the existing infrastructure performance and interdependencies are that these 

infrastructures are impacted by the consumer interactions. An example of a non-physical 

disrupter arising from consumers is the impact of behavior changes resulting from water price 

elasticity on the water and wastewater infrastructure demands. Survey analyses (such as 

demonstrated in Chapter 7) may reveal public opposition towards infrastructure retooling 

alternatives that could delay the implementation of the alternative. Agent-based modeling is used 

to evaluate the public as autonomous agents with individual levels of support/opposition (non-
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physical disruptor) towards a proposed retooling alternative (physical disruptor). When the 

threshold of support for a retooling alternative is met, the retooling alternative evaluated in the 

model “enters” the work plan for the city in the system dynamics component. This interaction 

between the public (agents) and the infrastructure retooling alternative captures the time taken to 

reach a level of community consensus for an infrastructure retooling alternative.  

 

8.1. Abstraction of the Hybrid Agent Based-System Dynamics Model Components 

The abstraction of the components that are relevant and quantifiable for the analysis, and the 

relationships between the variables are shown in these causal loop diagrams that conceptualize 

the model in Figure 8.1. Figure 8.1 depicts two causal loop diagrams, one each for a city 

operating on a combined sewer system and a separate stormwater system. The signs (+/-) within 

the diagrams indicate whether the beginning node/variable will have a positive or negative impact 

on the end node/variable, with justification for each sign presented in Table 8.1. A complete loop 

within the influence diagram is termed a feedback loop, which is the algebraic product of the sum 

of the links (Kirkwoord 1998). Positive feedback loops reinforce change within a model, where as 

a negative loop, balances the system, converging the system towards a goal (Kirkwood 1998).   

 

The scope and context of the analysis occurs on two levels: (1) citywide, and (2) the 

neighborhood/analysis area. The analysis area is a residential area that is a subset of the city, has 

a high vacancy rate or is abandoned, and is a candidate for implementing retooling alternatives. 

Evaluating the interdependencies at this granular level within the city facilitates viewing the 

outputs and the impact of the retooling alternatives within a neighborhood. Citywide analysis 

considers the total population in the coupled human and water sector infrastructure 

interdependencies (as opposed to the smaller population considered in the analysis area). 

 

The infrastructure retooling alternatives demonstrated in this framework are decommissioning 

water pipelines and decommissioning impervious surfaces, for the water infrastructure retooling 

alternative and the stormwater retooling alternative, respectively. Decommissioning water 

pipelines consists of cleaning and capping underutilized pipelines in areas of high vacancy to 

reduce the built infrastructure footprint, decrease citywide water network maintenance costs, and 

possibly allow for improved water quality by lessening the presence of stagnant water and water 

age from underutilization (Faust and Abraham 2014). Decommissioning impervious surfaces 

reduces the generated stormwater runoff entering the CSS or separate stormwater system, which 
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may improve water quality by reducing the potential for wastewater/non-point source pollutant 

entering the open source waters. 

 

 
(a) 

 
(b) 

Figure 8.1. Causal loop diagram for the AB-SD model: (a) Combined sewer system and (b) 

Separate stormwater system 
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Table 8.1. Causal loop diagram parameters and justifications 

Start Node End Node Sign Justification 

Demand Infrastructure 
Footprint + As the demand increases, the physical infrastructure 

footprint expands to meet the growing needs. 

Demand 
Revenues From 

Commodity 
Charges 

+ Decreased demand from behavior or population decline 
results in less total revenues for the utility. 

Demand Water + Consequentially, when total demand increases, the total 
quantity of water used within the city also increases. 

Impervious 
Surfaces 

Stormwater 
Runoff + Impervious surfaces generate runoff as precipitation is not 

able to infiltrate the ground onsite. 

Overflows Water - Overflows release pollutants into open water sources, 
reducing the quality of water. 

Population Demand + 
As the population decreases, the total water demand 
decreases. This may also represent a decrease in water 
demand due to changing behaviors. 

Population Impervious 
Surface + 

To meet the needs of increasing populations, the number of 
impervious surfaces in the city increases (e.g., homes, 
roads). 

Population 
Revenues From 

Commodity 
Charges 

+ Increased number of customers yields an increased amount 
of revenue for the utility. 

Precipitation Stormwater 
Runoff + Increased precipitation generates additional runoff upon 

saturation of the soils. 

Price 
Revenues From 

Commodity 
Charges 

+ Increased billing rates for water/wastewater usage results in 
increased revenues for the utility. 

Price Demand - As price increases, the price elasticity of water indicates 
that behavior changes and per capita usage decreases. 

Public Support 
Retooling 

Alternatives: 
Water 

+ 

Increased public support for infrastructure retooling 
alternatives increases the sustainability of such 
infrastructure projects and the motivation for additional 
projects. 

Public Support 
Retooling 

Alternatives: 
Wastewater 

+ 

Increased public support for infrastructure retooling 
alternatives increases the sustainability of such 
infrastructure projects and the motivation for additional 
projects. 

Stormwater 
Runoff 

Wastewater 
Produced + 

In combined sewer systems, wastewater and runoff 
combine in a single system to be transported to the 
wastewater treatment plant. 

Stormwater 
Runoff 

Stormwater 
Runoff Entering 
Separate System 

+ 
In separate systems, stormwater enters the stormwater 
system and is transported directly to outlet points to 
surrounding water sources. 

Stormwater 
Runoff 

Entering 
Separate 
System 

Water - 
Increased nonpoint source pollutants in runoff may enter 
groundwater and open water sources, reducing water 
quality. 

Retooling 
Alternatives: 
Stormwater 

Financial 
Investment + Incorporating new infrastructure retooling alternatives 

requires financial investment. 
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Table 8.1. (continued) 

Start Node End Node Sign Justification 
Retooling 

Alternatives: 
Stormwater 

Impervious 
Surfaces - 

Decommissioning impervious surfaces or implementing 
low impact development practices can reduce the number of 
underutilized impervious surfaces. 

Retooling 
Alternatives: 
Stormwater 

Stormwater 
Runoff - 

Incorporating low impact development or decommissioning 
impervious surfaces allows for onsite infiltration of 
precipitation. 

Retooling 
Alternative: 

Water 

Financial 
Investment + Incorporating new infrastructure alternatives requires 

financial investment. 

Retooling 
Alternative: 

Water 

Infrastructure 
Footprint - Many retooling alternatives maintain or reduce the physical 

footprint of the existing infrastructure. 

Retooling 
Alternative: 

Water 

Maintenance 
Costs - 

Retooling alternatives, such as decommissioning, would 
reduce the required maintenance costs, in conjunction, with 
the reducing the physical infrastructure footprint. 

Wastewater Overflows + 
An increased quantity of wastewater has the potential for 
exceeding system capacity, resulting in an increased 
number of overflows. 

Water Wastewater 
Produced + As demand for water increases, the quantity of wastewater 

produced increases. 
 

Table 8.2 summarizes the different classes of objects constructed to model the behavior of the 

interdependencies in the hybrid agent based-system dynamics model. Each object class has a 

specific function within the model that is influenced by the parameters, variables, and decision 

rules. The object classes include: public support (one each for the water and stormwater retooling 

alternative at the analysis area level), water demand (citywide level and analysis area level), 

wastewater produced (citywide level and analysis area level), stormwater runoff (analysis area 

level), utility generated revenues (one each for the water and wastewater utility), and the 

infrastructure retooling alternative payoff period (one each for the water and stormwater retooling 

alternative at the city level).  

 

Table 8.2. Summary of the object classes in the AB-SD model 

Object Class(es) 
Type (number 

of objects) Function 
Parameters and 

variables 
Examples of decision 
rules and formulas 

Public support- Water 
infrastructure 
retooling alternative 
 
Public support- 
Stormwater 
infrastructure 
retooling alternative 

Agent (0.1* 
Population) 
 
Agent (0.1* 
Population) 

Simulation of the 
individual’s behavior in 
the context of support for 
a retooling alternative 

• Public support 
• Public opposition  
• Rate of adoption 
• Population trajectory 
  

• Rate of adoptions 
• Percentage of agents 

returning to opposition 
state from 
support/adoption state 

• Historical decline rate 
(US Census Bureau 
2011) 
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Table 8.2. (continued) 

Object Class(es) 
Type (number 

of objects) Function 
Parameters and 

variables 
Examples of decision 
rules and formulas 

Water demand- 
Citywide 
 
Water demand- 
Analysis area  

System dynamics 
(SD) (1) 
 
SD (1) 

Simulation of the 
residential consumer 
water demands  

• Per capita daily water 
use 

• Population 
• Population trajectory 
• Price elasticity 
• Rate increases 
• Rate increase ceiling 

• Increase rates 
annually if rate 
increase ceiling is not 
exceeded 

• Per capita demand 
due to increased rates 
based on price 
elasticity 
 

Wastewater produced- 
Citywide 
 
Wastewater produced- 
Analysis area 

SD (1) 
 
 
SD (1) 

Simulation of the 
wastewater produced from 
residential consumption 
(and stormwater in city’s 
operating on CSSs) 

• Water demanded 
• Percentage of water 

consumed entering 
the wastewater 
system 

• Quantity of 
stormwater entering 
(CSS only; see Object 
Class Stormwater for 
further details) 

• In more humid 
regions, a higher 
percentage of water 
enters the wastewater 
system (Grigg 2012) 

• The sum of the 
wastewater and 
stormwater (CSS 
only)  

Stormwater Runoff–
Analysis area 
 
Stormwater Runoff –
Analysis area post 
implementing 
stormwater retooling 
alternative 
 

SD (1) 
 
 
 
 
 
SD (1) 

Simulation of the 
stormwater runoff 
generated in the analysis 
area  
 
(Runoff generated has a 
separate stock variable if 
city has a separate 
stormwater system) 

• Historical rainfall for 
city 

• Land use 
• Soil type  
• Area of analysis area 
• Non-point source 

pollutants’ event 
mean concentration 

• Equations generated 
using hydraulic 
modeling for quantity 
of runoff produced 
based on the land use, 
soil type, rainfall and 
analysis area size 

• Increase in rainfall, 
increases quantity of 
non-point source 
pollutants 

Water utility 
generated revenues- 
Citywide  
 
Wastewater utility 
generated revenues- 
Citywide 

SD (1) 
 
 
 
SD (1) 

Simulation of the revenues 
generated 

• Service Price 
• Water consumed 
• Operation costs 

equivalent to the total 
revenues at time 0 (t0) 

• Maintenance cost 
saving from water 
retooling alternative 
(impacting generated 
water utility revenues 
only) 

• Billing based on 
volumetric pricing of 
water consumed 

• The difference 
between the total 
revenues at time x (tx) 
and t0 (i.e., operation 
costs) is the generated 
revenues at tx. 

• Service price must be 
below the willingness-
to-pay threshold 
determined via survey 
analysis  

Water infrastructure 
retooling alternative 
payoff period 
 
Stormwater 
infrastructure 
retooling alternative 
payoff period 

SD (1) 
 
 
 
SD (1) 

Simulation of the time 
taken to pay of a retooling 
alternative once 
implemented into the 
work plan 

• Cost 
• Public support 
• Percentage of 

generated revenues 
earmarked for project 

• Generated revenues 

• Retooling alternative 
enters city work plan 
(and budget) when 
threshold of public 
support is met 

• Project is paid off 
using generated 
revenues 
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Figure 8.2 shows how the different object classes interact within the AB-SD model to yield the 

different outputs of interest. The public support classes are modeled as agents, with each agent 

representing an autonomous individual within the public. The remaining object classes are 

modeled using system dynamics that aggregate the resource (e.g., water consumer, generated 

revenues) over time.  

 

 
Figure 8.2. Components of the AB-SD model 

 

8.2. Implementation of the Hybrid Agent Based-System Dynamics Model  

An overview of the system dynamics (SD) component is shown in Figure 8.3. The two agent 

classes interact with the system dynamics classes via the stocks, “Public Support for 

Water/Stormwater Retooling Alternative,” in real time. The stock variable links the agents to the 
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implementation of the the retooling alternatives in the model. When the necessary percentage of 

public support for an infrastructure retooling alternative is reached, the retooling alternative 

enters the work plan for the city (the implemented variable in Figure 8.3),  and the cost for the 

retooling alternative is initiated into the model. The continuous AB-SD model is discretized into 

weekly intervals and aggregated over the week throughout the simulation time of 520 week (10 

years).   A brief description of the key object classes incorporated into the AB-SD model follows. 

The parameters, variables, and states (where the autonomous agents exist) comprising the AB-SD 

model are discussed in detail in Appendix H. 

 

 
Figure 8.3. Stock and flow vairables, with select parameters comprising the system dynamics 

model 

 

Water Demand: The total water demand is a function at each time step of the population, per 

capita demand, and price elasticity. Price Elasticity, in Figure 8.3, relates the changes in water 

price to the water demand change ranging from -0.2 to -0.5 (Lipsey and Chrystal 1999), and these 

values fall within the range of other established price elasticity studies in literature (e.g., Espey et 

al. 1997; Dalhuisen et al. 2003; Worthington and Hoffman 2008; Hung and Chie 2012).  Price 



 

179  
 

elasticity, which is unitless, is equal to the ratio of the percent change in per capita water demand 

to the percent change in price (percent of rate changes), shown in Eqn. 8.1:  

 

𝑃𝑟𝑖𝑐𝑒  𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
∆!"#$%&%'  !"#$%&"&
!"#$%&%'  !"#$%&"&

∆!"#$
!"#$  (!!)

    [Eqn. 8.1] 

 

where, ΔRate is the difference between Rate(t) and Rate(t0). Rate(t), the Water/Wastewater 

Service Rate, indicates the service rate at the current time step during the simulation (see Eqn 

8.2).  

 

𝑅𝑎𝑡𝑒   $
!,!!!!

𝑎𝑡  𝑎𝑛𝑦  𝑡𝑖𝑚𝑒! = 𝑅𝑎𝑡𝑒 𝑡!!! (1 +
! !"#$

!"
𝑑𝑡)  [Eqn. 8.2] 

 

For instance, using Eqn. 8.2 to calaculate the increase service rate, assume the service rate for 

1000 gallons for the first 52 weeks (1 year) of the simulation (t0- t52) is $2.59. At t53, the service 

rate increases by 3%, resulting in the following rate:  

 

𝑅𝑎𝑡𝑒   $
!,!!!!

𝑡!" = $2.59 1 + 0.03 = $2.67   [Eqn. 8.3] 

 

The demand for water will reduce in response to these increased rates (from $2.59 to $2.67). Eqn. 

8.4 estimates the reduction in water use, per 1,000 gallon,  by rearranging Eqn.8.1 and using an 

example price elasticity of -0.35 (the median value within the -0.2 to -0.5 range incporated into 

the model, as:   

 

∆𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦  𝐷𝑒𝑚𝑎𝑛𝑑𝑒𝑑     =    𝑃𝑟𝑖𝑐𝑒  𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦
∆𝑅𝑎𝑡𝑒

𝑅𝑎𝑡𝑒   𝑡𝑜
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦  𝐷𝑒𝑚𝑎𝑛𝑑𝑒𝑑  

= −0.35 $".!"!$".!"
$".!"

1000  𝑔𝑎𝑙𝑙𝑜𝑛𝑠 =   −10.81  𝑔𝑎𝑙𝑙𝑜𝑛𝑠     

 [Eqn. 8.4] 

 

10.81 gallons, or a shift in consumption to approximately 989 gallons for the 1,000 previously 

consumed.  
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The rate increases at a user defined percentage each year (52 weeks), until the billable rate for 

service reaches the willingness-to-pay ceiling established by the residents. The rate increases 

within the model are representative of the human-infrastructure interaction and not intended to 

represent the rate structure of any particular city. The structure of rate setting varies from city to 

city, and is often set by consultants, for both water and wastewater utilities. Interviews with 

subject matter experts from Midwestern shrinking cities indicated this method of raising rates and 

billing services based on volumetric use was adequate to analyze the implications of increasing 

rates for the infrastructure services.  

 

Wastewater Produced: The percentage of water that enters wastewater system (through use of 

drinking water and CSS) ranges from 60% to 85% in dry to humid regions, respectively (Grigg 

2012). If the city is operated on a CSS, the Stormwater Runoff Object Class contributes to the 

wastewater produced.  

 

Stormwater Runoff: Stormwater runoff is a function of the historical precipitation, the current 

land use, and soil type. In separate stormwater systems, the runoff is aggregated over the 

simulation time for the analysis area. The quantities of non-point source (NPS) pollutants are 

tracked throughout the simulation in the area before and after implementation of the stormwater 

retooling alternative to assess, the impact of the stormwater infrastructure retooling alternative on 

the total pollutants entering the wastewater system (for CSS) or the stormwater system (for 

separate stormwater systems).  

 

Water Utility Generated Revenues: The minimum revenue necessary to operate the infrastructure 

system is the calaculated as the quanitity of revenue gathered service costs at the beginning of the 

simulation at t0.  As shown in  Eqn 8.5, additional revenue from increased billing rates is 

considered as the generated revenues greater than the total revenue at t0. The rationale for 

including this assumption in two fold.  First, the  revenue at t0 is necessary to operate the 

infrastructure system due to the high fixed costs associated with these infrastructures. Second, 

SMEs in shrinking cities have indicated that they are operating on the minimal, necessary 

financial resources, and thus operational and maintenance costs cannot be reduced further from 

the operations costs at t0. 

 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠   $   𝑎𝑡  𝑡𝑖𝑚𝑒  𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠  (𝑡) − 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠  (𝑡!)  [Eqn. 8.5] 
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Generated revenues is shown using a simple example in Eqn. 8.6. If the water demand is 

110,000,000 gallons per week at t0, multiplying by a service rate of $2.59 per 1,000 gallons yields 

$284,900 per week in revenues. This value, at the beginning of the simulation (t0), is assumed to 

the revenue threshold necessary to operate the water infrastructure system. If, due to population 

decline and price elasticity, weekly demand were to fall to 103,000,000 gallons per week billed at 

$2.85 per 1,000 gallons, the weekly revenues would then be $293,550, an increase from the 

revenues at t0 ($284,900) that are needed to operate the system. Thus, generated revenues may be 

calculated as:  

 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠   $   = $293,550 − $284,900 = $8,650  𝑝𝑒𝑟  𝑤𝑒𝑒𝑘 [Eqn. 8.6] 

 

Wastewater Utility Generated Revenues: The billing of wastewater is modeled as a 1:1 ratio of 

water demand to wastewater produced. Price elasticity is not considered in the context of 

wastwater rate increases as price elasticity in the context of wastewater produced has not been 

quanitfied in literature. However, there is speculation that raising wastewater rates will also result 

in price elasticity on water (USEPA ND; NRDC 2012), although no data regarding the 

realtionship between wastewater, water, and price elasticities was available from published 

sources known to the author. Similar to the Water Utility Generate Revenues Object Class, the 

generated revenues are those above the operation revenue (revenues at t0) shown in Eqn. 8.3.  

 

Water/Stormwater Infrastructure Retooling Alternative Payoff Period: The payoff period is the 

time taken to pay off the financial investment (i.e., cost) of the retooling alternative. A retooling 

alternative may be paid off by earmarking a percentage of generated revenues (calculated in Eqn. 

8.5) to reduce the amount owed on the project (see Eqn. 8.7).  “Water/Stormwater Retooling 

Alternative Payoff” in Eqn. 8.7, refers to the stock depicted in Figure 8.3.  

 

𝑇𝑜𝑡𝑎𝑙    𝑝𝑎𝑦𝑜𝑓𝑓  𝑎𝑚𝑜𝑢𝑛𝑡  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔  𝑜𝑛  𝑟𝑒𝑡𝑜𝑜𝑙𝑖𝑛𝑔  𝑎𝑙𝑡𝑒𝑛𝑎𝑡𝑖𝑣𝑒     $ =

𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑠𝑡  ($)  𝑜𝑓  𝑟𝑒𝑡𝑜𝑜𝑙𝑖𝑛𝑔  𝑎𝑙𝑡𝑒𝑛𝑎𝑡𝑖𝑣𝑒 −

  ! !"#$%/!"#$%&'"($)("##*+,-.*"($,'"+/(0'1#22    ($)
!"

