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ABSTRACT 

Eren, Necla M. Ph.D., Purdue University, August 2015. Physical Chemistry of Colloidal-
Nanoparticle Interactions. Major Professor: Osvaldo Campanella. 
 
 
Following the advances in the design and characterization of engineered nanoparticles, 

biomaterials came into contact with the nano-world. Among many implementations of 

bio-nanotechnology, there is an increasing scientific and industrial interest in designing 

complex/hybrid structures (micro/macro) by merging the advantageous of inorganic 

colloidal particles (fixed shape, hard matter) with organic biopolymers (flexible shape, 

soft matter).In the current dissertation, nanostructured silica suspensions with tunable 

rheological characteristics were designed via steric and electrostatic interactions. 

Perturbation of short range interactions, protein bridging and silica re-dispersion were 

reported to play  key roles in the macro-structure formation as determined by light 

scattering, steady state shear and small angle oscillatory shear rheology. Tunable 

rheology was attributed to the physiochemical interactions of disordered fractal 

microstructures that are formed via spontaneous, non-directional and random 

complexation. The thermodynamic nature of complexation was resolved by 

discriminating the free energy change into its enthalpic and entropic contributions 

through circular dichroism and isothermal titration calorimetry. The dominant entropic 

pathway of complexation, showed that the assembly of supra-colloid microstructures by  
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using nano-particles and biopolymers as building blocks is not limited by unfavorable 

enthalpic restrictions. 
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CHAPTER 1. INTRODUCTION 

1.1 Research motivation 

Advances in electronics, computer applications, data storage, communications, 

energy storage, environmental remediation and defense that related to the design and 

characterization of engineered nanoparticles, inspired biological engineers to create “bio-

nanotechnology”(1-3). As a result of that inspiration, nanoparticles came into contact with 

humans and bio-world(4, 5). 

Bio-nanotechnology mainly focuses to elucidate the unknowns of “protein 

corona”(6-9), “nano-bio interfacing”(10, 11) and “nano-bio hybridization”(12-15). Protein 

corona investigates the dynamic identity of the nanoparticle that is gained upon contact to 

the biological fluids (in vivo interactions)(6). Whereas, “nano-bio interfacing” and “nano-

bio hybridization”, investigates the in vitro interactions of nanoparticles with biomaterials. 

In both in vivo and in vitro interactions, the common idea is to understand how 

nanoparticles interacts with biological entities such as membranes, proteins, 

phospholipids, endocytic vesicles, organelles, DNA and biological fluids(1). Yet, the 

ultimate goal is diverse: understanding of the in vivo interactions is expected to guide 

applications in biomoleculer transport, drug delivery and regenerative medicine, whereas 

a deeper knowledge in vivo interactions is expected to lead new generation biosensors 

and nano-bio hybrid materials. . 
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The focus of the current thesis is on the field of bio-nanotechnology through nano-bio 

hybrid materials design. The main objective was to initiate a systematic hybridization 

approach in the design of disordered fractal microstructures. The main motivation was to 

gain a benefit from those microstructures in the manipulation of rheological 

characteristics of concentrated suspensions containing nano-systems. Two 

complementary approaches were integrated to meet the main objective: 

1. The rheological consequences of biopolymer-nanoparticle interactions were 

investigated along with the mechanisms that could explain them using a 

physicochemical approach. 

2. The thermodynamic nature of bio-polymer nanoparticle complexation was 

investigated along with the binding mechanisms governing the complexation. 

In light of the above remarks the motivation of the current thesis could be 

summarized as follows: 

1. There is a growing scientific and industrial interest on interfacing the 

nanotechnology with the bio-word. 

2. The diversity of possible applications merges many basic sciences into an 

interdisciplinary research field that provides various tools to develop new bio 

nanotechnology approaches for the benefit of human beings. 

Manipulation of the rheological characteristics of nano-structured suspensions in 

a systematic manner is expected to open up the floor for application of these principles in 

3-dimensional printing, wastewater purification, ceramic slurry processing, fuel design 

with increased safety, personal care products with desired properties and functions, 

artistic paints with fine-tuned consistency among many others. 
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1.2 Thesis Organization 

The main focus, objectives and relevance to the fundamental and applied science 

is summarized in the Section 1.1 

Chapter 2 includes the fundamental background of principles used in the thesis. 

Physicochemical descriptions of colloidal interactions are presented in Section 2.1. The 

experimental progress in establishing relationships between colloidal interactions and 

macroscopic structure is surveyed in Section 2.2 with a focus on rheological 

consequences of depletion and steric (due to adsorption) interactions. And finally, the 

thermodynamic nature of colloidal interactions is summarized in Section 2.3 with a focus 

on complex formation and thermal equilibrium. 

Working principles of instrumentations that are used heavily within the thesis, is 

described in Chapter 3 with relevant fundamental information required to understand the 

operation, data analysis and data interpretation. 

In Chapter 4, rheological consequences of colloidal interactions of silica with α-

lactalbumin are reported from a macroscopic and microscopic standpoint, along the 

description of mechanisms that could explain this behavior. 

In Chapter 5, thermodynamic signature of protein (lysozyme) adsorption induced 

silica flocculation was explored with a focus in an understanding of complexation 

mechanism. 

1. Finally in Chapter 6, key findings of the thesis are summarized and short term 

outcomes emphasized including recommendations for future medium and long 

term research.. 
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CHAPTER 2.  STATE OF THE ART 

Within this chapter, many concepts and approaches that a relevant to the current 

thesis were surveyed briefly with no claim to provide a detailed literature review. Due to 

the complexity of concepts a “state of art relation map” is provided in Figure 2.1 in order 

to guide the reader through the chapter. 

 

Figure 2-1 State of art relation map 

2.1 Colloidal Interactions 

Colloidal dispersions are two-component systems in which the dispersed phase is 

too small (≤1μm) to be affected by gravitational forces but large enough (>1nm) to be 

different than true solutions. The size of colloidal particles ranges from 1 nm to 1000 nm; 

just to compare the diameters of atoms are below 0.5nm. At the colloidal scale the 

particle motion is significantly governed by thermal energy, also known as Brownian 

motion (Figure 2.2). 
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Interparticle interactions that are observed in colloidal systems are described in 

subsections (2.1.1-2.1.4) following reference1, which for the sake of simplicity is not 

cited through the text again. Derivations of the equations that are presented in the text are 

taken from lectures of the Colloidal Class that is taught by Dr. Narsimhan at Purdue 

University (unpublished). Theoretical calculation of interaction potential for different 

geometries, using different approximations, is beyond the scope of the thesis, but can be 

found in the literature (16-20) 

 

Figure 2-2 Particle motion based on Colloid Scale (adapted from Norde 2010) 

2.1.1 Van der Waals Interaction 

Macroscopic and microscopic properties of colloidal systems are determined by a 

large variety of interparticle forces. Just like atoms experiencing inter-atomic force 

through their fluctuating dipole moments, colloidal particles experience an attractive 

interparticle potential, known as the van der Waals interaction. 

Van der Waals interaction is a consequence of permanent dipole-permanent 

dipole, permanent dipole-induced dipole, and induced dipole-induced dipole interactions 

 

 



6 

between colloidal particles. By assuming pairwise additivity the net interaction potential 

(Va) between two spherical colloidal particles of radii R1 and R2 is given by 

2
1 2 1 2 1 2

2 2 2
1 2 1 2 1 2 1 2 1 2

2 2 2 2ln
6 2 2 2 2 4 2 2 4

R R R R s R s R sAVa
s R s R s s R s R s R R s R s R s R R

  + +
= − + +  + + + + + + + +  

(2.1) 

Where A is the Hamaker constant and s is the surface to surface distance. 

Van der Waals interaction causes colloidal particles to attract each other when 

they are separated by short distances. Colloidal particles tend to approach each other due 

to Brownian motion, convection, gravity and other forces, which may bring the particles 

to the required short distance to promote particle-particle interaction. At this point, if 

there is no counterattacking force the particles will aggregate as a consequence of van der 

Waals attraction and the colloidal system is destabilized. 

Stabilization of colloidal systems is feasible through balancing attractive forces 

with repulsive forces such as electrostatics and forces associated with the presence of a 

second macromolecule in the system 

2.1.2 Electrostatic Interactions 

Whenever charged colloidal particles are dispersed in a liquid medium, oppositely 

charged groups (ions) in the continuous phase are attracted to the colloidal particles as a 

consequence of electro-neutrality. The region where neutralization occurs is called 

electrical double layer (Figure 2.3). When two colloidal particles approach each other, the 

overlap of double layers causes an electrostatic repulsion and the variation of electrical 

potential with the distance from a charged surface is calculated from the assumed double 

layer thickness and nanoparticle surface potential. For example when the double layer 
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around the colloids is thin, the Derjaguin approximation is used and electrostatic 

repulsion (VR) for two colloidal spheres is given by: 

( )22 ln 1 exp( )0 0V R sR πε ε ψ κ= +                                                                           (2.2) 

Where ε is dielectric constant of medium, ε0 is permittivity of vacuum, R is the 

radius of the spherical particle, ѱ is the surface potential of the colloid, s is the surface to 

surface distance and κ is the Debye-Huckel parameter. The Debye-Huckel parameter is 

given by the equation  0

1/2

2 2
0

1

i i

kT
e z n

ε ε
κ

 
=  

  ∑
where; k is Boltzmann constant, T is the 

temperature, e is the elementary charge zi and ni0 are the valence number and bulk number 

concentration of ith ion respectively. 

In the case of thick double layer (κR<5), Verwey and Overbeek approximation is 

used to calculate the electrostatic repulsion, which yields: 

2
0 02 exp( )RV R sπε ε ψ κ=                                                                            (2.3) 

 

Figure 2-3Electrical Double Layer 
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2.1.3 Forces associated with adsorbed molecules 

When a macromolecule is introduced to a colloidal suspension either adsorption 

of the polymer on the colloidal particle or depletion of the polymer from the vicinity of 

the particle occurs. When a macromolecule is adsorbed on the colloid surface, depending 

on the adsorbed layer thickness (Ls) and the distance between colloidal particles (d) two 

different phenomena or domains can be identified: 

1. Non interacting domain (d>2Ls): There is no interaction between colloids. 

2. Interpenetration domain (Ls≤d≤2Ls): A steric interaction occurs due to the 

increase in the polymeric segment density in the interpenetrating region.  

The resulting steric interaction can be either attractive or repulsive depending on 

the segment solvent interaction. In a good solvent (χ<0.5) the resulting interaction is 

repulsive since free energy of mixing is positive due to thermodynamically unfavorable 

interpenetration of segments. (In good solvents interaction between adsorbed segment 

and solvent are favorable). On the other hand, in a bad solvent (χ≥0.5) the resulting 

interaction is attractive since free energy of mixing is negative due to thermodynamically 

favorable interpenetration of segments. Steric interaction energy between two colloidal 

spheres is given by: 

22
22

1

1( ) 4 ( ) 1
2 2 s

v dG d akT
v L

π χ ω
  ∆ = − −  

   
                                                            (2.4) 

Where a is the radius of colloidal particle, T is the temperature, k is Boltzmann 

constant, v2 is the partial specific volume of the polymer, v1 is the volume of solvent 

molecule, χ is Flory-Huggins parameter, ω is the weight of polymer per unit area. 
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In the case of smaller separation distance (d<Ls), the adsorbed segments are 

compressed leading to a decrease in the configurational entropy. This causes an increase 

in the free energy and the resulting steric interaction is repulsive regardless the goodness 

of the solvent. Steric interaction energy in the interpenetration plus compression regimes 

is given by the following equation: 

2 2
2 22 2

1 1

1 1 1( ) 4 ( ) ln 2 (ln 1
2 2 2 2

s
s

s s

Lv vd dG d akT akTv d L akT
v d L L v

π χ ω π π χ ω
          ∆ = − − + + − + + −                      

   (2.5)  

where v is the number of chains per unit area.  

2.1.4 Forces associated with free molecules 

If a macromolecule is not adsorbed on the colloid surface, its concentration 

between two colloidal particles changes due to geometric factors. Again the characteristic 

of the resulting interaction (repulsive or attractive) depends on the goodness of the 

solvent, separation distance and concentration of free polymer in solution.  

 For example, in a good solvent the interaction between the solvent and the 

macromolecule is favorable and changes in the conformation of the macromolecule due 

to geometric constrains result in an increase in the free energy, which turns into a 

repulsive force. Once colloids overcome this energy barrier and get closer, non-adsorbed 

macromolecules surrounding the colloidal particles are completely squeezed out of the 

region between two colloids and demixing of the macromolecule and the solvent causes a 

further increase in the free energy. At larger separation distances between colloids, the 

potential energy diagram will have an energy barrier. However at very small separation 

distances, the solvent between colloidal particles is squeezed out and causes demixing of 
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the solvent with the non-adsorbed molecules in the bulk. This should cause a decrease in 

the free energy and particles will experience attraction. The height of the energy barrier 

and the depth of the potential will depend on the concentration of free macromolecule in 

the solution. At low free (non-adsorbed) molecule concentration, the energy barrier is 

small and depletion leads destabilization, or in other words depletion flocculation occurs 

(due to attraction). At higher free molecule concentrations, the energy barrier is large 

enough to impart kinetic stability and depletion leads stabilization (due to repulsion).  

The attractive potential due to depletion flocculation is given by: 

{ }3 2 3
0

0 if d 2a+

G= ( /12) 2(2 ) 3(2 )  if 2a d 2a+

G

a a d dπ π

∆ = ≥ ∆

∆ − + ∆ − + ∆ + ≤ ≤ ∆
                           (2.6) 

Where a is the colloid radius, Δ is the macromolecule diameter (macromolecule is 

assumed to be rigid and spherical) and d is the separation distance of colloids, oπ  is the 

limiting Van’t Hoff osmotic pressure of the dissolved polymer and is given by 

0 2 /kTN Vπ = . (N2 is the number of polymer molecules and V is the volume) 

The theoretical calculation of the interparticle interaction energy in colloid 

systems is summarized in Section 2.1. A summary on the phase behavior of colloidal 

particles due to electrostatic, depletion and steric interaction is given in Figure 2.4. This 

theoretical background is expected to provide a framework while building a deeper 

understanding of the rheological consequences of interactions due to presence of a 

polymer in colloidal media. The following section reviews the experimental progress in 

the macroscopic scale research of colloid-polymer mixtures. . 
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Figure 2-4 Summary of electrostatic/polymeric stabilization and destabilization 

2.2 Macroscopic Consequences of Interactions 

When a polymer is introduced into a colloidal system, the phase behavior of the 

polymer in the bulk and in the vicinity of colloid is different due to polymer’s 

conformational degrees of freedom. In the case of adsorption there is an increase in 

polymer segment density and in the case of depletion there is a reduction of the polymer 

segment density close to the surface of the colloid. The competition of these two factors 

determines the resulting phenomena. The first factor is the attractive potential between 

polymer segments and colloid surface and the second one is an entropic repulsion. The 

attractive potential tries to bind the polymer segments to the colloid surface, on the other 

hand the entropic repulsion pushes the polymer segments far away from the surface in 

order to maximize entropy (Since colloid surface is impenetrable, polymer 

conformational degrees of freedom is reduced at the surface and causes a decrease in the 
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entropy). If the attractive potential dominates, the polymer is adsorbed on the surface and 

if entropic repulsion dominates polymer stays in the solution(21, 22) 

Resulting forces due to adsorption or depletion can be either attractive or 

repulsive and that are described in the Sections 2.1.3 and 2.1.4. In this section, the first 

objective is to review the “old school” progress in establishing relationship between 

depletion (Section 2.2.1) or steric (due to adsorption, Section 2.2.2) interactions and 

macrostructure by focusing on the rheology of colloid-polymer mixtures. The second 

objective is to present a brief literature survey on the recent interest in the field of 

“colloidal interactions and macrostructure of materials” by focusing on supra-colloidal 

assembly (Section 2.2.3).  

2.2.1 Rheological Consequences of Depletion Interactions 

The first manuscript indicating an attractive force between two bodies immersed 

in a solution was published in 1954 by two Japanese Physicists (23)without naming it as 

“depletion” but foreseeing the importance of the force on the behavior of suspended 

particles. Since then a great amount of research (2045 citations on J. Che. Phys., 

22(1954), p.1255)) has been dedicated on the topic.  

To make a long story short, only important remarks that might be relevant to the 

current thesis are summarized. First Asakura and Oosawa (1954) concluded that the 

magnitude of the attractive force between particles depends on the osmotic pressure of 

the solution and the range of attraction depends on the diameter of particles. They also 

proposed that the phase behavior of suspended particles might be affected by this 

attractive force(24). Experimental support to that hypothesis followed right after using a 
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styrene-divinylbenzene microgel-polystyrene model system. In the model system, 

addition of free polymer creates attractive forces between particles. Colloidal particles 

that are attracted to each other via this attractive force, aggregate and experience phase 

separation (25). 

Later it was shown that addition of free polymer to a nanoparticles suspension can 

also stabilize the system and this third type (the first type was electrostatic and the second 

type was steric, Figure 2.3) of stabilization was termed “depletion stabilization”(26). 

Theory of “depletion stabilization” and “depletion flocculation” was supported by 

experiments through years with different approaches. 

However, bringing a rheological approach to the topic was a relatively slow 

process. Finally the effect of interparticle forces due to addition of a non-adsorbing 

polymer on rheology has been investigated with model systems (27)and it was found to 

link both hydrodynamic and thermodynamic interactions to predict the resulting rheology 

of separated phase or flocculated dispersions(28). Later, rheological investigations on 

weakly flocculated dispersions at low particle volume fractions (Φ<0.55) were conducted 

(29)which seems to lead the 21 Century’s research trend on the topic, that is more focusing 

on beyond the gelation boundary and investigating the location of gel transition and 

mechanical properties of depletion flocculated gels (30). 

