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ABSTRACT 

Berdanier, Reid Adam. Ph.D., Purdue University, August 2015. An Experimental 
Characterization of Tip Leakage Flows and Corresponding Effects on Multistage 
Compressor Performance. Major Professor: Dr. Nicole L. Key, School of Mechanical 
Engineering. 
 
 
 The effect of rotor tip clearances in turbomachinery applications has been a 

primary research interest for nearly 80 years. Over that time, studies have shown 

increased tip clearance in axial flow compressors typically has a detrimental effect on 

overall pressure rise capability, isentropic efficiency, and stall margin. With modern 

engine designs trending toward decreased core sizes to increase propulsive efficiency (by 

increasing bypass ratio) or additional compression stages to increase thermal efficiency 

by increasing the overall pressure ratio, blade heights in the rear stages of the high 

pressure compressor are expected to decrease. These rear stages typically feature smaller 

blade aspect ratios, for which endwall flows are more important, and the rotor tip 

clearance height represents a larger fraction of blade span. As a result, data sets collected 

with large relative rotor tip clearance heights are necessary to facilitate these future small 

core design goals. 

 This research seeks to characterize rotor tip leakage flows for three tip clearance 

heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a 

percentage of overall annulus height). The multistage environment of this compressor 
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provides the unique opportunity to examine tip leakage flow effects due to stage 

matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage 

flow effects which develop as a result of these interactions are absent for previous studies 

which have been conducted using single-stage machines or isolated rotors. 

 A series of compressor performance maps comprise points at four corrected 

speeds for each of the three rotor tip clearance heights. Steady total pressure and total 

temperature measurements highlight the effects of tip leakage flows on radial profiles and 

wake shapes throughout the compressor. These data also evaluate tip clearance effects on 

efficiency, stall margin, and peak pressure rise capability. An emphasis of measurements 

collected at these part-speed and off-design conditions provides a unique data set for 

calibrating computational models and predictive algorithms. Further investigations with 

detailed steady total pressure traverses provide additional insight to tip leakage flow 

effects on stator performance. 

 A series of data on the 100% corrected speedline further characterize the tip 

leakage flow using time-resolved measurements from a combination of instrumentation 

techniques. An array of high-frequency-response piezoresistive pressure transducers 

installed over the rotors allows quantification of tip leakage flow trajectories. These data, 

along with measurements from a fast-response total pressure probe downstream of the 

rotors, evaluate the development of tip leakage flows and assess the corresponding effects 

of upstream stator wakes. Finally, thermal anemometry measurements collected using the 

single slanted hot-wire technique evaluate three-dimensional velocity components 

throughout the compressor. These data facilitate calculations of several flow metrics, 

including a blockage parameter and phase-locked streamwise vorticity.  
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CHAPTER 1: INTRODUCTION 

1.1. Motivation 

 Rising fuel costs and environmental concerns are continuing to drive gas turbine 

engine development toward increased overall efficiency and decreased fuel burn. 

However, achieving these goals will likely lead to smaller gas turbine engine cores for 

two reasons. First, improvements in materials and cooling schemes allow increased 

turbine inlet temperatures and, thus, increased overall pressure ratios (OPR) that will 

allow for higher thermal efficiencies. For a given engine size, an increased OPR is most 

easily accommodated through added compression stages. Second, larger bypass ratios 

lead to increased propulsive efficiencies in turbofan engines. For large aircraft, current 

under-wing engine mounting arrangements are limited in their ability to accommodate 

larger fan diameters. For small aircraft, the nacelle is already a significant contributor to 

overall aircraft drag and an increased fan diameter could have an overall negative effect. 

As these limits for the outer diameter of a turbofan are encountered, designers are turning 

their attention to reducing the size of the core as a means for increasing the bypass ratio. 

Both of these driving factors result in smaller blading, especially in the rear stages of a 

high-pressure compressor (HPC). 

As engine cores become smaller, the flow path area decreases, and the losses in 

the endwall regions become more significant as they constitute a larger percentage of the 
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total flow field. Additionally, tip clearances will not scale with the decreased blade size 

because of manufacturing tolerances and the margin needed for transient operation and 

thermal growth. As a result, a smaller core leads to rotor tip clearance heights which are 

large relative to the blade size. A larger relative tip clearance height leads to increased 

blockage due to the associated tip leakage flows, as well as potential issues with stage 

matching at off-design operating conditions. Previous research has suggested an increase 

of tip clearance-to-span ratio causes decreased efficiency and pressure rise capability. 

Similarly, the ratio of clearance-to-chord may also increase, leading to a decrease in stall 

margin. Thus, small blade heights with increased relative clearances are expected to have 

a detrimental impact on HPC efficiency and operability. 

 However, these concerns with large tip clearance heights relative to blade size are 

not specific to new engine designs. Existing engine designs are also subject to these 

potential performance detriments as in-service deterioration results in larger clearances in 

compressors. The development of design technologies that are desensitized to large tip 

clearances would provide the ability to avoid the penalties of reduced stall margin and 

reduced efficiency typically associated with in-service deterioration. Ultimately, the flow 

physics of these tip leakage flows must be better understood in a multistage environment 

to generate these new technologies – an understanding which must extend beyond the 

design point to also improve off-design compressor performance. 

 

1.2. Tip Leakage Flows 

The presence of a rotor tip clearance creates an opportunity for interaction 

between the high-pressure “pressure” side and low-pressure “suction” side of the airfoil 
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at the blade tip. This pressure difference leads to a pressure-driven flow through the 

clearance gap at the rotor tip. The pressure-driven fluid interacts with the bulk flow in the 

adjacent passage, which can lead to the formation of a shear layer and the roll up of a 

vortex sheet (Storer and Cumpsty, 1994; Chen, 1991). Although, recent research suggests 

that the structure which has often been identified by the tip leakage vortex may be 

instantaneously represented by vortex fragments instead of a coherent vortex structure 

(Tan et al., 2014). Once ensemble-averaged, these fragments may combine to form the 

region of high vorticity which is often identified as the tip leakage vortex. Nonetheless, 

the development of this tip leakage “vortex” identified by previous authors is analogous 

to the blade tip vortex which develops at the end of aircraft wings; however, the relative 

motion of the rotor blade with respect to the adjacent wall in a compressor creates a 

shear-driven component of the flow in addition to the pressure-driven component (Rains, 

1954; Gbadebo et al., 2006). 

 Studies of tip clearances on the order of 3% or less are primarily present in 

literature since these values represent the variation of a typical design clearance under 

rapid throttle changes in an aircraft engine (Freeman, 1985). Experimental data 

corresponding to large tip clearance heights (e.g., larger than 3% relative to blade span) 

are less prevalent in the literature, but are particularly important for advancing product 

development toward smaller core sizes. Of note, Williams et al. (2010) used a cascade to 

investigate very large tip clearances up to 6% of annulus height, which is representative 

for the HPC stages of industrial gas turbines. As expected, losses increased with 

increasing tip clearance, however, losses leveled off for clearances larger than 4% 

annulus height. The authors hypothesized that for large tip clearances, the effect of the 
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endwall became less important, and the flow through the tip gap behaved more like that 

of a wing tip vortex since the casing had less impact on the leakage flow. 

 Although the understanding of tip leakage flow effects in the context of a full-

scale gas turbine is important, several fundamental studies have led to a number of 

valuable conclusions about the basic flow features of tip leakage flows. Of note, the point 

of inception for the tip leakage flow has been observed by several authors to move along 

the chord from the leading edge to approximately mid-span (Herzig and Hansen, 1955; 

Hunter and Cumpsty, 1982; Crook et al., 1993); however, the determining factor for this 

point of inception appears to be the location of maximum loading for the blade tip, which 

is often heavily dependent on the blade design family. 

 Further research has assessed the effects of the tip leakage flow trajectory. In 

some cases, the tip leakage flow may convect across the blade passage at a high trajectory 

angle and pass through the tip clearance of the adjacent blade (Khalsa, 1996). In this case, 

the low pressure fluid contained in the tip leakage flow faces potentially compounding 

loss as it passes through the second clearance gap. Understandably, the presence or 

absence of this effect is heavily-dependent on the loading of the blade row through its 

effect on the trajectory of the leakage flow and the solidity of the blade row (Dickens and 

Day, 2011). 

 

1.3. Influence of Tip Clearance on Overall Compressor Performance 

 Past studies have analyzed the effect of tip clearance heights on the order of 1 to 3% 

relative to blade span. Many of the early tip clearance studies were aimed at studying 

cavitation for axial-flow pumps (Rains, 1954; Williams, 1960), but there are also some 
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early discussions of tip clearance effects on compressors for gas turbine engines (e.g., 

Jefferson and Turner, 1958). A review of these early studies is given by Reeder (1968) 

and Peacock (1982, 1983). 

Wisler (1985a) and Freeman (1985) give a thorough overview of the tip clearance 

effects for multistage gas turbine compressors. Using experimental data from a four-stage 

low-speed research compressor, Wisler suggests the compressor will face a peak 

efficiency penalty on the order of 1.5 points for a 1.4% increase of tip clearance height 

(Wisler, 1985a; 1985b), and similar predictions can be made relating to the penalties for 

stall margin and peak pressure rise. However, Freeman (1985) emphasizes the inability to 

completely predict the specific impact on a multistage machine since it depends strongly 

on the detailed design of the compressor and the stage matching parameters. 

To date, much of the compressor performance research analyzing tip clearance 

effects has focused on single-stage machines or isolated rotors (e.g., Ruden, 1944; Hutton, 

1956; Moore and Osborne, 1977; Inoue at al., 1986; McDougall, 1990; Goto, 1992). A 

review of the specifics for some of these earlier facilities is provided by Moyle (1991). 

The utility of results from such experimental arrangements comes from the ability to 

isolate the results from one particular flow effect without the contributions from other 

sources. A prime example of this would be the effect of rotor tip leakage flows due to an 

upstream stator row. However, experimental measurements in an embedded stage with 

propagating upstream effects yield results which are more applicable to a true engine 

component.  

Many of the multistage compressor research studies (e.g., Wisler, 1985b; 

Jefferson and Turner, 1958; Lindsey, 1949; Koch, 1981; Freeman, 1985) do not include 
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compressibility effects related to high-speed machines, incorporated limited 

instrumentation for inter-stage observations, or lack the stage-to-stage interactions which 

exist with non-repeating stages. With few exceptions (e.g., Tschirner et al., 2006), more 

recent results collected in multistage compressors have typically focused primarily on the 

unsteady flow phenomena of the tip leakage flow rather than its effect on overall 

compressor performance (e.g., Niehuis et al., 2003; Ernst et al., 2011). 

A primary focus for earlier studies centered on analyzing effects of efficiency, 

pressure rise, and stall margin due to increased rotor tip clearance. Although some 

authors have suggested the existence of an optimal clearance height which could lead to 

peak efficiency (Hutton, 1956; Spencer, 1956; Wennerstrom, 1984), the very small tip 

clearance required to achieve an optimum is typically impractical for real machines. Thus, 

many studies analyzing larger clearance heights have shown a decrease of efficiency with 

increased clearance height (Ruden, 1944; Williams, 1960; Wisler, 1985b). Based on the 

existing literature, there is general agreement toward the observation that an increase of 

rotor tip clearance leads to a decrease of overall total pressure rise capability and work 

coefficient, as well as operability range (stall margin). The extent of these observed 

effects, though, may be dependent upon the aerodynamic loading and the design of the 

blade itself. 

 

1.4. Rotor Tip Clearance Flow Measurements 

 Time-Resolved Over-Rotor Static Pressures 1.4.1.

 The application of piezoresistive pressure transducers in compressor research 

provides the ability to track the fluctuating characteristics of the tip leakage flow and 
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other flow features associated with the rotor passing. As technological advances continue 

to drive the reduction in size and cost of these sensors, the quality of data measured from 

this technique is also continuously advancing. Several authors (e.g., Inoue, 1989; Moyle, 

1996; Yoon, 2006; Weichert, 2011) have used these piezoresistive sensors in surface-

mounted arrays over the rotor to track the motion of the tip leakage flow in the axial-

circumferential plane using measured wall static pressures. In particular, the unsteadiness 

of the measurements represented by the root-mean squared (RMS) with respect to the 

phase-locked ensemble average pressure can be a useful technique to determine the 

leakage flow trajectory. 

From these studies, some conclusions have been drawn regarding the trajectory of 

the tip clearance as it relates to tip clearance height and/or proximity to the stall point 

(Inoue, 1989; Chen, 1991; Yoon, 2006). However, these conclusions are not in agreement 

from all authors, therefore suggesting that fundamental differences related to the detailed 

design and operation of each specific compressor are likely in effect. Of note, Yoon 

(2006) observes and discusses a change in direction of the tip leakage flow trajectory near 

mid-chord when the tip leakage flow turns sharply in the circumferential direction. Chen 

(1991) theoretically predicts this non-linear trajectory only after the leakage flow has 

exited the rear of the blade passage, where the image vortices required to satisfy 

kinematic constraints change with the absence of the blade as an effective wall. 

 

 Time-Resolved Total Pressures 1.4.2.

 In addition to the application of piezoresistive pressure measurement devices for 

measuring surface static pressures described above, such devices are also often 



8 

 

implemented in probes that facilitate measurements in radial-circumferential planes 

between adjacent blade rows. These probes have passed through significant refinement 

and advancement over the past decade. A thorough review of the design and application 

of these probes is provided by Kupferschmied et al. (2000), and additional information is 

given by Ainsworth et al. (2000) and Sieverding et al. (2000). Continued development 

and application of these probes for use in unforgiving turbomachinery environments has 

been led primarily by Brouckaert and colleagues (Brouckaert, 2002; Mersinligil et al., 

2011; Sans et al., 2013). 

 The piezoresistive pressure probe method has been applied by several authors 

over the years (e.g., Dunker and Hungenberg, 1980; Prato et al., 2001; Neihuis et al., 

2003; Ernst et al., 2011; Sans et al., 2013). Of these authors, only a few have focused 

specifically on investigating the tip leakage flow in a plane downstream of a rotor (Ernst 

et al., 2011; Sans et al., 2013). As with the surface static pressure measurements, the 

unsteadiness of the measured pressure represented by the RMS with respect to the 

ensemble average can be a useful method for highlighting the unsteady flow features 

present in the tip leakage flow and the rotor wake. Despite the wide application of this 

experimental method, however, there is a lack of literature corresponding to the 

application of this technique for analyzing several different tip clearance heights on the 

same machine. 

 

 Time-Resolved Velocity and Flow Angles 1.4.3.

In addition to the high-frequency-response pressure measurements, the time-

resolved velocity components are particularly valuable for determining the location, 
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extent, and development of the tip leakage flow. Furthermore, flow velocities are a key 

tool for evaluating flow blockage, flow angles are often used as a calibration mechanism 

by comparing experimental data with computational results, and the time-resolved 

information that can be acquired from high-frequency-response sensors can lead to 

important conclusions about forcing functions related to aeromechanics. 

Using thermal anemometry, the flow velocity can be measured, and several 

components of velocity can be determined by measuring several sensors simultaneously. 

Lakshminarayana et al. (1982a, 1982b, 1984) measured multiple velocity components 

and turbulence properties in the tip region downstream of a compressor rotor in a single 

stage orientation, but all tests were performed with one tip clearance. Inoue et al. (1986, 

1989) utilized an isolated rotor to analyze tip leakage flow effects with three velocity 

components for five different clearance heights and employed relative kinetic energy 

defect to identify the tip leakage flow region. Inoue et al. (1986) also provide a definition 

of streamwise vorticity, represented by a projection of the vorticity components onto the 

relative flow direction exiting the rotor passage. 

In addition to multi-component velocity measurements downstream of the 

isolated rotor, Inoue et al. (1989) also obtained hot-wire measurements in the rotor tip 

clearance gap. A similar procedure was developed by Weichert (2011) through the use of 

a miniature hot-wire to measure flow at three radial planes in the clearance gap. 

Goto (1992) used a single slanted hot-wire to measure three velocity components 

for a low-speed single-stage compressor with three tip clearance heights less than or 

equal to 3% chord. Saathoff et al. (2003) used two single-wire sensors simulating an X-
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type probe to measure two velocity components. However, all of these studies lack 

multistage flow effects desirable for application to full-scale gas turbine engines. 

Evaluating compressor flow features in a multistage environment is particularly 

important due to the communication between stages which is not appropriately captured 

in isolated rotor or single stage studies. Previous authors have highlighted rotor-rotor, 

stator-rotor, and stator-stator interactions in other studies, and their influence must also be 

considered for the development of rotor tip leakage flows. 

 

1.5. Influence of Stator Wakes on Rotor Tip Leakage Flows 

Measurements collected in a two-stage high-speed compressor by Ernst et al. 

(2011) have provided valuable insight into the stator-rotor interactions and rotor-rotor 

interactions associated with the tip leakage flow. However, the study was only carried out 

for one tip clearance. Moyle et al. (1996) used casing static pressure measurements with 

two tip clearances in a two-stage compressor, but the clearances evaluated were both less 

than one percent span. Nonetheless, the observations documented by Moyle et al. showed 

an important dependence of the measured wall static pressure traces on the relative 

position of the adjacent stator vanes 

In support of research investigating tip leakage flows, other authors have also 

identified an interaction between the rotor tip leakage flow and wakes from upstream 

stator vanes (Mailach et al., 2008; Lange et al., 2012; Krug et al., 2015; Smith et al., 

2015b). As the rotor passes through the velocity deficit region associated with the stator 

wake, the loading on the rotor momentarily increases. Because the size and location of 

inception of the tip leakage flow is dependent on the blade loading, the periodic changes 
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of loading on the rotor blade due to passing through the stator wake region introduce 

corresponding periodic fluctuations of the tip leakage flow. 

 

1.6. Blockage Effects 

In compressors, blockage represents the reduction of flow area due to the 

existence of low momentum fluid. Suder (1998) outlines the definition of blockage as the 

relationship between the geometric flow area and the effective flow area. The effective 

flow area can be evaluated using a displacement thickness analogy from fundamental 

boundary layer theory. 

Blockage will increase the velocity in the core flow region, thereby reducing the 

work done by the rotor on the core flow. As endwall boundary layers grow at off-design 

operating conditions, stage matching problems may be introduced. However, a lack of 

understanding for this endwall boundary layer growth in multistage axial compressors 

also exists at design conditions and typically forces designers to rely on correlations, as 

explained by Cumpsty (2004). 

The effects of endwall boundary layers in an axial compressor were investigated 

at length by Smith (1970) in the four-stage low-speed research compressor (LSRC) at GE 

Aviation. These data showed that blockage was essentially unchanged across a repeating 

stage, and blockage was a function of tip clearance and loading condition. However, the 

repeating-stage model implemented by Smith is valid for multistage compressors with 

large aspect ratios and relatively small clearances. Furthermore, the repeating stage 

condition was not achieved for an aspect ratio of 1.96, the lowest aspect ratio tested by 

Smith. The rear stages of high pressure core compressors typically have aspect ratios on 
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the order of unity or less. Thus, further information must be collected under these 

conditions to supplement the data published by Smith. 

Data collected by Cumpsty (1986) in a four-stage compressor at lower Reynolds 

numbers showed rotor tip clearance was a critical parameter for determining the endwall 

boundary layer thickness. Khalid et al. (1994, 1999) developed a model to relate tip 

clearance flow to associated downstream blockage in an axial compressor. These authors 

proposed that the total pressure loss in the endwall region resulted from the interaction of 

tip leakage flows and passage flows, and the endwall blockage was correlated with 

aerodynamic loading on the blade. 

Suder (1998) outlines a method for calculating blockage using axial velocity 

measurements. Data analyzed by Suder for an isolated transonic rotor showed that the 

blockage in the endwall region increased with blade loading in agreement with the 

correlation presented by Khalid (1994). The Rotor 37 facility utilized by Suder was 

specifically selected for isolation to avoid interactions from upstream or downstream 

stators. However, these idealized conditions are not representative of the multistage 

environments present in a true gas turbine compressor. 

 

1.7. Computational Validation Using Experimental Data 

The development of computational design tools has led to existing products which 

are fairly accurate at predicting multistage compressor performance for well-behaved 

flows (e.g., at the design point). However, the challenges associated with adequately 

modeling tip leakage flows in turbomachinery are substantial, as discussed by Denton 

(2010). Furthermore, at off-design operating conditions such as part-speed or high 
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loading, these existing design tools are less capable of accurately modeling flow 

blockages due to endwall boundary layers, separated flow regions, and other secondary 

flows. As a result, there is a desire to improve these multistage computational tools for 

predicting off-design conditions which are critical to compressor operability and, 

ultimately, advance the state-of-the-art through compressor designs desensitized to tip 

clearance effects. 

Suder and Celestina (1996) compared computational simulation results to 

experimental data obtained using laser Doppler velocimetry (LDV) in a single stage 

transonic compressor. A comparison of measurements at two loading conditions and two 

speeds (one transonic and one subsonic) were presented for a tip clearance height of 

0.5% span (0.7% chord). At subsonic conditions, Suder and Celestina showed the radial 

influence of the leakage flow represented approximately five times the physical clearance 

(approximately a factor of four less than the extent due to the presence of shocks at 

transonic conditions). 

The experimental data from Suder and Celestina (1996) prompted Van Zante et al. 

(1999) to investigate computational models of the tip leakage flow field focusing on the 

impact of grid topology, the numerical treatment of the tip gap, and their effects on the 

solution. The authors found that gridding the tip gap did not provide any advantages over 

using a simple tip clearance model, but the wall-bounded shear layer was an important 

component to the tip leakage flow, especially when the difference between the relative 

velocities of the leakage jet and casing was large. 

The observations by Van Zante et al. (1999) and further conclusions by Gupta 

et al. (2003) provide a valuable example of how a quality experimental dataset can be 
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used to calibrate CFD models. However, the isolated rotor and single stage environment 

does not capture all of the important flow physics present in a multistage compressor. In 

particular, spanwise mixing and endwall boundary layer development are influenced by 

upstream stages. These, in addition to the tip leakage flow, are major contributors to 

blockage in the endwall region and can lead to stage matching issues (Cumpsty, 2004). 

 

1.8. Research Objectives and Methodology 

Whereas the effect of rotor tip clearance in axial compressors has been 

documented for several decades, a deficiency exists in the open literature for data 

collected in a multistage environment with the presence of appreciable compressibility 

effects. As a result, the primary focus of this work was to characterize the fundamental 

flow physics and the overall performance effects due to increased rotor tip clearance 

heights in a multistage axial compressor. 

Many previous studies of tip clearance sensitivity have implemented two tip 

clearances. For this study, three rotor tip clearances were investigated to assess trends of 

measured parameters with tip clearance which may be non-linear as the tip clearance is 

increased. These clearance sizes (1.5%, 3.0%, and 4.0% as a fraction of overall annulus 

height) were selected to represent the design intent and two larger clearances which may 

be defined as “large” clearances in the context of future HPC designs. 

In this study, overall compressor performance is investigated at four corrected 

speeds for each of the three tip clearance configurations using steady pressure and 

temperature measurements distributed throughout the compressor. Trends for 

performance metrics, including efficiency and stall margin, are evaluated for varying 
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levels of tip clearance. The operating rotor tip clearance heights are measured to allow 

the best comparison of measured results. The stall inception mechanisms are also 

investigated for each of the tip clearance configurations. 

Detailed radial traverses of total pressure at the exit of each stator row provide an 

improved understanding of the tip leakage flow effects in a multistage environment. 

Detailed radial traverses of time-resolved total pressures at the exit of each rotor row are 

measured with a fast-response pressure probe. These data help to quantify the size of the 

leakage flow at different tip clearance heights and loading conditions for each rotor. 

Thermal anemometry is also implemented to evaluate the time-resolved three-

dimensional components of velocity throughout the compressor. These measurements 

facilitate quantifying the effect of the tip leakage flow by calculating a blockage 

parameter and the streamwise vorticity. 

Time-resolved static pressure measurements are collected over the rotor tips for 

all rotors with each of the three tip clearance configurations for up to five loading 

conditions along the 100% corrected speedline using fast-response piezoresistive pressure 

sensors. These time-resolved static pressure measurements, as well as the time-resolved 

total pressures and velocities reveal a profound influence of the upstream stator vane on 

the size and shape of the rotor tip leakage flow. 

Current RANS-based computational tools commonly used in design iterations 

typically struggle with accurate prediction of stage matching, particularly for off-design 

conditions at which regions of separated flow may be significant. To accommodate new 

design goals and reduce such existing computational tool limitations, a specific emphasis 

is focused toward acquisition of several off-design conditions. Ultimately, the data 
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collected for this project represent a unique data set which contributes to build a better 

understanding of the tip leakage flow field and its associated loss mechanisms. These 

data will facilitate future engine design goals leading to smaller blade heights in the rear 

stages of high pressure compressors and aid in the development of new blade designs 

which are desensitized to the performance penalties attributed to rotor tip leakage flows. 

  



17 

 

CHAPTER 2: EXPERIMENTAL METHODS 

2.1. Research Facility 

 Integral Facility Components 2.1.1.

The Purdue University three-stage axial compressor research facility is a 

geometrically-scaled design which models the rear stages of a high-pressure core 

compressor. The facility features engine-representative Reynolds numbers and Mach 

numbers, which makes it a useful vehicle for research at a high technology readiness 

level. Furthermore, the intermediate rotational speed regime and the multistage design of 

the facility create unique opportunities to analyze an “embedded” stage and complex 

multistage flow effects. 

The Purdue three-stage compressor facility features a 6061 aluminum casing and 

all blading is machined from 17-4 stainless steel. The compressor comprises an inlet 

guide vane (IGV) followed by three stages. The inlet guide vane and the three rotor rows 

are double-circular arc (DCA) designs, and the three stator vane rows are NACA 65-

series airfoils. All three of the rotor rows are integrated bladed rotor (IBR) “blisk” 

designs, such that each of the three rotor rows represents one solid piece of material. 

Further, each of the stationary vane rows has been created as a 180-degree monolithic 

segment, with vanes which are fully-shrouded at the inner and outer diameters. Specific 

geometric parameters for the blading in the facility are outlined in Table 2.1. 



18 

 

Each of the stationary vane rows are individually circumferentially indexable for 

up to two full stator vane passages, allowing circumferential flow variations to be 

measured with stationary instrumentation. Each of the vane rows is moved with a pair of 

linear actuators during compressor operation, and precision string potentiometers provide 

feedback control of the vane positions. This two-vane circumferential measurement 

capability was an expansion beyond previous capabilities which was made possible 

through the new compressor casing hardware required for this project. 

Table 2.1: Purdue three-stage compressor airfoil design parameters. 

Blade 
Row 

Camber [º] Stagger [º] Chord [in.] 
 ܿ/ݐ

Airfoils Ma (avg) Re௖ 
10ହ Hub Tip Hub Tip Hub Tip N Type Rel Abs 

IGV -12.3 -14.0 8.2 9.0 2.00 2.00 0.065 44 DCA 0.26 0.26 3.0 

R 44.7 25.8 32.6 47.8 2.46 2.81 0.045 36 DCA 0.46 0.32 7.0 

S1 49.5 48.3 25.6 24.0 2.11 2.11 0.065 44 65 0.35 0.35 4.4 

R2 42.4 24.6 35.4 49.8 2.60 2.96 0.049 33 DCA 0.45 0.31 7.7 

S2 49.7 48.4 26.1 24.6 2.22 2.22 0.065 44 65 0.33 0.33 4.6 

R3 39.5 22.9 38.2 51.8 2.75 3.13 0.051 30 DCA 0.44 0.31 8.4 

S3 62.4 61.2 19.7 18.1 2.35 2.35 0.065 50 65 0.31 0.31 4.8 

  
 

The research compressor is driven from the rear by a 1400 hp AC motor through a 

5:1 speed-increasing gearbox to provide a nominal rotational speed of 5000 rpm at the 

design point. A liquid-cooled variable frequency drive system paired with an encoder on 

the motor drive shaft provides the capability to maintain a compressor operating speed 

within 0.01% of the desired mechanical speed. This capability creates an especially 

unique opportunity to ensure confidence in the repeatability of measurements as they 
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relate to the rotational speed of the machine. In addition to the motor encoder, an optical 

laser tachometer aimed at the high-speed output shaft of the gearbox creates a transistor-

transistor logic (TTL) signal which is used as a once-per-revolution (1/rev) trigger for the 

high-frequency-response data acquisition systems. 

