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GLOSSARY 

 Unless used otherwise in context, terms shall be defined as follows. Those 

definitions that conform to established industry or academic sources are drawn from the 

dictionaries cited. 

 

Active Tag: Tags that use batteries as a partial or complete source of 

power to boost the effective operating range of the tag and 

to offer additional features over passive tags (RFID 

Glossary, n.d.). 

 

AIDC: Automatic Identification and Data Capture - technologies 

including bar codes, smart media, biometrics, and RFID 

(RFID Glossary, n.d.). 

 

Antenna: That part of a transmitting or receiving system that is 

designed to radiate or to receive electromagnetic waves 

(Authoritative Dictionary of IEEE Standards Terms, 

Seventh Edition, 2007). 

 

Backscatter: A method of communication between passive tags and 

readers. RFID tags using backscatter technology reflect 

back to the reader radio waves from a reader, usually at the 

same carrier frequency. The reflected signal is modulated 

to transmit data (Glossary of RFID Terms, 2014).
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x
 

Band: Range of frequency between two defined limits 

(Authoritative Dictionary of IEEE Standards Terms, 

Seventh Edition, 2007). 

 

Capacitive: An electromagnetic signal transmission coupling mode that 

occurs in the near field from an antenna that preferentially 

emits electric field over magnetic field such as an electric 

dipole antenna (Authoritative Dictionary of IEEE 

Standards Terms, Seventh Edition, 2007). 

 

Coupling: The association of two or more circuits or systems in such a 

way that power or signal information may be transferred 

from one to another (Authoritative Dictionary of IEEE 

Standards Terms, Seventh Edition, 2007). 

 

Data Field: An ID card's smallest component of data entry and storage. 

 

Die: The silicon block onto which circuits have been etched to 

create a microchip (Glossary of RFID Terms, 2014). 

 

Dipole: A linear radiator, usually fed in the center, producing a 

maximum of radiation in the plane normal to its axis. The 

length specified is the overall length. Any one of a class of 

antennas producing the radiation pattern approximating that 

of an elementary electric dipole (Authoritative Dictionary 

of IEEE Standards Terms, Seventh Edition, 2007). 

 

Driven Element: A radiating element coupled directly to the feed line of an 

antenna (Authoritative Dictionary of IEEE Standards 

Terms, Seventh Edition, 2007).  
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Duty cycle: The percentage of time the reader is emitting energy 

(Glossary of RFID Terms, 2014). 

 

Dwell Time: The time a transit unit spends at a station or stop, measured 

as the interval between its stopping and starting 

(Authoritative Dictionary of IEEE Standards Terms, 

Seventh Edition, 2007). 

 

Excitation: Charging of a passive tag by transmitting RF energy from a 

reader, to activate the tag and enable response (Glossary of 

RFID Terms, 2014). 

 

Far Field: A region in which the RF power delivered from an antenna 

decreases by the square of its distance from the antenna. A 

region where coupling is primarily electromagnetic 

(Glossary of RFID Terms, 2014). 

 

Feed Line: A transmission line interconnecting an antenna and a 

transmitter or receiver or both (Authoritative Dictionary of 

IEEE Standards Terms, Seventh Edition, 2007). 

 

Frequency: The number of periods of an oscillation or wave occurring 

in unit time of a periodic quantity, in which time is the 

independent variable (Authoritative Dictionary of IEEE 

Standards Terms, Seventh Edition,2007). 

 

Half Duplex: A communication channel capable of transmitting data in 

both directions, but not simultaneously (Glossary of RFID 

Terms, 2014).  
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Hashing: A process of applying a mathematical algorithm against a 

set of data to produce a numeric value (a 'hash value') that 

represents the data (Glossary of Common Cybersecurity 

Terminology, n.d.). 

 

Induction: The process of generating time-varying voltages and/or 

currents in otherwise un-energized conductive objects or 

electric circuits by the influence of the time-varying electric 

and/or magnetic fields (Authoritative Dictionary of IEEE 

Standards Terms, Seventh Edition, 2007). 

 

Insulation: A material that has electrical insulating properties and is 

used to separate parts that have different voltages 

(Authoritative Dictionary of IEEE Standards Terms, 

Seventh Edition, 2007). 

 

Isotropic: Having the same properties in all directions (Authoritative 

Dictionary of IEEE Standards Terms, Seventh Edition, 

2007). 

 

Key: The numerical value used to control cryptographic 

operations, such as decryption, encryption, signature 

generation, or signature verification (Glossary of Common 

Cybersecurity Terminology, n.d.). 

 

Lobe: A portion of the antenna directional pattern bounded by one 

or two cones of nulls (Authoritative Dictionary of IEEE 

Standards Terms, Seventh Edition, 2007).  
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Microcontroller: A processing device that has the capability needed to 

receive data from external devices, analog or digital or both, 

process the data according to preset algorithms or special 

computing techniques or both, and then provide the results 

to external devices for the end purpose of controlling the 

process (Authoritative Dictionary of IEEE Standards Terms, 

Seventh Edition, 2007). 

 

Modulation: Alteration of a wave characteristic so that it may serve as a 

carrier of information. 

 

Near Field: The region of the field of an antenna between the reactive 

near field region and the far field region wherein radiation 

fields predominate and wherein the angular field 

distribution is dependent upon distance from the antenna 

(Authoritative Dictionary of IEEE Standards Terms, 

Seventh Edition, 2007). 

 

Null: The direction between radiation lobes where the signal 

drops to a minimum. In general, a null is any portion of the 

pattern where the signal level is less than 10% of the RMS 

of the pattern (Authoritative Dictionary of IEEE Standards 

Terms, Seventh Edition, 2007). 

 

Parasitic element: A radiating element that is not connected to the feed lines 

of an antenna and that materially affects the radiation 

pattern or impedance of an antenna, or both (Authoritative 

Dictionary of IEEE Standards Terms, Seventh Edition, 

2007).  
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Passive Tag: The most common RFID tags, in which a reader transmits 

an energy field that "wakes up" the tag and provides the 

power for the tag to operate (RFID Glossary, n.d.). 

 

Permittivity: The ratio of electric flux density D to electric field strength 

E (Authoritative Dictionary of IEEE Standards Terms, 

Seventh Edition, 2007). 

 

Polarization: That property of periodic electric or magnetic field 

describing the figure traced over one cycle by the extremity 

of the field vector at a fixed location in space (Authoritative 

Dictionary of IEEE Standards Terms, Seventh Edition, 

2007). 

 

Radome: A cover, usually intended for protecting an antenna from 

the effects of its physical environment without degrading 

its electrical performance (Authoritative Dictionary of 

IEEE Standards Terms, Seventh Edition, 2007). 