Through years, as a consequence of ubiquity and significance of the topic, 

numerous scenarios based on kinetic phenomenon have been proposed to explain the 

gelation mechanism. Later on, despite the purely kinetic theories, the simple picture of 

gelation is concluded as being a direct consequence of equilibrium liquid gas-separation 

with experiments, simulations and theory (31). ).  
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2.2.2 Rheological Consequences of Steric Interactions 

The history of steric interactions is even longer than depletion and dates back at 

least 4000 years to the preparation in of ancient Egyptian inks where carbon black was 

dissolved in water using natural protective macromolecules such as gum Arabic, egg 

albumin or casein (32). Despite the long history of steric stabilization, the first manuscript 

differentiating the protective action of natural macromolecules from today’s steric 

stabilization agents was published in 1954, in the same volume of the Journal of 

Chemical Physics that Asakura and Oosawa’s had published their first manuscript about 

today’s depletion (33). 

Recognition of steric interactions as stabilizing and destabilizing factors was 

faster compared to depletion most probably due to its technological application history. 

In other words the mechanism responsible for the stabilization was explained after it had 

been used for 4000 years. The mechanism of steric interactions is summarized in Section 

2.1.3, in the following subsections progress on the rheology of sterically stabilized 

concentrated suspensions and concentrated suspensions that are flocculated and 

coagulated due to steric interactions are reviewed.  

2.2.2.1 Sterically Stabilized Suspensions 

As mentioned in Section 2.1.3, steric interaction is repulsive as long as χ<0.5. The 

rheological character of suspensions that are sterically stabilized under this condition first 

depends on the chain length of adsorbed or grafted polymer. In the case of short chains 

the interactions are weak and colloidal particles are not interacting so rheological 

behavior approaches to that of hard spheres. (34, 35) In the non-interacting domain, 
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hydrodynamic interaction and Brownian motion are the only forces responsible for the 

flow (36). 

However, most of the times the adsorbed or grafted layer is thicker and causes 

interactions that are ‘soft” in nature as a result of the longer range of interaction. In this 

interpenetration/compression domain rheological behavior can change from being fluid-

like to gel-like depending on the overlapping intensity, or in other words, how larger the 

surface to surface separation distance (d) is compared to the adsorbed/grafted layer 

thickness (Ls). Changing volume fraction is an easy way to tune d and this has been 

investigated in both non-aqueous and aqueous (37, 38) suspensions. That made possible to 

calculate the exact volume fraction at which the dispersion behavior changes from 

viscous to elastic by plotting G’’/G’=tanδ  versus volume fraction. The cross-over point is 

defined as the volume fraction at which tanδ  is 1. Also, it is concluded that the cross-over 

volume fraction (Φcr) depends on the particle size (a). Smaller the particle, smaller is the 

Φcr due to higher compressibility of small particles (Compressibility is Ls/a).  

 The value of viscoelastic measurements in studying interactions has led studies 

that investigated the quantitative correlation of rheology with interparticle interactions (39, 

40). However, the lack of well-established instrumentation on direct measurement of 

interparticle interactions has moved the focus of the research to shift towards developing 

methodologies to design methods and technologies such as the Surface Force Apparatus, 

Atomic Force Microscopy, Total Internal Reflection Microscopy, and Optical Tweezers. 

Relevance of those methods and technologies to the macrostructure of interacting 

colloids is beyond the scope of the current thesis but could be found elsewhere. (21).  
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2.2.2.2 Strongly flocculated systems 

As mentioned in Section 2.1.3, steric interactions in bad solvents (χ≥0.5) are 

attractive. In other words, reduction of the solvency of suspension will eventually result 

in flocculation of the colloidal particles. If the solvency is being decreased by addition of 

electrolytes, the electrolyte concentration at which the particles start to flocculate is 

called as critical flocculation concentration (CFC). Actually CFC can be investigated by 

rheological methods by investigating changes on the suspension storage modulus with 

electrolyte concentration. Below CFC, decreasing of the solvency will cause a reduction 

in the effective radius of the sterically stabilized colloidal particles that turns into a 

decrease in the effective volume fraction that is monitored with the decrease of the 

storage modulus. Above the CFC a sharp increase in the storage modulus indicates the 

flocculation of colloidal particles (41). 

Also rheological models have been developed to examine the structure of 

flocculates. According to the elastic floc structure model, flocculated units were assumed 

to be small flocs of particles (called flocculi) and the ability of flocculi to entrap the 

dispersion media is assumed to be the indicator of its structure (42).  If the attractive forces 

between flocculies are strong, flocculies have a loose, open structure. And in the case of 

weak attractive forces the flocculi has a very close packed structure. Flocculi are closed 

packed and entrap a little amount of water just above the CFC. On the other hand, far 

above the CCF, structure gets more and more open which entraps a considerable amount 

of liquid (29). 

Since these initial efforts, a significant amount of work has been focused on the 

effect of steric interactions in the rheological properties of strongly flocculated systems 
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due to attractive forces that are steric in nature. Even though there are still debates on 

how to interpret the relationship between steric interactions and rheology , it is widely 

accepted that flocculation of colloidal particles results in unique macroscopic 

responses.(43). . 

2.3 Thermodynamic nature of Interactions 

As summarized in Section 2.2.3, one of the main focuses in the nanoparticle 

colloidal research is to develop complex materials with targeted functionalities. The main 

approach is to play with the colloidal interactions (summarized in Section 2.1) to trigger 

the complex formation and control the aggregate morphology and structure. Here the 

fundamental thermodynamic principles that are needed to understand the thermodynamic 

nature of interactions that drive the complex formation is summarized in a general 

thermodynamic concept, more details could be found elsewhere in the literature (44-46).  

According to the first law of thermodynamics the energy content of the universe 

or any isolated system is constant: 

0system surroundingU U∆ + ∆ =                                                                                     (2.7) 

The internal energy change in a system ( U∆ ) results from the work (w) and heat 

(q) exchange between the system and surrounding: 

U q w∆ = +                                                                                                           (2.8) 

Here, U is a state function (i.e. its change from one state to other does not depend 

on the path taken,) whereas q and w are path dependent functions. So written is 

differential terms equation 2.8 may be written as: 
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dU q wδ δ= +                                                                                                      (2.9) 

Where d  represents a differential change in a state function such as U, whereas δ  

represents the differential change of a path dependent function. After including the 

mechanical, interfacial, electrical and chemical works in terms of state variables equation 

2.9 may be written as: 

i i
i

dU q pdV dA dQ dnδ γ ψ µ= − + + + ∑                                                           (2.10) 

Where p (pressure), γ (interfacial tension), ψ (electric potential), μi (chemical 

potential of ith component) are the intensive variables and V (Volume), A (interfacial 

area), Q (electric charge) and ni (number of moles of ith component) are the corresponding 

extensive variables of the equation.  

According to the second law of thermodynamics the direction of energy flow of 

the universe is always towards a more disordered state. “Entropy” is the main 

representation of disorder in thermodynamics and the entropy of a system could be 

defined as the number of ways to store the energy within the system.  

The entropy change in a system for a transition from state 1 to state 2 is 

formulated as: 

2

1

qS
T
δ

∆ ≥ ∫                                                                                                           (2.11) 

In the above equation the equal sign corresponds to an ideal “reversible” process 

whereas the inequality sign corresponds to an irreversible and real process. So, for 

reversible processes equation 2.10 may be re-written as: 
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i i
i

dU TdS pdV dA dQ dnγ ψ µ= − + + + ∑                                                          (2.12) 

At equilibrium, and assuming that intensive variables are constant, equation 2.12 

may be integrated to yield: 

i i
i

U TS pV A Q nγ ψ µ= − + + + ∑                                                                      (2.13) 

After defining the enthalpy (H) and Gibbs energy (G) as: 

H U pV                                                                                                       (2.14) 

G U pV TS H TS                                                                                  (2.15) 

the Free energy change can be expressed as: 

i i
i

dG SdT VdP dA dQ dn                                                          (2.16) 

Also at constant T, p,….,nj≠i, the chemical potential of component i in a mixture 

equals its partial molar Gibbs energy: 

                                                                                       (2.17) 

By cross differentiating equation 2.16 and assuming ideal gas behavior i.e., 

i
i

RT



                                                                                                             (2.18) 

the pressure and temperature dependence of the chemical potential can be derived 

(R is the universal gas constant). Further integration of this chemical potential of ith 

component in an ideal solution may be written as: 

lno
i i iRT X                                                                                               (2.19) 
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Where Xi is the mole fraction of ith component in the solution, that is: 

                                                                                                        (2.20) 

And o
i  is the molar free energy of the pure component, which can be obtained by 

extrapolating the function μi to Xi=1 and assuming ideal behavior. 

For a chemical reaction as: 

aA+bB↔pP+qQ  

The equilibrium condition imposes that 0G∆ = , that is

( ) 0p q a bG p q a bµ µ µ µ∆ = + − + = , which at constant pressure and temperature, reduces 

to 

aμA+bμB=pμP+qμQ 

After defining the equilibrium constant K in terms of the molar concentrations of 

the i component denoted ci as: 

p q
P Q
a b
A B

c c
K

c c
≡                                                                                                                                                                 (2.21) 

Equation 2.19 can be written in terms of the Gibbs energy of the reaction as: 

lnRT K G                                                                                                 (2.22) 

Where T is the absolute temperature in Kelvin, R is the gas constant, K is the 

equilibrium association (or binding) constant.  

To sum up Equations 2.15 and 2.22 are the fundamental relationships that help to 

understand the energy exchange that drive the complex formation between colloids and 

adsorbing polymers (47). . 
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CHAPTER 3. METHODOLOGY AND MATERIALS 

3.1 Light Scattering 

Light is just a form of energy that physicists would prefer to call “electromagnetic 

radiation” most likely due to the way that it propagates. Light or electromagnetic waves 

are composed of electric and magnetic fields that oscillate perpendicular to each other 

and perpendicular to the direction of energy and wave propagation as depicted in Figure 

3.1.  

 

Figure 3-1 The electric field (E) is in the vertical plane and magnetic field (B) is in the horizontal plane. 

The wave is propagating from left to right (source: Wikipedia). 

When light comes into contact with a molecule, the electric field of the light 

applies a force on the charges of the molecule and accelerates them by creating an 

oscillating polarization. According to the classical electromagnetic theory, an accelerated 

charge radiates scattered light that depends on the size, shape and molecular interactions 

in the scattering molecule. 
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As summarized in Figure 3.2, the purpose of the different type of light scattering 

experiments is to characterize the structure and molecular characteristics and dynamics of 

the tested materials by relating the measured spectral characteristics of the scattered light 

to the targeted structural and dynamic property via electrodynamic and time dependent 

statistical mechanical theories (48) A summary of the principles of dynamic, static and 

electrophoretic light scattering is depicted in Figure 3.3 and each method described 

further in the following sections.  

 

Figure 3-2 Light Scattering characteristic of a system combined with help of electrodynamics and the 
theory of time dependent statistical mechanics serves as the most important physical probes of the structure 
and dynamics of matter. 

 

Figure 3-3 Principle of A. dynamic light scattering (DLS), B. static light scattering (SLS) and C. 
electrophoretic light scattering (ELS) 
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3.1.1 Dynamic Light Scattering 

 

Figure 3-4 A) The signal collected at detector can be imagined as a speckle pattern due to the contribution 
of the scattered light generated by the molecules. B) The intensity of the signal depends on the phase 
addition of scattered light falling on the detector. If two beams arrive to the detector with the same phase 
and interfere constructively, they form a bright patch. In the opposite scenario, two beams arrive to the 
detector with different phases and interfere destructively; as a result they form a dark patch. As particles 
moves, speckle pattern will change and the rate of this change can be related to the size of particles under 
certain circumstances. 

In a dynamic light scattering experiment, the intensity of scattered light is 

measured as a function of time to get information on the sizes of the molecules. How is 

the information on size from scattering intensity is obtained goes as back as 18th century 

when Brown, Rayleigh, Mie, Debye, Smoluchowski and Einstein developed theories such 

as Brownian motion, Rayleigh-Debye Scattering, Mie Scattering and  Stokes-Einstein 

kinetic theory. Physically, to interpret the phenomenon, imagine a test tube containing 

particles dissolved or suspended in a solvent and the tube is illuminated with light. On 

one hand illuminated molecules will be translating, rotating and vibrating due to thermal 

interactions, consequently their exact position will be changing in time. On the other 

hand the electric filed amplitude of the scattered light depends on the exact position of 

the charges, so as they move the electric field will fluctuate. From the rate of fluctuation 

we can obtain information about the molecules positions which in turn is related to their 
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diffusion rates that further can be used to calculate the hydrodynamic size of the molecule. 

The mechanism of the DLS experiment is illustrated in Figure 3.3. 

 

Figure 3-5 If the intensity of a signal is compared to the intensity at a very small time later (lag time) there 
will be a strong correlation between the signals. B) The correlation of the signal will decay like exponential 
as lag time increases. 

The first step in the DLS experiment is to collect the photon counts over time 

which is proportional to the intensity of the scattered light. So what you measure directly 

is not more than intensity fluctuation. As shown in the Figure 3.4.A, this looks like just 

random noise and without the help of theory of noise and fluctuations, what we measure 

does not have a quantitative meaning. This is why all dynamic light scattering 

instruments have a correlator that is designed to convert the measured fluctuations to a 

quantitative form that is called correlation function. 

The correlator computes the intensity correlation function G2(τ) from the 

measured photon counts by comparing the signal as a function lag time (τ): 
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                                                           (3.1) 

Where, the angle brackets denote a time average,  is the intensity at time  

and is the intensity at time , is the lag time between two points in time 

where the correlation is performed, is the duration of DLS measurement. 

Assuming photon counting as a Gaussian Process, the intensity correlation 

function can be expressed in terms of scattered field amplitudes via the Siegert 

relationship: 

                                                                                                 (3.2) 

Here, g2 is intensity correlation function normalized by G2(∞) and g1 is field 

correlation function normalized by G1(0).  

As shown in the Figure 3.5.B, for lag times very long compared to the correlation 

time, the correlation function decays from  to . And each particle in the 

illuminated volume contributes to this decay. If the system is mono-disperse, a simple 

exponential can describe the decay of this correlation function: 

                                                                                                           (3.3) 

Where is the decay constant, which is related to translational diffusion 

coefficient, D , via: 

2DqΓ = −                                                                                                                (3.4) 

Where is the magnitude of scattering vector and can be calculated as: 

                                                                                                    (3.5) 
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Where  is the refractive index of the suspending liquid or solvent,  is 

wavelength of the incident light in vacuum and is the scattering angle. 

If the particles are spherical, translational diffusion coefficient, D , can be related 

to the hydrodynamic diameter of particles, hR ,via:  

6h
kTR

Dπη
=                                                                                                           (3.6) 

Where kT   is the thermal energy ( k  is the Boltzmann constant and T  is the 

absolute temperature) and η  is the viscosity of the suspending liquid or solvent. 

If the system is not mono-disperse, the exponential decay of each particle’s 

diffusion coefficient contributes. And the following integral equation has to be inversed 

to obtain a distribution of Γ’s. 

0

( ) ( )eg G dττ
∞

−Γ= Γ Γ∫                                                                                             (3.7) 

Where is G(Γ) is a normalized distribution function of decay constant. 

This is a first-kind Fredholm integral and due to high ill-posedness of the inverse 

problem, small perturbation in the data acquisition causes to large deviations in the decay 

constant distribution. To solve this problem three main approaches have been proposed: 

cumulant based methods(49), exponential sampling (50) and inverse Laplace Transform (51). 

Numerous attempts have been made to test, modify and improve these approaches (52-65) 

and most DLS instruments provide user friendly software to apply these algorithms to 

measured correlation function. However, the complexity of the algorithms requires a 

n λ

θ
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more conscious path than throwing the data in a black-box and reporting “physical 

parameters” with the hope that they will represent the data truly. 

 

Figure 3-6 Small Particles will fluctuate faster and correlation of the signal will decay faster whereas 
correlation of the signal will take longer in the case of large particles due to slower fluctuations 

Even though Correlation Function is quantitative compared to the intensity 

fluctuation (Figure 3.5), it is necessary to consciously extract physical parameters that 

truly represents the decay such as decay constant or decay constant distribution. We can 

further use this parameter to calculate the diffusion constant and particle size.  

Based on the summary in this section, the selection of algorithms to extract the 

physical parameters from the DLS data were made carefully through this thesis. The 

selection was based on the system of interest in order to avoid misinterpretation of the 

results as much as possible, as summarized in the methods of each publication section. 
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3.1.2 Static Light Scattering 

The intensity of light scattered by a particles/polymers is related to the 

concentration and molar mass of particles/polymers and the angle under which the 

scattered beam is measured via: 

*

2
1 2 ...

( , ) ( )w

K c A
R c M Pθ θ

= + +                                                                              (3.8) 

where R(θ,c) is the excess Rayleigh Ratio (cm-1), c is the concentration of 

polymer (g/mL), Mw is weight average molecular weight , A2 is the second viral 

coefficient related to the interaction between the solvent (mol mL/g2) and the molecule, 

K* is the optical constant. θ is the angle between the scattering direction and the incident 

light beam and P(θ) is the particle scattering function. (Further terms of equation can be 

neglected at low concentrations.)(66) 

The particle scattering function P(θ) can be defined as: 

22 22 2
2 2 2

0 0

1 1 4 1 41 sin sin ...
( ) 3 6 2 36 6 2

l ln n
P

π θ π θ
θ λ λ

        = + + +      
        

                    (3.9) 

where n is number of elements in a random chain polymer, l is the length of 

elements and λ0 is the incident radiation wavelength at vacuum. 