The compressor operates with ambient, unconditioned air as the working fluid. As 

shown in Figure 2.1, the air is first drawn into a large settling chamber before passing 

through a reducing bellmouth into a two foot diameter duct. A long-form Venturi flow 

meter designed in accordance with ASME PTC-19.5 (2004) flow measurement standards 

accurately measures the mass flow rate passing through the compressor. 

 

Figure 2.1: Purdue three-stage axial compressor research facility. 

 

Two Rosemount 3051C high-accuracy pressure transmitters are installed for 

measuring the differential pressure across the Venturi. Because the relative uncertainty of 

the differential pressure measurement is dependent upon the calibration range, the two 
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3051C transmitters were calibrated in different pressure ranges (0 to 5 inH2O and 0 to 8 

inH2O) and are connected via a manifold. These ranges were selected to ensure adequate 

coverage of the entire range of operating conditions (0 to 8 inH2O), while maintaining a 

measurement near the peak efficiency point which utilizes the smallest possible 

measurement uncertainty. Moreover, in the low flow rate measurement range, the pair of 

devices provides a redundant measurement for added confidence. As a complement to the 

differential pressure measurements, a pitot-static pressure probe with an integrated T-type 

thermocouple is installed just upstream of the Venturi meter, and the measurements from 

this probe are used to define the density and other thermodynamic properties required for 

the mass flow rate calculation equations. 

After passing through the Venturi meter, the air continues through an insulated duct 

section that is 11 duct diameters in length. A bullet-nose cone upstream of the 

compressor directs the airflow to the constant annulus flowpath, which is defined by a 

two-inch passage height with a hub-to-tip ratio of 5:6. At the exit of the compressor, a 

sliding-annulus throttle controls the back pressure of the machine, and a scroll collector 

directs the air to an exhaust plane at ambient pressure. Additional specifics defining the 

existing facility layout can be found in Ball (2013), and a thorough discussion of facility 

health monitoring systems is provided by Talalayev (2011). 

 

 Additional Geometry Considerations 2.1.2.

 In addition to the typical geometry parameters prescribed for the Purdue three-

stage compressor flowpath, other pertinent information may be required to accurately 

build a computational model of the machine. Of note, the labyrinth (knife) seal clearances 
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under the stator platforms have been measured as “cold” (static) values: 0.022 in. for the 

IGV, 0.035 in. for Stator 1, 0.037 in. for Stator 2, and 0.024 in. for Stator 3. Operating 

“hot” clearances for these seals have not been measured. Further, all of the stator vanes 

have fillet radii at both inner and outer diameter endwalls of 3/32 in., and the rotor hub 

fillet radii are all 0.150 in. The leading edges of the rotor blades have elliptical shape, and 

the stators have circular leading edges. An average surface roughness of 30-40 μin. has 

been prescribed for all of the internal flowpath surfaces, including the blades. A past 

analysis using an optical scan compared the design intent geometry of the rotor blisks 

with the as-manufactured geometry and confirmed that all measured dimensions are 

within the specified design tolerances of the parts. The rotor tip clearances for each 

defined operating condition have been measured, and the data are presented in this 

document. 

 

 Variable Tip Clearance Hardware 2.1.3.

A series of compressor casing hardware components were required to support the 

tip clearance analyses desired for this project. Three tip clearance configurations were 

used for this study, as outlined by the information in Table 2.2. In each configuration, one 

discrete tip clearance height exists for all three rotor rows (i.e., no combinations of tip 

clearance heights were considered). The first tip clearance configuration (TC1) represents 

the baseline compressor configuration that has been presented by previous investigators 

with this facility. This baseline configuration represents a nominal 1.5% tip clearance 

height as a fraction of overall annulus height. 
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Table 2.2: Tip clearance configurations and design intent clearance heights. 

Configuration 
Nominal Clearance 

Height, ߬ [in] 
Normalized Clearance 

Height, ߬/ܪ (߬/ܿோଶ) [%] 
Tip Clearance 
Representation 

TC1 0.030 1.5 (1.0) Smooth Wall 

TC2 0.060 3.0 (2.0) Casing Recess 

TC3 0.080 4.0 (2.7) Casing Recess 

  
 

As outlined in Table 2.2, the two larger tip clearance configurations (TC2 and 

TC3) were achieved through the use of a casing recess over the rotors. These compressor 

configurations nominally represent 3.0% and 4.0% tip clearance height. Although the 

differences between casing recesses and traditional cropped rotors have been documented 

in the past (Wisler and Beacher, 1989), this geometry is not representative of a typical 

trench since the recess extends as far upstream and downstream of the rotor as possible to 

minimize disturbance to the tip leakage flow. Also, Brossman (2012) showed through 

computational simulation of the Purdue three-stage axial compressor that the overall 

performance and the individual stage performances of a compressor with these types of 

casing recesses – which are introduced as far as possible upstream and downstream of the 

rotor – sufficiently represent the trends of the same machine with a smooth wall and a 

cropped rotor. This, combined with the constraints associated with a cropped rotor study, 

led to the choice of using recessed casings to achieve the two larger clearance 

configurations. 
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Figure 2.2: Compressor tip clearance casing geometry configurations. 

 

 Wisler and Beacher (1989) analyzed traditional trenches, similar to what may 

occur during a tip rub, and they extended 6% pitch upstream and downstream of the 

rotors (analogous to 7% Rotor 1 axial chord for this machine). Instead, the casing 

recesses for this study were designed to extend 40% axial chord upstream and 

downstream of the rotor blade so that the leakage flow would not be affected by the edges 

of the recess. Furthermore, 45 degree chamfers were introduced to ease the transition 

from the 2-inch annulus height of the baseline compressor defined by the stator vanes and 

the increased space over the rotors. The introduction of these angle features facilitates 

grid topology continuity for computational comparison studies. A schematic of the 

geometries for the three compressor tip clearance configurations is shown in Figure 2.2, 

including a comparison with a traditional trench. In addition to the cartoon of the casing 

configurations in Figure 2.2, a photographic example of the casing recess for TC2 is 

shown in Figure 2.3. It is important to note here that a manufacturing error led to the 

removal of the 45 degree ramp from the recess at the upstream side for Rotor 2, as shown 

in Figure 2.4, for both TC2 and TC3. 
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Figure 2.3: Casing recess example photograph (TC2) highlighting 45 degree angles at 
both ends of recess. Flow is from left to right. 

 

 

Figure 2.4: Missing 45 degree ramp upstream of Rotor 2, shown here for TC2. Flow is 
from left to right. 

 

 To ensure that the three separate compressor casings would provide the best 

possible vehicle for tip clearance performance comparisons, the casing designs 

incorporated tight manufacturing tolerances. In addition to preventing the introduction of 

tip clearance non-uniformities for a given casing configuration, these tolerances also 

helped to ensure consistency between the three casings. The most important of these 

tolerances pertained to the inner diameter of the casing over the rotor tips, for which the 

diameter dimension was specified with a tolerance of +0.001/0.000 in., as well as 

geometric tolerances of 0.005 in. for the overall runout and 0.002 in. for the profile shape. 
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These tolerances, as well as all of the other pertinent dimensions, were verified by 

coordinate measuring machine (CMM) inspection processes. 

 

2.2. Steady Compressor Performance 

 Corrected Operating Conditions for Humidity Effects 2.2.1.

 The definition of a compressor operating point is typically “corrected” to standard 

day conditions to ensure consistent measurements with changing inlet conditions and 

comparability with computational simulations. To this end, many facilities operate 

according to classical corrected speed and corrected mass flow rate definitions defined by 

turbomachinery textbooks. However, careful examination of these equations shows that 

they do not appropriate account for the presence of humidity in the air. 

 Existing compressor test codes and full engine analyses discuss the importance of 

humidity, and some suggest the use of conditioned or refrigerated air to avoid the 

potentially negative humidity effects (NACA TN-1138, 1950; Erwin, 1964). Because the 

Purdue three-stage compressor facility does not have the luxury of a conditioned air 

supply, a method of appropriately accounting for the presence of humidity is required. 

 Analysis of the derivation process leading to the classical equations defining 

corrected speed and corrected mass flow rate for a compressor highlights the assumptions 

of a thermally- and calorically-perfect gas which are not appropriate for a humid air 

mixture. Ultimately, an alternate presentation of these same equations has been derived to 

circumvent the need for perfect gas assumptions. These alternate equations utilize 

stagnation speed of sound and stagnation density in place of stagnation temperature and 
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stagnation pressure in the classical equations. By this process, the corrected rotational 

speed is determined by 

 ௖ܰ ൌ
mܰech

ܽ௢,act ܽ௢,ref⁄
		, (2.1)

and the corrected mass flow rate is determined by 

 ሶ݉ ௖ ൌ ሶ݉ act ቆ
ܽ௢,ref	௔,refߩ

ܽ௢,act	௔,actߩ
ቇ	. (2.2)

 A formal derivation of these definitions for humid air considerations is available 

in Berdanier et al. (2015). The results of this study showed that air conditions which are 

realizable in the hot and humid midwest United States summers can lead to a 

miscalculation of required mechanical speed on the order of 0.5% and actual mass flow 

rate on the order of 1.0%. Even for the intermediate-speed class of compressors 

encompassing the Purdue three-stage compressor, these effects are well within the 

measurement capabilities of existing instrumentation. Specifically, a comparison of the 

results using the classical equations for corrected conditions and the alternate 

representations of the equations is shown by the humidity zone identified in Figure 2.5. 
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Figure 2.5: Humidity effects on measured compressor performance for a hot humid day 
in the context of the 100% corrected speedlines for the three tip clearance heights 

presented in this study. 

 

 Figure 2.5 reveals that research facilities which operate with unconditioned 

ambient air (such as the Purdue three-stage compressor) must carefully consider humidity 

effects for correcting operating conditions, particularly when measuring small-scale 

performance changes or attempting to compare results at the same operating condition 

across several seasons of the year. The desired deliverables of this project match both of 

these requirements, and therefore, further emphasize the importance of humid air 

considerations for this project. 

 

 Holistic Performance Measurements 2.2.2.

 For the Purdue three-stage compressor, the conditions used to calculate the 

corrected speed and corrected mass flow rate are measured at the Aerodynamic Interface 
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Plane (AIP), denoted by axial position zero in the flowpath shown in Figure 2.6. At this 

upstream inlet plane of the compressor, the 50% span measurements from a seven-

element total pressure rake and a seven-element total temperature rake are used to 

calculate bulk one-dimensional flow parameters. The amount of moisture in the air is 

determined by an Omega HX94 thermo-hygrometer located near the inlet of the 

compressor, capable of measuring relative humidity with an uncertainty of ±2%. These 

measured parameters are used as inputs with the REFPROP thermodynamic equation 

program (Lemmon et al., 2013) to calculate the pertinent stagnation speed of sound and 

stagnation density required for Equations (2.1) and (2.2). 

 

Figure 2.6: Purdue three-stage compressor facility flowpath cross section. 

 

 In addition to the seven-element total pressure and total temperature rakes 

installed at the AIP, 13 circumferentially-distributed static pressure taps evaluate the 

static pressure for this upstream inlet plane at the outer diameter of the flowpath. Great 

care has been incorporated to ensure circumferential uniformity of the pressures and 

temperatures at the inlet of the compressor, as measured by Ball (2013). 

 Referring again to the flowpath in Figure 2.6, the exit plane of the compressor 

(axial position 9) is also defined by a set of seven-element total pressure and total 

temperature rakes and one static pressure measurement. Separate from these upstream 
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and downstream locations, additional seven-element total pressure and total temperature 

rakes are available at each of the axial positions labeled 1 through 8. Static pressures at 

these axial positions are evaluated by four circumferentially-distributed static pressure 

taps on the casing. The combination of these measurements at positions 1 through 9 

provide the opportunity to define overall compressor performance and relative 

performance of each individual blade row or each stage. The radial position of the 

measurement locations for the seven-element pressure and temperature rakes at each 

axial position 0 through 9 are provided in Table 2.3. 

Table 2.3: Radial distributions of rake measurement locations. 

Ax. Pos.  Total Pressure [% annulus height]  Total Temp. [% annulus height] 

0  12 20 30 40 60 80 88  12 20 35 50 70 80 88 

1 – 8  12 20 35 50 70 80 88  12 20 35 50 70 80 88 

9  12 20 35 50 65 80 88  12 20 30 50 70 80 88 

  
 

 The axial location of the stations labeled in Figure 2.6 is halfway between the 

blade rows based on the mid-span geometry. The centerline of the rake coincides with the 

location of the axial measurement plane. The recovery factor for both the total pressure 

and total temperature rakes (as provided by the manufacturer) is equal to one, with three 

significant digits, for an angular acceptance range of ±30 degrees. The rakes are aligned 

with a representative mean flow angle, but this angular acceptance facilitates accurate 

measurements at off-design operating conditions. 
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 Because the recessed casing geometry design (Figure 2.2) extends to the farthest 

axial extent, when the rakes are inserted with the TC2 or TC3 casing hardware, they are 

positioned within the tip clearance recess area. For this study, the rakes were radially 

positioned such that the measurement positions defined in Table 2.3 are consistent with 

the annulus height of the stator vanes (which are geometrically unaffected by the casing 

recesses). These rake positions are shown graphically in Figure 2.7, such that the outer 

edge of the rake was aligned with the 100% annulus height location, regardless of the tip 

clearance configuration (i.e., whether or not a casing recess was present). By this method, 

the detailed measurements collected at these same axial positions extend to 101.5% or 

102.5% annulus height for the TC2 and TC3 tip clearance configurations, respectively. 

Based on this definition for Figure 2.7, the area-averaged weightings for the 88% rake 

positions are also varied for the three tip clearances to account for the changing flow area. 

 

 

Figure 2.7: Rake positions for different tip clearance configurations. 
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 The new variable tip clearance hardware for this project expanded the capabilities 

of the facility to accommodate measurement rake insertion at three or five circumferential 

positions (specifically for measurement plane 6, at the exit of the embedded second stage) 

for each of the positions 1 through 8 in Figure 2.6. These same rake insertion positions 

also function as locations for the installation of L.C. Smith precision probe positioners for 

detailed measurement traverses with a variety of instrumentation technologies. 

 In addition to the flow measurements, a series of surface-mounted thermocouples 

are installed on the outer part of the casing over each blade row to yield an axial 

temperature distribution. These measurements facilitate CFD analyses implementing 

alternate boundary condition methods, such as the isothermal boundary condition 

presented by Bruna and Turner (2013) for Rotor 37, instead of the more common, but 

significantly simplified, adiabatic boundary condition. Because the data collected from 

this experimental study are expected to aid in the development and calibration of 

computational models, it is important that these temperatures are collected with the 

aerodynamic performance data to appropriately define the system boundary conditions. 

 The total and static pressures for the facility are measured using Scanivalve 3217 

and 3016 Digital Sensor Array (DSA) pressure scanner modules, each containing 16 

temperature-compensated piezoresistive pressure sensors. Depending on the requirements 

of the specific measurement, the DSA channels are rated for differential pressure ranges 

of 1 psid, 2.5 psid, 5 psid, or 15 psid. These devices have been selected for their long-

term accuracy ratings of 0.12% FS, 0.12% FS, 0.05% FS, and 0.05%FS, respectively. 

Thermal measurement drifts from these devices are prevented through regular procedures 

for an on-line zero calibration prior to and during compressor operation (typically every 
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20 minutes). The differential pressures are referred to an atmospheric reference pressure 

which is separately measured using a high-accuracy Setra 270 barometric pressure sensor 

with a range of 800-1100 mbar and an accuracy of 0.03% FS. 

 The temperatures for the facility are evaluated using T-type thermocouples paired 

with special limits of error (SLE) extension wire. A Keysight Technologies 34980A 

integrating voltmeter paired with 34921A/T modules and terminal blocks accommodates 

the measurement of these thermocouple channels. To achieve significantly reduced 

uncertainty contributions to the temperature measurements, Keysight Y1138A extension 

cables separate the terminal blocks from the measurement modules, and a 10 kΩ 

thermistor with an interchangeability of ±0.18 ºR provides the reference temperature for 

the isothermal terminal block. The temperature data reported for this study have been 

evaluated by an arithmetic mean of five independent measurements, each of which 

represents a thermocouple voltage measurement integrated over five power line cycles. 

 Through the use of a liquid calibration bath, the measurement chain for each of 

the temperature rake measurement channels was evaluated. By incorporating a high-

accuracy thermistor as a reference measurement in the same calibration bath, the overall 

uncertainty of each individual channel was determined. These calibration results show an 

overall uncertainty typically less than 0.45 ºR. This value represents a conservative all-

inclusive uncertainty for all temperature channels and all ranges of measured 

temperatures. However, the repeatability of the temperature measurements is an order of 

magnitude less than this value.  
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 Isentropic Compressor Efficiency 2.2.3.

 For this study, the isentropic compressor efficiency will be evaluated using the 

formal definition, 

ߟ  ൌ
݄௢ଶ௦ െ ݄௢ଵ
݄௢ଶ െ ݄௢ଵ

	, (2.3)

as a function of stagnation enthalpies. Alternatively, a perfect gas assumption allows a 

simplification of isentropic efficiency, 

ߟ  ൌ
TPRሺሺఊିଵሻ ఊ⁄ ሻ െ 1

TTR െ 1
	, (2.4)

which appears to be preferable due to its definition as a function of measured properties – 

total pressures and temperatures appearing in the total pressure ratio (TPR) and total 

temperature ratio (TTR). However, following an effort to minimize perfect gas 

simplifications, there is an inherent complication with the use of Equation (2.4), as 

discussed by Lou et al. (2013) and continued by Berdanier et al. (2015). Specifically, Lou 

et al. (2013) showed that the isentropic efficiency is always over-predicted when using 

Equation (2.4). This over-prediction may be less than 1 efficiency point for an overall 

TPR of 1.3, but it increases to over 5 efficiency points for a TPR on the order of 40 or 

more. The introduction of REFPROP (Lemmon et al., 2013) as an integral component of 

the data processing suite for this study provides the opportunity to calculate isentropic 

efficiency via the definition of the parameter shown in Equation (2.3). As with the 

calculation of corrected parameters introduced above, the use of REFPROP also 

accommodates the inclusion of humidity in the calculation of the stagnation enthalpies 

required to evaluate efficiency. 



34 

 

 Detailed Steady Total Pressure Traverses 2.2.4.

 As described above, the steady compressor pressure rise is defined using a series 

of seven-element total pressure rakes distributed throughout the machine. However, these 

measurements inherently lack spatial resolution and a more thorough distribution of 

measurements closer to the endwalls. Thus, in addition to the total pressure rake 

measurements, a miniature Kiel head total pressure probe (United Sensor KAC-type) was 

traversed in small radial increments downstream of each of the stator vane rows. This 

probe features a 0.063 in. outer diameter Kiel head and was paired with a L.C. Smith 

precision probe positioner to incrementally achieve the desired plunge locations with 

position feedback. The probe accommodates a yaw and pitch angular acceptance cone of 

greater than ±40 degrees, but the probe was aligned with a representative mean flow 

angle. 

 

2.3. Tip Clearance Measurement System 

 It is well known that static rotor tip clearances – sometimes referred to as “cold” 

clearances – do not typically represent the operating, or “hot” running, clearances. In 

general, thermal growth, pressure forces, and centrifugal effects due to high-speed rotor 

rotation contribute to blade growth and untwist which leads to a change of rotor tip 

clearances at different operating conditions and for different ambient conditions. The 

influence of thermal effects on the compressor casing may also contribute significantly to 

changing rotor tip clearances. As a result, a series of measurements have been collected 

to evaluate the static and operating tip clearances of the Purdue three-stage compressor. 
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 Static Tip Clearance Measurements 2.3.1.

 The static “cold” tip clearances have been evaluated for each of the three tip 

clearance configurations. These measurements were collected by measuring the blade-to-

blade variability (i.e., the run-out of the rotor blade tips) using a fixed dial indicator with 

a rolling tip. The manufacturing tolerances of the rotor blisk show the blade-to-blade 

variability at any fixed location about the circumference of the compressor, as presented 

in Figure 2.8. These blade-to-blade measurements were collected several times to 

calculate the mean values in Figure 2.8. As a result, the uncertainty of the mean value is 

on the order of 1×10-4 in. 

 The concentricity of the rotor with respect to the casing has also been evaluated 

using static tip clearance measurements collected at several positions around the 

circumference of the compressor casing. These measurements have shown for each tip 

clearance configuration that the concentricity of the rotor with respect to the casing is a 

less than 0.003 in. The smallest tip clearances are measured at a position of 345 degrees 

from the top of the compressor, in the direction of rotor rotation, as shown in Figure 2.9. 

The rotor concentricity can be controlled using a set of alignment bolts at both the front 

and rear bearing assemblies, as prescribed by Talaleyev (2011). This concentricity 

control is limited to within 0.008-0.012 in. based on bolt thread pitch. Thus, the measured 

concentricity of the rotor is confirmed to be within the adjustment capabilities of the 

system. 
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Figure 2.8: Blade-to-blade variability of tip clearance height with respect to “Blade 1” for 
all three rotor rows. 

 

 For this study, a facility upgrade included the introduction of a CapaciSense 5-

series frequency modulated (FM) capacitance probe tip clearance measurement system 

(produced by Pentair Thermal Management). The system features nine available channels, 

allowing three probes to be installed for each of the three rotor rows. The three probes are 

equally-spaced circumferentially, 120 degrees apart, at positions of 105 degrees, 225 

degrees, and 345 degrees – all measured from the top of the compressor in the direction 

of rotor rotation (see Figure 2.9). Each of the nine probes was individually calibrated 

using a custom-designed calibration disk which represents the tip geometry of the rotor 

blade through scaling techniques proven by the manufacturer. The probes were all 

calibrated for operation from a rub condition (0 in. clearance) to a maximum 0.2 in. 

clearance height. 
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Figure 2.9: Circumferential capacitance probe measurement locations. 

 

 The electronics chain for the FM tip clearance measurement system has several 

key components. The probes, shown in Figure 2.10(a), were designed and built for 

application in this specific facility; a triaxial cable is permanently attached to the probe 

and provides enhanced rejection of electromagnetic interference. The use of a non-

mineral-insulated cable limits the maximum operating temperature of this system to 

approximately 260 ºC, well above the operating limits of the Purdue three-stage 

compressor. The oscillator, shown in Figure 2.10(b), drives the cable with an oscillating 

voltage (nominally 2 MHz). As the blade passes the probe, the measured capacitance 

modulates the driven frequency from the oscillator. This modulation is sensed by the 

carrier, and the demodulator (Figure 2.10(c)) converts the modulation frequency due to 

the blade passing event to a DC voltage. The DC voltage is correlated to a clearance 

height via the individual channel calibration. This proportionality between measured 

capacitance, frequency modulation, voltage, and tip clearance is the heart of the FM tip 

clearance measurement system. 
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(a) 

 
(b) 

 
(c) 

Figure 2.10: Capacitance tip clearance measurement system components. 
(a) Probe; (b) Oscillator; (c) Demodulator. 

 

 The clearance measurement system is controlled from a set of “Control and 

Processing Module” (CPM) computers operating Slackware 14 Linux. Each of these 

computers utilizes one Advantech PCI-1714UL data acquisition card to sample four of 

the nine channels (three total CPMs). The three CPMs are setup in a master-slave-slave 

configuration communicating via Ethernet, and the master CPM utilizes a manufacturer-

designed graphical user interface (GUI) to configure and operate the entire probe 

measurement chain (including the oscillators and demodulators). The data acquisition 

card is capable of sampling the four analog channels at up to 10 MHz per channel, as well 

as an external trigger which is linked to the 1/rev signal from the laser tachometer for the 

compressor. For the measurements presented in this study, all data were collected using 

the full 10 MHz sampling capability of the data acquisition card. Other specifications for 

the capacitance probe measurement system are listed in Table 2.4.  

 The clearance calculation process provides a blade-by-blade clearance output 

calculated from the peak-to-peak voltage for the typical blade pulse output signal (known 

as the Blade Passing Signal (BPS)). By synchronizing the measured clearances with the 

once-per-revolution trigger from the compressor, these calculated clearances from the 
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BPS output can be traced to known blade numbers. As an alternative to this BPS method, 

the software applies a low-pass filter to the BPS output to create a DC voltage output 

signal which the manufacturer refers to as a “RMS” signal, although it should be noted 

that the low-pass filter mechanism does not represent a true root-mean-square calculation 

procedure. This RMS signal serves as a representative average of the tip clearance for all 

blades measured by a particular probe. 

Table 2.4: Capacitance probe measurements system specifications. 

Parameter Value 

Operating Frequency 2 MHz nominal 

Oscillator Sensitivity 100 kHz per pF 

Demodulator Sensitivity 500 mV per kHz typical 

Measurement Range 0.200 in. calibrated 

System Resolution < 4×10-5 in. (at 0.030 in. clearance) 

Signal-to-Noise Ratio 30-50 typical 

  
 

 Operating Tip Clearance Measurement Uncertainty 2.3.2.

 The manufacturer of the capacitance probe measurement system claims an 

umbrella uncertainty on the measurement system of less than 4×10-4 in. This value is 

based on historical comparisons with other measurement techniques, including laser 

measurements and rub sticks, as well as careful attention to the design, manufacture, and 

calibration processes to ensure minimal uncertainties. However, no formal uncertainty 

analysis had yet been performed to validate this claim, which represents more of a 
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repeatability, or comparability, and does not consider uncertainty contributions from the 

electronics components. 

 To overcome this limitation, an uncertainty analysis was performed based on 

known information about the electronic devices in the system and the calibration data. 

Following a method outlined by Müller et al. (1997) for a similar capacitance probe 

system, the uncertainty of the individual probes was evaluated to be on the order of 

0.001 in. or less over the range of tip clearances investigated for this study. Additional 

information regarding the tip clearance system uncertainty analysis is available in 

Berdanier and Key (2015a). 

 

2.4. Time-Resolved Flow Field Measurements 

 Over-Rotor Static Pressure Measurements 2.4.1.

 Time-resolved static pressures over the rotor tips were measured using a custom-

designed array implementing flush-mounted fast-response pressure transducers. This 

array incorporates 25 Kulite XCS-062 subminiature pressure transducers (having an outer 

diameter of 0.066 in.) with a 5 psig range. These XCS-series transducers feature high-

sensitivity piezoresistive sensing elements, maximizing the resolution of the 

measurements. The sensors were installed with standard B-type screens for protection of 

the sensing elements, but the new sensors were filled with additional silicon material to 

reduce the cavity size behind the screen and allow for the greatest allowable frequency 

response. As a result, a frequency response on the order of 30 kHz is expected for these 

new sensors. 
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 During the design process, a specific effort was made to accommodate all sensors 

in one axial row. Some previous authors have utilized a method of offsetting sensors in 

two or more axial rows, separated by some angle in the pitchwise direction, to 

accommodate more axial resolution (Yoon et al., 2006; Shin et al., 2008; Courtiade and 

Ottavy, 2012). However, such sensor orientations can introduce complications in the 

measurements for multistage machines, as the wakes propagating from upstream stators 

and potential fields from downstream stators may affect the measurements. 

Understandably, this effect can be accounted for if the sensors are moved relative to the 

stator vanes, but it introduces an additional complication to the data acquisition and 

processing procedures. As an alternative, other authors have achieved maximum axial 

resolution by implementing a series of sensors at different axial positions, spaced 

periodically in the circumferential direction with respect to the rotor pitch (Levis, 2006; 

Sans et al., 2013). However, this method could be also be negatively affected by blade-to-

blade non-uniformities, rotor eccentricity, and any associated flow variability. 

 The small diameter of the XCS-062 devices provides the ability to incorporate the 

maximum possible number of sensors in one axial row, thereby increasing the spatial 

resolution of the output results. The sensors are permanently installed in a removable 

block which can be inserted into any one of nine frames. These nine frames represent one 

for each of the three rotor blade rows (R1-R3) and each of the three tip clearance 

configurations (TC1-TC3). The removable sensing block and one of the nine frames are 

shown in Figure 2.11(a). 

