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ABSTRACT 

Yeratapally, Saikumar Reddy Ph.D., Purdue University, December 2015. A Micro-
structure Based Fatigue Life Prediction Framework and its Validation. Major Professor: 
Michael D. Sangid. 

 

Fatigue crack initiation in polycrystalline materials can be attributed to various 

mechanistic and microstructural features acting in concert like the elastic stress 

anisotropy, plastic strain accumulation, resolved shear stress, normal stress, slip-system 

length, and grain boundary character. In nickel-base superalloys, fatigue cracks tend to 

initiate near twin boundaries. The factors causing fatigue crack initiation depend on the 

material’s microstructure, the variability of which results in the scatter observed in the 

fatigue life. In this work, a robust microstructure based fatigue framework is developed, 

which takes into account i) the statistical variability of the material's microstructure, ii) 

the continuum scale complex heterogeneous 3D stress and strain states within the 

microstructure, and iii) the atomistic mechanisms such as slip-grain boundary (GB) 

interactions, extrusion formations, and shearing of the matrix and precipitates due to slip. 

The quantitative information from crystal plasticity simulations and molecular dynamics 

is applied to define the energy of persistent slip bands (PSB). The energy of a critical 

PSB and its associated stability with respect to the dislocation motion is used as the 

failure criterion for crack initiation. This unified framework helps us gain insights on why 

fatigue cracks tend to initiate at twin boundaries. In addition to that, the computational 
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framework links variability in material’s microstructure to the scatter observed in fatigue 

life.  

The microstructure based fatigue model is used to study the role played by 

various microstructural attributes (like grain size, γ' volume fraction, GB character) in 

limiting fatigue life. Additionally, the role played by local microstructural response 

(plastic strain accumulation, elastic stress anisotropy developed at the GBs, extrusion 

height at intersection of persistent slip bands and GBs) in triggering crack initiation is 

also studied. We show that the aforementioned attributes have varying degree of 

influence over fatigue life, which in turn gives rise to a wide spectrum of opportunities 

(in the bulk of the material) with varying degree of severity where fatigue cracks can 

potentially initiate, thereby contributing to the scatter observed in fatigue life. 

The fatigue model is validated using an uncertainty quantification and 

propagation framework. First, global sensitivity analysis (GSA) is used to identify the set 

of the most influential parameters in the life prediction model. Following GSA, the 

posterior distributions of all influential model parameters are calculated using a Bayesian 

inference framework, which is built based on a Markov chain Monte Carlo algorithm. 

The quantified uncertainties thus obtained, are propagated through the model using 

Monte Carlo sampling technique to make robust predictions of fatigue life. The model is 

validated by comparing the predictions to experimental fatigue life data. 
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1. INTRODUCTION 

1.1 Fatigue Failure 

Components subjected to cyclic loading undergo failure after a certain number of 

cycles, irrespective of whether the applied loads are above or below the yield stress of the 

material. This mode of failure is called fatigue. More than 50% of mechanical failures in 

aircraft components are due to fatigue [1]. Failure of a critical component on an aircraft 

in service leads to irrevocable loss of life and property [2,3]. Characterization of scatter in 

fatigue life at various applied loads, along with rigorous investigation of crack initiation 

sites is necessary, as the knowledge gained from such studies will help plan replacement 

of critical components in a timely manner, and improve the design of components and 

material processing routes, which in turn help reduce occurrence of unexpected 

catastrophic accidents. 

Fatigue failure of a component occurs in three stages : i) fatigue crack initiation ii) 

propagation of microstructurally small fatigue cracks, iii) coalescence of small cracks to 

form a big crack which leads to final fracture of component. Major factors that influence 

fatigue life of a component include i) applied stress/ strain amplitude, ii) mean stress, iii) 

temperature, iv) residual stresses, v) material process pedigree, vi) microstructure of the 

material, vii) presence of manufacturing defects, etc. For a given load and temperature, 

considerable amount of fatigue life is spent in initiation and propagation of 
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microstructurally small fatigue cracks, during which the material’s microstructure has a 

great role to play. Due to this reason, fatigue scatter observed in components made of 

polycrystalline materials can be partially attributed to the variability of complex 

heterogeneities in the microstructure. These heterogeneities are responsible for the 

complex stress and strain fields developed under load, and govern where cracks could 

potentially nucleate. 

1.2 Classical Ways of Determining Fatigue Life of a Component 

One way to fully characterize the scatter in fatigue life of a material is to make 

many specimens and test them until failure. From both cost and time point of view, it is 

not feasible to conduct extensive experimental fatigue testing to characterize the fatigue 

life of a material at different loading conditions and temperatures. This is especially true 

when there is a need to meet a growing demand for supply of components that are to be 

deployed in service within a limited amount of time. 

“Safe-life” fatigue design strategy assumes that the structure is free from any 

defects or cracks. It predicts the conservative fatigue life of a component by using the 

mean fatigue life and by applying a safety factor (typically 4) [3,4]. In materials that 

exhibit excessive scatter, application of this methodology is not effective as it leads to 

replacement of parts even if it can still take considerable number of load cycles, thereby 

proving to be uneconomical. Additionally, nowhere in this methodology, concern is laid 

over presence of pre-cracks or unexpected damage caused due to material or 

manufacturing flaws [2], let alone the consideration of complexities of material’s 

microstructure.  
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Empirically based stress and strain life methods [5-7] have been used for over the 

past five decades to obtain the number of cycles required for the formation of cracks in 

high cycles fatigue (HCF) and low cycle fatigue (LCF) regimes. But, they overlook the 

complex heterogeneities present in the microstructure and any initial flaws that might be 

present in the material (or component). In addition to that, these empirical models are 

independent of the deformation mechanism that might be active at a specific load and 

temperature regime, thus limiting their use. In the recent past, catastrophic component 

failures (as shown in Fig. 1.1) occurred due to undetected microstructural flaws and 

intergranular fatigue cracks that grew during the service of the component thereby 

resulting in the formation of large cracks [8,9]. Hence, it is important to consider the 

microstructure and (deformation mechanism based) micro-mechanical damage while 

developing tools and methods to predict scatter in fatigue life. 

 

  
(a) 



4 
 

   
(b)                                                                   (c) 

Figure 1.1.  Uncontained high pressure turbine disc failure (a) in Boeing 767-223 on June 

2, 2006 [8], (b, c) in Boeing 767-219ER on December 8, 2002 [9]. 

Although there has been substantial work done in using advanced computational 

tools and experimental techniques to understand the driving forces for fatigue crack 

initiation, there is still a considerable amount of work that is to be done in calculating 

fatigue scatter by explicitly taking into consideration, the heterogeneities of a given 

material’s microstructure and the complicated 3D stress and strain states that develop 

within the bulk of the material. A well calibrated and rigorously validated microstructure 

and deformation mechanism dependent life prediction model, which can relate the 

variability of microstructure to scatter in fatigue life, is worthwhile as it helps predict 

fatigue scatter in a time and cost efficient way. 

 The current work discusses a computational fatigue life prediction framework 

which addresses the issue of linking variability in microstructure to scatter in fatigue life. 

The microstructure based life prediction framework consists of three sub modules:  i)  a 

module to create statistically equivalent microstructures (or SEMs) using statistics of 

microstructural attributes obtained from electron backscatter diffraction (EBSD) scans 

(obtained for the polycrystalline material of interest), ii) a crystal plasticity finite element 
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(CPFE) framework which solves for the heterogeneous 3D stress/strain state within the 

microstructure (along with slip system based stresses and strains) over a one-cycle 

loading at a strain amplitude, R-ratio and temperature of interest and, iii) a deformation 

mechanism based life prediction model which not only takes into consideration the 

physics of an active deformation mechanism (at a certain temperature of interest where 

the mechanism is active) but also differentiates between various types of grain boundaries 

(GBs) based on the energetics of their interaction with dislocations, calculated by 

molecular dynamics (MD) simulations. Additionally, it takes the heterogeneous slip 

system based stresses and strains (from CPFE simulations) as input. 

1.3 Problem Statement 

The material of interest in the current study is a polycrystalline nickel-base 

superalloy, RR1000, developed by Rolls-Royce plc. It is used in making turbine discs for 

jet engines. Formation of persistent slip bands (PSBs) was observed to be an active 

deformation mechanism in this material when subjected to fatigue loading at an 

intermediate elevated temperature. Fractography studies on failed specimens (made of 

RR1000) revealed crystallographic faceted crack initiation sites (as shown in Fig. 1.2) in 

the subsurface regions of test specimens [10]. Additionally, it was also observed that 

crystallographic faceted cracks initiated in close proximity to twin boundaries (TBs) 

within favorably oriented large grains [11]. Such crystallographic cracks were also 

observed in various other nickel-base superalloys when subjected to fatigue at elevated 

temperatures [12-15].  Further, excessive fatigue life scatter was observed in RR1000, 

when the aforementioned crack initiation mechanism was active. There is still a gap in 

the fundamental understanding of the competing role played by various microstructural 
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attributes (especially twins) and local defect level deformation mechanisms in i) initiating 

fatigue cracks and ii) influencing fatigue scatter. In order to address the aforementioned 

issues, rigorously validated microstructure and deformation mechanism based 

computational failure predictive models need to developed, which, not only provide 

valuable insights on various factors contributing to fatigue crack initiation, but also link 

the variability in microstructure to the scatter in fatigue life. It must also be kept in mind 

that none of the computational models represent a 100% reality of what exactly is 

happening within the material, due to the presence of uncertainties. So the failure 

predictive models should be verified, validated and well calibrated before they can be 

used in a production environment. Hence, the research problem at hand is twofold: 

i) Address the combined role played by various microstructural attributes and 

local microstructural response in driving fatigue crack initiation at twin 

boundaries. 

ii) Deterministically link the variability of the microstructure with the scatter in 

fatigue life, using a rigorously validated microstructure based fatigue 

framework, which takes into consideration the complex 3D stress states 

developed within the microstructure and the energetics of slip-GB interaction. 
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Figure 1.2.  Fatigue crack initiation from crystallographic facets, in two different 

specimens subjected to fatigue at elevated temperatures. Image courtesy of Rolls-Royce 

plc [10]. 

1.4 Framework of the Microstructure Based Fatigue Life Prediction Model 

 The fatigue life prediction framework has three main modules. First, the 

generation of SEMs, which are representative of the material’s microstructure. Is it not 
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always possible to obtain a high resolution 3D microstructure data of a material due to 

limited availability of non-destructive high energy X-Ray diffraction resources [16] (and 

automated serial sectioning based methods [17]). With the availability of advanced 

microstructure analysis and characterization tools like DREAM.3D [18,19], and with the 

use of stereology concepts, it is possible to build synthetic 3D microstructures which 

closely represent the real microstructure of the material. The statistics of morphological 

and crystallographic heterogeneities are obtained from the 2D EBSD scans. Stereological 

methods are then applied to get an estimated 3D distribution of grain sizes from the 2D 

grain size distributions (obtained from EBSD). Surface meshes of grains (in .stl format) 

in the SEMs are obtained using marching cube technique [20] in DREAM.3D, following 

which Laplacian smoothing is applied in order to smoothen the GBs. Following this, the 

SEMs are volume meshed using a parallelized polycrystal mesher (PPM) [21] which 

outputs an ABAQUS input (.inp) file. 

Second, the SEMs generated are subjected to a one-cycle loading in a rate 

dependent CPFE framework to solve for the heterogeneous 3D stress and strain states 

throughout the microstructure. The internal state dependent variables (SDVs) (like the 

resolved shear stress, normal stress, back stress and accumulated strain on slip system 

etc.,) are used to find the most dominant slip systems in all the grains. 

The third component of the framework is a life prediction model. It defines crack 

initiation based on the stability of a PSB, which is evaluated by calculating the cyclic 

evolution of PSB energy. PSB energy is calculated by using i) the SDV information 

obtained from CPFE simulations, ii) GB energetics obtained from MD simulations and 
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iii) microstructural attributes obtained from the SEMs generated using DREAM.3D. An 

important feature of the life prediction model is its ability to incorporate the energy 

contributions of some of the cyclic slip irreversibilities (like the formation of extrusions 

at the intersection of PSB-GB and evolution of the extrusion height, shearing of the γ' 

precipitates etc.) that occur during the fatigue process. A high level overview connecting 

all the three modules of the microstructure and deformation mechanism based life 

prediction framework is shown in Fig. 1.3. It can be clearly visualized that the framework 

is clearly able to link the variability in microstructure (simulated by generating many 

SEMs) to scatter in fatigue life. 

 

Figure 1.3. A high level overview of the microstructure based fatigue life prediction 

framework, which is developed to link the variability in microstructure with scatter in 

fatigue life. 
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1.5 Uncertainty Quantification and Uncertainty Propagation 

Fatigue crack initiation in polycrystalline materials can be attributed to the 

heterogeneous microstructure forming complex stress states resulting in strain 

heterogeneities and localization. Additionally, cyclic loading manifests in deformation 

mechanisms leading to cyclic slip irreversibilities which ultimately increase stress 

concentration and thereby lead to the formation of cracks. Many empirical [7-9] and 

physics-based models [22-25] have been proposed to predict fatigue life in 

polycrystalline materials. Uncertainties exist in all the models, and before such 

computational models are employed (to predict the life of components), careful attention 

must be given to understand the degree in which these uncertainties influence the 

predicted quantity of interest (QoI), the fatigue life. Rigorous uncertainty quantification 

for validation purposes is a pre-requisite for such predictive models to be used in a 

production environment. Part of the current research work focuses on identifying, 

quantifying and propagating the uncertainties in the microstructure based life prediction 

model used in the current study for the purpose of validating it.  In this study, model 

validation is performed based on:  

i) global sensitivity analysis (GSA) to select the set of the most influential 

parameters in the model which will help reduce the dimensionality and hence 

the computational cost of the uncertainty quantification problem [26,27].  

ii) Bayesian inference to quantify the identified uncertainties in the model [27-

29].  
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iii) Monte-Carlo sampling to propagate the quantified uncertainties to obtain 

distribution of predicted life, which will be used in validating the model’s 

predictions [27,29]. 

Figure 1.4 shows a high level overview of the sensitivity and uncertainty analysis 

conducted to validate the fatigue life prediction model used in this research. 

 

Figure 1.4. A high level overview of the sensitivity and uncertainty analysis if the                 

fatigue model. 

1.6 Research Contributions 

There are two main contributions of the current research. First, emphasis is laid 

on understanding why fatigue cracks tend to initiate at twin boundaries, by taking into 

consideration, the energetics of slip-GB  interactions  (calculated  using  MD),  and  the  

quantitative  information  from  the  complicated stress/strain states developed within the 

twin (obtained from crystal plasticity simulations). We show that various factors (like 

elastic anisotropy, accumulated plastic strain, and resolved shear stress) act in concert at a 
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favorably oriented twin (impinged upon by a PSB) to increase the propensity of crack 

initiation. In addition to the aforementioned factors, we show that the normal stress acting 

on a twin plays a significant role in unzipping a PSB at the intersection of the TB, thereby 

acting as a driving force for crack initiation in mode I. We further show that favorably 

oriented twins embedded in large grains are more prone to crack initiation. 

Second, using a well validated microstructure based fatigue life prediction 

framework we show that the variability of a material’s microstructure (simulated by 

generating multiple SEMs) leads to scatter observed in fatigue life. 

1.7 Thesis Outline 

 This thesis is organized into the following six chapters. A quick road map of the 

thesis is furnished below. 

 Chapter 1 highlights the importance of microstructure based fatigue lifing. It gives 

a high level overview of the life prediction framework used in the current study along 

with the uncertainty and sensitivity analysis that were done to validate the model. 

 Chapter 2 presents a review of literature related to i) fatigue crack initiation, ii) 

the role played by various microstructural attributes and cyclic slip irreversibilites in 

fatigue crack initiation, iii) state-of-the-art microstructure based life prediction models 

and iv) uncertainty quantification. 

 Chapter 3 discusses in detail, the three modules that comprise the microstructure 

based life prediction model, namely i) an automated framework which takes the statistics 

of microstructural heterogeneities and builds SEMs which are used to simulate the 

variability in microstructure of the material, ii) a rate dependent crystal plasticity model 



13 
 

which is used to solve for the heterogeneous stress and strain states within the SEM 

generated (when subjected to cyclic loading), and iii) a fatigue life prediction model 

which takes in the data from CPFE simulations, energetics of GB-dislocation interactions 

from MD simulations and grain sizes within the SEMs (generated by DREAM.3D) to 

define a criterion for crack initiation based on the stability of a PSB (based on its energy) 

and calculate number of cycles for crack initiation. 

 Chapter 4 presents a detailed discussion on i) GSA that was used to identify the 

set of most influential parameters in the model which also helped to reduce the 

dimensionality of the uncertainty quantification problem, ii) Bayesian inference based 

technique implemented to quantify the uncertainties of a set of most influential 

parameters (identified by GSA), iii) Monte Carlo technique used to propagate the 

uncertainties through the model to quantify uncertainty in the output. 

 Chapter 5 discusses how fatigue scatter observed in polycrystalline nickel-base 

superalloys can be attributed to complex interaction between heterogeneous 

microstructure of the material and fatigue specific defect level mechanisms. The 

influential role played by microstructure in fatigue crack initiation is evident from 

experimental observations. For instance, large grains (or inclusions) are detrimental to 

fatigue life. Similarly, accumulation of cyclic slip irreversibilities was observed to 

correlate inversely with fatigue life. A robust microstructure based life prediction model 

should agree with such common trends observed in nature (or experiments). Various case 

studies are done to analyze how the current fatigue model agrees with the trends observed 

in experiments, thereby serving as a sanity check for the model. 
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 Chapter 6 summarizes the current research work and reflects on the significance 

of the research. Following the conclusions, recommendations for future work are also 

listed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

2. LITERATURE SURVEY 

This chapter presents a literature survey on both experimental and computational 

work done in gaining fundamental insights on fatigue crack initiation in polycrystalline 

materials. An overview is provided on the important role played by local microstructural 

response and various microstructural attributes in driving fatigue crack initiation, thereby 

reflecting on the importance of explicitly considering active deformation mechanisms and 

microstructural attributes while developing failure predictive models. A review of the 

state-of-the-art microstructure based fatigue life prediction models is provided. Emphasis 

is laid on the need for uncertainty quantification and propagation in order to validate life 

prediction models. 