By defining all the constants under one parameter (D) and neglecting the further 

terms, P(θ) can be reduced to: 

21 1 sin ( )
( ) 2

D
P

θ
θ

≈ +                                                                                        (3.10) 
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After plugging the Equation (3.10) into equation (3.8), for low concentration 

(c→0=) Equation (3.8) yields to: 

* 2
2 2

2
0

1 16(1 sin )
( , ) 3 2G

w

K c R
R c M

π θ
θ λ

≈ + + < >                                                         (3.11) 

R(θ,c) refers the angle-dependent intensity of light scattered by sample via: 

( )2
,,

0

( )
( , ) solventsolvent

laser

V VI I r
R c f

I V V
θ θθ θθ

−−
= =                                                    (3.12) 

Where Iθ is the scattered light intensity of solution, Iθ,solvent is the scattered light 

intensity of solvent, both measured at an angle θ , I0 is the intensity of the incident 

radiation, V is the volume of the scattering solution, r is the distance between the 

scattering volume and detector. Vθ, Vθ,solvent, Vlaser are detector signal voltages of the 

solution, solvent and laser, respectively and f is an instrumental constant depending on 

the geometry of the apparatus, structure of the scattering cell and the refractive indices(66).  

While calculating the Rayleigh Ratio, it is assumed that light is vertically 

polarized and optical constant (K*) for vertically polarized (polarization is the direction 

of electric field oscillation) incident light is: 

2 2
* 20

4
0

4 ( / )
A

nK dn dc
N

π
λ

=                                                                                      (3.13) 

where no is the refractive index of the solvent at incident wavelength, NA is the 

Avogadro’s number and dn/dc is the specific refractive index increment of scattering 

macromolecules with concentration. 

 

 



30 

3.1.3 Electrophoretic Light Scattering 

As it is mentioned in the section 2.2.2 and shown Figure 2.2 the existence of 

charges on particles creates an electrical double layer. The potential at the electrical 

double layer is called zeta potential. The existence of charges on particles makes them 

also responsive to the applied electric field that is they will move under the influence of 

applied electric field (electrophoresis). The movement of particles in the applied electric 

field causes the scattered light to experience a frequency shift (Figure 3.7)(67). 

 

Figure 3-7 For a stationary particle (V=0), the frequency of the scattered light (F1) will be same as the 
frequency of the incident light (F1) whereas moving particles V > 0 will shift the frequency of the scattered 
light (F2); V is the velocity of the particle. 

The frequency shift ( f ) is related to the particle velocity ( ) via: 

2 sin
2f






    
                                                                                                   (3.14) 
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Where   is the scattering angle and   is the laser wavelength. From the velocity, 

electrophoretic mobility ( eU ) could be obtained by dividing the velocity to the voltage 

gradient ( E , due to applied electric field) imposed on the particle as follows; 

eU
E


                                                                                                              (3.15) 

Electrophoretic mobility ( eU ) is proportional to particle’s radius (a) and zeta 

potential (z), dielectric constant (ε) and viscosity (η) of the medium and the thickness of 

the electrical double layer (κ-1). The contribution of the double layer thickness and size is 

defined by Henry function, f(κa),  and in moderate electrolyte concentration in aqueous 

media f (κa) is 1.5 (Smoluchowski approximation).So finally from the electrophoretic 

mobility zeta potential could be calculated via: 

2 ( )
3e

zf aU  


                                                                                                  (3.16) 

3.2 Rheology 

Rheology studies the flow and deformation of the material.  The most common 

flow type in rheology is shear flow as depicted in Figure 3.8. 

 

Figure 3-8 Velocity profile in a simple shear flow. 
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In a simple shear flow a liquid is sandwiched between two parallel plates a 

distance H apart. The velocity of the upper plate is V in the x1 direction and lower plate is 

stationary. If there is no slip the velocity gradient 1

2

v
x

∂
∂

 is constant: 

1

2

v V
x H

γ∂
= =

∂
                                                                                                       (3.17) 

The velocity gradient calculated for the specific shear arrangement depicted in 

Figure 3.8 could be generalized for a three dimensional flow as: 
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                                                                                     (3.18) 

From which the shear rate tensor for simple shear flows could be obtained via: 

( )Tv vγ = ∇ + ∇                                                                                                   (3.19) 

For a simple shear flow with the kinetics: 

1 2

2

3 123

( )
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0

v t x

v v
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ζ  
  = =   
     



                                                                                       (3.20) 

the strain rate tensor simplifies to: 
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                                                                                        (3.21) 

After defining the 21-component of shear rate tensor as: 

1
21

2

( ) ( )
v

t t
x

γ ζ∂
= =

∂
                                                                                             (3.22) 

To create the flow, a force has to be applied. By assuming a parallelepiped around 

a point in the fluid (Figure 3.9), such force or corresponding stress (Force per Area) can 

be written as a nine component tensor called stress tensor: 

11 12 13

21 22 23

31 32 33

  

   
  

 
 
   
 
  

                                                                                            (3.23) 

Velocity gradient (profile) and stress are related through constitutive equations 

based on the kinematics (flow type such as shear or elongation and choice of the scalar 

function ( )tζ , which can be constant or function of time and on the material being tested. 

So by using constitutive equations and specified deformation flows we can determine the 

material properties under a defined flow deformation. Those material properties are 

quantified through material functions such as viscosity, storage modulus and loss 

modulus for shear flows among other for other types of flows.  
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Figure 3-9 Stress tensor components on an element 

 

Some material functions that could be measured via rotational rheometer under a 

steady shear (i.e. when t constantζ γ= = 0( )   and small amplitude oscillatory shear (SAOS) 

flow (i.e. when tζ ( )  is a sinusoidal function of time. Figure 3.10  summarizes these two 

types of tests, further information is also given in Table 3.1(68). 

 

Figure 3-10 In steady shear flow (A) shear is produced by the constant rotation of the upper plate whereas 
in the SAOS (B), rotation is periodic. (b(t)  is the time dependent displacement of the upper plate. ) 

 

 

 

 

 



35 

 

Table 3-1 Flow kinematics and related material functions of rotation rheometer 
Definition Kinematics Material Function 

Steady Shear Viscosity, 
( )η γ  0( ) constanttς γ= =   

 
21

0

( )
τη γ
γ

=


 

Storage Modulus, '( )G ω  0( ) cost tζ γ ω=   

0 0γ ω γ=  

0

0

'( ) cosG
τω δ
γ

=  

Loss Modulus, ''( )G ω  0( ) cost tζ γ ω=   

0 0γ ω γ=  

0

0

''( ) sinG
τω δ
γ

=  

 

3.3 Isothermal titration Calorimetry 

Examination of the dynamics and structure of the colloid-nanoparticle interactions 

via light scattering and rheology do not give much insight about the energetic forces that 

drive the resulting phase behavior, possible complex formation and stability of formed 

complexes(69). In order to gain a compressive understanding of the interactions with an 

ultimate goal to fine tune them, thermodynamic signatures behind the interactions have to 

be explored. 

Isothermal titration calorimetry is a powerful tool which directly measures the 

enthalpy change of interactions without the need of a predetermined model owing to its 

unique design, which is depicted in Figure 3.11. 
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Figure 3-11. Schematic of a typical ITC unit. Source: TA Instruments 

The sample cell and the reference cell are located in an adiabatic jacket in which 

the temperature is kept constant in a differential manner. As aliquots of guest solutions 

are injected through a syringe into the calorimeter sample cell that contains the host 

solution, the heat change in the sample cell is compensated by the applied power to 

maintain thermal equilibrium with the reference cell that contains the solvent of the 

solution. If heat is released, the sample cell would require less power input (negative 

signal), whereas absorption of heat would require more power input (positive signal). 

Each single injection will create a peak and as the reaction saturates, the magnitudes of 

the peaks will decrease gradually until a point that they don’t change anymore. At this 

point the only heat associated with injection will result from the titration blanks such as 

heat of injection, heat of dilution and heat of mixing. Since this blank heats is not related 

to the host guest molecules interactions directly their subtraction is crucial. 
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Figure 3-12 ITC raw data: power required to compensate the heat released or absorbed during the 
injections.Source TA Instruments 

The raw data of a typical ITC experiment is the power (heat rate) versus time plot 

that is composed of the peaks of each injection (Figure 3.12). The raw data peaks has to 

be integrated with respect to time to determine the molar enthalpy of interaction (the 

measured quantity is power and has to be converted to heat and assuming constant 

volume and pressure, heat change is equal to the enthalpy change). Once the molar 

enthalpy of interaction is plotted against the mole ratio, thermodynamic parameters of 

interaction such as overall enthalpy, binding constant and stoichiometry is determined 

from the depth, slope and the inflection point of the curve, respectively (Figure 3.13).  
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Figure 3-13 Heat Profile obtained from a typical ITC experiment. Source: TA Instruments 

Obtaining the thermodynamic parameters form the heat profile requires the 

selection of a suitable binding model. All the possible reactions should be considered to 

be able to pick a theoretical framework for describing the binding phenomenon. The two 

simplest frameworks of binding analysis are depicted in Figures 3.14 and 3.15. Both of 

them allow closed-form expressions (equation 3.24 and equation 3.25) for Q (heat) as a 

function of total ligand concentration(70). 
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                                                                                          (3.24) 
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                                                          (3.25) 

Where iH is the enthalpy of binding to binding sites of set i, L is the free ligand 

concentration, Ki is the binding constant,  M is the total concentration of macromolecule 

available for binding, V is the volume. 
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Once the thermodynamic parameters are obtained by fitting, standard 

thermodynamic equations (equation 2.16: lnRT K G  and 2.9: G H T S    ) 

can be used to calculate the free energy and discrimination of free energy into enthalpy 

and entropy contributions as further described in section 2.3. 

 

Figure 3-14 One set independent ligand-binding sites mode. Source: Anal. Chem, 1990, 62 (18), pp 950A-
959A 

 

It is important to note that the two equations given above apply for the systems 

depicted in Figures 3.14 and 3.15 and although literature often use these models they may 

not represent the true binding kinetics and they should be taken with caution. 
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Figure 3-15 Two sets of independent ligand-binding sites model. Source: Anal. Chem, 1990, 62 (18), pp 
950A-959A 
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3.4 Physicochemical Properties of Colloidal Silica 

3.4.1 Introduction to Colloidal Silica 

Silica (SiO2) is the major component of the crust of the earth. Quite proportional 

to its abundance, there are many forms of silica (crystalline, amorphous, soluble, 

chemically combined, etc...). Regardless the form, the building unit of silica is [SiO4]4- is 

a tetrahedron (Figure 3.16.A). Various silica forms have different structural organization 

of [SiO4]4-units. For example amorphous form of silica is composed by a random packing 

of [SiO4]4- whereas crystalline silica has a three dimensional framework structure (Figure 

3.16.B,C). The density of amorphous silica is lower than crystalline ones due to the non-

periodic structural organization(71). 

 

Figure 3-16 A. Tetrahedral coordination of oxygen ions with Silicon B. Random packing of (Si-O4)4 

tetrahedra: Amorphous Silica C. Regular packing of (Si-O4)4- tetrahedra: Crystalline Silica. Source(71) 

Colloidal silica is a dispersion of synthetic amorphous silica. A stable dispersion 

of silica in a liquid is called a sol. Silica sols are stable in a sense that do not settle or 

agglomerate at a significant rate.  Agglomeration is the cohesion of colloidal particles by 

any possible way such as gelation, coagulation, flocculation and coacervation. In gelation 
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(Figure 3.17.A) particles are linked together in a way that they span the all volume of the 

original sol, there is no local increase in the particle concentration in any macroscopic 

region of the total volume and the liquid phase is entrapped by the coherent network of 

the particles due to capillary action.  In coagulation (Figure 3.17.B), particles come 

together as close packed clumps and there are macroscopic regions in which silica is 

more concentrated than in the original sol. In flocculation (Figure 3.17.C) particles are 

linked together by a sufficiently long flocculating agent and the resultant structure is open 

and voluminous compared to the coagulated ones. Sol to gel process is easier to capture 

and differentiate, however in a concentrated mixture it is difficult to differentiate between 

coagulate and flocculate. If a dilute sol is coagulated or flocculated a precipitate is 

formed and settles out quickly, whereas in concentrated sols the precipitate may be too 

voluminous to settle out and might stay as a thixotropic mass. In coacervation, the silica 

particles are linked together by relatively short adsorbate that makes the silica less 

hydrophilic but not form bridges between particles(72). 

 
Figure 3-17 Agglomeration of Colloidal particles in different ways: A. Gelation B. Coagulation C. 
Flocculation. Source(72) 
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3.4.2 “Anomalous” Stability of Colloidal Silica 

Aqueous silica sols are the only colloidal particles that do not follow the general 

patterns of the conventional DLVO theory.  They are very stable around their isoelectric 

point and in high salt concentrations at near-neutral pH. Silica’s unusual behavior is 

compared with the common behavior of colloidal particles in Figure 3.18 

 

Figure 3-18. Figure shows the usual theoretical stability behavior of colloidal particles that has an 
isoelectric point (i.e.p) of 2. As the pH decreases their stability decreases. Inset Figure compares theoretical 
stability of a usual colloidal particle (theory) with silica’s unusual behavior (expt) (ccc stands for the 
critical coagulation concentration. Silica is unusually stable around its isoelectric point)(71) 
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3.4.3 Surface Chemistry of Silica 

Most of the practical applications where silica is used such as adsorption, 

adhesion, catalysis and many others are driven by the surface chemistry of silica. Surface 

area, surface ionization and interactions of surface groups play the most important role in 

the dynamic interplay between the silica surface and surrounding aqueous media.  

Surface area of silica can be determined by using the Brunauer-Emmett-Teller 

(BET) isotherm that is based on adsorption of nitrogen on the silica surface. Geometrical 

surface area of non-porous silica is usually very close to the surface area determined by 

the BET isotherm, whereas porous silica shows a higher BET surface area compared to 

its geometrical surface area. 

Silanol groups (≡Si−OH), siloxane bridges (≡Si−O−Si≡) and physically adsorbed 

water to the hydroxyl (OH) groups of silanols are responsible for the intricate interfacial 

characteristics of silica (Figure 3.18 A-C). Stability of silanol groups is usually achieved 

in alkaline media with ions such as Na+, K+ and NH4+ by proton exchange. 

 

Figure 3-19 Surface Chemistry of Silica 

The concentration of silanol groups is usually expressed in number of hydroxyl 

groups per square nanometers and called “silanol number”. Silanol number (αOH) of 
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dehydrated but fully hydroxylated amorphous silica is widely accepted to be a constant 

physicochemical constant (αOH =4.6) that is independent of the origin and structure of 

silica. The hydroxylated surface with predominance of silanols groups is hydrophilic 

whereas dehydroxylated surface with predominance of siloxane bridges is hydrophobic. 
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CHAPTER 4. CHANGES IN THE REOLOGY OF NANO-STRUCTURED 
SUSPENSIONS BY ADSORPTION OF THE PROTEIN ALPHA-
LACTALBUMIN ON THE SURFACE OF SILICA PARTICLES 

4.1 Abstract 

A rheological phenomenon associated to the adsorption of a soluble protein in the 

surface of silica nanoparticles is reported along the mechanisms that could explain it. 

Rheological behavior and structural relaxation of hydrophilic fumed silica suspensions in 

the absence and presence of α-lactalbumin were studied at pH values 2, 4, and 6 using 

rheological tests and dynamic light scattering (DLS). The addition of α-lactalbumin 

caused an increase in viscosity and elasticity of the samples at pH 2 and pH 4, whereas an 

opposite effect was observed at pH 6. Structural relaxation of the nanoparticles forming 

the suspensions slowed down upon protein addition at pH’s 2 and 4 but did not change 

significantly at pH 6. Changes in rheological properties and structural relaxation were 

attributed to electrostatic interactions induced by the changes in the silica surface charges 

at the different pH studied; also by perturbation of the short range interactions (pH 2), 

protein bridging (pH 4) and better-dispersion of particles (pH 6). 
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4.2 Introduction 

The interaction of biopolymers such as proteins and nanoparticles has 

attracted considerable attention in recent years not only due to the increasing 

popularity of nanotechnology in areas such as pharmacy, medicine(73) and 

biotechnology (74) but also due to advantages provided by the large surface area of 

nanoparticles towards a better understanding of structure and function of immobilized 

proteins (75). 

When a protein in a solution interacts with a solid surface, adsorption of the 

protein at the solid liquid interface usually occurs unless the surface is specifically 

designed to avoid it (76).  Protein adsorption might be promoted (or prevented) by (1) 

structural rearrangements in the protein molecule that may affect the adsorption on 

the surface, (2) protein-surface polarity, (3) redistribution of charged groups in the 

interfacial layer and (4) dehydration of the sorbent surface (77). By considering these 4 

main possible causes for protein adsorption on solid surfaces, kinetics and 

thermodynamics of adsorption as well as the structure and function of the adsorbed 

protein on flat surfaces and colloidal particles have been extensively studied and 

critical conclusions in regards to this phenomenon have been established (78). 

However, protein adsorption on nanoparticles is less understood and has to be 

explored more (79) in order to develop various biocompatible nanomaterials ranging 

from nano-vaccines and nano-scale drugs (80) to biosensors (81); also in order to 

address concerns regarding the transport of nanomaterials in living systems through 

membranes, organelles and biological fluids (82). 
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The interest in the current research stems from recent findings reported in the 

literature on nanoparticle-protein interactions focusing on the kinetics and 

thermodynamics of the system (83, 84), structure, stability and activity of the adsorbed 

protein (85, 86) as well as the resultant nano-composite microstructure (87, 88). The 

current study is aimed to investigate the consequences of nanoparticle-protein 

interactions using a multi-perspective approach ranging from a meso and micro scale 

characterized by spectroscopic techniques such as DLS and UV absorption to a 

macroscale characterized by rheological measurements in order to build a bridge 

between the microstructure and macrostructure of systems that includes such 

composites.  