  𝑑𝑡          

[Eqn. 8.7] 

 

To provide an example for discussion purposes (see Eqn. 8.8), assume the retooling alternative 

has $80,000 owed on the original cost of $100,000. The difference ($20,000) on the project was 



 

182  
 

paid down using generated revenues in previous time steps during the simulation. Ten-percent 

(10%) of the generated revenues from Eqn. 8.6 ($865) is earmarked for paying off the project at 

the current time step, yielding the new amount owed as $79,135.  

 

𝑇𝑜𝑡𝑎𝑙  𝑝𝑎𝑦𝑜𝑓𝑓    𝑎𝑚𝑜𝑢𝑛𝑡  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔  𝑜𝑛  𝑟𝑒𝑡𝑜𝑜𝑙𝑖𝑛𝑔  𝑎𝑙𝑡𝑒𝑛𝑎𝑡𝑖𝑣𝑒 $  

= $100,000 − $20,865 = $79,135                                                                                                                  

[Eqn. 8.8] 

 

The project payoff period, estimated in Eqn. 8.9, is the total simulation time taken for the cost of 

the retooling alternative to be paid off (that is, the total payoff amount remaining on retooling 

alternative in Eqn. 8.7 is  $0).  

 

𝑃𝑎𝑦𝑜𝑓𝑓  𝑃𝑒𝑟𝑖𝑜𝑑

= 𝑇𝑖𝑚𝑒!  𝑡ℎ𝑎𝑡  𝑡𝑜𝑡𝑎𝑙  𝑝𝑎𝑦𝑜𝑓𝑓  𝑎𝑚𝑜𝑢𝑛𝑡  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔  𝑜𝑛  𝑟𝑒𝑡𝑜𝑜𝑙𝑖𝑛𝑔  𝑎𝑙𝑡𝑛𝑒𝑟𝑎𝑡𝑖𝑣𝑒  𝑖𝑠  𝑒𝑞𝑢𝑎𝑙  𝑡𝑜  $0 

                                                                                                −𝑇𝑖𝑚𝑒!   𝑡ℎ𝑎𝑡  𝑡ℎ𝑒  𝑟𝑒𝑡𝑜𝑜𝑙𝑖𝑛𝑔  𝑎𝑙𝑡𝑛𝑒𝑡𝑖𝑣𝑒  𝑐𝑜𝑠𝑡  𝑖𝑠  𝑖𝑛𝑖𝑎𝑡𝑒𝑑  𝑖𝑛𝑡𝑜  𝑡ℎ𝑒  𝑚𝑜𝑑𝑒𝑙

      [Eqn. 8.9] 

 

The retooling alternative cost is initiated into the model after the desired level of public support 

for the retooling alternative is reached (discussed further in the following object class). If the 

retooling alternative cost is initiated into the model at t100 and the amount owed on the project 

reaches $0 at t300, the payoff period would be 200 weeks, as shown in Eqn. 8.10.  

 

𝑃𝑎𝑦𝑜𝑓𝑓  𝑃𝑒𝑟𝑖𝑜𝑑 = 300  𝑤𝑒𝑒𝑘 − 100  𝑤𝑒𝑒𝑘𝑠 = 200  𝑤𝑒𝑒𝑘𝑠  𝑜𝑟  3.85  𝑦𝑒𝑎𝑟𝑠 

                                        [Eqn. 8.10] 

 

Public Support-Water/Stormwater Infrastructure Retooling Alternative: Generating desired levels 

of support is necessary prior to the implementation of an infrastructure retooling alternative to 

avoid delays in implementation and ensure the infrastructure retooling alternative is accepted by 

the community. Each public support object class includes a state chart with two primary states of 

interest: support or oppose.  The transition to the states of support and oppose is based on the 

survey data from the survey distributed to residents of shrinking cities indicating their level of 

support towards the infrastructure retooling alternative incorporated into the model. Each agent is 

assigned an initial value from the probability distribution plot fit to the survey data. For 
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decommissioning water infrastructure, the agents are assigned a value from a Weibull (3.63226, 

3.36921) distribution. For decommissioning stormwater infrastructure, the agents are assigned a 

value from a Weibull (3.62009, 3.44894) distribution. If the agent’s value is greater than four 

(representing support/strongly support), the agent moves into the state of support, elsewise, the 

agent transitions into the state of oppose.  

 

Agents in the state of oppose are capable of moving back to the state of support if the agent’s 

opinion changes due to new information or due to delayed implementation of an infrastructure 

retooling alternative. Agents may also leave the state of support (or the state of oppose) if they 

are moving away from the city, which occurs at the rate of departure based on the historical 

population trajectory. Agents in the state of oppose move to the state of support at the rate of 

adoption. In this model, the rate of adoption for smartphones is used (see Figure 8.4) as no data 

exists for the adoption of infrastructure retooling alternatives. The rate of adoption is calculated 

by using two independent studies conducted by industry researchers, Neilson Company (Neilson 

Company 2012) and BI Intelligence (Haggestuen 2013). Both Neilson Company and BI 

Intelligence compiled data and synthesized findings from surveys and published reports from 

around the world on the mobile industry to provide accessible information about the evolving 

industry.  The relationship between the adoption of smartphone technology from the previously 

existing feature phone technology is analogous to the adoption of water retooling alternatives. 

Water and wastewater/stormwater infrastructures are existing infrastructures with established 

management methods (mirroring feature phones) and the proposed infrastructure retooling 

alternatives are new approaches to managing these existing infrastructures (mirroring 

smartphones). 
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Figure 8.4. Rate of adoption used in the agent based component (adapted from Robinson 2009; 

Neilson Company 2012; Haggestuen 2013) 

 

8.3. Validation and Verification 

Validation and verification for the model occurred throughout the model development using four 

primary steps (Sargent 2004) outlined in Table 8.3, namely: conceptual model validation, 

computerized model verification, operational validation, and data validity. The first step in the 

validation and verification process occurred during the development of the causal loop diagrams 

in March 2013 with conference calls with SMEs in 5 Midwestern shrinking cities. The conceptual 

model validation included confirming that the theories, assumptions, data to be incorporated into 

the model, and representation of the system were reasonable. Following the abstraction of the 

model, operational validity was assessed by examining model stability over multiple simulation 

runs, logic correctness using traces throughout the simulation, and appropriateness of model 

response when the extreme ends of the parameters’ plausible ranges were used. Face-to-face 

meetings with three SMEs in May 2013 and five SMEs in October 2014 were conducted to gain 

feedback on the developed computerized models. During these meetings, SMEs reviewed the 

computerized model components and logic to ensure that the AB-SD model accurately 

represented the conceptual model, and that the AB-SD model’s behavior accurately represented 

the system.  Furthermore, the SMEs confirmed that the model responded appropriately to varying 

parameters and the outputs were logical. SMEs stated that the model could be helpful for utility 

management and produces useful results. Five (5) SMEs were asked to provide quantitative 

feedback on difference aspects of the AB-SD Model in the October 2014, of which the average of 

the quantitative values for different model components are shown in Table 8.4. Each SME 
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involved in the verification and validation of the model had a minimum of 15 years of experience 

working with the city water or wastewater utilities from the operations or management side.  

 

Table 8.3. Steps in validation and verification  

Validation and Verification 
Components 

Justification 

Data Validity (Sargent 2004) 
Data is correct, reliable, and able to 
represent system or population  

Data used in analysis included outputs from Chapters 5 and 
6, data provided by the cities, and published literature from 
reliable sources (e.g., NCDC 2014; USDA: NRCS 2013) 

Conceptual Model Validation (Sargent 
2004) 
The theories, assumptions, and 
representations of the problem are 
accurate 
 

Conceptual model verification occurred throughout the 
development process, beginning in March 2013 with 
conference calls with utility managers from 5 Midwestern 
shrinking cities to discuss and verify the model assumptions 
and interdependencies. The causal loop diagrams were 
validated in May 2013 via face-to-face visits with Flint and 
Saginaw. The final model was validated for the theories, 
assumptions and representation by 5 SMEs in Flint and 
Saginaw. Validation scores may be found in Table 8.4. 

Computerized Model (Sargent 2004) 
The computer model accurately 
represents the conceptual model 
 

Dynamic testing was performed to ensure the individual 
components of the model were correct and the results were 
consistent across case studies. Dynamic testing consisted of 
tracing the behavior of the modeling under various 
conditions (e.g., increased/decreased decline rates, different 
cost of service increases, increased/decreased per capita 
water demands) to observe that the relationships in the 
causal loop diagram were accurately represented. 
 
The final model was validated that is accurately represents 
the conceptual models by 5 SMEs in Flint and Saginaw. 
See Table 8.4 for specific scores of the final model. 

Operational Validity (Sargent 2004) 
The behavior of the model accurately 
represents the system 
 

Dynamic testing was performed to ensure the individual 
components of the model were correct and the results were 
consistent across case studies. Dynamic testing consisted of 
tracing the behavior of the modeling under various 
conditions  (e.g., increased/decreased decline rates, 
different cost of service increases, increased/decreased per 
capita water demands) to observe that the relationships in 
the causal loop diagram were accurately represented. 
 
The final model was validated that the behavior of the 
model is reasonable by 5 SMEs in Flint and Saginaw. 
Validation scored for the model may be found in Table 8.4 

Operational Validity (Sargent 2004): 
Degenerate Tests 
Behavior of model responds 
appropriately to changes in parameters 

Sensitivity analyses were conducted and discussed in 
Section 8.4 and 8.5. 

Operational Validity (Sargent 2004): 
Extreme Condition Tests 
The model behaves appropriately when 
the extreme ends of ranges for 
parameters is used 

Sensitivity analyses were conducted and discussed in 
Section 8.4 and 8.5. 
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Table 8.3. (continued) 

Validation and Verification 
Components 

Justification 

Operational Validity (Sargent 2004): 
Internal Validation 
Multiple run replications occur to ensure 
consistency  

Multiple runs with varying parameter values occurred 
prior to the sensitivity analysis to ensure model stability.   

Operational Validity (Sargent 2004): 
Traces 
Ensure logic is correct as moving 
throughout the model during a 
simulation 

Trace runs occurred to verify the model logic was correct 
and as represented in the causal loop diagrams.  

Coherence 
Logic and understandability of results 

The results and conclusions drawn were easily understood 
based on the face-to-face validation and verification 
meetings that occurred in October 2014.  

 
Table 8.4. Quantitative feedback from 5 SMEs for validation and verification purposes 

 Aspect of the AB-SD Model Averages* 
The components of the model represent the most critical aspects of the system 
needed for modeling the goal.  4.6 

The abstraction of the components and interactions in the model are complete. 4.8 
The behavior of the model is reasonable. 4.4 
The theories and assumptions underlying the model are correct. 4.6 
The model’s representation of the system and the model’s structure, logic, and 
causal relationships are reasonable. 5 

The assumptions regarding the model’s parameters, variables, and interactions are 
reasonable. 5 

The level of detail and the relationships used for the model are appropriate for the 
intended purpose. 4.6 

The output of the simulation model has the accuracy required for the model’s 
intended purpose. 4.4 

The simulation behavior is reasonable in the context of produced results. 4.4 
The model could be helpful for utility management and produces useful results. 5 

*(1: poor, 2: needs significant improvements, 3: needs modifications to be useful, 4: good enough, 5: 

excellent) 

 

8.4. Parameter Variation 

The individual simulation and parameter variation (comparable to a sensitivity analysis) 

capabilities in AnyLogic are used to assess the impact of parameters on the AB-SD model’s 

behavior. During a parameter variation, a deterministic parameter is varied within a user-defined 

range at user-defined increments. For example, for the parameter variations discussed below, the 

parameter for rate increase for water, is varied between 1%-10%, annually, over multiple 

simulations. The results of the analyses are shown in Figures 8.5-8.18, where the intensity of the 

color corresponds to the probability of y occurring at time x (tx); darker portions of the chart 

indicate higher probabilities of being closer to the median of all simulations. The x-axis tracks the 
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simulation time, and the y-axis indicates the output of the outcome of interest. In the graph, if a 

vertical ‘slice’ is made at an instance in time, the probability of any y occurring is determined, 

bounded by the inner two quartiles (similar to a boxplot without the whiskers). The lightest grey 

shade that is shown in the figures tracks the simulation time and is meaningless in the 

interpretation of the graphs. 

 

Table 8.5 summarizes the parameters varied in the parameter variation analyses, the range in 

which the parameter is varied, and the rationale for varying the particular parameter. The outputs 

evaluated that are dependent on the uncertain parameters within this model are:  

1. Generated runoff. 

2. Non-point source pollutants. 

3. Citywide residential water demand. 

4. Water revenues gained from increasing water rates. 

5. Wastewater revenues gained from increasing water rates. 

6. Time period to pay off the water infrastructure retooling alternative (decommissioning 

pipelines). 

7. Time period to pay off the stormwater retooling alternative (decommissioning impervious 

surfaces). 

8. Time period to generate desired level of support 
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Table 8.5. Parameters evaluated parameter variation 

Independent 
Parameter 

Flint Saginaw 

Rationale Base case 
values 

Minimum 
value, 

maximum 
value, 

increment 

Base case 
values 

Minimum 
value, 

maximum 
value, 

increment 

Soil Type B(C) soils (0,1,1) B Soils (0,1,1) 

Soil type is a binary variable. 
Zero (0) is used for D soils, and 
1 indicates B(C) soils in this 
model. 

Water rate 
annual 
increase 

3% (0.01, 0.1, 
0.01) 3% (0.01, 0.1, 

0.01) 

Future rate increases have not 
been established or determined, 
thus a range of possible values, 
up to the willingness to pay 
threshold establish in Chapter 7 
were evaluated. 

Wastewater 
rate annual 
increase 

3% (0.01, 0.1, 
0.01) 3% (0.01, 0.1, 

0.01) 

Revenues 
directed for 
water 
retooling 
alternative 
pay off 

10% (0.1, 0.7, 
0.1) 10% (0.1, 0.7, 

0.1) 

This variable evaluates the pay 
off periods for a project. As 
retooling alternatives have not 
been implementing in cities, 
there are no case studies 
discussing the financing of t 
retooling alternatives. 
Therefore, different ranges for 
earmarked revenues for paying 
off the project were evaluated 
to assess the pay off period.  

Revenues 
directed for 
stormwater 
retooling 
alternative 
pay off 

10% (0.1, 0.7, 
0.1) 10% (0.1, 0.7, 

0.1) 

Decline Rate 
(per week) 0.03104% +/-30% 0.024671% +/-30% 

The decline rate is based on 
historical census data, but may 
differ in the future based on 
factors such as, right-sizing 
efforts, dynamics of industries, 
or improvement of crime rates. 
This parameter was varied to 
observe if the time period 
necessary to generate support 
was sensitive to the rate of 
decline. 

Rate of 
Adoption 

(0.5257e0.3917)/ 
52 +/-30% (0.5257e0.3917)/ 

52 +/-30% 

This parameter was varied to 
observe how time period 
necessary to generate support 
was sensitive to the rate of 
adoption. The rate of adoption 
is based on smart phone 
adoption, as the rate of adoption 
for infrastructure alternatives 
has not been captured or 
quantified in literature.   
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Water quality must be considered when evaluating the source treatment and wastewater treatment 

needs. The concentration of pollutants must be monitored as stormwater flows or overflows enter 

the water sources. The reduction in NPS pollutants entering the separate stormwater or CSS is 

evaluated in the model, using Baird and Jennings (1996) event mean concentrations of NPS 

pollutants based on land use. Increased NPS pollutants degrade the water quality, with specific 

concern towards phosphorous, as the Great Lakes are phosphorous limited (USEPA 2012).  The 

phosphorous resulting from watershed runoff is a major contributor to the “…eutrophication and 

the proliferation of nuisance algae” in the Great Lakes (GLEAM 2014).   

 

For the stormwater infrastructure system, the soil type parameter was varied (other parameters in 

Table 8.5 were held at their base case values). The remaining parameters values contributing to 

the stormwater runoff, namely, event mean concentration of NPS pollutants and historical rainfall 

data, are deterministic at tx. Figures 8.5-8.7 depict the annual reduction of stormwater runoff and 

NPS pollutants due to implementation of the retooling alternative in the analysis areas. The runoff 

in Flint (and consequentially the NPS pollutants) is reduced by 91.9% and 76.7% for B/C soils 

and D soils, respectively, after the stormwater infrastructure retooling alternative is implemented.  

The runoff in Saginaw (and NPS pollutants) is reduced by 91.6% and 73.9% for B soils and D 

soils, respectively, after the stormwater infrastructure retooling alternative is implemented. The 

graphs for the phosphorous and dissolved phosphorous (Figures 8.6 and 8.7) are shown to 

illustrate the correlated reduction of NPS pollutants, as the quantity of NPS pollutants are a 

function of the generated runoff. 

 

 
(a)       (b) 

Figure 8.5. Runoff generated annually in analysis areas: (a) Flint and (b) Saginaw 
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(a)       (b) 

Figure 8.6. Annual phosphorous (grams) in analysis areas: (a) Flint and (b) Saginaw 

 

  
(a)       (b) 

Figure 8.7. Annual dissolved phosphorous (grams) in analysis areas: (a) Flint and (b) Saginaw 

 

Within this AB-SD model there are two parameters, population and price elasticity, connected 

directly to citywide residential water demand. The increase in prices may only increase by 

approximately 10%, which is the average percentage that residents would be willing to pay for 

water (and wastewater) service in the shrinking, as determined by the survey deployed (discussed 

further in Chapter 7). By using the willingness-to-pay value, it is assumed that prices can increase 

to this point without extreme opposition towards the utility provider. To assess the impact of price 

elasticity at a granular scale, Figure 8.8 shows the impact of rate increases on the per capita 

weekly water demand. The parameter varied over multiple simulations is the annual percentage 

rate increase (until the rate increase ceiling, in this case approximately 10%, is met). Lipsey and 

Chrystal’s  (1999) price elasticity model for water demand was used in this model. In this model, 
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the price elasticity ranges from -0.2 to -0.5, and falls within the range of other established price 

elasticity values in literature (e.g., Espey et al. 1997; Dalhuisen et al. 2003; Worthington and 

Hoffman 2008; Hung and Chie 2012). The wide variance of demand at any given time resulting 

from the price elasticity is visible, ranging by up to 55 gallons per capita per week. As indicated 

in Figure 8.8, the most probable range in demand is a decrease of 25 to 50 gallons per capita per 

week.  For planning purposes, utility managers should be cognizant of the probably ranges of 

decrease in water usage arising from rate increases, counteracting the possible generated revenues 

from increased rates.  

 

 
Figure 8.8. Impact of varying annual water rate increases on the per capita weekly water demand 

 

Long term planning for utilities in cities that are experiencing chronic decline should account for 

an overall expected continuous decline in citywide residential water demand. Figure 8.9 shows 

estimated citywide residential water demand ranges over the simulation time (10 years). The 

parameter varied in this simulation is the annual water rate increase, while other parameters were 

maintained at the base case values, indicated in Table 8.5. Citywide water demand ranged up to 5 

million gallons per week, with the most probable ranges spanning 1 to 2 million gallons per week 

for Saginaw and Flint, respectively. This wide range for residential water demand may necessitate 

a large available capacity of citywide water to account for differing behavior of residences and 

uncertain declines, indicating that the excess capacity typical to shrinking cities may be beneficial 

to meet potential needs for the wide water demand ranges. Utility managers can use this 

information to estimate a probable range of water demands (and hence, wastewater produced), as 

opposed to a single estimate value based solely on population. For instance, if Flint’s population 

declines to approximately 95,000, the probable water demand ranges from 94,750,000 to 
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97,750,00 gallons per week, and may vary between 94,500,000 to 100,000,000 gallons per week. 

Similarly, if Saginaw’s population falls below 48,000, water demands may range between 

47,000,000 to 49,300,000 gallons citywide per week.  

 

 
(a) 

 
(b) 

Figure 8.9. Impact of varying water rate increases and population on the citywide weekly 

residential water demand: (a) Flint and (b) Saginaw 

 

The varying demand from price elasticity and population decline will directly impact the water 

revenues generated from increasing the water prices, shown in Figure 8.10. As discussed 

previously in Section 8.2, the generated revenues are those above the baseline, t0 revenues.   That 

is, the increased rate will be multiplied by a lower per capita demand from behavior changes due 

to the increased prices. Revenues gained from increasing water rates vary over the course of the 

simulation. Near the beginning of the simulation, Flint is most likely to generate between $6,000 

and $12,000 dollars per week in revenues from increased rates, whereas Saginaw is most likely to 

generate between $2,500 and $6,000 per week in revenues. The magnitude difference results from 

the different in population sizes, where Flint has an initial population of 102,434 and Saginaw has 

an initial population of 51,508. As the simulation progresses, and the approximate 10% rate 
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increase ceiling is met, Flint is most likely to bring in around $15,000 of revenues per week, 

while Saginaw is most like to generate $7,500 per week.  