 

Reader: A wireless device that supplies modulated RF energy to 

passive tags and accepts a signal in reply, for the purpose of 

interrogating the tag for information. 

 

RF Field: RF electrical and magnetic fields emitted from 

antenna/transmitter arrays (Authoritative Dictionary of 

IEEE Standards Terms, Seventh Edition, 2007). 

 

Singulation: A means by which an RFID reader identifies a tag with a 

specific serial number from a number of tags in its field, 

usually by traversing a tree of serial number segments.  
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Transponder: A tag incorporating a microchip and antenna that can be 

programmed with information to identify entities and 

transmit that information to a receiver (RFID Glossary, 

n.d.). 

 

Tuned: Adjusted for responsiveness to a target frequency. 

 

Tuple: A data type similar to a list, containing a set of values in 

which the same element may appear more than once. 

 

Wavelength: The distance along the direction of propagation of a 

periodic wave between two successive points where, at a 

given time, the phase is the same (Authoritative Dictionary 

of IEEE Standards Terms, Seventh Edition, 2007). 
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ABSTRACT 

Winkworth, Robert D. Ph.D., Purdue University, December 2015. An Approach to Near 

Field Data Selection in Radio Frequency Identification. Major Professor: Michael J. 

Dyrenfurth. 

 

 

Personal identification is needed in many civil activities, and the common identification 

cards, such as a driver's license, have become the standard document de facto. Radio 

frequency identification has complicated this matter. Unlike their printed predecessors, 

contemporary RFID cards lack a practical way for users to control access to their 

individual fields of data. This leaves them more available to unauthorized parties, and 

more prone to abuse. Here, then was undertaken a means to test a novel RFID card 

technology that allows overlays to be used for reliable, reversible data access settings. 

Similar to other proposed switching mechanisms, it offers advantages that may greatly 

improve outcomes. RFID use is increasing in identity documents such as drivers' licenses 

and passports, and with it concern over the theft of personal information, which can 

enable unauthorized tracking or fraud. Effort put into designing a strong foundation 

technology now may allow for widespread development on them later. 

 

In this dissertation, such a technology was designed and constructed, to drive the central 

thesis that selective detuning could serve as a feasible, reliable mechanism. The concept 

had been illustrated effective in limiting access to all fields simultaneously before, and 

was here effective in limiting access to specific fields selectively. A novel card was 

produced in familiar dimensions, with an intuitive interface by which users may conceal 

the visible print of the card to conceal the wireless emissions it allows. A discussion was 

included of similar technologies, involving capacitive switching, that could further 

improve the outcomes if such a product were put to large-scale commercial fabrication.
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The card prototype was put to a battery of laboratory tests to measure the degree of 

independence between data fields and the reliability of the switching mechanism when 

used under realistically variable coverage, demonstrating statistically consistent 

performance in both. The success rate of RFID card read operations, which are already 

greater than 99.9%, were exceeded by the success rate of selection using the featured 

technology. With controls in place for the most influential factors related to card 

readability (namely the distance from the reader antennas and the orientation of the card 

antenna with respect to them), the card was shown to completely resist data acquisition 

from unauthorized fields while allowing unimpeded access to authorized fields, even 

after thousands of varied attempts. The effect was proven to be temporary and reversible. 

User intervention allowed for the switching to occur in a matter of seconds by sliding a 

conductive sleeve or applying tape to regions of the card. 

 

Strategies for widespread implementation were discussed, emphasizing factors that 

included cost, durability, size, simplicity, and familiarity, all of which arise in card 

management decisions for common state and national identification such as a driver's 

license. The relationship between the card and external database systems was detailed, as 

no such identification document could function in isolation. A practical solution 

involving it will include details of how multiple fields will be written to the card and 

separated sufficiently in external databases so as to allow for user-directed selection of 

data field disclosure. Opportunities for implementation in corporate and academic 

environments were discussed, along with the ways in which this technology could invite 

further investigation. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

 

 The ability to uniquely identify people is vital to contemporary life, defining not 

only the limits of privilege or affiliation, but also the very relationship between citizen 

and state (Clement, McPhail, Smith, & Ferenbok, 2012). For long, the most common 

method of formal identification in the United States has been the driver’s license or 

similar state-issued identification card, but with the advent of Radio Frequency 

Identification--RFID--there is new interest in replacing these methods with devices 

capable of wirelessly determining a user’s identity using small, programmable chips with 

onboard signaling components (Marquardt, Taylor, Villar, & Greenberg, 2010). Such 

chips have been used widely in manufacturing, distribution, and sales applications, and 

then began to appear in forms of government-issued personal identification such as 

driver's licenses and passports (Gertz, 2008). The technology employed makes possible 

greater efficiency and greater flexibility than was possible with printed, optical, and 

magnetic cards; but it does not currently allow for the same protections against 

unauthorized disclosure of personal information (Phillips, Karygiannis, & Kuhn, 2005). 

 

 A driver’s license and most other such cards contain a photograph of the intended 

user and several fields of information such as name, age, gender, etc. Until now, if a user 

was called upon to provide proof of identity using a photographic ID card, it was a minor 

matter to withhold fields as desired. Proof of the user’s name with respect to the 

photograph, for example, could be made by displaying or optically scanning a copy of the 

card, exposing the name and photograph, but obscuring the remaining fields with an 

overlay. Proof of age with respect to name could be made likewise by exposing these two 
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fields while obscuring the rest, and many other combinations are possible. The user 

retains control over the extent of the disclosure in these cases; no more or less is revealed 

than is necessary to perform the intended test (Clement et al., 2012). 

 

 If, however, the printed card is replaced with the type of wireless chip now used 

in identification documents such as passports, there is no such means for selection. 

Provided normal operating conditions, the chip’s entire contents are disclosed to any 

authenticated RFID reader within range (Mahmood & Al-Hamdani, 2011). This means 

that, for example, an airport traveler who intended to present one passport page would be 

forced to share his entire travel history whenever he so much as opened his passport. 

Likewise, a consumer that wished to prove his name or age would also be forced to share 

any additional information on the RFID card used, without any forthright means to limit 

it. 

 

 As with other forms of identification, RFID needs, for a successful deployment, to 

take into account who and what retains custody of the information, what mechanism is 

used to release it, who shall be responsible for the decision, and how much information is 

really needed to complete the desired transaction. Printed identification cards used in 

combination with overlays and photocopying devices provide a means of limiting 

disclosure to only those portions of the card so needed. The number and combination of 

portions may be chosen in each transaction independently. When print gives way to 

automatic mechanisms, this choice may be lost. RFID is a prime example. 