 The instrumentation block was designed to maximize the number of sensors 

which can fit within the space defined by the instrumentation access location over 
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Rotor 1, which features the least axial space of the three rotors. Because the same fixed 

sensor locations are implemented for Rotor 2 and Rotor 3, whereas the axial chord of the 

rotors increases slightly moving from Rotor 1 to Rotor 3, the positions of the sensors 

change with respect to the leading and trailing edges of the blades for the three rotor rows. 

These sensor positions are presented for the three rotors in Table 1 as a percentage of 

axial chord. 

Table 2.5: Flush-mounted sensor positions for each rotor as a percentage of axial chord.  

Blade Row 
Minimum Sensor 
Location [%ܿ௫] 

Maximum Sensor 
Location [%ܿ௫] 

Sensor Separation 
[%ܿ௫] 

Rotor 1 -14.0 114.0 5.33 

Rotor 2 -12.8 113.6 5.26 

Rotor 3 -11.9 113.2 5.21 

  
 

 The excitation and amplification for these fast-response pressure sensors were 

provided by a Precision Filters 28000 chassis with four 28118 full bridge amplification 

cards, each of which is capable of managing eight channels for a total of 32 simultaneous 

operating sensors. Each of the channels in the Precision Filters system is independently 

managed through a manufacturer-designed GUI to adjust the DC offset, gain, and on-

board analog filter characteristics. The sensor signals were then digitized using an NI 

PXIe-1073 chassis utilizing two 16-channel PXIe-6358 modules, each capable of 

simultaneous sampling of up to 1.25 MHz per channel, via NI BNC-2110 connector 

blocks. 
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(a) (b) 

Figure 2.11: Over-rotor static pressure measurement system. (a) Removable sensing 
block and frame; (b) Calibration chamber. 

 

 Immediately prior to installation and operation in the compressor, the fast-

response pressure sensors were calibrated in a custom-designed calibration chamber 

(Figure 2.11(b)) by prescribing a known pressure to the device. For each calibration, up 

to 15 data points were prescribed over the full sensing range of 0 to 5 psi. From these 

measurements, a least-squares linear fit was applied to the calibration data with a typical 

R2 value of 1.00000, where R2 represents the coefficient of determination as calculated 

from the residual sum of squares and the total sum of squares. The channels were zeroed 

prior to each calibration and again prior to testing, although thermal compensation and a 

stable measurement system reduce the day-to-day drift of a representative channel to 

1 mV or less over (after amplification), which corresponds to a pressure of less than 

8×10-4 psi. 

 For each rotor and each tip clearance configuration, data were acquired at several 

loading conditions on the 100% corrected speedline. In all cases, 500 revolutions of data 
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were simultaneously sampled, thereby allowing phase-locked ensemble averaging and 

other pertinent statistics to be calculated. 

 

 Total Pressure Measurements at Rotor Exit 2.4.2.

 In addition to the steady total pressures measured at positions downstream of the 

stator vane rows, time-resolved total pressure measurements were also acquired at the 

rotor exit planes. A custom-designed fast-response total pressure probe incorporates a 

Kulite LQ-062 subminiature pressure transducer embedded in a miniature Kiel head with 

a 0.083 in. outer diameter and a 0.067 in. inner diameter (Figure 2.12). The sensor has a 5 

psi maximum range with an electronically sealed gage reference condition. As with the 

surface-mounted pressure sensors described in Section 2.4.1, this transducer also includes 

a standard B-type protective screen, therefore reducing the frequency response of the 

sensor to approximately 20 kHz. A separate pressure chamber designed for this probe 

provided the ability to calibrate the sensor at prescribed intervals over the 0-5 psi, range 

and a least-squares linear fit was applied to the calibration results with an R2 value of 

1.00000. The sensor was balanced with the acquisition of a zero gage pressure reading 

prior to each calibration, and similarly before and after each test. As with the detailed 

steady total pressure measurements, these time-resolved rotor exit total pressures were 

acquired at two loading conditions on the 100% corrected speedline for the smallest and 

largest tip clearance configurations (TC1 and TC3). 
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Figure 2.12: Fast-response total pressure probe. 

 

 Thermal Anemometry 2.4.3.

 Hot-wire anemometry was used for this study to acquire time-resolved velocity 

and flow angle measurements throughout the compressor. For all measurements, a 

Dantec Dynamics StreamLine Pro frame was used with 91C10 constant temperature 

anemometer (CTA) bridges. A computer interfaces with the bridge frame through a PC 

operating the Dantec Dynamics StreamWare software. The sensor voltages output from 

the CTA bridges are digitized using an NI PXIe-1073 chassis through a NI BNC-2110 

connector block and an eight-channel NI PXIe-6356 module. A custom-designed NI 

LabVIEW GUI operates the L.C. Smith precision probe positioner holding the sensor, as 

well as the data acquisition procedures. 

 The hot-wire sensors utilized for this project were calibrated using the hot-wire 

calibration facility in the Purdue Compressor Research Laboratory, which features a low-

turbulence heated jet with three-dimensional directional sensitivity and precision control 

of flow conditions. The facility, shown schematically in Figure 2.13, is fed from a 

reservoir of dry compressed air maintained at a nominal pressure of 300 psig. A digital 

pressure regulator (UP) adjusts the upstream pressure of the system to control the 

velocity via a proportional-integral-derivative (PID) control loop. The flow passes 
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through two in-line flow heaters (H1, H2), and a separate PID control sequence maintains 

the jet temperature to within 0.5 degrees Fahrenheit of the desired set point. The heaters 

ensure that the hot-wire calibration data are acquired at a constant temperature to avoid 

calibration uncertainties due to temperature changes. After flowing through the two 

heaters, the air is diverted around a flow spreader and then passes through a series of 

honeycomb and screens for flow conditioning. A nozzle with a diameter of 1 in. 

accelerates the flow to the desired velocity, which is determined by a combination of 

stagnation plenum pressure and static pressure at the nozzle exit. The system maintains 

the jet exit velocity within 0.2 percent of the desired set point. An attachment to the 

calibration nozzle (Figure 2.14) provides the capability to vary the position of the probe 

with respect to the jet, effectively changing the pitch angle of the flow with respect to the 

probe. Additional information about the calibration jet facility is available from Morrison 

(2013).  

 

 

Figure 2.13: Purdue Compressor Research Laboratory hot-wire calibration facility 
schematic (Morrison, 2013). 
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Figure 2.14: Hot-wire cailibration facility optional three-dimensional calibration feature. 
Adapted from Morrison (2013). 

 

2.4.3.1. Velocity and Flow Angle Measurements 

 The velocity and flow angles throughout the compressor were evaluated for axial 

measurement planes 2 through 8. These data were acquired at two loading conditions on 

the 100% corrected speedline for the two extreme tip clearance configurations (TC1 and 

TC3). These tests were conducted using a Dantec Dynamics 55R02 fiber-film sensor with 

an inclination angle of 45 degrees with respect to the probe support axis. For this sensor, 

the manufacturer specifies a sensing film length of approximately 1.25 mm and a nickel 

film diameter of 70 μm. The selection of the slanted probe for this project provides the 

opportunity to investigate three velocity components, with a particular emphasis on the 

tip leakage flow features. For these measurements, the 55R02 sensor was operated in a 

standard 20:1 CTA bridge mode. In the CTA control software, the overheat ratio (OHR) 

of the bridge was adjusted to the manufacturer-optimized value of 1.8, as defined the 

resistance of the wire, ܴ௪, under heated (“hot”) and ambient (“cold”) conditions: 
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 OHR ൌ
ܴ௪,hot
ܴ௪,cold

	. (2.5)

 The fiber-film sensor technology is offered as an option which provides a more 

robust design than traditional thin wires, thereby reducing susceptibility to damage from 

the high-shear flows present in compressor applications, without the degradation of 

frequency response which is typically observed with traditional film sensors. Throughout 

this document, however, the term ‘wire’ will be used interchangeably to also describe the 

fiber-film sensor. 

 The 55R02 sensor was calibrated over a range of velocities and flow angles, as 

prescribed in Table 2.6. The response of the fiber-film sensor was optimized near the 

upper end of the velocity calibration range (400 ft/s) using a square wave test signal. 

Using this method, the frequency response of the sensor was optimized to be 

approximately 85 kHz – nearly 30 times the blade passing frequency of the rotor blades 

in the desired compressor application. For each test campaign, a calibration was 

performed prior to the data collection, and a separate calibration was performed after the 

completion of the campaign for comparison of measurement drift. The jet temperature for 

these calibrations was always maintained at a constant 100 ºF. 

Table 2.6: Hot-wire calibration matrix.  

Parameter Velocity, ܸ[ft/s Yaw angle, ߙ[deg] Pitch angle, ߶[deg] 

Min. value 100 -90 -20 

Max. value 450 +90 +20 

Increment 50 5 5 
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 To evaluate three components of phase-locked ensemble averaged velocity, a 

minimum of three separate wire positions is required. At each test condition and radial 

plunge position, the sensor was aligned with the approximate mean flow angle, and then 

yawed to the three desired measurement angles using the precision probe positioner. 

Following the procedure outlined by Shin and Hu (1986), the sensor angles used for this 

study were -20 degrees, +20 degrees, and +60 degrees with respect to the null position, as 

defined by the coordinate system in Figure 2.15. 

 

 
 

Figure 2.15: Angular definitions for slanted hot-wire sensor. The long prong is denoted 
by the large circle. 

 

 The measured wire voltages were converted to known velocities and flow angles 

using calibration data with a non-linear solver technique for data reduction. In this case, 

the Joule heating principle and King’s law (1914) are applied to evaluate the voltage-

velocity relationship. Next, a predetermined relationship between Nusselt number and 

Reynolds number proposed by Collis and Williams (1959) accounts for variations of flow 

properties between calibration and test conditions. When required, REFPROP was used 

to calculate thermodynamic properties for use in the non-dimensional Nusselt and 

Reynolds numbers. The effective Reynolds number, Reeff , is determined from the 
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effective velocity, defined as any velocity which does not appear as a normal velocity 

with respect to the wire orientation (i.e., ±90 degrees yaw and 0 degrees pitch). Finally, 

the desired non-linear relationship: 

 

Reeff,௝

Re
ൌ ଴ܥ ൅ ߙ	ଵܥ ൅ ߶	ଶܥ ൅ Re	ଷܥ ൅ ߶	ߙ	ସܥ ൅ Re	ߙ	ହܥ ൅ Re	߶	଺ܥ

൅ ଶߙ	଻ܥ ൅ ଶ߶	଼ܥ ൅  ,	Reଶ	ଽܥ

(2.6)

is developed for ten coefficients ܥ௜  determined from the calibration data, which must 

apply for all three wire orientations, ݆ ൌ 1. .3. This equation is based on the method 

utilized by Schmidt and Okiishi (1976). 

 An example comparison of the non-linear equation fit from Equation (2.6) with 

the discrete calibration points, Figure 2.16, represents this functional relationship for one 

of the calibration sets used in this study at a velocity of 300 ft/s. For this study, the 

slanted wire was found to be asymmetric about the null (zero degrees yaw) position. As a 

result, a separate coefficient set was defined for each half of the curves in Figure 2.16. 

The coefficient fit for the example data in Figure 2.16 has an R2 value greater than 0.98. 

 Once wire voltages are measured in the compressor, the effective Reynolds 

numbers are calculated, and the three equations, Equation (2.6), are solved 

simultaneously using the pre-determined coefficients to calculate the true Reynolds 

number and the flow angles, which are  geometrically related to the pre-defined wire 

positions of -20, +20, and +60 degrees. 
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Figure 2.16: Example slanted hot-wire coefficient fit at 300 ft/s. 

 

2.4.3.2. Thermal Anemometry Uncertainty 

 The uncertainty of the calibration data collected from the Purdue calibration jet 

facility has been evaluated previously by Morrison (2013). To evaluate the accuracy of 

the processing algorithm implemented for the velocity and flow angles measurements, a 

series of data were collected at known wire positions, velocities, and conditions in the 

calibration jet which represent the compressor operating conditions for each test 

campaign. Specifically, the temperature and density of the jet were adjusted to match the 

flow conditions determined from the steady total temperature and total pressure rakes 

(and wall static pressure), as measured simultaneously with the hot-wire. Furthermore, a 

representative velocity was also calculated from these rake measurements to select the 

operating velocity of the calibration jet. Using this method, the accuracy of the 

measurements at each axial measurement position (i.e., Rotor 1 exit, Stator 3 exit, etc.) 

and compressor loading condition was separately identified, Figure 2.17. 
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 The results in Figure 2.17 show that the calculated velocity from the hot-wire 

processing algorithm is a strong function of the operating condition in the compressor, 

whereas the calculated yaw and pitch angles are less dependent on operating conditions. 

An investigation of an alternate processing method (Berdanier and Key, 2015b-c; 

Appendix C) has shown that the velocity can be greatly affected if the conditions of the 

measured flow vary significantly from the calibration conditions. However, the calculated 

flow angles are much less sensitive to these temperature effects due to their greater 

dependence on the geometry of the probe itself. Indeed, analysis of the results in Figure 

2.17 shows that the test conditions which yield the most significant velocity difference 

are the same conditions for which the temperature at the wire location was most different 

from the calibration temperature. In the same manner, the test conditions which show the 

least difference (closest to zero) are those for which the temperature at the location of the 

wire in the compressor was nearly identical to the calibration temperature. For reference, 

in this figure, the velocity difference on the order of -60 ft/s is representative of a 

temperature 40 ºF lower than calibration conditions, and the velocity difference on the 

order of +20 ft/s is representative of a temperature 30 ºF higher than calibration 

conditions. 
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Figure 2.17: Approximate accuracy of hot-wire processing algorithm for test-
representative conditions at several known flow angles. 

 

 Although the velocity errors shown in Figure 2.17 appear significant, they are 

predictable and trend linearly with the temperature difference, Δ ௢ܶ: 

 Δ ௢ܶ ൌ ௢ܶ,test െ ௢ܶ,cal	. (2.7)

This linear relationship between velocity error and temperature difference is shown in 

Figure 2.18. As a result, the velocities are easily adjusted to reduce velocity error less 

than 15 ft/s (within approximately 5% relative error) at all test conditions. 
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Figure 2.18: Trend of velocity error with temperature 
difference for velocity adjustment. 

 

 The reason for the velocity discrepancy outlined in Figure 2.17 and Figure 2.18 is 

related to the correction proposed by Collis and Williams (1959). Previous studies have 

shown that the Collis and Williams correction relating the Nusselt number and the 

Reynolds number deviates for Mach numbers above approximately 0.3 (Shin, 2015). In 

these cases, compressibility effects begin to become more significant for the hot-wire 

measurements. Referring again to the results in Figure 2.17, the rotor exit measurements 

are the locations at which the absolute flow velocity is expected to be the largest (due to 

the diffusion of flow in the relative reference frame causing acceleration in the absolute 

reference frame). Furthermore, as the temperature decreases, the Mach number will 

increase. As a result, the measurements at Rotor 1 exit for TC1 at NL with a velocity 

difference on the order of -60 ft/s represent a Mach number on the order of 0.35. All of 

the tested conditions in Figure 2.17 with a velocity difference beyond approximately ±25 

ft/s represent flow conditions with an average Mach number greater than or equal to 0.30. 
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 This processing method of solving a set of non-linear equations represents the 

most accurate of two methods evaluated for these data. The other method implemented a 

look-up table approach, for which the temperature and density variations are 

independently accounted using known relationships, as discussed by Berdanier and Key 

(2015b-c). 

 Aside from developing new relationships to accommodate temperature variations 

with compressibility considerations, future hot-wire measurements such as these may 

benefit from a more controlled selection of inlet conditions which more closely resemble 

calibration conditions, or several calibration sets for different temperature ranges. 

However, neither of these recommendations is particularly advantageous: (i) A judicious 

selection of compressor operating conditions comparable to calibration conditions can 

only be achieved with temperature-controlled compressor inlet conditions. This is 

especially true for test campaigns which span several days in the midwest United States, 

where weather patterns can be particularly difficult to predict. (ii) Extended calibration 

time poses an increased potential to experience a broken sensor. The fragility of hot-wire 

sensors makes them particularly prone to breakage, and additional operating time (in a 

calibration jet, for example) greatly increases this potential for failure. 

 To further evaluate the robustness of the hot-wire calibration and processing 

algorithm, two separate calibration data sets (one before the test campaign and another 

after the test campaign, each approximately one week apart) were used to process the 

same experimentally-collected data. Specifically, data collected at the exit of Stator 1 for 

TC1 at two loading conditions were processed using the two sets of coefficients 

(Equation (2.6)). This axial measurement position at Stator 1 exit was selected because it 
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represents a data set which was collected with approximately equal time between the pre-

calibration an the post-calibration data (about four days between the collected data and 

either calibration). The results from this comparison, Figure 2.19, show the differences 

between the results processed with the two calibrations are much smaller than the 

differences which may be observed due to operating temperature and density changes, as 

shown in Figure 2.17. For the nominal loading (NL) condition in Figure 2.19, the 

velocities show a constant offset between the two calibrations. The yaw angles are least 

affected in the wake region, but the pitch angles show the most difference in the wake 

region. Separately for the high loading (HL) operating condition, the velocities show little 

effect in the wake region, with a more noticeable change for the undisturbed mean flow. 

At this same HL condition, the yaw and pitch angles in the mean flow are largely 

unchanged, but the flow angles in the wake region are most different. The average 

differences across one vane pitch from Figure 2.19 are summarized in Table 2.7. 

Table 2.7: Average differences across one stator pitch for data processed with two 
calibration sets. Data collected at Stator 1 exit for TC1.  

Loading ∆ሺܸ/ ௧ܷሻ [%] ∆ܸ [ft/s] ∆ߙ [deg] ∆߶ [deg] 

NL 2.0 10.3 0.9 0.4 

HL 1.7 9.0 0.7 0.1 
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Figure 2.19: Processed hot-wire data at Stator 1 exit for TC1 using two separate calibrations. 
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CHAPTER 3: STEADY COMPRESSOR PERFORMANCE 

3.1. Compressor Performance Maps 

 For this study, a series of steady compressor performance data were collected at 

four corrected operating speeds (100%, 90%, 80%, and 68%) for each of the three tip 

clearance configurations (TC1-TC3). The 68% corrected speedline was selected instead 

of the 70% corrected speed to avoid a Campbell diagram crossing corresponding to a 

rotor first torsion (1T) vibratory mode, as analyzed by Murray (2014). In all cases, the 

corrected speed and corrected mass flow rate were calculated according to the procedure 

outlined in Section 2.2.1. For each of the four speedlines, data from different tip 

clearance configurations were collected at equivalent corrected mass flow rates for direct 

comparison. 

 

 Total-to-Total Pressure Rise Characteristics 3.1.1.

 Benchmark compressor map data are presented in Figure 3.1. Each measurement 

point in Figure 3.1 is calculated from area-averaged rake measurements collected from 

the seven-element total pressure rakes at 20 equally-spaced vane positions across one 

vane pitch. In this figure, the overall total pressure ratio (TPR) across the compressor is 

calculated as the ratio of radially and circumferentially area-averaged total pressures from 

axial planes 1 and 9 in the Figure 2.6 schematic: 
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 TPR ൌ ௢ܲ,ଽ,AA

௢ܲ,ଵ,AA
	. (3.1)

In Figure 3.1, five operating points from the 100% corrected speedlines have been 

designated for comparison throughout this document: a low loading (LL) condition which 

represents a high flow rate; a nominal loading (NL) condition representing an operating 

point at a mass flow rate slightly higher than the peak efficiency point; a peak efficient 

(PE) point; a high loading (HL) condition which represents a low flow rate, high 

incidence operating point; and a set of conditions near the stall point (NS) which have a 

stall margin of approximately 5%. For this study, the stall margin (SM) is defined as 

follows: 

 SM ൌ
൬TPR
௠ሶ ೎

൰
stall

െ ൬TPR
௠ሶ ೎

൰

൬TPR
௠ሶ ೎

൰
ൈ 100%	. (3.2)

 On the abscissa of Figure 3.1, the corrected inlet mass flow rates have been 

normalized by the value at the nominal loading point. For reference, the calculated 

relative uncertainty of the overall total pressure ratio in Figure 3.1 is 0.16% (within the 

symbol size in the figure). The maximum relative uncertainty of the normalized inlet 

corrected mass flow rate using the ASME-standard (ASME PTC 19.5, 2004) set of 

equations is 1.4% and occurs at the near-stall loading condition. Nearly 60% of this 

calculated measurement uncertainty is contributed by the ASME-standard uncertainty for 

discharge coefficient, which will be reduced in the future upon calibration of the Venturi 

flow meter. However, the repeatability of the mass flow rate measurements for a fixed 

throttle position at the same loading condition is typically on the order of 0.2%. 
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Figure 3.1: Compressor total pressure ratio map. 

 

 In Figure 3.1, the final point at the top of each speedline (the lowest flow rate 

condition) is not a 20-point traversed point, but rather a representative location of the stall 

point for the compressor at that operating speed. Once the stall point is identified in a 

preliminary run, it is subsequently approached slowly through incremental throttle 

movements to determine the mass flow rate and pressure rise locating the stall point. An 

approximate representation of the stall point with respect to the traversed points on the 

rest of the speedline can be determined by a comparison with the last (NS) traversed 

point and by stalling the compressor in several stator vane positions with respect to the 

fixed rake positions. The dotted line connecting these points represents a stall line for the 

specific tip clearance configuration. Comparing these results, an increase of rotor tip 

clearance leads to a decrease of overall total pressure rise and moves the stall point to a 
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higher flow rate (the stall margin is reduced). Additional discussion about the stall 

characteristics of the compressor is given in Chapter 4. 

 

 Operating Tip Clearance Measurements 3.1.2.

 The operating points defined in Figure 3.1 can be characterized by their nominal 

(design intent) rotor tip clearance height, as listed in Table 2.2. However, several 

environmental factors can influence the physical components of the facility and, in turn, 

introduce variations of the operating tip clearance. These factors include, but are not 

limited to, centrifugal effects related to rotational speed changes and corresponding blade 

elongation, thermal effects due to temperature rise through the compressor, and pressure 

forces resulting from the pressure rise through the compressor. In a previous study guided 

toward modeling tip clearance changes in a multistage axial compressor, Dong et al. 

(2014) separated the potential contributions of operating tip clearance changes into 

several categories, as suggested above: 

 

߬model ൌ ߬static െ ൣሺΔ߬ሻ஻,thermal ൅ ሺΔ߬ሻ஻,centrif൧ ൅ ൣሺΔ߬ሻௌ,thermal ൅ ሺΔ߬ሻௌ,pressure൧

െ ൣሺΔ߬ሻ஽,thermal ൅ ሺΔ߬ሻ஽,centrif൧ 
(3.3)

where the subscripts B, S, and D represent tip clearance change contributions from the 

blade, shroud (casing), and disk, respectively. This equation calculates the operating 

“model” clearances, ߬model, based on the static (cold) build clearance, ߬static. Equation (3.3) 

shows a thermal expansion or centrifugal growth of the blade or disk will decrease the 

clearance height, whereas a thermal expansion or pressure force acting on the shroud will 

increase the clearance height. 
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This model has been applied specifically to the Purdue three-stage axial 

compressor to compare measured tip clearances with model predictions (Berdanier and 

Key, 2015a), and the outcome showed that the predicted model clearances are driven 

primarily by the thermal growth terms, which yield clearance change contributions 

several orders of magnitude larger than the pressure or centrifugal components. 

Ultimately, this previous study (Berdanier and Key, 2015a), in combination with the 

original model analysis presented by Dong et al. (2014), has confirmed that considerable 

changes in operating tip clearance height can be achieved as the loading condition is 

changed along a given speedline or between speeds. 

 The operating tip clearances for this project were measured using the capacitance 

probe system outlined in Section 2.3. Beginning with the baseline tip clearance 

configuration (TC1), the measured operating tip clearances for the steady operating 

points defined in Figure 3.1 are presented in Figure 3.2 as a function of the normalized 

inlet corrected mass flow rate for each of the four identified speeds. These clearance data 

have been determined using the RMS calculation method, although an arithmetic mean of 

the blade-by-blade DNS data is similar. In Figure 3.2, the three circumferentially-

distributed probes for each rotor row have been averaged to yield one representative tip 

clearance value for each rotor row.  
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Figure 3.2: Operating tip clearances measured using capacitance probes for TC1. 

 

 Considering Figure 3.2, these operating points were collected in immediate 

succession moving from left to right across the four parts of the figure. In this way, the 

results display the variation of rotor tip clearance height as the operating point changes 

with minimal point-to-point effect from ambient temperature changes. However, there are 

several noticeable effects of changes in ambient conditions. First, the final high flow rate 

condition for the 90% corrected speedline moving into the 80% corrected speed 

conditions represents a period of time at the beginning of a day when the ambient 

temperature was increasing; Second, there is a significant drop of measured tip clearances 

between the third and fourth points (from left to right) in the 80% speedline. A period of 

severe weather forced a stop of the experimental campaign after the completion of the 

third point in this line, and the data collection process resumed on the 80% speedline, 

beginning with the fourth point on the following day. This discontinuity represents a 

change of approximately 2.5×10-3 in., which represents an 8% change of operating tip 

clearance for the nominal value of 0.030 in., and it is attributable to a change in ambient 

temperature of approximately 28 ºF. It is important to note here that there is no 
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measureable change of performance parameters at this speed and for this loading 

condition (away from the stall point at part-speed) due to this small measured tip 

clearance change, whereas a high loading point on the 100% corrected speedline may be 

more likely to show a measurable performance change (see Smith et al. (2015a)). Third, 

the 80% and 68% speed curves in Figure 3.2 show less relationship between measured tip 

clearance and loading condition (compared to 100%, e.g.) as the temperature rise through 

the compressor is significantly reduced in this part-speed operating regime. Thus, a 

majority of the observed decrease of tip clearance with loading conditions in the 68% 

corrected speed range is due to a decrease in ambient temperature that occurred in the 

evening. 

 Similar measurements are presented for the two larger tip clearance 

configurations, TC2 and TC3 in Figure 3.3 and Figure 3.4. As with the TC1 results in 

Figure 3.2, these larger tip clearance measurements were also collected in succession, but 

without the discontinuity in the 80% speedline discussed for TC1. Although the mean 

weather conditions were extremely similar between measurements collected for the three 

different tip clearances, the TC2 and TC3 data collection processes began at a different 

time of day than TC1. As a result, a comparison of the results in Figure 3.3 and Figure 

3.4 show a very similar trend which differs slightly from the observed trends for TC1. In 

particular, the 100% speedline data for TC2 and TC3 began in the early morning hours 

prior to sunrise and, therefore, the high-loading, low flow rate operating points which 

showed the highest tip clearance values for TC1 display a less discernable trend as the 

highest static temperature rise conditions are affected slightly by the slow temporal 

variation of temperature through the day. 
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Figure 3.3: Operating tip clearances measured using capacitance probes for TC2. 

 

Figure 3.4: Operating tip clearances measured using capacitance probes for TC3. 

 

 The operating tip clearance measurements in Figure 3.2, Figure 3.3, and Figure 
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results have shown the potential extent to which even a small variation of ambient 
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report the design intent tip clearance heights, as in Table 2.2, as a result of the potential 
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consistency, these measured operating tip clearance values are used throughout the 

remainder of the document whenever clearance values at a specific operating condition 

are required. 

 Additional research summarized by Smith et al. (2015a) further highlights the 

importance of measuring tip clearance when performing detailed performance 

measurements. In light of the results shown in Figure 3.2, it should be noted here that the 

28 ºF envelope shown for the 80% speedline of TC1 represents the largest discrepancy of 

temperatures for all points shown in the compressor map of Figure 3.1. More specifically, 

the 100% speedline data points for all tip clearances were all collected for compressor 

inlet temperatures within a 19 ºF envelope to ensure the best possible comparison of 

measurements and avoid the discrepancies outlined by Smith et al. (2015a). 