2.1 Cyclic Strain Localization and Slip Irreversibilities in Fatigue 

Over the past century, following Ewing and Humfrey’s [30] discovery of the 

cyclic slip localization (which gradually resulted in formation of cracks) on the flat 

surface of polycrystalline Swedish iron specimens, a great amount of research effort has 

been dedicated towards understanding microstructural mechanisms that drive fatigue 

crack initiation. The advent of advanced electron microscopy techniques has helped in 

obtaining excellent details pertaining to the dislocation networks and sub-structures, 

which are considered as prerequisite for fatigue crack initiation in FCC metals and alloys. 
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2.1.1 Formation of Persistent Slip Bands 

During fatigue loading, dislocations multiply and accumulate within the material 

resulting in an increased value of the dislocation density. These dislocations arrange 

themselves in the low energy configurations by forming clusters of dipoles called veins 

[31-33]. Veins primarily comprise of edge dislocation dipoles due to annihilation of 

screw dislocations by cross slip. With repetitive cyclic loading the (dipolar and/or 

multipolar) vein structure disintegrates and rearranges itself by adjusting the distance 

between the edge dislocation dipoles, until the least possible distance between dipoles is 

achieved [33]. At this stage, the vein structure can no longer accommodate any additional 

dislocations generated (due to additional plastic strain), and hence transforms into 

dislocation walls. Several lamellae of dislocation walls in a local domain combine to 

form a ladder-like structure (PSB). Neumann [33], using numerical techniques showed 

that the dislocation dipole wall structures are far more stable than the equiaxed vein 

structures. The ladder-like structure of PSBs (as shown in Fig. 2.1a, b, c) was evident in 

various single, polycrystalline metals [34-37] and alloys [38] as well. In precipitation 

hardened materials, like nickel-base superalloys, PSBs form as dislocations cut through 

the γ matrix and γ' precipitates in a planar slip manner (as shown in Fig. 2.1b) [39-44]. 

Further, PSBs in superalloys are thinner with strain localization at least an order higher 

compared to those in metals [45]. The topic of PSB formation in polycrystalline metals 

and alloys has been discussed extensively in some excellent literature surveys [46-48]. 
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(a)                                                                (b) 

  

                 
                             (c)                                                                     (d) 

 
Figure 2.1. PSB formed in a) copper single crystal [34], (b) polycrystalline copper [37], 

(c) polycrystalline ferritic steel [38], (d) polycrystalline nickel-base superalloy, IN 792-

5A [44]. 

2.1.2 Cyclic Slip Irreversibilities and their Correlation with Fatigue Life 

Damage precursors to fatigue failure are governed by forward and reverse loading 

that is not fully recoverable, leading to permanent deformation, known as cyclic slip 

irreversibilities. For instance, cross slip of screw dislocations, mutual annihilation of 

(screw/edge) dislocations, dislocation climb, formation of locks, kinks, shearing of 

precipitates, etc., result in an unequal effective dislocation glide during forward and 

reverse cyclic loading. Further, extrusions and intrusions, are type of cyclic slip 
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irreversibilities that are formed when PSBs intersect with surface [49,50] or high angle 

grain boundaries (HAGBs) [51,52] (as shown in Fig. 2.2). The PSB-HAGB interaction 

results in an increased stress concentration at the PSB-GB interface due to the formation 

of dislocation pile-ups, and extrusions at the GBs, which ultimately leading to the 

formation of microcracks [53,54], as shown in Fig. 2.3. Experimental studies [50,55] 

quantified the dependence of the extrusion heights (and heights of slip steps formed on 

the surface) on the applied macroscopic strain and it was observed that extrusion height 

scales with the applied strain amplitude. 

Accumulation of cyclic slip irreversibilities within the bulk of the material and/or 

on the surface result in initiation of microcracks and hence affect fatigue life. Mughrabi 

[56,57] showed that fatigue life correlated inversely with the amount of accumulated 

cyclic slip irreversibilities. Mughrabi [57,58] related cyclic slip irreversibilities to fatigue 

lives empirically, by replacing the plastic strain amplitude in the Coffin-Mason’s law, 

with quantifiable cyclic slip irreversibility. Risbet et al. [40,59] observed that in a nickel-

base superalloy, Waspaloy, cracks formed when the local irreversible plastic strain 

(accumulated in slip bands) reached a critical value. Additionally, local cyclic slip 

irreversibilities were in turn influenced by the microstructural attributes, like grain size 

and precipitate size [40]. In polycrystalline 316L steel, the mean extrusion height at the 

surface was observed to be proportional to the size of the grain below the surface, which 

contained the slip band [60]. 
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(a) (b) 

Figure 2.2. (a) Formation of extrusions in copper due to the impingement of PSB on 

surface [35,36], (b) Formation of static extrusions in the vicinity of a TB [51]. 

 

Figure 2.3. Dislocation pile-up at a GB resulting in the formation of a microcrack in 

Hastealloy X [54].  

The experimental observations pertaining to the structure of the PSB and its 

interaction with GBs, coupled with the dependence of cyclic slip irreversibilities on 

microstructural attributes (for instance the dependence of extrusion height on grain size) 

are taken into consideration while formulating the energy of a PSB, whose stability will 

be used to define crack initiation in the fatigue framework discussed in the current study. 
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2.2 Role of Microstructural Attributes in Fatigue Crack Initiation 
 

Microstructure of polycrystalline materials plays a significant role in fatigue crack 

initiation and can be partially attributed to the fatigue scatter observed in the components. 

The propensity for the formation of fatigue cracks was observed to correlate well with 

certain microstructural attributes, over a wide range of materials. Fatigue life was 

observed to correlate inversely with grain size, for various polycrystalline metals [61] and 

alloys [62-66], with a uniform grain size. Further, it has been shown that fatigue life is 

limited to the size of ALA (as-large-as) grains [67] or supergrains (grain clusters with 

large grains connected by low angle grain boundaries or LAGBs) [68-70]. Thompson et 

al. [61] compared the fatigue lives of materials with different stacking fault energies 

(which quantifies the ease of cross slip to occur) and concluded that strong inverse 

correlation exists between fatigue life and grain size in materials with low stacking fault 

energies where cross slip is difficult to occur. Further, it was observed that PSBs, which 

are precursors to fatigue crack initiation, were more prone to form in favorably oriented 

large grains [66,70-78]. In addition to grain size, the GB character was also observed to 

influence the ease with which fatigue cracks initiate. 

Microcracks were observed to nucleate at TBs in certain FCC polycrystalline 

metals [51,54,79,80] and alloys, specifically in nickel-base superalloys (as shown in Fig. 

2.4) [11,69,74,75,79-82,105]. In nickel-base superalloys, the propensity of fatigue cracks 

to initiate at a TB correlated with the length of the TB [69,82], and the resolved shear 

stress acting on the slip plane parallel to the TB [82]. Over the past three decades, 

substantial amount of research work was done to gain insights on why fatigue cracks tent 

to initiate at TBs. Wang et al. used a finite element model on a bi-crystal with a TB and 
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found that stress and slip enhancement is greatest in a small volume of material near the 

surface and close to the TB [83]. Peralta et al. calculated the compatibility stresses at TBs 

and varied the orientation of the loading axis to the TB [84]. They observed that the stress 

concentration at the TB is a maximum when tensile load is applied along a <111> 

direction. Neumann derived an analytical expression for the tractions at the intersection 

of a TB and a surface, and further emphasized that the observed slip activity and the 

crack initiation on planes parallel to the TB plane is not due to the compatibility stresses, 

but due to the logarithmic singular surface tractions that occur at the intersection of the 

surface with the TB [85]. In addition to simple bicrystal based models, which teach us 

about activity in the local neighborhood of a TB, high fidelity models that take into 

account heterogeneous deformation of twins and energetics of twin-slip interactions have 

also been developed. 

         
(a)                                                             (b) 

Figure 2.4. EBSD scans showing fatigue crack initiation in the vicinity of TBs (indicated 

by arrows), in nickel-base superalloys (a) RENE 88DT [74], and (b) LSHR [104]. 

 Sangid et al. using MD simulations, showed that coherent TB offers the lowest 

interface energy and highest barrier to dislocation nucleation and transmission, thus 

providing a significant strengthening contribution [86]. Further, Sangid et al. developed a 
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microstructure-based model to predict fatigue crack nucleation in a nickel-base 

superalloy, U720, consisting of a high density of coherent TBs [23,24,69]. Their model, 

which takes into account GB energetics and the interaction of PSBs with GBs, predicted 

that most often cracks nucleated at TBs in U720, which was also observed in experiments 

[69]. By calculating a fatigue indicator parameter in a crystal plasticity framework, 

Castelluccio and McDowell showed that large annealing twins are more detrimental than 

thinner deformation twins and stressed their importance [87]. Further, Cerrone et al. used 

gradient crystal plasticity in a finite element model of an experimentally measured 3D 

microstructure wherein a microcrack nucleated along a coherent TB in a nickel-base 

superalloy, LSHR [88]. From the crystal plasticity simulations, they hypothesized that 

high elastic anisotropy and coplanarity of the boundary plane with a {111} slip plane 

were responsible for the accumulation of slip and subsequently for the microcrack 

nucleation event at the TB. Each of the aforementioned analytical and computational 

models provide valuable insights into the role played by TBs on fatigue crack initiation in 

polycrystalline materials. But understanding why fatigue cracks initiate at twins from a 

lengthscale point of view is still lacking. The fatigue framework presented in the current 

study takes into account, the energetics of slip-twin interaction (calculated using MD 

simulations), and the quantitative information from the complicated stress/strain states 

developed within the twin (obtained from crystal plasticity simulations) and uses this 

information in a PSB energy based failure prediction framework. One of the main focuses 

of the current study (which explicitly considers TBs in the microstructure) is to 

understand the effect of elastic anisotropy, plastic strain accumulation and normal stress 

on crack initiation at twins. 
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 Fatigue crack initiation is a microstructure and deformation mechanism based 

phenomenon and a robust fatigue prediction model should consider contributions from 

various length scales. Although there has been substantial and important work done using 

crystal plasticity based models and MD simulations, the present work develops a 

framework, which unifies length scales (by considering both atomistic and continuum 

level contributions) with explicit consideration of microstructures, which are statistically 

equivalent to the real microstructure of the material. Such a high fidelity model helps us 

gain more insight into the most critical factors that contribute to crack nucleation and also 

link microstructure variability to scatter observed in fatigue life. This framework takes 

quantitative information of the heterogeneous deformation from crystal plasticity 

simulations pertaining to microstructure descriptions of 3D stresses and strains, 

energetics of slip-GB interaction, stacking fault and anti-phase boundary energies from 

atomistic calculations, to predict where cracks could potentially nucleate. Further, this 

framework explicitly includes twins in statistically equivalent microstructures (SEMs) 

that are built on the morphological and crystallographic statistics obtained from the real 

material's microstructure data. The present work also delivers insights on the evolution of 

elastic anisotropy and plastic strain accumulation at the GBs. 

2.3 State-of-the-Art Microstructure Based Life Prediction Models 

Experimental observations of deformation mechanisms leading to fatigue crack 

initiation coupled with correlations established between various microstructural 

attributes, cyclic slip irreversibilities and fatigue life, have assisted in the development of 

failure predictive models. Over the past three decades, various micro-mechanical fatigue 
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crack initiation models have been developed that consider the energy of dislocation 

structure within the PSB [22,23,24,69,89-92]. Tanaka, Mura et al. [22] in their model 

define crack initiation at a point when the total energy of the PSB equals the specific 

fracture energy of the material. Later in the 1990s their model was revisited [90,91] to 

calculate the evolution of Gibbs free energy with fatigue cycles and the revised model 

defines crack initiation at a point where the Gibbs energy hits a maximum value and 

starts to fall rapidly due to instabilities within the dislocation structure of the PSB. Sangid 

et al. [23,24,69] defined the energy of a PSB within a polycrystalline nickel-base 

superalloy using energy contributions from atomistic and continuum length scales, and 

defined crack initiation criteria at a point when the PSB reaches a minimum energy 

configuration where it would rather allow a crack to nucleate than becoming unstable. 

The aforementioned models do not account for a 3D complex stress state evolving within 

each grain within the polycrystal, e.g. the previous models use Schmid factors to 

calculate resolved shear stress on a slip system, and hence ignore the elastic anisotropy, 

normal stress acting on the PSB, hardening, and the affect due to the incompatible 

stresses that are introduced by the neighboring grains. This is not a way forward, at least 

for LCF crack initiation models. The fatigue model presented in the current study uses a 

modified version of the PSB energy expression developed by Sangid et al. [23,24,69] for 

a nickel-base superalloy, U720. It must be noted that some degree of uncertainties exist in 

all models, and in order to build trustworthiness in these models it is important to 

quantify the uncertainties that exist in them, using well established uncertainty analysis 

techniques. 
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2.4 Uncertainty Quantification and Propagation Techniques 

Researchers in various sub-disciplines of computational material science and 

engineering including computational solid (and particle) mechanics [29,92], 

computational fluid dynamics [93], MD [94,95], etc., have integrated uncertainty analysis 

into their modeling framework. Over the past decade, uncertainty quantification has been 

successfully applied to fatigue crack growth models pertaining to both metals [96-99] and 

composites [100,101]. Zhang and Mahadevan [96] used Bayesian inference technique to 

quantify uncertainties via statistical distribution parameters in two competing crack 

growth models for metals. Cross et al. [98] used a hierarchical Bayesian inference 

framework to quantify uncertainties in equivalent initial flaw size and crack growth rate 

parameters, and hence improved the predictive capabilities of their fatigue crack growth 

model. Chiachio et al. [101] used a full Bayesian approach to quantify uncertainties of a 

set of five damage mechanics models for composites and the best of the models was 

chosen based on an information-theoretic approach by calculating the relative probability 

amongst all other candidate models. The metal fatigue crack growth models discussed 

above are empirical in nature and are independent of the microstructure of the material, 

which has a great influence in crack initiation [22-24,69,90,91] and microstructurally 

small fatigue crack growth [102]. The fatigue life prediction framework which is used in 

the current study [25], differs from the above mentioned crack growth models in the 

following three ways. First, it is a microstructure based framework, where the 

morphological and crystallographic heterogeneities in the microstructure are considered 

and an attempt is made to link the variability of the microstructure with the fatigue life 

calculated. Second, it is not fully empirical in nature, as the model takes into 
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consideration the physics of underpinning deformation mechanisms, which lead to cyclic 

slip irreversibilities during fatigue. Finally, the model predicts number of cycles for crack 

initiation rather than calculating crack growth with number of cycles. While dealing with 

models that predict fatigue crack initiation, a phenomenon, which is dependent on both 

the local microstructure and deformation mechanisms, the number of epistemic 

uncertainties increases due to the complexities involving lengthscale dependent 

deformation mechanisms. These uncertainties need to be quantified, in order to validate 

the model and identify an appropriate applicability regime. There is a great amount of 

work that needs to be done in quantifying uncertainties in complex physics based models 

and hence improving the predictive capabilities of such models. 

As discussed earlier, several micro-mechanical fatigue crack initiation models 

have been developed which take into consideration the heterogeneities within the 

microstructure and various parameters that quantify lengthscale dependent deformation 

mechanisms [22-25,69,89-91]. The energy based model of Tanaka and Mura [22] takes 

into consideration parameters like the frictional stress, cyclic slip irreversibility and the 

specific fracture energy of the material. The fatigue crack initiation framework developed 

by Sangid et al. [23,24,69] takes into consideration, width of a PSB, dislocation density, 

γ' volume fraction, grain boundary (GB) energies, extrusion height at intersection of 

PSB-GB, stacking fault and anti-phase boundary energies. There are uncertainties 

associated with all the parameters mentioned above, some of which are difficult to 

measure using experiments. Although these models provide great insights into 

understanding how certain microstructural features and competing deformation 

mechanisms lead to initiation of fatigue cracks, systematic uncertainty analysis, in an 
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attempt to rigorously validate such physics-based models, is still lacking [103]. The 

current work fills this gap by using an uncertainty quantification and propagation 

framework, in order to validate a microstructure and deformation mechanism based life 

prediction model [25]. 

This study presents a full Bayesian inference, which uses Markov chain Monte 

Carlo (MCMC) algorithms to sample from the posterior distributions for the uncertain 

parameters, given prior beliefs on the parameters and experimental fatigue life data. 

Uncertainties can also arise from variable loading, but in this work, we consider constant 

strain amplitude loading. Following Bayesian inference, the quantified uncertainties of 

the parameters are forward propagated through the model, in order to make predictions of 

fatigue life, using Monte Carlo sampling. This helps to quantitatively relate the input 

uncertainties to the output. A brief overview of how the uncertainty quantification and 

propagation framework fits in with the fatigue model is shown in Fig. 1.4.
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3. MICROSTRUCTURE BASED FATIGUE LIFE PREDICTION 

FRAMEWORK 

3.1 Material Characterization 

A nickel-base superalloy, RR1000, developed by Rolls-Royce plc is used in this 

study. The material produced using powder metallurgy process underwent forging and 

was heat-treated above the γ' solvus (at 1170°C) for 5 hours [11]. RR1000 is a 

precipitation hardened material and the ordered γ' precipitates present in the material 

provide a strengthening mechanism and stability at elevated temperatures. The 

heterogeneities present in the microstructure are quantified based on EBSD data. These 

complex heterogeneities govern strain localization within the material and affect fatigue 

life. Quantitative characterization of the microstructure provides information on 

orientation distribution (to understand texture of the material), grain size distribution, 

grain boundary character distribution (GBCD) of special type of GBs called coincident 

site lattice (CSL) GBs and misorientation distribution (to spatially understand the 

neighbor orientations). Such a characterization not only helps in linking microstructure to 

properties but also provides benchmark statistics based on which SEMs can be generated. 

The statistics of aforementioned microstructural heterogeneities for RR1000 (obtained 

using DREAM.3D) are shown in Fig. 3.1. It is evident from the pole figures (shown in 

Fig. 3.1a) that RR1000 does not have any texture, and from Fig. 3.1c that a majority of 

CSL GBs in RR1000 are TBs. The misorientation distribution (shown in Fig. 3.1d) shows
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 a peak at 60o, implying a large number of twins present in the material, compared to a 

Mackenzie distribution, which corresponds to a material with a random texture and has 

either none or relatively low number of twins. 