 

 Radio-frequency identification cards complicate this matter in several ways. The 

fields are no longer visible on the card itself, and can no longer be obscured 

independently. The most a cardholder was originally able to do to prevent its information 

from being read (without causing physical damage) was shielding the entire card, or 

staying so far away from electronic readers as to be considered out of range. 
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 One of the earliest measures taken to curb the threat of unauthorized scanning was 

to employ RF-opaque covers that could be used over the RFID document. US passports 

were among these (Lawson, 2008). A variety of these covers have been tested in this 

study's lab, and found to have an actual effectiveness against read attempts that does not 

always agree with advertised claims. Nonetheless, they do illustrate an important fact: the 

RFID component--specifically the antenna--is degraded noticeably when conductive 

materials are too close. This occurs both because a sufficiently conductive enclosure has 

a shielding effect on electromagnetic radiation, and because even open conductors of 

sufficient length will still cause detuning of the antenna, reducing its performance on the 

intended frequency band. Federal and state officials recommend the use of such covers on 

RFID passports and driver's license cards (Lewan, 2009). What they would need to 

provide granular selection, however, is a way to make opaque only certain, private data 

fields, while allowing for access to the rest. This is a flexibility not currently available in 

federal or state RFID models (Nogueira & Greis, 2009). 

 

 What the research of this dissertation demonstrated is a model that allows access 

to the fields to be toggled independently, using visible, intuitive methods and familiar 

card geometry, the sort found in current deployments to large state populations. RFID has 

been deployed in a number of cases where it had been billed as introducing new security, 

but actually introduced weaknesses, because it failed to adhere to the principles above 

(Lawson, 2008). What makes for an effective solution is not a technology alone, but the 

principles, however enacted. RFID provides a means to enact them readily, and is 

attractive not only because the devices are powerful, but also because they produce a 

palpable effect. Users have been shown more likely to adopt security mechanisms that 

make them feel safer rather than those that produce the same effects without any 

indicators that users can sense (Schneier, 2008). 

 

 As a practical matter, not all ID users are concerned about the unnecessary 

disclosure of personal information. For them, losing a protection that they were not using 

anyway might not draw complaint. Nonetheless, when one technology, such as RFID, is 



4 

 

4
 

introduced as the replacement to another, such as printed cards, there arises cause for 

concern if the successor offers a lower functionality, or a higher vulnerability to abuse. 

Users might question whether it is, in all regards, an improvement over the current 

technology. They might discover, only when the new is established widely, that the old 

had offered unique utility, through features that cannot be easily reintroduced. This 

outcome seems likely in light of the common public lack of awareness of the security and 

privacy risks associated with RFID (Marqhardt et al., 2010). 

 

 Among the concerns that are known to arise among users is how identifying 

documents are used to commit acts of impersonation and fraud (Ramos, Scott, Lloyd, 

O'Leary, & Waldo, 2009). The popular term "identity theft" could be better phrased. 

Identity is not what is being taken in such cases; information is being taken, and used to 

misrepresent identity. Information need not be deleted from its original source, either, so 

rather than describing it as a theft, it might be more suitable to describe it as unauthorized 

access to personal information, or the unauthorized use of it (Abdullah, 2004). The real 

problem behind the abuses done with the information is that it is possible to conduct 

transactions using identifying information that is not legitimate. This is a matter 

fundamental to identification using any medium, but becomes particularly relevant when 

wireless technology is involved, with transactions that are both invisible and also able to 

happen without the user (or abuser) ever laying hand upon the ID document. 

 

 More than a few influential participants in the RFID industry have expressed 

concern over the decline in user control that comes with the new identification devices. 

For example, the head of wireless technology at Siemens has been an advocate of RFID 

for some time, noting its promise as an ID for patients in hospital, students in school, and 

consumers most anywhere. Yet, he tempers his enthusiasm with warnings of misuse if 

RFID is to be used for a widespread ID deployment. In short, "There needs to be 

standards put in place so the data is not abused for other purposes" (Herrmann, 2007, para. 

24). As the market stands, there is available no standard that allows for user control of 



5 

 

5
 

which personal information is released during RFID transactions. The only control is 

over whether the technology is used at all. 

 

 There has been work done to address the data release issue. Functional prototypes 

such as those demonstrated by Marqhardt et al. had mechanisms that did not allow read 

operations without physical confirmation from the user (2010). This included even the 

capability of separating data into two classifications--low-sensitivity and high-sensitivity. 

It allowed the user to release one of the two sets at a time by squeezing a button built into 

the card (p. 2312). What was proposed for the research of the content to follow is a 

separation of the data fields in the identification document so the relationships among any 

number of them may be revealed as needed, without involving the others. Without this 

level of granularity, the document remains an indivisible container of data, all of which is 

available for any transaction with any party, and disclosure of unnecessary personal data 

becomes inevitable. 

 

1.2 Problem Statement 

 

 The problem that first prompted study here was that unlike their printed 

predecessors, contemporary RFID cards lack a practical way for users to control access to 

their individual fields of data. This leaves them more available to unauthorized parties, 

and more prone to abuse. 

 

1.3 Purpose of Study 

 

 The study was undertaken to test a novel RFID card technology that allows 

overlays to be used for reliable, reversible data access settings. It drives the central thesis 

that an overlay based on RF detuning is possible. 

 

 This proposed card design allows for granular user discretion over the disclosure 

of information units, suitable for large implementations across a diverse economic and 
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technological landscape. Proving it effective in a controlled environment invites work 

implementing the social and regulatory components of a complete personal identification 

solution. 

 

1.4 Research Questions 

 

a) Is selective detuning a feasible mechanism for independent selection of RFID 

card data? 

b) Can a design for selective RFID detuning operate reliably enough to be practical? 

 

1.5 Significance of Study 

 

 Every passport issued in the US incorporates RFID technology. Come the year 

2017, it will be the only type accepted (Ramos et al., 2009). Public concern over "identity 

theft" continues to grow in the US (Abdullah, 2004), while these changes to government 

ID documents make unauthorized collection of information possible by methods that are 

faster, easier, and less noticeable than before (Lawson, 2008). Consumers who carry 

these documents may be tracked by the collected information, without their consent 

(Smith, 2010). 

 

 Effort put into designing strong foundation technologies now may allow for many 

decades of successful development on them later (Koscher, Juels, Kohno, & Brajkovic, 

2009). This dissertation analyzes principles fundamental to effective personal 

identification, and offers a solution on which further development may easily follow. The 

central aspect addressed here is the mechanism for controlling read and write access to 

data fields on ID cards. 