This will contribute to a better understanding of how to control protein-

nanoparticle interactions and the resultant complexes in order to modify the bulk 

properties (especially rheological) of the system. Once the mechanism is understood 

and controlled using a model system that is composed of low cost materials, it is 

envisaged that application of these principles to other fields such as 3-dimensional 

printing, wastewater purification, ceramic slurry processing and many others would 

be facilitated.  

The composite system used in this study is formed with the protein α-

lactalbumin and fumed silica. α-lactalbumin is a soft protein, with a molecular weight 

of approximately 14,000 Da that is prone to adsorb on surfaces even under high 

electrostatic repulsion barriers since it can go through structural arrangements due to 

its low structural stability. The fumed silica used in the study is built up of almost 

spherical primary particle, which are approximately 12 nm in size. Fumed silica does 
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not exist as single particles, instead they line up with each other to form fractal 

aggregates of 100-200 nm in size(89). Although fumed silica has a complex structure 

compared to other types of silica such as Ludox or Stober, and α-lactalbumin exhibits 

some degree of polydispersity, the choice of fumed silica and this type of protein was 

made based on their abundance, los cost and commercial availability. 

Since various types of silica and polymers such as proteins are commonly 

used as the nanoparticle source for investigation in the development and design of 

novel nano-composite materials (90) it is important to know how the silica nanoparticle 

interacts with a protein molecule either as a part of a composite system like the one 

used in this research or during its in vivo transportation. When silica interacts with a 

protein, changes in the phase behavior of silica due to silica protein interactions are 

expected with the resulting changes in the rheological behavior and structural 

relaxation of the composite system, all of which is investigated in the present study.  

4.3 Materials and Methods 

Hydrophilic fumed silica, SiO2 (Aerosil200) used in the study was provided 

by the Evonik-Degussa Corporation (NJ, USA). α-lactalbumin was provided by 

Davisco Foods International Inc. (MN, USA) and used without further purification or 

modification. Silica suspensions with the desired concentrations were preparedfrom a 

stock solution of silica by adding the protein from a concentrated solution in the same 

buffer. Sodium acetate buffer (10 mM), used for preparation and dilution of all 

samples, were prepared at pH 2, 4, and 6 using sodium acetate  and acetic acid from 

Sigma-Aldrich (MO,USA). 1M HCl solution (Sigma-Aldrich, MO, USA) was used to 
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finely adjust pH to the appropriate value.  Sodium phosphate buffer (10mM) at pH 8 

used to test the stability of silica by DLS  was prepared by using disodium hydrogen 

phosphate and 0.1 M NaOH from Sigma-Aldrich (MO, USA) was used to adjust the 

pH. 

Rheological properties of 5% (w/w) silica suspensions were determined by 

using a rotational AR-G2 Rheometer with Smart Swap™ geometry (TA Instruments, 

USA). Flow curves at 25oC were obtained using a 4-blade vane rotor (radius= 14mm, 

height=42 mm) to minimize slip and shear banding. Apparent viscosity was measured 

as a function of decreasing shear rate in a range 300 s-1 - 0.05 s-1 after a steady pre-

shear step of 100 s-1 and 60 sec followed by a resting step of 30 sec was applied to 

the samples. 

A cone and plate geometry with a 40 mm diameter and 2° cone angle was 

used to determine the viscoelastic properties of the samples at a constant temperature 

of 25 °C. Strain sweep tests were performed at 1Hz/6.283 rad.s-1 in order to determine 

the linear viscoelastic region of the silica suspensions which was determined to be 

around 1% strain (data not shown). Viscoelastic properties were determined in the 

linear viscoelastic region (1% strain) over an angular frequency range of 0.05-60 

rad/s-1. In order to remove any shear history created by the loading of the samples on 

the rheometer, a steady pre-shear step at a shear rate of 100 s-1 for 120 sec was 

applied to each sample before rheological testing. 

The measuring gaps were 3000 microns for the vane rotor and cone and plate, 

respectively. The biggest aggregate in the system measured by DLS and estimated to 
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be 2.6 microns by the cumulant method was considered to be small compared to both 

measuring gaps (Table 1). 

Silica suspensions of 2 % (w/w) with or without 0.2% (w/w) α-lactalbumin 

were similarly prepared with an additional homogenization of the samples for 1 

minute in an ultra-Turrax type homogenizer (Polytron PT 10/35, Brinkmann 

Instruments, NY, USA) in order to break large aggregates prior to DLS measurements. 

Suspensions were diluted to a final concentration of 0.2% (w/w) silica and 0.02% 

(w/w) protein using 10 mM sodium acetate buffer at the desired pH value for 

measurement of UV absorbance and zeta-potential.  

Dynamic Light Scattering  on a light scattering goniometer (ALV/CGS-3 

Compact Goniometer, ALV, Langen, Germany) were measured using 10 mm 

diameter glass tubes and illuminated with a HeNe laser (wavelength is 632.8 nm, 

output power is 22 mW). Scattered light was detected with dual ALV-High QE APD 

(avalanche photo diode) photon detectors in Pseudo-Cross-Correlation Mode at an 

angle of 90° for 120 seconds. Cross- Correlation technique is one of the main 

modifications to a classical DLS experiment to overcome multiple scattering effects 

due to relatively high concentrations of the sample. The coherence factor (intercept of 

the correlation function) was larger than 0.8 in all measurements conducted in the 

current study, which is the minimum value to neglect multiple scattering 

contributions according to ISO 13321 (ISO13321, 1996). 

The objective of DLS measurements was to detect gelation/ aggregation and 

to relate structural relaxation of the system to its rheological properties at a higher 

concentration rather than obtaining particle size distributions. Information on the 
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structural relaxation of the silica suspensions was determined directly from plots of 

the correlation function.  

To study protein adsorption, diluted suspensions were transferred into 

centrifuge tubes. Centrifuge tubes were rotated end over end in a hybridization oven 

(Big Shot, Boekel Scientific, PA, USA) at 25C° to ensure steady state adsorption, 

centrifuged at 20,000 rpm for 40 min at 25 C° (Avanti J-25I, Beckman Instruments, 

CA, USA) following the procedure described by  Larsericsdotter et al (91). Absorbance 

of supernatants was measured at 280 nm, in 1 cm path length quartz cells (Perkin 

Elmer, MA, and USA) with a UV-Visible Spectrometer (Lambda25, Perkin Elmer, 

MA, USA) against the corresponding buffer blank at 25 C°.  

Electrophoretic mobility at 25 C° was determined in disposable folded 

capillary cells (DTS1070, Malvern, Worcestershire, UK) with a zeta-sizer that 

combines laser Doppler velocimetry and phase analysis light scattering (Zeta-sizer 

Nano ZS, Malvern, Worcestershire, UK). Electrophoretic mobility (UE) was 

converted to zeta potential (z) using Henry Equation, (𝑈𝑈𝐸𝐸 = 2𝜀𝜀𝜀𝜀𝜀𝜀(𝑘𝑘𝑘𝑘)/3𝜇𝜇)) along 

the Smoluchowski approximation (𝜀𝜀(𝑘𝑘𝑘𝑘) = 1.5, ), where ε and μ are the dielectric 

constant and the viscosity of the continuous phase was assumed to be 78.6 and 0.89cp, 

respectively ( a is the particle radius and κ-1 is the thickness of electrical double layer) 

The scattering angle was 173° and refractive index of silica and protein was assumed 

as 1.33 and 1.45, respectively(92). The protein’s refractive index was used for silica-

protein mixtures. To achieve a good phase signal, samples were sonicated in a 

sonication bath prior to reading to break aggregates that might affect the 

reproducibility of results in the dilute suspension. The capillary cells were rinsed first 
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with isopropanol then with deionized water and dried with nitrogen gas between 

samples.  

Concentrations were chosen to meet recommendable upper and lower 

concentration limits of all the instruments used in the study to be able to get reliable 

and reproducible data. However, a silica protein ratio of 10:1 was kept constant for all 

studied samples. Rheological changes observed at higher concentration (5 %) were 

related to the interactions and adsorption phenomena which can only be examined at 

lower concentrations (2% or 0.2%).  

All experiments were performed in triplicate and mean values were plotted 

with the standard error of the mean unless otherwise stated. 

4.4 Results 

4.4.1 Zeta Potential and Protein Adsorption 

The experimental isoelectric point (IEP) of silica typically falls within a range 

of pH values between 2.0 and 3.0, which depends on the material geometry and the 

type of the measurement technique (93). Protonation (≡Si–OH2
+) or deprotonation 

(≡Si–O-) of silanol (≡Si–OH) groups provides the surface charge below and above the 

IEP, respectively (pKa of SiOH2 < -2.5)(94, 95). As shown in Figure 4.1, at pH 2 silica 

particles possessed an almost neutral net charge (0.59 ±0.16 mV). As pH increases 

beyond the isoelectric point, particles become negatively charged and the magnitude 

of the zeta-potential increases significantly to -3.9±0.1 mV at pH 4 and -21.0±0.4 mV 

at pH 6. As illustrated in Figure 4.1, zeta potential decreased with continued increases 

in pH. 
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The isoelectric point of α-lactalbumin was determined to be around 4.8 which 

is in good agreement with reported values that have ranged from 4.8-3.5, depending 

on the salt concentration present in the solvent (96).  Thus, as illustrated in Figure 4.2 

there are three distinct zones to study the protein nano-silica interactions. At pH 2, 

silica is neutral/ slightly positive and protein is positively charged, at pH 4, silica is 

negatively charged and protein is positively charged and at pH 6 both silica and 

protein are both negatively charged. 

In order to have another insight on the nature of interactions between α-

lactalbumin and silica in these distinct pH zones, protein adsorption on the nano-silica 

surface was investigated by removing silica particles with the protein that has been 

attached by centrifugation and measuring the visible light absorption of the 

supernatant as an indicator of the presence of unattached protein (91). Significant 

decrease in the absorbance of protein samples after mixing with silica and 

centrifugation provides clear evidence of protein adsorption on the silica surface. As 

shown in Figure 4.3, silica suspensions had hardly any absorbance due to the 

separation of silica particles upon centrifugation regardless of the pH. In contrast, α-

lactalbumin keeps suspended in the solution after centrifugation at all pH values. So, 

the hypothesis is that if α-lactalbumin is not strongly adsorbed on the silica surface it 

should stay in the solution and have a similar absorbance than pure α-lactalbumin 

solution with the same concentration (Figure 4.3). There was not a significant 

decrease in the absorbance of protein at pH’s 2 and 6 after centrifugation in the 

presence of silica. However, a large decrease in the measured protein absorbance was 

observed at pH 4 after centrifugation. This is a clear indication of a strong protein 
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adsorption on the nano-silica surface at this pH because the protein will be kept 

attached to the silica particles and separated with them upon centrifugation. The 

strong adsorption of the α-lactalbumin protein on the silica surface is due to strong 

electrostatic interactions at pH 4 induced by particles strongly charged with charges 

of opposite signs (Figure 4.2).  

4.4.2 Viscosity, Viscoelasticity and Structural Relaxation of Nano-Structured Silica 

Effects of colloidal interactions, arising from differences in the zeta potential 

of silica, on rheological properties of the concentrated suspensions were determined 

under steady and small strain oscillatory dynamic shear tests. Steady shear flow 

curves of concentrated silica suspensions were obtained at the three different studied 

pH’s. As shown in 4.4a, viscosity of silica suspensions increased slightly with 

increased pH, which was attributed to the increase in negative charge of the silica. For 

sols of equal silica concentration, viscosities of highly charged particles (in this case 

pH=6) has already been reported higher compared to the viscosity of suspensions of 

slightly charged particles (in this study pH=2)(97). This rheological behavior observed 

in suspensions has been attributed to electro viscous effects (98) generated by an  

immobilized water layer(99, 100) on particles, a concept that was later extended to an 

immobilized gel layer on the silica particle surface(101). In both cases these layers 

were considered responsible for short-range interactions that affect the rheology of 

the suspensions (97, 102, 103). 

Mewis and Wagner (2012) discuss measurement concerns during testing 

colloidal suspensions which have been associated to violations of the assumed 
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theoretical shear viscometric flows used to estimate the sample viscosity. These 

concerns include wall slip, shear banding and secondary flows. Given the moderate 

shear rates used and the relatively high viscosities of the suspensions, the presence of 

secondary flows can be ruled out from the measurements. The presence of wall slip 

tends to reduce the truly applied shear rate from the calculated value and thus the 

calculated apparent viscosity is lower than the real viscosity of the sample. The 

geometric constraints created by the cone and plate and the parallel plates geometries 

induce layers of different particle concentration from the vicinity of the geometry 

wall to the suspension bulk resulting in slip zones with sizes on the order of the 

particle size. The formation of fluid layers with different particle concentration and 

viscosities is a phenomenon known as shear banding that often occurs when testing 

complex fluids such as suspensions. Both slip and shear banding become evident by 

the presence of an apparent stress plateau, where the shear stress becomes nearly 

independent of shear rate or possibly even decreases with increasing shear rate 

(104).That pattern was observed in this work during steady shear measurements using 

smooth and rough cone and plate and parallel plates geometries which indicated these 

geometries induced either slip or shear banding or both effects. The use of rotating 

vane geometries for the measurement of flow properties of structured liquids and 

suspensions has been suggested as an alternative to alleviate these unavoidable 

artifacts when testing suspensions (105) and was used in this work. 

Shear banding has been reported to occur during steady shear tests at 

moderate shear rates but not when the suspensions are measured under small strain 

oscillatory rheological tests(106). Thus, a cone and plate geometry was used to 
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characterize the viscoelasticproperties of the samples under small strain oscillation 

tests. In addition, the use of small strain oscillatory rheology provides a more direct 

indication of the microstructure of concentrated silica sols than steady shear rheology 

because under the small strain applied during the test there is no disruption of the 

sample structure (107). As shown in Figure 4.5. a, storage modulus of silica 

suspensions increased with increasing pH, which indicated an increased in structure 

as the charge of the silica increases. Moreover, it is worth to note that the angular 

frequency dependence of the storage modulus decreased with increases in pH, which 

is attributed to the development of a more elastic structure in these samples. The 

larger values of the storage modulus compared to the loss modulus indicate that all 

samples show an elastic gel-like characteristic (4.5b-d). 

Differences in the rheological properties of silica suspensions were attributed 

to interparticle interactions among silica particles and aggregates, which can be 

investigated via DLS, in an indirect manner, i.e. by examining the structural 

relaxation of particles. The faster decay of the correlation function at pH 6 in 

comparison with pH’s 2 and 4, illustrated in Figure 4.6, indicates that the structure 

formed at this higher pH values relaxes more quickly within the suspension. 

Conversely, the correlation functions of silica particles in buffers at pH 2 and 4 decay 

more slowly, which clearly indicated that structural relaxation of silica particles was 

slowed down by lowering the pH of the suspension and thus reducing the charge of 

the silica particles. Silica’s stability at higher pH’s had been well established (108) and 

faster decay of correlation function at pH 8 (Figure 4.6) was a clear support of slower 

dynamics that were observed at lower pH’s. 
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4.4.3 Rheological and Physico-chemical Changes due to interactions between α-

Lactalbumin and Silica Particles 

At pH 2, incorporation of α-lactalbumin into silica suspensions caused a 

significant increase in the viscosity of the mixture (Figure 4.4b), and the storage and 

loss moduli (Figure 4.7).  The higher values of storage modulus compared to the loss 

modulus are indicating the presence of a more structured and gel-like network. This is 

supported with the slower dynamics (delayed structural relaxation) of the protein-

silica mixtures compared to pure silica suspensions at the same pH (Figure 4.8). The 

observed structured network was attributed to the formation of silica clusters that are 

able to entrap water and form a gel-like structure. At this pH, α-lactalbumin is 

positively charged and silica is neutral/slightly positively charged. Theoretically 

electrostatic interactions between silica and protein are mainly repulsive or weak. 

Experimentally, adsorption of protein on silica was not confirmed. Since an 

associative electrostatic interaction would not be expected under these conditions, 

clusters of nanoparticles are thought to be formed due to perturbation of short range 

repulsions upon protein addition. The interaction of α-lactalbumin molecules with 

silica particles might lead to a decrease in the thickness of water or gel layer thought 

to be responsible for short range repulsion which is mentioned above (109). 

At pH 4 α-lactalbumin and silica particles are oppositely charged and 

electrostatic interactions induce the adsorption of protein on the silica surface. The 

silica α-lactalbumin mixture shows significantly higher values of viscosity (Figure 

4.4c), and storage and loss moduli (Figure 4.9), indicating the formation of a gel-like 

structure upon protein adsorption. This gel-like structure is generated mainly due to 
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bridging aggregation induced by the protein in between silica particles. Similar results 

have been reported on the adsorption of lysozyme onto silica surfaces at a range of 

pH between the isoelectric points of silica and lysozyme, which promoted bridging 

aggregation of the silica particles (87). The dramatic shift of structural relaxation to 

longer lag times is considered as strong evidence that further supports bridging 

aggregation (Figure 4.10). The shift of structural relaxation to longer times has been 

explained by Kroon et al to describe sol-gel transition of amorphous systems (110) or 

when the colloidal systems governed by slower dynamics (111).  