 

Figure. 3.1. Microstructure characterization of RR1000. 

3.2 Statistically Equivalent Microstructures (SEMs) 

SEMs are virtual microstructures, built to statistically represent the 

(morphological and crystallographic) heterogeneities of the microstructure of the 

material, as closely as possible. In order to enhance the predictive capabilities of the 

microstructure based failure prediction model, the representation of the microstructure 

must capture the variability observed in the material. For this purpose, the statistics of the 

different morphological and crystallographic characteristics mentioned above are 

accounted for, while creating the SEMs that are representative of RR1000. For instance, a 

random texture was assigned to the SEMs generated, as the texture of RR1000 was 

observed to be random (Fig. 3.1a). 
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The data at hand is the 2D microstructure of the material that is derived from an 

EBSD scan of the material. To fully characterize grain structure, direct 3D data is a 

necessity, but due to the lack of availability of the 3D material data, certain (stereological 

and other modeling) assumptions have to be made while transitioning from 2D to 3D. 

Two main assumptions are made in obtaining the 3D grain size distribution from the 2D 

grain size distribution. First, it is assumed that the grain size in the 3D SEM would follow 

a log-normal distribution. This appears to be a valid assumption as a wide variety of 

metals and alloys have a log-normal grain size distribution [105]. The second assumption 

is to scale the 2D grain sizes obtained from 2D EBSD data, with a stereological scaling 

factor 4
Π

. Groeber [106] showed that this scaling is reasonable and the error is within 5% 

by comparing the scaled data obtained from 2D microstructure data of a nickel-base 

superalloy, IN100, with its real 3D microstructure data. 

 Grain shape distributions are not as straight forward as the grain size distributions.  

The irregular geometries that are typical features of grains in a polycrystalline material 

make it difficult to unambiguously describe the shapes of grains. Due to the lack of 

availability of the 3D data of RR1000, the grain shape distribution parameter (in the form 

of moment invariants) information was extracted from the experimental 3D data set of a 

sub-solvus heat treated nickel-base superalloy, IN100 [18]. This information was input 

into DREAM.3D [18, 19] to define the shapes of the grains in the equivalent 

microstructure. 

 A characteristic feature of the microstructure of RR1000 is the considerably high 

number of annealing twins. Hence the GBCD of the SEMs generated should show a high 

frequency of annealing twins to mimic the real microstructure as closely as possible. 
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Annealing twins were inserted into the microstructure using a twin-insertion code [107]. 

The code chooses one of the four variants (and their conjugates) of the <111> planes at 

random and the corresponding grain orientation for the twin is calculated by rotating the 

orientation of the parent grain 60° about the same <111> variant that was chosen. The 

percentage of annealing TBs (with respect to all CSL GBs in the SEM) in the SEMs 

closely matched the values observed in real microstructure data. All the twins inserted 

into the microstructure are continuous within their respective parent grain and do not 

have discontinuities like steps, ledges/twin tips. 

 The statistics obtained from the 2D characterization of the material followed by 

stereological assumptions is input into the ‘StatGenerator’ toolbox in DREAM.3D, which 

creates SEMs, following which surface meshes of these microstructures can be generated. 

These surface meshes were converted into a volume mesh using PPM [21]. Figure 3.2 

gives a brief overview of the process involved in the generation of SEMs, which are then 

volume meshed to be used in a CPFE framework. 

 

Figure 3.2. Workflow for generating statistically equivalent microstructures. 



32 
 

 An important step in the generation of SEMs is the comparison of the statistics of 

the microstructural attributes of SEMs and EBSD scans. Hence a verification step in 

embedded into the SEM generation module to check if microstructural attributes in 

microstructures generated are in good agreement with that observed in EBSD data. First, 

a student t-test is used to test the hypothesis if the lower order moments (mean and 

variance) of grain size distribution in the microstructures generated are equal those 

obtained from stereologically scaled grain sizes extracted from EBSD scans. Since we are 

interested in calculating the scatter in fatigue life and not the absolute minimum fatigue 

life, we are not using the higher order moments (skewness and kurtosis) of grain size 

distribution as verification metrics. These higher order moments, when used, will help 

select microstructures that capture extreme values of grain sizes which help in estimating 

minimum fatigue life. The microstructures generated using the lower order moments as 

verification metrics (for grain size) also capture some ALA grains whose sizes are in the 

same range as those estimated from EBSD scans (as evident from Fig. 3.4a). Second, the 

percentage of TBs (with respect to all CSL GBs) in the microstructure generated is used 

as an additional verification metric to check the statistical equivalence of the 

microstructures generated. A synthetic microstructure generated is considered as an SEM, 

only after verifying that there is a close match between the statistics of the 

aforementioned microstructural attributes (lower order moments of grain size distribution 

and percentage of TBs with respect to all CSL GBs) of SEMs and EBSD scans. The 

flowchart for the module that automates generation of SEMs is shown in Fig 3.3, which 

also gives a clear picture of the verification steps. A comparison of the grain size and 

CSL GB distributions from EBSD scans and SEMs generated in shown in Fig. 3.4. 



33 
 

 

Figure 3.3. Flowchart of the SEM generation and verification module. 

     

Figure 3.4. (a) Comparison of stereologically scaled grain size values obtained from 

EBSD scans with the sizes of grains in SEMs generated, using an individual value plot in 

MINITAB [108]. The location of the two blue circles corresponds to the mean grain size 

value in EBSD data and SEM data, (b) comparison of GBCD in EBSD with that of the 

SEMs generated. 
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3.3 PSB Energy Based Fatigue Model 

The fatigue model presented in the current study uses the stability of a PSB to 

define crack initiation. The model uses a modified version of the PSB energy expression 

developed by Sangid et al. [23,24,69]. The definition of the energy of a PSB is enriched, 

by taking the outputs of CPFE based calculations, including the normal stress, back 

stress, resolved shear stress and accumulated strain in a slip system. This information 

along with the GB energetics is fed into the PSB energy based failure prediction model 

(or PSB model) to predict the potential location of crack nucleation. Figure 3.5 displays a 

schematic of a PSB formed in a nickel-base superalloy, based on shearing of γ' 

precipitates. In the schematic shown, a PSB traverses a LAGB and is impeded by a 

HAGB (for example an annealing TB), where the dislocations pile-up, form extrusions at 

the boundary plane, and thereby concentrates stress at the boundary. With this established 

view of a PSB (based on experimental observations), we define the energy of a PSB as 

follows: 

EPSB =  Eatomistic scale contributions + Econtinuum scale contributions     (3.1) 

Eatomistic scale contributions = Eγ and γ′shearing + Eextrusion formation at GBs (3.2) 

Eγ and γ′ shearing =  � ∂Xi �f� γAPBdL
L

0
+ (1 − f)� γSFEdL

L

0
�

i
neff
layers (3.3) 

Eextrusion formation at GBs =  �∂Xi
i

�Eslip−GB
γ−MD next−GBdis bh� (3.4) 

Econtinuum scale contributions =  −Eapplied work − Ehardening +  Epile−up (3.5) 
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Eapplied  work = �∂Xi
i

�bLnlayers∆τCPFEMα � (3.6) 

Ehardening =  �∂Xi
i

�bLnlayersσhardening� (3.7) 

Epile−up = �∂Xi
i

�bLnlayersσpile−up� (3.8) 

Putting all the above energy expressions together, the total energy of a PSB is 

mathematically expressed as follows: 

EPSB = ∑ ∂Xi �f∫ γAPBdLL
0 +  (1 − f)∫ γSFEdLL

0 �i neff
layers +  ∑ ∂Xii �Eslip−GB

γ−MD next−GBdis bh� +

   ∑ ∂Xii �σpile−up − ∆τCPFEMα − σhardening�bLnlayers, 
   (3.9) 

where ∂Xi is the incremental slip within PSB, f is the volume fraction of the γ' precipitate 

phase, γSFE is the stacking fault energy of the γ phase, γAPBE is the anti-phase boundary 

energy of the γ' precipitate, neff
layers is the number of effective layers contributing to SFE 

or APBE, L is the length of the PSB, Eslip−GB
γ−MD  is the energy required for a dislocation to 

transmit across a GB, next−GBdis  represents the number of dislocations forming an extrusion 

at the GB, b is the magnitude of the Burgers vector, h is the width of the PSB, ∆τCPFEMα  is 

applied cyclic stress on the PSB, σhardening accounts for the hardening within the PSB,  

σpile−up is the pile-up stress at the intersection of the PSB and the GB, and nlayers is the 

number of slip planes within the PSB, which is related to the PSB width, h as  nlayers =

 h
b
. 

Failure (e.g. fatigue crack initiation) would occur when the energy of the PSB 

would attain its minimum value. Mathematically speaking, cracks would initiate when 

the following conditions are satisfied: 
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∂EPSB
∂Xi

= 0  and  ∂
2EPSB
∂Xi

2 > 0     (3.10) 

 

Figure 3.5. Schematic of a PSB. 

    3.3.1 Atomistic Level Contributions 

 Atomistic level deformation mechanisms which contribute to fatigue failure are 

taken into consideration in the current fatigue model. Dislocations exist within a PSB by 

shearing the matrix and the γ' precipitates and pile-up at the GBs to form extrusions. The 

energy that goes into aforementioned deformation mechanisms was calculated using MD 

simulations in LAMMPS [109]. 

3.3.1.1 Shearing of Matrix and Precipitates 

 At intermediate temperatures, dislocations were observed to shear γ' precipitates 

in RR1000 [110]. For a dislocation within a PSB to shear through the γ matrix (Ni) and γ' 

precipitate (Ni3Al), it has to overcome the energies associated with destroying the 

stacking sequence of an FCC structured Ni and an ordered L12 structured Ni3Al, which 

are defined as the stacking fault energy (SFE) and the anti-phase boundary energy 
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(APBE), respectively. Embedded atom potentials from Foiles-Hoyt [111] and Mishin 

[112] were used to calculate the SFE and APBE curves for γ and γ' phases, respectively. 

Based on these energies, the total energy required by a PSB of length L, to shear through 

a matrix and precipitate phase is given by: 

Eγ and γ′shearing =  � ∂Xi �f� γAPBdL
L

0
+ (1 − f)� γSFEdL

L

0
�

i
neff
layers. (3.11) 

In multi-axial fatigue, the critical plane is a combination of having the maximum 

normal stress and shear strain according to the description of Fatemi-Socie [113].  The 

concept of normal stress acting as a driving force for crack initiation [113] and growth 

has been extended to microstructural sensitive fatigue models [87], which is adopted in 

this analysis. It is established that SFE and APBE are affected by an application of 

normal stress (or strain) on the slip system [114,115]. As depicted in Fig. 3.6, the 

application of tensile normal stress moves the atom layers apart which makes it easy for 

slip to occur on the slip planes, thereby reducing the SFE (or APBE) and vice versa. SFE 

and APBE curves (for Ni and Ni3Al phases respectively) have been plotted for various 

normal strains (Fig. 3.7a and b). The normal strains were applied along the <111> 

direction perpendicular to the slip planes. It is evident from the plots that the respective 

energies increased with an application of compressive normal strain and decreased with 

an application of tensile normal strain consistent with previous studies [114,115]. 
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Figure 3.6. Schematic of normal stresses acting on PSB, stretching (or compressing) the 

lattice, shown in the inlet figures. 

 

 

Figure 3.7. (a) SFE curve for various applied normal strains. (b) APBE curve for various 

applied normal strains, (inlet schematic was redrawn based on schematic from Rice et al. 

[116]). 
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3.3.1.2. Extrusion Formation 

 As discussed earlier, a PSB is impeded by a HAGB, and due to this, the 

dislocations within the PSB pile-up at the GB. Stress concentration at the GB increases 

and leads to activation of slip systems in the neighboring grains. As a result, dislocations 

could be partially transmitted across the GB leaving behind a residual dislocation at the 

GB [117]. Strain incompatibility and discontinuous nature of slip at GBs leads to 

accumulation of residual dislocations at the GBs and hence extrusion formation, with 

repeated cyclic loading [47]. This in turn raises the stress concentrations at the PSB-GB 

interface due to extrusion formation. The energy needed for a dislocation to form an 

extrusion depends on the type of the GB. From the plot in Fig. 3.8 (reproduced from 

Sangid et al. [23]), TB offers the highest barrier to dislocation transmission. Depending 

upon the type of the GB and the number of dislocations forming an extrusion at the GB, 

the energy required by a PSB to form an extrusion, Eextrusion formation at GBs, is given as 

follows: 

Eextrusion formation at GBs =  �∂Xi
i

�Eslip−GB
γ−MD next−GBdis bh�. (3.12) 

 The calculation of number of dislocations penetrating a GB, next−GBdis , is not 

straight forward and it was calculated based on empirical relations. In order to consider 

the evolution of cyclic slip irreversibilities due to formation of extrusions, empirical 

formulation of extrusion growth with an increasing number of cycles is incorporated into 

the model, as rigorous experimental data are not available for the evolution of extrusion 

at GBs. There is a vast amount of work done in understanding how PSBs evolve at the 

surface. Risbet et al. [40,59] measured extrusion heights at the surface of a nickel-base 
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superalloy using AFM techniques. It was observed that extrusions appeared after a 

threshold number of loading cycles, Noffset. The number of dislocations within the 

extrusions is assumed to follow a square root dependency on the number of fatigue 

cycles, based on the model of Essmann, Gösele, Mughrabi [35]: 

next−GBdis  ∝  �N − Noffset, (3.13) 

where Noffset is calculated based on the condition that the applied stress (τα +  σpile−up) 

on a dislocation within a PSB impinging upon the GB must be greater than the 

transmission resistance offered by the GB. This GB resistance to PSBs is calculated using 

Stroh's formulation [118] assuming that the PSB is favorably aligned to the GB to form 

extrusions and hence initiate a crack. Christ [119] used this relation of GB cracking due 

to pile-ups to study PSB-GB interaction. Their expression calculates the stress required 

by a pile-up to nucleate a crack, which was formulated to be dependent on the surface 

energy (γ) of the material. We replace this term with the GB energy calculated from MD 

simulations to quantify various GBs resistance to dislocation transmission and extrusion 

formation. Hence the model calculates noffset based on the condition that extrusions 

would cross a GB when the applied stress (τα +  σpile−up) is greater than the GB 

resistance (σstroh). Also the number of dislocations that penetrate the GB increases with 

an increase in the applied stress: 

next−GBdis  ∝  
τα + σpile−up − σstroh

σstroh
, (3.14) 
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where the resolved shear stress τα is taken from CPFE calculations, σpile−up is calculated 

based on the relation between long range pile-up stresses in terms of slip system strain, 

formulated by Schouwenaars et al. [120] as follows: 

σpile−up =  
1.8µγα

π(1 − 𝑣𝑣). (3.15) 

Here µ is rigidity modulus, 𝑣𝑣 is the Poisson's ratio and γα is accumulated strain in the 

slip-system which is calculated from the CPFE simulations.  As mentioned earlier, σstroh 

is calculated based on the Stroh’s formulation [118], expressed as follows: 

σstroh =  �πEGB
transµ

2(1−𝑣𝑣)L
�
1
2
, (3.16) 

where EGBtrans is the dislocation transmission energy [86] of a GB and its value for various 

types of CSL GBs is shown in Fig. 3.8, L is the length of the PSB. It is noted 

that next−GB 
dis depends on the pile-up length itself; more dislocations form extrusions from 

PSBs with large pile-up lengths and hence a length dependence is added to the model  

next−GBdis  ∝   
L

Lavg
, (3.17) 

where L is the pile-up length and Lavg is the average pile-up length of all the PSBs 

formed. 

Finally, a strain rate dependence is also established as to differentiate between slip 

systems with higher strain rate (which accumulate more slip and hence dislocations) and 

lower strain rates.  
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next−GBdis  ∝   
γ̇α

γ̇o
, (3.18) 

where γ̇α is the slip system strain rate and γ̇o is the reference strain rate for all slip 

systems. It is added in the denominator for the expression to be dimensionally consistent. 

From the flow rule used in the crystal plasticity formulation used in this framework 

(described in Section 3.4), we have γ̇α = γ̇o �
τα−χα

gα
�
m

, where m is the rate sensitivity 

parameter, τα is resolved slip-system stress, χα is back stress on a slip system and gα is 

the critical resolved shear stress. Combining the individual empirical formulations we 

define the number of dislocations penetrating the GB to form an extrusion, next−GBdis , as 

follows (by assuming proportionality constant k): 

next−GBdis =   k �
τα − χα

gα
�
m L

Lavg
�
τα + σpile−up − σstroh

σstroh
��N − Noffset. (3.19) 

 

Figure 3.8. Energy barrier for dislocation transmission across various types of CSL GBs                                

(figure taken from Sangid et al. [23]).  
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The PSB model uses energy barriers calculated from atomistic simulations.  These 

values for the static GB energies (for distinct CSL GBs in Ni [23,121]), dislocation 

transmission energy barriers and dislocation nucleation energies for CSL GBs [23], 

stacking fault energy and anti-phase boundary energy values (shown in Fig. 4) are stored 

within a database and called within the PSB energy balance when needed. Using the 

energy values from a database makes the PSB model computationally very efficient, as 

MD simulations do not have to be run on a repetitive or hierarchical basis. These material 

models (relying on values, a priori, calculated and stored in databases) are easier to 

implement in practice due to their computational efficiency, as demonstrated by a 

spreadsheet based model developed by Parthasarathy et al. [122] to calculate the yield 

strength of superalloys.  

           3.3.2. Continuum Level Contributions 

 In the continuum scale, the PSB is subjected to an i) external stress field created 

due to the applied load, constrained deformation of neighboring grains and ii) internal 

stress fields due to long range pile-up stresses and hardening that occurs within the PSB. 