 

 In the US, a driver's license is used far beyond the purpose of proving licensure to 

drive. It has also been co-opted as a general identification document, and used to open a 

variety of personal accounts unrelated to driving (Abdullah, 2004). The passport finds 
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similar uses (p. 103), offering information that may be obtained even when the holder is 

not in fact passing a port or even approaching a national border. The large and established 

base of users makes the use of these documents inviting, but superior identification 

technologies exist, and are tailored to the specific requirements of personal government 

documents (Mahmood & Al-Hamdani, 2011). While it seems quite optimistic to think 

that an alternative to drivers' licenses and passports will be accepted and deployed as a 

replacement for either, this work nonetheless has the opportunity to address concerns that 

are present even today, and principles of identification that belong in any such 

mechanism. It is offered as the basis for future decisions. 

 

 Even within the category of RFID cards, there is found more than one approach to 

improving hardware privacy. Methods exist for making RFID tags unique, and resilient to 

counterfeiting, for example, (Periaswamy, Thompson, & Di, 2011), and there are several 

possible hardware-based mechanisms for data field selection (Marqhardt et al., 2010). 

This dissertation does not represent an exhaustive demonstration of all available 

technologies, or assert that one should be held above all others in every context. Rather, it 

represents a demonstration of one attractive mechanism that has shown potential, and 

meets or exceeds the demands in terms of reliability, affordability, durability, etc. This 

can easily lead into a larger discussion of the purchasing and engineering particulars. 

 

1.6 Delimitations 

 

 The scope of this work shall include only radio-frequency cards used for 

identifying personnel. Many of the principles introduced would apply also beyond cards, 

to include buttons, anklets, stickers, implants, and other tag packages too numerous to 

deal with here. This could also extend easily to a discussion of identifying products, but 

volumes have already been written on that topic, while certain aspects of personnel 

identification still appear to need attention (Heim, 2008). Note that there are distinctions 

drawn between the printed cards and the RFID cards that would similarly apply between 

the printed cards and other AIDC (machine-readable) technologies such as magnetic 
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stripe cards and optical pattern cards. Separate strategies would be needed to provide 

selective disclosure in cards using these technologies, and they cannot be addressed 

within scope here. 

 

 The number of personal data fields directly available on an RFID document 

differs according to its application. In electronic passports, multiple fields exist, and 

duplicate much of the information in the printed fields. In electronic driver's license cards, 

a single field exists containing a unique identifier that in turn is used as a primary key to a 

tuple of user data stored externally in a government database (Nogueira & Greis, 2009). 

This paper presents new technology that could be readily used in either of these 

documents, but would replace the current designs. Neither this nor any advancement in 

ID can provide a higher degree of control over how its data are used in external 

documents or stores, beyond curtailing its initial disclosure. The technology presented 

here is for direct control of the document, and not remote control functions. 

 

 RFID is separate from biometric technology, but the two are frequently deployed 

together. If care is not exercised, the former can greatly weaken the security of the latter. 

(Williams, 2009). The research presented here operates from the standpoint that whatever 

biometric features might be included in an RFID deployment were collected and 

incorporated appropriately into the card in question before its examination began. A vital 

function of the card, then, is to see them safeguarded, and disclosed only when and where 

desired. One security researcher successfully forged an RFID card that would report him 

as Elvis Presley to electronic readers (Timmer, 2008). Stunts such as these cannot be 

prevented by selective disclosure. They require separate measures, which might be as 

simple as keeping a human attendant with good vision involved in the process, rather 

than allowing full automation with no attendant (Timmer, 2008). 

 

 The work presented here is for card technology carried in hand, pocket, purse, etc., 

and should not be construed to apply for RFID documents small enough to be carried 

inside a living user. Implants face particular barriers to widespread adoption, as they 
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come under greater legislative scrutiny (Greenblatt, 2010). Even before the discussion 

turns to the health concerns surrounding implantable devices, the very thought that they 

could become popular enough to be mentioned in employment requirements is enough to 

draw firm resistance from state representatives. Several states have passed legislation 

strictly curtailing involuntary RFID implants, anticipating possible abuses from 

employers and insurance companies (Kunkle & Helderman, 2010). Though guided by 

some principles that are not scientifically correct, these government figures have made it 

unlikely that a national standard for implanted identification could ever be imposed in the 

US. This matter shall not be explored further here. 

 

 Standards of identification used in countries other than the US are beyond scope 

of this paper as well, even though the findings from it might still prove applicable to what 

other countries need. State identification cards carry similar information in many 

countries, and share similar cost and durability requirements, so there is likely to be 

opportunity here for further regional study. The technology of ID has applications that are 

inviting in many national contexts; consider (Qaiser & Khan, 2006) or (Lehman, 2012). 

Points regarding identification outside the US shall be included where they illustrate 

general principles, but are distinguished from points of policy or government. 

 

 This paper presents a prototype RFID device and the tests of its ability to select 

for and against data disclosure. A mechanism is engineered and used to distinguish data 

fields with a metallic overlay. In later reproductions of this effect, it shall be considered 

beyond scope to include variation that might occur resulting from 

 Manufacturing defects 

 Lack of metal purity standards 

 Intentional tampering and misuse 

 Public RF sources in excess of FCC limits 

 

 The tests concern only the hardware mechanism and electrical principles of the 

prototype. No testing is presented here of the materials commercial suppliers might later 
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offer or the automation process they might introduce to scale the manufacturing from the 

small quantity of prototype units up to a large quantity of commercial production units. 

 

 The detuning effects on high frequency tags are known to vary according to the 

antenna geometry used. They show predictably greater variation than is found in a card 

specifically designed for capacitive switching. This experiment and the numerical 

analyses to follow serve as an illustration of what is possible in mechanisms of selective 

disclosure, presented with the hope that others explore and optimize them to suit 

individual needs. 

 

 In brief, the mechanism at work in a capacitive design is slightly different than the 

detuning effect used here. It employs sensors that measure the overlay's permittivity--its 

willingness to allow an electric field to form through it. Inputs from these sensors are 

processed by the card's control circuitry during an attempted read operation, and instruct 

it to remain silent if the overlay is in place. In a laboratory setting, the effect on data field 

selection is the same for cards in both of these two categories, and for purposes of this 

experiment, either will do to demonstrate the principle. For future production, though, the 

capacitive design requires fewer parts, greater engineering flexibility, and even higher 

reliability when it comes to surface area of overlay coverage, so it represents a good 

opportunity for further study. 
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1.7 Research Flow 

 

 The focus of this research could have been drawn to any one of several problems 

currently challenging radiofrequency identification, so it might be worthwhile to briefly 

describe the progression from general topics down into the specific factors tested: 

 

 The work presented here begins with the problem of controlling access to card 

regions. From this leads a path suitable for each of the two research questions, a & b. 