 

 Stall Margin 3.1.3.

Using Equation (3.2), the stall margin has been calculated for each of the primary 

identified points on the 100% corrected speedline. These results, Figure 3.5, are presented 

with the average measured tip clearance on the abscissa, as described in Section 3.1.2. In 

Figure 3.5, the Rotor 2 chord has been selected to normalize the clearance values due to 

the relationship between stall and blade boundary layer separation. Thus, stalling trends 

typically correlate to ߬/ܿ, whereas efficiency correlates to ߬/ܪ (Wisler, 1998). The chord 

changes slightly through the machine for the three rotors, but the Rotor 2 chord is a 

representative average of the three rotor rows (see Table 2.1).  

 



67 

 
 

 

Figure 3.5: Stall margin and stalling flow coefficient effects with tip clearance  
height for specified loading conditions on the 100% corrected speedline. 

 

Based on the results in Figure 3.5, the stall margin follows a slight non-linear 

trend with increasing tip clearance for each of the four chosen loading conditions: the 

decrease of stall margin is more significant moving from TC2 to TC3 than from TC1 to 

TC2 at the same corrected mass flow rate. This difference increases more noticeably at 

higher flow rates (lower loading conditions) than at the lower flow rates (higher loading 

conditions). This observed trend also exists for other definitions of stall margin (i.e., 

based solely on corrected mass flow rates or based on the total pressure ratios in Equation 

(3.1)). 

 Previous studies of tip clearance effects on overall compressor performance have 

identified the loss of operability range using a percent loss of flow coefficient instead of 

stall margin (Wisler, 1985b; McDougall et al., 1990), for which the flow coefficient is 

defined by the ratio of the axial flow velocity, ௫ܸ, to the rotor tip speed, ௧ܷ: 
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 Φ ൌ ௫ܸ

௧ܷ
	. 

(3.4)

The same quantities can be compared with these data, using a percent difference of the 

flow coefficient at the stall point as a percent difference from the baseline tip clearance 

(TC1): 

 ΔΦstall ൌ
Φstall െΦstall,TC1

Φstall,TC1
ൈ 100%	. 

(3.5)

The results using this equation are presented in Figure 3.6 along with a 

comparison of the results from Wisler and McDougall. The smallest clearance studied by 

McDougall (0.5% chord) is not shown here because it is well outside the range of 

clearances for the present study. As before, the clearance heights for the present study in 

Figure 3.6 are evaluated using measured operating tip clearance heights normalized by 

Rotor 2 chord. 

 Wisler introduces the concept of a “clearance derivative” for stall margin, which 

evaluates the stall margin penalty incurred for a one percent change in tip clearance 

height [24]: 

 δ ൌ
Δ߶stall

Δሺ߬/ܿሻ
	. (3.6) 

These clearance derivatives for stall margin have been calculated for the present study 

and the canonical studies, and these values are indicated in Figure 3.6. The derivatives 

calculated from Wisler (1985b) and McDougall (1990) are both larger than the results 

from the present study. Specifically, McDougall shows a clearance derivative for stall 

margin which is nearly 50% larger than the present study for nearly the same clearance-
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to-chord values (TC1 to TC3). Also indicated in Figure 3.5, the derivative for the change 

from TC2 to TC3 is more than 1.5 times greater than the change from TC1 to TC2. 

 

 

Figure 3.6: Trends of flow range change with rotor tip clearance. 

 

 Despite the differences shown in Figure 3.6, the clearance derivatives for stall 

margin are nearly all in agreement with the published value of 3-6% for 1% increase of 

clearance-to-chord by Wisler (1998). There are several important differences between 

these studies which may contribute to the spread of data in Figure 3.6. Of note, the rotor 

blade sections for the present study (DCA) differ from McDougall (1990) (C4) and 

Wisler (1985b) (GE E3). Furthermore, the aspect ratio for the rotors in this study is on the 

order of 0.7, compared with 1.4 for McDougall and 1.2 for Wisler. Studies analyzing the 

effects of low aspect ratio blades on compressor performance have shown that lower 

aspect ratio blades are more resistant to stall as the a more significant portion of the blade 

span is influenced by three-dimensional endwall flows (Wennerstrom, 1989). Thus, these 
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data supplement the existing literature to provide stall margin clearance derivatives for 

very low aspect ratio blading with specific applicability to rear stages of modern high 

pressure compressors. 

 Similar conclusions can also be related to the solidity of the machines presented 

in Figure 3.6. The solidity of the rotors in Wisler’s (1985b) study are reported to be 1.16, 

whereas the McDougall (1990) rotor and the rotors in the present study have solidities on 

the order of 1.3 at mid-span (the present study is slightly larger than McDougall). The 

increased solidity represents decreased loading for each blade, increasing the stall 

resistance compared to the results from Wisler. 

 

 Total-to-Static Pressure Rise Characteristics 3.1.4.

 As an alternative to the total pressure ratio as a metric for achieved pressure rise, 

some authors (Hutton, 1956; Wisler, 1985b; McDougall, 1990) have discussed the total-

to-static pressure rise coefficient, defined as: 

 Ψ ൌ ଽܲ െ ௢ܲଵ
ଵ
ଶߩ ௧ܷ

ଶ 	. (3.7)

Figure 3.7 shows this total-to-static pressure rise coefficient, presented as a function of 

the flow coefficient, Φ, for each of the three tip clearance configurations at all four 

corrected operating speeds. As with Figure 3.1, the point at the lowest inlet mass flow 

rate for each of the curves represents the stall point of the compressor. The results in 

Figure 3.7 show the expected result of decreasing total-to-static pressure rise coefficient 

as the tip clearance is increased. Another observation from Figure 3.7 is for the 100% 

corrected speedline of TC3, which has a location in the characteristic at a flow coefficient 
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of approximately 0.5 where the slope of the curve changes sharply to become less 

negative (approaching zero). This location of the characteristic also corresponds to a 

region of the curve which has a slight positive slope in the speedline from Figure 3.1. 

This is the only speedline from the 12 presented lines which features a total pressure rise 

decrease prior to the stall point, which may explain the unique feature of this 

characteristic in Figure 3.7. Also in this figure, the results for different speeds with a 

given tip clearance configuration do not collapse to one single line, alluding to the 

significance of compressibility effects in the Purdue three-stage compressor. 

 

Figure 3.7: Total-to-static pressure rise characteristics for three tip clearance 
configurations. 
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a given tip clearance with respect to peak pressure rise coefficient for the smallest 

clearance (TC1 for the data from the present study), 

 ΔΨ ൌ
ΨെΨTC1

ΨTC1
ൈ 100%	, (3.8)

presented as a function of average measured tip clearance. A study by Koch (1981) 

comparing data collected in the same LSRC utilized by Wisler (1985b) showed that peak 

pressure rise can be correlated with clearance-to-staggered-spacing, ߬/ݏ, to yield results 

independent of aspect ratio. As a result, this length scale has been implemented to 

normalize the clearance values in Figure 3.8. Here also, the Rotor 2 staggered spacing is 

used as a representative average of the three rotor rows in the machine. 

 

 

Figure 3.8: Peak total-to-static pressure rise coefficient as a function of  
tip clearance height. 
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Figure 3.8 shows that the decrease of peak pressure rise for the results from the 

present study is not consistent between the two clearance ranges – there is a greater 

decrease of peak pressure rise from TC2 to TC3 than from TC1 to TC2. This observation 

is important because it further highlights a trend which can only be observed with three 

or more tip clearance heights and may be unknown for a study with only two clearance 

heights. However, Figure 3.8 does show that the reduction of peak pressure rise is 

independent of rotational speed, as shown by the collapsed results for the four speeds. 

Here, a clearance derivative for peak pressure rise difference is defined using the 

clearance-to-staggered-spacing ratio: 

 δந ൌ
Δ߰௣௞
Δሺ߬/ݏሻ

	. (3.9) 

A comparison of these clearance derivative results for peak pressure rise between the 

present study with the canonical results show good agreement between Wisler (1985b) 

and the change from TC2 to TC3. The results from McDougall (1990), however, show a 

clearance derivative magnitude which is slightly larger than the other data sets presented. 

 

 Isentropic Efficiency 3.1.5.

 As explained earlier, the isentropic efficiency of the compressor has been 

evaluated using the formal definition from Equation (2.3). The required stagnation 

enthalpies for this equation are calculated using the thermodynamic equation program 

REFPROP (Lemmon et al., 2013) through the use of measured conditions (stagnation 

temperature, stagnation pressure, static pressure, and relative humidity) at axial positions 

1 and 9 – in agreement with the measurement planes used to define total pressure ratio in 
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Equation (3.1). Using Equation (2.3), the isentropic compressor efficiency has been 

calculated for each of the measurement points shown in the overall compressor total 

pressure ratio map of Figure 3.1 (neglecting the stall points). These efficiencies, shown in 

Figure 3.9, are presented for each of the four corrected rotational speeds as a function of 

the normalized inlet corrected mass flow rate. 

 

Figure 3.9: Overall isentropic compressor efficiency at four corrected rotational speeds. 
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Lou et al. (2013). The uncertainty values for the 100% corrected speedlines in Figure 3.9 
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across the entire flow range. At the lower speeds of 80% and 68% corrected speed, 

however, the reduced pressure rise is associated with a reduced temperature rise 

(although still measurable and appreciable), especially at high flow rate conditions. As a 

result, the uncertainties for the 80% corrected speedline data vary from approximately 6 

points at low flow, high loading conditions to as much as ten points for the high flow, 

low loading conditions. At the 68% speed conditions, the uncertainties vary from 

approximately 8 points at low flow conditions to more than 15 points at high flow 

conditions. 

 These relatively large uncertainty values are primarily due to the propagation of 

measurement uncertainty when calculating enthalpies, especially ݄଴ଽ௦, as explained by 

Lou et al. (2013). Indeed, the data for this project also show that ݄଴ଽ௦  is the largest 

component of the efficiency uncertainty. Despite the large measurement uncertainties, 

however, the repeatability of the efficiencies shown in Figure 3.9 is typically on the order 

of 0.5 points – an order of magnitude improvement over the calculated uncertainty. 

 As an additional consideration, measurement variability due to machining 

tolerances, blade row interactions, and more, can also influence calculated performance 

parameters such as isentropic efficiency. The measurement locations for data presented 

here were carefully selected to avoid these effects as much as possible based on prior 

knowledge of the machine. Nonetheless, a vane wake variability study characterizing the 

circumferential variation in the wakes shed from a particular stator row was recently 

conducted by Methel et al. (2015). The results from this study, combined with a similar 

investigation of passage-to-passage variations in total temperature, have shown that the 

circumferential variation in the flow field is small (on the order of measurement 
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uncertainty) yet repeatable. Thus, efficiencies calculated by combining pressure and 

temperature measurements from different sectors of the machine can be influenced by 

this variation. The only way to avoid this error in the absolute value of efficiency would 

be to use a measurement rake with combined total pressure and total temperature sensors. 

However, the measured changes in efficiency between different configurations are valid 

and meaningful. 

 Beginning with the data presented in Figure 3.10, the compressor efficiency is 

separately considered for each of the three tip clearance configurations at the four 

operating conditions of primary interest on the 100% corrected speedline: LL, NL, PE, 

and HL. Figure 3.10 shows the expected result of decreased compressor efficiency with 

increased rotor tip clearance, as discussed in earlier studies for isolated rotors and 

multistage machines. Similar to the stall margin analysis, a clearance derivative can also 

be defined for the change in efficiency associated with a one percent increase of 

clearance-to-height: 

 δఎ ൌ
Δߟ

Δሺ߬/ܪሻ
	. (3.10) 

Figure 3.10 shows small, but discernable changes of clearance derivatives when 

comparing different clearance ranges in the present study. The most significant 

differences are observed at the LL operating condition (-1.2 from TC1 to TC2 versus -0.8 

from TC2 to TC3), but the other three loading conditions shown here yield a δఎ standard 

deviation of 0.1 with respect to the mean value. For these results, a representative mean 

clearance derivative for efficiency based on the data in Figure 3.10 is on the order of -1.3. 

There is also a slight non-linear trend for the efficiencies in Figure 3.10, aligning with 
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other results from this study, which was also observed by Ruden (1944) and Tschirner 

et al. (2006), and more recently in a computational study by Sakulkaew et al. (2013). 

 

 

Figure 3.10: Isentropic compressor efficiency for specified 100% ௖ܰspeedline 
points as a function of tip clearance height. 
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3.9). Thus, if a comparison is made between the peak efficiency point at the small 

clearance and the same flow coefficient at a larger clearance for Wisler’s results, a larger 

efficiency change exists, leading to an efficiency clearance derivative of -1.3 – identical 

to the value observed for many of the segments for the present study in Figure 3.10. A 

similar comparison for the peak efficiency point between the two larger clearance heights 

tested by Tschirner et al. also leads to an efficiency clearance derivative of -1.3 points for 

a 1% change of clearance-to-height. The results from Tschirner et al. show a larger 

efficiency clearance derivative magnitude (beyond -2) between their TC1 and TC2 

configurations, but this effect may be attributed to cantilevered stator hub clearances 

which were not present for Wisler’s tests or the present study. These results agree well 

with rules-of-thumb suggested by Freeman (1985) and Wisler (1998) of approximately 

1.2 to 2 efficiency points lost per 1% increase of tip clearance height based on linear fits 

of data collected from several engine tests and research compressor studies. 

 

 Stator 3 Seal Leakage Flow Measurements 3.1.6.

 To adequately define boundary conditions for computational models, the leakage 

flow paths for the compressor have been carefully evaluated. At the inlet of the 

compressor, the air paths are all sealed, but a potential leakage path exists under the 

Stator 3 labyrinth (knife) seals to atmospheric pressure. Ball (2013) considered these 

leakage flow paths and the related knife seal geometry for computational models. Ball 

determined that whether the Stator 3 seal flow was allowed to exit to ambient pressure, or 

if the respective flow paths were plugged, the effect on overall compressor pressure rise 

was negligible. However, a measureable change of overall compressor efficiency was 
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observed, likely due to a localized heating of the rear bearing and other components at the 

rear of the compressor in the absence of the Stator 3 leakage flow path. 

 For this study, the leakage pathways remained open to the atmosphere, but the air 

was connected to a manifold through four tubes at the rear of the compressor, Figure 3.11, 

to capture the leakage flow. These tubes delivered the leakage flow to a Wyatt 

Engineering orifice plate with a discharge coefficient of 0.6042 and a diameter ratio of 

2.294 (as provided by the manufacturer). The pressure drop across the orifice plate was 

measured by a Rosemount 3051C differential pressure transmitter with a calibrated range 

of 0-13 inH2O. The representative overall relative uncertainty of mass flow rate 

measurement for this orifice plate system is less than 2.4%. 

 

 

Figure 3.11: Stator 3 seal leakage flow path and manifold tubes from (a) the rear bearing 
plate to (b) an orifice plate run (Brossman, 2012). 
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 The measured Stator 3 seal leakage mass flow rates for each of the measured 

points in Figure 3.1 (seal leakage flow rate data for the stall point were not collected) are 

shown in Figure 3.12, normalized as a percentage of the inlet corrected mass flow rate: 

 ሶ݉ LN ൌ
ሶ݉ leak,௖

ሶ݉ ௖
ൈ 100%	, (3.11)

for which the measured leakage mass flow rate is first corrected using the inlet conditions 

of the compressor using Equation (2.2) to yield ሶ݉ leak,௖. The increase of leakage flow rate 

at lower inlet mass flow rate conditions in Figure 3.12 suggests that the leakage mass 

flow rate is affected by the pressure rise through the compressor (increased loading and 

pressure rise at low flow rates leads to increased leakage flow rate as the pressure 

differential with respect to ambient pressure increases). However, the curves in Figure 

3.12 are independent of tip clearance configuration, showing that the leakage flow rate is 

influenced more by the flow rate through the compressor than the overall pressure rise 

through the machine (in which case, the leakage flow rates would change more 

significantly for different tip clearance configurations). The one potential exception to 

this is the final two to three points on the 100% speedline for TC3, which appear to roll 

over (unlike the two smaller tip clearances, TC1 and TC2). This observation aligns with 

the previous discussions about total pressure ratio and total-to-static pressure rise 

characteristics. 

 



81 

 
 

 

Figure 3.12: Stator 3 seal leakage mass flow rate as a percentage of inlet corrected mass 
flow rate for each of the traversed data points in Figure 3.1. 

 

 Casing Outer Surface Temperature Measurements 3.1.7.
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an analysis of the total temperature profiles through the compressor (see Section 3.3.2) 

shows an increase of the fluid total temperature in the tip region near the compressor 

casing, especially for the front stages. In this case, the more significant temperature of the 

aft section of the compressor conducts through the aluminum casing and influences the 

flow at the front of the machine. As a result, alternative boundary condition techniques 

may be better suited for computational analyses, such as the isothermal wall boundary 

condition discussed by Bruna and Turner (2013) or a conjugate heat transfer analysis. 
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 Several surface-mounted T-type thermocouples were installed on the outside of 

the compressor casing to isolate these temperature measurements. One thermocouple was 

installed over each of the seven blade rows at the circumferential position noted in Figure 

2.9. A separate analysis of the circumferential uniformity of the casing temperatures 

showed the circumferential variations are less than 1.8 ºR. Prior to collecting data at each 

operating point, an additional surface-mounted K-type thermocouple installed over Rotor 

3 was allowed to reach a steady operating condition to prevent any transient temperature 

effects in the collected data. 

 

 

Figure 3.13: Normalized surface temperatures for three loading conditions on the 100% 
corrected speedline. 
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clearance configurations. These temperatures are presented as a normalized temperature 

ratio with respect to the area-averaged temperature measured by the total temperature 

rakes at the AIP (plane 0 in Figure 2.6). As the work imparted to the fluid by the rotor 

increases with loading condition, the temperature of the outer compressor casing also 

increases through the compressor. Figure 3.14 shows the same normalized temperature 

ratio, but for the final “near-stall” traversed operating point, at each of the four speeds 

and all three tip clearance configurations. Figure 3.13 and Figure 3.14 both show that the 

TC1 data continue to experience temperature rise, even at the Stator 3 measurement 

position, whereas the larger tip clearance configurations (TC2 and TC3) appear to level 

off more significantly comparing the surface temperatures over Rotor 3 and Stator 3. 

 

 

Figure 3.14: Normalized surface temperatures for the final “near-stall” traversed 
operating point at all four operating speeds. 
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3.2. Stage Performance Characteristics 

 Total-to-Total Pressure Rise Characteristics 3.2.1.

 In addition to the overall performance, the stage-by-stage compressor 

performance has also been considered for this study. The stage total pressure ratios are 

shown in Figure 3.15 as a function of the stage inlet corrected mass flow rate. For this 

figure, the stage inlet corrected mass flow rate uses the same equation for the inlet 

corrected mass flow rate, Equation (2.2), but the values for stagnation density and 

stagnation speed of sound are selected to represent the measured parameters at the inlet to 

the stage. Stage 1 is defined for axial positions 1 to 4, Stage 2 is defined for axial 

positions 4 to 6, and Stage 3 is defined for axial positions 6 to 9. By these definitions, the 

combination all three stages results in the overall total pressure ratios from Figure 3.1. 

 Figure 3.15 allows several important observations regarding the performance of 

the three-stage compressor, particularly relating to off-design performance and stage 

matching. Of note, each of the three stages has distinctly different characteristic shapes at 

all speeds and tip clearance configurations. The Stage 1 characteristics show the total 

pressure rise turns to a positive slope near the top of the curve as the compressor 

approaches stall. The Stage 2 curves all show a position where the slope of the curve 

changes sharply. This location appears at the peak efficiency point of the compressor for 

each curve – these characteristics could be approximated by two linear regions. Finally, 

the Stage 3 curves have a curvature which more closely resembles Stage 1 than Stage 2, 

but with less total pressure rise.  
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Figure 3.15: Stage total-to-total pressure rise characteristics for the traversed map points. 
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magnitudes of these differences for Stage 1 are greater than the repeatability of the 

measurements, they are on the order of the uncertainty of the measurements, so no 

definitive conclusions can be attributed to the observations. 

 

 Total-to-Static Pressure Rise Characteristics 3.2.2.

In addition to the total-to-total pressure rise characteristics, the total-to-static 

pressure rise characteristics are also considered here. These data, Figure 3.16, assess the 

traversed measurement points from the overall total pressure ratio map for 100% 

corrected speed (the stall point is not included). The shape of these curves shows that 

Stage 1 is likely the limiting stage for the machine as its characteristic rolls over more 

than the other stages at low flow rates. Also, Stage 2 does not show the same dependence 

of pressure rise coefficient to tip clearance height that is observed for Stage 1 and Stage 3. 

In fact, the TC1 and TC2 results for Stage 2 in Figure 3.16 are relatively 

indistinguishable. 

 

Figure 3.16: Stage total-to-static pressure rise characteristics at 100% corrected speed. 
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These stage pressure rise characteristics bring about a consideration of stage 

matching effects in the compressor. It is expected that the Purdue three-stage axial 

compressor is well-matched at the design speed with the design tip clearance 

configuration (TC1). Comparing the TC1 performance with TC2 throughout Figure 3.16, 

the trends of the curves are very similar – many of the characteristics overlap for 

significant portions of the flow range, especially for Stage 2. This suggests that the stage 

matching of the compressor may not be significantly altered by a change from 1.5% to 

3.0% rotor tip clearance height. However, more distinct differences exist for the largest 

tip clearance configuration (TC3). 

 

 Stage Efficiency 3.2.3.

These stage performance observations are further investigated by rotor and stage 

efficiency trends with tip clearance at the NL and HL operating conditions in Figure 3.17. 

At the NL operating condition, Rotor 1 has the highest efficiency of the three rotors 

regardless of clearance height, but the Stage 1 efficiency is nearly insensitive to clearance 

changes as the Stator 1 performance improves with increased tip clearance height. This 

observation agrees with a decreasing trend of calculated Stator 1 pressure loss coefficient 

at NL by approximately 8.7% from TC1 to TC3. Also in Figure 3.17, the large efficiency 

difference between the Rotor 3 and Stage 3 curves suggests that Stator 3 performs poorly 

at NL, which is supported by the presence of large recirculating flow regions in flow 

visualization photographs taken for Stator 3 at NL (Smith, 2015). In these photos, the 

separation region for Stator 3 NL covers more than twice the suction surface area 

compared to the Stator 1 and Stator 2 separation regions. 
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Figure 3.17: Comparison of rotor and stage efficiencies differences with tip 
clearance height at NL and HL. 
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the importance of comparing stage performance in a multistage compressor without 

repeating stages as stage matching effects become increasingly important. 

 

3.3. Inter-Stage Flow Measurements 

 In addition to the performance metrics discussed thus far, the inter-stage total 

pressure and total temperature measurements collected from the seven-element rakes 

provide valuable information regarding the radial distributions of measured flow 

properties. A direct comparison of these radial distributions for each of the three tip 

clearance configurations may be affected by the overall pressure rise (or temperature rise) 

through the compressor, therefore making it difficult to draw meaningful conclusions 

about the comparisons, especially near the rear of the compressor where discrepancies 

between tip clearance configurations may be large. As a result, these spanwise 

measurements must be normalized by some chosen value to accommodate comparison of 

the radial total pressure and total temperature profile shapes. The five selected loading 

conditions on the 100% corrected speedline have been chosen for comparison between 

the three tip clearance configurations. 

 

 Total Pressure 3.3.1.

 To effectively compare pressure profiles through the compressor, the normalized 

total pressure (NRP௢) is defined to represent the circumferential average at each radial 

position, normalized by the radial and circumferential area average at the same axial 

position: 
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 NRP௢,௜ ൌ
௢ܲ,௜,େ୅

௢ܲ,௜,AA
	. (3.12)

Using this definition, any reductions in pressure rise due to an increase of rotor tip 

clearance at the same axial measurement plane are avoided, and the radial stagnation 

pressure profile shapes remain for comparison. Figure 3.18 shows this normalized radial 

total pressure shape comparison at the LL operating condition for each of the three tip 

clearances, TC1-TC3, at axial measurement planes 3 through 8 (as denoted by the 

schematic in Figure 2.6). For reference, the uncertainty of measurements presented in 

Figure 3.18 is smaller than the symbol size in the figure. 

 

 

Figure 3.18: Radial total pressure profiles at LL. 
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compressor overall total pressure ratio between tip clearance heights for high flow rate 
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conditions in Figure 3.1. However, this effect becomes more apparent as the loading 

condition is increased up the speedline to the nominal loading (NL) and peak efficiency 

(PE) points in Figure 3.19 and Figure 3.20, respectively. In these figures, the increased 

blockage created by the tip leakage flow disturbance growth redistributes a portion of the 

flow from the tip region toward the hub region, as distinguished by the reduction of 

NRP௢ at the tip and increase near the hub for all axial measurement positions. Also in 

these figures, it is possible to distinguish a set of similar profile shapes at the three rotor 

exit planes (axial positions 3, 5, and 7), which differ from a separate set of similar 

profiles shapes at the stator exit planes (axial positions 4, 6, and 8). 

 

Figure 3.19: Radial total pressure profiles at NL. 
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Figure 3.20: Radial total pressure profiles at PE. 
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toward the hub with increased tip clearance persist in Figure 3.21, but there are more 

distinguishable characteristics between the axial positions. Of note, the difference 
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more pronounced than for Stator 1 Exit or Stator 3 Exit. Specifically, a corner separation 

condition exists at the hub of Stator 2, which is energized by the redistributed flow from 

the tip region toward the hub to prevent the flow separation tendencies of the vane row. 

This observation will be further explained with detailed measurements in subsequent 

sections, and it is supported qualitatively by complementary flow visualization 

photographs (Smith, 2015). 
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 Also in Figure 3.21, the tip region at Rotor 1 Exit portrays a repositioning of the 

minimum pressure from 88% span to 80% span as the tip leakage core extends radially 

downward into the flow path with increased tip clearance. This leaning-over of the radial 

profile in the tip region for TC2 and TC3 is indicative of a close proximity to the stall 

point which has not yet been reached for TC1 at the same corrected mass flow rate (see 

Figure 3.1). However, the same distinguishing characteristic is not present at Rotor 2 Exit 

or Rotor 3 Exit, suggesting a difference in overall performance for the embedded stages, 

which ingest the increased blockage from the upstream stage(s), compared to the first 

stage which is always met with the same clean inlet flow from the IGV. 

 

Figure 3.21: Radial total pressure profiles at HL. 

 

 As suggested earlier, the HL condition points compared in Figure 3.21 are located 

at proximities to the stall point which vary with tip clearance. Thus, an additional loading 

condition is considered which helps to overcome this inherent difference. The near-stall 

(NS) points denoted by the five-pointed stars in Figure 3.1 are representative of 

0.99 1 1.01

12

20

35

50

70

80

88

NRP
o,3

 [−]

Rotor 1 Exit

A
nn

ul
us

 H
ei

gh
t [

%
]

0.99 1 1.01

12

20

35

50

70

80

88

NRP
o,4

 [−]

Stator 1 Exit

0.99 1 1.01

12

20

35

50

70

80

88

NRP
o,5

 [−]

Rotor 2 Exit

0.99 1 1.01

12

20

35

50

70

80

88

NRP
o,6

 [−]

Stator 2 Exit

 

 

TC1
TC2
TC3

0.99 1 1.01

12

20

35

50

70

80

88

NRP
o,7

 [−]

Rotor 3 Exit

0.99 1 1.01

12

20

35

50

70

80

88

NRP
o,8

 [−]

Stator 3 Exit



94 

 
 

approximately 5% stall margin, as defined by Equation (3.2). By matching stall margin, 

the data comparison between the three tip clearance configurations should be more 

appropriate. 