The continuum level description of dislocations contribution to the energy of a PSB is as 

follows: 

Econtinuum scale contributions

= �∂Xi
i

�σpile−up − ∆τCPFEMα − σhardening�bLnlayers 
(3.20) 
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3.3.2.1. Applied Stress 

 PSBs have been observed to form along one of the slip systems. Hence due to an 

applied load, these PSBs will be subjected to a resolved shear stress (RSS) acting on the 

slip system. In order to consider the role of the grain interaction and the complex 3D 

stress states that form within each grain, the RSS is directly taken from the CPFEM 

simulations. Within the CPFEM constitutive models [123], the RSSs are calculated by the 

expression FeTFeS∗: (sα ⊗ mα), where Fe is the elastic part of the deformation gradient 

(F=FeFp [124]), S∗ is the 2nd Piola Kirchoff stress, (sα ⊗ mα) is the Schmid tensor. It is 

assumed in this model that PSB forms on the slip system with maximum RSS. Hence 

∆τCPFEMα  is calculated for that slip system which showed a maximum range of resolved 

shear stress over a cycle. 

It is also observed that for the most active slip system within a grain (composed of 

thousands of material points in the finite element mesh) the percentage of standard 

deviation of RSS with respect to the average value of RSS calculated over all material 

points is less than 5% showing that if it is an active slip system then all the material 

points have similar values of resolved shear stress with an error of +/- 5%. On the 

contrary, if the slip system is inactive (with the resolved shear stress less than the critical 

resolved shear stress) then the percentage of standard deviation of RSS with respect to the 

average value of RSS calculated over all material points is greater than 40%, inferring the 

large variance of RSS values over the domain of the material points that belong to that 

particular grain. Following this argument based on statistical observation, we compute 

the average resolved shear stress of all the slip systems, and only consider the maximum 

value (pertaining to the most active slip system) from the twelve obtained values. The 
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maximum RSS value is used in the energy expression of the PSB. Therefore, the applied 

cyclic stress ∆τCPFEMα  is calculated for the most active slip system, in an average sense 

over all material points that belong to a grain. The ∆τCPFEMα  is calculated from peak to 

minimum applied load, thus accounting for the cyclic nature of fatigue. 

  3.3.2.2. Dislocation pile-up 

 As discussed earlier, long-range pile-up stresses develop within the PSB due to 

the pile-up of dislocations at the intersection of PSB-GB.  Schouwenaars et al. calculated 

the average of the stress fields of pile-ups with randomly distributed numbers of 

dislocations [120]. For such a stress field which has a non-zero average stress, they 

derived an expression for the maximum value of the pile-up stress and showed that it 

would increase linearly with accumulated slip system strain during incipient deformation, 

and in addition showed, that it is independent of the grain size. We adapt their 

formulation of pile-up stress into our continuum definition of pile-up stress and calculate 

it by obtaining the accumulated slip system strain, γα, for the most active slip system 

already determined (as described in Section 3.3.2.1) 

σpile−up =  
1.8µγα

π(1 − 𝑣𝑣). (3.21) 

High stress and displacement fields developed due to the pile-up of dislocations at 

the PSB-GB intersection trigger cracks to nucleate. Hence it is worthwhile to study the 

stress-fields due to a pile-up of dislocations and the associated displacement fields, which 

present an opening length-scale to promote a crack to nucleate. For this purpose, a 

dislocation pile-up was considered with twenty edge-dislocations, with their Burgers 

vector pointing in X-direction, while the dislocation line direction pointed in the Z-
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direction, as shown in Fig. 3.9a. Hence from the elastic description of edge-dislocations, 

the strain and the displacement fields in the Z-direction are zero. This makes it a plane 

strain problem in the XY plane. For the plot in Fig. 3.9, the material is assumed isotropic 

and image forces at the GB are not considered in calculating the equilibrium positions of 

dislocations. For this setup we calculated the equilibrium positions of dislocations in a 

pile-up subjected to a resolved shear stress of 100 MPa. The stress field σYY and the 

displacement-field Uyy were plotted to understand the driving forces for crack opening 

along the YY direction. The stress-field, σYY, around an edge dislocation is given by 

[125]: 

σYY =  
−µb

2π(1 − 𝑣𝑣)
y(x2 − y2)
(x2 + y2)2 . (3.22) 

The displacement-field, Uyy, around an edge dislocation is given by [126]:  

Uyy =  
b
2π

�
1 − 2𝑣𝑣

2(1 − 𝑣𝑣) ln
1

�x2 + y2
 +  

1
2(1 − 𝑣𝑣)

y2

x2 + y2
�. (3.23) 

The stress and displacement fields due to the dislocation pile-up are shown in Fig. 

3.9 b and c. It can be observed that the stress field at the intersection of the pile-up and 

the GB is at its peak, whereas the peak of the displacement field is slightly offset from the 

pile-up and GB intersection, possibly leading us to insights on why cracks initiate at a 

slightly offset distance from the TBs, rather than at the TBs [11,74,75]. 
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        (a) 

 

                               (b)                                                                  (c) 

Figure 3.9. (a) Coordinate system of the pile-up, (b) σyy field due to the pile-up (units of 

the stress are in GPa), and (c) Uyy displacement field due to the pile-up (units of 

displacement are in nm). 

Significant work-hardening occurs within the PSB and evolves within the PSB according 

to the Taylor hardening relation [127] given by: 

σhardening = 0.45µb�ρ, (3.24) 

where ρ is the dislocation density within the PSB. 

3.4 Crystal Plasticity Finite Element (CPFE) Framework 

Crystal plasticity forms a bridge between applied macroscopic load and micro-

mechanical response at a slip-system level. The CPFE framework combines anisotropic 

elasticity with rate dependent crystal plasticity kinetics. It must be noted that inelastic 
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deformation is not only a result of crystallographic slip, it may also occur via twinning, 

diffusion, and GB sliding. In the current framework, plastic flow occurs primarily 

through dislocation glide, at the temperature of interest (e.g. an intermediate elevated 

temperature). 

The values of independent cubic elastic constants, Cij, are used to solve for 

anisotropic elastic response of the polycrystalline nickel-base superalloy, RR1000. As the 

γ' phase is not being explicitly modeled, the Cij values are homogenized using the first 

order Voigt-Reuss-Hill (VRH) method [128] as follows: 

Cij = 0.5�fCij
γ′  +  (1 − f)Cij

γ  +    
Cij
γCij

γ′

fCij
γ′  +  (1 − f)Cij

γ�, (3.25) 

where f is the volume fraction of the γ' phase and Cij
γ represent elastic constants of Ni and 

Cij
γ′ represent the elastic constants of γ' phase. Kuhn et al. [128] showed that the 

difference between the simpler first-order rules (like the VRH rule) and higher-order 

structure-property rules (which take into account volume fraction, shape, orientation, and 

orientation distribution of a second phase) for a material containing globular γ' 

precipitates is less than 1% and hence justified the use of VRH rule to calculate 

homogenized elastic constants for nickel-base superalloys. 

In RR1000, the volume fraction of γ' phase is 48% [129]. The Cij
γ and Cij

γ′ values 

of both the phases at the elevated temperature of interest, are taken from literature 

[130,131]. The elastic constants obtained from VRH method gave a very close value for 

the Young’s modulus when a virtual microstructure was subjected to an elastic strain, 

however there was still 5% error, when compared to the experimental value. Hence the 
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values of Cij were adjusted using a binary search method, during which the Cij values 

were adjusted until the Young’s modulus value matched accurately with the experimental 

value. The final Cij values obtained are as follows: 

C11 = 234.52 GPa, C12 = 130 GPa, C44 = 103 GPa. 

The flow rule describing incremental slip system strain is adapted in this framework: 

γ̇α = γ̇o �
τα−χα

gα
�
m

sgn(τα − χα), (3.26) 

where γ̇α is the shearing rate of slip-system α, γ̇o is the reference shearing rate, τα,

χα,  gα are the corresponding slip system shear stress, back stress (that accounts for 

Bauschinger effects) and critical resolved shear stress (or slip resistance which delays the 

onset of plastic deformation), respectively. The slip resistance and back stress evolve 

according to an Armstrong–Frederick hardening model [132]: 

ġα = H� qαβ�γ̇β�
N

β=1

− Rgα��γ̇β�
N

β=1

 
(3.27) 

χ̇α  = cγ̇α − dχα|γ̇α|, (3.28) 

where H and R are the direct hardening and dynamic recovery coefficients, respectively, 

for the isotropic hardening relation (eq. 3.27) and c and d are the direct hardening and 

dynamic recovery coefficients, respectively, for the non-linear kinematic hardening 

relation (eq. 3.28), qαβ refers to hardening coefficient for interaction between slip 

systems, and is assigned a value of 1 (for self-hardening) and 1.2 (for latent-hardening). 

There are a total of nine fitting parameters in the CPFE framework. The effect of 

each of the parameters on the macroscopic response was determined by doing sensitivity 
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analysis, after which the parameters were fit to match the stress-strain curve response to 

that of the experimental macroscopic response for the first fatigue cycle (along with the 

response pertaining to tenth cycle and half-life), as shown in Fig. 3.10. 

 

Figure 3.10. The macroscopic curve obtained by fitting the parameters to match the 

experimental macroscopic stress-strain curve. The inlets show contour plots of stress 

component in the loading direction. 

It is not computationally feasible to run thousands of fatigue cycles using CPFE 

framework. Further, crystal plasticity cannot capture the formation of PSBs within the 

microstructure for the following two reasons. First, all the grains (within the SEM) are 

idealized by assigning a uniform orientation at every material point (or integration point) 

and homogenizing the response of the γ' precipitates, due to which, the orientation 

gradient and shearing of γ' precipitates required to capture the PSB is lost. Second, the 
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mesh size assigned to the volume mesh of the SEMs is on the order of a few microns, 

whereas the width of PSBs is on the order of tens to hundreds of nanometers. Reducing 

the mesh size to capture individual PSBs would increase the computational time by at 

least two orders of magnitude, thereby making it not amenable to carry out CPFE 

simulations. Hence we only simulate one fatigue cycle and leverage the resulting 

micromechanical data (RSS, normal stress, critical resolved shear stress, back stress, 

active slip systems, etc.) within the PSB model. 

3.5 Integration of the Fatigue Model and CPFE Framework 

From the previous discussion, it is clear that the PSB energy formulation needs 

slip-system level information like the resolved shear stress (∆τCPFEMα ), normal stress (σNα ), 

critical resolved shear stress (gα), back stress (χα), and accumulated plastic strain (γα) 

over the slip system on which the PSB forms. Apart from these quantities, the Fe-1 tensor 

and effective accumulated plastic strain (p) at all the material points is also extracted to 

study the hot-spots (crack initiation sites predicted by the PSB energy based failure 

model) in detail. All the aforementioned parameters are called the state dependent 

variables (SDVs). In addition to the SDVs other geometrical information pertaining to the 

PSB (including its length, L, assuming that the PSB passes through the centroid of the 

grain along the slip system with maximum RSS) is also extracted from the surface mesh 

of the SEM. The SDV information (∆τCPFEMα , σNα , χα, gα,  γα, p, Fe-1) from all the material 

points in every grain are extracted using an ABAQUS-Python interface. As it is assumed 

that the PSB forms on an active slip system with the highest resolved shear stress, in 

every grain the most active slip system is determined based on the maximum resolved 

shear stress criterion, as discussed in Section 3.3.2.1. For this slip system the normal 
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stress, critical resolved shear stress, back stress and the accumulated stain are also 

calculated. 

For the sake of simplicity, it is also assumed that the PSB passes through the 

centroid of the grain. The length of the most active slip system passing through the 

centroid of the grain is calculated, by determining the two facets (in the surface mesh of 

the grain) on which the PSB would intersect and then finding the distance between the 

two intersection points. If the grain forms a cluster of grains joined by LAGBs (as shown 

in Fig. 3.5), the lengths of the PSBs in individual grains comprising the cluster are 

summed. Thus the geometric and the state variable information pertaining to the most 

active slip system on which the PSB formed (in grains or cluster of grains) is calculated 

and is fed into the PSB model. The flowchart in Appendix shows the framework of the 

fatigue model that begins from statistical characterization of real material’s 

microstructure to the prediction of hot-spot within the SEM. 

3.6 Results and Discussion 

A representative volume element (RVE) encompasses a large enough volume that 

is representative of the material as a whole such that the predicted responses or properties 

do not change with a further increase of size [133,134]. Although by definition, an SEM 

is not related to the response of the material, with an increase in its volume, it can 

accurately capture a material response (or property) of interest, and hence, it can attain 

the essence of an RVE. In practice, the size of an RVE depends on the material response 

of interest. For instance, the size of an RVE to predict elastic modulus of a material is 

much smaller compared to the size of an RVE required to accurately predict fatigue life 

[134]. The scope of the current work is not to determine an RVE which captures all the 
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extreme value statistics of fatigue crack initiation, as such an RVE contains thousands of 

grains, making it a challenge to run computationally intensive CPFE simulations.  

The fatigue framework simulates the microstructure variability by using many 

number of SEMs generated via Monte-Carlo algorithms in DREAM.3D, which takes into 

account, the statistical attributes of the real microstructure (as discussed in Section 3.2). 

Taking this as leverage, we generate many unique SEMs, which are randomly sampled 

populations of location specific microstructures within the component. We note that each 

of these samplings is independent.  Although SEMs are small volume elements compared 

to an RVE, in this study, they are made sufficiently large to capture distributions of 

microstructural attributes (grain size, GB character, etc.) in addition to strength properties 

(elastic modulus, yield stress, hardening response and reverse plasticity upon unloading) 

of the material. Accordingly, a SEM in our work can be regarded as an RVE for the 

microstructural attributes and strength properties, but not for assessing the minimum 

fatigue life of the material. To capture the aforementioned properties, a SEM 

encompassing a minimum volume of 160x160x160 μm3 and consisting of at least 150 

grains serves as an RVE, which is in agreement with the estimation of Lin et al. [135], 

who defined the size of an RVE (for strength properties) for RR1000. These SEMs were 

created as per the schematic shown in Fig. 3.2, by first generating a parent microstructure 

having roughly around 50 grains (without twins), and then inserting 60 twins (making 

sure that no twins are inserted in parent grains which are already small, with grain sizes 

less than 10 μm) in such a way that the average grain size and the percentage of twins in 

SEMs match that of the real microstructure. For each individual SEM, the fatigue model 

deterministically calculates fatigue life on a grain-by-grain basis, assuming that a PSB 
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already exists on the most active slip system on every grain. By using multiple SEMs, 

thousands of grains can be probed by the fatigue model to obtain their respective fatigue 

lives.  The resulting is pooled together to get a fatigue life distribution, in order to 

connect variability in microstructure to scatter in fatigue life. 

In order to study the effect of the size of an SEM on the fatigue life distribution 

curve, three populations of SEMs were generated, with the first population consisting of 

15 SEMs with 100 grains each, second population consisting of 10 SEMs with 150 grains 

each, and third population consisting of 7 SEMs with 200 grains each, in order to ensure 

a similar quantity of grains within each population. It is noteworthy to point out that as 

the size of an individual SEM increases (going from 100 grain to 200 grains), it attains 

the ability to capture the higher order moments of grain size distribution (skewness and 

kurtosis) in addition to capturing the lower order moments (mean and variance), which in 

turn enables a more appropriate analysis of those material responses that are specifically 

dependent on the extreme value attributes [136], for instance, the fatigue life [134]. Three 

fatigue life distribution curves were created (as shown on a log-log plot in Fig. 3.11), one 

for each population of SEMs, by pooling the fatigue lives obtained by probing the PSB 

model through all grains (or grain clusters) in a given population of SEMs. As the PSB 

model calculates fatigue life on a grain-by-grain basis (assuming a PSB exists in every 

grain), each data point shown in Fig. 3.11 corresponds to the fatigue life of a grain.  The 

fatigue life distribution curve obtained from the third population of SEMs (with 200 

grains in each SEM) captures the most conservative fatigue life due to the 

aforementioned reasons. The fatigue life distribution curve obtained from the second 

population of SEMs (with 150 grains in each SEM) for the most part overlays the third 
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population’s fatigue life distribution curve, but is less conservative in nature. Finally, the 

fatigue life distribution obtained from the first population of SEMs (with 100 grains in 

each SEM) is farther away from the other two fatigue life distribution curves, and thereby 

reflecting on the fact that using SEMs with 100 grains is not appropriate to capture 

fatigue scatter. It is worthwhile to mention that the difference in the least fatigue life 

obtained by using the second and third population of SEMs is only a few cycles 

(approximately two orders of magnitude less than the scatter observed from experimental 

fatigue life data). We can capture the extreme minimum value for fatigue life data by 

using the population of SEMs with larger number of grains. But capturing the absolute 

minimum fatigue life data point is not the scope of the current research, as that would 

require us to define an RVE large enough to capture the least possible fatigue life. The 

current work focuses on capturing the scatter in fatigue life by simulating the variability 

in microstructure. Using SEMs with 200 grains in CPFE framework (to obtain the 

response for one fatigue cycle) takes more than twice the amount of time to simulate 

SEMs with 150 grains. Hence in order to reduce the computational time, while still being 

able to capture the scatter in fatigue lives to a reasonable level of accuracy, we use SEMs 

with at least 150 grains (which captures the microstructure attributes and strength 

properties), in order to obtain fatigue life distribution and link variability in 

microstructure to fatigue scatter.  
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Fig. 3.11. Effect of the size of an SEM on the fatigue life distribution curve. Three SEMs, 

each taken from three different populations of SEMs, are shown in the inlets.  

 After determining that each SEM needs to have at least 150 grains, we probe the 

PSB model through 15 unique SEMs and obtain the fatigue life of the hot-spot grain (the 

one with the least number of cycles to crack initiation) from each SEM.  Hence, we 

associate each unique SEM with one unique fatigue life data point and obtain 15 fatigue 

life predictions from 15 independent SEMs. The fatigue life predictions, thus obtained, 

are overlaid on a 95% confidence interval plot generated from experimental fatigue life 

data, shown using a log-log plot in Fig. 3.12. The scatter in the fatigue life predictions 

obtained (by varying the microstructure) is in good agreement with the scatter observed 

in experimental fatigue life data. The heterogeneous deformation state of the local 

microstructure of a hot-spot provides insights about what caused failure at those specific 

locations. As discussed earlier, the influence of elastic anisotropy and plastic strain 
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accumulation at the hot-spots provides an explanation into the underpinning mechanism 

of crack nucleation. 