At pH 6, both silica and α-lactalbumin were above its isoelectric points and 

are negatively charged so there is a barrier against adsorption due to electrostatic 

repulsion with the negatively charged silica (Figure 4.2). As shown in Figure 4.11, 

there was no significant change in the correlation function determined from the DLS 

experiments upon addition of the negatively charged α-lactalbumin, although the 

viscosity (Figure 4.4.d) and the storage and loss moduli decreased (Figure 4.12). At 

pH 6 silica particles are quite stable due to strong negative charges on their surface 

and incorporation of a negatively charged protein is not expected to disturb the 

electrostatic double layer on the silica surface. However a better dispersion of the 

particles in the suspension created by the strong repulsive forces might be the reason 

behind the observed change in rheology, since a significant change in structural 

relaxation is not observed in the DLS profiles. 
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4.5 Discussion 

The objective of the current study is to relate the rheological changes to the 

structural relaxation and interactions of particles in order to build a microscopic 

insight that affect the macroscopic rheological properties of the system. However, 

rheological attributes are determined at significant higher concentrations (5%, w/w) 

when compared to the concentrations used to assess the dynamics of the system by 

DLS, which was 2% (w/w). So, even though while interpreting the rheology data at 

relatively high concentrations, interparticle forces among aggregates, effects of 

particle crowding and short range interactions have to be accounted for, and those 

attributes appear to be affected for the   pH studied and rheological changes can be 

still considered a consequence of interactions (29).  

Moreover, as opposed to a general misunderstanding, aggregation is not 

necessarily a preliminary step inducing gelation, so might not lead an increase in the 

structured network of the system as shown in the pure silica system (Figure 4.4a). 

Even though silica is much more stable than other materials at the vicinity of its IEP, 

it is clear from the DLS data that silica is aggregating as the pH is decreased. Slight 

decrease in viscosity with decreased pH indicates that aggregates were not able to 

create a gel like network. If aggregates are able to entrap water during the formation 

of a structured network the resulting phase behavior will be similar to gelation rather 

than phase separation (Figure 4.4b and 4.4c) (43).  

The mixing of α-lactalbumin with fumed silica sols changes the structural 

relaxation and rheology of the system through interactions and structural 

arrangements. After addition of protein into the nanoparticle suspension, depending 
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on pH, the adsorption of protein at the solid liquid interface is one of the expected 

phenomena. The driving force for adsorption might be the preferential interaction of 

the protein with the nanoparticle or an unfavorable interaction between protein and 

the solvent (45). At pH 4 electrostatic interactions between protein and silica are strong 

due to their oppositely charged surfaces; in addition water is not a very good solvent 

for α-lactalbumin at the vicinity of its isoelectric point (IEP 4.8). These conditions 

create suitable thermodynamic conditions for protein adsorption. At pH 6 neither UV-

Vis nor DLS results indicate adsorption of protein on the silica surface. The decrease 

in viscosity and the storage and loss moduli of the suspension might be attributed to 

re-dispersion of silica aggregates in the strong repulsive environment at those 

conditions (87) or to changes on the water/gel layer thickness without disturbing the 

electrostatic double layer . At pH 2 silica does not have a considerable amount of 

charge to counteract the protein binding and high absorbance after centrifugation 

indicates the absence of adsorption. Then the increase in viscosity at pH 2 might be 

attributed to formed silica clusters that are able to entrap water due to perturbation of 

short range repulsions upon protein addition. 

4.6 Conclusion 

Protein interaction with fumed silica under different electrostatic 

environments was studied via rheological, electrophoretic mobility, DLS, and UV-

VIS characterization. Protein adsorption on silica can be clearly identified at pH 4 and 

bridging aggregation was considered to be the reason that can explain the increase in 

viscosity/ viscoelasticity and retardation in structural relaxation of the suspensions at 
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pH 4. At pH 2, rheological and physic-chemical changes were attributed to the 

perturbation of short range interactions. At pH 6 the rheological changes are thought 

be the result from re-dispersion of the structured silica aggregates. To sum up, it has 

been observed that by changing the charge of the silica and protein the structural 

relaxation of the system can be tuned according to their electrostatic interactions and 

significantly affect its  microstructure and macrostructural rheological properties.  

The focus of this work was based on fumed silica which is inexpensive and abundant 

as well as the protein used. A quantitative analysis of the adsorption of a polymer 

(protein) on silica nanoparticles is being studied using a model system includes silica 

particles of uniform size and less molecularly dispersed protein.
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Figure 4-1 Zeta Potential curve of silica suspensions (0.2% w/w)  as a function of pH 
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Figure 4-2 Zeta Potential of silica suspensions (0.2% w/w) and silica+ α-lactalbumin 
(0.2% and 0.02% w/w, respectively) in 10 mM sodium acetate buffer. 
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Figure 4-3 Absorbance of silica, silica + α-lactalbumin and α-lactalbumin measured 
at 280 nm after centrifugation 
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Figure 4-4 Steady shear viscosity of silica suspensions (5% w/w) and silica + α-
lactalbumin(5% and 0.5% w/w, respectively) in 10 mM sodium acetate buffer. : (a) 
Viscosity  at different pH’s b)pH=2, c) pH=4 d) pH=6, 
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Figure 4-5 Viscoelastic properties of silica suspensions  (5% w/w) in 10 mM sodium 
acetate buffer: (a) Storage modulus  at different pH’s b)pH=2, c) pH=4 d) pH=6, 
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Figure 4-6 Correlogram of Silica Suspensions (2%) in 10 mM sodium acetate and 
sodium phosphate buffers. The ordinate is g2(t)-1, where g2(t) denotes the second 
order intensity autocorrelation function and t is the lag time.Variability was less than 
1% so error bars were not inluded in the plot in order to avoid effecting the clarity of 
the curves. 
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Figure 4-7 Viscoelasticity of Silica (5%)  and Silica + a-Lactalbumin(5:0.5%) in 10 
mM sodium acetate buffer at pH=2 

 

0.1 1 10

0.1

1

10

100

 Silica G'
 Silica G''
 α-Lac + Silica G'
 α-Lac + Silica G''

G
' a

nd
 G

'' (
P

a)

Angular Frequency (rad/s)

pH=2

 

 

 

 



70 
 

 

Figure 4-8 Correlogram of Silica (0.2%), a-Lactalbumin(0.02%)  and Silica + a-
Lactalbumin (0.2:0.02%) in 10 mM sodium acetate buffer at pH=2. . The ordinate is 
g2(t)-1, where g2(t) denotes the second order intensity autocorrelation function and t is 
the lag time.Variability was less than 1% so error bars were not inluded in the plot in 
order to avoid effecting the clarity of the curves. 
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Figure 4-9 Viscoelasticity and viscosity of Silica (5%)  and Silica + a-
Lactalbumin(5:0.5%) in 10 mM sodium acetate buffer at pH=4 
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Figure 4-10 Correlogram of Silica (0.2%)  and Silica + a-Lactalbumin(0.2:0.02%) in 
10 mM sodium acetate buffer at pH=4. The ordinate is g2(t)-1, where g2(t) denotes the 
second order intensity autocorrelation function and t is the lag time.Variability was 
less than 1% so error bars were not inluded in the plot in order to avoid effecting the 
clarity of the curves. 
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Figure 4-11 Correlogram of Silica (0.2%)  and Silica + a-Lactalbumin(0.2:0.02%) in 
10 mM sodium acetate buffer at pH=6. The ordinate is g2(t)-1, where g2(t) denotes the 
second order intensity autocorrelation function and t is the lag time.Variability was 
less than 1% so error bars were not inluded in the plot in order to avoid effecting the 
clarity of the curves. 
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Figure 4-12 Viscoelasticity and viscosity of Silica (5%)  and Silica+ a-
Lactalbumin(5:0.5%) in 10 mM sodium acetate buffer at pH=6 
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Table 4-1Information on hydodynamic radius of the different systems studied.  

 

Means with the same letter are not significantly different (Tukey’s Studentized Test 
(HSD), P>0.05) 
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CHAPTER 5. LYSOZYME ADSOPTION INDUCED BRIDGING 
FLOCCULATION: THE DOMINANT ENTROPIC PATHWAY OF NANO-

BIO COMPLEXATION 

5.1 Abstract 

Lysozyme-silica interactions and complexation were investigated via 

adsorption isotherms, isothermal titration calorimetry (ITC), dynamic and 

electrophoretic light scattering and circular di-chroism (CD). Comparison of 

Langmuir and Hill adsorption models highlighted the significance of protein-protein 

interactions during the adsorption and multiple site binding model was adapted to 

describe the overall complexation events including protein-nanoparticle and protein-

protein interactions. The complexation mechanism accounted for both enthalpic and 

entropic contributions and was supported by a number of experimental techniques 

performed using the same model system and under the same conditions (e.g. 

temperature, ionic strength, the concentration ratios, mixing time, equilibration time) 

for each technique. Even though each experimental method has its own limitations 

and modeling the binding is only feasible after a few assumptions, thermal footprints 

of lysozyme-silica complexation indicated two types of interactions. The first type of 

interaction has higher binding affinity, lower equilibrium stoichiometry and is driven 

by a higher entropic contribution compared to the second type. The bound protein 

undergoes a structural reorganization on the surface that further contributes to a 

favorable entropy gain. Zeta potential of silica- protein complex aggregates reaches 
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equilibrium at the concentration ratio that refers to the equilibrium of second type of 

interaction which is in agreement with the growth of flocs according to the measured 

hydrodynamic radius. Based on all these findings, it is proposed that lysozyme 

adsorption on nano-silica is a result of protein-nanoparticle and protein-protein 

interactions that further leads spontaneous, non-directional and random complexation 

of silica through bridging flocculation.  

5.2 Introduction 

Nanoparticle-protein interactions are at the heart of today’s nanotechnology 

research (1-5, 7, 112). Not only do they determine the biological response to nano-

medical tools (6, 8, 113), but they also determine the functionality of all the non-medical 

nano-practices that interface nanoparticles with proteins(13). Immobilization of 

enzymes, design of biosensors and nano-bio hybrid materials are examples of nano-

practices that are not directly related to medicine(10, 11). Among those, nano-bio 

hybridization with proteins can be defined as a spontaneous complexation process in 

which specific and weak interactions between proteins and nanoparticles triggers the 

bottom up self-assembly of organic and inorganic components into two-dimensional 

networks and three dimensional structures ((12, 14, 15)). Functional properties of the 

those networks and structures depend on at least the surface characteristics (114), 

size(88) and shape(115) of the nanoparticles, supra-chemical reactivity (116, 117) and 

internal structure rigidity (118)of biopolymers, the physicochemical characteristics of 

the surrounding solvent (119, 120) and the nanoparticles/biopolymer concentration 

ratio(88, 114, 116-118, 120). Despite the fact that the wide range window of the parameters 
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offers increased functional diversity, this makes complexation mechanism too 

sophisticated that we are still far away to offer design strategies to produce nano-bio 

complexes with targeted functional properties(3). This gap most probably stems from 

the lack of understanding of universal principles that are involved in the nano-bio 

complexation “chaos”.  

The current study was stimulated to initiate a central curiosity about the 

thermodynamic details of a “spontaneous” complexation process. In order to be able 

to focus more on the mechanism of the complexation, rather than system component 

characterization, complexation of lysozyme with hydrophilic silica was chosen as a 

model system. 

The rationale behind the model system selection can be summarized as follow: 

1) structure, size, shape and surface characteristics of each component is well-

documented (71, 121, 122) 2) interactions of lysozyme with silica was already extensively 

studied with different approaches which is expected to complement the  

thermodynamic approach(123-127) utilized in this work 3) both component are abundant, 

inexpensive and preparation of samples for experiments does not require specific 

expertise and longtime purification procedures. 

The model system interactions were investigated via adsorption isotherms, 

isothermal titration calorimetry (ITC), dynamic and electrophoretic light scattering 

and circular di-chroism (CD). Langmuir and Hill models were compared to 

quantitatively assess the adsorption of the protein on the nano-particles and a 

complexation mechanism that accounts for both enthalpic and entropic contributions 

was adapted to model overall all heat of binding which is measured directly with ITC. 
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The model system was verified to be a good selection to show the case of the 

well-known complexity of interactions governing nanoparticle-protein complexation. 

Even though we are still far away from drawing a general mechanism for bio-nano 

complexation, it is shown that the thermodynamic nature of interactions deserves 

further attention. As more studies conducted with different model systems, under 

different conditions with a similar approach; mechanism of interactions at the nano-

bio interface will be understood better. Finally a better fundamental understanding 

will lead more specific applications that use or include proteins and nanoparticles 

either as disordered fractal like microstructures(128)or highly ordered crystals(15). .  

5.3 Experimental 

Silica nanoparticles (Ludox-TM50) used in the study were kindly donated by 

Grace& Co.-Conn (MD, USA). Chicken egg white lysozyme (L6876) is purchased 

from Sigma-Aldrich (MO, USA). Both protein and silica solutions/suspensions were 

prepared in sodium phosphate buffer (pH=7.4) at various concentrations to obtain 

Lysozyme/Silica molar ratios ranging from 5 to 200. All the experiments were 

conducted in a similar manner and mimic the ITC method; complexation was 

assumed to reach equilibrium in 5 minutes after each injection corresponding to the 

particular molar ratio. All the experiments were conducted at room temperature and 

in triplicate. 

To obtain the adsorption isotherms: Norde’s depletion method(129) was 

followed with slight modifications: 1) Unbound protein concentration was determined 

with the BCA assay according to the manufacturer’s protocol (Thermo Scientific, 
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IL,USA). 2) Silica suspensions with the same concentration were titrated with protein 

solutions in a similar manner than the ITC technique. 

Dynamic Light Scattering on a light scattering goniometer (ALV/CGS-3 

Compact Goniometer, ALV, Langen, Germany) was measured using 10 mm diameter 

glass tubes and illuminated with a HeNe laser (wavelength is 632.8 nm, output power 

is 22 mW). Scattered light was detected with dual ALV-High QE APD (avalanche 

photo diode) photon detectors in Pseudo-Cross-Correlation Mode at an angle of 90° 

for 120 seconds. The cumulant method was used to determine the mean 

hydrodynamic radius (Rh) of the lysozyme-silica complexes(49). 

Electrophoretic mobility at 25 °C was determined in disposable folded 

capillary cells (DTS1070, Malvern, Worcestershire, UK) with a zeta-sizer that 

combines laser Doppler velocimetry and phase analysis light scattering (Zeta-sizer 

Nano ZS, Malvern, Worcestershire, UK). Electrophoretic mobility (UE) was 

converted to zeta potential (z) using Henry Equation, (𝑈𝑈𝐸𝐸 = 2𝜀𝜀𝜀𝜀𝜀𝜀(𝑘𝑘𝑘𝑘)/3𝜇𝜇)) along 

the Smoluchowski approximation (𝜀𝜀(𝑘𝑘𝑘𝑘) = 1.5), where ε and μ are the dielectric 

constant and the viscosity of the continuous phase and were assumed to be 78.and 

0.89 cP, respectively.  The scattering angle was 173° and refractive index of silica 

and protein was assumed as 1.33 and 1.45, respectively(92). The protein’s refractive 

index was used for silica-protein mixtures. 

CD spectrum was collected between 260-185 nm with a Jasco J-1500 CD 

spectrometer equipped with a temperature controller. The bandwidth was 1nm and 

scanning speed was 50 nm/min. Collected spectra in mdeg was converted to mean 
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residual ellipticity(130) and deconvolution was performed with DichroWeb online 

server using CDSSTR algorithm and the reference data set 3(131, 132). 

Isothermal titration calorimetry was carried out with a Nano ITC calorimeter 

(TA Instruments, DE, USA). The reference cell was filled with water, whereas 

reaction cell filled with silica suspensions. Protein solution in syringe was injected to 

the reactions cell with an interval of 300 sec at a stirring speed of 350 rpm until 

saturation (if necessary, a second syringe was injected after the first load). All the 

blank experiments (heat of dilution, heat of injection, heat of mixing) were conducted 

under the same conditions(133). Heat profile was fitted with multiple site model to 

obtain the thermodynamic parameters. 

5.4 Results 

5.4.1 Protein Adsorption 

Different types of adsorption isotherms were constructed by plotting the 

surface coverage (Γ) versus equilibrium protein concentration (Ceq), the adsorbed 

protein mass versus Ceq, the surface coverage fraction (Γ/ Γmax) versus mole ratio 

(lysozyme/silica) and Ceq vs mole ratio  (Figure 5.1 A-D). Figure 1A is the most 

traditional way to depict the characteristics of polymer adsorption on solid surfaces, 

and under specific assumptions (summarized below in the discussion section) the 

thermodynamic equilibrium constant of the protein surface interactions could be 

calculated by using the Langmuir model given below: 

                                                                                               (5.1) max eq

app eq

C
K C
Γ

Γ =
+
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Where Γ is the surface coverage (mg/m2), Γmax is the maximum surface 

coverage (mg/m2), Ceq is the equilibrium protein concentration (mg/mL) and Kapp is 

the apparent dissociation constant (mg/mL).  

By fitting the experimental data with the Langmuir model the maximum 

surface coverage Γmax is calculated as 1.54 mg/m2. It could be noted that even without 

using any assumption or fitting model the experimental data shows that the adsorption 

isotherm reaches a plateau around 1.3 mg/m2 (Figure 5.1 A). This is in agreement 

with previously reported maximum surface coverage of lysozyme on hydrophilic 

silica at neutral pH and low ionic strength and this well-defined plateau corresponds 

to full coverage of the surface (129). Also the initial steep of the isotherm reflects the 

high binding affinity of lysozyme on oppositely charged hydrophilic silica which is 

quite reasonable for a globular, structurally stable protein(77). 