 

 
(a) 

 
(b) 

Figure 8.10. Generated water revenues from water rate increases: (a) Flint and (b) Saginaw 

 

Figure 8.11 shows the impact of varying rates for both water and wastewater on the total 

wastewater revenues that may be generated from increasing wastewater rates. Within the most 

probable generated revenues across all annual rate increases assessed, the range in expected to 

vary by approximately $10,000 per week, or approximately $500,000 annually. This large 

difference in the uncertainty of additional revenue that may be gained from potential rate 

increases should be considered for financial planning purposes.  
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(a) 

 
(b) 

Figure 8.11. Generated wastewater revenues from water rate and wastewater rate increases:  

(a) Flint and (b) Saginaw  

 

Figure 8.12(a) estimates the pay off period for the water infrastructure retooling alternative over 

10 city blocks (0.07 square miles of residential neighborhood, i.e., the original analysis area 

described in Chapter 4) in Flint. Figure 8.18(b) estimates the pay off period for the water 

infrastructure retooling alternative over 16 city blocks (0.16 square miles of residential 

neighborhood, i.e., the original analysis area described in Chapter 4) in Saginaw. The pay off 

periods shown in Figure 8.12 depicts a scenario in which 10% of the revenues generated from 

increased rates are earmarked for paying off the water retooling alternative. The varying 

parameter is the annual percentage increase in water rates after the 1st year. 

 

Based on varying annual water rate increases, Flint is most likely to pay off the water 

infrastructure retooling alternative in 1.5 years, but can take up to 2.6 years. On the other hand, 

the highest probability of Saginaw to pay off the water infrastructure retooling project is in 3.25 

years, but may take up to 7.1 years. The difference in pay off periods between Flint and Saginaw 

is a result of a larger analysis area and lower population (i.e., fewer rate payers) in Saginaw.  

 



 

195  
 

 
(a) 

 
(b) 

Figure 8.12. Water infrastructure retooling alternative pay off with 10% of rate revenues, and 

varying water rate increases: (a) Flint and (b) Saginaw 

 

Understanding tradeoff between pay off period and diverting resources may be relevant if the 

utility’s goal is to pay the alternative off quickly. If the pay off period is not of great concern to 

the utility, the utility may wish to earmark limited resources to paying off the retooling alternative 

(increasing the pay off period), while investing a greater percentage of resources towards 

immediate concerns, such as time-sensitive maintenance or rehabilitation needs. Figure 8.13 

estimates the pay off periods by varying the percentages of the revenue gained from increasing 

water rates that are diverted to pay off the water infrastructure retooling project (while 

maintaining other parameters at their base case values as indicated in Table 8.5). Flint is most 

likely to pay off the water retooling alternative in less than 1.3 years, but may take up to 3.1 

years. Saginaw is most likely to pay off the alternative in less than 2.7 years, but may take up to 7 

years.   
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(a) 

 
(b) 

Figure 8.13. Water infrastructure retooling alternative pay off with a 3% water rate increase and 

varying percentages of revenue diverted to pay off project: (a) Flint and (b) Saginaw 

 
As expected, the uncertainty associated with varying both parameters (increasing water rates and 

earmarking a percentage of generated revenues from the rate increases to pay off the project) is 

much greater than the uncertainty in only considering the percentage of generated revenues 

earmarked from the rate increases, as shown in Figure 8.14. In Saginaw, the water infrastructure 

decommissioning project has the highest probability to be paid off in less than 3.3 years but may 

take up to 7.8 years, based on the combination of parameters. In Flint, the water infrastructure 

decommissioning project is most likely to be paid off in less than 1.34 years, but may take up to 

3.3 years.  
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(a) 

 
(b) 

Figure 8.14. Water infrastructure retooling alternative pay off period with varying annual water 

rate increases, and varying percentages of revenue from rate increases diverted to pay off project:  

(a) Flint and (b) Saginaw 

 

The uncertainty in project pay off periods for the water retooling alternative associated with 

varying the water rate increase seen in Figure 8.12 is analogous to the uncertainty in paying off 

the stormwater retooling infrastructure project. Figure 8.15 illustrates the stormwater retooling 

alternative pay off period based on varying water rate increases and wastewater rate increases 

(with the remaining parameters held at their base case value indicated in Table 8.5). Water rate 

increases are relevant due to the interdependencies between the two infrastructures. Increased 

water billing rates results in decreased per capita water demand that reduces the volume of 

wastewater produced and billed to the customer. Figure 8.16 depicts the difference when this 

uncertainty is not accounted for in varying water rate increases, by holding the water rate increase 

at 3% annually and only varying the wastewater rate increase.  

 

In Flint, when the uncertainty with both water and wastewater rates are considered, the 

stormwater infrastructure retooling alternative is most likely to be paid off at 5.8 years and as late 

as 13.5 years. When only the uncertainty associated with rising wastewater rates are considered, 

the stormwater retooling alternative’s pay off period may be as late as 8.1 years. The difference in 
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possible pay off periods (5.4 years) is a result of the uncertainties associated with water rates and 

wastewater rates, as opposed to solely considering the uncertainty associated with wastewater 

rates. A similar relationship between stormwater payoff period, and water and wastewater rates 

may be seen in Saginaw with a difference in possible payoff periods of 6.1 years. However, the 

drastic difference in the latest pay off period of approximately 13.5 years for Flint and Saginaw is 

due to the, lower population in Saginaw (resulting in lower total billed demand as compared to 

Flint) and a surface analysis area requiring decommissioning that is approximately twice the size. 

The analysis area for decommissioning in Saginaw is 0.16 square miles versus Flint’s 0.07 square 

miles. This model captures the non-physical disrupter, water rate increases, cascading into the 

wastewater infrastructure system, impacting not only the wastewater demands on the system, but 

also the impact on generated revenues; a relationship not previously captured in literature. 

 

 
(a) 

 
(b) 

Figure 8.15. Decommissioning stormwater infrastructure alternative pay off with varying annual 

water and wastewater rate increases, and 10% of revenue from rates diverted to pay off project: 

(a) Flint and (b) Saginaw 
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(a) 

 
 

(b) 

Figure 8.16. Decommissioning stormwater infrastructure project pay off with varying wastewater 

rate increases, 3% water rate increases, and 10% of revenue from rates diverted to pay off project: 

(a) Flint and (b) Saginaw 

 

As discussed in Section 8.2, the AB component models the support generated for the 

infrastructure retooling alternatives before the infrastructure retooling alternatives enter the work 

plan for the city. The model assumes that if the desired level of support is met prior to 

implementing the retooling alternative, the resistance from the public can be mitigated. The initial 

number of residents in the state of support for decommissioning water and stormwater 

infrastructure differ slightly based on their individual weibull distributions, as discussed in 

Section 8.2. The transition of the residents initially in the state of oppose (at t0) to the state of 

support follows the defined rate of adoption, thus appearing to be similar to Figure 8.4. When the 

percentage of residents within the state of support is equal to or greater than the minimum 

threshold of support needed to implement a retooling alternative, the retooling alternative is 

initiated into the work plan for the city. As the minimal level of support increases, the time it 
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takes to gain additional support also increases. For instance, to move from 60% to 70% support 

for the water infrastructure retooling alternative takes 26 additional weeks, whereas to move from 

70% to 80% support takes 67 additional weeks, 2.5 times the time to gain the previous 10% in 

support. The latter portion of the late majority and laggards in the rate of adoption curve do not 

support the new idea (management alternative) as quickly as the previous adopters (Hoffman 

2011), creating a time obstacle in order to gain the amount of desired support. When considering 

the participatory processes, decision makers will have to make the trade-off between the level of 

support, the resources to encourage the adoption of the alternatives that influences the rate of 

adoption, and  the targeted time period for implementation.     

 

The pattern of support of both agent classes (Figures 8.17 and 8.18) is an emergent property 

arising from the systematic interaction of the agents transitioning between states. This behavior is 

sensitive to the rate of adoption, but is not sensitive to the population decline rate of the city. 

When varying the adoption rate, the time in which agents reach different levels of support differs 

significantly between the rate of adoption +/-30%, indicated by the high standard deviation 

between the results in Table 8.6. However, varying population decline rates has negligible impact 

upon the time period taken to gather the desired level of support, indicated by a low standard 

deviation in Table 8.6.  In the AB-SD model, it is assumed that the population decline rate applies 

to the agent class, irrespective of agent’s state. However, the attitude at tx may be influential in 

determining whether the agent leaves the city. For instance, Herz (2006) discusses that increasing 

prices and deteriorating utility services can perpetuate the existing urban decline. Thus, those who 

view a need for implementing retooling alternatives may be those who are more likely to leave 

the city. Further analysis regarding why people are leaving and their views towards infrastructure 

services at the time when they leave would be necessary to determine if the different states  (of 

support/ opposition) should decline at different rates, as opposed to applying a uniform decline 

rate across all states, and all agents. 

 

Within the AB component, during the 10-year simulation, the city is not able to ever reach full 

consensus of support (that is 100% support), due to the transition into the state of oppose and the 

emigration from the city resulting from continued urban decline.  91% and 90% are the greatest 

levels of support achieved via multiple simulations of the stochastic model for water and 

stormwater infrastructure retooling alternatives, respectively.  
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(a)       (b) 

Figure 8.17. Percent of supporters for the retooling alternative over time during the simulation 

with parameter variations of rates of adoption: (a) water retooling alternative and (b) stormwater 

retooling alternative 

 

      
(a)       (b) 

Figure 8.18. Percent of supporters for the retooling alternative over time during the simulation 

with parameter of population decline: (a) water retooling alternative and (b) stormwater retooling 

alternative 
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Table 8.6. Sensitivity towards the support for water and stormwater retooling alternatives 

  
Week That The Level of Support was Reached 
50% 60% 70% 80% 

Water Infrastructure Retooling 
Alternative: % Support (base case) 21 35 61 128 

Water Infrastructure Retooling Alternative: Sensitivity of Rate of Adoption 
Rate of Adoption +30% 16 27 49 101 
Rate of Adoption +20% 17 29 49 105 
Rate of Adoption +10% 19 33 59 125 
Rate of Adoption -10% 22 40 72 146 
Rate of Adoption -20% 25 44 83 175 
Rate of Adoption -30% 29 50 87 187 

Average 21.3 37.2 66.5 139.8 
Standard Deviation 5.0 9.0 16.7 35.9 

Water Infrastructure Retooling Alternative: Sensitivity of Population Decline Rate 
Population Decline Rate +30% 20 36 63 129 
Population Decline Rate +20% 22 35 62 129 
Population Decline Rate +10% 22 36 63 130 
Population Decline Rate -10% 22 38 65 130 
Population Decline Rate -20% 22 36 64 128 
Population Decline Rate -30% 20 36 63 127 

Average 21.3 36.2 63.3 128.8 
Standard Deviation 1.0 1.0 1.0 1.2 

Stormwater Infrastructure Retooling 
Alternative: % Support (base case) 24 41 70 143 

Stormwater Infrastructure Retooling Alternative: Sensitivity of Rate of Adoption 
Rate of Adoption +30% 17 28 50 94 
Rate of Adoption +20% 17 31 51 97 
Rate of Adoption +10% 19 33 56 109 
Rate of Adoption -10% 25 42 74 161 
Rate of Adoption -20% 26 47 82 197 
Rate of Adoption -30% 29 52 93 196 

Average 22.2 38.8 67.7 142.3 
Standard Deviation 5.2 9.6 18.0 48.4 

Stormwater Infrastructure Retooling Alternative: Sensitivity of Population Decline Rate 
Population Decline Rate +30% 22 35 63 130 
Population Decline Rate +20% 22 39 66 135 
Population Decline Rate +10% 23 40 68 138 
Population Decline Rate -10% 21 36 63 131 
Population Decline Rate -20% 20 35 63 130 
Population Decline Rate -30% 23 39 69 133 

Average 21.8 37.3 65.3 132.8 
Standard Deviation 1.2 2.3 2.7 3.2 

 

8.5. Sensitivity Analysis 

Sensitivity analysis explores how the parameters impact the model’s outcomes, by using traces of 

the runs to create tolerance intervals (Ford and Flynn 2005). The tolerance intervals are estimated 

similar to the parameter variation in Section 8.4, in that each simulation uses different values for 
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the variables. However, unlike the parameter variation that takes user-defined, finite increments 

between the minimum and maximum user-defined values, the tolerance intervals are estimated 

using random parameters that fall between the minimum and maximum values (Ford and Flynn 

2005). In this sensitivity analysis, all parameters from Table 8.7 are varied randomly during each 

run, whereas in the parameter variation only one or two variables are varied while the others 

remain constant. The parameters in Table 8.7 are those that are uncertain within the cities, such as 

future decline rate, or may have assigned ranges, such as price elasticity. The outputs evaluated 

that are dependent on the uncertain parameters within this model are:  

1. Citywide residential water demand. 

2. Citywide residential wastewater demand. 

3. Water revenues gained from increasing water rates. 

4. Wastewater revenues gained from increasing water rates. 

5. Time period to pay off the water infrastructure retooling alternative (decommissioning 

pipelines). 

6. Time period to pay off the stormwater infrastructure retooling alternative 

(decommissioning impervious surfaces). 

 

Table 8.7. Parameters evaluated for correlation coefficients with outputs 

Independent 
Parameter 

Flint Saginaw 

Rationale Base case 
values 

Ranges 
used in 
analysis 

Base case 
values 

Ranges 
used in 
analysis 

Decline rate 
(per week) 0.03104% +/-10% 0.024671% +/-10% 

The decline rate is based on 
historical census data, but may 
differ in the future based factors 
such as, right-sizing efforts, 
dynamics of industries, or 
improvement of crime rates. 

Price 
elasticity -0.35 Uniform 

(-0.2, -0.5) -0.35 Uniform 
(-0.2, -0.5) 

Price elasticity is reported in 
literature as a range of values. 
Price elasticity values may be 
anywhere along the spectrum of 
ranges.  

Water to 
wastewater 
ratio 

0.85 Uniform 
(0.6, 0.85) 0.85 Uniform  

(0.6, 0.85) 

Grigg (2012) provides a range 
of plausible values for the water 
demand entering the wastewater 
system. 
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Table 8.7. (continued) 

Independent 
Parameter 

Flint Saginaw 

Rationale Base case 
values 

Ranges 
used in 
analysis 

Base case 
values 

Ranges 
used in 
analysis 

Water rate 
annual 
increase 

3% Uniform 
(0.01,0.1) 3% Uniform 

(0.01, 0.1) 

Future rate increases have not 
been established or determine, 
thus a range of possible values, 
up to the willingness to pay 
threshold establish in Chapter 7 
were evaluated. 

Wastewater 
rate annual 
increase 

3% Uniform 
(0.01, 0.1) 3% Uniform 

(0.01, 0.1) 

Revenues 
directed for 
water 
retooling 
alternative 
pay off 

10% Uniform 
(0.1, 0.3) 10% Uniform  

(0.1, 0.3) 

This variable evaluates the time 
pay off periods for a project. As 
retooling alternatives have not 
been implementing in cities, 
there are no case studies 
discussing the financing of the 
retooling alternative. There for, 
different ranges for earmarked 
revenues for pay off the project 
were evaluated to assess the pay 
off period and demonstrate the 
applicability of the framework.  

Revenues 
directed for 
stormwater 
retooling 
alternative 
pay off 

10% Uniform 
(0.1, 0.3) 10% Uniform  

(0.1, 0.3) 

 
The confidence of the tolerance intervals are estimated using Eqn. 8.11 (Ford and Flynn 2005): 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 1𝑠 − 𝑝! − 𝑛 ∗ 1 − 𝑝 ∗ 𝑝!!!         [Eqn. 8.11] 

 

where n is the number of runs and p is the proportion of the results covered by the runs. The 

outputs from individual runs comprise the tolerance intervals based on the assumption that inputs 

can be varied independent from one another, which is a pragmatic assumption due to the many 

interdependencies between inputs inherent to a system dynamics model (Ford and Flynn 2005). 

The tolerance intervals in this study are developed using 50 simulations for each city, providing a 

96.6% confidence that the extreme values of the simulation encompass 90% of the results.  

 

The results of the ranges of citywide water demand for both cities are consistent with the findings 

from the parameter variation (Figures 8.19 and 8.20). Flint’s most probable demand range for a 

given week is approximately 2 million gallons, whereas Saginaw’s most probable weekly demand 

range for a given week is approximately 1 million gallons. These numbers are logical relative to 

one another, as the population of Saginaw is approximately half that of Flint. Similarly for 

citywide wastewater demand, the results were consistent with the parameter variation. 
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(a)      (b) 

Figure 8.19. Flint’s citywide residential water demand: (a) Sensitivity graph based on 50 traces 

and (b) Tolerance interval 

 

        
(a)      (b) 

Figure 8.20. Saginaw’s citywide residential water demand: (a) Sensitivity graph based on 50 

traces and (b) Tolerance interval 

 

The results of the probable ranges for water revenues gained from increasing water rates is 

consistent the results from the parameter variation for both cities (Figures 8.21 and 8.22). 

However, what differed drastically from the parameter variation in Section 8.4, were the results 

from the revenue gained from wastewater rates. These sensitivity analyses captures the possibility 

that if the wastewater rates do not increase in approximately the same magnitude as water rates, 

the wastewater utility may face a loss in revenues (although this possibility is in the lower 5% of 

probable outcomes).   

 

As discussed in Section 8.2, the AB-SD model does not reflect the structure of rates within the 

city, but the relationship between the consumptions and rate changes. Based on discussions with 
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five SMEs in Flint and Saginaw in October 2014, the rates are often determined by outside 

consultants. In one city, the SMEs stated that the water and wastewater consultants who set the 

rates do not communicate with each other. In the absence of communication across utilities and 

when price elasticity is not accounted for in long-term planning, the wastewater utility can 

potentially lose total revenue (Figures 8.23 and 8.24).  This loss of total revenue was not captured 

in the parameter variation, due to the fact that when water and wastewater rates are increased, 

both variables are increased from the minimum defined value to the maximum defined values, at 

pre-defined steps. In the sensitivity analysis, random values are assigned within the defined 

ranges, resulting in simulation runs with high water rate increases and low wastewater increases. 

 

 
(a)      (b) 

Figure 8.21. Flint’s citywide generated water revenues from increasing water rates: (a) Sensitivity 

graph based on 50 traces and (b) Tolerance interval 

 

 
(a)      (b) 

Figure 8.22. Saginaw’s citywide generated water revenues from increasing water rates: (a) 

Sensitivity graph based on 50 traces and (b) Tolerance interval 
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(a)      (b) 

Figure 8.23. Flint’s citywide wastewater revenues generated from increasing water rates: (a) 

Sensitivity graph based on 50 traces and (b) Tolerance Interval 

 

 
(a)      (b) 

Figure 8.24. Saginaw’s citywide wastewater revenues generated from increasing water rates: (a) 

Sensitivity analysis based on 50 traces and (b) Tolerance interval 

 

The pay off period for water and wastewater retooling projects are consistent with the parametric 

analysis discussed in Section 8.4. When only wastewater rates are varied, while water rates are 

held constant, Flint has a median payoff period of 5 years, but may take as long as 8.1 years, 

indicated by the upper 100% tolerance interval boundary. Saginaw’s median payoff period is 15 

years, but may take up to 20 years (see Table 8.8). However, there is a decrease in demand when 

water rates are increased, which in turn reduces the volume of wastewater produced and hence 

billed to the customer. The reduced wastewater revenues impacts the payoff period for the 

stormwater retooling alternatives, as indicated in the increase in payoff period when different 

water rates are considered as shown in Table 8.8. When both water and wastewater rates are 
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varied, Flint’s median payoff period of the retooling alternative in 6 years and as late as 13.5 

years. In case the of Saginaw, when both water and wastewater rates are varied, the median 

payoff period is 17 years. The difference in the payoff periods between the two cities is due to the 

lower population in Saginaw (and thus, lower total revenues from services rendered as compared 

to Flint) and an analysis area requiring decommissioning that is approximately twice the size. 