 

 

Fig. 3.12. Fatigue life predictions obtained by considering fatigue lives of the hot-spot 

grains (those with the least fatigue lives compared to all other grains) in 15 different 

SEMs. Predictions from the model are overlaid on the 95% confidence interval plot 

generated from experimental data. 

 Lattice incompatibility develops near GBs as a result of geometric differences in 

slip system alignment between two neighbors of distinctly different grain orientation. 

Stress concentrations develop at GBs with high lattice incompatibility. Hence the amount 

of incompatible stresses can be understood by quantifying lattice incompatibility. For this 

purpose, we note a tensorial parameter, which by itself cannot describe compatible 

deformation. The deformation gradient, F=FeFp [124], can define compatible 
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deformation, which is not fulfilled by Fe or Fp alone. Acharya and Beaudoin [137] used 

Fe-1 to measure incompatibility as follows: 

Λ ∶= �Fij,ke−1 − Fik,j
e−1�ei ⊗ ej ⊗ ek, (3.29) 

where {ei} is the basis of a rectangular Cartesian coordinate system. As the lattice 

incompatibility developed at the GBs gives rise to incompatible stresses, we treat the 

incompatibility, Λeq, as an equivalent stress metric to study the high elastic stress 

anisotropy (ESA) at the GBs as follows: 

Λeq =  �3
2
Λ ∶ Λ�

1
2. (3.30) 

 As previously discussed, crack initiation follows strain localization. Crystal 

plasticity framework enables us to quantitatively understand the microstructure 

dependent evolution of the plastic strain. Effective plastic strain accumulation (PSA), p, 

[138] at a material point has been used, in order to study the strain localization in the hot-

spots predicted by the PSB model. It is calculated from the plastic velocity gradient (Lp) 

as follows: 

Lp = γ̇α(sα ⊗ mα),  (3.31) 

ṗ = �2
3

Lp: Lp�
1
2,  (3.32) 

p = ∫ ṗdtt
0  , (3.33) 

where γ̇α, sα and mα are the rate of slip, slip direction and the slip plane normal of the 

slip system α, respectively. 

 As a visual example, for the three hot-spots that display the lowest lives (in three 

different SEMs) based on the PSB model’s predictions, the elastic anisotropy (Λeq) and 
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plastic strain accumulation (p) were plotted over all the material points within the 

respective SEMs (Fig. 3.13) at maximum applied macroscopic strain (or at the end of the 

one fatigue cycle simulated in CPFE). In addition to those two metrics, the absolute RSS 

values of that slip system containing the PSB is also plotted. For example, if the PSB 

formed on slip system 6 within the hot-spot grain (or grain cluster), then the absolute RSS 

values of slip system 6 at all material points in the SEM are plotted for mere comparison 

purposes. In order to visualize the PSB alignment, the local anisotropy, and strain 

accumulation, a plane section is cut through the hot-spot grain along the slip plane 

containing the PSB and is extended through the SEM. First row in Fig. 3.13, show the 

elastic anisotropy, plastic strain accumulation, and the RSS plotted over the cross- section 

of an SEM containing hot-spot 1, second row in Fig. 3.13, show the plots of the three 

aforementioned metrics over the cut section of an SEM containing hot-spot 2 and 

similarly third row in Fig. 3.13, show the plots of the same metrics over the cross-section 

of a SEM containing hot-spot 3. In all the figures, the PSB slip system is shown with a 

black line superimposed on the microstructure for clarity. It can be clearly seen that in all 

the three hot-spots, cracks are predicted to initiate where the PSB is interacting with the 

TB. Hot-spots 1 and 2 correspond to a PSB forming in a single grain, whereas hot-spot 3 

corresponds to a cluster of two grains sharing an LAGB. Further, it can be clearly seen 

from all the three hot-spots that the PSB model predicts that cracks initiate at a TB 

embedded in a relatively large grain/ grain clusters compared to small grains, which is in 

agreement with experiments [11,74,75,104]. 

 It can be seen from the ESA plots (shown in the first column of Fig. 3.13), that the 

value of the ESA is highest at the GBs, and the TBs, in particular, show high degree of 
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anisotropy.  The orientations of all the material points within each grain of the SEM are 

assigned the same values, hence it is an idealization compared to real materials that 

display intergranular misorientations and residual stresses. Due to this reason, the elastic 

anisotropy results are observed to be high only at the GBs and have near zero values 

away from the GB in the core of the grain. But if we were to model grains with internal 

rotations with high resolution meshes, the ESA of the slip bands can also be observed at 

the expense of computational time. The PSA however seems to accumulate at the GBs 

and also varies across the grains.  

 In all the hot-spots displayed, ESA, PSA, and RSS have high values, which are 

partially attributed to a high probability for crack initiation at these material points.  High 

elastic anisotropies can be clearly observed in the vicinity of twins. In addition to that, 

since TBs are the strongest barriers to slip transmission, dislocations pile-up at TBs 

[23,86]. In other words, high lattice incompatibility at TBs and the long-range stress field 

created by dislocation pile-ups at the TBs, can potentially increase the stress 

concentrations and lead to crack initiations. This can be a partial explanation for the high 

probability of crack initiation at TBs as predicted by the PSB model. 

Such a detailed analysis of the 3D heterogeneities (in elastic anisotropy and 

plastic strain accumulation) is only possible by the use of crystal plasticity. The use of 

CPFE also helped i) reduce the number of experimental evolution functions and fitting 

parameters used in the earlier version of the PSB energy balance for U720 [23,24,69] and 

ii) eliminate the use weakest link theory, by providing more information on the location 

specific heterogeneous deformation. 
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Figure 3.13. A cross-sectional plane through the hot-spots within a SEM to show ESA 

and PSA in the local neighborhood of the hot-spots. In all the plots, the plane passes 

through the centroid of the hot-spot (grain or cluster of grains) and its normal is parallel 

to the slip plane normal of the active slip system containing the PSB, shown with a black 

line and indicated by an arrow. It must also be noted that RSS plots are created on the 

same slip system (at all material points) based on the slip system on which the PSB 
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formed in the hot-spot grain. Elastic anisotropy (Λeq) (units 1
µm2), Plastic strain 

accumulation (p), RSS (units MPa) are shown at hot-spot 1 (first row), hot-spot 2 (second 

row) and hot-spot 3 (third row), with the respective scale bars shown in the last row.  

As relatively high values of both metrics (Λeq and p) are observed to occur at the 

GBs, average values of both the metrics are calculated at the GBs for every grain within 

an SEM. This information is linked with the fatigue lives calculated for all the grains. 

Based on this accumulated data, a response surface (shown in Fig. 3.14) is constructed. It 

can be clearly visualized that lower values for fatigue lives are observed for grains that 

have extreme values of ESA and PSA at the GBs.  

 

Fig. 3.14. Influence of ESA and PSA on fatigue life. 

 Critical life limiting parameters like ESA, PSA and maximum RSS are conditions 

that must be satisfied to identify certain microstructural features exhibiting a high 

probability of crack nucleation. Hence the evolution of these three parameters was 

calculated over 10 cycles of strain controlled loading (using a smaller SEM consisting of 
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100 grains, in order to save a significant amount of computational time in simulating 10 

fatigue cycles, while still being able to study the evolution of life limiting parameters).   

Figure 3.15 shows the evolution of these parameters over cycles 1, 2, 5 and 10, with each 

plot taken at the maximum applied strain over the corresponding cycle. It can be 

observed that the lattice incompatibility remains consistent during the cyclic loading. The 

plastic strain accumulation on the other hand shows a clear positive trend in evolution, 

and it can be explained by the fact that LCF regime results in incremental plastic strain 

accumulation per cycle. At the microstructure level, this leads to more dislocation pile-

ups at the GBs. From Fig. 3.15, annealing TBs accumulate high strains with an increase 

in cyclic loading. This observation provides insights as to why TBs are preferred 

locations for cracks to initiate. Maximum RSS calculated at every material point in the 

SEM also shows a similar incremental trend, which can be attributed to the increased 

hardening observed with cyclic loading.  High values of maximum RSS observed at TBs 

are a result of high elastic anisotropy and strain accumulation. 
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Figure 3.15. Evolution of elastic anisotropy (Λeq), plastic strain accumulation (p) and 

maximum resolved shear stress (calculated at every material point over 10 cycles). 

While elastic stress anisotropy and plastic strain accumulation along with the RSS 

play an important role by acting in concert to initiate fatigue cracks, normal stress also 

has a significant role to play in the limiting fatigue life of the material.  With this as a 

motivation, in classical fracture mechanics terms, the crack driving force can be 

promoted by either mode I initiation based on the normal tensile stress along the TB or 

mode II initiation based on the resolved shear stress along the TB. Due to the propensity 

of fatigue crack initiation in the vicinity of favorable oriented TBs with long slip traces, it 

is worthwhile to study the synergistic/competing role played by the RSS and the normal 

stress (acting on the TBs). For this purpose, we further analyze the stress state of hot-spot 
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1 (shown in the first row of Fig. 3.13), which is one of the twin lamellae (inside a large 

grain) encompassing a PSB. The values of the RSS (for the slip system corresponding to 

the PSB) and normal stress (acting perpendicular to the slip plane containing the PSB) are 

obtained at every integration point within the twin (at the peak applied macroscopic 

load), and their cumulative distributions are plotted (as shown in Fig. 3.16). Over a 

majority proportion of the volume within the twin, the normal stress was observed to 

dominate the RSS, which suggests a significant role played by the normal stress in 

unzipping a PSB at the intersection of the TB to act as a mode I crack.    

Further, a cumulative distribution obtained by pooling together the absolute 

values of the RSS for all the 12 slip systems in the grain is compared to the RSS 

corresponding to PSB’s slip system. A considerable amount of scatter is observed in the 

former, compared to the latter (which has a uniformly high RSS within the PSB). The 

same is not true in the case of normal stress, which has significantly higher values on 

certain locations of the grain, as shown in the inlets of Fig. 3.16. Thus, the highest value 

of normal stress is observed at the PSB-TB intersection, resulting in a normal tensile 

stress to open a crack along the TB. 
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Figure 3.16. Cumulative probability distributions of the resolved shear stress (RSS) and 

normal stress (NS) at all integration points within the slip system of the critical PSB, 

along with the RSS values obtained for all slip systems across the entire grain. The 

critical resolved shear stress (CRSS) is shown as a reference value (with respect to slip 

system activation). The inlet figures show (top) an RSS plot on the cross-section view of 

the SEM and (bottom) contour plots of the RSS and NS values over the slip system 

corresponding to that of the PSB. 

 Due to strain controlled loading applied on the SEM with a constant strain range 

in every cycle (as shown in Fig. 3.17a), it was observed that the difference in strain 

accumulation between the fully loaded states of any two consecutive cycles remains 

almost the same (Fig. 3.17b). Although crystal plasticity accounts for cyclic hardening to 

an extent, it cannot capture the cyclic slip irreversibilities that arise from defect level 
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deformation mechanisms. Hence, crystal plasticity by itself is not sufficient to model 

fatigue and predict life. Due to a similar trend in the evolution of the stress/strain states 

with increasing number of cycles, we take the output from CPFE simulations over one 

fatigue cycle and leverage this data as input into the PSB model, which also considers 

slip irreversibilities. 

 

Figure 3.17. (a) A strain loading schematic showing the nomenclature of ‘steps’ and 

‘cycles’ used in the discussion. (b) The difference of effective accumulated plastic strain 

(p) evaluated at the two consecutive loaded steps, pstep 2N-1 and pstep 2N-3 corresponding to 

cycles N and N-1 respectively. 

Slip in cyclic loading is distinguished from that of monotonic loading. During 

forward and reverse loading, the material undergoes irreversible slip, which leads to 

distinct defect structures [31-33].  To date, the majority of the computational fatigue 

models attempt to use the same tools to model cyclic and monotonic loading, albeit these 
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models exhibit limited success since they cannot capture the complex and unique features 

of the fatigue phenomena. Various forms of cyclic slip irreversibilities manifests during 

cyclic loading in polycrystalline materials and their contributions to the fatigue damage 

evolution is inherent within the present fatigue model. Cyclic slip irreversibilities are the 

fraction of plastic shear strain that is microstructurally irreversible [45]. These 

irreversibilities can occur both on the surface and in the bulk of the material [34]. 

Irreversibilities on the surface cause roughness, due to accumulation of slip steps. In the 

bulk of the material irreversibilities occur due to i) dislocations becoming sessile due to 

the formation of locks that impede subsequent dislocation glide, ii) annihilation of 

positive and negative dislocations, iii) slip-GB interaction which leaves a residual 

Burgers vector within the GB causing extrusions to grow with repeated loading, iv) 

shearing of the precipitate, and v) dislocation climb at high temperatures [34,35,47]. 

These defect level mechanisms can be accounted for, by calculating the activation energy 

required for each process to occur. Since the current fatigue model is an energy-based 

model, the energies for pertinent dislocation mechanisms contributing towards 

irreversibilities are calculated, specifically shearing of precipitates, formation of unique 

dislocation arrangements within PSBs, and development of extrusions/intrusions at GBs. 

 In nickel-base superalloys, a prominent deformation mechanism at intermediate 

temperatures is through the shearing of the precipitates. Due to intense cyclic slip 

localization in the PSBs, dislocations are able to shear through the precipitates. The ease 

at which the precipitates can be sheared depends on the shear stress, normal stress, work-

hardening, and temperature. For instance, as depicted in Fig. 3.6, a tensile normal strain 

acting on atomic slip planes will increase the distance between the slip planes which in 
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turn makes it easier for slip to occur thereby reducing the SFE (or APBE) and vice versa. 

The shearing through precipitate (and matrix), with its dependence on normal strain was 

taken into consideration using APBE (and SFE) energies obtained from MD simulations 

(as shown in Fig. 3.7a and 3.7b). The irreversible flow through precipitate (and matrix) 

shearing, with its dependence on normal stress was taken into consideration using APBE 

(and SFE) energies obtained from MD simulations. Moreover, the energy balance is built 

for a PSB, which develops unique dislocation arrangements, including dislocation 

dipoles, as a form of slip irreversibilities. Another contribution to irreversible plastic flow 

comes from the formation of extrusions from PSB impingement on a HAGB. These 

extrusions grow in length during cyclic loading due to an increased number of residual 

dislocations accumulating within the GB [116]. The model takes into consideration the 

development of extrusions and the associated energy required to form the extrusion [86]. 

Thus, the cyclic slip irreversibilities due to fatigue are considered into the model by 

considering the energies required for the fatigue related defect level mechanisms that 

introduce irreversible plastic flow in the material. The underpinning physics improves the 

fidelity of the model in investigating the microstructure's role in fatigue crack initiation 

and also helps link fatigue scatter to variability in the microstructure by sampling many 

statistical equivalent realizations of defect-microstructure interactions. 

3.7 Summary 

In the current research work, a microstructure based fatigue life prediction 

framework is developed, which takes into account i) the statistics of the material’s 

microstructure, ii) quantitative input from the complex 3D stress and strain 

heterogeneities output from crystal plasticity finite element (CPFE) simulations and iii) 
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grain boundary (GB) energies calculated from molecular dynamics (MD) simulations to 

differentiate the role of the GB character. The following conclusions can be made with 

regards to the current research effort. 

• A microstructure and deformation mechanism based formulation is used to define 

the energy of a persistent slip band (PSB), using the quantitative information 

obtained from i) continuum scale CPFE simulations which solve for complex 3D 

stress and strain heterogeneities within the microstructures and ii) atomistic scale 

MD simulations which provide energies of various types of GBs and defect level 

mechanisms. 

• The significant effect of the normal stress on fatigue life is incorporated into the 

model by calculating its relationship with the APBE and SFE energies, which 

contribute to the energy of a PSB. 

• The fatigue framework predicts crack initiation to occur at a twin boundary (TB) 

embedded in a large grain, which is in agreement with experimental observations.  

• A high concentration of elastic stress anisotropy and accumulated plastic strain is 

observed in the immediate vicinity of the TBs where cracks were predicted to 

initiate.  

• Significant normal stress was observed to act on a favorably oriented twin 

(embedded in a large grain) where cracks were predicted to initiate, such high 

normal stresses act as crack driving forces.  

• Scatter in fatigue life is linked to the microstructure variability, which is 

simulated by generating multiple statistically equivalent microstructures (with 
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explicitly inserted annealing twins), based on statistics obtained from the real 

microstructure of the material. 

• Fatigue life predictions obtained are in good agreement with experimental data.    
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4. SENSITIVTY AND UNCERTAINITY ANALYSIS 

4.1 Uncertainties in the Model 

The presence of uncertainties in a computational model can be attributed to many 

factors including but not limited to: i) measurement errors, ii) numerical errors, iii) 

missing physics due to simplifying assumptions, etc. Input parameters present in the 

current model can be categorized into three classes based on the ease of measurability 

using experiments i) physical parameters that can be calculated using experiments, ii) 

physical parameters that cannot be measured using experiments, and iii) parameters that 

are empirical/semi-empirical in nature, and hence cannot be measured using experiments. 

In addition to the aforementioned uncertainties, model discrepancy (or model bias) exists 

due to epistemic uncertainties present in the model.  

4.1.1 Physical Parameters that can be Calculated Using Experiments 

These physical parameters correspond to a distribution of values due to variation 

in the experimentally measured values. Uncertainties observed in these parameters are 

possibly due to measurement errors, material variability, sampling volume, or usage of 

various data collection techniques. The set of model parameters (within the fatigue model 

discussed in Section 3.3) that fit into this category of uncertainties are Young’s modulus 

(E), Poisson's ratio (ν), γ' volume fraction (f), dislocation density (ρ) within a PSB, and 

PSB width (h). Although the measurement of E and ν are straight forward using 
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mechanical testing equipment in a lab, the measurement of the rest of the parameters (f, 

ρ, h), which correspond to a lower length-scale, require advanced experimental setup, for 

instance the usage of neutron diffraction experiments for measuring dislocation density 

(ρ) or the usage transmission electron microscope to measure the width of a PSB (h). Due 

to this reason, a distribution was assigned to each of these input parameters based on 

literature review and expert opinion. While performing GSA (as discussed in Section 

4.2), the influence of all parameters on the uncertainty of output is calculated, using 

sensitivity indices and global sensitivity plots. Table 4.1 summarizes the distribution 

assigned to each of the parameters, and also the source from where the data was obtained.  