 This comparison, shown in Figure 3.22, reveals interesting results: the Rotor 1 

Exit profile shape for TC1 has leaned over in the same manner as TC2 and TC3; also, the 

normalized radial pressure profile shapes for the three tip clearance configurations appear 

to coalesce at Rotor 2 Exit and Rotor 3 Exit. These data at Rotor 2 Exit and Rotor 3 exit 

show a very slight difference for the TC3 results, but this is explained by the fact that the 

data for TC3 actually represent a stall margin closer to 4% instead of the desired 5% 

which was achieved for TC1 and TC2. Therefore, the TC3 data are expected to achieve 

slightly less pressure near the tip and slightly higher pressure near the hub, as shown in 

Figure 3.22. Despite this apparent insensitivity of profile shape with respect to clearance 

size at Rotor 2 Exit and Rotor 3 Exit in Figure 3.22, there is a more noticeable difference 

at Rotor 1 Exit, and the discrepancy between TC1 and TC3 at Stator 2 Exit is even more 

significant than in Figure 3.21. 
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Figure 3.22: Radial total pressure profiles at NS. 

 

 Total Temperature 3.3.2.

 In the same manner as the radial total pressure profiles, the normalized total 

temperature ( NRT௢ ) represents the circumferential average at each radial position, 

normalized by the area average (radial and circumferential) at the same axial position: 

 NRT௢,௜ ൌ
௢ܶ,௜,େ୅

௢ܶ,௜,AA
	. (3.13)

Figure 3.23 presents this normalized radial temperature distribution for the low loading 

(LL) condition on the 100% corrected speedline. At this operating point, the similarity of 

the pressure rise for the three tip clearance configurations leads to a largely insignificant 

difference between the three cases, with only minor differences downstream of each rotor 

row. For reference, the uncertainty of measurements presented in these figures is smaller 

than the symbol size in the figure. 
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Figure 3.23: Radial total temperature profiles at LL. 
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Figure 3.24: Radial total temperature profiles at NL. 

 

 

 

Figure 3.25: Radial total temperature profiles at PE. 
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100% corrected speedline. The Stator 2 Exit profiles are largely unchanged from the NL 

condition to the NS condition, with only slight differences at the LL condition. However, 

the Stator 3 Exit profiles highlight a slight difference in work distribution for the TC1 

configurations compared to the larger tip clearances (TC2 and TC3) at the near stall (NS) 

operating condition. In particular, the TC1 configuration shows more work distributed in 

the hub region of Stator 3, compared to TC2 and TC3 which are nearly identical for this 

normalized total temperature distribution shape. 

 

 

Figure 3.26: Radial total temperature profiles at HL. 
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Figure 3.27: Radial total temperature profiles at NS. 
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loading (LL) condition, the suction side of the wake increases in width at 70% and 88% 

annulus height. 

 The Stator 1 Exit wake shapes at nominal loading (NL) appear unaffected by rotor 

tip clearance height at 50% annulus height. The wake depths and widths at 70% are 

unchanged, but there is a slight decrease of pressure rise off the pressure surface edge of 

the vane – an effect which is greatest between the TC2 and TC3 tip clearance 

configurations. At this loading condition, however, the maximum effect is at 88% 

annulus height, where the change of rotor tip clearance from TC1 to TC3 shows a 

decrease of the normalized wake shape off the suction surface (near 40% vane passage) 

on the order of one percent. 

 At the high loading (HL) condition, the Stator 1 data in Figure 3.28 also show the 

thickness and minimum normalized pressure of the wake regions are unaffected by the 

change of rotor tip clearance. However, the pressure in the primary throughflow at 88% 

annulus height shows a constant offset in the flow adjacent to the suction surface of the 

vane. The one percent change observed in the small circumferential region from 30 to 50% 

vane passage at NL extends across the rest of the vane passage at the HL condition. 

 The normalized total temperature behind Stator 1 in Figure 3.28 shows the 

accumulation of high total temperature fluid off the pressure surface of the vanes. This 

region represents the fluid from the rotor wake which collects on the stator pressure 

surface, as described by Kerrebrock and Mikolajczak (1970). This same effect has been 

previously documented at the baseline tip clearance, TC1, by Key (2014). At the LL and 

NL conditions, Figure 3.28 shows no discernable change of the normalized 

circumferential total temperature distribution. However, the HL condition shows an 
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increase of the peak normalized total temperature in the region off the vane pressure 

surface (associated with rotor wake fluid) with increased rotor tip clearance – the most 

significant of which is observed at 70% annulus height. 
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Figure 3.28: Stator 1 total pressure wakes and pitchwise total temperature distribution. 
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 Measurements comparing total pressure and total temperature rake data are also 

included at Stator 2 exit for three rotor tip clearance configurations and three loading 

conditions, Figure 3.29. Whereas the Stator 1 exit results showed minimal effect at the 

LL operating condition, Stator 2 displays a more significant impact at the 88% 

measurement location: a nearly constant pressure across the bulk throughflow at 88% for 

TC1 develops into a pressure trough extending approximately 60% vane passage at a 

maximum depth of nearly two percent with respect to the bulk throughflow. The total 

temperature variations observed at HL at Stator 1 exit are not present at the Stator 2 exit. 

 The circumferential variations of Stator 3 exit pressures and temperature are 

shown in Figure 3.30. As with Stator 2, the most distinct effect of the pressure wake 

shapes with rotor tip clearance changes is observed at the low loading (LL) condition. At 

this condition, the increase from TC1 to TC2 creates a depression on the order of one 

percent with respect to the bulk throughflow, in a circumferential region extending across 

the majority of the throughflow area. In contrast, the increase from TC2 to TC3 shows 

the same depression depth, but the location of minimum pressure has moved 

approximately 20% vane passage toward the vane pressure surface. 

 Similar to the other stators, the Stator 3 results in Figure 3.30 show 

circumferential total temperature distributions which are largely unaffected by increased 

rotor tip clearance at LL and NL. At the high loading (HL) condition, there is an increase 

of normalized total temperature across the entire circumference at 88% span; this 

observation is in contrast to the slight increase of peak rotor fluid accumulation observed 

only near the pressure surface of Stator 1 (and most significantly at 70% span), and the 

Stator 2 measurements which were largely unaffected by rotor tip clearance. 



 

 
 

104 

 

 

   

Figure 3.29: Stator 2 total pressure wakes and pitchwise total temperature distribution. 
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Figure 3.30: Stator 3 total pressure wakes and pitchwise total temperature distribution. 
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 Detailed Steady Total Pressure Traverses 3.4.2.

 To supplement the measurements collected downstream of the stator vanes using 

the total pressure rakes, a series of detailed traverses were completed with a miniature 

Kiel head total pressure probe. These measurements consisted of up to 30 radial plunge 

positions (at least four times the resolutions from the rake), with an emphasis on 

capturing the flow features in the endwall regions, as well as a higher resolution of 25 

pitchwise vane positions with respect to the fixed probe location. Due to the long-

duration runs required for this measurement technique, these detailed measurement 

campaigns were conducted at the exit of each of the three stator vane rows, at two 

loading conditions (NL and HL), for the smallest and largest tip clearance configurations 

(TC1 and TC3). 

 As alluded to by the radial profiles in Section 3.3.1, an increase of rotor tip 

clearance height has the effect of producing increased blockage due to the leakage flow 

region in the outer area of the annulus. This corresponding redistribution of mass flow 

from the tip region toward the hub region unloads the hub region of the downstream 

stator to reduce the wake thickness in the lower region of the annulus and reduce the 

corner separation regions in the hub corner, as shown by Smith (2015). However, the 

reduced flow in the tip region leads to increased flow separation at the outer diameter of 

the stator vane. For measurements collected at Stator 1 exit for a nominal loading (NL) 

condition, Figure 3.31 shows this slight decrease of wake thickness at approximately 30% 

annulus height as the rotor tip clearance is increased from TC1 to TC3. In this same 

figure, the reduction of flow (and corresponding reduced total pressure) in the tip region 

is also apparent due the presence of the leakage flow from Rotor 1. 



107 

 
 

Figure 3.31: Detailed total pressure traverses at Stator 1 exit, NL. 

 

Figure 3.32: Detailed total pressure traverses at Stator 1 exit, HL. 
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from the increased tip clearance, but the outer 70% annulus height presents a significant 

increase of stator wake width and depth. In this figure, the bulk flow outside the wake 

also shows a significant decrease of total pressure rise extending down to approximately 

70% annulus height. 

 Similar comparisons can also be made between two tip clearance configurations 

at the exit of Stator 2. At the NL operating condition, Figure 3.33 shows a decrease of 

total pressure in the tip region as the increased tip leakage flow from Rotor 2 is ingested 

by the stator vane. The compounding effect of the increased tip clearance height is 

displayed by this embedded stage, making it more difficult to directly compare contour 

levels between the two tip clearance configurations. However, the effect of the increased 

blockage appears to affect the flow most significantly in the outer 20% of the annulus 

height. 

 For the high loading (HL) condition at Stator 2 exit, Figure 3.34, the most 

noticeable effect of the increased tip clearance height is observed. Referring back to the 

radial total pressure profiles at this same operating condition, Figure 3.21, a distinct shape 

difference is observed for the change from TC1 to TC3. The data in Figure 3.34 show 

that TC1 exhibits a significant hub corner separation at this high loading condition which 

extends up to approximately 30% annulus height; however, the wake thickness remains 

relatively constant across the remainder of the annulus. As the rotor tip clearance height 

is increased, the redistribution of mass flow from the tip toward the hub region has the 

expected result of energizing the hub region and decreasing the likelihood of flow 

separation, thereby reducing the hub corner separation zone. However, this benefit comes 
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at the expense of a drastic increase of wake thickness, as observed for the upper 50% 

annulus height. 

 

Figure 3.33: Detailed total pressure traverses at Stator 2 exit, NL. 

 

Figure 3.34: Detailed total pressure traverses at Stator 2 exit, HL. 
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 The detailed total pressure measurements collected at Stator 3 exit are also shown 

for the same NL and HL operating conditions on the 100% corrected speedline in Figure 

3.35 and Figure 3.36, respectively. At the high loading condition, Figure 3.36, the TC1 

rotor tip clearance configuration exhibits the thickest wake of all three stators (relatively), 

but with the shallowest depth (see also Figure 3.30). As the tip clearance is increased to 

TC3, the observed effect is the same for Stator 3 as it was for the other two vane rows: 

the hub region (up to approximately 30% annulus height) shows a decreased wake 

thickness, but the outer 70% annulus height is negatively affected by the decreased flow 

in the tip region that has been redistributed toward the hub. 

 In addition to the high resolution of measurements, the increased quantity of data 

points from these detailed radial traverses provide the ability to compare with the 

calculated total pressure ratio determined from the seven-element total pressure rakes. On 

average, the total pressure ratios calculated as an area average of the detailed radial 

traverse data agree with the values evaluated from the pressure rakes within 0.04%, less 

than one-fourth of the uncertainty for the total pressure ratio. 
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Figure 3.35: Detailed total pressure traverses at Stator 3 exit, NL. 

 

Figure 3.36: Detailed total pressure traverses at Stator 3 exit, HL. 
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CHAPTER 4: CHARACTERIZATION OF COMPRESSOR STALL INCEPTION 

4.1. Measurement Technique 

For this study, the stall inception mechanism for the compressor was 

systematically assessed for each of the three tip clearance configurations. In addition to 

the four corrected speedlines shown in Figure 3.1, the compressor stall behavior was also 

investigated for the 60% and 52% corrected speedlines. In each case, the stall point was 

determined by closing the throttle in incremental steps to slowly increase the loading of 

the compressor. At the onset of stall, a human-interface control mechanism was initiated 

to open the throttle and allow recovery to a stable operating condition. This process was 

repeated several times to determine a representative average of corrected mass flow rate 

and total pressure ratio for each test case. The previous statements regarding uncertainty 

of mass flow rate and overall total pressure ratio apply for these measurements as well. 

For a given operating speed and tip clearance configuration, the compressor was also 

stalled in up to five different vane positions with respect to the stationary instrumentation 

to develop a representative average for the overall map. During the stall inception tests, 

the full set of inter-stage measurement rakes was removed, and only the inlet and exit 

conditions of the compressor (axial measurement planes 0, 1, and 9 in Figure 2.6) were 

monitored for overall pressure rise information.  
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To detect the formation of stall events, a series of high-frequency response Kulite 

XTL-140 pressure transducers were installed throughout the compressor. These 

piezoresistive pressure transducers each have an outer diameter of 0.101 in. with a 

threaded mounting system to accommodate insertion and removal at several unique 

positions. As with the other fast-response pressure transducers used in this study, these 

XTL-140 sensors also featured a standard protective B-screen, reducing the frequency 

response of the sensors to approximately 20 kHz. For these stall tests, six 

circumferentially-distributed sensors were positioned approximately 15% axial chord 

upstream of each rotor blade row, following the design outlined by Houghton and Day 

(2010), for 18 total sensors. The measurements from these fast-response sensors were 

collected through the same data acquisition chain described in Section 2.4.1. 

 

4.2. Stall Inception Analysis 

Over the years, researchers (McDougall et al., 1990; Day, 1993) have identified 

two different stall inception mechanisms in axial compressors. The first type, modal 

oscillations, or “modes,” represents long length-scale disturbances which affect the entire 

compressor. These modal oscillations are often observed for some time prior to the 

definitive stall point for the compressor. The second type, “spikes,” appears as a short 

length-scale disturbance which develops as a result of a localized stalling, typically in one 

blade row. These spike signals may appear in high-frequency-response data collected 

from hot-wire velocity measurements or fast-response pressure transducers. 

Camp and Day (1998) continued the discussion of these stall inception types and 

developed a model for predicting the stall inception mechanism of a given compressor, 
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based on the shape of the total-to-static pressure rise characteristic for the machine. These 

authors concluded modal stall inception characteristics are expected to appear if the 

compressor reaches a peak total-to-static pressure rise prior to entering stall (i.e., a zero 

slope condition). On the other hand, if the compressor stalls prior to reaching a peak 

total-to-static pressure rise value, the corresponding stall inception mechanism will likely 

be a spike-type stall event. 

The total-to-static pressure rise characteristics are shown for the Purdue three-

stage compressor, with each of three tip clearance configurations at four operating speeds, 

in Figure 3.7. The characteristics in this figure show that there are three lines which 

potentially show a peak value has been reached: the 100% corrected speedlines for TC1 

and TC2, and the 90% corrected speedline for TC1. Based on the model presented by 

Camp and Day (1998), it is expected that these three speedlines are the most likely 

candidates to portray modal stall inception traits. The other nine speedlines all appear to 

be continuing to rise at the stall point (the lowest flow rate point on each line) – typical 

signs of spike-type stall inception. 

Beyond the predictive capabilities of the characteristics in Figure 3.7, time-

resolved static pressure traces at several of these operating conditions are presented. First, 

measurements collected with the baseline tip clearance (TC1) are shown for the 100% 

corrected speedline, Figure 4.1. This figure presents the offset time-resolved pressure 

traces collected at each of the eighteen locations around the compressor (six 

circumferentially-distributed sensors at each rotor). As expected from the total-to-static 

characteristic, this speed and tip clearance configuration exhibits modal stall inception 

traits. Of note, the long length-scale disturbances are observed for several rotor 
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revolutions prior to the onset of stall (approximately identified by the zero location on the 

abscissa). Tracking these “modal” oscillations through the compressor shows the mode 

speed is approximately one-fourth of the rotor rotational speed. At the onset of stall, the 

stall cell rotates at approximately one-half the rotor rotational speed. 

 

 

Figure 4.1: Time-resolved casing static pressure traces at the inception of stall 
for TC1 at 100% ௖ܰ. 
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be identified in the Rotor 1 pressure traces. Of note, one spike develops in the first sensor 

upstream of Rotor 1 at eight revolutions prior to the onset of stall, and it rotates 

approximately at the rotor rotational speed. The traces in Figure 4.2 confirm Camp and 

Day’s (1998) observations that these two stall inception mechanisms can occur 

simultaneously in the same machine. In this case, however, Figure 4.2 appears to be 

dominated by spikes than the long length-scale modal fluctuations. 

 

 

Figure 4.2: Time-resolved casing static pressure traces at the inception of stall 
for TC2 at 100% ௖ܰ. 
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adjacent rotor blade and cause spike-type stall behavior. This diagnosis from Hoying et al. 

would predict that the TC3 tip clearance configuration (and possibly also TC2) may 

display a near-tangential leakage flow trajectory for the near stall operating conditions on 

the 100% corrected speedline (based on the spikes observed emanating from the Rotor 1 
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pressure traces in Figure 4.2, e.g.), whereas the TC1 trajectory would be less inclined due 

to its modal stall tendencies (Figure 4.1). To investigate this further, time-resolved static 

pressures were measured over Rotor 1 using the removal instrumentation block described 

in Section 2.4.1. These data were collected at the near stall (NS) operating condition, 

defined by a position of 5% stall margin using Equation (3.2), as explained in Section 3.1. 

The results are analyzed in terms of root-mean-square (RMS) unsteadiness with respect 

to the ensemble average: 

 RܲMSሺݐ௜ሻ ൌ ඩ
1
ܰ
෍ሾܲሺݐ௜ሻ െ ௜ሻۧሿݐሺܲۦ

ଶ
௞

ே

௞ୀଵ

	, (4.1)

for which the phase-locked ensemble average (EA) is defined by: 

௜ሻۧݐሺܲۦ  ൌ
1
ܰ
෍ሾܲሺݐ௜ሻሿ௞

ே

௞ୀଵ

	. (4.2)

These NS results, Figure 4.3, show this predicted result by considering the over-rotor 

static pressure unsteadiness in terms of normalized RMS pressures.  

More recent studies continuing the evaluation of spike-type stall inception 

suggested by Hoying et al. (1999) have suggested the development of spike-type stall 

may not be strictly dependent on the leakage flow, but rather a radial vortex which 

develops as a result of leading edge separation (Weichert and Day, 2014; Pullan et al., 

2015). It is this radial vortex structure which propagates in front of the adjacent blade and 

leads to the spike. However, the increased incidence at the tip due to the leakage flow, 
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especially with larger tip clearance heights, as shown in Figure 4.3, is expected to 

increase the likelihood of such leading edge separation. 

 

Figure 4.3: Static pressure unsteadiness over Rotor 1, presented as an RMS with respect 
to the EA, for each tip clearance configuration at NS. 

 

Considering again the total-to-static pressure rise characteristics for the baseline 

tip clearance configuration (TC1), Figure 3.7, the 90% corrected speedline also appears 

to reach a maximum and begin to decrease – a sign of potential modal stall inception 

traits. The pressure traces for this case, Figure 4.4, reveal results which are more similar 

to TC1 at 100% corrected speed than TC2. In particular, Figure 4.4 presents long length-

scale modal tendencies which persist through all three rotor rows. However, the spike-

type signals are still present in the Rotor 1 pressure traces. Of note, there are spikes 

emanating from the first sensor of Rotor 1 at 13, 11, and five revolutions prior to the 

onset of stall, all of which fall in the troughs of the modal waves. Relative to Figure 4.2, 

these results for TC1 at 90% corrected speed represent more modal stall inception traits 

than spikes; however, both mechanisms are certainly present for this condition as well. 
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Figure 4.4: Time-resolved casing static pressure traces at the inception of stall 
for TC1 at 90% ௖ܰ. 

 

In contrast with the results presented thus far, the part-speed results for TC1 (68% 

corrected speed) are shown in Figure 4.5. These fast-response pressure traces are 

dominated by spike-type stall inception traits originating from Rotor 1. The spikes travel 

circumferentially around Rotor 1 at a rate approximately equal to the rotor rotational 

speed, and they are likely the result of localized separation regions related to high 

incidence angles for Rotor 1. However, it is interesting to note in this case that it appears 

to be Rotor 2 which first trips the compressor into stall, suggesting that the rear stages of 

the compressor could be attempting to “assist” Rotor 1 until they are no longer capable of 

doing so. The data in Figure 4.5 are shown on the same scale as the previous 100% and 

90% speedline traces for consistency. Although it may not be clear from the scale, if the 

results in Figure 4.5 were shown on a larger scale, modal stall characteristics would still 

not be present. 
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Figure 4.5: Time-resolved casing static pressure traces at the inception of stall 
for TC1 at 68% ௖ܰ. 

 

Although not all of the test cases have been presented here, these four selected 

results represent the observed trends in the compressor at different speeds and with 

different tip clearance configurations. A summary of all test cases, Figure 4.6, highlights 

several regions of a tip clearance vs. speed matrix; the four cases presented thus far are 

noted by black dots in Figure 4.6. As suggested by Figure 3.7 and shown in Figure 4.1, 

the 100% corrected speedline for TC1 portrays distinctly modal stall inception traits. This 

test case is representative of the original design conditions for the compressor, suggesting 

the compressor is likely well-matched, and it stalls via long length-scale perturbations. 

The 90% corrected speedline for TC1 and the 100% corrected speedline for TC2 

exemplify a transitional range away from the distinct modes to also incorporate spike-

type stall inception traits. Ultimately, though, the compressor exhibits clear spike-type 

stall inception mechanisms (i.e., Figure 4.5) for the conditions which depart most 

significantly from the original design intent of the machine. 
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Figure 4.6: Summary of stall inception trends for all tip clearance configurations at all 
investigated operating speeds. Pressure traces shown herein are identified by black dots. 
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CHAPTER 5: TIME-RESOLVED FLOW FIELD MEASUREMENTS 

5.1. Over-Rotor Static Pressures 

 Tip Leakage Flow Characterization 5.1.1.

The tip leakage flow trajectory can be tracked using the time-resolved static 

pressure measurement system described in Section 2.4.1. These data have been collected 

at a sampling frequency of 100 kHz with a low-pass filter cut-off frequency of 40 kHz for 

a total of 500 revolutions, as defined by the 1/rev signal from the laser tachometer. The 

large number of revolutions makes it possible to represent an average of the measured 

pressures using the phase-locked ensemble averaging (EA) technique: 

௜ሻۧݐሺܲۦ  ൌ
1
ܰ
෍ሾܲሺݐ௜ሻሿ௞

ே

௞ୀଵ

	, (5.1)

defined for each revolution ݇  and each time ݅ . Using Equation (5.1), the ensemble 

average wall static pressures over Rotor 1 at NL is shown for each of the three tip 

clearance configurations in Figure 5.1. The data presented in Figure 5.1 represent a mean 

rotor tip flow, calculated by dividing the ensemble-averaged signal into the 36 separate 

rotor blade passages, and averaging across the 36 passages. This average result is shown 

twice, assuming periodicity, to more easily discern the applicable flow features. Also in 

Figure 5.1, the axial position of the utilized sensors is shown at the bottom of each figure  
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by a series of black dots. For these initial comparisons, the data were collected at one 

position with respect to the upstream and downstream vane rows. However, these static 

pressure data were all collected at the same position with respect to the stator vanes and 

the measurement location was selected to ensure that the sensors were not positioned in 

the wake from the upstream stator vane. Further consideration is given to the variability 

of the tip leakage flow due to interaction with the adjacent vane rows in the next section. 

 

Figure 5.1: Ensemble-average static pressure over Rotor 1 for each tip clearance 
configuration at NL. 

 

The phase-locked ensemble average data in Figure 5.1 identify a low pressure 

region, representing the tip leakage flow. However, the leakage flow trajectory becomes 

less distinct downstream of approximately 60% axial chord. As an alternative method for 

identifying the leakage flow path, previous authors have also used the root-mean square 

(RMS) unsteadiness with respect to the ensemble average: 
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This definition of RMS unsteadiness provides the ability to more easily identify regions 

of pressure fluctuation. For example, the same data from Figure 5.1 (previously presented 

as an ensemble average) are recast in terms of the RMS with respect to the ensemble 

average in Figure 5.2. This figure shows that the RMS definition provides the capability 

to more easily distinguish the tip leakage flow trajectory up to nearly 80% axial chord. 

 

Figure 5.2: Static pressure unsteadiness over Rotor 1, presented as an RMS with respect 
to the EA, for each tip clearance configuration at NL. 

 

Similar to the data presented at NL, an ensemble-average of the wall static 

pressures over Rotor 1 at a high loading (HL) operating condition is shown in Figure 5.3 

for each tip clearance. Compared to the NL results, these HL data show that the tip 

leakage flow region has increased its trajectory angle across the rotor passage, as 

expected from the increased incidence angle on the rotor and the increased pressure 

difference across the blade tip. Initially, there is no discernable difference in the 
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trajectory angle between these tip clearance configurations in Figure 5.3, although the 

RMS with respect to the ensemble average can again be used to more easily track the 

leakage flow trajectory across the rotor passage. 

These RMS data, Figure 5.4, highlight flow patterns at the high loading operating 

condition which are not clearly identified in the ensemble average results of Figure 5.3. 

Of note, the trajectory angle of the tip leakage flow increases as the tip clearance height 

increases from TC1 to TC3. This observed trend can be attributed to the fact that the HL 

conditions for the three tip clearances represent operating points which are at varying 

proximity to the stall point for a particular tip clearance, as discussed in Section 3.1. In 

particular for the TC3 tip clearance configuration, Figure 5.4 shows the leakage flow 

approaches a tangential angle. 

At the HL operating condition shown in Figure 5.4, the larger tip clearance 

configurations (TC2 and TC3) show regions of large unsteadiness (RMS) where the tip 

leakage flow disturbance impinges on the adjacent blade. These data do not provide a 

definitive explanation for whether or not this machine displays the “double-leakage” 

discussed by Khalsa (1996). However, there is reason for speculation, particularly related 

to the region of high unsteadiness on the suction side of the rotor blade in the region of 30 

to 60% axial chord for TC2 and 20 to 50% axial chord for TC3. A follow-on campaign 

focused on implementing non-intrusive measurements techniques (such as PIV or LDV) 

inside the blade passage could provide more insight into this phenomenon. 
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Figure 5.3: Ensemble-average static pressure over Rotor 1 for each tip clearance 
configuration at HL. 

 

Figure 5.4: Static pressure unsteadiness over Rotor 1, presented as an RMS with respect 
to the EA, for each tip clearance configuration at HL. 

 

Using the RMS pressures shown in Figure 5.2, Figure 5.4, and a similar figure for 

the low loading condition, the effect of the tip leakage flow trajectory on loading 

condition and tip clearance height can be determined. These trajectories, shown in Figure 

5.5, have been identified as the locus of the peak RMS values. The comparison for these 

trajectories has been specifically selected for the Rotor 1 data because they represent 

comparisons of tip leakage flow trajectories which are less affected by upstream flow 

conditions. In all cases, Rotor 1 experiences the same “clean” inlet flow exiting the IGV, 

Axial Chord [%]

t /
 B

P
P

 [−
]

TC1

 

 

−20 0 20 40 60 80 100 120
0

1

2

<P>/P
amb

0.875 

0.890 

0.906 

0.921 

0.937 

0.952 

0.967 

0.983 

0.998 

1.014 

1.029 

Axial Chord [%]

t /
 B

P
P

 [−
]

TC2

 

 

−20 0 20 40 60 80 100 120
0

1

2

<P>/P
amb

0.881 

0.896 

0.910 

0.925 

0.939 

0.954 

0.969 

0.983 

0.998 

1.012 

1.027 

Axial Chord [%]

t /
 B

P
P

 [−
]

TC3

 

 

−20 0 20 40 60 80 100 120
0

1

2

<P>/P
amb

0.897 

0.910 

0.922 

0.935 

0.947 

0.960 

0.973 

0.985 

0.998 

1.010 

1.023 

Axial Chord [%]

t /
 B

P
P

 [−
]

TC1

 

 

−20 0 20 40 60 80 100 120
0

1

2

P
RMS

/P
amb

0.002 

0.004 

0.006 

0.008 

0.010 

0.012 

0.014 

0.016 

0.018 

0.020 

0.022 

Axial Chord [%]

t /
 B

P
P

 [−
]

TC2

 

 

−20 0 20 40 60 80 100 120
0

1

2

P
RMS

/P
amb

0.002 

0.004 

0.006 

0.008 

0.010 

0.012 

0.014 

0.016 

0.018 

0.020 

0.022 

Axial Chord [%]

t /
 B

P
P

 [−
]

TC3

 

 

−20 0 20 40 60 80 100 120
0

1

2

P
RMS

/P
amb

0.002 

0.004 

0.006 

0.008 

0.010 

0.012 

0.014 

0.016 

0.018 

0.020 

0.022 



127 

 
 

whereas the rotors in the aft stages of the compressor experience more flow unsteadiness 

and non-uniformities due to ingestion of the upstream flow disturbances. 