 
Table 8.8. Payoff period for retooling alternatives 

10% of generated revenues earmarked 
Water retooling 

alternative payoff period 
(median payoff period) 

Stormwater retooling 
alternative payoff period 

(median payoff period) 
Vary water rates àFlint 1.4 to 2.6. yrs (1.5 yrs) - 
Vary wastewater rates à Flint - 4.2 to 8.1 yrs (5.2 yrs) 
Vary water and wastewater rates à Flint 1.4 to 2.6. yrs (1.5 yrs) 4.5 to 13.5 yrs (6.2 yrs) 
Vary water rates à Saginaw 3 to 7.1 yrs (3.25 yrs) - 
Vary wastewater rates à Saginaw - 13.2 to 20 yrs (15 yrs) 
Vary water and wastewater rates à Saginaw 3 to 7.1 yrs (3.25 yrs) 14.4 to 23 yrs (17 yrs) 

 

8.6. Statistical Screening  

Statistical screening is used to calculate the correlation coefficients to identify the most influential 

inputs in the model impacting the outcome over the course of the simulation time (Ford and Flynn 

2005; Taylor et al. 2009). The parameter influence on the outcome as the simulation progresses 

may be quantified, while simultaneously viewing the exogenous impacts on the model’s behavior 

(Taylor et al. 2009).  The correlation coefficient estimates the linear relation between an 

independent variable (input) and dependent variable (output) between a range of -1 to +1 using 

Eqn. 8.12 (Ford and Flynn 2005): 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = !!!! !!!!
!!!! ! !!!! !    [Eqn. 8.12] 

 

where X represents the independent parameters and Y represents the dependent parameter. The 

correlation coefficients are calculated for each case study and discussed jointly in this section to 

compare similarities and differences of the correlated parameters for the two cases. The 

independent and dependent variables evaluated for correlation coefficients are the same discussed 

in the sensitivity analysis in Section 8.5. Fifty (50) simulations are used to estimate the 

correlation coefficients, with each simulation assigning a random number to the parameters 

evaluated that lies within the defined range (Ford and Flynn 2005). The influential variables with 

correlation coefficients are depicted in blue in the graphs.  
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The most influential parameters determining the total citywide residential water demands are 

price elasticity, population decline rate, and the annual water rate increase (Figure 8.25). 

However, in Saginaw, although decline rate is influential, the decline rate has a weaker 

relationship with the citywide water demands than in Flint. This may be due to the total 

population size (102,434 people in Flint as opposed to 51,508 people in Saginaw as of 2010 (US 

Census Bureau 2011)) and the higher historic decline rate in Flint (0.0003104 per week in Flint as 

opposed to 0.00024671 per week in Saginaw (US Census Bureau 2011)). The larger population in 

conjunction with this higher rate results in a large number of people leaving the city over time. 

Within both cities, decline rates and price elasticity became more influential as the time 

progressed, while annual rate increases became less influential. These trends are likely capturing 

the fact that if there is a large rate increase in year 1, there is unlikely to be a large increase in the 

following year, as the rates may only increase to approximately 10%. Price elasticity, over time is 

more influential on the planned water demand than the decline rate of residents within the city. 

Thus, the correlation coefficient analysis supports the parameter variation and sensitive analyses 

findings that accounting for this consumer behavior is critical in long-term planning for the 

community water needs. This variance in water demand may be accounted for in planning by 

maintaining water capacity to meet the lower and upper bound needs spanning the probable price 

elasticity behavioral changes. 

 

 
(a) 
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(b) 

Figure 8.25. Correlation coefficients between primary input parameters and citywide residential 

water demand: (a) Flint and (b) Saginaw 

 

Over the simulation time, the only parameter with a significant correlation coefficient (over 

approximately +/- 0.2) for residential wastewater demand was the parameter estimating the water 

that entered the wastewater system, with a correlation coefficient of approximately +1.0 for Flint 

and Saginaw.  Within this model, this variable, as expected, has the strongest relationship with 

the output, as the output is dependent on the assumed percentage of water entering the wastewater 

system. When planning wastewater treatment plant needs, the correlation between the parameters 

estimated the water entering the wastewater system and the total wastewater produced citywide 

highlights that necessity of having an accurate understanding of the behavior of the residents 

(e.g., do the residents use water for landscaping which causes increased ground infiltration).  

 

When considering water revenues generated from increasing water rates, the same parameters, 

decline rate, price elasticity, and water rate annual increase, were influential in Flint and Saginaw, 

with approximately the same magnitudes (Figure 8.26). It may be conjectured that the influential 

parameters impacting generated water revenues may not be dependent on the size of the city, as 

was the case for citywide water demand.  As the simulation progresses, and more people leave the 

city, the decline rate becomes less influential in determining total revenues. At a constant decline 

rate, with a declining population overtime, fewer people are leaving per time step, reducing the 

total impact on the total revenues. However, as the decline rate becomes less influential at 

approximately year 3 in Flint, and year 2 for Saginaw, the price elasticity evolves into the 
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parameter with the strongest relationship with the outcome. Although the population decline may 

be important at present time, the price elasticity resulting from rate increases may have a large 

impact over time on the total revenues generated from residential water use. This finding of the 

high correlations between price elasticity and generated revenues from residential water use 

further indicates that the water utility must consider price elasticity, even to a greater degree than 

the population trajectory when planning financially long term. 

 

 
(a) 

 
(b) 

Figure 8.26. Correlation coefficients between primary input parameters and water revenues 

generated from increasing water rates: (a) Flint and (b) Saginaw 
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The influential variables identified for the wastewater revenues generated from increasing rates 

were similar to those identified in Figure 8.26. Throughout the simulation time for both cities, the 

decline rates and the price elasticity were the parameters with the strongest relationship with the 

output, shown in Figure 8.27. However, in years in which no increase in wastewater rate 

occurred, the price elasticity for water had the largest correlation coefficient. This relationship 

between price elasticity and wastewater revenues may be seen as the simulation progresses, and 

the price elasticity rises in importance, while the annual increase of utility rates decreases in 

importance. The shifting of correlations over the time is presumably due to the 10% increase in 

wastewater rate threshold being met. Another significant parameter is the water rate annual 

increase for both cities. When viewing the correlation coefficients, 2 out of 4 of the influential 

parameters relate to the water infrastructure system, price elasticity and water rate increase, 

illustrating the existing interdependencies between the water and wastewater infrastructures 

 

 
(a) 
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(b) 

Figure 8.27. Correlation coefficients between primary input parameters and wastewater revenues 

generated from increasing wastewater rates: (a) Flint and (b) Saginaw 

 

As expected, when considering the time period it takes to pay off a water retooling alternative 

from revenues generated due to water rate increases, the annual water rate increase and the 

percentage of revenues directed towards paying off the alternative are the most influential 

parameters in both cities (Figure 8.28). However, the decline rate is a third variable with a strong 

relationship with the pay off period for Flint, but not Saginaw. In Saginaw, the relationship 

between the revenues directed towards paying off an alternative has a stronger relationship than 

in Flint. As discussed in Section 8.4, this relationship between pay off periods and revenues 

earmarked for paying off the retooling alternative is likely due to the higher population and 

higher decline rate within Flint. In Saginaw, with the lower population and decline rate, fewer 

people are leaving the city over the simulation time, impacting the generated revenues from 

customers to a lesser degree.   
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(a) 

 
(b) 

Figure 8.28. Correlation coefficients between primary input parameters and time period to pay off 

the water retooling alternative: (a) Flint and (b) Saginaw 

 
Similar to the time period it takes to pay off a stormwater retooling alternative from revenues 

gained due to rate increases, the wastewater rate increase and the percentage of revenues directed 

towards paying off the alternative are the most influential variables in both cities. A third 

influential variable in both cities is the annual water rate increase, near the beginning of the 

simulation. However, over the simulation time, this correlation coefficient becomes insignificant, 

leaving the aforementioned two variables (the wastewater rate increase and the percentage of 

revenues directed towards paying off the alternative) as the driving variables for the pay off 

period of the stormwater retooling alternative. The water rate increases were likely significant in 

the beginning of the simulation as the 10% threshold in rate increases had not been met, thus 



 

215  
 

impacting the volume of wastewater produced and the volume billed. However, when water rate 

increases were not occurring, this variable did not have a high correlation coefficient. The 

presence of the water rate increase, even near the beginning of the simulation, highlights the 

interdependencies between the infrastructure systems that must be considered when evaluating 

aspects of the wastewater infrastructure system. 

 

8.7. Single-Factor Sensitivity Analysis 

Tornado diagrams visually present a single-factor sensitivity analysis to allow quick assessment 

of the impact of each uncertain parameter on different outcomes. In this sensitivity analysis, all 

parameters considered are held at their base value while one parameter is adjusted to the defined 

minimal value and the defined maximum value. The parameter with the largest associated 

uncertainty associated, or the highest risk, spans the largest range in the diagrams. The output 

portrayed on the tornado diagram (Figure 8.29-8.32) is the final output value at 520 weeks/10 

years. Table 8.7 shows the parameters considered (the same parameters as in Sections 8.5 and 

8.6).  Only parameters that impacted the outcome are labeled on each graph. The outputs 

evaluated that are dependent on the parameters are:  

1. Citywide residential water demand. 

2. Citywide residential wastewater demand. 

3. Water revenues gained from increasing water rates. 

4. Wastewater revenues gained from increasing water rates. 

 

Table 8.9. Parameters evaluated for the single-factor sensitivity analyses 

  Flint Saginaw 

  Min Max Base 
Value Min Max Base 

Value 
Decline Rate 0.0279% 0.0341% 0.0310% 0.0222% 0.0271% 0.0247% 
Price Elasticity -0.2 -0.5 -0.35 -0.2 -0.5 -0.35 
Water to 
Wastewater Ratio 
(based on humidity 
rates and 
assumptions on 
outdoor water uses) 

0.6 0.85 0.725 0.6 0.85 0.725 

Water Rate Annual 
Increase 0.01% 0.1% 0.03% 0.01% 0.1% 0.03% 

Wastewater Rate 
Annual Increase 0.01% 0.1% 0.03% 0.01% 0.1% 0.03% 
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Consistent with the results from the statistical screening in Section 8.6, the same parameters 

impact citywide water demand in the single factor sensitivity analysis. Decline rate causes a 

higher variance on the citywide water demand  in Flint than in Saginaw, as shown in Figure 8.29. 

Also similar to the findings in the Section 8.6, price elasticity yields a high variance in citywide 

water demand in Sagiaw than Flint. As mentioned in Section 8.6, the impact of price elasticity 

may be due to the total population and the higher historic decline rate in Flint. 

 

 
(a)     (b) 

Figure 8.29. Tornado diagram for citywide residential water demand: (a) Flint and (b) Saginaw 

 

Figure 8.30 depicts the tornado diagram for citywide residential wastewater demand. Consistent 

with the statistical screening, the parameter influencing the outcome to the greatest degree is the 

water to wastewater ratio. However, the tornado diagram was able to capture three other 

parameters that impacted the outcome, albeit to a lesser degree: price elasticity, decline rate, and 

water rate annual increase.  

 

 
(a)     (b) 

Figure 8.30. Tornado diagram for citywide residential wastewater demand: (a) Flint and (b) 

Saginaw 
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The same parameters were found to be influential on the generated water and wastewater 

revenues in the statistical screening and the single factor sensitivity analysis (Figures 8.31 and 

8.32). Unlike the statistical screening, which provided how correlated the parameter was with the 

outcome, the tornado diagram quantifies the ranges of outcome values due to the paramter. For 

instance, price elasticity had an increasingly stronger correlation coefficient in the statistical 

screening at the simulation progressed. However, in Figures 8.31 and 8.32 price elasticity had the 

highest impact on the generated revenues, regardless of whether the correlation coefficient 

throughout varied in magnitude throughout the simlulation.  

 

 
(a)     (b) 

Figure 8.31. Tornado diagram for generated water revenues: (a) Flint and (b) Saginaw 

 

 
(a)     (b) 

Figure 8.32. Tornado diagram for generated wastewater revenues: (a) Flint and (b) Saginaw 

 

8.8. External Validation of Findings 

Similar relationships between parameters (e.g., population and demand) have been evaluated and 

discussed in the context of water sector infrastructure. Table 8.10 highlights studies with similar 

discussions and findings as those presented in this study. 
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Table 8.10. External validation of findings 

Aspect of model Findings within this study Other studies with similar 
findings/discussions 

Relationship of water 
demands and 
population  

Positive correlation between population 
and total water demand Giacomoni et al. (2013) 

Influence of service 
price on total water 
demand by the city’s 
residents 

The price will have a direct impact on the 
total residential water demand Athanasiadis et al. (2005) 

Impact of land use/LID 
on runoff 

Changing land uses or incorporating LID 
alternatives will impact the volume of 
runoff  

USEPA (2014); Jia et al. 
(2015) 

Use of stochastic 
variables versus 
deterministic variables 

Stochastic modeling allows for viewing 
trade-offs on decisions made Kang and Lansey (2013) 

 

8.8. Summary 

This chapter evaluates the physical interdependencies between the water infrastructure and 

wastewater infrastructure system and the impact of human interaction with these infrastructure 

systems. The AB-SD model enables the assessment of interdependencies between coupled human 

and water sector infrastructure systems, with the ability to tailor the model’s parameters for the 

unique circumstances of the city (e.g., historical population dynamics, household size, soil type, 

precipitation patterns, decline rate). The model allows for the evaluation of the interactions of 

price elasticity and water demand, incorporating the uncertainty associated with the 

interdependencies such as wastewater produced and ranges of demand to anticipate utility 

planning needs. This model enables the visualization of the water sector interdependencies, such 

as the downward trajectory of water demand (and wastewater produced) within the uncertainty 

range resulting from price elasticity or the decrease in NPS pollutants due to the implementation 

of the stormwater infrastructure retooling alternatives. Table 8.11 summarizes the outcomes 

evaluated and the influential parameters identified via the analyses.   
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Table 8.11. Influential parameters impacting evaluated outcome, rationale, and summary of 

results 

Outcome 

Influential 
parameters 
(Parameters causing 
the most variance on 
the outcome from 
Section 8.7 are bold) 

Rationale Results (based on Sections 8.4-8.7) 

Generated 
runoff • Soil type 

• Soil conditions (i.e., 
whether the soil exhibits 
characteristics of its 
natural state or displays 
characteristics of 
compaction) impact the 
generated runoff  

• Runoff in Flint is reduced by 
91.9% and 76.7% for B/C soils 
and D soils, respectively, post 
stormwater retooling alternative 
implementation 

• Runoff in Saginaw is reduced by 
91.6% and 73.9% for B soils and 
D soils, respectively, post 
stormwater retooling alternative 
implementation 

Non-point 
source 
pollutants 

• Generated runoff 
• Soil type 

• Soil conditions (i.e., 
whether the soil exhibits 
characteristics of its 
natural state or 
compaction) impact the 
generated runoff  

• The quantity of non-
point source pollutants 
are correlated with the 
quantity of runoff 

• NPS pollutants in Flint is reduced 
by 91.9% and 76.7% for B(C) 
soils and D soils, respectively, 
post stormwater retooling 
alternative implementation 

• NPS pollutants in Saginaw is 
reduced by 91.6% and 73.9% for 
B soils and D soils, respectively, 
post stormwater retooling 
alternative implementation 

Citywide 
residential 
water 
demand 

• Price elasticity 
• Water rate increases 
• Decline rate (Flint) 

• Per capita water demand 
decreases when water 
rates increase 

• Decline rate is 
considerably more 
influential in the case of 
Flint possibly due to the 
total population size and 
the higher historic 
decline rate  

• Demand ranges up to 5 million 
gallons per week 

• Flint’s most probable ranges span 
2 million gallons per week  

• Most probable ranges span 1 
million gallons per week for 
Saginaw 
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Table 8.11. (continued) 

Outcome 

Influential 
parameters 
(Parameters causing 
the most variance on 
the outcome from 
Section 8.7 are bold) 

Rationale Results (based on Sections 8.4-8.7) 

Citywide 
residential 
wastewater 
demand 

• Percent of water 
entering 
wastewater system 

• Price elasticity 
• Water rate increases 
• Decline rate 

• Per capita water demand 
decreases when water 
rates increase 

• Percent of water entering 
the wastewater system is 
influenced by the 
behavior of the residents 
(e.g., outdoor water use) 
and the humidity of the 
area 

• The number of 
consumers are declining 
over time 

• Citywide wastewater demand 
ranged up to 4.25 million gallons 
per week 

• Most probable ranges span 1.7 
million gallons per week for Flint 

• Most probable ranges span 0.85 
million gallons per week for 
Saginaw 

Water 
revenues 
gained 
from 
increasing 
water rates 

• Price elasticity 
• Water rate increases 
• Decline rate 

• Increased rates are 
multiplied by a lower 
per capita demand due to 
the increased prices 

• The number of 
consumers are declining 
over time 

• Flint’s most probably weekly 
generated revenue is 
approximately $15,000, with a 
possible range between $10,000 
and $22,500 

• Saginaw’s most probably weekly 
generated revenue is 
approximately $7,500 with a 
possible range of between $6,000 
and $12,000 

Wastewater 
revenues 
gained 
from 
increasing 
water rates 

• Wastewater rate 
increases 

• Price elasticity 
• Water rate increases 
• Decline rate 

• Per capita water demand 
decreases when water 
rates increase, resulting 
in less billable 
wastewater  

• The number of 
consumers are declining 
over time 

• Flint’s most probable weekly 
generated revenue is 
approximately $25,000, with a 
possible range between $10,000 
and $42,000 

• Saginaw’s most probably weekly 
generated revenue is 
approximately $14,000 with a 
possible range between $2,500 and 
$20,000 
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Table 8.11. (continued) 

Outcome 

Influential 
parameters 
(Parameters 
causing the most 
variance on the 
outcome from 
Section 8.7 are 
bold) 

Rationale Results (based on Sections 8.4-8.7) 

Time period 
to pay off the 
water 
infrastructure 
retooling 
alternative  

• Price elasticity 
• Water rate 

increase 
• Revenues 

earmarked for 
paying off 
project 

• Decline rate 
(Flint) 

• Increased rates are 
multiplied by a lower per 
capita demand from 
behavior changes due to 
the increased prices, 
impacting the generated 
revenues 

• There is a tradeoff 
between pay off period 
and diverting resources (if 
the goal is to pay off the 
retooling project quickly, 
earmark more revenues to 
the retooling project) 

• Decline rate was 
influential in Flint 
possibly due to the total 
population size and the 
higher historic decline rate 
in Flint  

• In Saginaw, the project is most 
likely to be paid off in less than 3.3 
years but may take up to 7.8 years 

• In Flint, the project is most likely to 
be paid off in less than 1.34 years, 
but may take up to 3.3 years. 

Time period 
to pay off the 
stormwater 
retooling 
alternative 

• Wastewater rate 
increase 

• Revenues 
earmarked for 
paying off 
project 

• Water rate 

• Per capita water demand 
decreases when water 
rates increase, resulting in 
less billable wastewater  

• There is a tradeoff 
between pay off period 
and diverting resources (if 
the goal is to pay off the 
retooling project quickly, 
earmark more revenues to 
the retooling project) 

• In Flint, the probably pay off period 
is between 5.8 years and 13.5 years 

• In Saginaw, the probable pay off 
period is between 15.4 years and 26 
years 

Time period 
to generate 
desired level 
of support 

• Rate of adoption 
 

• The rate at which the 
public accepts the 
alternatives determines the 
time period in which 
different levels of support 
are gathered 

• As the minimal level of support 
increases, the time it takes to gain 
additional support also increases 

• E.g., to move from 60% to 70% 
support for the water retooling 
alternative takes 26 additional 
weeks, and o move from 70% to 
80% support takes 67 additional 
weeks, 2.5 times the time to gain 
the previous 10% in support 

• 91% and 90% are the greatest levels 
of support achieved  
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The impact of non-physical disrupters, such as price elasticity, rising water and wastewater rates, 

decline rates, and agent support/opposition, are captured in AB-SD model cascading to the water 

and wastewater/stormwater infrastructure system. The model quantifies the impact of population 

dynamics, price elasticity, and other influential parameters (identified via statistical screening), on 

potential project pay off periods, and total revenues from water/wastewater service bills, for both 

water and wastewater utilities. These factors were not quantified in previous interdependency 

models in literature known to the author.  For instance, when considering citywide demand, 

expected population declines, water rate increases, and price elasticity must be factored into long-

term planning, as indicated in the statistical screening. Irrespective of the urban decline, citywide 

water demands for both cities may vary up to 2.5 to 5 million gallons per week, with the most 

probable ranges spanning 1 to 2 million gallons per week.  This finding suggests that the excess 

capacity typical to shrinking cities may be used to ensure the possible water demands throughout 

the city can be met. However, maintaining the excess capacity comes with a trade-off of 

increased water age due to longer retention times, as discussed in Chapter 3.  