4.1.2 Physical Parameters that cannot be Easily Measured Using Experiments 

Some of the physical parameters in the model, like the stacking fault energy 

(γSFE), anti-phase boundary energy (γAPBE), energy required for a dislocation to transmit 

across a GB (Eslip−GB
γ−MD ) cannot be easily measured using experiments. Although, the 

intrinsic stacking fault energy can be calculated by measuring the distance between 

Shockley partials under a transmission electron microscope, unstable stacking fault 

energy strictly cannot be measured directly from experiments. Additionally, the fatigue 

model considered in the current study takes into account, the effect of normal stress (σNα ) 

on the energy of the PSB and hence it requires the quantitative dependence of γSFE and 

γAPBE on the normal stress acting upon the PSB. These quantities can be obtained using 

MD simulations. The potentials used to measure γSFE, γAPBE and Eslip−GB
γ−MD  are still 

empirical in nature, hence there is some degree of uncertainty involved with the 

calculations obtained from these simulations [94,95]. A Gaussian distribution is assigned 



74 
 

to two parameters, γSFE and γAPBE, with the mean as the calculated value and a standard 

deviation equal to 5% of the calculated value.  

GBs have a definitive role in localizing and accumulating strain [139], which is a 

forerunner to crack initiation.  The fatigue framework employs additional information 

about the interactions between dislocations and specific GB characters, with the value of 

Eslip−GB
γ−MD .  Slip-GB interactions are very complex and span an infinite parameter space, so 

certain simplifying assumptions are made within the model; specifically, conservative 

values of the energy barrier for slip-GB interaction is taken by not accounting for shear 

stress on the GB plane.   In order to quantify the uncertainty in the values of Eslip−GB
γ−MD , we 

consider an example of a slip-TB interaction for various twin orientations and dislocation 

types.  Specifically, from the work of Ezaz et al. [140], MD simulations are used to 

quantify dislocation transmission and incorporation at a coherent twin boundary (CTB) in 

six different classes of slip-twin reactions. The energy barrier for dislocation transmission 

through CTB was observed to be proportional to the magnitude of the residual Burgers 

vector within the CTB after the transmission event [141]. Burgers vector increased from 

0 (due to pure cross-slip of a screw dislocation) to 0.53a (with a being the lattice 

parameter), the energy barrier increased by approximately 24%, from 187 mJ/m2 to 232 

mJ/m2. With the 24% deviation in Eslip−GB
γ−MD  taken as the uncertainty for all types of slip-

GB interactions, a log-normal distribution is used to quantify uncertainty in the values of 

the GB energy barriers to slip. 

The values of these parameters (γSFE, γAPBE and Eslip−GB
γ−MD ) are sampled from the 

assigned distributions to see the propagation of uncertainty through the model and its 



75 
 

effect on fatigue life predictions. This will help in assessing the sensitivity of these 

parameters in fatigue life predictions. 

4.1.3 Parameters that are Empirical/Semi-Empirical in Nature 

Some parameters in the model are empirical / semi-empirical in nature.  For 

instance, the first parameter in this category is the degree of crystallinity (DC) within a 

PSB. The physical meaning for this parameter is associated with the construction of the 

PSB energy balance, which sums the contribution of individual dislocations within the 

PSB.  As more dislocations are added, the entropy within the PSB increases and the 

degree of crystallinity decreases.  Physically this parameter is associated with the latent 

heat of fusion for the material. This parameter decreases with increasing number of 

cycles as the dislocation density increases.  The DC parameter can take values from 0 to 

1, with 1 referring to a perfect crystal and values approaching 0 are analogous to the 

latent heat of fusion. Hence a uniform distribution is assigned to this parameter, with 0 

and 1 as the lower and upper bounds of the distribution.  

The second parameter is the proportionality constant, k, in Eq. (3.19), which is 

used to calculate the number of dislocations forming an extrusion at the PSB-GB 

intersection, next−GBdis . The PSB model shows an inverse correlation between extrusion 

height and fatigue life, the detailed aspect of which is discussed in Section 5.2. The value 

of next−GBdis , and hence the extrusion height at the PSB-GB intersection scales with the 

value of k. Measurement of extrusion height within the bulk of the material is not a trivial 

task, and this leads to uncertainty in the parameter, which can be accounted using k. 

Hence, k accounts for the uncertainties arising due to missing physics and the simplifying 
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assumptions that went into defining a stress based empirical expression for calculating 

next−GBdis  (Eq. 3.19).  Since next−GBdis  is a strictly positive quantity, so is k. Therefore, a 

uniform distribution, U�(0,∞) is assigned to k. 

4.1.4 Model Discrepancy and Error in Experimental Data 

In addition to the uncertainty caused by the aforementioned parameters, epistemic 

uncertainties occur in the model due to some simplifying assumptions. For instance, the 

PSB model assumes that PSBs exist on all active slip systems within grains (or grain 

clusters) within the microstructure, thereby not accounting for the number of cycles 

required to form PSBs. In order to address the bias created due to such assumptions, we 

introduce a model discrepancy (or model bias) term, δ. This can be viewed as a model 

error in predicting fatigue lives for a given microstructure at a given strain amplitude.  

Most importantly, the scatter observed in the fatigue lives (at a particular strain 

amplitude) can be partly attributed to the variability in the microstructure of the material 

[22-25,69]. In addition to the inherent microstructure dependent variability, errors may 

occur while taking the values from experiments due to equipment alignment, data 

acquisition tolerances, variability in specimen machining, etc. For instance, the exact 

determination of when an internal fatigue crack has initiated is not possible. Due to this 

reason, an experimentalist relies on a percentage drop in load to define number of cycles 

to crack initiation within a strain controlled fatigue experiment [142]. In this context, the 

criteria adopted to decide crack initiation life is more phenomenological in nature and 

hence accounts for errors. Such measurement errors in experiments are accounted for, by 

introducing a measurement error term, e. 
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 If y(xi) represents the fatigue lives obtained from experiments, and f(xi,θ) 

represents the fatigue life predictions from the model, they can be related by the 

following simple equation: 

y(xi) = f(xi,𝛉𝛉) +  δ(xi) +  e  (4.1) 

where xi are experimental conditions (or design parameters) that can be controlled by an 

experimentalist. For instance, xi can be the applied strain amplitude (∆ε), temperature or 

R-ratio. The value of θ, represents the model parameters which cannot be directly 

controlled or sometimes cannot even be directly observed by the person conducting the 

experiment [143]. All ten parameters discussed in Section 4.1 comprise the θ vector. In 

the current model, θ depends on how the material responds to an applied fatigue load 

based on the local microstructure features. Due to fundamental difference between xi and 

θ, and the fact that θ cannot be controlled (and in some cases cannot be measured) during 

experiments, we take the model discrepancy to only depend on the experimental 

conditions (or design parameters), xi [27,143]. Assuming that the model discrepancies, 

δ(xi), are independently and identically distributed, a zero mean Gaussian random 

distribution with variance, 𝜎𝜎1, represented as N�(0,σ12), is assigned to δ(xi). A similar 

argument is applied to experimental error term, e, which can also be assigned a Gaussian 

distribution N�(0,σ22). Since the summation of two Gaussian distributions is also a 

Gaussian distribution, we replace the two Gaussian distributions with just one Gaussian, 

𝑁𝑁�(0,σ2).  Hence, with the addition of 𝜎𝜎 into the parameter estimation problem, we now 

have a new augmented parameter set, φ, given by {𝛉𝛉,σ} or 

�E, 𝑣𝑣, f, ρ, h, γSFE, γAPBE, Eslip−GB
γ−MD , DC, k,σ�. Since there is no information available about 
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the standard deviation, σ, it is an unknown hyper-parameter that needs to be inferred 

using the Bayesian framework. Due to lack of any information for this parameter and 

based on the fact that can only take positive values, a uniform prior distribution,  U�(0,∞), 

is assigned to this parameter.  

Table 4.1 List of model input parameters and distributions assigned to each of the 

parameter. Here 𝑁𝑁� represents normal distribution, LN�  represents lognormal distribution, 

U� represents uniform distribution and β�  represents beta distribution. 

Type Parameter Distribution Units References 

 

 

 

 

Physical 

parameters 

E N�(210,5) GPa [144] 

v N�(0.307,0.005) - [144] 

f N�(0.4,0.03) - [145,146] 

ρ LN� (log(1015.8),1) 1
m2 

[147-149] 

h N�(200,50) nm [40,45] 

γSFE N�(128,6.4) mJ
m2 

[23,24] 

γAPBE N�(260,13) mJ
m2 

[145] 

Eslip−GB
γ−MD  LN� (log(2.0*1012), 0.1) mJ

m3 
[139,141] 

 

Empirical/ 

Semi-empirical 

parameters 

DC U�(0,1) - - 

 

k 

 

U�(0, ∞) 

 

-  

  

 

- 
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Table 4.1 continued 

Model 

discrepancy 

hyper-parameter 

 

σ 

 

         U�(0, ꝏ) 

  

 

4.2 Parameter Selection Using Global Sensitivity Analysis 

Generally, in computational models, different input parameters will have varying 

degree of influence on the uncertainty of the model output. Moreover, a higher parameter 

dimension will increase the computational cost of uncertainty analysis. Hence, parameter 

selection technique is applied to isolate the most influential parameters in the model [26]. 

This is done using GSA, the objective of which is to ascertain how uncertainty in model 

outputs can be apportioned to uncertainties in model inputs, when considered over the 

entire range of input values [26,27]. The GSA focuses on the model parameters, θ. In 

other words, the hyper parameter, 𝜎𝜎, is not considered, because given the extreme ranges 

in 𝜎𝜎 values; it can overshadow the sensitivities in the model parameters. This 

consideration is in agreement with the work of Chiachío et al. [101]. We consider 𝜎𝜎 in the 

uncertainty quantification problem along with other influential model parameters 

(determined using GSA). In other words, while doing sensitivity analysis, we ignore the 

combination of discrepancy and error terms (δ and e), in order to rank, just the model 

parameters with respect to their influence on the uncertainty of the output.  

In this current work, we use variance based Sobol’s sensitivity indices [27] to 

isolate the most influential model parameters. Additionally, graphical tools [150-152] are 
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also used to qualitatively understand the influence of various input parameters on the 

predicted fatigue life. Before using any of the graphical or numerical tools for GSA, 

Monte Carlo simulations are run, in which all input parameters are varied simultaneously, 

over their entire range (defined in Table 4.1) and the model output is generated.  

4.2.1 Variance Based Sobol’s Sensitivity Indices  

The first-order effect of a parameter Xi, on the output (Y) is given by 

Si =  
V(E[Y/Xi])

V(Y)
 (4.2) 

where E[Y/Xi] is the expectation of the output Y obtained by randomly changing all other 

parameters expect Xi. V(E[Y/Xi]) is the variance of the expectations obtained for several 

values of Xi. 

For non-linear and non-additive models (like the model used in current work), the 

sum of all the first order sensitivity indices does not add to 1. This is due to the higher 

order effects in the model arising due to interaction amongst multiple parameters in the 

model. The second and third order sensitivity indices are given as follows:  

Sij =  
V�E�Y/Xi, Xj��

V(Y)
   (4.3) 

Sijk =  
V�E�Y/Xi, Xj, X𝑘𝑘��

V(Y)
    (4.4) 

In a non-linear and non-additive model with n input parameters, there is a total of 

2n-1 sensitivity indices that need to be analyzed [27]. In the current model, there are 10 

model parameters, resulting in a total of 1023 sensitivity indices. Analyzing such a high 
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number of indices is cumbersome. Hence, we use a different sensitivity measure called 

the total sensitivity index (STi), given by: 

STi =  
E(𝑉𝑉[Y/X~i])

V(Y)
 

(4.5) 

where 𝑉𝑉[Y/X~i] is the variance of the data obtained by considering random variations in 

Xi and by keeping all other parameters fixed. E(𝑉𝑉[Y/X~i]) is the mean of such variances 

obtained. The algorithm uses a double loop, in which the inner loop varies the parameter 

Xi randomly and obtains the variance for the output obtained, while the outer loop 

changes all other parameters except Xi and augments the variance obtained by the 

completion of the inner loop. 

It is argued that a good, non-exhaustive characterization of sensitivity of a model 

with n input parameters is given by the total set of first order sensitivity indices, plus the 

total sensitivity indices, thereby needing 2n sensitivity indices rather than analyzing all 

2n-1 higher order sensitivity indices [27]. Hence, in this study we calculate only the first 

order (Si) and total sensitivity indices (STi) of all input parameters. From Table 4.2, it can 

be seen that four parameters {h, ρ, Eslip−GB
γ−MD , k} form the set of most influential 

parameters, as their total sensitivity indices are at least an order of magnitude higher 

compared to the sensitivity indices of other parameters { E, 𝑣𝑣, f, γSFE, γAPBE, DC}. 
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Table 4.2 First order and total sensitivity indices of all input parameters in the model. 

 

Input parameter 

First order sensitivity 

index ( Si) 

Total sensitivity index  

(STi) 

Elastic modulus (E) 0.0046 0.0087 

Poisson's ratio (ν) 0.0013 0.0024 

γ' volume fraction (f) 0.0027 0.0046 

Dislocation density (ρ) 0.1470 0.2413 

PSB width (h) 0.1233 0.3057 

SFE (γSFE) 0.0017 0.0027 

APBE (γAPBE) 0.0018 0.0026 

Dislocation transmission energy 

at a GB (Eslip−GB
γ−MD ) 

   

   0.1021 

 

0.1334 

Degree of crystallinity (DC) 0.0018 0.0046 

Proportionality constant (k) 0.2761 0.3752 

 

4.2.2 Graphical Tools for Global Sensitivity Analysis 

Although scatter plots give us a rough idea of how an input parameter affects the 

output, they cannot be used to easily assess the importance of one parameter over the 

other. If the number of parameters that we are trying to analyze increase, scatter plots 

become cumbersome to analyze. Sensitivity indices (discussed in Section 4.2.1) are very 

efficient in inferring how the variance of the output Y can be quantitatively apportioned 
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to the uncertainty in different model inputs. However, by using those quantitative 

methods, no information is obtained regarding the reduction in the range of uncertainty of 

an influential input parameter (if possible), to obtain a target reduction in output variance 

[151]. Graphical tools maintain a rich set of information in addition to the sensitivity 

indices, as they estimate the contribution of a particular range of input parameter values 

on the sample mean [150] or sample variance [151] of the output quantity of interest. 

In the current work, we use three such graphical plots [150-152]. Two among 

those plots are the contribution to sample mean (CSM) [150] and contribution to sample 

variance (CSV) [151], which are used to assess the influence of an input parameter on the 

sample mean or sample variance of the output, respectively. Based on the deviation of the 

CSM (or CSV) curve of a parameter Xj from the diagonal (e.g. straight line with slope of 

1), its influence on the sample mean (or sample variance) of the output can be 

determined. The CSM and CSV plots for all variables in model parameters in the fatigue 

model are shown in Fig. 4.1a and 4.1b respectively. The third sensitivity plot used in this 

work is the cumulative sums of normalized reordered output (CUSUNORO) plot [152]. 

The further a parameter’s CUSUNORO curve deviates from the X-axis, the greater is the 

influence of that parameter on the output. The CUSUNORO plot for the fatigue model is 

shown in Fig. 4.1c. It should be noted that all three graphical tools (CSM, CSV and 

CUSUNORO), are independent of the type of model (additive/non-additive/linear/non-

linear) being used and just need the data generated using thousands of Monte Carlo 

simulations. 
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Figure 4.1. Graphical tools to qualitatively understand the influence of various 

parameters on the mean and variance of output. (a) CSM plot, (b) CSV plot, (c) 

CUSUNORO plot. 

 It can be inferred from the global sensitivity plots shown in Fig. 4.1, that the 

parameters Eslip−GB
γ−MD , k, ρ and h, significantly influence the output (fatigue life prediction), 

as these curves deviate from the diagonal (for CSM and CSV plots in Figs. 4.1a and 4.1b, 

respectively) and from the x-axis (for CUSUNORO plot in Fig. 4.1c). The curves of non-
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influential parameters coincide (or are in close proximity) with the diagonal (for CSM 

and CSV plots) and the x-axis (for CUSUNORO plot), thus demonstrating little impact 

on the overall model output. The same trend is observed in the sensitivity indices 

(Si and STi as shown in Table 4.2), which show that the parameters Eslip−GB
γ−MD , k, ρ and h,  

have high sensitivity indices compared to the rest of the parameters. The efforts of the 

Bayesian inference will be directed towards quantifying the uncertainties in the set of 

influential parameters.  

4.3 Uncertainty Quantification Using Bayesian Inference 

We represent the most influential model parameters (along with the hyper-

parameter σ) using a vector, α = {Eslip−GB
γ−MD , k, ρ, h, σ} for use within the uncertainty 

quantification framework. The parameters that are considered relatively non-influential 

are still needed as the input to the model, and are assigned to their mean values of their 

respective prior distributions (shown in Table 4.1).  