For the two high flow rate conditions, NL and LL, Figure 5.5 shows an increase 

of tip clearance height has the effect of moving the leakage flow trajectory closer to the 

blade suction surface. This figure also more clearly reveals a non-linear leakage flow 

trajectory, which is especially apparent for the TC3 tip clearance configuration at the high 

flow rate conditions, LL and NL. This observation was also noted by Yoon et al. (2006) 

near mid-chord, but the results shown here represent a less drastic turn of the leakage 

flow than was observed by those authors. Chen (1991) theoretically predicts this non-

linear trajectory, but not until the end of the passage, where the image vortices required to 

satisfy kinematic constraints change with the absence of the blade as an effective wall. 

In addition to these observed trends at high flow rate operating conditions, Figure 

5.5 also depicts a noticeable change of the leakage flow trajectory concavity at the high 

loading condition as the tip clearance height increases. The discussion of Figure 5.4 noted 

the change of the leakage flow trajectory angle between the three tip clearance 

configurations, but the locus of peak RMS values shows the two larger tip clearance 

heights turn more noticeably toward the adjacent blade. It is likely that this observed 

change of flow trajectory path is also due to the relative proximity of the HL points to the 

stall condition with different tip clearance heights. 
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Figure 5.5: Rotor 1 tip leakage trajectories for all three tip 
clearance configurations at three loading conditions 

on the 100% corrected speedline. 

 

The over-rotor static pressures presented thus far have compared the results for 

one rotor with three tip clearance heights. In contrast, Figure 5.6 shows the RMS 

unsteadiness of the static pressures over each of the three rotor rows at the NL condition 

for TC2. As with the Rotor 1 results shown above, these figures represent a mean passage, 

for which the data have been separated into the number of blades in the row (36, 33, or 30 

for Rotor 1, Rotor 2, and Rotor 3, respectively) and subsequently averaged. These 

averaged data are then repeated (assuming periodicity) to more clearly distinguish the 

flow features in the blade passages. 

In Figure 5.6, a clear distinction can be made between the data for Rotor 1 and the 

data for Rotor 2 or Rotor 3. As shown above in Figure 5.5, the trajectory of the Rotor 1 

tip leakage flow is non-linear, but this is less present in Rotor 2 or Rotor 3. Furthermore, 
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the Rotor 2 and Rotor 3 results portray a wider region of high flow unsteadiness (RMS), 

indicating a different shape of the leakage flow at these positions. 

In the same manner, Figure 5.7 shows the RMS unsteadiness over each rotor for 

TC2 at HL. As with the nominal loading condition, a clear distinction can be drawn 

between the Rotor 1 data and the results for Rotor 2 or Rotor 3. Although the angle of the 

leakage flow trajectory is similar for the three rotors, a wider region of high flow 

unsteadiness is present for the Rotor 2 and Rotor 3 results, representing a larger leakage 

flow disturbance for these rotors. 

The measurements in the fixed frame of reference for the data in Figure 5.6 and 

Figure 5.7 are nearly identical in position with respect to the upstream stator vane row 

and the associated low-pressure wake region. Thus, the results in these figures further 

emphasize the differences measured over Rotor 1, which always ingests the same clean 

inlet flow from the IGV. This compares with the latter Rotor rows, which are subject to 

flow disturbance ingestion from the upstream rotor rows, especially the flow in the outer 

region near the rotor tip affected by the tip leakage flow. 
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Figure 5.6: Static pressure unsteadiness, presented as an RMS, over each rotor  
for TC2 at NL. 

 

Figure 5.7: Static pressure unsteadiness, presented as an RMS, over each rotor  
for TC2 at HL. 

 

 

 Influence of Stator Wakes on Leakage Flow 5.1.2.

The wealth of data presented so far for this project have suggested the loading 

condition of the compressor can affect the overall influence of the tip leakage flow. In 

particular, the over-rotor static pressure time series have shown the trajectory of the 

leakage flow through the rotor passage changes significantly as the compressor loading is 
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increased toward stall. With this understanding, the rotor tip leakage flow can also be 

noticeably affected due to position with respect to the upstream stator vanes. 

In the wake of a stator vane (i.e., Stator 1), the absolute velocity deficit creates a 

corresponding increase of incidence into the downstream rotor row (i.e., Rotor 2). The 

local increase of incidence angle loads up the front of the rotor, affecting the strength and 

trajectory of the tip leakage flow (Smith et al., 2015b). As a result, the location of the 

probe in the stationary frame of reference will dictate whether or not the measured flow 

parameter (pressure, velocity, etc.) will be affected by the rotor passing through the 

upstream vane wake. 

This phenomenon is illustrated in Figure 5.8 with respect to the rotor passing 

through the upstream stator wake. In Figure 5.8(a), the rotor leading edge (Rotor 2, in this 

case) is positioned between stator wakes, and a corresponding velocity triangle is shown. 

At this location, the leakage flow propagates through the rotor passage and is measured 

by a series of probe locations at the rotor exit plane. In Figure 5.8(b), the rotor leading 

edge is located in the wake of the upstream stator, and the associated velocity triangle 

appears as a deficit of velocity in the absolute frame of reference. In this case, as the rotor 

loading increases, the leakage flow region increases in size, and the trajectory changes as 

its inception point moves upstream toward the rotor leading edge. The modulation of the 

tip leakage flow due to an interaction with the upstream stator wake has also been 

exemplified qualitatively using flow visualization photographs on the compressor casing 

endwall (Smith, 2015). 
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Figure 5.8: Schematic of the interaction between rotor tip leakage flow and upstream  
stator wake. (a) R2 passing in the middle of the S1 passage, (b) R2 passing  

through the S1 wake. Adapted from Smith et al. (2015b). 

 

As suggested by the cartoon schematic in Figure 5.8, when the rotor passes 

through the upstream stator wake (in the absolute reference frame), the velocity deficit 

causes the position of leakage flow inception to move axially upstream. The strength of 

this modulation changes for Rotor 1 compared to Rotor 2 or Rotor 3 due to the difference 

of the IGV wake compared to wake of Stator 1 or Stator 2. The fundamentals of this 

rotor-stator interaction have been documented by few authors in the past (Moyle et al., 

1996; Mailach et al., 2008; Krug et al., 2015), but a more in-depth analysis is desired to 

outline the effects of different tip clearances. The following measurements expand upon 

the findings of a recent study at part-speed operating conditions in the Purdue three-stage 

axial compressor (Smith et al., 2015b). 

 

 Stator Wake Effects on Leakage Flow Trajectory 5.1.3.

As described above, the over-rotor static pressure measurements presented in 

preceding sections were all acquired at one fixed position with respect to the upstream 

and downstream vane rows. However, the interaction of the rotor tip leakage flow and the 
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upstream stator wakes suggested by previous authors, and alluded to in the photographs 

from Smith (2015), motivates additional analysis. Thus, over-rotor static pressure 

measurements were repeated with the baseline tip clearance, TC1, at several loading 

conditions for each rotor. 

The cartoon schematic in Figure 5.9 outlines the measurement process conducted 

using the over-rotor static pressure measurement array. The sensors for these 

measurements are in fixed positions in the compressor casing, but the stator vanes can be 

moved (either together or independently) relative to these sensors. Thus, Figure 5.9 

shows representative measurements that may be measured at two vane positions with 

respect to the fixed measurement locations: (a) the sensors are located between the 

upstream stator wakes and measure the freestream flow, or (b) the sensors are 

approximately in the upstream stator wake. In each case, the time-resolved measurements 

are phase-locked with the rotor rotation, so the shaded measurement region identifies one 

blade passage of time-resolved static pressure data for each of the two vane positions. 

The cartoons in Figure 5.9 show measurements over Rotor 2 for which Stator 1 and 

Stator 2 are moved together, but similar measurements were collected over Rotor 1 and 

Rotor 3, and some data were also collected over Rotor 2 when Stator 1 and Stator 2 were 

moved independently from one another. 

 



134 

 
 

Figure 5.9: Schematic of leakage flow measurements over the rotor for two vane wake-
leakage flow interaction positions, (a) and (b). A boxed region identifies a representative 

snapshot of the leakage flow identified by the static pressure measurements. Adapted 
from Smith et al. (2015b). 

 

The first of these measurements, Figure 5.10, highlights the Rotor 1 leakage flow 

variations when moving all of the stator vanes simultaneously to 25 unique equally-

spaced pitchwise positions with respect to the fixed high-frequency-response sensor 

positions for the nominal loading (NL) condition. Figure 5.10 shows the unsteadiness 

represented by the RMS with respect to the ensemble average. For each representation of 

the pressure measurements, the diagrams may be followed in a clockwise direction, as 

identified by the directional arrow. 

To more clearly separate the modulation of the leakage flow from the 25 

pitchwise positions shown in Figure 5.10, two of the pitchwise vane positions have been 

selected for comparison. These positions, identified in Figure 5.10 as vpA and vpB, are 

located approximately 50% vane passage out of phase from one another. 

The RMS unsteadiness results for these two discrete vane positions are enlarged 

and compared in Figure 5.11(a-b). For these data, the leakage flow trajectories have been 

identified by connecting the locus of peak unsteadiness positions. The comparison of 
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trajectories, Figure 5.11(c), shows an identifiable difference between the trajectories for 

the two vane positions, vpA and vpB. This difference may seem small, but it is 

significant, especially compared to the effects observed for different tip clearances and 

loading conditions – as will be shown in further analyses. 
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Figure 5.10: Static pressure over Rotor 1, averaged for all 36 blades, in terms of RMS static pressure, at each pitchwise position 
across one vane passage (clockwise) for TC1 at NL. 

 

    (a) 

 

    (b) 

 

    (c) 

Figure 5.11: Static pressure unsteadiness (RMS) over Rotor 1 for vpA (a) and vpB (b) from Figure 5.10, and the trajectories (c). 
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The results from Figure 5.10 and Figure 5.11 identified a modulation of the 

leakage flow trajectory which agrees with flow visualization photographs (Smith, 2015). 

However, the IGV wake is expected to have a smaller effect on the leakage flow for 

Rotor 1 than the Stator 1 or Stator 2 wakes for Rotor 2 and Rotor 3, respectively. 

Furthermore, it is important here to more clearly distinguish the effects of the upstream 

vane row from those of the downstream vane row to ensure that the downstream potential 

field does not significantly impact the leakage flow development. Thus, the static 

pressures over Rotor 2 were chosen to investigate both of these hypotheses. 

To address these questions, two separate vane movement processes were 

introduced – effectively clocking the position of the IGV and Stator 1 with respect to 

Stator 2 and Stator 3. (Recall that IGV, Stator 1, and Stator 2 all have the same vane 

count of 44, which allows vane clocking studies in this facility.) Specifically, the first 

method moved IGV and Stator 1 simultaneously to the same 25 pitchwise positions as for 

Figure 5.10, while Stator 2 and Stator 3 were maintained in fixed locations. In the second 

method, Stator 2 and Stator 3 were moved simultaneously to the 25 pitchwise positions 

while the IGV and Stator 1 were held fixed. 

The calculated RMS unsteadiness pressures from this two-movement process are 

presented in Figure 5.12 at NL. This figure shows results for the first movement (Move 

IGV & S1, Fix S2 & S3) for the 25 pitchwise positions. As before, two of these positions 

are identified as vpA and vpB, and the results for those two vane positions are shown in 

Figure 5.13(a-b). Comparing the RMS unsteadiness from these two pitchwise vane 

positions, there is a region of high unsteadiness appearing for positions greater than 70% 

axial chord for vpB which does not appear for vpA. Referring to Figure 5.12, this region 
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of high unsteadiness appears and disappears while moving clockwise around the 25 

pitchwise positions. In addition, the trajectory is also compared for these two identified 

vane positions, in Figure 5.13(c). For this first vane movement process, the trajectory of 

the leakage flow modulates between vpA and vpB. In this case, the relative trajectories of 

vpA and vpB are opposite from the results shown in Figure 5.11(c). The positions of the 

IGV and Stator 1 with respect to the measurement sensors are nearly identical, but it is 

expected that the IGV wake will affect Rotor 1 differently than the effect of Stator 1 on 

Rotor 2 due the nature of the IGV as an accelerating vane row. This first vane movement 

process has isolated the upstream vanes from the downstream vanes for Rotor 2 to 

emphasize the effect of the upstream vane row on the leakage flow development. 

A similar analysis of RMS unsteadiness is also presented for the second vane 

movement process (Move S2 & S3, Fix IGV & S1), Figure 5.14. For this case, the 25 

positions in Figure 5.14 may identify a slight change of the static pressure unsteadiness 

near the trailing edge of the rotor blades where the downstream vane row may affect the 

flow, but there is no appreciable change of the leakage flow pattern or trajectory 

throughout the 25 positions. This becomes more apparent by selecting the same two 

relative positions, identified as vpA and vpB for comparison in Figure 5.15(a-b). The 

RMS unsteadiness for these two positions is nearly identical, and the trajectories traced in 

Figure 5.15(c) reinforce this invariability. Ultimately, these results in Figure 5.12 through 

Figure 5.15 highlight the effect that the upstream vane wakes may impose on the tip 

leakage flow (as suggested in the schematic of Figure 5.8), and they separate 

observations from the potential field associated with the downstream vane row. 
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Figure 5.12: Static pressure over Rotor 2, averaged for all 33 blades, in terms of RMS static pressure, at each pitchwise position 
across one vane passage (clockwise) for TC1 at NL. Only IGV and S1 are moved, S2 and S3 are fixed. 

 

    (a) 

 

    (b) 

 

    (c) 

Figure 5.13: Static pressure unsteadiness (RMS) over Rotor 2 for vpA (a) and vpB (b) from Figure 5.12, and the trajectories (c). 
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Figure 5.14: Static pressure over Rotor 2, averaged for all 33 blades, in terms of RMS static pressure, at each pitchwise position 
across one vane passage (clockwise) for TC1 at NL. Only S2 and S3 are moved, IGV and S1 are fixed. 

 

    (a) 

 

    (b) 

 

    (c) 

Figure 5.15: Static pressure unsteadiness (RMS) over Rotor 2 for vpA (a) and vpB (b) from Figure 5.14, and the trajectories (c). 
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To this point, the Rotor 1 leakage flow trajectory modulation was identified at the 

nominal loading condition. However, the IGV is expected to affect the Rotor 1 flow field 

differently than the downstream stators will affect the rotors of the latter stages. As a 

result, the static pressures over Rotor 2 were analyzed using two separate vane movement 

processes to investigate the embedded stage and separate the effects of the upstream vane 

wakes from the downstream potential field. At this point, further analysis is warranted to 

evaluate the effect of changing loading condition, and Rotor 3 was selected as the vehicle 

for this analysis. 

Figure 5.16 identifies a modulation of the leakage flow trajectory for Rotor 3 

using the simultaneous movement of all vane rows described previously for Figure 5.10. 

In Figure 5.16, the Rotor 3 unsteadiness data at the nominal loading (NL) condition show 

the modulation of the leakage flow for the 25 vane positions. Considering the pitchwise 

position identified as vpA, highlighted in Figure 5.17(a), the locations of high RMS are 

identified to approximately mid-chord, and then attenuate slightly prior to reappearing as 

a high-intensity region at the intersection with the trailing edge of the adjacent blade. In 

contrast, for vpB (Figure 5.17(b)), the high RMS regions begin to attenuate further 

forward in the passage (near 60% axial chord), but the high-intensity region at the trailing 

edge also moved forward in the passage to approximately 80% axial chord. For Rotor 3 at 

this NL condition, the trajectories identified in Figure 5.17(c) vary less than the results 

shown previously for Rotor 1 or Rotor 2 at the same loading condition. 

At the high loading (HL) operating condition for Rotor 3 in Figure 5.18, a similar 

trend can also be identified. The comparison of vpA and vpB at this HL condition in 

Figure 5.19(a-b) shows a more dramatic difference than for the NL condition. At HL, 
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Figure 5.19(a) shows the high unsteadiness region of the leakage flow attenuates at 

approximately 40% axial chord before reappearing as a region of high unsteadiness at its 

intersection with the adjacent blade, near 65% axial chord. In contrast, Figure 5.19(b) 

shows for vpB that the same attenuation occurs near 40% axial chord, but the “island” of 

high unsteadiness can then be identified near 55% axial chord, but not in contact with the 

adjacent blade. However, Figure 5.19(b) also shows a region of high unsteadiness in 

contact with the adjacent blade centered near 85% axial chord which does not align with 

the trajectory path connecting the locus of high unsteadiness for the rest of the passage. 

The leakage flows in Figure 5.19(a-b) are clearly different, and their approximate 

trajectories are traced in Figure 5.19(c). 

 



 

 
 

143 

Figure 5.16: Static pressure over Rotor 3, averaged for all 30 blades, in terms of RMS static pressure, at each pitchwise position 
across one vane passage (clockwise) for TC1 at NL using two separate vane movement techniques. 

 

    (a) 

 

    (b) 

 

    (c) 

Figure 5.17: Static pressure unsteadiness over Rotor 3 for vpA (a) and vpB (b) from Figure 5.16, and trajectories (c) (TC1, NL). 
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Figure 5.18: Static pressure over Rotor 3, averaged for all 30 blades, in terms of RMS static pressure, at each pitchwise position 
across one vane passage (clockwise) for TC1 at HL. 

 

    (a) 

 

    (b) 

 

    (c) 

Figure 5.19: Static pressure unsteadiness over Rotor 3 for vpA (a) and vpB (b) from Figure 5.18, and trajectories (c) (TC1, HL). 
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 Blade-to-Blade Leakage Flow Variability 5.1.4.

 In general, compressor measurements associated with the rotor are often 

considered in an average form, neglecting variations which may exist from one blade to 

the next – similar to the results presented in Figure 5.1 and Figure 5.2. However, small 

manufacturing defects in the blade hardware and blade row interactions within the 

machine can create substantial variations which must be considered, as identified in rotor 

wake variability studies by previous authors (Sherman et al., 1996; Boyd and Fleeter, 

2003; Key et al., 2010; Smith et al., 2015b). As a result, in addition to the influence of 

upstream stator vane wakes on the tip leakage flow, it is also desirable to investigate 

blade-to-blade variations of the tip leakage flow. 

 As explained earlier, the runout of the rotor blade tips has been evaluated to 

discern the blade-to-blade variation of static tip clearance. This information (Figure 2.8) 

shows that the blade-to-blade tip clearance varies on the order of 3×10-3 to 5×10-3 in. 

(depending on rotor row) around the circumference of the rotor. However, there is also a 

particularly large discrepancy for Blade 9 of Rotor 3, which shows a significant increase 

of tip clearance of approximately 1×10-3 in. compared to its adjacent blades. 

 Based on this blade-to-blade variability information, it is expected that a 

discernable change of tip leakage flow pattern may be identified for Blade 9 of Rotor 3. 

Indeed, if the RMS results for Rotor 3 are maintained as 30 separate data sets (one for 

each blade) instead of an “average blade” representing the entire row, Figure 5.20 shows 

that Blade 9 can be easily identified by its leakage flow pattern which differs noticeably 

from its adjacent blades. In this case, the local tip clearance increase for Blade 9 creates a 

larger region of high unsteadiness identified by the RMS which is dispersed throughout 
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the blade passage, compared with the more localized trajectories crossing the blade 

passage for the other blades. This phenomenon can be qualitatively compared with the 

change of leakage flow pattern with increased clearance height in Figure 5.2. 

 

Figure 5.20: Blade-to-blade leakage flow pattern variability for Rotor 3 with TC1 at NL. 

 

 Aside from the differences for Blade 9 identified in Figure 5.20, blade-to-blade 

variations of the tip leakage flow are also visible for other blades which do not 

necessarily correlate with the clearance variations in Figure 2.8. Figure 5.21 shows a 

similar comparison of blade-to-blade leakage flow variability, but for all 30 blades from 

the Rotor 3 row at the larger tip clearance TC3. In Figure 5.21, the 30 blades have been 

segmented into three 10-blade series. 

 For this facility, the difference of blade counts between Rotor 1, Rotor 2, and 

Rotor 3 (36, 33, and 30, respectively) introduces a 3/rev modulation of the flow field for 

both Rotor 2 and Rotor 3. Figure 5.21 highlights the effect of this 3/rev modulation on the 

tip leakage flow. If the EA static pressure signals are assessed, troughs of this 3/rev 

modulation exist at blade numbers of approximately 3, 13, and 23, and peaks are located 

at blade numbers of 8, 18, and 28. The data in Figure 5.21 identify these same trends as 

the 3/rev troughs at Blades 3, 13, and 23 show lower leakage flow intensities than the 

peaks at Blades 8, 18, and 28. 
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Figure 5.21: Blade-to-blade leakage flow pattern variability for Rotor 3 with TC3 at NL. 

 

 However, the results in Figure 5.21 tell an additional story as the 3/rev 

modulation is superimposed with the 1/rev tip clearance variations identified for Rotor 3 

in Figure 2.8. A specific comparison of the leakage flow pattern for Blades 3, 13, and 23 

(the troughs of the 3/rev modulation) shows highest intensity in the leakage flow for 

Blade 23 and lowest intensity (with more dispersed unsteadiness) for Blade 3. Referring 

to Figure 2.8, this aligns with an observation that larger clearance heights lead to 

decreased unsteadiness intensity in the leakage flow region as it is more dispersed 

through the blade passage. 

 Based on the data shown in Figure 5.20 and Figure 5.21, it is determined that the 

effect of small blade-to-blade tip clearance variations, such as the one identified for 

Blade 9 from Rotor 3, are most noticeable in the leakage flow unsteadiness if the tip 

clearance height is small (i.e., TC1 instead of TC3). This observation is due to the fact 

that a 1×10-3 in. change represents a larger fraction of the overall clearance height for 

TC1 (nominally 0.030 in.) than for TC3 (nominally 0.080 in.). 
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 An in-depth investigation of the spectral content for these over-rotor static 

pressures uncovers additional information. The Fourier transforms are shown in Figure 

5.22 for frequencies up to the 50 engine order (EO) based on the rotor revolution 

frequency. The data in Figure 5.22 correspond to measurements at the 9% axial chord 

position, which was selected in this case because it represents the approximate position of 

inception for the tip leakage flow. As the rotor tip clearance is increased from TC1 to 

TC3 in Figure 5.22, these Rotor 3 measurements show additional energy in the 36/rev 

component propagating from the Rotor 1. This is expected as the larger tip clearance 

leads to a more intense (as measured by the flush-mounted sensors) tip leakage flow 

structure from each rotor (with the same frequency as the blade passing frequency of the 

rotor) which persists through the downstream blade rows. 

 

Figure 5.22: Spectral magnitudes of Rotor 3 pressure measurements at 9% axial chord for 
NL condition. 

 

 The spectral magnitudes from each sensor are also shown for the 3/rev, 30/rev, 
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pronounced for TC3 than TC1. However, the spectral content in Figure 5.22 and Figure 

5.23 show that the 3/rev magnitudes decrease as the tip clearance is increased. For these 

larger tip clearance configurations, the 3/rev energy appears to be redistributed to other 

frequencies (e.g., 6/rev and 9/rev). Here, the 3/rev modulation of the leakage flow 

identified in Figure 5.21 is caused by the incoming wakes, and the corresponding 

frequency content is not necessarily expected to be sensed by the static pressure sensors.  

 As shown in Figure 5.22, the 36/rev component associated with Rotor 1 increases 

with tip clearance at the leading edge of Rotor 3, but the three tip clearances become 

more uniform as the 36/rev magnitudes decrease toward the trailing edge. In contrast, the 

33/rev magnitudes are nearly uniform near the leading edge, whereas the larger tip 

clearance shows magnitudes increasing toward the trailing edge.  

 

Figure 5.23: Spectral magnitudes from each sensor for selected frequency components 
from Figure 5.22. 
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6/rev magnitudes do not change significantly enough to cause the observed effect of the 

36/rev magnitude. Although the 30/rev peaks are not shown in the scale of Figure 5.22, 

the trends in Figure 5.23 show the relative change of magnitude at the 30/rev frequency is 

less than 10% of the changes noted for the 36/rev peaks. 

 Based on these results in Figure 5.22 and Figure 5.23, an increase of tip clearance 

appears to cause the spectral magnitude from an upstream rotor blade passing frequency 

to increase only after propagating through a second rotor blade. In this case, the increased 

tip clearance causes an increase of the Rotor 1 frequency content sensed by Rotor 3. 

 Similar to the stator wake interactions highlighted in Section 5.1.3, the blade-to-

blade variations identified in Figure 5.20 and Figure 5.21 are also important for 

quantifying changes of the tip leakage flow angle. In this case, the leakage flow angle, ߦ, 

is defined with reference to an axial reference datum, as shown in Figure 5.24. In Figure 

5.24, two leakage flow trajectories are shown for Rotor 1 and Rotor 3 at each loading 

condition, NL and HL. The minimum and maximum traces define the envelope of 

trajectory angles representing the blade-to-blade variations. This angular envelope for 

Rotor 1 is 1.8 degrees for both NL and HL. The blade-to-blade variation of trajectory 

angle shows no discernible trend with the tip clearance height, and no rotor-rotor 

interactions are expected for the Rotor 1 results. 

 However, several differences exist for the Rotor 3 results in Figure 5.24 compared 

to Rotor 1. In particular, the envelope of blade-to-blade trajectory angle variation for 

Rotor 3 is 1.5 degrees for NL, but increases to 2.2 degrees for HL. Also, the axial 

location of leakage flow inception and the leakage flow trajectory angle are more similar 

between the NL and HL positions for Rotor 3 than for Rotor 1. In this case, although a 
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weak trend of trajectory angle with blade-to-blade tip clearance variation exists, there is 

no discernible trend associated with the other engine-order frequencies introduced 

previously. Although not shown here, the Rotor 2 envelopes are identical to the Rotor 3 

trends (1.5 and 2.2 degrees for NL and HL respectively). 

 

  

Figure 5.24: Maximum and minimum leakage flow angle variations for Rotor 1 and 
Rotor 3 (TC1). 

 

 

 Quantifying Tip Leakage Flow Trajectory 5.1.5.

 Using the leakage flow trajectory identification techniques presented herein, the 

angle of the leakage flow trajectory can be determined. Because the sensors are flush-

mounted with the casing inner diameter, the distance between the sensors and the blade 

increases with tip clearance. As a result, the pressure and RMS levels will not have the 

same magnitude across tip clearances. Thus, the trajectory angle provides a unique 

method for assessing differences associated with different tip clearances. 

 The results from the present study are shown for each of the three rotors at the 

four loading conditions in Figure 5.25. Several of the NL and HL data points for TC1 in 
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Figure 5.25 also include range bars which identify the variations of tip leakage trajectory 

angle associated with the modulation of the tip leakage flow due to the upstream vane 

wakes (as calculated using information similar to Figure 5.13). The data in Figure 5.25 

are again presented as a function of averaged measured tip clearances instead of the 

“nominal” design values. These operating clearances account for thermal growth 

differences related to changes in loading and ambient temperature discussed by Berdanier 

and Key (2015a). 

 

 

Figure 5.25: Leakage flow trajectory angle versus normalized clearance height. Range 
bars identify change of trajectory angle due to interaction with the upstream vane wake. 
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observation aligns with the observation that all rotors experience loading levels for HL 

which are at closer proximity to the stall point as the tip clearance height is increased. 

 The results for Rotor 1 in Figure 5.25 show that the leakage trajectory angles vary 

almost linearly with increasing rotor tip clearance for the range of clearances investigated 

in the present study. In contrast to these Rotor 1 observations, the data for Rotor 2 and 

Rotor 3 show insignificant changes of leakage flow trajectory angle for a tip clearance 

change from TC1 to TC2. This noted difference for Rotor 2 and Rotor 3 is crucial to this 

study because it shows a trend which would be otherwise overlooked if only two tip 

clearances were studied. This difference of leakage flow trajectory angles between Rotor 

1 and the other two rotor rows agrees with previous observations in this facility noting a 

difference of Rotor 1 performance with increased tip clearance. 