Each of these has a separate hypothesis, which was tested by its own suited methods. The 

collected data were analyzed separately according to the numerical tests chosen for the 

hypothesis. The result for each of the tests was recorded. The two results led to their 

respective conclusions, and to recommendations on selective detuning. From this come 

the recommendations for deployment of a personnel identification technology based on 

selective detuning, and recommendations for continuing research in it. 

 

 It is important to remember that while these two separate tracks of experimental 

testing are described here in sections of their own, they form the two vital supports of the 

final, unifying summary of the model and its prototype. Ultimately, this is research into 

the model. It was tested according to two crucial questions, and found effective. Only 

because of this was it seen as worthy of further consideration, and only because of this is 

it offered as one proposal for solving the stated problem of lost granular control over data 

field access in ID cards.
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CHAPTER 2. LITERATURE REVIEW 

2.1 Methods Used 

 

 It becomes clear early in an investigation of the literature that the RFID industry 

leaves many opportunities for security research and improvement. Entire volumes have 

been written on applications specific to warehousing, transportation, sales, and overall 

supply chain management, for example. Security in these matters is largely a matter of 

sustaining business and preventing sabotage, so most of its literature is not directly 

applicable to citizen identification. 

 

 Even when limited to personal devices worn and carried, the body of knowledge 

is huge, and increased even as this review proceeded, so it is not possible in any one 

paper to offer a comprehensive summary of what has been written. What follows is 

considered representative, highlighting the most salient points that would lead to 

opportunities for study, experiment, and development. 

 

 Though the breadth of literature available worldwide on the topic of RFID has 

grown explosively over the last few decades, it is not of consistent quality or credibility 

(Roberti, 2009). It has unsettled an establishment, as new technologies generally do. It 

has introduced possibilities that are not sharply limited. It relies upon physical principles 

that many consumers do not understand (Brookes, 2010). For these reasons, it is 

unsurprising that a portion of the material written overstates the abilities of RFID. A 

portion misunderstands the advantages. A portion misunderstands the risks. A portion is 

purely speculative, and lacks the testable basis to make empirical work meaningful 

(Hardgrave & Miller, 2006).
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 Literature for this review was collected by the following methods: 

 

2.1.1 General electronic journal search 

 

This found results from the journals indexed in the collective network of libraries 

cooperating with Purdue University (currently 7,634 journals). Searches were conducted 

of title, abstract, body, and bibliography by text strings as explained below, or by unique 

identifiers when a specific title had been recommended. 

 

2.1.2 Targeted electronic journal search 

 

This found results from top industry associations. Most prominent were the Association 

for Computing Machinery and the Institute of Electrical and Electronics Engineers. 

 

A total of 23 journals from the ACM were consulted, including the SIGAPP Applied 

Computing Review, Data and Information Quality, Transactions on Computer-Human 

Interaction and proceedings of the Conference on Computer and Communications 

Security, International Workshop on Wireless Sensor Networks & Applications, and 

Workshop on Role Based Access Control. 

 

A total of 26 journals from the IEEE were consulted, including Wireless 

Communications, Security & Privacy, Embedded Systems Letters, and transactions on 

Antennas and Propagation, Electromagnetic Compatibility, Human Factors in Electronics, 

and Information Theory. 

 

2.1.3 Electronic dissertation search 

 

This covered material in graduate dissertation work that mentioned radio-frequency 

identification or related electronics. Less material suitable for citation was found in this 
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category, but it was useful in illustrating which methods were being attempted 

experimentally, and what sort of success they claimed. 

 

2.1.4 Professional newsletter recommendations 

 

This suggested books, articles, and proceedings that others working in RFID research 

found useful. Much of the search for literature relied upon references in well-known 

publications pointing the way to subtler ones. Many valuable insights came from work 

that has not yet been commercialized or shared beyond academic environments. 

 

2.1.5 Patent database search 

 

This revealed technologies that have already been submitted for government registration 

in the US. Innovators that are serious enough about their ideas to seek exclusive 

privileges in them deserve attention here. The proposed research is not appropriate if it 

has already been performed in the course of a patent application. 

 

The principle text strings used in searching by term in journals were 

 "RFID privacy" 

 "identification card" 

 "RFID" and "driver's license" 

 "RFID" and "operator license" 

 "RFID" and "selective" and "disclosure" and "field" and "data" 

 

 Material published earlier than the year 2000 was considered too old for inclusion. 

While some valuable ideas did appear in it, they became popular enough to be published 

also in later material, which was cited. Sources as recent as 2015 were included in the 

literature search. 
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 A subset of the results collected was selected according to the reputation of the 

authors and institutions with which their citations were associated. Where multiple 

sources described similar principles, a single source was selected as representative of the 

others. Material deemed redundant in established claims was excluded from the citations 

for the sake of bringing the list down to a manageable number. Thousands of results were 

initially returned, but only favored hundreds could be selected for detailed reading. 

Works cited by respected researchers were also explored for inclusion here. 

 

 Because broad commercial use of RFID has not been a topic of publication for 

more than a few decades, a publication on the topic is not considered outdated unless 

there is found a newer publication with content that clearly supersedes and replaces it. 

 

 Effects demonstrated publicly and made open to scrutiny were considered 

credible, regardless of where accounts of the demonstration might be published. 

 

 Preference was shown to established academic journals. For comments on the 

industry and its state, citations were limited to career professionals with terminal degrees 

and a background in research (and documented evidence of both available for 

verification). For facts on the state of the art, both these and amateur sources were cited, 

provided that the facts had been independently confirmed. For insight into popular 

sentiment and market trends, many lay sources proved useful, but they are, in the review 

to follow, carefully distinguished from statements of fact. 

 

 Government agencies and their publications were considered authoritative sources 

of government policy. Discrepancies often arise between policy and practice, but that is a 

matter for discussion elsewhere. Standards bodies and task forces are considered 

authoritative sources of their standards documentation. 

 

 Articles from disreputable sources were avoided. This includes material deemed 

to be composed for religious or political purposes; material lacking citations, scientific 
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qualifications, or scrutiny; material closely associated with claims that have already been 

demonstrated false; and material written in such unprofessional language as to call its 

content into question. All sources exhibiting one of these problems were considered 

disreputable until a stronger case could be found for their inclusion, where possible. 

 

 Articles were not considered if they were not published in a source accessible to 

Purdue libraries without additional fees, licensing burdens, or other barriers to study. 