Also it is important to mention that the current procedure used for the batch 

depletion method is slightly different than Norde’s method(129) because it was 

designed with the purpose of mimicking the adsorption process that occurs during an 

isothermal titration calorimetry (ITC) experiment. Usually, in the batch depletion 

method, a constant adsorbent surface is exposed to protein solutions of varying 

concentrations to provide a spectrum of surface coverages as a function of free 

protein concentration in the mixtures (Ceq). Also to ensure the equilibrium/ steady 

state adsorption the adsorbent and adsorbate are incubated under mild rotation for 

usually 16 hours. Conversely in the ITC test a concentrated protein solution is titrated 

into the silica suspension as small aliquots of volume and equilibrium time between 

injections and total experiment time are shorter compared to batch depletion method. 
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In order to test any potential discrepancy that could result from the difference in 

equilibrium time between traditional depletion method and ITC, the depletion method 

was conducted in both ways; first using the timeframe of ITC and second extending 

the equilibrium time to 16 hours. The “ITC mimic” depletion method and traditional 

depletion method did not show any significant differences and were quite in line with 

Norde’s isotherm results. So the two conclusions from this particular experiment were: 

(1) Using constant volumes of protein solutions with varying concentrations or 

adding more volume of protein solution with the same concentration does not affect 

the isotherm plateau as long as the mass balance is conducted in a careful manner and 

(2) lysozyme adsorption on hydrophilic silica reaches to an equilibrium within the 

timeframe of the experiments that are conducted in ITC.  

5.4.2 Protein Adsorption Induced Silica Flocculation 

The zeta potential (ζ) and hydrodynamic radius (87) of lysozyme-silica 

complexes were determined for various molar ratios to track the electrostatic 

interactions driving the complex formation and to roughly quantify the size of formed 

complexes, respectively (Figure 5.2 A and Figure 5.2 B). 

Protein adsorption modifies the silica surface charge dramatically even at low 

protein loadings, followed by the charge neutralization (at a molar ratio between 18.8 

and 23.5) and charge is reversed until the charge of complex is equal to that of native 

free lysozyme (10mV). Charge neutralization and reversal is a quite expected 

outcome of the electrostatic interactions between oppositely charged surfaces (134). 
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The other consequence of lysozyme adsorption on hydrophilic silica is 

bridging flocculation (87, 88, 120). Even at the very low protein loading (molar ratio=4.7, 

ζ=-33.2), hydrodynamic radius of lysozyme-silica complex (469 nm) is much larger 

than that of silica (20 nm) and lysozyme (2 nm) indicating the formation of a silica 

aggregate linked via adsorbed lysozyme (Figure 5.2 B). At higher protein loadings 

aggregate size exceeds 2 μm which is similar to the aggregate size of silica/lysozyme 

flocculate that is determined by the sedimentation velocity technique(87).  

5.4.3 Protein Denaturation upon Adsorption 

CD spectra of native lysozyme and silica-lysozyme mixtures at 2 different 

molar ratios (lysozyme/silica=47.2 and lysozyme/silica=94.3) were collected. Control 

refers to the native protein in buffer without any silica (Figure 5.3 A). It is important 

to note that while converting the CD raw signal (millidegrees) to mean residual 

ellipticity (MRE), initial protein concentration (bound plus free) of silica-lysozyme 

mixtures was used in order to obtain the total conformational change in the whole 

system that is composed of bound and free protein. The focus was not to isolate the 

CD signal of the adsorbed state or determine the surface coverage dependent 

structural changes since those aspects have been already reported in great detail(135).  

According to BCA assay, at a MR =47.2, almost 90% of the total protein in 

the system is bound to silica nanoparticles. At this molar concentration CD signal is 

mostly coming from the bound protein since free protein concentration (Ceq=0.05) is 

very low for the provided relatively small path length (0.01 cm). On the other hand, at 
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MR=100, bound protein accounts for the 50% of the total protein in the system which 

refers to the equilibrium stoichiometry. 

Perturbation of the secondary structure upon binding is clear from the changes 

in the CD spectra even without further de-convolution. If not, CD spectra should have 

overlapped once plotted in MRE unit. Upon adsorption, magnitudes of the negative 

peaks at 222 nm and 208 nm as well as the magnitude of the positive peak at 193nm 

decreased. Also, negative peak shifted towards to 218 nm and positive peak shifts 

towards to 195 nm. This clearly indicates a decrease in the alpha-helix conformation 

and an increase in beta-sheet and random coil conformation, which is in agreement 

with earlier reports examining lysozyme structural changes upon adsorption on solid 

surfaces (83, 86, 129, 135-137).  

To further understand the changes in the protein CD spectra upon adsorption 

on the silica surface, fractions of secondary structure components were calculated by 

deconvolution of the CD spectra. According to the deconvolution of CD spectra, 

native lysozyme has a conformation composing 33.7 % helix, 18.7 % sheet, 22.5% 

turn and 25.7% unordered structures which is generally in a general agreement with 

the secondary structure fractions of lysozyme reported from X-Ray data (138) 

(helix:0.39, sheet:0.11, turn:0.34 and unordered:0.16), ATR/FTIR(137) (helix:0.40, 

sheet:0.07, turn:0.4 and unordered: 0.13) and CD in phosphate buffer(130) (helix:0.34 

sheet:0.17 turn:0.23 unordered:0.26). To compare the secondary structure 

components of native protein and bound protein at different molar ratios, the three 

situations described above are plotted together (Figure 5.3 B).  
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According to the deconvolution results, the structure of lysozyme is perturbed 

significantly upon adsorption (18% loss in the helical structure, 14 % gain in the 

sheets and 4% gain in the random coil). The extent of the conformational changes is 

quite comparable with earlier reports that investigated the perturbation of lysozyme 

on similar hydrophilic silica particles at neutral pH (20-32 % loss in the helical 

structure (83, 135), 14% gain in the sheets and 6% gain in the random coil (135) )  

5.4.4 Thermal Footprints of Adsorption Induced Flocculation 

The thermodynamic nature of the interactions between lysozyme and silica 

were further investigated using isothermal titration calorimetry (ITC) in order to 

resolve the contributions of the driving forces that possibly dominate the complex 

formation. As lysozyme is titrated into the calorimeter sample cell that contains silica, 

the heat change in the sample cell is compensated by the applied power to maintain 

the thermal equilibrium with the reference cell. If the heat is released, the sample cell 

would require less power input (negative signal), whereas absorption of heat would 

require more power input (positive signal). Observed negative signal through the 

entire range of titration reflects the overall exothermic nature of the all interactions 

among the system components: protein, nanoparticle and solvent (Figure 5.4 A). Raw 

data peaks were (1) integrated with respect to time, (2) corrected for the heat of 

dilution, heat of injection and heat of mixing, (3) normalized with respect to molarity 

of titrant to obtain the molar enthalpy of the interactions (Figure 5.4 B). To further 

quantify the association constant (Ka), enthalpy change (ΔH) and stoichiometry (n) 
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from the heat profile, curve-fitting analysis was performed. Gibbs free energy change 

(ΔG) and entropy change (ΔS) were calculated via: 

                                                                                          (5.2) 

                                                                                        (5.3) 

Thermodynamic parameters of nanoparticle-protein interactions (Ka, n, ΔH, 

ΔG, ΔS) obtained from the experimental data are summarized in Table 1.  

According to curve fitting analysis the nanoparticle-protein complexation 

features two distinct binding processes with significantly different affinities, 

stoichiometry’s and enthalpies. The first site binds with larger affinity and enthalpy 

whereas the second site binds with weaker affinity and larger 

stoichiometry/population of sites that results in a weaker enthalpy per molecule. Even 

though both binding modes feature favorable enthalpic changes (ΔH˂0), and entropic 

changes (ΔS˃0), favorable entropic contribution is less pronounced in the second 

binding mode. 

Observation of two discrete binding events is quite rare among titration 

calorimetry studies. Nevertheless, there are a few influential works that successfully 

resolved the binding curve for two binding modes (139-141). Also in one of those studies, 

a detailed protein-nanoparticle complexation mechanism that accounts for both non-

covalent complex formation and solvent reorganization was proposed(140). De’s 

mechanism is adapted to the current contribution in order to draw the whole 

thermodynamic picture behind the lysozyme interactions with hydrophilic silica.  

According to De’s mechanism, the complexation of nanoparticles with 

proteins could be exothermic or endothermic depending the nature of interactions 
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driving the complex formation. As long as favorable enthalpy contribution (ΔH˂0, 

exothermic) is not offset by the unfavorable entropy loss (ΔS˂0) or unfavorable 

enthalpy contribution (ΔH˃0, endothermic) is compensated by the favorable entropy 

gain (ΔS˃0), free energy of the process (ΔG) will be negative. Negative free energy 

change is the thermodynamic requirement for a process to occur spontaneously.  

Based on this, the overall lysozyme-silica complexation process (reaction 3) 

could be described as a combination of non-covalent complex formation (reaction 1) 

and solvent reorganization (reaction 2). 

Lysozyme + Silica ⇋ Lysozyme-Silica                      ΔH˂0 and ΔS˂0           (1) 

xH2Olys + yH2Osi ⇋ (x+y-z)H2Olys-si + zH2O        ΔH˃0 and ΔS˃0            (2) 

Lyzozyme∙xH2Olys + Silica∙ yH2Osi ⇋ Lysozyme-Silica∙(x+y-z) H2Olys-si + 

zH2O    (3) 

Whereas H2Olys, H2Osi, H2Olys-si are water molecules bound to lysozyme, 

silica and lysozyme-silica complexes, respectively. 

In Process 1, formation of non-covalent bonds are favorable and could 

compensate the loss of conformational entropy due to complex formation(139). In 

Process 2 energy is required for disruption of the bound water at the nanoparticle-

protein interface (ΔH˃0), but the increasing conformational entropy of water (ΔS˃0) 

due to the release of highly ordered solvent from interface to bulk could compensate 

the unfavorable enthalpy contribution. So the enthalpy and entropy in process 3 

would be a sum of those contributions. 

So it is clear that in each binding mode the contribution of those processes 

weight differently. For the first binding mode increase in entropy is the dominating 
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driving force for the complexation and for the second mode complexation is driven 

by a moderate favorable enthalpy and a moderate favorable entropy contribution 

(Figure 5.5 ).  

5.5 Discussion 

5.5.1 Non-Direct Methods to evaluate Mechanism of Protein Adsorption 

When a small gas molecule approaches to a solid interface, only two things 

might happen: adsorption on or desorption from the surface. On the other hand, when 

a protein molecule approaches to a solid surface, protein might undergo structural 

arrangements, interact with each other, change the surface affinity depending the 

surface coverage, form multiple layers all of which complicates the adsorption and 

desorption process. In this respect, groups that have and currently study protein 

adsorption on surfaces widely accept the Langmuir model and hypotheses that allow 

the development of this model. The Langmuir adsorption theory and model has been 

developed for gases and could serve only as a starting point to model the complicated 

protein adsorption behavior (76, 77, 142, 143) . Thus, in order to characterize the 

mechanistic details of the protein adsorption process, high resolution real time kinetic 

experimental data should be described with advance mathematical models that 

account for all the violations to the hypotheses used to develop the Langmuir 

theory(143).  Alternatively, thermodynamic models can reveal the energetic aspects of 

the adsorption process and can be applied by using final equilibrium state 

concentrations and surface coverages to calculate equilibrium constants and the 

associated thermodynamic properties, notably the Gibbs Free Energy. 
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In the current contribution, Langmuir model was used as a starting point to set 

the stage for the forthcoming discussion on the thermodynamic model that is obtained 

from ITC data analysis. Results showed that it is important to lower expectations 

from the Langmuir model by considering the fact that lysozyme changes its native 

conformation upon adsorption on the silica surface (Figure 5.3). In addition unfolded 

protein might favor lateral interactions(135) and protein bridging (silica-lysozyme-

silica) might occur through a single lysozyme molecule, also multiple lysozyme 

bridges (silica-(lysozyme)n-silica). 

The Langmuir model predicted a maximum surface coverage of 1.5 mg/m2 

and an equilibrium dissociation constant of 0.038 mg/mL. Predicted maximum 

surface coverage is between the experimental saturation (1.3 mg/m2) and calculated 

theoretical value based on monolayer coverage (1.7 mg/m2).  In addition to Langmuir, 

the same adsorption data was successfully modeled with the Hill equation 

( max
n
eq

n
d eq

C
K C





 ) as well. Hill equation predicted the cooperativity term (n) as 2.1, 

which was assumed to be 1 in Langmuir (Langmuir is a special case of Hill model, 

and assumes no-cooperativity). Incorporating the cooperativity term improves the 

fitting of the data, which is further supporting the non-Langmuir like behavior of the 

adsorption isotherm of lysozyme on silica. Shift in the binding site properties with 

surface cioverage implies lateral protein-protein interactions Predicted surface 

coverage was more accurate (1.3 mg/m2) and equilibrium dissociation constant 

(Kapp=0.00045 mg/mL) was significantly different than that obtained from the 

Langmuir model. 
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Based on the experimental surface coverage and contradicting equilibrium 

constants, it could be assumed that the adsorption of lysozyme on silica could be 

explained by at least three “possible” scenarios: 1) Projected cross sectional area of 

an unfolded protein might be slightly larger than that of the folded native one. If this 

were the case, the silica surface would be covered with less protein. That would 

support the slight discrepancy between the predictions and the observations. 2) At 

least two silica particles are bridged by the same single protein through two binding 

sites. If this were the case, available surface for adsorption would be dynamically 

decreasing and the saturation would occur at a lower protein loading than predicted. 3) 

Centrifugal forces applied to separate the free protein during the non-direct 

adsorption technique, detach some of the bound protein on the silica as well. If this 

were the case, detached proteins would be assumed to be weakly bound compared to 

the ones resisting centrifugal forces. 

Equilibrium constants that are predicted via Langmuir or Hill models were 

further compared with the ones that are obtained from ITC in the following section. 

5.5.2 ITC directly provides More Details on the Mechanism of Protein Adsorption 

and Resulting Bridging Flocculation 

The most important objective of the current contribution was to investigate the 

thermodynamic nature of the complex formation between silica and protein 

(lysozyme) in which protein adsorption plays a key role by inducing bridging 

flocculation. In this context, the thermodynamic nature of the complex formation was 
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further investigated by directly measuring the heat of interactions with isothermal 

titration calorimetry (ITC). 

The most impressive outcome of the ITC results was the consistent (see the 

ITC master curve in Graphical Abstract) bimodal characteristic of the heat profile 

(Figure 5.4 B) that cannot be simply attributed to only one type of lysozyme-silica 

interaction. Considering the fact lysozyme-silica complexation would occur through 

two sub-processes, results show that it is possible to conclude that each sub-process 

weighted differently in each interaction mode and thus there were two distinct heats 

(or enthalpies in this case due to constant pressure and volume) associated with 

interactions leading to complexation. 

Further analysis of the thermodynamic signature associated to the 

complexation process requires to assume a binding model for complexation and 

obtain the equilibrium constant from the known total concentrations of lysozyme and 

silica since the heat associated to binding is proportional to the change in the 

concentration of the bound lysozyme through each injection. By using two sets of 

independent binding sites model, it was possible to discriminate the free energy of the 

interactions into its enthalpy and entropy components by using the apparent 

association/dissociation constants. Even though the measured heat is the cumulative 

heat of all simultaneous binding interactions including the silica flocculation, since as 

demonstrated this is promoted by lysozyme bridging, it would not be unreasonable to 

propose that lysozyme binds to silica at least by two distinct modes. 

The higher affinity binding mode seems to be resulting from the direct 

interactions of lysozyme with silica at low surface coverage’s that leads the most 
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important portion of silica flocculation (see the initial jump in figure 5.2 B). Higher 

calculated positive entropy changes supports the assumption of significant disruption 

of the structurally organized water at the silica surface. Release of the bound water to 

the bulk or reorganization to a more disordered state at the silica-lysozyme interface 

is the most possible explanation behind the favorable entropic contribution that 

compensates unfavorable entropic contribution due to the restriction of the protein in 

between the silica particles. It is also important to remember that the partial transition 

in the secondary structure of protein from helical to sheets and random coil (Figure 3 

B) might be also contributing to the favorable entropy.  

The lower affinity binding mode observed at higher surface coverages seems 

to be resulting from an additional protein-protein interaction to the already existing 

protein-silica interactions. Lower positive entropy supports the less pronounced effect 

of the water reorganization on the silica surface or at the binding interface. It is not 

very clear whether the pure protein-protein interactions on the silica surface are 

favorable or not due to complexity brought by the conformational change, but 

incorporation of protein-protein interactions significantly decreases the affinity of 

binding. 

It is already mentioned that, since complexation includes both protein 

adsorption and silica flocculation simultaneously, the equilibrium constants and the 

free energy and entropy obtained from these values are apparent parameters and 

absolute numbers should be evaluated carefully. However it is quite interesting to 

observe that the high affinity binding dissociation constant has the same order of 

magnitude as the one obtained from Hill equation (3.15x10-8) and the low affinity 
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binding dissociation constant has the same order of magnitude as the one obtained 

from the Langmuir model (2.65x10-6). This gives us enough confidence to assume a 

binding mechanism (multiple binding site model) and resolve the affinity of the 

lysozyme binding on hydrophilic nano-silica. 

Definitely, stoichiometry constants (n) that are obtained via multiple binding 

site model would have been more meaningful without the messed up molarity of 

silica due to random flocculation. However, with the numbers in hand, it seems like 

the high affinity binding mode is saturated with less protein compared to the low 

affinity binding mode. 

5.6 Conclusion 

Thermodynamic details of protein-nanoparticle interactions and complexation 

were studied with a well-defined model system (lysozyme-silica). Interactions 

governing protein nanoparticle complexation is concluded to be complex yet 

resolvable with a multi-experimental approach. Electrostatically initiated protein 

adsorption plays the key-role in complexation by inducing the bridging flocculation. 

According to ITC data analysis complexation shows a bimodal character due to two 

distinct binding modes. Higher affinity binding mode that is driven by a larger 

entropic contribution is followed by the low affinity binding mode that is a 

consequence of moderate enthalpy and entopic contributions. Higher affinity mode 

requires less protein to reach equilibrium and is seen at lower surface coverages. 