 Results similar to the measurements presented in Figure 5.25 have also been 

collected by Yoon et al. (2006) over Rotor 3 in a four-stage low-speed research 

compressor with repeating stages. A comparison of the Rotor 3 results from the present 

study with the measurements collected by Yoon et al. is shown in Figure 5.26. 

 Previous authors have introduced the clearance derivative as a method for 

evaluating the change of a particular parameter with changes in tip clearance. In this case, 

a clearance derivative for leakage flow trajectory angle is defined with respect to the 

clearance-to-pitch ratio: 

కߜ  ൌ
Δߦ

Δሺ߬/ݏሻ
	. (5.3)

 In Figure 5.25 and Figure 5.26, the clearance-to-pitch ratio was selected instead of 

the clearance-to-chord ratio used by Yoon et al. (2006) (or clearance-to-span, which is 
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typically used as a metric for efficiency changes) to present trajectory angle changes. The 

clearance-to-pitch ratio was chosen to avoid discrepancies of aspect ratio between the two 

facilities compared in Figure 5.26. A comparison between the four-stage low-speed 

research compressor used by Yoon et al. with the machine used for the present study 

shows a difference of aspect ratio from approximately 1.2 to approximately 0.7, 

respectively. 

 The relationship between pitch and blade loading, as well as the contribution of 

pitch as a representative length scale in the measurement plane over the rotor, combined 

to guide the selection of clearance-to-pitch as the representative metric for comparison. 

However, the relative dissimilarity of blade pitch for Yoon et al. (2006) and the present 

study creates an opportunity to evaluate the dependence of observed trends to a particular 

compressor design. 
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Figure 5.26: Rotor 3 leakage flow trajectory trends 
compared with results from Yoon et al. (2006). 
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degree of trajectory angle increase is predicted for every one percent of clearance-to-pitch 

when rotor incidence is large and positive. Although these data show rules of thumb 

which may apply for large clearance changes, it is very important to observe that a 

critical clearance may exist, leading to significant differences of the clearance derivative 

for leakage flow angle assessed here. For the present study, the critical clearance 

represents the TC2 clearance height. By this proposed effect, a change from a “small” to 

a “moderate” clearance height (i.e., TC1 to TC2) may be met by little or no change of 

leakage flow angle, whereas a change from a “moderate” to “large” clearance height (i.e., 

TC2 to TC3) may incur significant changes. 

 Further comparison of the present study results in Figure 5.26 with the data from 

Yoon et al. (2006) also shows that the peak efficiency point from the comparison study 

has a positive clearance derivative which was not observed in the present study. Based on 

the rule-of-thumb trends suggested here, it is assumed that the rotor may operate at a 

higher loading at the peak efficiency point for the machine investigated by Yoon et al. 

than the compressor in the present study. 

 For all rotors, the range bars in Figure 5.26 show that the leakage flow modulation 

associated with the upstream vane wake has a profound influence on the leakage flow. In 

fact, the change of leakage flow angle due to this stator-rotor interaction is greater than 

the change due to a doubling of the tip clearance height (TC1 to TC2). Additional 

research may be required to determine whether the observed leakage flow angle ranges 

identified for the TC1 loading conditions in Figure 5.25 are similarly present for other 

clearance configurations and loading conditions. At this point, however, there is 

sufficient information to determine that the stator-rotor interaction plays a significant role 
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in the development of the tip leakage flow, and this relationship must be considered when 

comparing experimental data with computational results. 

 

5.2. Rotor Exit Total Pressures 

 Influence of Stator Wakes on Leakage Flow at Rotor Exit Planes 5.2.1.

To further capture the effect of the upstream vane wake on the rotor tip leakage 

flow, the time-resolved total pressure measurements downstream of the rotor blade rows 

have been completed for up to 28 radial positions at each of the 26 pitchwise positions 

(pp) across one vane pitch. (Of these 26 positions, 25 are unique positions, since one pair 

of positions, pp1 and pp26, are periodic with respect to the vane pitch.) The cartoon 

schematic in Figure 5.27 shows the relative locations of the probe positions at the rotor 

exit plane for simultaneous movements of all vane rows as the rotor interacts with the 

upstream vane wake to modulate the rotor tip leakage flow. 

 

Figure 5.27: Schematic of leakage flow measurements at rotor exit planes for two vane 
wake-leakage flow interaction positions, (a) and (b). Adapted from Smith et al. (2015b). 
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The time-resolved total pressure measurements are presented here as an 

unsteadiness using the RMS with respect to the ensemble average, as defined in Equation 

(5.2). This presentation of results accommodates the identification of recirculating flow 

regions expected in the tip leakage flow disturbance, as well as the rotor wake. These 

RMS measurements are presented for the Rotor 1 exit plane at the NL and HL operating 

conditions in Figure 5.28 and Figure 5.29, respectively. 

In these figures, the RMS with respect to the ensemble average (pertaining to 500 

revolutions, for these data) has been calculated at each circumferential vane position, and 

then averaged across all rotor blades (36 blades for Rotor 1) to identify an averaged rotor 

passage. The IGV wake is very thin and has a minimal effect on the downstream rotor 

row. As a result, Figure 5.28 and Figure 5.29 show a weak modulation of the tip leakage 

flow across one vane pitch (following the figures in a clockwise direction, denoted by the 

titles pp1-pp26). However, an increased unsteadiness at the center of the leakage flow 

region is identifiable, particularly for the TC3 tip clearance configuration measurements 

at the NL operating condition in Figure 5.28. In addition to the pitchwise modulation of 

the flow field exemplified by the 26 circumferential measurement positions, a mean 

contour represents the rotor wake averaged across one vane pitch. The PS and SS of the 

rotor blade are also labeled in this mean contour to orient the figure. 

At the nominal loading condition, Figure 5.28, a clear distinction can be made 

between the tip leakage flow regions for each of the tip clearance configurations, TC1 

and TC3. For the smaller tip clearance, the unsteadiness due to the tip leakage flow 

occupies a region which extends down from the outer casing endwall to approximately 80% 

annulus height, whereas the larger tip clearance height shows a leakage flow region 
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which reaches approximately 70% annulus height, as well as affecting a noticeably larger 

area in the pitchwise direction. 

At the same Rotor 1 exit position for the HL operating condition, Figure 5.29 

shows the TC1 leakage flow region no longer has a coherent circular shape, but rather 

fills a corner area adjacent to the pressure side of the rotor wake. The TC3 tip clearance 

configuration, on the other hand, maintains a shape which closely resembles the result 

from the NL condition in Figure 5.28. However, its size and relative intensity of the 

unsteadiness parameter are both increased at the higher loading condition. Also at the HL 

condition, both tip clearance configurations show a noticeable change as the hub corner 

separation off the suction surface, previously observed at NL, grows into a thick wake 

which extends above 50% annulus height. 
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Figure 5.28: Average Rotor 1 exit flow field, in terms of RMS total pressure, at each circumferential location across one vane 
passage (clockwise) at NL. 
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Figure 5.29: Average Rotor 1 exit flow field, in terms of RMS total pressure, at each circumferential location across one vane 
passage (clockwise) at HL. 
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Time-resolved total pressure measurements at Rotor 2 exit for the NL and HL 

operating conditions, Figure 5.30 and Figure 5.31, respectively, are also presented as the 

RMS unsteadiness with respect to the ensemble average. At Rotor 2 exit, the leakage 

flow modulation is more clearly denoted by following the measurements at each position 

across one vane pitch. For TC1 at the nominal loading condition, two adjacent high-

intensity regions of flow unsteadiness are identifiable in the outer tip region for the 

measurements labeled pp1–pp7. These two regions compare with the results observed in 

Figure 5.6 (for TC2, although the figure for TC1 is similar), which is expected based on 

the position of the static pressure measurements falling in this same range with respect to 

the stator vanes. The strength of the two high-unsteadiness regions is also sufficiently 

significant to persist into the circumferential mean for TC1 in Figure 5.30. The TC3 

results in Figure 5.30 position the extremes of the pitchwise leakage flow modulation in 

the same locations as for TC1. Further, the measurements are similar to the observations 

for Rotor 1, such that the radial extent of the leakage flow region for TC3 extends to 

approximately 70% annulus height, compared to 80% for TC1. 

At the high loading condition for Rotor 2 presented in Figure 5.31, the 

unsteadiness of the flow identified by the RMS fluctuations shows less modulation than 

at the nominal loading condition (the RMS of the passage represents magnitudes which 

exist more in the middle of the prescribed contour range), especially for TC1. However, 

two regions of high pressure unsteadiness are still faintly present in the mean contour for 

TC1. Comparing the HL condition with the NL results for Rotor 2, the circumferential 

probe position which yields the most intense leakage flow structure is not the same. This 

result is expected as the width of the upstream stator wake is significantly changed 
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between the two conditions. Furthermore, the trajectory of the leakage flow is expected to 

change as the rotor loading is increased. 
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Figure 5.30: Average Rotor 2 exit flow field, in terms of RMS total pressure, at each circumferential location across one vane 
passage (clockwise) at NL. 
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Figure 5.31: Average Rotor 2 exit flow field, in terms of RMS total pressure, at each circumferential location across one vane passage 
(clockwise) at HL. 
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Similar to the other rotor rows, the unsteadiness of the Rotor 3 exit total pressure 

is shown in Figure 5.32 and Figure 5.33 for the NL and HL operating conditions, 

respectively. At the NL condition, the results for TC1 identify two adjacent regions of 

high unsteadiness (in agreement with other results in this section of the document) – one 

in the middle of the passage and another adjacent to the blade pressure surface. As with 

Rotor 2, this observation compares with the over-rotor static pressures for TC2 at the NL 

condition (Figure 5.6). For the TC3 configuration, the circumferential modulation of the 

leakage flow in Figure 5.32 is less discernable compared to the TC1 measurements. This 

observation suggests the leakage flow region with the large tip clearance height is less 

sensitive to the influence from the upstream stator vane. 

For the high loading condition, Figure 5.33, the TC1 unsteadiness is dominated by 

the rotor wake more than the leakage flow. Comparing the pitchwise modulation results, 

the location with the smallest or weakest leakage flow region corresponds to the most 

significant rotor wake, as the decreased leakage flow blockage provides less energizing 

benefit to the suction surface wake separation tendencies in the lower portion of the 

annulus. Similarly, the positions with the largest leakage flow regions show the least 

suction surface separation (i.e., the thinner rotor wakes). Also at the high loading 

condition, Figure 5.33 shows the leakage flow region for TC3 fills nearly the entire 

circumferential extent of the rotor passage, with radial extent down to approximately 70% 

annulus height. In contrast, the region of high unsteadiness identified as the leakage flow 

for TC1 only affects approximately half of the rotor passage (in the circumferential 

direction) with radial extent to just below 80% annulus height, but with a more 

significant rotor wake. 
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Ultimately, these rotor exit total pressure measurements provide valuable insight 

into the rotor tip leakage flow structure as it enters the downstream vane passage. 

Furthermore, the influence of the upstream stator wake can play an important role in the 

size, shape, and trajectory of the leakage flow through the rotor passage – particularly for 

Rotor 2 and Rotor 3. In combination with the over-rotor static pressure measurements, 

these rotor exit data can provide bounding planes which could be used to guide future 

measurements in the rotor passage collected using non-intrusive measurement techniques. 
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Figure 5.32: Average Rotor 3 exit flow field, in terms of RMS total pressure, at each circumferential location across one vane 
passage (clockwise) at NL. 
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Figure 5.33: Average Rotor 3 exit flow field, in terms of RMS total pressure, at each circumferential location across one vane 
passage (clockwise) at HL. 
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 Quantifying the Size of the Leakage Flow 5.2.2.

The RMS unsteadiness of these rotor exit total pressure data provides an 

opportunity to quantify the size of the leakage flow region at the rotor exit measurement 

planes. Suder (1998) used the calculation of axial velocity gradients to identify a defect 

region for quantifying flow blockage. A similar method has been implemented with these 

RMS total pressures to identify a defect region. Specifically, the gradient of RMS 

pressure was calculated in the radial and circumferential directions, and a cutoff value 

was assigned to determine the defect region, as exemplified in Figure 5.34. Once the 

defect region was identified, a human-guided selection tool in the plotting GUI manually 

separated the points from the defect region associated with the leakage flow from those 

associated with the rotor wake or the hub endwall boundary layer. These separated 

leakage flow points are also highlighted for the example in Figure 5.34. The points 

identified to be associated with the leakage flow disturbance region were then integrated 

across the passage to determine the percentage of the rotor exit flow passage which is 

influenced by the tip leakage flow. 
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Figure 5.34: Identification of defect region associated with leakage flow unsteadiness. 

 

This process was repeated for each of the 26 pitchwise measurement positions 

presented in Figure 5.28 through Figure 5.33. Because there is a potential effect of the 

calculated value associated with the human-guided identification technique, the 

identification process was repeated three times for all of the data sets. This repetition 

facilitates the calculation of pertinent statistics related to human-introduced variability. 

The average of these leakage flow areas was then calculated at each pitchwise position 

for each measurement condition. 

A passage-averaged value was calculated for each measurement condition, as 

shown by the filled bar plots in Figure 5.35. From the figures above, the leakage flow 

region can change significantly for the different pitchwise measurement positions. Thus, 

the minimum affected area and maximum affected area are noted in Figure 5.35 by range 

bars about the passage-averaged value. For reference, and in the context of the results 
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standard deviation with respect to the sample mean. The calculated disturbed areas yield 

a standard deviation of less than 2% of the passage area for all conditions with the TC1 

configuration. The TC3 data have a standard deviation of less than 2.5% of the passage 

area for Rotor 1 and Rotor 2 data, but approaching 5% of the passage area for the Rotor 3 

data. 

The information in Figure 5.35 shows the expected result of increased leakage 

flow disturbed area as the rotor tip clearance height is increased. Rotor 2 shows the 

lowest percentage of affected area for both tip clearances and both loading conditions, 

which is perhaps unexpected given the knowledge presented thus far about latter stages 

ingesting the high-loss leakage flow from the upstream rotor(s). Figure 5.35 also shows 

that Rotor 1 has the least pitchwise variability of the leakage flow size, which aligns with 

the fact that the IGV has a thinner wake than Stator 1 or Stator 2. This result can be 

referred to flow visualization photographs highlighting the leakage flow variability for 

TC1 from Smith (2015), which shows the significant difference of leakage flow 

modulation for Rotor 1 compared to Rotor 2 or Rotor 3. Furthermore, Figure 5.35 shows 

a similarity between Rotor 1 and Rotor 2 (compared to Rotor 3). To this point, the 

similarities between rotor rows or stages in the facility have been noted between Rotor 2 

and Rotor 3, whereas Rotor 1 has performed differently. 

At the NL condition, the increase of leakage flow affected area between TC1 and 

TC3 is an identical 10.5% for both Rotor 1 and Rotor 2, whereas Rotor 3 shows a smaller 

increase of 7.6%. At the HL condition, the same comparison is echoed as Rotor 1 and 

Rotor 2 show an identical increase of 15.3% between Rotor 1 and Rotor 2, whereas Rotor 

3 shows a smaller increase of 10.4%. Based on these data, Rotor 3 shows a consistent 
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trend of 30% less increase of leakage flow area between TC1 and TC3 compared to Rotor 

1 and Rotor 2 for these loading conditions. These results, combined with previous 

observations suggesting the importance of evaluating three tip clearances instead of two, 

motivate follow-on work measuring these same phenomena for the intermediate 

clearance, TC2. 

 

 

Figure 5.35: Percentage of rotor passage affected by tip leakage flow:  
passage-averaged value and range. 
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tip clearance conditions. However, a quantification of the flow angles provides an 

additional method by which to evaluate the overall effect of the rotor tip leakage flows 

and validate computational tools. The slanted hot-wire technique implemented for these 

measurements provides valuable three-component velocity information about the flow 

features, as described in Section 2.4.3. At each of the axial measurement planes 2 through 

8 (see Figure 2.6), hot-wire data were collected at up to 28 radial positions across the 

annulus height and a series of circumferential positions across one vane pitch. Data were 

sampled at a rate of 1 MHz for 200 rotor revolutions. Several methods for evaluating the 

results are presented here which feature results to complement the measurement 

techniques already introduced. 

 

 Time-Averaged Flow Angles and Velocity 5.3.1.

To analyze the flow angles output from the slanted hot-wire processing technique, 

the radial profiles at each axial measurement plane are considered for two tip clearance 

configurations (TC1 and TC3). For these results, the passage-averaged flow angles were 

calculated using data collected at several measurement positions with respect to the fixed 

vanes (13 circumferential positions for rotor exit planes and 20 circumferential positions 

for stator exit planes). 

The absolute flow angles for both tip clearance configurations at the nominal 

loading (NL) operating condition are shown in Figure 5.36. As the tip leakage flow 

passes from the rotor pressure surface to the suction surface, its trajectory across the rotor 

passage is interpreted in the flow angles as underturning in the rotor relative frame of 

reference. However, the corresponding decrease of local flow velocity in the endwall 
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region as a result of the flow blockage due to the tip leakage flow is significant enough to 

cause the absolute flow angles to increase in the tip region at the rotor exit 

(Lakshminarayana and Pandya, 1984; Goto, 1992). This effect is clearly observed at the 

rotor exit planes in Figure 5.36. As the rotor tip clearance height is increased, the 

increased flow blockage from the larger leakage flow region is noted as the absolute flow 

angle at the rotor exit planes also increases. 

In Figure 5.36, the Rotor 1 exit angles are distinctly different than those for the 

Rotor 2 and Rotor 3 exit angles. In fact, a comparison of the Rotor 2 and Rotor 3 exit 

angles for either tip clearance configuration, TC1 or TC3, shows nearly identical radial 

profile shapes and magnitudes. This observation aligns well with the previous notes that 

Rotor 1 performs differently than Rotor 2 and Rotor 3 in the Purdue three-stage 

compressor. 

At this same loading condition, the radial profiles of stator exit angle are less 

affected by tip clearance height than the rotor exit profiles for these passage-averaged, 

time-averaged results. The Stator 1 exit results present an increase of absolute flow angle 

in the outer 40% annulus height as the rotor tip clearance height is increased, indicating 

that the decreased flow velocity in this region causes the stator loading to increase and 

the stator is less capable of performing the same amount of flow turning when the Rotor 1 

tip clearance height is increased. At the Stator 2 and Stator 3 exit planes, the curvature of 

the absolute flow angle profile changes as the rotor tip clearance height is increased, and 

both stators (most notably Stator 3) show a slight decrease of flow angle in the outer 15% 

annulus height near the tip region. Referring to the steady detailed total pressure contours 

for Stator 2 and Stator 3 at the NL operating condition, Figure 3.33 and Figure 3.35, 
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respectively, this change of flow angle is due to the slight shift of the location of 

maximum wake thickness toward the hub. 

The same passage-averaged, time-averaged radial profiles of absolute yaw angle 

are also considered at the high loading (HL) operating condition, Figure 5.37. Similar to 

the observations at the NL operating condition, these HL data echo the difference 

between the results at Rotor 1 exit and those at Rotor 2 or Rotor 3 exit. At all three rotor 

exit planes for HL, however, the shift between the two tip clearance configurations is 

nearly twice that observed for NL. As the leakage flow region overtakes a more 

significant area at the high loading condition, Figure 5.37 shows a decrease of absolute 

yaw angle at Rotor 1 exit (due to the redistribution of mass flow) for the lower 70% 

annulus height which was less noticeable at the NL operating condition. Also at the HL 

condition, Figure 5.37 shows the reduction of the Stator 2 hub corner separation for TC3 

compared to TC1 has a profound effect on the radial yaw angle profile in the same region 

occupying the lower 35% annulus height. This observation compares well with the results 

in Figure 3.34. 
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Figure 5.36: Radial profiles of absolute yaw angle at NL. 

 

Figure 5.37: Radial profiles of absolute yaw angle at HL. 
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annulus height. Indeed, the NL results of passage-averaged, time-averaged pitch angle 

profiles, Figure 5.38, show a slight positive profile across the entire annulus for TC1. For 

TC3, Figure 5.38 further identifies the redistribution of flow from the tip toward the hub 

as the pitch angles in the flow regions unaffected by the leakage flow (i.e., less than 70% 

annulus height) decrease on the order of five degrees. This net change of pitch angles 

between TC1 and TC3 confirms flow redistribution from the tip toward the hub. 

At the HL operating condition, Figure 5.39, similar trends of pitch angle with 

annulus height are observed as the rotor tip clearance height is increased from TC1 to 

TC3. Especially for the Stator 2 exit results, the considerable decrease of hub corner 

separation with increased tip clearance height is also noted in the pitch angles. 

 

Figure 5.38: Radial profiles of pitch angle at NL. 
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Figure 5.39: Radial profiles of pitch angle at HL. 
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The results in Figure 5.40 show important trends at both loading conditions. In 

particular, a comparison of the two rotors at NL or HL shows qualitatively similar 

profiles for each of the two tip clearance configurations. At the NL condition, Figure 

5.40(a), there is a noticeable decrease of axial velocity in the tip region for both rotors 

and both tip clearances. However, the velocity profile has a profile across the span which 

resembles a parabolic profile. This contrasts with the HL condition, Figure 5.40(c), which 

shows a noticeable decrease of axial velocity near the tip (outer 20-30% span), but a more 

constant axial velocity profile across the lower 70-80% span. A comparison with the 

time-resolved total pressure measurements in Figure 5.30 through Figure 5.33 shows that 

this change of velocity profile is due to the thicker rotor wake at the high loading 

conditions, for which the separation off the suction surface of the rotor blade becomes 

more significant across a more substantial portion of the span. 

 

 

(a) NL 

 

(b) HL 

Figure 5.40: Radial profiles of normalized axial velocity at Rotor 2 and Rotor 3 exit. 
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 Blockage 5.3.2.

In addition to the flow angles presented in the previous section, the flow blockage 

at each axial measurement plane has been quantified using the method outlined by Suder 

(1998). The blockage quantification method is defined for an effective reduction in flow 

area: 

ܤ  ൌ 1 െ
effective	area
geometric	area

	. (5.4)

This equation is further defined by evaluating the effective area as a function of the 

velocity-density deficit in the flow region, ߜ∗: 

ܤ  ൌ 1 െ
ܣ െ ݎ݀∗ߜ׬

ܣ
	, (5.5)

for which ܣ represents the geometric flow area. The velocity-density deficit is analogous 

to the displacement thickness introduced through fundamental boundary layer theory: 

∗ߜ  ൌ න ൬1 െ
ݑߩ

ሺݑߩሻinviscid
൰ ߠ݀ݎ

ଶగ/NB

଴

	, (5.6)

where NB is the number of blades (or vanes) in the row of interest. 

For these data, the blockage can be calculated at the rotor exit planes by analyzing 

time-series measurements. The time series is first phase-locked ensemble-averaged, then 

passage-averaged across one vane pitch, and finally averaged over each of the blades in 

one row; this final product represents a mean rotor wake at the given measurement plane 

and loading condition. Similarly, the same blockage parameter can be calculated in a 

spatial reference frame (instead of a time series) at stator exit planes, for example. At 
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these locations, the hot-wire signal is time-averaged and then presented as a function of 

pitchwise location. 

In either case, the physical method described by Suder (1998) is the same: 

determine a defect region via axial velocity gradients and the selection of an arbitrary 

cutoff value. For this study, the cutoff value was chosen to be 3 s-1 for all conditions. In 

agreement with Suder’s conclusion, the arbitrary selection of the cutoff values has a 

negligible effect on the result (less than 5% change of calculated blockage values). 

Several cutoff values in the range of 1-5 s-1 were considered for these data. Examples of 

the axial velocity data and the corresponding defect region are shown in Figure 5.41 and 

Figure 5.42 for rotor exit data and stator exit data, respectively. 

 

Figure 5.41: Example of defect region identification for Rotor 2 exit (TC1, NL). 
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Figure 5.42: Example of defect region identification for Stator 1 exit (TC1, NL). 
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80 to 90% annulus height, the Rotor 1 exit data are nearly 20% different between the two 

tip clearance configurations across the region spanning 80 to 100% annulus height. 

The Stator 2 exit total pressures, Figure 3.33, reveal that the increased blockage in 

the tip region at the same location in Figure 5.43 is largely due to low pressure regions 

near the wall, not the wake itself. On the other hand, the Stator 3 exit total pressures 

(Figure 3.35) show a thicker wake in the outer 50% of the flow annulus between the two 

tip clearance configurations. However, this blockage effect is only identified for the outer 

30% of the flow annulus. 

 

Figure 5.43: Radial profiles of blockage at NL. 
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contours of RMS total pressure show the leakage flow region is decreased at high loading, 

but at the expense of a very thick wake at HL which extends across a majority of the 

passage. Based on the calculated values in Table 5.1, the more intense fluctuating wake 

region extending across the blade span is significant enough to offset the blockage 

created by the leakage flow at NL (and more). Also at the three rotor exit planes, the 

blockage differences between the two tip clearance configurations approach 30% and the 

radial extent begins at approximately 70% annulus height for all rotors – a similarity 

which was not observed as clearly for the three rotors at the NL condition. 

 

Figure 5.44: Radial profiles of blockage at HL. 

 

For the high loading condition, a comparison of the two tip clearance 

configurations at Stator 2 exit confirms the expectations from the steady total pressure 

traverses shown previously in Figure 3.34 and flow visualization photographs. Although 

the Stator 2 exit blockage in Figure 5.44 increases across the outer 60% annulus height 

(on the order of 10% increased blockage), the reduction of the corner separation region 

0 20 40 60 80
0

20

40

60

80

100

B
3
 [%]

Rotor 1 Exit

A
nn

ul
us

 H
ei

gh
t [

%
]

0 20 40 60 80
0

20

40

60

80

100

B
4
 [%]

Stator 1 Exit

0 20 40 60 80
0

20

40

60

80

100

B
5
 [%]

Rotor 2 Exit

 

 

TC1
TC3

0 20 40 60 80
0

20

40

60

80

100

B
6
 [%]

Stator 2 Exit

0 20 40 60 80
0

20

40

60

80

100

B
7
 [%]

Rotor 3 Exit

0 20 40 60 80
0

20

40

60

80

100

B
8
 [%]

Stator 3 Exit



186 

 
 

off the suction surface of the vane is represented by the decrease of blockage in the lower 

40% annulus height (on the order of 10% decreased blockage).  

 

Table 5.1: Summary of one-dimensional blockage parameters, listed in percent flow area. 

TC Config. Loading R1 Exit S1 Exit R2 Exit S2 Exit R3 Exit S3 Exit 

TC1 
NL 9.1 6.8 9.3 7.4 8.4 6.2 

HL 10.2 10.0 11.8 12.4 11.8 12.3 

TC3 
NL 15.5 9.4 9.0 10.9 7.6 8.5 

HL 16.6 9.4 16.4 15.4 13.3 14.2 

  
 

 Streamwise Vorticity 5.3.3.

The streamwise vorticity provides an additional method for evaluating the leakage 

flow region once the three-dimensional velocity vectors are known. Because the 

ensemble-average technique has been used to calculate the velocity vectors, the presence 

of an instantaneous vortex cannot be evaluated. However, this technique can still 

determine the average rotational motion in the leakage flow region. 

Inoue et al. (1986) define the streamwise vorticity by calculating the projection of 

two vorticity components on the streamwise flow direction (defined by the relative flow 

angle, ߚ): 

 ߱௦௧ ൌ ቈ
1
ݎ
߲ሺݎ ఏܸሻ
ݎ߲

െ
1
ݎ
߲ ௥ܸ

ߠ߲
቉ cos ߚ െ ൤

1
ݎ
߲ ௥ܸ

ݔ߲
െ
߲ ௫ܸ

ݎ߲
൨ sin (5.7) ,	ߚ
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where the first bracketed terms represents the axial vorticity, ߱௫ , and the second 

bracketed term represents the tangential vorticity, ߱ఏ. Unlike the measurements collected 

by Inoue et al., the data collected in this study were only captured at one axial survey 

plane downstream of each rotor. As a result, the gradient of radial absolute velocity, 

߲ ௥ܸ ⁄ݔ߲ , cannot be evaluated for these measurements. Future studies may build in the 

ability to evaluate this change in the axial flow direction. However, if the contributions 

from this gradient are assumed to be small with respect to the other components, they can 

be neglected. Under this assumption, the streamwise vorticity is simplified: 

 ߱௦௧ ൌ ቈ
1
ݎ
߲ሺݎ ఏܸሻ
ݎ߲

െ
1
ݎ
߲ ௥ܸ

ߠ߲
቉ cos ߚ െ ൤െ

߲ ௫ܸ

ݎ߲
൨ sin (5.8) .	ߚ

The derivatives needed for Equation (5.7) were numerically calculated using a central 

differencing scheme, with exception to the edges of the data region, which were 

calculated as single-sided differences.  