 

In the context of water revenues generated from increasing water rates, the demand rate, price 

elasticity, and percent rate increase are the strongest correlated parameters impacting the 

projected revenues gained from increasing the water prices. The increased rates will be multiplied 

by a lower per capita demand from behavior changes due to the increased prices, as well as 

emigration of residents leaving the city. For efficient planning purposes to continue to provide 

service to the community, water utility managers should be cognizant of the future water demand 

needs and the behavioral patterns that may counteract the possible revenues.  

 

Additionally in the context of revenues, the statistical screening revealed that for long term 

planning, the wastewater provider should consider water price elasticity and water rate increases, 

in conjunction with the population decline rate and wastewater rate increase. As shown in the 

sensitivity analysis, in the absence of coordinated planning across interdependent systems, the 

wastewater utility may potentially lose total revenues. This study is the first known to the author 

to identify how consumer behavior regarding water use due to utility rates, impacts the 

wastewater system. Consumer behavior is modeled as non-physical disruptors in the water 

infrastructure system, cascading into the wastewater system, directly impacting the long-term 

community demand on wastewater infrastructure and revenues generated from consumers. Table 
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8.12 shows system dynamics models in literature that have considered human interaction with the 

water/wastewater network, and the gaps in these previous studied filled by this AB-SD model.  

 

Table 8.12. Previous studies incorporating human interaction with the water or wastewater 

infrastructure 

Previous Study Model summary Gap in previous study 
Griggs and Bryson (1975) Simulation model 

considering: financial 
accounting, water 
balance, water use, and 
population growth 

Study only considers the water 
system, and does not consider the 
wastewater system. The study does 
not consider the interdependencies 
between the water and wastewater 
systems. 

Ahmad and Prashar 
(2010) 

System dynamics model 
evaluating the 
relationship between 
population growth, land 
use changes, water 
demands, and water 
availability  

Study only considers the water 
system, and does not consider the 
wastewater system. The study does 
not consider the interdependencies 
between the water and wastewater 
systems. 

Adeniran and Bamiro 
(2010) 

Simulation model 
considering finance, 
production, distribution, 
and operations and 
maintenance of a water 
system 

Study only considers the water 
system, and does not consider the 
wastewater system. The study does 
not consider the interdependencies 
between the water and wastewater 
systems. 

Rehan et al. (2011) System dynamics model 
considering the 
financial water and 
wastewater 
interdependencies 
managed by the same 
utility 

In Rehan et al. (2011), the consumer 
base and pipeline are considered 
constant, whereas the AB-SD model 
allows for populations dynamics and 
changing physical infrastructure 
footprint. The AB-SD model also 
does not require for the same utility 
to manage both infrastructure 
systems, thus allowing for utility 
rates to be set independently in each 
system. 

 
 
The population of city appears to determine whether decline rate is an influential parameter 

within the model as exposed by the statistics screening.  For the case study based in Flint, the 

citywide residential water demand, time period to pay off the water retooling alternative, and time 

period to pay off the stormwater retooling alternative were significantly correlated with decline 

rate. The influence of population and decline rate on the evaluated outcomes may be due to 

Flint’s population size and higher historic decline rate. The medium-sized population, in 

conjunction with this higher decline rate results in a large number of people leaving the city at 

each time step throughout the simulation impacting the demands and revenues. The influence of 
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decline rate on the citywide residential water demand, time period to pay off the water retooling 

alternative, and time period to pay off the stormwater retooling alternative is not highly correlated 

in the case study based in Saginaw, which has a small population size and lower decline rate. It is 

speculated from these results that the decline rate is more influential in medium cities, than in 

small cities, in terms of planning for demands and new infrastructure project pay offs. However, 

with two cities as case studies, this conclusion can only be conjectured and not confirmed. Prior 

studies evaluating urban decline’s impact on the infrastructure systems (e.g., Schlor et al. 2009; 

Hoornbeek and Schwarz 2009; Butts and Gasteyer 2011; USEPA 2014) have not identified the 

plausibility that non-physical disrupters, specifically decline rates, may be relevant in different 

classifications of cities (such as, medium cities demonstrated in this study), as opposed to 

spanning all shrinking cities. Identifying when population dynamics are relevant for impacting an 

outcome pertaining to infrastructure planning (such as, citywide demand, project pay off periods) 

may allow for cities to incorporate this parameter when appropriate. By categorizing cities in 

which certain non-physical disruptors are not relevant can aid in cities avoiding spending time 

and money, investigating the impact of such disrupters. 

 

In the context of the public support for retooling alternatives, the AB-SD model provides a 

framework and model for approximating the time period that it will take to gather the desired 

level of public support using shrinking city residential survey data and market adoption strategies. 

Incorporating market adoption strategies, a commonly used business practice for technologies and 

products, is a method that has not be applied to participatory processes for infrastructure to 

determine time periods for adopting new infrastructure management strategies within cities. 

Existing, proposed tools to foster participatory processes include stakeholder interactions via 

methods such as, game theory models (Supalla 2000; Wang et al. 2003), computer tools that 

interact with the users (Cai et al. 2004), decision trees used for comparison (Lund et al. 2008; 

Lund et al. 2009). Applying market adoption strategies and agent based modeling is not a method 

to increase support or evaluate the level of support at a moment of time, but is a strategy to 

understanding the emergent behavior occurring over time to reach the desired level of support.  

 

The agents’ pattern of support is an emergent property arising from the systematic interaction of 

the agents transitioning between states that can be both visualized during simulation, as well as 

quantified at any time point throughout the simulation. The sensitivity of the agent class to the 

population decline and rates of adoptions in participatory processes as well as the estimation of 
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the maximum achievable level of support that may be gained in a time period were assessed. 

When considering participatory processes and gathering public support, in general, as the 

minimal level of support sought after increases, the time it takes to gain additional support also 

increases. When considering the participatory processes, decision makers will have to make the 

trade-off between level of support, resources to encourage the adoption of the alternatives (that 

influences the rate of adoption), and targeted time period for implementation. The AB component 

of the model indicates that the behavior of the city’s residents is influenced by rates of adoption, 

independent of the present urban decline. The rate at which people adopt new ideas and shift 

towards levels of support may influenced through ways such as educational brochures and 

community meetings to encourage dialog regarding the decisions made. 

 

The hybrid AB-SD model provides a framework for assessing coupled human and water sector 

problems. Previous water sector studies on interdependencies have focused on water sector 

infrastructure interdependencies with other critical infrastructures (e.g., energy, roads), but have 

not considered interdependencies within the water sector. Furthermore, this study brings in 

another dimension beyond evaluating the endogenous water sector interdependencies by 

addressing the exogenous, complex human interactions with water sector infrastructure. 

Complexity is defined as the interaction of multiple (often independent) components that yield 

non-linear patterns of behavior. Complexity is addressed in this study by integrating human 

interaction as objects (agent classes) and within objects (specifically the system dynamics classes) 

to evaluate the influence of human behavior on management aspects of the infrastructure systems, 

such as future demands, financial aspects or participatory processes. Assessing epistemic 

uncertainty in the proposed framework is done through the modeling of price elasticity 

(portraying user behavior and rate changes (a surrogate for management decisions)) as stochastic 

parameters, as opposed to the traditional modeling approach using deterministic parameters (e.g., 

see Zhou and Hu 2009) to understand a range of possible outcomes, as opposed to a singular 

outcome. Epistemic uncertainty is also assessed in this study through the implementation time, in 

which the AB-SD framework builds a plausible decision-making process using market-based 

strategies and agents to evaluate the consequences of participatory processes on the timeframe to 

implement different retooling alternatives.   
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CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 

“The more I live, the more I learn. The more I learn, the more I realize, the less I know.” 

― Michel Legrand 

 

Declining populations in cities nationwide (and worldwide) have resulted in a fixed infrastructure 

footprint larger than necessary to support the current population and a decreased number of rate-

payers, which creates challenges for managing water sector infrastructure. The impact of 

underutilization resulting from urban decline on the water sector infrastructures’ performance and 

the technical viability of retooling alternatives for right-sizing water sector infrastructure are not 

well understood. This research aimed to address these gaps in the body of knowledge and the 

body of practice regarding the underutilization of water and wastewater/stormwater 

infrastructures and evaluating viable retooling alternatives. The first two sections of this chapter 

summarize the research conducted and the analyses results. Section 9.3 presents the limitations of 

this study. The fourth section of this chapter presents the contributions of this research to the 

body of knowledge and the body of practice. Finally, recommendations for future research are 

presented, as a jumping block for this study, to continue to understand issues pertaining to the 

underutilization of infrastructure and how to manage infrastructure systems that have reached the 

end of their useful life-cycle, yet are still operational. 

 

9.1. Summary of the Research 

This dissertation examined the underutilization of water and wastewater/stormwater infrastructure 

in the context of urban decline. The methodological framework used to evaluate the 

underutilization of water and wastewater/stormwater infrastructures was demonstrated using two 

case studies, Flint, MI and Saginaw, MI. These case studies demonstrate the applicability of the 

framework spanning two size classifications for cities, small and medium cities.  
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The impact of physical and non-physical disrupters on the water infrastructure’s ability are 

evaluated to provide adequate levels of service, as well as the impact of physical disrupters on the 

stormwater generated. Network analyses and hydraulic simulations were the primary methods 

used to assess the performance of the water and wastewater infrastructure, respectively. The study 

demonstrated the technical viability of decommissioning water infrastructure and consolidating 

demand to aid in right-sizing cities. Implementing these infrastructure retooling alternatives 

allows for reducing the physical footprint of the network or consolidating the service area of not 

only water demand, but other services such as, mail service and street sweeping.  

 

Public views towards water and wastewater/stormwater infrastructure issues and retooling 

alternatives were examined using survey analyses and statistical analyses. Gaps in knowledge and 

awareness were identified and the demographic and location parameters influencing attitudes and 

perceptions were estimated.  These public views towards water and wastewater infrastructures 

and participatory processes are an important aspect to consider when evaluating alternatives for 

the infrastructure systems to ensure the city moves forward within the community vision, while 

mitigating opposition.  

 

Finally, the interdependency analysis analyzed the water sector infrastructures and the human-

infrastructure interactions, and evaluated the impact of non-physical disrupters arising from 

human behavior on the performance of and generated revenues for the infrastructure systems 

evaluated. Additionally, emergent behavior arising from the interdependencies was observed and 

the influential parameters on the different outcomes, such as generated revenues, demands, and 

retooling alternative pay off periods were identified. The necessity to marry the concepts of 

participatory processes, human-interaction with infrastructure, and infrastructure retooling 

alternatives when managing the water and wastewater/stormwater infrastructures is demonstrated 

throughout the dissertation. 

 

9.2. Summary of the Results 

The methodological framework applied in this dissertation answers the research questions and 

accomplishes the research objectives that were outlined in Chapter 1. Table 9.1 summarizes the 

models used and findings from the analyses.  
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Table 9.1. Analyses components, analysis performed, and types of findings 

Analyses 
Component 

Analyses 
Performed Types of Findings 

Establishment of 
metrics 

Synthesis 
of 
literature 
and SME 
interviews 

• Network pressures and fire flow capabilities are used to measure 
performance of the water infrastructure systems in the presence 
of non-physical and physical disruptors 

• The reduction in stormwater runoff is used to measure the 
effectiveness of four retooling alternatives, namely, 
decommissioning impervious surfaces, transitioning land uses, 
and incorporating bioretention cells 

Abstraction of the 
water and 
wastewater/ 
stormwater 
infrastructure 
issues 

Synthesis 
of 
literature, 
SME 
interviews, 
and survey 
data 

• Although urban decline manifests uniquely within each 
shrinking city, water and wastewater/stormwater infrastructure 
issues such as, rising per capita costs, increased water age, 
personnel challenges are typical to shrinking cities 

• Retooling alternatives may mitigate these identified issues by 
right-sizing the infrastructure footprint for the current and 
project populations and potentially reduce or stabilize costs 

Impact of non-
physical and 
physical 
disrupters on the 
water 
infrastructure 
system 

Network 
analyses 

• The water infrastructure network is able to provide adequate 
services in the presence of the non-physical disrupters examined 
in this study, namely, further urban decline and consolidation of 
decline 

• Decommissioning pipelines less than 12 inches in diameter is a 
viable retooling alternatives in the case study analysis areas  

• The viability of decommissioning pipelines equal to or greater 
than 12 inches in diameter is case dependent 

• The socioeconomic status of the area impacts the viability of 
decommissioning larger diameter pipelines that are greater or 
equal to 12-inches in diameter. 

• Factors such as, connectivity of and the potential for dead end 
pipelines, should be considered when considering 
decommissioning pipelines 

Impact of 
physical 
disrupters, in the 
form of retooling 
alternatives 
(decommissioning 
impervious 
surfaces, 
transitioning land 
uses, and 
incorporating 
bioretention cell), 
on the generated 
runoff 

Hydraulic 
simulations 

• The reduction in runoff based on the following retooling 
alternatives is quantified: decommissioning impervious 
surfaces, transitioning land uses, and incorporating bioretention 
cell 

• The performance of the retooling alternatives under synthetic 
storm conditions is evaluated 

• The return on the financial investment in terms of runoff 
reductions from the status quo is presented 

• The differences in runoff based on soil conditions (B(C) soils 
versus D soils) is evaluated 

• The cost and impact of bioretention cells that may leave existing 
infrastructure in place are compared 

• The number of lots needed to transform to bioretention cells to 
accomplish the reductions in runoff evaluated is estimated 
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Table 9.1. (continued) 

Analyses 
Component 

Analyses 
Performed Types of Findings 

Evaluation of the 
stakeholder views 

Qualitative 
analyses 
and 
statistical 
modeling 

• Parameters which influence perceptions towards retooling 
alternatives are not translational across levels of awareness 
regarding the population dynamics of the city  

• Demographic factors which influencing the attitudes and 
perceptions of retooling alternatives such as, age, number of 
cars, employment, and gender.  

• Locations that are significant parameters influencing initial 
support/opposition towards different retooling alternatives are 
identified 

• Binary probit models with random parameters captured the 
heterogeneity of the resident population  

• Approximately half of residents are aware they reside in a 
shrinking city 

• A majority of respondents are willing to pay up to 
approximately 10% more for water and wastewater services 

Analyses of the 
interdependencies 

Hybrid 
agent 
based-
system 
dynamics 
model 

• Payoff periods for decommissioning water infrastructure and 
decommissioning impervious surfaces, and total revenues 
generated from residential use are estimated under uncertain 
conditions, such as population decline rates or price elasticity  

• Water rates and water price elasticity can impact the wastewater 
revenues, with a potential to cause a decrease in total revenues, 
if water and wastewater rates are not coordinated 

• The size of the population and magnitude of decline rate is 
conjectured to be correlated parameters with the citywide 
demand and the payoff periods for retooling alternatives 

• The public’s support of a retooling alternative in a city, an 
emergent property from the systematic interaction of the 
residents in the city, is sensitive to rate of adoption of a 
retooling alternatives, but is not sensitive to decline rate of 
population 

 

The tools demonstrated in the framework for the individual water and wastewater/stormwater 

infrastructure systems are open source, and available to fiscally strained cities. The framework 

was used to evaluate the following retooling options: consolidation of demand, decommissioning 

water pipelines, decommissioning impervious services, transitioning land uses, and implementing 

bioretention cells. All retooling alternatives evaluated were technically viable methods to aid in 

right-sizing, in terms of either providing adequate pressure for the water infrastructure system or 

reducing stormwater runoff. A significant finding is that the socioeconomic status of the 

neighborhood may impact the ability to provide adequate service, thereby demonstrating the tight 

coupling of water infrastructure and human-infrastructure interactions.   
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The analyses of public views about water and wastewater infrastructure issues and implementing 

water retooling alternatives in shrinking cities demonstrated the applicability of survey analyses 

and statistical analyses, and more specifically, binary probit models with and without random 

parameters, as a means to gain insight into the residents’ knowledge, awareness, attitudes, and 

perceptions. Statistical analysis provided a way to understand the drivers of attitude and 

perceptions, as well as the considerable heterogeneity across the respondent population. This 

framework is also capable of identifying location specific parameters that indicate an increased 

level or support or opposition towards different retooling alternative. The analyses conducted 

yielded important results that have direct implications for the city management and retooling 

alternatives. One such result that had direct implications on the support/opposition towards 

different retooling alternatives is that approximately half of the residents were aware they lived 

within shrinking cities.  A second result is that there exists a willingness to pay more for 

improved water and wastewater service. A third finding is that a majority of residents indicated 

that they did not trust their utility providers to make decisions in the customers’ best interest and 

wanted to be involved in the decision making process. This finding indicates that participatory 

processes should be incorporated into infrastructure management to encourage the 

implementation of sustainable retooling alternatives.  

 

The agent based-system dynamics model developed in this study provides a framework that can 

be used in practice and literature for understanding the interdependencies between the 

infrastructure systems, as well as the human-infrastructure interaction. The emergent behaviors in 

the system observed included the implications of not coordinating rates across infrastructures, the 

impact of price elasticity urban decline on the long term demand planning for the infrastructure 

assessed, as well as the systemic interactions between the autonomous agents to gain desired 

levels of support. This model not only allows for understanding the human-infrastructure 

interactions, but can also aid utility companies in planning from a demand or revenues 

perspective. Long-term planning may be improved by observing the impact of different decisions 

or human behaviors in a simulated environment to understand the impact on the system.   

 

9.4. Limitations of the Study 

The framework presented in this study was illustrated using two case studies - a small city and a 

medium sized city. Therefore, the results cannot be confirmed for cities with population over 

500,000 or populations smaller than 50,000.  Another limitation is that the vacant and abandoned 
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parcels are those that are known to the city or land bank. However, in reality, there may be more 

vacant or abandoned homes, or homes thought to be vacant or abandoned and illegally tied to the 

system. The uncertainty regarding the total residential demands placed on the system will change 

the demands and hence, the viability of different decommissioning scenarios.  

 

The viability of using different stormwater retooling options was demonstrated using two case 

studies, one each for separate stormwater systems and combined sewer systems. By increasing 

the number of case studies, the impact of runoff across cities with vacant or abandoned residential 

land and brownfields can be analyzed. The cost estimates used in the demonstration are intended 

to provide a general comparison. More extensive cost analysis of labor, materials, and expected 

maintenance expenses, would be needed to assess the financial viability of these alternatives.  

 

A limitation of this study in the context of public views is that survey analyses reflect the views in 

a moment in time, when the survey was completed. Views are dynamic, evolving with outreach, 

information, and changing conditions.  

 

The relationships between decline rate, population size, and outcomes such as citywide demand, 

could only be conjectured due to the sample size of two cities. Relationships between the specific 

aspects of water infrastructure management and correlated parameters, such as city characteristics 

specific to size or decline rates, may be confirmed with a larger sample of cities. These 

limitations were addressed in the interdependency model development through the structure of 

the object classes that allows for easily adjusting the total population and the population dynamics 

of the city for different growth or decline patterns. The individual parameters within the model 

that are unique to the city (e.g., household side, decline rate, per capita water use) can be varied 

within the model to reflect the circumstance of different cities. In regard to capturing the attitudes 

at a snapshot in time, this is an acknowledged limitation that could be addressed by deploying 

survey to the local communities at the time of analysis. 

 

9.5. Contributions of the Research 

The study conducted in this dissertation makes various contributions to the body of knowledge 

and the body of practice in the area of water and wastewater infrastructure management and the 

underutilization of water and wastewater infrastructures.  The methodological framework 

incorporates a mixed-method qualitative and quantitative approach to understand the implications 
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of the urban decline and viability of retooling alternatives. The methodology can be applied to 

assess interdependencies, non-physical and physical disrupters in the context of infrastructure in 

cities and the public views towards infrastructure issues and retooling alternatives. 