Solvent re-organization plays the most important role in the complexation process by 

contributing the favorable entropy gain. In addition to solvent reorganization, changes 

in the secondary structure of lysozyme upon adsorption might be contributing to the 

 

 



95 
 

favorable entropy gain. The dominant entropic pathway of complexation, showed the 

case that the assembly of the supra colloidal micro-structures by using nanoparticles 

and biopolymers as building blocks might not be limited by unfavorable enthalpic 

restrictions. 
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Figure 5-1 Adsorption isotherms: Squares and brackets represent mean and standard 
error of the mean (n=6, triplicate short equilibrium times, triplicate 16 hours 
equilibrium), respectively. Blue and red lines in A represents the predicted adsorption 
isotherms via Langmuir and Hill models, respectively. B represent the raw adoption 
data before normalizing the adsorbed amount with respect to surface area. Surface 
coverage fraction in C was calculated by normalizing the surface coverage with 
respect to the maximum experimental surface coverage. Molar ratio in D is the ratio 
of the total protein molarity to the theoretical total molarity of silica. 
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Figure 5-2 Light Scattering results. 2A. Zeta Potential of lysozyme-silica complexes. 
Charge of silica particles before any protein incorporation (Mole Ratio=0) is marked 
with a blue arrow. Second y-axis (red) represents the charge scale for lysozyme. 2B. 
Hydrodynamic radius of lysozyme-silica complex. Radius of silica particles before 
any protein incorporation (Mole Ratio=0) is marked with a blue arrow. 
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Figure 5-3 Circular Dichroism. 3A. CD spectra of control and bound proteins. MRE 
stands for mean residue ellipticity. 3B. Deconvolution of CD spectra enable to 
determine the fractions of secondary structure as helix, sheet and turn. 
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Figure 5-4 ITC 4A. ITC raw data before integration: After the “first load”, syringe re-
filled with the same protein solution and injected to the cell that includes the silica 
and lysozyme to collect the “second load” heats. 4B. Integrated peaks after 
normalization with respect to mole of injectant: After integrating the peaks of raw 
data with respect to time, obtained heats were normalized with respect to initial 
protein molarity. Red line represents the heat profile predicted with the multiple site 
model. 
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Figure 5-5ITC thermodynamic signature. ΔH is measured directly with ITC, ΔG and 
ΔS were calculated based on the equilibrium constant as explained in the text. T is the 
test temperature, which is 298.15K in this case 

Table 5-1ITC Apparent binding parameters 

ITC Parameter Site 1 Site 2 

Ka (M-1) 4.65E+08 3.2E+05 

Kd (M) 2.15E-09 8.40E-06 

n 7.549 54.72 

ΔH (kJ/mol) -14.84 -12.16 

ΔS (J/mol.K) 122 56.4 

ΔG (kJ/mol) -51.15 -28.96 
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CHAPTER 6. SUMMARY AND OUTLOOK 

The main objective of the current PhD research was to develop a design 

paradigm to engage nano-bio hybridization/complexation into the macro-

structure/rheology manipulation with the aim of developing new and functional 

biomaterials. Specifically, supra-colloidal assembly of disordered fractal 

microstructures was studied with two complementary approaches.  

First, rheological attributes of bio-polymer nanoparticle interactions were 

investigated with dynamic light scattering and rheology. Concentrated nano-

structured suspensions of silica and α-lactalbumin were formed under different 

electrostatic conditions by changing the suspension pH.  Electrostatic interactions 

were shown to significantly affect the rheological characteristics of the suspensions. 

Changes in the rheological behavior was indirectly attributed to attraction and 

repulsion between the inorganic (silica) and organic component (protein, α-

lactalbumin) of the suspension. Possibility of tuning the rheological characteristic of 

nano-structured suspension was directly attributed to the formation of disordered 

fractal microstructures under the influence of electrostatic interactions. 

Second, the thermodynamic nature of complexation at the silica nanoparticles 

with lysozyme was investigated using isothermal titration calorimetry and circular 

dichroism.  A new model was developed to quantitatively asses the complexation that 

is promoted by the protein adsorption. Formation of disordered fractal aggregates
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 shows a bimodal character due to two distinct binding modes. A higher affinity 

binding mode that is driven by a larger entropic contribution is followed by a low 

affinity binding mode that is a consequence of moderate enthalpy and entopic 

contributions. Dominant entropic pathway of interactions offered an alternative self-

assembly route to the enthalpically restricted complexation. 

6.1 Spin Off Of the Current Contribution: Short Term Outcomes 

As already mentioned, tunable rheology and entropic pathway of 

complexation is expected to open up the floor for application of these principles in 3-

dimensional printing, wastewater purification, ceramic slurry processing, fuel design 

with increased safety, personal care products with desired rheology and function, 

artistic paints with fine-tuned consistency among others. 

The first step logical continuation of this study could be defining the specific 

rheological needs of industry and applying a similar physicochemical- 

thermodynamic approach to address their needs by fine tuning the rheological 

behavior of end products.  

6.2 Fundamental Gaps: Medium Term Outcomes 

Even though this study proposed a bi-modal binding mode for the 

thermodynamic nature of interactions, it left open questions that merit attention.  

Answering those questions is expected to fill some of the fundamental gaps 

associated with supra-colloidal assembly. 
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What is the real stoichmetry of binding? Could an advanced binding model be 

developed that accounts for a stoichiometry distribution for the random complexation?  

Is the protein-denatured protein interactions favorable?  Are these interactions 

bridging the nanoparticles, or is one single protein molecule bridging at least two 

silica nanoparticles via two binding site?  

6.3 Future Direction: Long Term Outcomes 

As already mentioned, this study demonstrated the fact that interactions of 

disordered fractal aggregates changes the rheological behavior of nano-structured 

suspensions. Given the influential studies on the microstructure of disordered 

aggregates, this rheological approach could be combined with those studies. Studies 

on microstructure should be expanded to investigate the fractal structure with other 

techniques such as small angle neutron scattering to draw a relationship between 

fractal aggregate structure, rheology and thermodynamics. This multi-disciplinary 

approach could lead fruitful interdisciplinary research projects. 

 

 

 

 

 



104 
 

LIST OF REFERENCES 

 

 

 

 



104 
 

LIST OF REFERENCES 

1. Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., 

Klaessig, F., Castranova, V., and Thompson, M. (2009) Understanding 

biophysicochemical interactions at the nano–bio interface,  8. 

2. Niemeyer, C. M. (2001) Nanoparticles, Proteins, and Nucleic Acids: 

Biotechnology Meets Materials Science, Angewandte Chemie International Edition 40, 

4128-4158. 

3. You, C.-C., Verma, A., and Rotello, V. M. (2006) Engineering the nanoparticle-

biomacromolecule interface, Soft Matter 2, 190-204. 

4. Leszczynski, J. (2010) Bionanoscience: Nano meets bio at the interface, Nat Nano 

5, 633-634. 

5. Moyano, D. F., and Rotello, V. M. (2011) Nano Meets Biology: Structure and 

Function at the Nanoparticle Interface, Langmuir 27, 10376-10385. 

6. Lynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S., and 

Dawson, K. A. (2007) The nanoparticle-protein complex as a biological entity; a complex 

fluids and surface science challenge for the 21st century, Advances in Colloid and 

Interface Science 134-135, 167-174.  

 

 



105 
 

7. Lynch, I., and Dawson, K. A. (2008) Protein-nanoparticle interactions, Nano 

Today 3, 40-47. 

8. Lynch, I., Salvati, A., and Dawson, K. A. (2009) Protein-nanoparticle interactions: 

What does the cell see?, Nat Nano 4, 546-547. 

9. Ungyu Paik, J. Y. K., Vincent A. Hackley. (2005) Rheological and electrokinetic 

behavior associated with concentrated nanosize silica hydrosols, Materials Chemistry and 

Physics, 205-211. 

10. Asuri, P., Bale, S. S., Karajanagi, S. S., and Kane, R. S. (2006) The protein–

nanomaterial interface, Current Opinion in Biotechnology 17, 562-568. 

11. Kane, R. S., and Stroock, A. D. (2007) Nanobiotechnology: Protein-Nanomaterial 

Interactions, Biotechnology Progress 23, 316-319. 

12. Grzelczak, M., Vermant, J., Furst, E. M., and Liz-Marzán, L. M. (2010) Directed 

Self-Assembly of Nanoparticles, ACS Nano 4, 3591-3605. 

13. Katz, E., and Willner, I. (2004) Integrated Nanoparticle–Biomolecule Hybrid 

Systems: Synthesis, Properties, and Applications, Angewandte Chemie International 

Edition 43, 6042-6108. 

14. Li, F., Josephson, D. P., and Stein, A. (2011) Colloidal Assembly: The Road from 

Particles to Colloidal Molecules and Crystals, Angewandte Chemie International Edition 

50, 360-388. 

 

 



106 
 

15. Velev, O. D., and Gupta, S. (2009) Materials Fabricated by Micro- and 

Nanoparticle Assembly – The Challenging Path from Science to Engineering, Advanced 

Materials 21, 1897-1905. 

16. Hiemenz, P. C., and Rajagopalan, R. (1997) Principles of Colloid and Surface 

Chemistry, Third Edition, Revised and Expanded, Taylor & Francis. 

17. Hunter, R. J. (2001) Foundations of Colloid Science, Oxford University Press. 

18. Larson, R. G. (1999) The Structure and Rheology of Complex Fluids, OUP USA. 

19. Morrison, I. D., and Ross, S. (2002) Colloidal Dispersions: Suspensions, 

Emulsions, and Foams, Wiley. 

20. Vold, R. D., and Vold, M. J. (1983) Colloid and Interface Chemistry, Addison-

Wesley. 

21. Dzina, K., Remco, T., and Peter, R. L. (2008) Direct measurements of polymer-

induced forces, Journal of Physics: Condensed Matter 20, 073101. 

22. Netz, R. R., and Andelman, D. (2003) Neutral and charged polymers at interfaces, 

Physics Reports 380, 1-95. 

23. Asakura, S., and Oosawa, F. (1954) On interaction between two bodies immersed 

in a solution of macromolecules, Chemical Physics, 1255-1256. 

24. Asakura, S., and Oosawa, F. (1958) Interaction between particles suspended in 

solutions of macromolecules, Journal of polymer science 33, 183-192. 

25. Sieglaff, C. L. (1959) Phase separation in mixed polymer solutions, Journal of 

Polymer Science 41, 319-326. 

 

 



107 
 

26. Feigin, R. I., and Napper, D. H. (1980) Depletion stabilization and depletion 

flocculation, Journal of Colloid and Interface Science 75, 525-541. 

27. Heath, D., and Tadros, T. F. (1983) Rheological investigations of the effect of 

addition of free polymer to concentrated sterically stabilised polystyrene latex dispersions, 

Faraday Discussions of the Chemical Society 76, 203-218. 

28. Patel, P. D., and Russel, W. B. (1988) A mean field theory for the rheology of 

phase separated or flocculated dispersions, Colloids and Surfaces 31, 355-383. 

29. Tadros, T. F. (1996) Correlation of viscoelastic properties of stable and 

flocculated suspensions with their interparticle interactions, Advances in Colloid and 

Interface Science 68, 97-200. 

30. Shah, S., Chen, Y.-L., Schweizer, K., and Zukoski, C. (2003) Viscoelasticity and 

rheology of depletion flocculated gels and fluids, The Journal of chemical physics 119, 

8747-8760. 

31. Lu, P. J., Zaccarelli, E., Ciulla, F., Schofield, A. B., Sciortino, F., and Weitz, D. A. 

(2008) Gelation of particles with short-range attraction, Nature 453, 499-503. 

32. Napper, D. H. (1977) Steric stabilization, Journal of Colloid and Interface 

Science 58, 390-407. 

33. Heller, W., and Pugh, T. L. (1954) ``Steric Protection''of Hydrophobic Colloidal 

Particles by Adsorption of Flexible Macromolecules, The Journal of Chemical Physics 22, 

1778-1778. 

 

 



108 
 

34. Papir, Y. S., and Krieger, I. M. (1970) Rheological studies on dispersions of 

uniform colloidal spheres: II. Dispersions in nonaqueous media, Journal of Colloid and 

Interface Science 34, 126-130. 

35. Woods, M. E., and Krieger, I. M. (1970) Rheological studies on dispersions of 

uniform colloidal spheres I. Aqueous dispersions in steady shear flow, Journal of Colloid 

and Interface Science 34, 91-99. 

36. Willey, S. J., and Macosko, C. (1978) Steady shear rheological behavior of PVC 

plastisols, Journal of Rheology (1978-present) 22, 525-545. 

37. Liang, W., Tadros, T. F., and Luckham, P. F. (1992) Rheological studies on 

concentrated polystyrene latex sterically stabilized by poly(ethylene oxide) chains, 

Journal of Colloid and Interface Science 153, 131-139. 

38. Prestidge, C., and Tadros, T. F. (1988) Viscoelastic properties of aqueous 

concentrated polystyrene latex dispersions containing grafted poly(ethylene oxide) chains, 

Journal of Colloid and Interface Science 124, 660-665. 

39. de L. Costello, B. A., Luckham, P. F., and Tadros, T. F. (1992) Investigations of 

the properties of aqueous sterically stabilized dispersions, Journal of Colloid and 

Interface Science 152, 237-246. 

40. Luckham, P. F., Ansarifar, M. A., de L. Costello, B. A., and Tadros, T. F. (1991) 

The relationship between interparticle forces and the bulk rheology of suspensions, 

Powder Technology 65, 371-379. 

 

 



109 
 

41. Liang, W., Tadros, T. F., and Luckham, P. F. (1993) Influence of addition of 

electrolyte and/or increase of temperature on the viscoelastic properties of concentrated 

sterically stabilized polystyrene latex dispersions, Langmuir 9, 2077-2083. 

42. van de Ven, T. G. M., and Hunter, R. J. (1979) Viscoelastic properties of 

coagulated sols, Journal of Colloid and Interface Science 68, 135-143. 

43. Quemada, D., and Berli, C. (2002) Energy of interaction in colloids and its 

implications in rheological modeling, Advances in Colloid and Interface Science 98, 51-

85. 

44. Çengel, Y. A., and Boles, M. A. (2002) Thermodynamics: An Engineering 

Approach, McGraw-Hill. 

45. Norde, W. (2003) Colloids and Interfaces in Life Sciences, Taylor & Francis. 

46. Tinoco, I., Sauer, K., and Wang, J. C. (1995) Physical Chemistry: Principles and 

Applications in Biological Sciences, Prentice Hall. 

47. Norde, W. (2011) Colloids and interfaces in life sciences and bionanotechnology, 

CRC Press. 

48. Berne, B. J., and Pecora, R. (2000) Dynamic Light Scattering: With Applications 

to Chemistry, Biology, and Physics, Dover Publications. 

49. Koppel, D. E. (1972) Analysis of Macromolecular Polydispersity in Intensity 

Correlation Spectroscopy: The Method of Cumulants, The Journal of Chemical Physics 

57, 4814-4820. 

 

 



110 
 

50. Ostrowsky, N., Sornette, D., Parker, P., and Pike, E. R. (1981) Exponential 

Sampling Method for Light Scattering Polydispersity Analysis, Optica Acta: 

International Journal of Optics 28, 1059-1070. 

51. Provencher, S. W. (1982) CONTIN: A general purpose constrained regularization 

program for inverting noisy linear algebraic and integral equations, Computer Physics 

Communications 27, 229-242. 

52. Frisken, B. J. (2001) Revisiting the method of cumulants for the analysis of 

dynamic light-scattering data, Appl Optics 40, 4087-4091. 

53. Bargeron, C. B. (1974) Analysis of intensity correlation spectra of mixtures of 

polystyrene latex spheres: A comparison of direct least squares fitting with the method of 

cumulants, The Journal of Chemical Physics 60, 2516-2519. 

54. Lee, S. P., and Chu, B. (1974) Application of least‐squares (difference‐integration) 

method to cumulants analysis in intensity fluctuation spectroscopy, Applied Physics 

Letters 24, 575-576. 

55. Roig, A. R., and Alessandrini, J. L. (2006) Particle Size Distributions from Static 

Light Scattering with Regularized Non-Negative Least Squares Constraints, Particle & 

Particle Systems Characterization 23, 431-437. 

56. Berberan-Santos, M. N. (2008) A luminescence decay function encompassing the 

stretched exponential and the compressed hyperbola, Chem Phys Lett 460, 146-150. 

 

 



111 
 

57. Berberan-Santos, M. N., Bodunov, E. N., and Valeur, B. (2005) Mathematical 

functions for the analysis of luminescence decays with underlying distributions 1. 

Kohlrausch decay function (stretched exponential), Chemical Physics 315, 171-182. 

58. Berberan-Santos, M. N., and Valeur, B. (2007) Luminescence decays with 

underlying distributions: General properties and analysis with mathematical functions, 

Journal of Luminescence 126, 263-272. 

59. Zhu, X. J., Shen, J., Liu, W., Sun, X. M., and Wang, Y. J. (2010) Nonnegative 

least-squares truncated singular value decomposition to particle size distribution 

inversion from dynamic light scattering data, Appl Optics 49, 6591-6596. 

60. Kim, J., Ahn, S., Lee, H., and Lee, M. (2013) Estimation of particle size 

distribution using photon autocorrelation function from dynamic light scattering 

considering unknown baseline, Opt Lett 38, 1757-1759. 

61. Pusey, P. N., and van Megen, W. (1984) Detection of small polydispersities by 

photon correlation spectroscopy, The Journal of Chemical Physics 80, 3513-3520. 

62. Morrison, I. D., Grabowski, E. F., and Herb, C. A. (1985) Improved techniques 

for particle size determination by quasi-elastic light scattering, Langmuir 1, 496-501. 

63. Bryant, G., Abeynayake, C., and Thomas, J. C. (1996) Improved particle size 

distribution measurements using multiangle dynamic light scattering .2. Refinements and 

applications, Langmuir 12, 6224-6228. 