Figure 5.45 shows contours of streamwise vorticity, as calculated from Equation 

(5.7), for two different tip clearance configurations and two loading conditions at the 

Rotor 1 exit plane. The calculated vorticity results in Figure 5.45 are normalized by the 

angular velocity of the rotor, Ω. The leakage flow structures identified in Figure 5.45 are 

very similar to the regions identified by the passage-averaged time-resolved total pressure 

measurements in Figure 5.28 and Figure 5.29. Specifically, the leakage flow for TC1 

extends downward to approximately 80% span, whereas the leakage flow for TC3 

extends to approximately 70% span for NL and 65% span for HL. However, Figure 5.45 

also shows that the regions of high vorticity typically associated with the averaged tip 

leakage vortex (recall, these data are ensemble-averaged and passage-averaged, so they 
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do not represent an instantaneous vortex) does not stay attached to the wall, but moves 

radially downward into the passage. These results suggest that, although the total pressure 

unsteadiness (RMS) at the rotor exit plane is an adequate method for identifying the 

leakage flow region, those results may not sufficiently represent any true vortex 

structures. 

Further analysis of the contours in Figure 5.45 shows the difference of the wake 

region for TC1 versus TC3. Inoue et al. (1986) also identified these regions of positive 

and negative vorticity associated with the passing rotor wake, an observation which was 

attributed to the radial velocities induced by the centrifugal effects of the passing rotor. 

However, there is a significant reduction of both the positive and negative regions of 

vorticity in the rotor wake as the tip clearance height is increased from TC1 to TC3. This 

observation can be linked to the redistribution of flow velocity toward the hub, which 

energizes the separation-prone fluid on the rotor suction surface and effectively reduces 

the strength of the wake region (although comparisons of the yaw angle wake profiles at 

several spanwise locations, not shown here, suggest the width of the wake may not 

necessarily become narrower). Indeed, a deeper investigation of the contribution from 

each of the three velocity gradients in Equation (5.7) shows that the ߲ ௥ܸ ⁄ߠ߲  component 

of the streamwise vorticity has a peak value which not only changes magnitude, but also 

its circumferential position, leading to the change of the wake vorticity. This observed 

trend is in contrast to the other two components in Equation (5.7) which have peak values 

that are unaffected in their circumferential position and show a change only in their 

magnitude. 
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Figure 5.45: Contours of streamwise vorticity at Rotor 1 exit for TC1 and TC3. 
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than the results at Rotor 2 exit. This difference compares well with the leakage flow 

regions identified by high unsteadiness in the time-resolved total pressures, Figure 5.30 

through Figure 5.33, and similar comparisons can be drawn between the rotor wake 

shapes at the two measurement locations. 

 

 

Figure 5.46: Contours of streamwise vorticity at for TC1 at Rotor 2 and Rotor 3 exit. 
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plots (e.g, Figure 5.45 and Figure 5.46) were used to locate the region of the blade 

passage which corresponds to the leakage flow. In this region, a search tool identified the 

largest negative value (based on the coordinate system in the above figures). 

This information, presented in Figure 5.47, summarizes the streamwise vorticity 

results from all of the test conditions to one-dimensional values for comparison. In this 

figure, the maximum vorticity strength is shown for the passage-averaged vorticity field 

by the filled bars. Similar to the leakage flow size quantification shown in Figure 5.35, 

the same maximum vorticity strength was also determined for each of the unique 

pitchwise measurement positions with respect to the fixed vanes. From this, the ranges of 

maximum vorticity strength dependent on pitchwise position are noted in Figure 5.47 by 

range bars about the passage-averaged value. 

These data show that as the rotor tip clearance is increased from TC1 to TC3, the 

maximum vorticity strength in the leakage flow region increases for Rotor 2 and Rotor 3, 

but decreases for Rotor 1. A comparison of the Rotor 1 vorticity contours for TC1 in 

Figure 5.45 shows that the change of the shape of the high negative vorticity region 

identified as the leakage flow from NL to HL is more dramatic than any of the other 

conditions shown here. This change of the leakage flow shape may contribute to the 

different for Rotor 1 at NL in Figure 5.47. Finally, as the loading condition changes from 

NL to HL, there is a consistent decrease of maximum streamwise vorticity strength. This 

trend shows an inverse proportionality of leakage flow size (Figure 5.35) with maximum 

vorticity strength in the leakage flow region which holds for a change in loading 

condition, but not a change in tip clearance height. 

 



192 

 
 

 

Figure 5.47: Passage-averaged maximum streamwise vorticity strength. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 The effect of rotor tip clearances on axial compressor performance has been a 

focus of research for several decades. In general, studies have found that pressure rise 

capability, efficiency, and operability range all decrease as the rotor tip clearance height 

is increased. However, the future of gas turbine engine engineering is moving toward 

designs which will incorporate smaller blade heights in the rear stages of high pressure 

compressors. As a result, a decrease in blade heights and a corresponding increase in 

relative rotor tip clearances are expected in the rear stages of these next-generation 

compressors. Therefore, a better understanding of the fundamental flow physics and 

multistage performance effects related to large tip clearance heights in axial compressors 

is a necessity. 

 

6.1. Overview of Methods and Findings 

 This work has investigated the effects of large rotor tip clearances on the 

performance of a three-stage axial compressor at Purdue University. A series of 

experimental measurement techniques has been implemented to evaluate compressor 

performance and interrogate the tip leakage flow for three rotor tip clearances: 1.5%, 

3.0%, and 4.0% based on annulus height. 
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Benchmark compressor performance measurements showed the overall pressure 

rise capability and isentropic compressor efficiency of the machine decrease linearly with 

rotor tip clearance height. Specifically, the results from this study showed the stalling 

flow coefficient is expected to increase by approximately 4% for a one percent increase 

of clearance-to-chord; the peak total-to-static pressure rise coefficient decreases by 4.5% 

for a one percent increase of clearance-to-pitch; and the isentropic efficiency decreases 

by 1.3 points for a one percent increase of clearance-to-span. Additional measurements 

with seven-element total pressure and total temperature rakes inserted at inter-stage 

locations in the compressor showed a redistribution of flow from the tip toward the hub 

as the tip clearance height was increased. This effect was shown to be due to the 

increased blockage related to the tip leakage flow. 

Stall inception was evaluated using piezoresistive pressure transducers distributed 

circumferentially around the compressor, approximately 10% axial chord upstream of the 

rotor leading edges. These measurements showed the compressor stalls as a result of long 

length-scale modal disturbances for the 100% corrected speedline with the 1.5% tip 

clearance configuration. Previous research has suggested modal stall characteristics may 

be expected when the individual stages of a multistage compressor are well-matched. At 

part-speed operating conditions, or when the tip clearance height was increased, however, 

the compressor was more likely to exhibit spike-type stall inception mechanisms 

emanating from Rotor 1. 

 Time-resolved measurements of static pressure from piezoresistive transducers 

distributed axially over the rotors were used to assess the leakage flow trajectory angle 

through the rotor passage. These data showed changes of trajectory angle as a result of 
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increased tip clearance are dependent on the loading condition and the proximity to the 

stall point. The results from this study confirmed that the observed effects are due to 

wakes from upstream vanes, whereas downstream stator vanes have a negligible effect on 

the tip leakage flow trajectory. 

 Quantitatively, the trajectory angle change due to this stator-rotor interaction can 

be more significant than the trajectory change due to a doubling (1.5% increase) of rotor 

tip clearance height, especially if tip clearance heights are small. This observation is 

especially true for Rotor 2 and Rotor 3, both of which showed little or no change of the 

trajectory angle between the smallest and intermediate clearance heights for all loading 

conditions. Results from Rotor 3 showed that the trajectory angle will increase 

approximately one degree for every one percent increase of clearance-to-pitch at a high 

loading point, whereas a low loading operating condition will result in a decrease of 

trajectory angle on the order of one point for a one percent increase of clearance-to-pitch. 

Additional time-resolved measurements of total pressure at the rotor exit planes 

and hot-wire measurements of three-dimensional flow velocities were collected for two 

tip clearance configurations at two loading conditions on the 100% corrected speedline. 

By casting these data in terms of an unsteadiness parameter (the RMS with respect to the 

ensemble average), the radial and circumferential extent of the tip leakage flow region 

was evaluated for the smallest and largest clearances. For the nominal loading condition, 

the portion of the rotor passage affected by the tip leakage flow increased by 

approximately 10.5% from TC1 to TC3 for Rotor 1 and Rotor 2, whereas the affected 

area for Rotor 3 increased by only 7.6% (30% less); at high loading, these numbers were 

15.3% for Rotor 1 and Rotor 2, and 10.4% for Rotor 3 (also 30% less). These 
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measurements further helped to quantify the tip leakage flow modulation related to the 

upstream stator wakes, including the effects of leakage flow size and spanwise 

penetration into the main flow, for which the range of affected flow areas due to stator 

wake interactions increased as the loading increased. 

Time-resolved velocity data were used to quantify the blockage at each 

measurement plane and correlate the calculated blockage with the observed tip leakage 

flow region. The most significant increases of overall passage-averaged blockage were 

observed at the exit of Rotor 1. Considerable increases of blockage between the smallest 

and largest clearances were noted in the outer 30% span at the exit of all rotors for the 

high loading condition. The three-component velocity measurements also facilitated 

calculations of phase-locked streamwise vorticity. These data were used to characterize 

the strength of the leakage flow from each rotor. An increase of maximum streamwise 

vorticity with tip clearance in the passage-averaged leakage flow “core” was identified 

for all rotors and loadings, with exception to Rotor 1 at the nominal loading condition, for 

which a decrease was noted. Variations of streamwise vorticity relative to vane position 

were also noted, with more significant modulations occurring at nominal loading than the 

high loading condition. 

The measurements collected for this project represent a unique data set which 

contributes to an improved overall understanding of the tip leakage flow and its 

associated loss mechanisms. These data will serve the community as a method for 

validating computational tools, especially at off-design conditions. Through this process, 

the results presented herein will aid in the development of new blade designs which could 

be desensitized to rotor tip leakage flows and their associated performance decrements. 
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6.2. Recommendations for Future Research 

 The results from the present study provide a wealth of data which builds upon an 

understanding of tip leakage flow effects in axial compressors. However, additional 

processing will continue to glean valuable information from the collected data. For the 

time-resolved measurements, in particular, a majority of the results shown here have only 

analyzed the time domain, and further analysis of the frequency content may unveil more 

information, particularly relating to the multistage effects of the machine and any 

potential changes of aeromechanical forcing. 

 The uncertainty for calculated overall efficiency has been carefully evaluated for 

this project. One of the most significant driving factors of this uncertainty for efficiency 

is related to the relative uncertainty of the associated temperature measurements. For the 

data presented herein, a single conservative value was selected for the uncertainty of all 

temperature measurements based on independent calibration of the thermocouple 

channels. However, because the thermocouple measurement uncertainty correlates with 

the absolute value of the measured temperature, future analysis may accommodate a 

reduction of uncertainty propagation through the use of an uncertainty value chosen for 

each specific thermocouple channel and the absolute value of the measured temperature. 

 The detailed flow traverses (steady total pressure, time-resolved total pressure, 

time-resolved velocities) were conducted only for the smallest and largest tip clearance 

configurations at the nominal loading and high loading operating conditions. Thus, there 

is a multitude of additional data which could be collected at additional loading conditions 

(i.e., low loading condition) or at the intermediate tip clearance height. The 

measurements collected from a third tip clearance could accommodate a more thorough 
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analysis of trends associated with vorticity, leakage flow size, and more as they relate to 

changing tip clearance. 

The velocity and flow angle measurements collected in this study utilized the 

single slanted hot-wire technique. However, the potential utility of a multi-sensor probe 

for capturing instantaneous three-dimensional velocities and, potentially, turbulence 

statistics, is significant. As a result, comparison measurements using a three-dimensional 

measurement technique from a triple-wire probe with the results presented herein will 

provide useful information regarding the relative errors from these techniques for 

turbomachinery applications. 

The significant dependence of hot-wire measurements on changing 

thermodynamic conditions was assessed in this document. A linear relationship of 

velocity error with temperature difference (from calibration to test conditions) was 

proposed and implemented. However, future hot-wire measurements may benefit from 

the development of new relationships to accommodate temperature variations with 

compressibility considerations. Aside from this, a more controlled selection of ambient 

inlet conditions which more closely resemble calibration conditions (on the order of ten 

degrees Fahrenheit or less), or several calibration sets for different temperature ranges, 

are also recommended for future hot-wire measurements. 

Finally, the understanding of the rotor tip leakage flow and its impact on the 

compressor performance developed through this study has created a unique opportunity 

to investigate leakage flow control techniques (such as casing treatments) and blade 

design methodologies aimed toward desensitization of detrimental tip leakage flow 
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effects. Ultimately, it is these technologies that will help to drive the future of robust 

compressor designs. 
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 Mean Rotor Wakes for the Embedded Stage (Stage 2) Appendix A.

A primary goal for this project is to investigate the effect of the rotor tip clearance 

and the associated tip leakage flow on the performance of an embedded stage. The 

embedded stage provides a unique opportunity to evaluate the influence of the upstream 

and downstream stages. Information in this document has noted the differences between 

the first stage and the other two stages as the aft stages ingest increased blockage due to 

the rotor tip leakage flow disturbance. At this point, the variations of the rotor wake will 

be evaluated with respect to a passage-average wake using the time-resolved flow angle 

measurements. 

 

Figure A.1: Schematic outlining the two averaging methods used for hot-wire 
measurements at Rotor 2 exit. Adapted from Smith et al. (2015b). 
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 The Rotor 2 exit flow angles for TC1 and TC3 have been evaluated using two 

different averaging techniques, as defined by Key (2007) and shown by the schematic in 

Figure A.1. The first method is the Passage Average Ensemble Average (PA-EA) 

technique. For these hot-wire measurements, this method begins with an EA of 200 rotor 

revolutions for data collected at each of the pitchwise measurement positions (at the 

Rotor 2 exit plane, 13 positions were investigated across one vane pitch). The 13 discrete 

EA signals from each of the pitchwise positions are then averaged to identify an EA 

revolution which is free from effects due to the upstream and downstream vane positions. 

This EA revolution could also be divided into 33 segments (for Rotor 2, e.g.) to analyze 

the blade-to-blade variations, but it will be considered in whole for this analysis. 

 The second method is the Passage Average Mean Wake (PA-MW) technique 

which was applied previously for the time-resolved pressure measurements. This method 

begins by calculating an ensemble average of 200 rotor revolutions at each pitchwise 

measurement location. Next, the PA-MW method divides the EA signal into the 33 

separate blade wake signals (for Rotor 2), and the average of these 33 wakes is calculated 

to identify a separate “mean wake” for each of the circumferential pitchwise 

measurement positions. Similar to methods utilized previously in this study, this PA-MW 

averaging technique yields a variability of the wakes associated with the upstream and 

downstream vanes. 

 Figure A.2(a) shows the Rotor 2 PA-EA yaw angles measured at the nominal 

loading (NL) condition for four selected radial measurement positions (20%, 50%, 80%, 

and 88% annulus height). These selected radial positions highlight some of the flow 

features discussed in other locations throughout the report, as well as illuminating some 
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additional important observations. At each of the radial positions, a three-per-revolution 

pattern can be identified in the measurements. This modulation occurs as the result of a 

blade count difference between Rotor 1 (36 blades) and Rotor 2 (33 blades). As the Rotor 

1 wake persists through the compressor and interacts with Rotor 2, it influences the shape 

of the Rotor 2 wake. Specifically, when the Rotor 1 wake aligns with the Rotor 2 wake, it 

increases the depth of the Rotor 2 wake. 

 The PA-EA yaw angles are relatively unaffected at the 50% measurement 

position when the tip clearance height is increased from TC1 to TC3. In Figure 5.36, the 

slight decrease of time-averaged yaw angle at 50% annulus height with increased tip 

clearance is reflected through a decrease of the wake depth in Figure A.2(a). At 20% span, 

the overall wake depth is relatively unchanged as the tip clearance is increased, but the 

bulk mean flow shows a decreased absolute yaw angle. As the blockage increases with 

tip clearance, the redistribution of flow (increase of axial velocity) in the hub region leads 

to a decrease of yaw angle in the absolute frame of reference. 

 At the measurement locations closer to the tip, the 3/rev modulation of the PA-EA 

signal is more clearly identified and the presence of the Rotor 1 wakes may be identified 

between Rotor 2 wakes when the two are out-of-phase (i.e., normalized times 1, 12, and 

23 at 80% annulus height). A significant change in the PA-EA yaw angles is also 

observed due to the influence of the tip leakage flow. In particular, at 80%, Figure A.2(a) 

shows the tip leakage flow is less present in these traces of flow angle for TC1. However, 

the tip leakage flow is clearly present for each blade with the TC3 tip clearance 

configuration. Comparing the two clearances for blade 3 (for example) shows the 

additional bump in the TC3 traces is due to a flow feature that was not present at TC1. 
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 At 88% annulus height, the tip leakage flow appears in the measurements 

collected from both tip clearance configurations. Indeed, Figure 5.30 shows this is the 

approximate location of the center of the high-loss leakage flow region for both TC1 and 

TC3. Both tip clearances show that the yaw angle peak due to the tip leakage flow does 

not modulate much with the 3/rev beating pattern (on the order of 2 degrees), compared 

to the modulation of the wake peaks at 80% on the order of 5 degrees. For TC3, Figure 

A.2(a) suggests that the leakage flow contributes a peak flow angle which is greater than 

the actual rotor wake for nearly all 33 blades. As a result, the PA-EA signal appears to 

approach a full sine wave, instead of the “half-rectified” shape at 20% or 50%. 
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     (b) 

Figure A.2: Average Rotor 2 revolution of yaw angle at select radial positions using 
PA-EA method. (a) NL; (b) HL. 
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 A similar comparison of the PA-EA absolute yaw angle wakes at the high loading 

(HL) condition is also shown, Figure A.2(b). At 20% annulus height, the peak value of 

the yaw angle in the rotor wakes is unchanged from TC1 to TC3, but the mean flow angle 

decreases – as before, this is an artifact of the redistribution of flow toward the hub with 

increased tip clearance. Overall, this contributes to a deeper wake for TC3 at this 

measurement location. At 50%, there is a more noticeable difference between tip 

clearance configurations, compared with the NL condition in Figure A.2(a). Referring to 

the time-averaged results for HL, Figure 5.37, these data show a more distinct delta 

between the flow angles across the entire annulus, whereas the NL results, Figure 5.36, 

present flow angles which are less affected from 50% to 80% annulus height. 

 As discussed above for the NL condition, the measurements at 80% and 88% 

show more noticeable contributions of the tip leakage flow. At this HL condition, though, 

there is a considerable change in the influence and extent of the leakage flow. Referring 

to the time-resolved total pressure unsteadiness at the same condition, Figure 5.31, the 

mean leakage flow disturbance fills nearly the entire rotor passage (in the circumferential 

direction) at HL for TC3, whereas the leakage flow for TC1 only influences 

approximately half of the rotor passage. As a result, these PA-EA wakes at 88% in Figure 

A.2(b) reflect a much wider region of high absolute yaw angle. 

 As a separate analysis, the absolute yaw angles at Rotor 2 exit were also 

processed using the PA-MW technique at the same four radial measurement locations. As 

shown schematically in Figure A.1, the PA-MW method removes blade-to-blade 

variations and the 3/rev modulation due to the blade count difference between Rotor 1 

and Rotor 2. Instead, this method highlights flow variations in the pitchwise direction.  
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 In Figure A.3(a), the 13 separate PA-MW wakes for the NL condition are shown 

(thin lines), as well as the weighted average (thick lines) for each tip clearance 

configuration. At the 20% and 50% measurement locations, Figure A.3(a) shows minimal 

variation between the different pitchwise positions. In general, the variation is on the 

order of ±2 degrees for both radial measurement locations. The 80% and 88% locations, 

however, the leakage flow introduces a bump of absolute yaw angle, as suggested by the 

PA-EA results above. At these measurement locations near the rotor tip, the amplitude 

and position of this bump changes due to the modulation of the tip leakage flow. A 

comparison of the results in Figure A.3(a) with the time-resolved total pressure 

unsteadiness, Figure 5.30, confirms this observation – the increased blockage due to the 

tip leakage flow reduces the flow velocity and results in a corresponding increase of 

absolute yaw angle in these regions. For both 80% and 88% annulus height, however, the 

weighted average wake shows the location in the rotor passage of the bump off the blade 

PS is largely unaffected by the change of tip clearance from TC1 to TC3. 
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     (b) 

Figure A.3: Average Rotor 2 wakes at select radial positions using 
PA-MW method. (a) NL; (b) HL. 
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 Considering instead the high loading (HL) operating condition, Figure A.3(b), 

shows a different result in the PA-MW results at 80% and 88%. In particular, the 13 

individual PA-MW curves for TC1 confirm the modulation of the tip leakage flow 

identified above. However, the TC3 results show less variability of the leakage flow. At 

this increased tip clearance height, the influence of the leakage flow region extends 

across a greater circumferential portion of the rotor passage. At these outer measurement 

positions, the circumferential extent of the tip leakage flow region is largely unchanged 

as the upstream and downstream stator vanes are moved; however, the depth of the 

leakage flow region does vary (as confirmed by the size and intensities of the tip leakage 

flow region in Figure 5.31).  
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 Time-Averaged Stator Wakes Appendix B.

 In addition to the rotor exit measurements, the pitchwise velocity and flow angles 

at the stator exit planes provide valuable information to supplement the total pressure 

wakes and pitchwise total temperatures shown in Section 3.4.1. For these figures, the 

time-average of the ensemble-averaged signal at each location is calculated to create a 

two-dimensional mesh of data in the radial-circumferential plane at the measurement 

location. Similar to the total pressure wakes and pitchwise total temperatures presented 

earlier, three discrete radial measurement locations were selected for comparison (50%, 

70%, and 80% annulus height). The same hot-wire data used to present the radial profiles 

in Section 5.3.1 provide a comparison between two tip clearance configurations (TC1 and 

TC3) at two operating conditions on the 100% corrected speedline (NL and HL). 

 The Stator 1 wake data, Figure B.1, present absolute velocity as a ratio of the 

rotor tip speed, and normalized by the calculated value at the 50% annulus height 

measurement position. These velocity wakes compare well in shape to the pressure wakes 

presented at the same axial measurement position, Figure 3.28. A comparison of the two 

loading conditions in Figure B.1 shows a distinct change of the measured absolute flow 

angles at the three radial measurement positions, as well as across the wake in the 

pitchwise direction. Specifically, the NL operating condition illustrates an envelope of 

approximately ten degrees for absolute yaw angle and pitch angle; however, the same 

angles at the HL operating condition show values which extend beyond a 25 degree range. 

Evaluation of the same results at the Stator 2 exit plane, Figure B.2, and the Stator 3 exit 

plane, Figure B.3, yield similar results to those discussed for Stator 1. These results also 
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compare well with the total pressure wakes and pitchwise total temperature profiles in 

Figure 3.29 and Figure 3.30 for Stator 2 and Stator 3, respectively. 
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Figure B.1: Stator 1 time-averaged velocity and flow angle wakes. 
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Figure B.2: Stator 2 time-averaged velocity and flow angle wakes. 
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Figure B.3: Stator 3 time-averaged velocity and flow angle wakes. 
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 A New Data Reduction Method for Slanted Hot-Wire Measurements Appendix C.

In addition to the non-linear solver (NLS) method for hot-wire data reduction 

discussed in this Chapter 2, a new method for processing data from a single slanted hot-

wire for turbomachinery applications has been developed. This method, referred to as the 

‘look-up table’ method (LUT), corrects measured voltages to the calibration data, thereby 

allowing a direct interpolation of data in a three-dimensional calibration space. The basis 

for a look-up table method has been introduced for X-wire configurations by previous 

authors in recent years (Key, 2007; Murray, 2014), and some authors have also extended 

this method to triple-wire probes (Gieseke and Guezennec, 1993; Morrison, 2013). 

However, the principle of utilizing a look-up table for data collected from a single slanted 

hot-wire is new. A graphical representation of the process for redistributing calibration 

data is given in Figure C.1. 

If phase-locked ensemble-averaged data are collected in the method described 

herein for three wire orientations, a phase-locked triple-sensor probe can be simulated in 

the calibration data for processing purposes. It is important to note, though, that this look-

up table method requires extreme precision during the probe positioning (data collection) 

process to be effective. If precision probe positioning is not achievable, the look-up table 

method is still possible, but a separate calibration space may be required for each set of 

three wire positions, which would significantly increase the computational expense. This 

differs fundamentally from the non-linear solver method which can accept any probe 

position in the equations. 
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Figure C.1: Graphical representation of look-up table method for a slanted hot-wire. 

 

Once the calibration data have been split and rearranged as shown in Figure C.1, a 

three-dimensional space is created corresponding to the calibration voltages. These 

calibration voltages are then combined with the scatteredInterpolant function in 

MATLAB to create Dalaunay triangulation matrices of velocity, yaw, and pitch for a 

given set of three wire voltages. 

As with the NLS method, temperature and density variations in the fluid can 

introduce significant errors in the calculations if they are not properly considered. In this 

case, the following equation has been implemented to correct “test” voltages captured 

during compressor experiments back to the “cal” voltages which agree with the 

calibration temperature (Kanevce and Oka, 1973): 
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calܧ  ൌ testܧ ቆ
௪ܶ െ ௢ܶ,cal

௪ܶ െ ௢ܶ,test
ቇ
଴.ହ

	. (C.1)

Similarly, a linearization process is applied to correct voltage effects due to density 

change back to the calibration space: 

calܧ  ൌ testܧ െ
ܧ߲
ߩ߲

ሺߩtest െ . (C.2)	calሻߩ

for which the voltage-density gradient, ܧ߲	 ⁄ߩ߲ , is determined through a separate 

calibration process with the calibration jet. Here, a correction based on mean density is 

sufficient because the density fluctuations in the flow are expected to be much less than 

the velocity fluctuations. 

 Typically, the voltage-density gradient is independent of wire orientation, but it 

may exhibit a strong dependence on the velocity, as shown in Figure C.2. As a result, an 

iterative solver scheme was implemented. By this process, an initial velocity “guess” 

based on an approximate velocity calculated from simultaneous pressure and temperature 

measurements was used to determine a value of the voltage-density gradient. The entire 

look-up table process (including density corrections using Equation (C.2)) was completed 

using this initial gradient, and the calculated mean velocity from the processed wire 

voltages was used to re-initialize the process with a new voltage-density gradient. This 

iterative process continued until a convergence criterion was achieved or a maximum 

number of iterations lapsed. Typical voltage-density gradient iterations affect the overall 

mean velocity by less than 3 ft/s. 
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Figure C.2: Example calibration data for determining voltage-density gradient. 

 

 An assessment of processed results and associated errors from the non-linear 

solver and look-up table processing methods is provided in Berdanier and Key (2015c). 

However, an important consideration for the utility of a certain technique is related to the 

computational time required for the processing. There is no appreciable difference in the 

computational time required by the NLS method using one to two sets of calibration 

coefficients, but the relative simplicity of the look-up table interpolation method yields a 

computational expense which is one order of magnitude less than a solution of the non-

linear equations. Based on these clock speeds, the look-up table approach has a 

significant advantage over the NLS algorithm. However, the implementation of an 

optimization algorithm with a compiled FORTRAN solver in place of the MATLAB 

solver can further improve the time required by the NLS algorithm to a value on the order 

of the LUT method. 
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