 

2.2 Body of Literature 

 

2.2.1 Fundamental Concepts 

 

 The technology underpinning the RFID devices scrutinized in this study was well 

summarized in earlier publications from Intel Research (Want, 2004): 

 

RFID is an electronic tagging technology (see figure 1) that allows an object, 

place, or person to be automatically identified at a distance without a direct line-

of-sight, using an electromagnetic challenge/response exchange. (p. 42) 
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Figure 1 Popular RFID Tags in Various Shapes and Sizes (Want, 2004) 

 

An RFID system is composed of readers and tags. Readers generate signals that 

are dual purpose: they provide power for a tag, and they create an interrogation 

signal. A tag captures the energy it receives from a reader to supply its own power 

and then executes commands sent by the reader. (p. 42)  
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An RFID tag is built from three components: 

 Antenna 

 Silicon chip 

 Substrate or encapsulation material 

These tags are generally referred to as passive because they require no batteries or 

maintenance. Tag operation varies according to the frequency at which the tag 

operates. Historically, four common ISM (industrial, scientific, medical) 

frequency bands have been used: 128 kilohertz, 13.56 megahertz, 915 megahertz, 

and 2.45 gigahertz (see figure 2). 

 

 

Figure 2 Two Dominant RFID Tag Designs, with their Bands and Standards (Want, 2004) 
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Passive tags that operate at frequencies up to 100 MHz are usually powered by 

magnetic induction, the same principle that drives the operation of household 

transformers. An alternating current in the reader coil induces a current in the 

tag’s antenna coil, allowing charge to be stored in a capacitor, which then can be 

used to power the tag electronics. Information in the tag is sent back to the reader 

by loading the tag’s coil in a changing pattern over time, which affects the current 

being drawn by the reader coil--a process called load modulation. To recover the 

identity of the tag, the reader simply decodes the change in current as a varying 

potential developed across a series resistance. (p. 43) 

 

Unlike a transformer, the coils of a reader and a tag are separated in space, and 

coupling between the coils can occur only where the magnetic field lines of the 

reader coil intersect with the tag coil, the near field region (see figure 3). Beyond 

this distance the energy breaks away from the antenna as propagating waves that 

we call a radio signal; this is known as the far field region. (p. 43) 

 

 

Figure 3 Near Field Wireless Coupling, as used in High Frequency Tags (Want, 2004) 
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2.2.2 Clarifying the Problem 

 

 The core RFID technology described above provides the means to tag entities and 

wirelessly obtain tag data. In short, it is a way to tell entities apart from a distance. No 

intrinsic mechanism for security or privacy is included in the specifications (Nogueira & 

Greis, 2009). Until something related arrives through additional regulatory measures, the 

card remains a completely passive device that will release its data whenever interrogated. 

In the state of Washington, for example, no security is built into RFID-enabled driver's 

license cards (ACLU, 2007). Users are encouraged to store the card in an enclosure and 

limit its exposure to unauthorized parties (2007). 

 

 Encryption has been widely touted as a means to prevent disclosure of RFID data 

(Mahmood & Al-Hamdani, 2011), but has not been entirely successful. The popular NXP 

Mifare Classic RFID chip stands as a potent example. Its encryption scheme was 

compromised in 2008, allowing data to be read without authorization, charges to be 

repeated, and cards to be duplicated for false identities (Hammerschmidt, 2008). The chip 

incorporated the high frequency standard mentioned above. It is used widely for personal 

identification, making the vulnerability especially troubling. As other encryption schemes 

are suggested to be stronger replacements for this one, some researchers have turned to 

hardware-based schemes, acting at a lower level to prevent disclosure (Lim & Li, 2008). 

 

 In a prominent RFID lab at the University of Washington, a professor of computer 

science and engineering lead a team of researchers in exploring at depth the social impact 

of this technology. In an interview about the facility (Heim, 2008) he warned that the 

RFID passports and driver's license cards have been designed to expose more information 

than necessary: 

 

There's no reason to have remotely readable technology in a driver's license... 

people don't understand the implications of information they're giving out. They 

can be linked together to paint a picture, one you didn't think you were painting... 
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you can see this inching forward until we're tracking people wherever they go. 

(p. 3) 

 

 Since the public debut of RFID, Katherine Albrecht has said much about the 

potential pitfalls of careless deployment. Fortunately very little of what this ardent 

privacy activist anticipated ever materialized; but as personal identification advances, it 

may prove helpful to consider her warnings, because resolving consumer anxiety means 

putting them legally and technologically out of reach: 

 

During the past decade a shift toward embedding chips in individual consumer 

goods and, now, official identity documents has created a new set of privacy and 

security problems precisely because RFID is such a powerful tracking technology. 

Very little security is built into the tags themselves, and existing laws offer people 

scant protection from being surreptitiously tracked and profiled while living an 

increasingly tagged life. (2008, para. 4) 

 

 When security investigators at Charles University in Prague examined electronic 

Czech passports, they exclaimed it was "a bit surprising to meet an implementation that 

actually encourages rather than eliminates attacks" (para. 10). 

 

 Recall from the fundamentals section above that two families of standards have 

dominated the market of personal RFID solutions. The contactless national IDs and 

passports of most countries incorporate a tag that meets the industry standard ISO 14443 

(closely related to the ISO 15693 noted earlier), which was developed specifically for 

identification and payment cards (Nogueira & Greis, 2009). Curiously, U.S. border cards 

use the EPCglobal Gen2 standard (closely related to the EPC noted earlier), a shorter-

wavelength standard that was designed to track products in warehouses, where the goal is 

not security but maximum ease of readability (Albrecht, 2008). This is a point that shall 

return later in the discussion of standards for a prototype replacement technology. 
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 A communication from the European Commission to the other European bodies 

listed recommendations for consumer RFID usage. Among these, that personal data 

obtained with this technology is subject to the informed consent of the affected individual 

(Krisch, 2007). It goes on to call for the ability to select when and where RFID data may 

be collected, which "no sufficient mechanisms" currently provide (Krisch, 2007, pp. 5-7). 

This directly beckons researchers to answer with something more effective than the 

Mifare cryptography and more specific than bulk RF shielding. Why not enable selective 

disclosure of individual data fields, as many or as few as might be suitable for any given 

transaction at any given time? 