 

9.5.1. Contributions to the Body of Knowledge 

Previous research in the context of urban decline has not focused on the underground, unseen 

infrastructure systems, to understand the repercussions of urban decline and underutilization. 

Additionally, literature has not evaluated the impact of human-infrastructure interactions on the 

water sector infrastructure interdependencies. The research presented in this dissertation aims to 

fill this gap in the body of knowledge.  

 

In Chapter 3, published literature and interviews with SMEs from four Midwestern shrinking 

cities were synthesized to identify issues spanning cities experiencing urban decline, such as 

rising per capita costs, and increased water age. Previous work regarding infrastructure in 

shrinking cities focused on the aspects of the financial burden of water and wastewater utilities 

falling on the consumer (Schlor et al. 2009; Butts and Gasteyer 2011) or water age (Barr 2013), 

without holistically discussing multiple problems together spanning the infrastructure system 

such as, the rising per capita costs, personnel challenges, water age, and underutilization. Aside 

from issues spanning shrinking cities, issues characteristic to the type of utility provider operating 

in the shrinking city were identified. For example, public water utilities had to operate their 

facilities using minimal personnel, whereas private utilities did not face this challenge. Private 

utilities dedicated more personnel to connecting/disconnecting water service in shrinking cities 

than other cities following the typical population growth trajectory.  

 

Chapter 5 describes a framework proposed to evaluate the impact of both non-physical disrupters 

(consolidation and decline of demands) and physical disrupters (decommissioning pipelines) on 

an underutilized water infrastructure network. This component of the study, demonstrated the 

relationship between socioeconomic status of the residents in shrinking cities and the operational 

capability of the infrastructure system. Different daily use patterns of infrastructure services by 

individuals of varying socioeconomic statuses changes the viability of retooling alternatives. The 

coupling of human interaction with water infrastructure performance is demonstrated by the 

inability of the system to provide adequate water pressures and fire flows when select retooling 

alternatives are applied. Furthermore, this human-infrastructure coupling impacts which 
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management alternatives may be implemented to flexibly retool the infrastructure system for a 

smaller population. Having this knowledge of the intended future needs of the area can assist 

decision makers in ensuring that retooling alternatives do not impede the performance of the 

system for the current or projected population. To the author’s knowledge, this relationship 

pertaining to the viability of management alternatives has not been identified in literature or 

practice.  

 

The framework demonstrated Chapter 6 may be used to evaluate the effectiveness of re-zoning 

and transforming land, as well as incorporating low-impact development (LID) alternatives into 

underutilized infrastructure in a cost-effective manner. By exploring the viability of LID 

alternatives using open-source software, this study demonstrates the feasibility of exploring 

alternatives within underutilized areas for fiscally strained cities hesitant to spend resources. 

Furthermore, Chapter 6 discusses the low-impact development alternatives in terms of vacant lots 

within the case study cities, providing a reference to the relative area necessary per city block to 

accomplish the reductions in runoff has not been addressed previously in literature.  

 

Chapter 3 identifies a gap in literature pertaining to the public’s stance in the context of declining 

urban populations. Previous studies have focused on the quality of life and perceptions towards 

abandonment and vacancies without considering underground infrastructure in any capacity. 

Chapter 7 demonstrated the application of binary probit models with and without random 

parameters to assess attitudes and perceptions, and captures the heterogeneity of the populations 

towards different retooling alternatives. Further contributing to the body of knowledge is 

quantifying that influential parameters may not be translational across level of awareness 

regarding contextualized surroundings, an aspect not considered in prior literature known to the 

author.  

 

The hybrid AB-SD model in Chapter 8 contributes to literature by evaluating not only the 

endogenous water sector interdependencies, but also the exogenous, complex human interactions 

with water sector infrastructure. Complexity, defined as the interaction of components yielding 

non-linear patterns of behavior, is addressed in this study by integrating human interaction as 

objects (agent classes) and within objects (specifically, the system dynamics classes) to evaluate 

the influence of human behavior on management aspects of the infrastructure systems, such as 

future demands, financial aspects or participatory processes. Assessing epistemic uncertainty in 
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the proposed framework occurs by modeling the human behavior (i.e., price elasticity) and 

management decisions (i.e., rate changes) as stochastic parameters, as opposed to the traditional 

modeling approach using deterministic parameters to understand a range of possible outcomes, as 

opposed to a singular outcome. Epistemic uncertainty is also assessed in this study with the 

implementation time, in which the AB-SD framework builds a plausible decision-making process 

using market-based strategies and agents to evaluate the consequences of participatory processes 

on the timeframe to implement different retooling alternatives. This is first model, to the author’s 

knowledge, that captures not only the physical interdependencies between the water sector 

infrastructure, but the human interdependencies with the water sector infrastructure, as well 

 

9.5.2. Contributions to the Body of Practice 

The research presented in Chapter 5-8 develops a quantitative method to assess the impact of 

urban decline and underutilization on the water and wastewater/stormwater infrastructure 

systems, and retooling alternatives for these infrastructures to aid in right sizing the infrastructure 

footprint. The analyses conducted in Chapters 5-8 builds upon the qualitative analysis in Chapter 

3. The specific contribution to the body of practice will be presented in this section by the 

contributions of each chapter.  

 

A gap in the body of practice identified by SMEs and literature in shrinking cities is the lack of 

knowledge pertaining to issues spanning shrinking cities that may not be unique to one city. A 

second gap identified via SMEs is the technical viability of retooling alternatives that have been 

qualitatively discussed, as well as which retooling alternatives have been considered across 

shrinking cities. Chapter 3 identifies issues that span shrinking cities and the retooling alternatives 

that may mitigate these issues. Although the issues identified in Chapter 3 may manifest 

differently in each shrinking city, the list is typical to cities that have experienced considerable 

urban decline. Furthermore, retooling alternatives for water and wastewater/stormwater 

infrastructure have been compiled in order to allow each city to assess which alternatives may be 

most appropriate for the decline pattern and community vision.  

 

Chapter 5 provides a framework for assessing the residential impact of urban decline and 

different retooling alternatives on the performance of the water infrastructure system. The 

primary tool used within the framework, EPANET, is open source making it readily accessible to 

fiscally strained cities. The analyses identified the viability of two retooling alternatives: 
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consolidation of demand and decommissioning pipelines, for right-sizing the city. 

Decommissioning pipelines was determined viable for diameters less than 12 inches and case 

dependent for diameter equal or greater than 12 inches. The results demonstrated that the 

socioeconomic status of the area determined which alternatives were viable, a finding not evident 

in prior research, that quantifies the tight coupling of the demographic make-up of the area and 

the performance of the infrastructure under various physical disrupters.  

 

Chapter 6 demonstrates a methodological approach for quantifying the impact of retooling 

alternatives on the generated runoff. This approach is especially important for cities on combined 

sewer systems, as the retooling alternatives were capable of significantly reducing the runoff 

entering the underground infrastructure, which may reduce the volume of and quantity of 

overflows, a necessity outlined by the Clean Water Act. In the instance that cities cannot afford 

the financial investment to separate combined sewers, implementing retooling alternatives may be 

a cost effective method for reducing the strain on the wastewater treatment plant. The findings 

from this chapter are also relevant to cities operating on separate sewer systems, as providing a 

methodology to reduce not only the runoff, but the non-point source pollutants entering the open 

water sources. By reducing the runoff (and non-point source pollutants) entering the stormwater 

system, water source quality can potentially be improved.  Furthermore, in this chapter, the 

impact on generated runoff of not only decommissioning impervious surfaces, but transitioning 

land uses, or implementing bioretention cells instead of decommissioning impervious surfaces 

was quantified for comparison. Similar to Chapter 5, Chapter 6 uses an open source tool, 

SWMM, which is accessible at no cost to cities to perform analysis specific to the areas 

topography, current land uses, and local precipitation patterns.  

 

Chapter 7 provides a qualitative and quantitative methodology for assessing public views towards 

infrastructures in shrinking cities. This methodology can aid in incorporating public views into 

decision-making and right-sizing efforts. The study shows that awareness of the population 

dynamics in the city influences the perceptions regarding different retooling alternatives. 

Furthermore, demographics and location parameters were identified that influence the 

support/opposition towards retooling alternatives. Prior studies on the public’s stance has 

surrounded issues such as quality of life or perceptions towards abandonment, without evaluating 

the public stance towards underground infrastructure, a gap filled in this study.  
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The framework developed in Chapter 8 provides a quantitative method for cities to evaluate the 

physical infrastructure and human-infrastructure interdependencies. No known prior studies have 

quantified the water-wastewater-stormwater-human interaction interdependencies. The model is 

capable of being tailored to any cities specific infrastructure by varying parameters, such as local 

water demand, population, decline (growth) rate, billing rate, or rate increase. The model can 

predict future water and wastewater needs based on projected rate increases and population 

trends, as well as the complex interaction between billing rates, financial return, and water 

demand. 

 
9.6. Recommendations for Future Research 

Although the impact of urban decline has been well studied by political and social scientists, the 

implications of urban decline and underutilization on infrastructure systems are just beginning to 

be appreciated. There are many avenues that can extend from this study. 

 

One avenue would be to extend the physical infrastructure and human-infrastructure 

interdependencies analyses to encompass a large sample of cities spanning various size 

classifications. By doing so, relationships between the magnitude of the decline rate, the 

population size of time, and the outcome of different management strategies could be confirmed, 

as opposed to conjectured. Furthermore, by extending the analysis to numerous shrinking cities, 

factors such as regional characteristics (e.g., weather, number of shrinking cities in area), local 

policies, and driver(s) of decline may shed light into the infrastructure issues arising from the 

circumstances of shrinkage. For instance, New Orleans, Louisiana is a shrinking city as a result 

from Hurricane Katrina. The drastic urban decline occurring in a very short duration, with the 

damage from the natural disaster, may have other prominent issues that are not seen in the 

gradual chronic decline occurring over many decades.  This may add new knowledge and 

practical methods to efficiently and flexibly manage and maintain infrastructure of various 

growth (decline) patterns occurring from different drivers. This future research in infrastructure 

retooling alternatives may extend the current growth paradigm to consider the entire lifecycle of 

infrastructure. 

 

This study evaluated two critical infrastructure systems, water and wastewater/stormwater 

infrastructure under various physical and non-physical disrupters. The work done in infrastructure 

management can be extended to other infrastructure systems, such as transportation, electricity, 
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natural gas, or emergency services, to understand the implication of urban decline or 

underutilization spanning multiple systems. These infrastructure systems are in need of 

identifying retooling alternatives and methods to provide adequate services, and understand how 

urban decline is impacting the services provided, which have not been explored in literature or 

practice. ASCE (2013b)’s report provided a grade of C+ for bridges and D+ for energy, indicated 

that the infrastructure systems nationwide need investment that will be increasingly difficult to 

accomplish in fiscally strained cities.  

 

Research in the public views at the point in time when people leave the city (or move to the city) 

is an extension for future work to understand the impact of urban decline on the public. Herz 

(2006) discusses that increasing per capita costs in conjunction with deteriorating utility services 

can perpetuate existing population decline. Understanding this relationship between immigrant 

and emigration, to and from a city, as well as the perceptions towards infrastructure services may 

provide insight into factors perpetuating the urban decline that are not as prominent as the major 

drivers, such as de-industrialization, natural disaster, or aging populations.   
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Appendix C. Results of Flint’s Small Diameter Pipeline Analysis 
 

 
           (a)                                                             (b) 

Figure C.1. Flint’s Status quo network using the baseline demand: (a) Single Family Demand 
Pattern and (b) Low-Income Single Family Demand Pattern 

 

    
           (a)                                                             (b) 

Figure C.2. Flint’s Scenario 1 using the baseline demand: (a) Single Family Demand Pattern and 
(b) Low-Income Single Family Demand Pattern 

 

    
(a)                                                               (b) 

Figure C.3. Flint’s Scenario 2(a) using the baseline demand: (a) Single Family Demand Pattern 
and (b) Low-Income Single Family Demand Pattern 
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       (a)                                                               (b) 

Figure C.4. Flint’s Scenario 2(b) using the baseline demand: (a) Single Family Demand Pattern 
and (b) Low-Income Single Family Demand Pattern 

 

    
          (a)                                                                 (b) 

Figure C.5. Flint’s status quo network using a 10-year population decline in demand: (a) Single 
Family Demand Pattern and (b) Low-Income Single Family Demand Pattern 

 

    
        (a)                                                                 (b) 

Figure C.6. Flint’s Scenario 1 using a 10-year population decline in demand: (a) Single Family 
Demand Pattern and (b) Low-Income Single Family Demand Pattern 
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         (a)                                                             (b) 

Figure C.7. Flint’s Scenario 2(a) using a 10-year population decline in demand: (a) Single Family 
Demand Pattern and (b) Low-Income Single Family Demand Pattern 

 

    
       (a)                                                             (b) 

Figure C.8. Flint’s Scenario 2(b) using a 10-year population decline in demand: (a) Single Family 
Demand Pattern and (b) Low-Income Single Family Demand Pattern 

 

    
       (a)                                                             (b) 

Figure C.9. Flint’s status quo network using a 20-year population decline in demand: (a) Single 
Family Demand Pattern and (b) Low-Income Single Family Demand Pattern 
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        (a)                                                                 (b) 

Figure C.10. Flint’s Scenario 1 using a 20-year population decline in demand: (a) Single Family 
Demand Pattern and (b) Low-Income Single Family Demand Pattern 

 

 
         (a)                                                             (b) 

Figure C.11. Flint’s Scenario 2(a) using a 20-year population decline in demand: (a) Single 
Family Demand Pattern and (b) Low-Income Single Family Demand Pattern 

 

 
         (a)                                                             (b) 

Figure C.12. Flint’s Scenario 2(b) using a 20-year population decline in demand: (a) Single 
Family Demand Pattern and (b) Low-Income Single Family Demand Pattern 
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Figure C.13. Flint’s maximum flow available at each intersecting node for 2-hour duration while 

maintaining all nodes at a 20-psi minimum using the Single Family Demand Pattern and the 
baseline demand 

 

 
Figure C.14. Flint’s maximum flow available at each intersecting node while maintaining all 
nodes at a 20-psi minimum using the Single Family Demand Pattern and the baseline demand 
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Figure C.15. Flint’s maximum flow available at each intersecting node for 2-hour duration while 
maintaining all nodes at a 20-psi minimum using the Low-Income Single Family Demand Pattern 

and the baseline demand 
 

 
Figure C.16. Flint’s maximum flow available at each intersecting node while maintaining all 

nodes at a 20-psi minimum using the Low-Income Single Family Demand Pattern and the 
baseline demand 
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Figure C.17. Flint’s maximum flow available at each intersecting node for 2-hour duration while 

maintaining all nodes at a 20-psi minimum using the Single Family Demand Pattern and  
10-year population decline in demand 

 

 
Figure C.18. Flint’s maximum flow available at each intersecting node while maintaining all 
nodes at a 20-psi minimum using the Single Family Demand Pattern and 10-year population 

decline in demand 
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Figure C.19. Flint’s maximum flow available at each intersecting node for 2-hour duration while 
maintaining all nodes at a 20-psi minimum using the Low-Income Single Family Demand Pattern 

and the 10-year population decline in demand 
 

 
Figure C.20. Flint’s maximum flow available at each intersecting node while maintaining all 

nodes at a 20-psi minimum using the Low-Income Single Family Demand Pattern and 10-year 
population decline in demand 
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Figure C.21. Flint’s maximum flow available at each intersecting node for 2-hour duration while 

maintaining all nodes at a 20-psi minimum using the Single Family Demand Pattern and the  
20-year population decline in demand 

 

 
Figure C.22. Flint’s maximum flow available at each intersecting node while maintaining all 
nodes at a 20-psi minimum using the Single Family Demand Pattern and 20-year population 

decline in demand 
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Figure C.23. Flint’s maximum flow available at each intersecting node for 2-hour duration while 
maintaining all nodes at a 20-psi minimum using the Low-Income Single Family Demand Pattern 

and the 20-year population decline in demand 
 

 
Figure C.24. Flint’s maximum flow available at each intersecting node while maintaining all 

nodes at a 20-psi minimum using the Low-Income Single Family Demand Pattern and 20-year 
population decline in demand 
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Appendix D. Results of Saginaw’s Small Diameter Pipeline Analysis 
 

    
(a)                (b) 

Figure D.1. Saginaw’s status quo network: (a) Single Family Demand Pattern and (b) Low-
Income Single Family Demand Pattern  

 

    
(a)                (b) 

Figure D.2. Saginaw’s Scenario 1(a): (a) Single Family Demand Pattern and (b) Low-Income 
Single Family Demand Pattern 

 

    
(a)                (b) 

Figure D.3. Saginaw’s Scenario 1(b): (a) Single Family Demand Pattern and (b) Low-Income 
Single Family Demand Pattern 
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Figure D.4. Saginaw’s maximum flow available at each intersecting node for 2-hour duration 

while maintaining all nodes at a 20-psi minimum using the Single Family Demand Pattern 
 

 
Figure D.5. Saginaw’s maximum flow available at each intersecting node while maintaining all 

nodes at a 20-psi minimum using the Single Family Demand Pattern 
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Figure D.6. Saginaw’s maximum flow available at each intersecting node for 2-hour duration 

while maintaining all nodes at a 20-psi minimum using the Low-Income Single Family Demand 
Pattern 

 
 

 
Figure D.7. Saginaw’s maximum flow available at each intersecting node while maintaining all 

nodes at a 20-psi minimum using the Low-Income Single Family Demand Pattern 
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Appendix E. Institutional Review Board Exemption 
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Appendix F. Survey 
 
City you reside in:________________ 
 
Over the past 4 decades, my city has: 

A. Faced a loss in population.  
B. Gained population. 
C. Has had no significant changes in population. 
D. I do not know. 

 
How has population change impacted the price of my water bill: 

A. Decreasing my monthly water bill.  
B. Increasing my monthly water bill.  
C. It has not changed my monthly water bill at all.  
D. I do not know. 

 
The present level of physical WATER infrastructure necessary to provide service to my city at its 
current population is: 

A. More than enough water infrastructure. 
B. Not enough water infrastructure.  
C. The right amount of water infrastructure. 
D. I do not know. 

 
My household uses an average of ____gallons of WATER per month  
 
My WATER service bill is for: 

A. Water service only. 
B. Water and wastewater service combined. 
C. I do not know. 

 
Answer If My water service bill is for: Water and wastewater service combined Is Selected 
My average combined monthly WASTEWATER and WATER bill is (please enter “do not know” 
if applicable)______ 
 
Answer If My water service bill is for: Water service only Is Selected Or My water service bill is 
for: I do not know Is Selected 
My average monthly WATER bill is (please enter “do not know” if applicable)______ 
 
Answer If My water service bill is for: Water service only Is Selected And My water service bill is 
for: I do not know Is Selected 
My average monthly WASTEWATER bill is (please enter “do not know” if applicable)______ 
 
Are you responsible for paying for your WATER bill or a portion of your WATER bill? 

A. Yes  
B. No  

 
The amount of physical WATER infrastructure (e.g., pipes, reservoirs) in my city impacts the 
cost of my WATER bill. 

A. Agree 
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B. Disagree 
C. Do not know 

 
The quality (defined as uninterrupted, clean WATER, at an adequate pressure) of service from 
my WATER provider has changed in the past 10 years?   

A. Not applicable, I have not lived in the city more than 10 years.  
B. The quality of service has decreased dramatically.  
C. The quality of service has decreased slightly. 
D. There is no noticeable change in service. 
E. The quality of service has improved slightly.  
F. The quality has improved dramatically.  

 
My city needs to (choose all that apply):  

A. Invest in more water infrastructure. 
B. Remove or decommission (i.e., cease to use) components of the water infrastructure 

system. 
C. Repurpose some components of the water infrastructure system.  
D. Invest in maintaining the current water infrastructure system.  
E. Do nothing to the current water  infrastructure system.  

 
Would you support decommissioning, razing, or repurposing WATER infrastructure (choose all 
that apply)? 

A. I would support decommissioning (i.e., ceasing to use, but leaving the components in 
place) components of my city’s water infrastructure system. 