4.3.1 Bayesian Method 

Bayesian inference technique is used in updating probabilities, and more 

generally, our current state of knowledge of parameters, α, using observed (or 

experimental) data, D. Updated probability distribution (posterior distribution), π(𝛂𝛂|D), 

can be obtained by applying Bayes theorem as follows: 

π(𝛂𝛂|D) =  
π(D|𝛂𝛂)π0(𝛂𝛂)

π(D)     (4.6) 
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where π0(𝛂𝛂) represent our current state of knowledge or prior beliefs on parameter set α, 

π(D|𝛂𝛂) represents the likelihood of observing the data D, given parameter realizations 𝛂𝛂 

and π(D) is the marginal density obtained by integrating the joint density π(𝛂𝛂, D) over all 

possible values of 𝛂𝛂. It can be treated as a normalization factor and this allows us to 

proportionally relate the prior, posterior and likelihood distributions as follows: 

π(𝛂𝛂|D)   ∝   π(D|𝛂𝛂)π0(𝛂𝛂)    (4.7) 

 The prior distributions of all parameters, π0(𝛂𝛂), are listed in Table 4.1. Using a 

statistical model shown in Eqn. (4.1), in which the model errors are assumed 

independently and identically distributed, the likelihood π(D|𝛂𝛂) of observing the data 

follows a normal distribution [27,29]: 

π(D|𝛂𝛂) =
1

(2πσ2)
n
2

e
∑ �

−�yi−g(𝛂𝛂)�
2

2σ2
�n

i=1  
     

(4.8) 

where σ is a hyper parameter in the likelihood distribution, which can be inferred using 

the fatigue life data {y1, y2,….,yn} collected independently from testing n different 

specimens, and g(𝛂𝛂) represents the prediction made by the model. Although the non-

influential parameters are also used in the model, for brevity we just show the set 𝛂𝛂 (set 

of influential parameters) as it is those parameters that we are trying to estimate. The 

parameter estimation (or inverse Bayesian uncertainty quantification) problem in this 

study is to infer distributions of all parameters (in the set parameter 𝛂𝛂), which makes 

predicted fatigue lives to be close to experimental fatigue life data,  by using MCMC 

algorithm [153]. 
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4.3.2 Markov Chain Monte Carlo Algorithm 

 MCMC simulation is a numerical technique, which uses Markov chains to explore 

the state space of model parameters and construct stationary posterior densities for model 

parameters based on observed data. MCMC uses the attributes of posterior densities 

(which are in turn dependent on the likelihood and prior) to specify parameter values that 

adequately explore the geometry of the distribution [27]. It is based on a simple idea of 

comparing the posterior densities of a candidate point (or a newly proposed point), 𝛂𝛂∗, 

with a current location in the state space 𝛂𝛂. If the candidate point yields a posterior 

density greater than the posterior density at the current location, then the proposed point 

is accepted with a probability of one, otherwise the candidate point is accepted with a 

probability of r, less than one. This can be explained by the fact that a higher posterior 

density implies less squared error between observed data and the evaluated QoI at the 

candidate point, and since such a point is always favored, we accept it with a probability 

of 1. 

 Mathematically, the ratio (r) between the posterior densities between the 

candidate point (α*) and the current point (𝛂𝛂) can be represented as: 

r =
π(𝛂𝛂∗|D)
π(𝛂𝛂|D)

=  
π(D|𝛂𝛂∗)π0(𝛂𝛂∗)π(𝛂𝛂|𝛂𝛂∗)
π(D|𝛂𝛂)π0(𝛂𝛂)π(𝛂𝛂∗|𝛂𝛂)

  (4.9) 

 The proposal (or jump) distribution, π(𝛂𝛂∗|𝛂𝛂) (used to propose a new candidate 

point, 𝛂𝛂∗), can be of symmetrical (Gaussian or uniform distribution) or non-symmetrical 

nature (log-normal or beta distribution). Symmetrical forms of proposal distributions are 

preferred to construct posterior densities, which most likely will have a symmetrical 
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geometry. But in general, posterior densities of some model parameters can have highly 

asymmetrical shapes, in which case using a symmetrical proposal distribution could lead 

to long convergence times. Therefore, in this work we use non-symmetrical proposal 

distributions which are a more generic case of sampling from any type of posterior 

densities and is the basis of the Metropolis-Hastings (M-H) algorithm [154].  

The M-H algorithm can be implemented either by proposing a new state for all 

the parameters (𝛂𝛂) at once in a ‘block-wise’ way (by choosing a proposal distribution 

which has number of dimensions equal to the number of parameters (𝛂𝛂) we are trying to 

estimate) or by proposing each parameter αi individually in a ‘component-wise’ way (by 

using a corresponding univariate proposal distribution assigned for each parameter). For 

block-wise sampling, depending on the number of dimensions and the type of parameters, 

an ideal n-dimensional proposal distribution, which takes care of all parameters at once, 

is difficult to identify. If the proposal distribution is not appropriate, a large number of 

the proposed sample will be rejected and hence takes a long time for convergence to be 

achieved. Due to the aforementioned reasons, we use component-wise sampling in the 

current work. A high level overview of the component-wise sampling using M-H 

algorithm is given below. 

i) Set loop counter i = 0, 

ii) Assign initial values to all the individual parameter in 𝛂𝛂 =  {α1,α2, … αn} by 

randomly sampling from their respective prior distributions, and 

iii) Repeat the following steps until i = M (desired number of iterations). 

Increment i by 1, 
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Repeat the following for each parameter, αj, in parameter set 𝛂𝛂 =

 {α1,α2, … αn},      Generate a new candidate αj∗ from π�αj∗|αj
(t−1)�,  

Calculate probability p= min�1,
π�D|αj

∗�π0�αj
∗�π(αj

(t−1)|αj
∗)

π�D|αj
(t−1)�π0�αj

(t−1)� π�αj
∗|αj

(t−1)�
�, 

          Sample a random number u from U�(0,1), 

         if u≤p, accept proposed state αj∗ and set αjt =  αj∗, 

         else, set αjt =  αj
(t−1). 

The convergence of the chain is monitored to ensure a stationary posterior 

distribution of parameters is obtained. We use a convergence test for which multiple 

Markov chains were run in parallel with different initial values of the parameters 

[98,155]. If the variances of a parameter (p) between n chains and within chains are 

represented as Bp and Wp, respectively, then an estimate of variance of p, Vp, can be 

represented as:  

Vp =  
n − 1

n
Wp +

1
n

Bp  (4.10) 

A convergence test statistic, Rp, can be calculated as:  

 

Rp =  �
Vp
Wp

  (4.11) 
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The value of Rp when calculated for each parameter should be close to unity to 

quantitatively ensure convergence. For the full form expressions of Bp and Wp, please 

refer to Cross et al. [98].  

4.3.3 Marginal Posterior Densities of the Parameters 

 Multiple Markov chains are run with different initial guesses of the parameters, 

and posterior distributions are extracted after checking for convergence in each of the 

chains. The mean, variance, and the convergence test statistic (Rp) for the posterior 

distributions of all parameters are shown in Table 4.3. The posterior densities for the set 

of influential parameters (along with parameter σ) are shown in Fig. 4.2. 

Table 4.3 Mean, variance, and convergence statistic of the posterior distributions of 

parameters. 

Parameter (units) Mean Standard 

deviation 

Convergence test 

statistic (Rp) 

Eslip−GB
γ−MD  (mJ

m3) 2.2e12 0.13e12 1.003 

k 1.673 0.185 1.021 

ρ ( 1
m2) 8.68e15 1.48e15 1.010 

h (nm) 191.03 24.05 1.040 

σ 6534.46 2056.4 1.006 
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All the posterior distributions of the physical and semi-empirical parameters (like 

the transmission energy barrier, PSB width, dislocation density) are showing physically 

reasonable values as indicated in the literature. For instance, the PSB width (h) is close to 

the prior estimate and the typically observed widths of the PSBs are on the order of 

hundreds of nanometers [40,45]. Recall, a non-informative flat prior (which has minimal 

influence on the posterior distribution of parameters) was assigned to the parameters k 

and σ. The MCMC algorithm quantified the uncertainties pertaining to those parameters, 

which is evident from the unimodal distribution shown in Fig. 4.2d and 4.2e, 

respectively. 
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Figure 4.2. Prior and posterior densities of all parameters. It must be noted that the prior 

density for k and σ is, U�(0,∞),  and hence is coincident with the X-axis. 

4.3.4 Constructing Full Posterior Distributions for All Parameters 

Instead of using a single large RVE, which makes it computationally prohibitive 

to conduct CPFE simulations, we consider several SEMs, each of which encompasses a 

small volume compared to the RVE, but still are sufficiently large to capture the statistics 

of the microstructural attributes and the strength properties (elastic modulus, yield 

strength, strain hardening behavior and reverse plasticity upon unloading). In accordance 

with Niezgoda et al. [156], we treat an RVE as an ensemble of several SEMs, and 

construct the fatigue life distribution by pooling the distributions obtained by probing the 

fatigue model through individual SEMs. Similarly, we construct the full posterior 

distributions (representing the ensemble of all SEMs) for parameters, by pooling together 

the corresponding posterior densities obtained from the individual SEMs.  Full posterior 

distribution for each parameter is constructed by combining multiple posterior 

distributions, as discussed by Miroshnikov et al. [157] and Neiswanger et al. [158]. 
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Figure 4.3 shows five different posteriors (for each parameter, obtained by using five 

different SEMs) and also a full posterior distribution for each parameter.  

   

      

              

Figure 4.3. Plots showing the overlay of sub-posterior distributions of all the parameters 

obtained using five different SEMs, and also the full posterior distribution obtained from 

the sub-posterior distributions.  
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4.4 Uncertainty Propagation 

The posterior distributions of uncertainties calculated using Bayesian inference 

are propagated through the model, in order to make robust fatigue life predictions. There 

are many techniques available to propagate uncertainties through a model, such as, i) 

sampling techniques, ii) perturbation methods, iii) spectral methods, etc., [27]. In this 

work we use Monte Carlo based sampling techniques due to their simplicity in 

implementation and the fact that the efficiency of these sampling techniques is 

independent of the number of parameters within the model. The model parameters are 

sampled from their respective full posterior distributions (shown in Section 4.3.4) and are 

fed into the PSB model to obtain fatigue life distributions for a population of multiple 

SEMs. For each Monte Carlo simulation, a value is assigned to each of the five 

parameters in α = {Eslip−GB
γ−MD , k, ρ, h, σ}  (generated using corresponding posterior 

distributions), and using this set of values for the parameters, the PSB model finds the 

hot-spot grain and its corresponding fatigue life (for each individual SEM). In summary, 

each Monte Carlo simulation for each SEM generates one data point. It must be noted 

that, while propagating uncertainties through the model for each SEM, the stress and 

strain attributes derived from CPFE simulations (that go into the PSB model) are kept the 

same. For validation purposes, the data generated from multiple Monte Carlo simulations 

was compared to the 95% confidence interval plots generated using experimental fatigue 

life data. The schematic of the methodology is shown in Fig. 4.4. 
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Figure 4.4. Schematic of uncertainty propagation using Monte Carlo sampling. 

For the purpose of this study, five different SEMs were chosen and life 

predictions obtained for each of the five SEMs are shown in Fig. 4.5. Based on the 

convergence of mean and variance for the output QoI (fatigue life), it was determined 

that fifty Monte Carlo iterations were sufficient to obtain life predictions with equivalent 

mean and variance of a much larger sample of fatigue life predictions. Hence fifty Monte 

Carlo iterations were run for each of the five SEMs and fatigue life distributions were 

obtained for each SEM, individually. It can be seen from the log-log plot shown in Fig. 

4.5 that the fatigue life predictions obtained using various SEMs lie within the 95% 

confidence interval bounds of the experimental fatigue life data. Given the quantified 

uncertainties, SEMs representing the microstructure of the material, along with the 

heterogeneous stress and strain data obtained from CPFE as inputs, the model is able to 

predict the life quite well. The calculated fatigue life predictions obtained by propagating 

the quantified uncertainties through the life prediction code shown in Fig. 4.5 is for a 

specific fatigue condition, e.g. a single applied strain range, an intermediate temperature, 

R-ratio, frequency, etc. 
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Figure 4.5. Comparisons of life predictions obtained for five different SEMs. 

4.5 Dependency of Model Parameters on Applied Strain 

Certain parameters involved in the life prediction model are not just material 

dependent, but also depend on the applied strain. Specifically, the model takes into 

consideration cyclic slip irreversibilities (please refer to Section 5.2 for more details), 

which are dependent on applied strain [56,159]. Cyclic slip irreversibilities manifest as 

extrusions when PSBs intersect with the surface or GBs. Experimental studies [36,50] 

quantified the dependence of the extrusion heights (and heights of slip steps formed on 

the surface) with the applied macroscopic strain. Mughrabi [56] provided a systematic 

review of studies done to quantify the cyclic slip irreversibilities (in both single crystals 

and polycrystals) and concluded that an inverse correlation exists between accumulated 

cyclic slip irreversibilities and fatigue lives. In the current model, the factor which scales 

the height of extrusion formed at PSB-GB intersection is k, which is also an influential 
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parameter in the model (as shown in Section 4.2). Hence, the dependence of the 

parameter k, on the applied strain is characterized, thus linking the extrusion height to the 

applied macroscopic strain. 

For this purpose, the uncertainty in k is quantified at three different strain 

amplitudes of interest. Uncertainty quantification was done using the same procedure 

described in Section 4.3.2, by utilizing the experimental fatigue life data at the three 

strains. Only a single SEM is subjected to three different strain amplitudes, solely for the 

purpose of establishing the dependence of k on the applied strain. Figure 4.6a shows the 

posterior densities of k at three different strain amplitudes. It is evident from Fig. 4.6a 

that as the applied strain amplitude increases, the mean value of the posterior distribution 

of the scaling factor, k, also increases, indicating that the extrusions grow in size when 

the strain amplitude increases. This makes the model consistent with experimental 

observations [36,50]. 

    

Figure 4.6. (a) The variation of proportionality constant term (k) and 

(b) hyper-parameter (σ) with applied strain. 
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 In experiments conducted to characterize fatigue life at an applied strain 

amplitude, a distinct percentage of load drop is used as a measure to define number of 

cycles for crack initiation [142]. This manifests as experimental error, e, due to a 

fundamental difference between the predictions from the PSB model (number of cycles to 

fatigue crack initiation) and the experimental fatigue life data at hand (which is 

essentially a combination of number of cycles to crack initiation and additional cycles 

required for an initiated crack to incubate corresponding to a specific percentage of load 

drop). Since the crack driving forces increase with applied strain amplitude, we postulate 

that, e (and hence σ), is inherently dependent on the applied strain amplitude (Δε). Hence, 

in order to establish a relation between the hyper parameter, σ, and applied strain 

amplitude (Δε), we obtain posterior densities for σ at three different strain amplitudes of 

interest (as shown in Fig. 4.6b). The posterior density (of σ) corresponding to the highest 

applied strain amplitude has the lowest mean value, which can be attributed to the fact 

that the load drop percentage is achieved at a faster rate within the experiments 

conducted, due to the presence of larger crack driving forces. Similarly, it takes relatively 

more cycles to observe a distinct load drop in experiments conducted at lower applied 

strain amplitudes, and hence the posterior densities of σ, at lower strain amplitudes, have 

higher mean values. 

 Further, the quantified uncertainties in k and σ are propagated through the PSB 

model (using the uncertainty propagation methodology described in Section 4.4) at three 

different strain amplitudes (∆ε1,∆ε2 and ∆ε3), and fatigue life distributions are obtained. 

For the purpose of comparing fatigue life distributions at the three different strain 
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amplitudes, we only choose a single SEM and implement uncertainty propagation at the 

each of the three strain amplitudes of interest. Fatigue life predictions obtained at the 

three strain amplitudes are shown in Fig. 4.7. The life predictions obtained (by the PSB 

model) at the three strain amplitudes are in agreement with the limited experimental 

fatigue life data available at the three strain amplitudes, overlaid on the fatigue 

predictions shown in Fig. 4.7. For the strain amplitudes (∆ε2 and ∆ε3), since only one 

experimental data point is available, a 50% probability of failure was assigned to that 

data point. 

 

Figure 4.7. Strain-life plots at three different strain amplitudes (∆ε1 > ∆ε2 > ∆ε3).  
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4.6 Summary 

A microstructure based life prediction model, which uses the stability of a 

persistent slip band (PSB) as a criterion for fatigue crack initiation, is validated by using 

rigorous sensitivity and uncertainty analysis. Various types of uncertainties were 

identified in the model parameters based on the ease of their measurability using 

experiments i) physical parameters that can be calculated using experiments, ii) physical 

parameters that cannot be easily measured using experiments, iii) parameters that are 

empirical/semi-empirical in nature, and hence cannot be measured using experiments. 

Following parameter identification, GSA was used to identify the set of most influential 

parameters in the model, thereby reducing the dimensionality of the Bayesian uncertainty 

quantification framework. By using a component wise MCMC algorithm, which takes 

into consideration the experimental fatigue life data and the prior beliefs of the 

parameters, posterior densities of the uncertain parameters were obtained. Full posterior 

distributions were obtained for all parameters, by combining the posterior densities 

obtained using multiple SEMs. Uncertainty propagation was applied using a Monte Carlo 

framework, in which the uncertainties of the parameters from the full posterior 

distributions were propagated through the model, thereby calculating the life prediction in 

the presence of uncertainties. Life predictions obtained by using five different SEMs 

were overlaid on the 95% confidence interval plots of the experimental fatigue data and a 

good qualitative agreement was observed. 
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5. INFLUENCE OF MICROSTRUCTURAL ATTRIBUTES AND LOCAL 

MICROSTRUTURAL RESPONSE ON FATIGE LIFE 

5.1 Role of Microstructural Attributes in Limiting Fatigue Life 

 With the advent of advanced electron microscopy techniques, the important role 

played by various microstructural attributes in causing fatigue failure has become quite 

evident. In order to improve the fatigue performance of materials, it is important to not 

only investigate the mechanisms that cause fatigue failure, but also the competing role 

played by various attributes in triggering a particular failure mechanism. It is tedious, 

expensive, and in some cases not possible to make such correlations or weigh the 

influence of various microstructural attributes using experiments. Rigorously validated 

predictive models can be used for this purpose. The life prediction model used in the 

current work takes into account various microstructural attributes (like grain size, γ' 

volume fraction and GB energy) and hence, it can be used to quantitatively assess the 

combined role played by various microstructural attributes in influencing fatigue scatter. 

 Using the energy based failure criterion (Eq. 3.10), the fatigue model helps 

determine which grains (or grain clusters) are more prone to the formation PSBs, and 

hence fatigue crack initiation. The fatigue model probes ten different SEMs containing a 

total of 1500 grains. The grain-by-grain fatigue life data thus obtained is pooled together 

along with the size attributes of corresponding grains. From this data a contour plot 
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(shown in Fig. 5.1) is generated between grain size and fatigue life, with the contours 

encompassing various number of data points. It can be inferred from Fig. 5.1 that fatigue 

model shows an inverse correlation between fatigue life and grain size, which is in 

agreement with experimental observations [61-68]. 

 

Figure 5.1. Influence of grain size on fatigue life. The colored contour region represents 

that it encompasses certain number of data points which can be inferred from the color 

bar.  