 

 Without a sufficient mechanism for selecting the circumstances of wireless 

reading and tracking, no guarantee can be made that personal data has not been used 

beyond its intended context. This has occurred in a variety of places already, including 

schools where attendance mechanisms are employed (Brazy, 2010), liquor stores where 

age verification mechanisms are employed (Shaughnessy, 2010), entire states where 

drivers are licensed (McNamara, 2009), and too many other examples to quickly 

summarize. It is clear that concern exists on the part of consumers and citizens. Where 

information is available, it is sought and collected. It is used in any ways that collectors 

believe will become profitable or otherwise advantageous. Selecting against disclosure 

from the onset prevents this entire family of abuses. 

 

2.2.3 A Call for Improvement 

 

 Of the warnings written on the various threats arising when RFID is used for 

personnel, many are inspired not by experience or deep knowledge of the topic, but by 

other, dubious influences that have not shown evidence (Galloway, 2010). For this reason, 

emphasis is given to those that are situated to speak authoritatively: 

 

 The vice president for government affairs at Gemalto, Inc., a major supplier of 

microchipped cards, is by no means an RFID opponent. He is a board member of the 
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Smart Card Alliance, an RFID industry group, and is serving on the Department of 

Homeland Security's Data Privacy and Integrity Advisory Committee. Still, he has 

sharply criticized the RFIDs in U.S. driver's license and passport cards. In an article for 

Privacy Advisor, a newsletter for privacy professionals, he called the cards vulnerable "to 

attacks from hackers, identity thieves and possibly even terrorists" (Lewan, 2009, para. 

19). 

 

 Similar concerns arose from the AeA--the lobbying association for technology 

firms, the Smart Card Alliance, the Institute of Electrical and Electronics Engineers, the 

Business Travel Coalition, and the Association of Corporate Travel Executives. The 

Department of Homeland Security has been promoting broad use of RFID, even though 

its own advisory committee on data integrity and privacy warned that radio-tagged IDs 

have the potential to allow "widespread surveillance of individuals" without their 

knowledge or consent (Lewan, 2009, para. 22). 

 

 In the wake of the Sept. 11 attacks--and the finding that some of the terrorists 

entered the United States using false passports--the State Department proposed 

mandating that Americans and foreign visitors carry "enhanced" passport booklets, with 

microchips embedded in the covers. The chips, it announced, would store the holder's 

information from the data page, a biometric version of the bearer's photo, and receive 

special coding to prevent data from being altered (Lewan, 2009). 

 

 As gratifying as the measure might have felt at the time, it produced little in terms 

of measurable security for the nation, yet the price to be paid in loss of public confidence 

in the underlying mechanism was profound. In February 2005, when the State 

Department asked for public comment, this was the response: of the 2,335 comments 

received, 98.5% were negative, with 86% expressing security or privacy concerns, the 

department reported in an October 2005 notice in the Federal Register (Lewan, 2009, 

para. 44). 
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 In February 2006, an electronic Dutch passport (which did incorporate encryption) 

was compromised on national television, with researchers gaining access to the 

document's digital photograph, fingerprint and personal data. Then British e-passports 

were hacked using a $500 reader and software written in less than 48 hours (Lewan, 

2009). 

 

 In May 2006, at the University of Tel Aviv, researchers improvised a skimming 

device from a mere $110 worth of parts from hobbyists kits and directly read an 

encrypted tag from several feet away. At the University of Cambridge, a student showed 

that a transmission between an e-passport and a legitimate reader could be intercepted 

from 160 feet (Lewan, 2009). 

 

 When Michigan was pressured by the Department of Homeland Security to add 

RFID to driver's license cards, a state representative called upon their governor to resist, 

saying, "I don't think we need RFID in our licenses period, but even if we did, there is 

absolutely no reason it couldn't be short range and encrypted" (McNamara, 2009, para. 3). 

 

2.2.4 Inviting the Card Overlay Solution 

 

 While much has been written about RFID in industrial engineering collections, 

probably the largest portion deals only with supply chain issues, such as product 

transportation and inventory, or with transaction issues such as cards for near-field 

payment rather than mag-swipe payment. When the readings are limited to those about 

cards for identifying people, they present a surprising few proposed solutions to the 

problem of unauthorized data disclosure. Many industry professionals have limited their 

recommendations on this topic to the usual prudent advice: keep the card in an RF shield 

when it is not in use, and expose it only in range of desired scanning. Since active tags 

typically are not used for personnel cards, that range is on the order of meters rather than 

kilometers. 
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 There have been hardware designs intended to make undesired scanning more 

difficult, such as adding switches that only enable reading while the card is being pinched 

in the user's fingers (Huber, 2012), but they still dealt with complete disclosure of the 

data. No design was found in these sources that provides a hardware mechanism for 

disclosing only particular fields of data. That is what prompted its investigation here. 

 

 Many of the functions performed with RFID are also possible with alternative 

technologies, such as digital image processing (Gregorio, 2009). For the sake of focus, 

the principles of effective identification shall be applied here only to RFID technology, 

and in light of the violations to RFID cryptography mentioned earlier, this investigation 

narrowed further to include only hardware-based mechanisms. 

 

 There have been software mechanisms for this purpose (Rieback, Gaydadjiev, 

Crispo, Hofman, & Tanenbaum, 2006), but these obviously operate at a higher level of 

abstraction, and rely upon obstructing the flow of data through code, rather than 

preventing the electrical signals from ever leaving the card. Building security into the 

device closer to the hardware can help to prevent these problems, serving as an effective 

replacement or companion to cryptography. This is a distinction that shall be explored 

further below. 

 

 A trend has been rising in street-corner shops that are under legal requirement to 

verify the age of their patrons. There are documented stores that not only check, but also 

record ID card information when they make alcohol sales. Devices such as the Z22 

CounterTop ID Checker are capable of automatically scanning driver's license cards, 

retaining thousands of their records in onboard memory, or transferring them to external 

computer networks (Shaughnessy, 2010). This encroachment means that the consumer is 

further limited in his ability to control personal data, and prevent future abuses of it. Data 

fields that are not involved in the age verification process are relinquished whenever the 

age field is examined. The data, once collected, leaves the owner's control and may be 

stored or processed in whatever manner the collector deems appropriate.  
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 One of the earliest and most valued contributors to RFID security was Simson 

Garfinkel who, with the aid of two colleagues, published several ideas that seem 

especially noteworthy as having directly influenced the research proposed here. The first 

is what became known as his RFID Bill of Rights, a set of five guiding principles for 

system creation and deployment similar to those established over many decades of 

identification using other technologies. 

 

The Bill states that users of this technology have: 

1. The right to know if a product contains an RFID tag. 

2. The right to have embedded RFID tags removed, deactivated, or destroyed when a 

product is purchased. 

3. The right to first-class RFID alternatives. Consumers should not lose other rights 

(such as the right to return a product or travel on a particular road) if they decide 

to opt-out of RFID or exercise an RFID tag’s kill feature. 