B. I would support razing (i.e., removing) components of my city’s water infrastructure 
system. 

C. I would support repurposing (for instance, contracting out excess capacity, using wells as 
opposed to the citywide water grid) components of my city’s water infrastructure system.  

D. No, all components of my city’s water infrastructure system  should be in place for their 
current purposes. 

 
How much MORE would you be willing to pay for improved reliability of your WATER service?  
Leave the slider at "0" if you would not be willing to pay more for your water service for a more 
reliable system 
______ Percent (%) increase in current water bill (1) 
 
How much MORE would you be willing to pay for improved reliability of your WASTEWATER 
service?  Leave the slider at "0" if you would not be willing to pay more for your water service 
for a more reliable system 
______ Percent (%) increase in current wastewater bill (1) 
 
The present level of physical WATER infrastructure necessary to provide service to my city at its 
current population is: 

A. More than enough water infrastructure. 
B. Not enough water infrastructure. 
C. The right amount of water infrastructure. 
D. I do not know 
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Based on your understanding of the WATER infrastructure system, please indicate your opinion 
on the following statements: 
 Strongly 

Disagree (1) 
Disagree 

(2) 
Neutral 

(3) 
Agree 

(4) 
Strongly 

Agree 
(5) 

I do not 
know 

(6) 
The water infrastructure system in 
my city is aging and needs to be 
upgraded 

m  m  m  m  m  m  

The water infrastructure system in 
my city is sustained by revenues 
solely generated by water bills 

m  m  m  m  m  m  

My water provider is fiscally 
strained  m  m  m  m  m  m  

I trust my water provider to make 
appropriate decisions that are in 
my best interest  

m  m  m  m  m  m  

I would like to be actively involved 
in the decision-making process for 
the water infrastructure in my city 

m  m  m  m  m  m  

 
 
 
 
Based on your understanding of your WASTEWATER infrastructure system, please indicate your 
opinion on the following statements: 
 Strongly 

Disagree 
(1) 

Disagree 
(2) 

Neutral 
(3) 

Agree 
(4) 

Strongly 
Agree 

(5) 

I do not 
know 

(6) 
The wastewater infrastructure in my 
city is aging and needs to be 
upgraded 

m  m  m  m  m  m  

Revenues solely generated by 
wastewater bills sustain the 
wastewater infrastructure n my city 

m  m  m  m  m  m  

My wastewater provider is fiscally 
strained m  m  m  m  m  m  

I trust my wastewater provider to 
make appropriate decisions that are 
in my best interest 

m  m  m  m  m  m  
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Based on your understanding of the WATER infrastructure system, please indicate your opinion 
on the following statements: 

 Strongly 
Oppose 

(1) 

Oppose 
(2) 

Neutral 
(3) 

Support 
(4) 

Strongly 
Support 

(5) 

I do not 
know 

(6) 
New (e.g., new pipes, new 
reservoirs) water infrastructure 
projects in my city 

m  m  m  m  m  m  

Increasing financial 
investments for the 
maintenance of the existing 
water infrastructure system in 
my city 

m  m  m  m  m  m  

Decommissioning (i.e., 
ceasing to use, but leaving the 
components in place) 
components of my city’s water 
infrastructure system 

m  m  m  m  m  m  

Razing (i.e., removing) 
components of my city’s water 
infrastructure system 

m  m  m  m  m  m  

Repurposing components (for 
instance, contracting out 
excess capacity, using wells as 
opposed to the citywide water 
grid) of my city’s water 
infrastructure system 

m  m  m  m  m  m  

For validation purposes, please 
choose "oppose" m  m  m  m  m  m  

Making improvements to my 
water infrastructure system 
that would increase the quality 
of the service AND increase 
the cost of service 

m  m  m  m  m  m  

Changes to my water 
infrastructure system that 
would stabilize (i.e., stop rate 
increases) the cost of my 
service (e.g., upgrading or 
replacing infrastructure 
components) 

m  m  m  m  m  m  

Increasing the cost of my 
water service to cover the cost 
of additional infrastructure or 
replacement 

m  m  m  m  m  m  
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Based on your understanding of your WASTEWATER infrastructure system, please indicate your 
opinion on the following statements: 

 
 
Are you? Female, Male 
 
Marital Status: Single, Married, Civil Union, Divorced, Separated 
 
What is your identified ethnicity? Hispanic or Latino, Not Hispanic or Latino 
 
What is your identified race (choose all that apply)? American Indian or Alaska Native, Asian, 
Black or African American, Native Hawaiian or Other Pacific Islander, White, Other _______ 
 
How would you classify the area you grew up in? Urban, Suburban, Rural 
 
Did you grow up in the city you are currently living in? Yes, No 
 
Were you born in the city you currently live in? Yes, No 
 

 Strongly 
Oppose 

(1) 

Oppose 
(2) 

Neutral 
(3) 

Support 
(4) 

Strongly 
Support (5) 

I do not 
know 

(6) 
Increasing financial 
investments for the 
maintenance of the existing 
wastewater infrastructure 
system in my city 

m  m  m  m  m  m  

For validation purposes, please 
choose "support" m  m  m  m  m  m  

Decommissioning (i.e., 
ceasing to use, but leaving the 
components in place) 
components of my city’s 
wastewater infrastructure 
system 

m  m  m  m  m  m  

Razing (i.e., removing) 
components of my city’s 
wastewater infrastructure 
system 

m  m  m  m  m  m  

Repurposing components (for 
instance, contracting out 
excess capacity of sewer 
system for non-public 
purposes) of my city’s 
wastewater infrastructure 
system  

m  m  m  m  m  m  

Increasing the cost of my 
wastewater service to cover 
the cost of additional 
infrastructure or replacement  

m  m  m  m  m  m  
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How long have you lived in your city? 
 
What is the highest completed level of education? Some high school, High school diploma, 
Technical college degree, College degree, Post Graduate Degree 
 
How many people live in your household? 
 
How many children under the age of 18 live your the household? 
 
How many children under the age of 5 live in your household? 
 
How many cars does your household have? 
 
Is your household...? Owned by you or someone in this household with a mortgage or loan, 
Owned by you or someone in this household free and clear (without a mortgage or loan), Rented, 
Other ____________________ 
 
Is this the first household you have owned? Yes, No, Not Applicable 
 
Answer If Is this the first household you have owned? Yes Is Selected 
Length of time you have owned this home? 
 
What is your approximate annual income? No income, Under $19,999, $20,000-$34,999, 
$35,000-$49,999, $50,000-$74,999, $75,000-99,999, $100,000 and above 
 
What is the approximate annual household income of the household you consider home? No 
income, Under $19,999, $20,000-$34,999, $35,000-$49,999, $50,000-$74,999, $75,000-99,999, 
$100,000 and above 
 
Are you responsible for your water utility bill: Yes, No 
 
What is your employment status (choose all that apply)? Employed for wages or salary, Self-
Employed, Out of work and looking for work, Out of work but not currently looking for work, A 
homemaker, A student, Retired, Unable to work 
 
What is your primary source of news (choose all that apply)? Newspaper, Internet, Television, 
Radio, Social Media 
 
Frequency of following the news: At least once per day, At least once per week, At least once per 
month, Never 
 
Political Views: Republican, Democrat, Independent, Other ___________ 
 
  
Do you have any comments/concerns about the WATER infrastructure system in your city? 
 
Do you have any comments/ concerns about the WASTEWATER infrastructures system in your 
city? 
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Appendix G. Descriptive Statistics from Survey 
 

Table G.1. Water and wastewater questions regarding utility providers 

 

The water 
system is 
sustained 
by bills 

The 
wastewater 
system is 
sustained 
by bills 

My water 
provider is 

fiscally 
strained 

My 
wastewater 
provider is 

fiscally 
strained 

I trust my 
water 

provider to 
make 

decisions 

I trust my 
wastewater 
provider to 

make 
decisions 

Strongly 
Disagree 2% 3% 4% 3% 8% 8% 

Disagree 7% 9% 14% 11% 13% 14% 
Neutral 19% 26% 26% 25% 29% 28% 
Agree 28% 22% 21% 21% 31% 31% 

Strongly 
Agree 11% 7% 10% 8% 10% 7% 

I do not 
know 33% 34% 26% 33% 8% 12% 

       
Oppose/ I do 

not know 42% 45% 43% 47% 29% 34% 

Neutral/ 
Support 58% 55% 57% 53% 71% 66% 

 
Table G2. Responses regarding perceptions of water retooling alternatives 

  

My water 
infrastructure is 

aging and 
needs to be 
upgraded 

New water 
infrastructure 
projects in my 

city 

Increasing 
investment for 
maintenance of 

the existing 
water 

infrastructure 

Decommissioning 
components of my 

city water 
infrastructure 

Razing 
components of 
my city water 
infrastructure 

Strongly 
Oppose 1% 2% 2% 4% 4% 

Oppose 7% 2% 7% 17% 18% 
Neutral 20% 25% 24% 39% 36% 
Support 32% 39% 44% 19% 20% 

Strongly 
Support 27% 20% 10% 5% 6% 

I do not 
know 12% 13% 12% 16% 17% 

      
Oppose/ I 
do not 
know 

21% 17% 21% 37% 39% 

Neutral/ 
Support 79% 83% 79% 63% 61% 
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Table G3. Responses regarding perceptions of additional water retooling alternatives 
  

Repurposing 
components of 
my city water 
infrastructure 

system 

Making 
improvements 
to my water 

infrastructure 
increases the 

quality and cost 
of service 

Changes to my 
water 

infrastructure to 
stabilize the 
cost of my 

service 

Increasing the cost 
to cover the cost of 

additional 
infrastructure or 

replacement 

Strongly 
Oppose 7% 4% 1% 10% 

Oppose 13% 14% 3% 23% 
Neutral 30% 29% 19% 30% 
Support 28% 30% 43% 23% 
Strongly 
Support 8% 12% 24% 4% 

I do not 
know 14% 10% 10% 9% 

     
Oppose/  
I do not 
know 

34% 29% 14% 43% 

Neutral/ 
Support 66% 71% 86% 57% 

 
Table G.4. Responses regarding perceptions of wastewater retooling alternatives 

  

The 
wastewater 

infrastructure 
in my city is 

aging and 
needs to be 
upgraded 

Increasing 
financial 

investments 
for the 

maintenance 
of the 

existing 
wastewater 

infrastructure 

Decommissioning 
components of my 

city wastewater 
infrastructure 

Razing 
components 
of my city 
wastewater 

infrastructure 

Repurposing 
components 
of my city 
wastewater 

infrastructure 

Increasing the 
cost of my 
wastewater 
service to 

cover the cost 
of additional 
infrastructure 
replacement 

Strongly 
Oppose 2% 4% 5% 6% 4% 12% 

Oppose 5% 5% 14% 15% 8% 24% 

Neutral 18% 29% 34% 35% 33% 29% 

Support 34% 39% 24% 21% 29% 20% 
Strongly 
Support 22% 8% 5% 6% 9% 4% 

I do not 
know 19% 14% 17% 17% 16% 12% 

       
Oppose/ 
I do not 
know 

26% 23% 37% 38% 29% 48% 

Neutral/ 
Support 74% 77% 63% 62% 71% 52% 
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Table G.5. Responses regarding attitude towards select water infrastructure retooling alternatives 

 

Invest in 
more water 

infrastructure 

 Remove or 
decommission 
components of 

the water 
infrastructure 

Repurpose 
some 

components 
of the water 

infrastructure 

Invest in 
maintaining 
the current 

water 
infrastructure 

Do nothing to 
the current 

water 
infrastructure 

Agree 27% 8% 20% 44% 24% 
Disagree 73% 92% 80% 56% 76% 
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Appendix H. Agent Based and System Dynamics Modeling Parameters, Variables, and 
Justifications 

 
Table H.1. System dynamics parameters, variables, and justifications 

VARIABLE VALUE JUSTIFICATION 
Revenues and Rates: Water 

PerDecInWDema
nd 

Welasticity*PerIncFrom
Yr1 

Based on the elasticity, this value yields the 
decrease in water demand.  

PerIncFromYr1 (WRate-
WRateYr1)/WRateYr1 

This variable tracks the percentage increase of the 
rates throughout the simulation.  

PerOfRateRevFor
Proj Varies 

This is the percent of the revenues gained from the 
increased water rates that is intended for the water 
infrastructure decommissioning project. 

ProjRev 
(Flow Variable) 

WDecReturn>=0?0:(Rev
-
RevYr1)*PerOfRateRev
ForProj*WInfraBudget 

The revenue from the increased rates that is 
intended for the project transitioned to RevForProj 
via this flow variable until WDecReturn is $0, 
indicating the project has been paid off. 

QuantIncrease 
PerIncFromYr1>Willing
ToPayW?0:RateIncPerY
ear*WRateYr1 

QuantIncrease increases the rate by the set 
percentage as long as the rate has not exceeded 
what the residents indicated they were willing to 
pay in the survey. 

RateIncPerYear Varies The commodity rates for water usage increase by a 
set percentage each year. 

RateRev 
 (Flow Variable) Rev-RevYr1-ProjRev 

The revenue that is gained by the increased rates, 
not intended for the decommissioning project is 
moved via this flow variable to the 
RateRevNotOnProj. 

RateRevNotOnPro
j 
(Stock Variable) 

Initial value = 0 
RateRevNotOnProj diverts the revenue from rates 
that is not for the decommissioning project to this 
stock variable. 

Rev 
(Flow Variable) 

TotalDemandPerWeek/1
000*WRate 

The total revenue for the time step (week) from 
water usage, transitions to TotRev via this flow 
variable. 

RevForProj 
(Stock Variable) Initial value = 0 

The revenue from the increased rates that is 
intended for the project is diverted to this variable 
until WDecReturn is $0, indicating the project has 
been paid off. 

RevYr1 
(Flow Variable) 

WDemandYr1*TotalPop
/1000*WRateYr1 

This flow variable tracks the amount of revenue that 
would be made if no rate changes (resulting in 
water demand changes) occurred to the system, 
with the only changing variable being population. 

TotRev 
(Stock Variable) Initial value = 0 

This stock variable captures the total revenue 
gained by raising rates and distributes it to 
RevForProj and RateRevNotOnProj. The revenue 
difference is accounts for the elasticity in demand 
and is based on the revenue from year 1 when 
demand is 150 gpcpd.  

Welasticity uniform(-0.2,-0.5) 

The price elasticity of demand is equal to the ratio 
of the percent change in demand in quantity to the 
percent change in price. Lipsey and Chrystal (1999) 
defines the price elasticity of water as ranging from 
-0.2 to -0.5. 
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VARIABLE VALUE JUSTIFICATION 
WillingToPayW 0.10748 The survey questioned what percentage more 

residents would be willing to pay for water service. 
The value used is the average of the responses, 
approximately 10%.   

WRate 
(Stock Variable) Initial value: WRateYr1 

The water usage commodity rate for year 1 is set at 
$2.59/1000 gallons, which is the commodity rate for 
Saginaw, Michigan.  

WRateInc 
(Flow Variable) 

QuantIncrease*YrlyRate
Trigger 

This variable increases the stock variable which 
tracks the current commodity rate for water usage 

WRateYr1 $2.59 
The water usage commodity rate for year 1 is set at 
$2.59/1000 gallons, which is the commodity rate for 
Saginaw, Michigan. 

YrlyRateTrigger RateIncTable(time()-
(Int-1)*52) 

YrlyRateTrigger creates the timeframe that the city 
rates are reevaluated at, which in this instance is 
annually. 

Revenues and Rates: Wastewater 
RateIncPerYearW
W Varies The commodity rates for wastewater usage increase 

by a set percentage each year. 

WillingToPayWW 0.1002851 

The survey questioned what percentage more 
residents would be willing to pay for wastewater 
service. The value used is the average of the 
responses, approximately 10%.   

WWPerOfRateRe
vForProj Varies 

This is the percent from the revenues gained from 
the increased rates that is intended for the 
wastewater infrastructure decommissioning project. 

WWProjRev 
(Flow Variable) 

WWDecReturn>=0?0:(
WWRev-WWRevYr1) 
*WWPerOfRateRevForP
roj*WWInfraBudget 

The revenue from the increased rates that is 
intended for the project transitioned to 
WWRevForProj via this flow variable until 
WWDecReturn is $0, indicating project is paid off. 

WWRate 
(Stock Variable) 

Initial value: 
WWRateYr1 

The wastewater usage commodity rate for year 1 is 
set at $4.59/1000 gallons, which is the commodity 
rate for Saginaw, Michigan.  

WWRateInc 
(Flow Variable) 

WWQuantIncrease*Yrly
RateTrigger 

This variable increases the stock variable that tracks 
the current commodity rate for wastewater usage 

WWRateRev 
 (Flow Variable) 

WWRev-WWRevYr1-
WWProjRev 

The revenue that is gained by the increased rates, 
not intended for the decommissioning project is 
moved via this flow variable to the 
WWRateRevNotOnProj. 

WWRateRevNotO
nProj 
(Stock Variable) 

Initial value = 0 
WWRateRevNotOnProj diverts the revenue from 
rates that is not for the decommissioning project to 
this stock variable. 

WWRateYr1 $4.59 
The wastewater usage commodity rate for year 1 is 
set at $4.59/1000 gallons, which is the commodity 
rate for Saginaw, Michigan. 

WWRev 
(Flow Variable) 

TotalDemandPerWeek/1
000*WWRate 

The total revenue for the time step (week) from 
wastewater produced, transitions to WWTotRev via 
this flow variable. Wastewater quantities are billed 
based on a 1:1 relationship with water demand. 

WWRevForProj 
(Stock Variable) Initial value = 0 

The revenue from the increased rates that is 
intended for the project is diverted to this variable 
until WWDecReturn is $0, indicating the project 
has been paid off. 
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VARIABLE VALUE JUSTIFICATION 

WWRevYr1 
(Flow Variable) 

WDemandYr1*TotalPop
/1000*WWRateYr1 

This flow variable tracks the amount of revenue that 
would be made if no rate changes (resulting in 
water demand changes and quantity of wastewater 
produced) occurred to the system, with the only 
changing variable being population. 

WWTotRev 
(Stock Variable) Initial value = 0 

This stock variable captures the total revenue 
gained by raising rates and distributes it to 
WWRevForProj and WWRateRevNotOnProj.  

WWPerIncFromY
r1 

(WWRate-
WWRateYr1)/WWRate
Yr1 

This variable tracks the percentage increase of the 
rates throughout the simulation.  

WWQuantIncreas
e 

WWPerIncFromYr1>Wi
llingToPayWW?0:RateI
ncPerYearWW*WWRat
eYr1 

WWQuantIncrease increases the rate by the set 
percentage as long as the rate has not exceeded 
what the residents indicated they were willing to 
pay in the survey. 

Retooling Alternative: Water 

ABMAdoptW 
(Stock Variable) 

Generated in ABM 
model 

Generated based on the adoption of the idea. 
Currently the adoption rate of smart phones is 
incorporated into the model, as the data for this 
adoption rate is available. Additionally, the 
adoption rate may be transferable, as cell phones 
were an existing infrastructure and smart phones 
were a new alternatives for that existing 
infrastructure. Similarly, water infrastructure 
management practices are an in-place, existing, 
infrastructure, and retooling alternatives are new 
alternatives for this existing infrastructure.  

CostPerBlockW $8,245 
This variable is the total cost for water 
infrastructure, per block, based on Saginaw, MI’s 
conceptual study. 

ImpWAlt WPercentAdopt>WSupT
hresh?1:0 

The ImpWAlt variable triggers the model to move 
the project forward into the infrastructure budget 
upon receiving enough support from the public. 

NumOfBlocksW Flint: 10 blocks The total number of blocks decommissioned.  Saginaw: 20 blocks 

PercentPopWSHs 0.1 

The percentage of the city’s population that has 
interest in the neighborhood retooling alternative 
implementation. This value considers the people in 
and surrounding the neighborhood(s). 

WConst 
WInfraBudget>0?delay(
WInfraBudget,WTimeT
oImp):0 

The WConst variable changes from 0 to 1 when 
construction of the project is complete based on the 
delay (WTimeToImp) from entering the budget 
(WInfraBidget). 

WDecCosts -1*CostPerBlockW* 
NumOfBlocksW 

This variable calculates the total cost for decom-
missioning water infrastructure in analysis area. 