 The ordered γ' precipitates present in RR1000 provide a strengthening mechanism 

and stability at elevated temperatures. The size, distribution and volume fraction of γ' 

precipitates control mechanical properties [160-163], especially the yield stress at 

macroscopic scale or the CRSS at the slip system level [164]. It is noteworthy that an 

increase in volume fraction through increase in particle diameter could actually reduce 

the strength of the material after the γ' precipitates attain a critical size [163, 164], as 

Orowan looping process dominates the precipitate shearing mechanism (by paired 
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dislocations). Collins et al. [163] showed that for a target precipitate size range, the 

volume fraction of γ' precipitates can be optimized to attain an optimal CRSS. The 

fatigue model used in the current study only considers precipitate shearing as an active 

deformation mechanism, thereby assuming that a target precipitate size distribution is 

present in the material, at the temperature of interest during which the Orowan looping 

process in not dominant.  

 To understand the effect of γ' volume fraction on fatigue life, a single SEM was 

chosen and only the γ' volume fraction was changed keeping all other input parameters 

(like stress, strain etc.,) the same. Fatigue life was calculated for every grain cluster 

within the SEM chosen, for three different γ' volume fractions and a cumulative fatigue 

life distribution was constructed for each individual γ' volume fraction. From Fig. 5.2 it is 

clear that the fatigue model showed an increase in the fatigue life of the material with an 

increase in γ' volume fraction, which can be attributed to the strengthening mechanism 

imparted by the γ' phase. It must be noted that, in this case study, none of the crystal 

plasticity parameters (for instance, CRSS) were modified in order to take into account the 

change in γ' volume fraction.  
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Figure 5.2. Variation in fatigue life due to variation in γ' volume fraction. 

 In addition to grain size and γ' volume fraction, the GB character also has a 

significant influence on fatigue life. Low energy stable GBs were observed to be more 

resistant to fatigue cracking compared to thermodynamically less stable high energy GBs 

[23,165,166]. Li et al. [167] observed that high energy GBs with large number of residual 

dislocations trapped in the GB, were more prone to fatigue cracking. Low energy GBs 

(such as TBs) provide strong barrier to dislocation transmission, hence accumulate less 

number of residual dislocations compared to other high energy GBs. Hence, the number 

of dislocations penetrating a GB, next−GBdis , (Eq. 3.19) has an inverse dependence on the 

static GB energy [23]. 

 In order to observe the dependence of fatigue life on the GB energy, a single grain 

cluster (of size 8.38µm) was chosen with in an SEM, and the GB energy was varied from 

a lower limit of 60 mJ/m2 (corresponding to a CSL ∑3 GB, which is a stable GB) to an 

upper limit of 932 mJ/m2 (corresponding to CSL ∑9 GB, which is an unstable GB), 

keeping all the other parameters constant. It can be clearly observed from Fig. 5.3 that a 
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GB with higher energy (and hence an unstable GB) promotes quicker failure. The 

variation of fatigue life with GB energy was also plotted for a larger cluster (with size 

19.4µm) and it was observed that for the same GB character, crack initiation is favored in 

the larger grain cluster. Figure 5.3 shows how the character of the GB with which the 

PSB intersects coupled with the size of the grain cluster controls the number of cycles 

taken for fatigue cracks to initiate. 

 

 

Figure 5.3.  Influence of grain boundary energy on fatigue life. 

5.2 Influence of Local Microstructural Response in Limiting Fatigue Life 

 Accumulation of irreversible slip during fatigue causes topological changes 

within the bulk (or at the surface) which in turn lead to stress concentrations which 

trigger crack initiation. During the process of dislocation transmission across a GB, based 

on the type of dislocation and the GB character, residual dislocations get trapped within 

the GB to form extrusions [117].  With repetitive cyclic loading, the residual dislocations 

increase in number and the extrusions grow in size [52]. This is schematically shown in 
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Fig. 5.4a for a selected grain in an SEM. The life prediction model used in the current 

study considers the formation and evolution of extrusions at the PSB-GB intersection 

(using Eq. 3.19). Fatigue lives and extrusion heights (at failure) were extracted for around 

1500 grains in 10 different SEMs. From this data a contour plot (shown in Fig. 5.4b) is 

generated between extrusion height (at PSB-GB intersection) and fatigue life, with the 

contours encompassing various number of data points. It can be inferred from Fig. 5.4b 

that the fatigue life is inversely proportional to the height of extrusions (a type of cyclic 

slip irreversibility), which is also in agreement with the observations in the literature [57]. 

   

Figure 5.4. (a) Evolution of extrusion height with number of cycles, until crack initiation 

in a specific grain.  (b) Influence of extrusion height on fatigue life. The colored contour 

region represents that it encompasses certain number of data points which can be inferred 

from the color bar.  

Complex heterogeneities in the microstructure of polycrystalline materials are 

responsible for the highly heterogeneous stress and strain states developed within the 

bulk of material, and hence govern where cracks can potentially nucleate. As discussed in 
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Section 3.5, the elastic stress anisotropy (Λeq) and plastic strain accumulation (p) play a 

significant role in initiating fatigue cracks and thereby limiting the fatigue life of the 

material. It can be observed from Fig. 3.13a, d and g. that elastic stress anisotropy attains 

higher values at the GBs and is very close to zero with in the grain away from the GBs. 

This is due to an idealization assumed by assigning the same orientation to all the 

material points within the grain. The plastic strain accumulation (Fig. 3.13b, e and h) on 

the other hand, shows smooth variations throughout grains and attains higher values in 

the vicinity of GBs.  

5.3 Discussion 

Fatigue crack initiation in polycrystalline materials is a complex phenomenon 

driven by the complex interaction between local microstructural features and the defect 

level deformation mechanisms. Various factors acting in concert have been observed to 

play a major role in initiating fatigue cracks. In polycrystalline ferritic steel, the 

microstructure related quantities like the accumulated slip, slip rate, statistically stored 

and geometrically necessary dislocation density, when considered individually did not 

correlate well with the experimentally observed cycles to crack initiation [169]. But the 

rate of stored energy density (which is formulated by taking into account all the 

aforementioned parameters) correlated well with the number of cycles to crack initiation 

[169]. In polycrystalline nickel-base superalloys, accumulated slip was observed to 

correlate well with the location of crack initiation [88,170] and fatigue life [170,171]. 

Sangid et al. [23] showed that the grain size, Schmid factor and GB character played a 

significant role not only in triggering fatigue crack initiation, but also in influencing the 
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fatigue life of a nickel-base superalloy, U720. These observations and correlations clearly 

imply that multiple factors acting simultaneously lead to formation of fatigue cracks in 

polycrystalline materials. 

In a nickel-base superalloy, RR1000, (which is the material of interest in the 

current study) fatigue cracks initiated due to formation of PSBs. The PSB model 

(discussed in Section 3.3) is used to assess the role played by various attributes in 

triggering fatigue crack initiation and hence, in influencing fatigue life of the material. 

Various factors like grain size, γ' volume fraction, GB energy, extrusion height, PSA and 

ESA were considered and their influence on fatigue life was evaluated. The model 

showed that all parameters except for γ' volume fraction correlated inversely with fatigue 

life, which is clearly in agreement with experimental observations [63-78,88,165-

167,170,171]. This serves as a sanity check for the PSB model used in the current study. 

All the correlations that exist between these parameters and fatigue life are represented 

using a chord diagram (shown in Fig. 5.5). A chord connecting two parameters shows 

that a correlation (direct or inverse) exists between them, and the thickness of the chord 

shows the degree of correlation. 

It is noteworthy to point out that the fatigue model clearly implies that a PSB 

formed in a large grain, intersecting an unstable GB and forming large extrusions, due to 

plastic high strain accumulation coupled with a high lattice incompatibility fails quickly 

compared to a less severe scenario. A wide spectrum of scenarios with varying degree of 

severity are possible with in bulk of the material due to the complex heterogeneous 

microstructure of the material and the stochastic nature of the defects interacting various 
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microstructural features, which in turn results in the scatter observed in the fatigue life of 

the material. 

 

Figure 5.5. Chord diagram showing the influence of various microstructural attributes 

and local response on the fatigue life. GBE represents grain boundary energy, ESA 

represents elastic stress anisotropy, PSA represents plastic strain accumulation, RSS 

represents resolved shear stress. Chord diagram was created using D3 [172]. 

5.4 Summary 

 A microstructure based fatigue life prediction model is used to assess the role 

played by various microstructural attributes in initiating fatigue cracks and hence in 

influencing fatigue life of a polycrystalline nickel-base superalloy, RR1000. The fatigue 

model predicted correct trends in how various parameters (like the grain size, γ' volume 

fraction, GB character, extrusion height at PSB-GB intersection, plastic strain 

accumulation and elastic stress anisotropy at the GBs) influence the fatigue life of the 

material. Implications can be drawn from the current study that the scatter observed in 
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fatigue life can be attributed to the wide spectrum of complex interactions between 

heterogeneous microstructural attributes (grain size, GB character, γ' volume fraction) 

and stochastic defect level mechanisms (extrusions formed at PSB-GB intersection) in 

the presence of heterogeneous stress-strain state within the microstructure. 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

 In chapter 3, we provide a detailed overview of our microstructure based fatigue 

life prediction framework. In summary, the framework comprises of three important 

modules.  

i) First module simulates the variability in microstructure by generating 3D 

statistically equivalent microstructures (SEMs) that replicate the statistics of 

microstructural attributes (grain size, misorientation distribution, grain 

boundary character distribution) in a nickel-base superalloy, RR1000. In the 

current study, special emphasis is laid on studying why fatigue cracks tend to 

initiate at twin boundaries (TBs), and hence, twins are explicitly inserted into 

the SEMs generated. 

ii) Second module is a rate dependent crystal plasticity finite element (CPFE) 

framework which is used to solve for heterogeneous stress and strain state 

with in the SEMs (generated in the first module), which are subjected to a 

one-cycle loading. State dependent variables (SDVs) (like resolved shear 

stress, back stress, accumulated shear strain, normal stress on slip system) are 

extracted for each grain, which are then used in the energy definition of a 

persistent slip band (PSB).  
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iii) Third module is the PSB energy based life prediction model. This PSB model 

assumes that a PSB exists in all the grains (along the slip system with 

maximum resolved shear stress), and calculates the cyclic evolution of the 

energy of the PSB. Apart from the SDVs output from CPFE, the energy 

definition of a PSB takes into account, GB energy barriers for dislocation 

transmission, accumulated strain on a slip system, slip system length on which 

PSB is assumed to form, anti-phase boundary energy and stacking fault 

energies (which are dependent on the normal strain acting on the PSB). The 

PSB model detects any existing low angle grain boundaries (LAGBs) with in 

the SEM, and assumes that the PSBs traverse through them, unhindered. 

Crack initiation occurs when the PSB becomes unstable. The model probes 

through all grains (or grain clusters joined by LAGBs) within all SEMs, and 

calculates fatigue life on a grain-by-grain basis. The fatigue life data obtained 

from multiple SEMs (for over thousands of grains) can be pooled together to 

generate fatigue life distributions, and this is the way the life prediction 

framework links variability in microstructure to scatter in fatigue life. 

The fatigue framework predicts crack initiation to occur at a TB embedded in a 

large grain, which is in agreement with experimental evidence. A high concentration of 

elastic stress anisotropy and accumulated plastic strain was observed in the vicinity of the 

TBs where cracks were predicted to initiate. Further, normal stress was observed to 

dominate the maximum absolute resolved shear stress (within a PSB which happen to 

form inside a twin within a large grain), which suggests a significant role played by the 

normal stress in unzipping a PSB at the intersection of the TB to act as a mode I crack. 
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These observations from complex 3D stress states solved by crystal plasticity framework 

provides valuable insights on various factors that act in concert to favor fatigue crack 

initiation at TBs. In addition to the aforementioned insights, we have demonstrated that 

the fatigue framework was able to link the variability in microstructure to the scatter in 

fatigue life, which is one of the major contributions of the current research work.  

Chapter 4 provides a detailed overview of the efforts that went into validating the 

PSB model. All uncertainties were identified within the model based on the ease of 

measurement. All uncertain parameters were assigned probability distribution functions 

based on the information available at hand (from literature or expert opinion). Global 

sensitivity analysis (GSA) was used to identify the set of most influential parameters, 

based on variance based sensitivity indices and global sensitivity plots. GB energy barrier 

for dislocation transmission, dislocation density, PSB width, an empirical parameter 

which is proportional to extrusion height at PSB-GB intersection were identified as the 

set of most influential parameters. It is important to note that all the aforementioned 

parameters relate to fatigue specific damage accumulation within the microstructure, and 

hence they play an influential role in fatigue crack initiation and hence fatigue life. 

Following GSA, Bayesian inference technique was used to quantify the uncertainties in 

the set of aforementioned parameters. Posterior distributions of the parameters were 

constructed using Markov chain Monte Carlo (MCMC) algorithm, which takes into 

account, the experimental fatigue life data and prior distributions of the parameters. 

Following uncertainty quantification, Monte Carlo simulations were used to propagate 

the uncertainties through the model, in order to obtain fatigue life predictions using 

multiple SEMs. The life predictions obtained using five different SEMs were compared 
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to the 95% confidence interval constructed using the experimental at hand, and an 

excellent agreement was observed between model predictions and experimental data, 

which served as a validation to the life prediction model. 

In chapter 5, emphasis is laid on the influence of the microstructural attributes and 

local microstructural response on fatigue scatter observed in polycrystalline materials. 

The fatigue model predicted correct trends in how various parameters (like the grain size, 

γ' volume fraction, GB character, extrusion height at PSB-GB intersection, plastic strain 

accumulation and elastic stress anisotropy at the GBs) influence the fatigue life of the 

material, which also serves as a partial validation apart from fatigue life predictions. The 

PSB model clearly implies that a PSB formed in a large grain, intersecting an unstable 

GB and forming large extrusions, due to plastic high strain accumulation coupled with a 

high lattice incompatibility fails quickly compared to a less severe scenario. A wide 

spectrum of scenarios with varying degree of severity are possible with in bulk of the 

material due to the complex heterogeneous microstructure of the material and the 

stochastic nature of the defects interacting various microstructural features, which in turn 

results in the scatter observed in the fatigue life of the material. Implications can be 

drawn from the current study that the scatter observed in fatigue life can be attributed to 

the wide spectrum of complex interactions between heterogeneous microstructural 

attributes (grain size, GB character, γ' volume fraction) and stochastic defect level 

mechanisms (extrusions formed at PSB-GB intersection) in the presence of 

heterogeneous stress-strain state within the microstructure. 
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6.2 Future Work 

The microstructure based life prediction framework developed in the current 

study is highly modularized. The robustness and hence the predictive capabilities of the 

framework can be enhanced by improving individual modules. This can be achieved by a 

combination of both experiments and physics based computational analyses. We propose 

the following as future work that can be done in order to enhance the robustness and the 

applicability regime of the framework. 

1. Generating SEMs based on the statistics of microstructural attributes obtained 

from 2D EBSD scans leads to aleatory (or irreducible) uncertainties. 

Specifically, aleatory uncertainties arise from assumptions in obtaining grain 

size distributions, nearest neighbor distributions, grain shape distributions. 

Such uncertainties can be reduced to a considerable extent by extracting the 

3D microstructure of the material either by using serial sectioning or high 

energy X-Ray diffraction techniques. 

2. In the current workflow of generating SEMs, statistical equivalence of grain 

boundary character distribution was verified solely based on the percentage of 

TBs with respect to all CSL GBs present within the microstructure. This is 

more or less, a first order verification methodology, and a more exhaustive 

verification approach can be taken by considering various verification metrics 

like density of twins within a given volume of microstructure, length and 

thickness of the twins, percentage of coherent (and incoherent) twins among 

all TBs within the microstructure, and correlation between number of twins in 
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a parent grain and the size of a parent grain. Incorporating such a rigorous 

verification methodology will help produce SEMs with higher order accuracy 

with respect to capturing TBs. 

3. The fitting parameters in flow and hardening rules in the rate dependent CPFE 

framework used in the current work are tuned to obtain a best fit macroscopic 

stress-strain response to closely match the experimental stress-strain curve. It 

is well known that several non-unique sets of parameters can reproduce a 

similar fit for the macroscopic response. This is not quite an accurate way to 

obtain the CPFE parameters. It is much more robust to obtain the parameters 

that can match the strains calculated (by CPFE simulations) on a 

microstructural region to that obtained from digital image correlation 

technique. 

4. Incorporating residual stresses as initial stress state within the microstructure, 

using the CPFE framework to deterministically study the effect of complex 

residual stresses on fatigue scatter. 

5. An inherent epistemic uncertainty exists in the PSB model due to the fact that 

the model does not account for the number of cycles required for PSBs to 

appear. This uncertainty can be reduced by experimentally quantifying the 

number of cycles required to form PSBs, for various strain amplitudes. 

6. Experimental measurements of the height of extrusions formed at the PSB-GB 

intersections along with the PSB widths will help in reducing a few epistemic 

uncertainties in the model. 
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7. Using MD simulations, quantify the effect of GB normal stress on the energy 

barrier for dislocation transmission through the GB. This relation can be used 

to enhance the definition of the energy of a PSB. 

8. Extend the applicability of the model to over a temperature regime. This can 

be done by adapting a CPFE framework which uses temperature dependent 

flow and hardening laws. Dependence of anti-phase boundary, stacking fault 

energies and GB energetics on the temperature can be calculated using MD 

simulations. 

9. Apply the fatigue framework to a 3D microstructural volume (obtained using 

high energy X-Ray diffraction techniques) in which the locations of crack 

initiation sites are known. This helps in further validating the fatigue 

framework by comparing the hot-spots it predicts to the actual crack initiation 

sites within the microstructure. 

10. At extreme temperatures fatigue cracks initiate due to inclusions. Inclusions 

can be explicitly incorporated into the CPFE framework through DREAM.3D. 

The energy based failure criterion can be modified for inclusion based fatigue 

cracking, and hence the whole framework can be extended to deterministically 

calculate the fatigue life due to inclusion cracking. 
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APPENDIX 

(Flowchart showing integration of CPFE with fatigue model) 
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