64. Bryant, G., and Thomas, J. C. (1995) Improved Particle-Size Distribution 

Measurements Using Multiangle Dynamic Light-Scattering, Langmuir 11, 2480-2485. 

 

 



112 
 

65. Briggs, J., and Nicoli, D. F. (1980) Photon-Correlation Spectroscopy of 

Polydisperse Systems, J Chem Phys 72, 6024-6030. 

66. Podzimek, S. (2011) Light Scattering, In Light Scattering, Size Exclusion 

Chromatography and Asymmetric Flow Field Flow Fractionation, pp 37-98, John Wiley 

& Sons, Inc. 

67. Hunter, R. J., Ottewill, R. H., and Rowell, R. L. (2013) Zeta Potential in Colloid 

Science: Principles and Applications, Elsevier Science. 

68. Morrison, F. A. (2001) Understanding Rheology, Oxford University Press. 

69. Ladbury, J. E., and Doyle, M. L. (2005) Biocalorimetry 2: Applications of 

Calorimetry in the Biological Sciences, Wiley. 

70. Freire, E., Mayorga, O. L., and Straume, M. (1990) Isothermal titration 

calorimetry, Analytical Chemistry 62, 950A-959A. 

71. Bergna, H. E., and Roberts, W. O. (2005) Colloidal Silica: Fundamentals and 

Applications, CRC Press. 

72. Dobias, B., and Stechemesser, H. (2005) Coagulation and Flocculation, Second 

Edition, CRC Press. 

73. Saptarshi, S. R., Duschl, A., and Lopata, A. L. (2013) Interaction of nanoparticles 

with proteins: relation to bio-reactivity of the nanoparticle, J Nanobiotechnol 11. 

74. Ge, J., Lu, D. N., Liu, Z. X., and Liu, Z. (2009) Recent advances in 

nanostructured biocatalysts, Biochem Eng J 44, 53-59. 

 

 



113 
 

75. Devineau, S., Zanotti, J. M., Loupiac, C., Zargarian, L., Neiers, F., Pin, S., and 

Renault, J. P. (2013) Myoglobin on Silica: A Case Study of the Impact of Adsorption on 

Protein Structure and Dynamics, Langmuir 29, 13465-13472. 

76. Nakanishi, K., Sakiyama, T., and Imamura, K. (2001) On the adsorption of 

proteins on solid surfaces, a common but very complicated phenomenon, Journal of 

Bioscience and Bioengineering 91, 233-244. 

77. Haynes, C. A., and Norde, W. (1994) Globular proteins at solid/liquid interfaces, 

Colloids and Surfaces B: Biointerfaces 2, 517-566. 

78. Norde, W. (2003) Adsorption of Bio(Polymers), with Special Emphasis on 

Globular Proteins, Marcel Dekker, INC, New York. 

79. Lynch, I., and Dawson, K. A. (2008) Protein-nanoparticle interactions, Nano 

Today 3, 40-47. 

80. Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., 

Klaessig, F., Castranova, V., and Thompson, M. (2009) Understanding 

biophysicochemical interactions at the nano-bio interface, Nat Mater 8, 543-557. 

81. Kondo, A., Murakami, F., and Higashitani, K. (1992) Circular dichroism studies 

on conformational changes in protein molecules upon adsorption on ultrafine polystyrene 

particles, Biotechnol Bioeng 40, 889-894. 

 

 

 

 



114 
 

82. Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., 

Dawson, K. A., and Linse, S. (2007) Understanding the nanoparticle-protein corona using 

methods to quantify exchange rates and affinities of proteins for nanoparticles, P Natl 

Acad Sci USA 104, 2050-2055. 

83. Vertegel, A. A., Siegel, R. W., and Dordick, J. S. (2004) Silica Nanoparticle Size 

Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme, Langmuir 20, 

6800-6807. 

84. Henzler, K., Haupt, B., Lauterbach, K., Wittemann, A., Borisov, O., and Ballauff, 

M. (2010) Adsorption of β-Lactoglobulin on Spherical Polyelectrolyte Brushes: Direct 

Proof of Counterion Release by Isothermal Titration Calorimetry, Journal of the 

American Chemical Society 132, 3159-3163. 

85. Shang, W., Nuffer, J. H., Muñiz-Papandrea, V. A., Colón, W., Siegel, R. W., and 

Dordick, J. S. (2009) Cytochrome c on Silica Nanoparticles: Influence of Nanoparticle 

Size on Protein Structure, Stability, and Activity, Small 5, 470-476. 

86. Wu, X., and Narsimhan, G. (2008) Effect of surface concentration on secondary 

and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles, 

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1784, 1694-1701. 

87. Bharti, B., Meissner, J., and Findenegg, G. H. (2011) Aggregation of Silica 

Nanoparticles Directed by Adsorption of Lysozyme, Langmuir 27, 9823-9833. 

88. Kumar, S., Aswal, V. K., and Kohlbrecher, J. (2011) SANS and UV–vis 

Spectroscopy Studies of Resultant Structure from Lysozyme Adsorption on Silica 

Nanoparticles, Langmuir 27, 10167-10173. 

 

 



115 
 

89. Technical Bulletin 11, C. p. (1967) Basic Characteristics of Aerosil Fumed Silica. 

90. Barik, T. K., Sahu, B., and Swain, V. (2008) Nanosilica - from medicine to pest 

control, Parasitol Res 103, 253-258. 

91. Larsericsdotter, H., Oscarsson, S., and Buijs, J. (2001) Thermodynamic Analysis 

of Proteins Adsorbed on Silica Particles: Electrostatic Effects, Journal of Colloid and 

Interface Science 237, 98-103. 

92. Reference Manual, M. I. (2007) Sample Dispersion and Refractive Index Guide. 

93. Herman, D., and Walz, J. Y. (2013) Stabilization of Weakly Charged 

Microparticles Using Highly Charged Nanoparticles, Langmuir 29, 5982-5994. 

94. Brown, M. A., Huthwelker, T., Redondo, A. B., Janousch, M., Faubel, M., Arrell, 

C. A., Scarongella, M., Chergui, M., and van Bokhoven, J. A. (2012) Changes in the 

Silanol Protonation State Measured In Situ at the Silica-Aqueous Interface, J Phys Chem 

Lett 3, 231-235. 

95. Liu, X., Cheng, J., Lu, X., and Wang, R. (2014) Surface acidity of quartz: 

understanding the crystallographic control, Physical Chemistry Chemical Physics 16, 

26909-26916. 

96. Zittle, C. A. (1956) Solubility Transformation of Alpha-Lactalbumin, Arch 

Biochem Biophys 64, 144-151. 

97. Paik, U., Kim, J. Y., and Hackley, V. A. (2005) Rheological and electrokinetic 

behavior associated with concentrated nanosize silica hydrosols, Materials Chemistry and 

Physics 91, 205-211. 

 

 



116 
 

98. Krieger, I. M., and Eguiluz, M. (1976) The Second Electroviscous Effect in 

Polymer Latices, Transactions of The Society of Rheology (1957-1977) 20, 29-45. 

99. Israelachvili, J. N., and Adams, G. E. (1978) Measurement of forces between two 

mica surfaces in aqueous electrolyte solutions in the range 0-100 nm, Journal of the 

Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 74, 

975-1001. 

100. Peschel, G., Belouschek, P., Müller, M. M., Müller, M. R., and König, R. (1982) 

The interaction of solid surfaces in aqueous systems, Colloid & Polymer Sci 260, 444-

451. 

101. Vigil, G., Xu, Z., Steinberg, S., and Israelachvili, J. (1994) Interactions of Silica 

Surfaces, Journal of Colloid and Interface Science 165, 367-385. 

102. Rubio-Hernández, F. J., Ayúcar-Rubio, M. F., Velázquez-Navarro, J. F., and 

Galindo-Rosales, F. J. (2006) Intrinsic viscosity of SiO2, Al2O3 and TiO2 aqueous 

suspensions, Journal of Colloid and Interface Science 298, 967-972. 

103. Iler, R. K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and 

Surface Properties and Biochemistry of Silica, Wiley. 

104. Mewis, J., and Wagner, N. J. (2011) Colloidal Suspension Rheology, Cambridge 

University Press. 

105. Barnes, H. A., and Nguyen, Q. D. (2001) Rotating vane rheometry - a review, J 

Non-Newton Fluid 98, 1-14. 

 

 



117 
 

106. Cohen, I., Davidovitch, B., Schofield, A. B., Brenner, M. P., and Weitz, D. A. 

(2006) Slip, yield, and bands in colloidal crystals under oscillatory shear, Phys Rev Lett 

97, 215502. 

107. Raghavan, S. R., Walls, H. J., and Khan, S. A. (2000) Rheology of silica 

dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen 

bonding, Langmuir 16, 7920-7930. 

108. Brinker, C. J., and Scherer, G. W. (1990) Sol-gel Science: The Physics and 

Chemistry of Sol-gel Processing, Academic Press. 

109. Gunko, V. M., Turov, V. V., Zarko, V. I., Dudnik, V. V., Tischenko, V. A., 

Kazakova, O. A., Voronin, E. F., Siltchenko, S. S., Barvinchenko, V. N., and Chuiko, A. 

A. (1997) Aqueous suspensions of fumed silica and adsorption of proteins, Journal of 

Colloid and Interface Science 192, 166-178. 

110. Kroon, M., Wegdam, G. H., and Sprik, R. (1996) Dynamic light scattering studies 

on the sol-gel transition of a suspension of anisotropic colloidal particles, Phys Rev E 54, 

6541-6550. 

111. Ruzicka, B., Zulian, L., and Ruocco, G. (2004) Routes to gelation in a clay 

suspension, Phys Rev Lett 93. 

112. Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., 

Klaessig, F., Castranova, V., and Thompson, M. (2009) Understanding 

biophysicochemical interactions at the nano-bio interface, Nat Mater 8, 543-557. 

 

 



118 
 

113. Cedervall, T., Lynch, I., Lindman, S., Berggård, T., Thulin, E., Nilsson, H., 

Dawson, K. A., and Linse, S. (2007) Understanding the nanoparticle–protein corona 

using methods to quantify exchange rates and affinities of proteins for nanoparticles, 

Proceedings of the National Academy of Sciences 104, 2050-2055. 

114. Costanzo, P. J., Patten, T. E., and Seery, T. A. P. (2004) Protein−Ligand Mediated 

Aggregation of Nanoparticles:  A Study of Synthesis and Assembly Mechanism, 

Chemistry of Materials 16, 1775-1785. 

115. Salem, A. K., Chen, M., Hayden, J., Leong, K. W., and Searson, P. C. (2004) 

Directed Assembly of Multisegment Au/Pt/Au Nanowires, Nano Letters 4, 1163-1165. 

116. Bayraktar, H., Srivastava, S., You, C.-C., Rotello, V. M., and Knapp, M. J. (2008) 

Controlled nanoparticle assembly through protein conformational changes, Soft Matter 4, 

751-756. 

117. Yadav, I., Kumar, S., Aswal, V. K., and Kohlbrecher, J. (2014) Small-angle 

neutron scattering study of differences in phase behavior of silica nanoparticles in the 

presence of lysozyme and bovine serum albumin proteins, Physical Review E 89, 032304. 

118. Shi, L., Carn, F., Boue, F., Mosser, G., and Buhler, E. (2013) Control over the 

electrostatic self-assembly of nanoparticle semiflexible biopolyelectrolyte complexes, 

Soft Matter 9, 5004-5015. 

119. Bharti, B., Meissner, J., and Findenegg, G. H. (2011) Aggregation of Silica 

Nanoparticles Directed by Adsorption of Lysozyme, Langmuir, 2011, 27 (16), pp 9823–

9833 27, 9832-9833. 

 

 



119 
 

120. Kumar, S., Aswal, V. K., and Callow, P. (2014) pH-Dependent Interaction and 

Resultant Structures of Silica Nanoparticles and Lysozyme Protein, Langmuir 30, 1588-

1598. 

121. Blake, C. C., Koenig, D. F., Mair, G. A., North, A. C., Phillips, D. C., and Sarma, 

V. R. (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis 

at 2 Angstrom resolution, Nature 206, 757-761. 

122. Deželić, G., and Kratohvil, J. P. (1960) Determination of size of small particles by 

light scattering. experiments on ludox colloidal silica, Kolloid-Zeitschrift 173, 38-48. 

123. Ball, V., and Ramsden, J. J. (1997) Absence of Surface Exclusion in the First 

Stage of Lysozyme Adsorption Is Driven through Electrostatic Self-Assembly, The 

Journal of Physical Chemistry B 101, 5465-5469. 

124. Daly, S. M., Przybycien, T. M., and Tilton, R. D. (2003) Coverage-Dependent 

Orientation of Lysozyme Adsorbed on Silica, Langmuir 19, 3848-3857. 

125. Hildebrand, N., Köppen, S., Derr, L., Li, K., Koleini, M., Rezwan, K., and 

Colombi Ciacchi, L. (2015) Adsorption Orientation and Binding Motifs of Lysozyme and 

Chymotrypsin on Amorphous Silica, The Journal of Physical Chemistry C 119, 7295-

7307. 

126. Rezwan, K., Meier, L. P., and Gauckler, L. J. (2005) Lysozyme and bovine serum 

albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence 

of positively and negatively charged oxide surface coatings, Biomaterials 26, 4351-4357. 

 

 



120 
 

127. Xu, K., Ouberai, M. M., and Welland, M. E. (2013) A comprehensive study of 

lysozyme adsorption using dual polarization interferometry and quartz crystal 

microbalance with dissipation, Biomaterials 34, 1461-1470. 

128. Eren, N., Jones, O., and Campanella, O. (2015) Changes in the rheology of nano-

structured suspensions by adsorption of the protein α-lactalbumin on the surface of silica 

particles, Rheol Acta, 1-10. 

129. Norde, W., and Favier, J. P. (1992) Structure of adsorbed and desorbed proteins, 

Colloids and Surfaces 64, 87-93. 

130. Greenfield, N. J. (2006) Using circular dichroism spectra to estimate protein 

secondary structure, Nature protocols 1, 2876-2890. 

131. Sreerama, N., and Woody, R. W. (2000) Estimation of protein secondary structure 

from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR 

methods with an expanded reference set, Analytical Biochemistry 287, 252-260. 

132. Whitmore, L., and Wallace, B. A. (2008) Protein secondary structure analyses 

from circular dichroism spectroscopy: Methods and reference databases, Biopolymers 89, 

392-400. 

133. Velazquez-Campoy, A., and Freire, E. (2006) Isothermal titration calorimetry to 

determine association constants for high-affinity ligands, Nat. Protocols 1, 186-191. 

134. Turci, F., Ghibaudi, E., Colonna, M., Boscolo, B., Fenoglio, I., and Fubini, B. 

(2010) An Integrated Approach to the Study of the Interaction between Proteins and 

Nanoparticles, Langmuir 26, 8336-8346. 

 

 



121 
 

135. Felsovalyi, F., Mangiagalli, P., Bureau, C., Kumar, S. K., and Banta, S. (2011) 

Reversibility of the Adsorption of Lysozyme on Silica, Langmuir 27, 11873-11882. 

136. Czeslik, C., and Winter, R. (2001) Effect of temperature on the conformation of 

lysozyme adsorbed to silica particles, Physical Chemistry Chemical Physics 3, 235-239. 

137. Sethuraman, A., Vedantham, G., Imoto, T., Przybycien, T., and Belfort, G. (2004) 

Protein unfolding at interfaces: Slow dynamics of α-helix to β-sheet transition, Proteins: 

Structure, Function, and Bioinformatics 56, 669-678. 

138. Kabsch, W., and Sander, C. (1983) Dictionary of Protein Secondary Structure - 

Pattern-Recognition of Hydrogen-Bonded and Geometrical Features, Biopolymers 22, 

2577-2637. 

139. Boczkowska, M., Rebowski, G., Kast, D. J., and Dominguez, R. (2014) Structural 

analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs, 

Nat Commun 5. 

140. De, M., Miranda, O. R., Rana, S., and Rotello, V. M. (2009) Size and geometry 

dependent protein-nanoparticle self-assembly, Chemical Communications, 2157-2159. 

141. De, M., You, C.-C., Srivastava, S., and Rotello, V. M. (2007) Biomimetic 

Interactions of Proteins with Functionalized Nanoparticles:  A Thermodynamic Study, 

Journal of the American Chemical Society 129, 10747-10753. 

142. McGuire, J. (2014) Building a working understanding of protein adsorption with 

model systems and serendipity, Colloids and Surfaces B: Biointerfaces 124, 38-48. 

 

 



122 
 

143. Rabe, M., Verdes, D., and Seeger, S. (2011) Understanding protein adsorption 

phenomena at solid surfaces, Advances in Colloid and Interface Science 162, 87-106. 

 

 

 



 

 

 

 

 

 

 

 

 

APPENDIX

 

 



123 
 

APPENDIX 

 

Figure A-1α-lactalbumin structure, PDB:1a4v is visualized with Chimera 

 

Figure A-2Lysozyme structure, PDB: 4RLM was visualized with Chimera

 

 



124 
 

 
Figure A-3Different CD Deconvolution Algorithms 
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Surface Coverage Calculations for Protein Adsorption 
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Table A-1Experimental design for ITC mimic adsorption test 

 Reference Injection 

 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 

 Inoculation Time 

Tube 0 5 10 15 20 25 30 35 40 45 

1 S1          

2  S2         

3   S3        

4    S4       

5     S5      

6      S6     

7       S7    

8        S8   

9         S9  

10          S10 
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Figure A-4 Example of BCA assay internal standard curve for Lysozyme 

 

Figure A-5ITC data master curve. Each color represents a different initial mole ratio of 
Lysozyme and Silica. 
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