WDecReturn 
(Stock Variable) WDecCosts 

The stock variable, in this instance, tracks the total 
cost for decommissioning solely water 
infrastructure for the area, and subtracts the savings 
from maintenance throughout the simulation. 

WDecSav 
(Stock Variable) 

-1*WConst* 
WklyDecWSavings*Nu
mOfBlocksW 

Once water infrastructure decommissioning has 
occurred (described with the WDecReturn), this 
variable subtracts the savings in water infrastructure 
maintenance from the total costs. 
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VARIABLE VALUE JUSTIFICATION 

WInfraBudget ImpWAlt>0?1:0 This changes from 0 to 1 when the project has 
moved into the water infrastructure budget. 

WklyDecWSaving
s 

$94/52 per block per 
week 

Based on Saginaw, MI’s conceptual study, this is 
the estimated savings in maintenance for solely 
water infrastructure, per block, per week. 

WPercentAdopt ABMAdoptW/(PercentP
opWSHs*TotalPop) 

This is the percentage of the population that has 
adopted the new alternative and now is in the 
neutral/support category. 

WSupThresh 0.6 

The ratio of population that supports or is neutral 
towards the infrastructure alternative to the 
population with interest in this particular project 
that is needed to move the project forward. 

WTimeToImp 52 weeks 
This is the time is takes for design and construction 
to be complete from the time the project enters the 
budget. 

Retooling Alternative: Wastewater 

ABMAdoptWW 
(Stock Variable) 

Generated in ABM 
model 

Generated based on the adoption of the idea. 
Currently the adoption of smart phones is used as 
the data for this adoption rate is available. 
Additionally, the adoption rate may be transferable, 
as cell phones were an existing infrastructure and 
smart phones were a new alternatives for that 
existing infrastructure. Similarly, water 
infrastructure management practices are an in-place, 
existing, infrastructure, and retooling alternatives 
are new alternatives for this existing infrastructure. 

CostPerSF $16/9 
This variable is the total cost for decommissioning 
impervious surfaces based on discussions with 
SMEs in and work with the City of Saginaw. 

ImpWWAlt WWPercentAdopt>WW
SupThresh?1:0 

The ImpWWAlt variable triggers the model to 
move the project forward into the infrastructure 
budget upon receiving enough support from the 
public. 

NumOfBlocksW
W 

Flint: 20 blocks The total number of blocks with impervious 
surfaces decommissioned. Saginaw: 35 blocks 

PercentPopWWS
Hs 0.1 

The percentage of the city’s population that has 
interest in the neighborhood retooling alternative 
implementation. This value considers the people in 
and surrounding the neighborhood(s). 

TotalArea 
AnalysisArea*5280*528
0*(PercentImpervSQ-
PercentImperv) 

Estimates the total area that will be 
decommissioned for the retooling alternative. 

WklyDecWWSavi
ngs 

$375/52 per block per 
week 

This variable subtracts the monetary savings from 
the total financial investment. Currently savings are 
in the form of roadway maintenance.  

WWConst 
WWInfraBudget>0?dela
y(WWInfraBudget,WW
TimeToImp):0 

The WConst variable changes from 0 to 1 when 
construction of the project is complete based on the 
delay (WWTimeToImp) from entering the budget 
(WWInfraBidget). 

WWDecReturn 
(Stock Variable) WWDecCosts 

This is the total cost for decommissioning 
impervious surfaces, implementing low impact 
development options, or incorporating green 
infrastructure. 
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VARIABLE VALUE JUSTIFICATION 

WWDecCosts -1*TotalArea* 
CostPerSF 

WWDecCosts estimates the total costs for the 
retooling alternative. 

WWDecSav -1*WWConst* 
WklyDecWWSavings 

Once decommissioning impervious surfaces, 
implementing low impact development options, or 
incorporating green infrastructure has occurred 
(described with the WDecReturn), this variable 
subtracts the savings from the total costs. 

WWInfraBudget ImpWWAlt>0?1:0 
The project moves into the wastewater/stormwater 
infrastructure budget without delay (i.e., 
immediately). 

WWPercentAdopt ABMAdoptWW/(Percen
tPopWWSHs*TotalPop) 

This is the percentage of the population that has 
adopted the new alternative and now is in the 
neutral/support category. 

WWSupThresh 0.6 

The ratio of population that supports or is neutral 
towards the infrastructure alternative to the 
population with interest in this particular project 
that is needed to move the project forward. 

WWTimeToImp 52 weeks 
WWTimeToImp is the time is takes for design and 
construction to be complete from the time the 
project enters the budget. 

Water Usage 

Decline DeclineRate*TotalPop The number of people leaving each time step 
(week). 

DeclineNeigh DeclineRate*NeighborP
op 

The change in population within the analysis area 
based on the historic population trends. 

DeclineRate 

Flint: 14.6% over ten 
year | 0.0003104 per 
week The percentage of the population leaving each time 

step (week). Saginaw: 12.04% over 
10 years | 0.00024671 
per week 

NeighborPop PplePerHome*NumberO
fHomes The population within the analysis area. 

NeighDemandPer
Week 

NeighborPop*WaterDe
mand Water demand in analysis area per week. 

NeighPopLeave DeclineNeigh The change in population in the analysis area based 
on the historic population trends. 

NeighWater 
(Flow Variable) 

NeighDemandPerWeek*
(1-RelocationTrigger) 

NeighWater adds the total water demand for the 
analysis area into the NeighWaterDemand stock 
variable. 

NeighWaterDema
nd 
(Stock Variable) 

Initial value: 0 This stock variable tracks the total water demand 
for the analysis area throughout the simulation time. 

NumberOfHome 

Flint initial value: 337 
homes Number of occupied home in analysis area based on 

GIS data from the respective cities. Saginaw initial value: 88 
homes 

PopLeave 
(Flow Variable) Decline The change in population based on the historic 

population trends. 

PplePerHome Flint: 2.48 The number of people per home based on US 
Census Data (2011). Saginaw: 2.59 
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VARIABLE VALUE JUSTIFICATION 
Relocation Flint: 0 Zero (0), if the population is consolidated within the 

analysis region, i.e., does not leave the 
neighborhood; 1, if the population is relocated out 
of the analysis area, i.e., leaves the neighborhood. 

Saginaw: 1 

RelocationTrigger WConst+Relocation>1?
1:0 

If residents are relocated from the neighborhood, 
this variable reduces the analysis area’s water 
demand to zero. 

TotalDemandPer
Week TotalPop*WaterDemand The total city water demand per week. 

TotalPop 
 
(Stock Variable) 

Flint initial value:  
102, 434 people This stock variable tracks the total population 

throughout the simulation. Saginaw initial value: 
51, 508 people 

TotalWaterDeman
d 
(Stock Variable) 

Initial value: 0 This stock variable tracks the total water demand 
for the city throughout the simulation time. 

TotWater 
(Flow Variable) TotalDemandPerWeek Adds the total city water demand into the 

TotalWaterDemand stock variable. 

WaterDemand 150*7*(1+PerDecInWD
emand) 

The total demand is estimated by multiplying the 
per capita daily water demand (Grigg 2012) by 
seven days. The demand is further decreased based 
on the price elasticity and the current commodity 
rate.  

WConst 
WInfraBudget>0?delay(
WInfraBudget,WTimeT
oImp):0 

This variable triggers when construction of the 
project is complete based on the delay 
(WTimeToImp) from entering the budget 
(WInfraBudget). 

Wastewater/Stormwater Produced 

AltGalToL GalToL*CubicFtToGal Converts the gallons of runoff generated under the 
retooling alternative simulated to liters. 

Analysis Area 
Flint: 0.14 square miles 

The analysis area in square miles. Saginaw: 0.16 square 
miles 

CitySWProduced 

Flint: N/A 
 

The total stormwater generated in the city. This 
variable is only applicable for Saginaw model, as 
discussions with SMEs in Flint indicate that the 
separate stormwater system is not metered. 

Saginaw: 7.5 MGD* 7 
days 

CSOTrigger 

Flint: 1 
 

This triggers whether the system operates as a CSS 
or a separate sewer system. Zero (0) indicates that 
the system is a CSS, and 1indicates that the system 
has separate wastewater and stormwater systems. Saginaw: 0 

CubicFtToGal 

((SoilTrigger*RunoffBC
Soil+(1-SoilTrigger) 
*RunoffDSoil)/12)*(Ana
lysisArea*27878400)*(7
.48052) 

This variable converts cubic feet of runoff for the 
retooling alternative to gallons. 

CubicFtToGalSQ 

((SoilTrigger* 
RunoffBCSoilSQ+ (1-
SoilTrigger) 
*RunoffDSQ)/12)* 
(AnalysisArea 
*27878400)* (7.48052) 

This variable converts cubic feet of runoff for the 
status quo scenario to gallons. 
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VARIABLE VALUE JUSTIFICATION 

DissolvedPhos 
(Stock Variable) 0 

The stock variable that determines the total 
dissolved phosphorous entering the 
wastewater/stormwater system under the retooling 
alternative. 

DP 
(Flow Variable) 0.00048*AltGalToL 

The total dissolved phosphorous (in grams) entering 
the wastewater/stormwater system under the 
retooling alternative, to be tracked in the respective 
stock variable (DissolvedPhos). Baird and Jennings’ 
(1996) event mean concentrations are used for 
residential land. 

HeavyMetals 
(Stock Variable) 0 

The stock variable that determines the total heavy 
metals entering the wastewater/stormwater system 
under the retooling alternative. 

HM 
(Flow Variable) 0.00011685*AltGalToL 

The total heavy metals (in grams) entering the 
wastewater/stormwater system under the status quo 
scenario, to be tracked in the respective stock 
variable (HeavyMetals). Baird and Jennings’ (1996) 
event mean concentrations are used for residential 
land. 

N 
(Flow Variable) 0.00182*AltGalToL 

The total nitrogen (in grams) entering the 
wastewater/stormwater system under the retooling 
alternative, to be tracked in the respective stock 
variable (Nitro). Baird and Jennings’ (1996) event 
mean concentrations are used for residential land. 

NeighSW 
(Flow Variable) 

(1-CSOTrigger)* 
(WWConst*CubicFtToG
al+(1-WWConst)* 
CubicFtToGalSQ) 

The total stormwater generated in the analysis area, 
that is transported via the combined sewer overflow 
system (if CSO present) enters the stock variable 
tracking total wastewater produced 
(NeighWWProduced) via this variable.  

NeighSWProduce
d 
(Stock Variable) 

0 
The total stormwater generated in the analysis area 
that is transported via separate stormwater is 
tracked via this stock variable. 

NeighWW 
(Flow Variable) 

NeighWaterDemand*W
WLoss 

The wastewater produced from water demand 
throughout the analysis area enters the stock 
variable tracking wastewater produced in the 
analysis area via this flow. 

NeighWWLoss 
(Stock Variable) 0 

This stock variable tracks the total water that is 
‘loss’ and does not enter the wastewater system in 
the analysis area throughout the simulation time. 

NeighWWProduced 
(Stock Variable) 0 This stock variable tracks the total wastewater 

produced in the analysis area. 

Nitro 
(Stock Variable) 0 

The stock variable that determines the total nitrogen 
entering the wastewater/stormwater system under 
the retooling alternative. 

NLossWWFlow 
(Flow Variable) 

NeighWaterDemand*W
WLoss 

Water from the analysis area that does not enter the 
wastewater system for reasons, such as infiltration 
and inflow (Grigg 2012), enters the stock variable 
via this flow variable. 

P 
(Flow Variable) 0.00057*AltGalToL 

The total phosphorous (in grams) entering the 
wastewater/stormwater system under the retooling 
alternative, to be tracked in the respective stock 
variable (Phos). Baird and Jennings’ (1996) event 
mean concentrations are used for residential land. 
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VARIABLE VALUE JUSTIFICATION 

PercentImperv Varies This is the percentage of impervious surfaces post 
decommissioning. 

PercentImpervSQ 
Flint: 65%  

The status quo percentage of impervious surfaces 
Saginaw: 38%  

Phos 
(Stock Variable) 0 

The stock variable that determines the total 
phosphorous entering the wastewater/stormwater 
system under the retooling alternative. 

Rainfall Area specific NCDC 
data 

Rainfall is determined using National Climate 
Center Data data. Weekly averages based on 
historic data are used in the simulations. 

RainfallWk Rainfall(time()-(Int-
1)*52) 

Determines the rainfall, based on historic rainfall 
patterns from the city, using local weather station 
data, each week. 

RunoffBCSoil 

Flint: 
(0.949*PercentImperv+0
.0544)*RainfallWk The runoff generated for B/C soils, based on the 

retooling alternative. Equation generated using 
SWMM simulation results (Chapter 6) and Minitab. Saginaw: 

(0.9714*PercentImperv+
0.0338)*RainfallWk 

RunoffBCSoilSQ 

Flint: 
(0.949*PercentImpervS
Q+0.0544)*RainfallWk The runoff generated for B/C soils, based on the 

status quo. Equation generated using SWMM 
simulation results (Chapter 6) and Minitab. Saginaw: 

(0.9714*PercentImpervS
Q+0.0338)*RainfallWk 

RunoffD 

Flint: 
(0.834*PercentImperv+0
.165)*RainfallWk The runoff generated for D soils, based on the 

retooling alternative. Equation generated using 
SWMM simulation results (Chapter 6) and Minitab. Saginaw: 

(0.8725*PercentImperv+
0.1168)*RainfallWk 

RunoffDSQ 

Flint: 
(0.834*PercentImpervS
Q+0.165)*RainfallWk The runoff generated for D soils, based on the status 

quo. Equation generated using SWMM simulation 
results (Chapter 6) and Minitab. Saginaw: 

(0.8725*PercentImpervS
Q+0.1168)*RainfallWk 

Soil Trigger Varies 
Indicates whether B(C) soils or D soils are being 
simulated. Zero (0) is used for D soils, and 1 
indicates B(C) soils.  

SQDissolvedPhos 
(Stock Variable) 0 

The stock variable that determines the total 
dissolved phosphorous entering the wastewater/ 
stormwater system under the status quo scenario. 

SQDP 
(Flow Variable) 0.00048*SQGalToL 

The total dissolved phosphorous (in grams) entering 
the wastewater/stormwater system under the status 
quo scenario, to be tracked in the respective stock 
variable (SQDissolvedPhos). Baird and Jennings’ 
(1996) event mean concentrations are used for 
residential land. 

SQGalToL GalToL*CubicFtToGalS
Q 

Converts the gallons of runoff generated under 
status quo conditions to liters. 
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SQHeavyMetals 
(Stock Variable) 0 

The stock variable that determines the total heavy 
metals entering the wastewater/stormwater system 
under the status quo scenario. 

SQHM 
(Flow Variable) 0.00011685*SQGalToL 

The total heavy metals (in grams) entering the 
wastewater/stormwater system under the status quo 
scenario, to be tracked in the respective stock 
variable (SQHeavyMetals). Baird and Jennings’ 
(1996) event mean concentrations are used for 
residential land. 

SQN 
(Flow Variable) 0.00182*SQGalToL 

The total nitrogen (in grams) entering the 
wastewater/stormwater system under the status quo 
scenario, to be tracked in the respective stock 
variable (SQNitrogen). Baird and Jennings’ (1996) 
event mean concentrations are used for residential 
land. 

SQNitrogen 
(Stock Variable) 0 

The stock variable that determines the total nitrogen 
entering the wastewater/stormwater system under 
the status quo scenario. 

SQP 
(Flow Variable) 0.00057*SQGalToL 

The total phosphorous (in grams) entering the 
wastewater/stormwater system under the status quo 
scenario, to be tracked in the respective stock 
variable (SQPhos). Baird and Jennings’ (1996) 
event mean concentrations are used for residential 
land. 

SQPhos 
(Stock Variable) 0 

The stock variable that determines the total 
phosphorous entering the wastewater/stormwater 
system under the status quo scenario. 

SQSS 
(Flow Variable) 0.041*SQGalToL 

The total suspended solids (in grams) entering the 
wastewater/stormwater system the status quo 
scenario, to be tracked in the respective stock 
variable (SQTSS). Baird and Jennings’ (1996) event 
mean concentrations are used for residential land. 

SQTSS 
(Stock Variable) 0 

The stock variable that determines the total 
suspended solids entering the 
wastewater/stormwater system under the status quo 
scenario. 

SS 
(Flow Variable) 0.041*AltGalToL 

The total suspended solids (in grams) entering the 
wastewater/stormwater system under the retooling 
alternative, to be tracked in the respective stock 
variable (TSS). Baird and Jennings’ (1996) event 
mean concentrations are used for residential land. 

SWSeparate 
(Flow Variable) 

(CSOTrigger)*(WWCon
st*CubicFtToGal+(1-
WWConst)*CubicFtToG
alSQ) 

The total stormwater generated in the analysis area, 
that is transported via separate stormwater system 
enters the stock variable tracking total stormwater 
produced (NeighSWProduced) via this variable. 

SWSQFlow CubicFtToGalSQ 

The total stormwater generated in the analysis area, 
given status quo conditions, to compare against the 
impact of retooling alternatives enter the stock 
variable (SWStatusQuo) via this flow variable. 

SWStatusQuo 
(StockVariable) 0 

The total stormwater generated in the analysis area, 
given status quo conditions, to compare against the 
impact of retooling alternatives is tracked via this 
stock variable.  
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TLossWWFlow 
(Flow Variable) 

TotalWaterDemand*W
WLoss 

Water from the city that does not enter the 
wastewater system for reasons, such as infiltration 
and inflow (Grigg 2012), enters the stock variable 
via this flow variable. 

TotalWW 
(Flow Variable) 0 

The wastewater produced from water demand 
throughout the cities enters the stock variable via 
this flow. 

TotalWWProduce
d 
(Stock Variable) 

0 
This stock variable tracks the total wastewater 
produced throughout the city during the simulation 
time. 

TSS 
(Stock Variable) 0 

The stock variable that determines the total 
suspended solids entering the wastewater/ 
stormwater system under the retooling alternative. 

TSWFlow CitySWProduced 

The total stormwater generated in the city enters the 
stock variable tracking total wastewater produced. 
This variable is only applicable for Saginaw model 
as discussion with SMEs in Flint indicate that the 
separate stormwater system is not metered. 

TWWLoss 
(Stock Variable) 0 

This stock variable tracks the total water that is 
‘loss’ and does not enter the wastewater system 
throughout the city during the simulation time. 

WaterToWW 0.85 

The percentage of water that enters wastewater 
system. Grigg (2012) states that the percentages 
range from 60% to 85% in dry to humid regions, 
respectively. Due to the Midwest being a humid 
region, and to estimate wastewater quantities 
liberally, 0.85 is used in the model. 

WWConst 
WWInfraBudget>0?dela
y(WWInfraBudget,WW
TimeToImp):0 

This variable triggers when construction of the 
project is complete based on the delay 
(WWTimeToImp) from entering the budget 
(WWInfraBidget). 

WWLoss 1-WaterToWW The percentage of water that does not enter 
wastewater system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

295  

Table F2. Agent states in the agent based model 
States Water Transition Wastewater Transition 
State à InitialPop Full population of agents transition to the InitialPop 

InitialPop à Branch 

Initial population transitions to the support and oppose state based on the survey 
data. Each agent is assigned a value based on the probability distribution plot of 
the respective opposition/support for the alternative.  For decommissioning 
water infrastructure, the agents are assigned a value from a weibull(3.63226, 
3.36921) distribution. For decommissioning wastewater infrastructure, the 
agents are assigned a value from a weibull(3.62009, 3.44894) distribution. If the 
agent’s value is greater than 4 (representing support/ strongly support from the 
survey data), the agent moves into the support state, elsewise, the agent 
transitions into the opposition state.  

Oppose à 
LikeToAdopt 

0.5257*exponential(0.3917)/52 
Transitioning based on an adoption rate. The adoption rate indicates that the 
agent has “adopted” the idea. 

LikeToAdopt à Adopt Transitions immediately to Adopt based on the above described adoption rate. 
Adopt à Branch  

Branch à Oppose uniform(0.0005,0.001) 
A percentage of individuals shift back to the Oppose state from Adopt. 

Branch à LeftTown Population leave the Adopt state based on the decline trends of the city. 
Branch à 
BackToAdopt 

A majority of the individuals remain in the Adopt state once transitioned to the 
state. 

Oppose à LeftTown Population leave the Adopt state based on the decline trends of the city. 
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