4. The right to know what information is stored inside their RFID tags. If this 

information is incorrect, there must be a means to correct or amend it. 

5. The right to know when, where, and why an RFID tag is being read. 

(Garfinkel, Juels, & Pappu, 2005, p. 41) 

 

 Note that this list deals with policy matters, rather than the mechanisms of 

assurance. It is a reminder that sound regulatory principles are vital to RFID success 

(though beyond the scope of this dissertation). Nonetheless, they cannot be put into effect 

without some underlying mechanism, so it would seem to invite the work proposed. The 

fifth point is probably the one best served by a model of selective disclosure, and it is a 

point highlighted here as vital. 

 

 The team recognized a way that selection could occur: 

 

The farther away a reader is, the greater the noise level in the signal a tag receives. 

With some additional circuitry, therefore, an RFID tag might be able to obtain a 
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rough estimate of the querying reader’s distance and change its behavior 

accordingly. A tag interacting with a distant reader might only reveal the type of 

product it’s attached to--a pair of trousers, for example. When interacting with a 

nearby reader, however, the tag might also reveal its unique identifier. A more 

sophisticated, multi-tiered approach is also possible, in which tags furnish 

increasing amounts of information as readers get closer. (p. 41) 

 

 Though this approach might be of interest to inventors, distance clearly is not 

always the most suitable selection factor in common consumer or citizen cases. 

Regardless, it is important to recognize that containing the intelligence begins with low-

level antenna signal viability, which is precisely what the approach illustrates. If the card 

cannot be sufficiently charged by the wireless reader (a process known as excitation), it 

cannot produce the signal to reply. The card operates in "half duplex", receiving energy 

first and only afterward transmitting any. The reader then accepts the returned signal data, 

and singulates the tag accordingly. 

 

 These researchers also draw attention to the concept of blocker tags, fully 

described by Juels, Rivest, & Szydlo: 

 

The RFID blocker tag takes a different approach to enhancing RFID privacy. It 

involves no modification to consumer tags. Rather, the blocker tag creates an RF 

environment that is hostile to RFID readers. The blocker tag is a specially 

configured, ancillary RFID tag that prevents unauthorized scanning of consumer 

items. In a nutshell, the blocker tag “spams” misbehaving readers so they can’t 

locate the protected tags’ identifiers. At the same time, it permits authorized 

scanners to proceed normally. (Garfinkel et al., 2005, p. 40) 

 

 As a mechanism of rejecting unauthorized readers, this is an intriguing solution. 

What is developed below, though, is a mechanism that provides the means to select and 

authorize fields on the card itself. As the authors correctly noted, the privacy concern of 
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RFID devices arises between the user, the card, and the reader. It is possible to create a 

solution in one that causes no new interference to another. 

 

 The solution put forth here is expressed in terms of the following principles: 

 

2.2.4.1 Custody 

 

 In existing personal ID applications, if a card is scanned, its entire contents are 

obtained. If only a portion of that information is needed for the action at hand, the 

scanning party is expected to exercise discretion by deleting the remainder. On occasion, 

it is not deleted, but finds its way into other actions, including unauthorized actions. 

There are three major ways this can occur in the existing approach: 

 Sincere Accident (as an embarrassing disclosure of one's age, weight, etc.) 

 Function Creep (as the liquor stores' growing customer databases, etc.) 

 Malicious Misuse (as a malefactor who commits fraud with ID, etc.) 

 

 If the technology within the card does not release private information, then there 

is no need to look after it using technology outside the card. The card (and thus its holder) 

retains custody of the information. There is no need to confirm that such information has 

been securely deleted, seeing that it was never available for abuse. Wherever possible 

within the regulatory framework, this approach is appealing for its simplicity and 

apparent effectiveness. 
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2.2.4.2 Mechanism 

 

 What this work contributes to the RFID industry is a model that does not rely 

upon the competence, morality, or technology of the party performing the scanning, but 

instead builds into the card itself the means of selective disclosure. This principle of 

placing impersonal mechanisms above personal promises removes the opportunity for 

entire families of misuse and crime. It enables the user of the card to be more directly 

responsible for the disclosure of information, and any consequences that might follow. 

 

2.2.4.3 Prevention 

 

 Much of the work done to address privacy compromised through RFID has dealt 

with response measures. Indeed, controlling loss is often best done by early reporting, 

repudiation, and re-issuance, etc. Where users receive guidance on preventative measures, 

it's frequently about looking after the card and the information it contains. A user's ability 

to do this is greatly reduced by several factors in the RFID card design: 

 Information may be read from the card without the holder's knowledge. 

 Reading of the card is possible even if the holder refuses. 

 The holder has no means to choose which data fields are read. 

 

 The design presented here replaces the information pathways that had been 

permanently open with gateways that may be closed, preventing misuse of the 

information, so that the reactions never even need to be addressed. One of the great 

conveniences of RFID is that it can operate through an opaque container such as a wallet, 

without needing to be removed. This can become one of its great problems if there is not 

also available a simple way to contain the data when an operation was not intended.  
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2.2.4.4 Empowerment 

 

 Just as it is unrealistic to advise preventing an action that has no feasible barriers, 

it is unrealistic to advise RFID users to take prudent measures if such measures are not 

within the holder's legal or physical reach. By adding a mechanism for access switching 

to the card that the holder may easily set in a readable or unreadable position, the design 

change empowers him to make the decisions and assume personal responsibility for them. 

This brings not only greater assurance to the holder, but also reduced liability to the 

issuer and reader. Much of RFID security has been invisible, even when it is working 

well. Best practices in identification, and many other systems, call for active and visible 

reporting. "It's not enough to make someone secure, that person needs to also realize 

they've been made secure" (Schneier, 2008, para. 12-13). 

 

2.2.4.5 Least Privilege 

 

 A fundamental principle of information assurance is that any given party should 

be granted access to only as much information as necessary to complete the desired 

objective (Amer & Hamilton, 2008). Frequently, though, an article of identification such 

as a driver's license is used to establish a link between only two fields such as a 

photograph and a name or a photograph and an age, etc. even though many other fields 

are included on the card. For printed cards, this matter may be overcome easily enough 

by obscuring those fields (with tape or the like), and making them temporarily unreadable. 

For radio-frequency cards, though, there is no intrinsic means to suppress one field while 

leaving another available. It is for that reason that this design is being introduced, so that 

information fields may be shared wirelessly, on a need-to-know basis, with no additional 

fields packaged along with them.  
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2.2.5 Design Factors 

 

 The RFID card design described in this paper is intended for widespread adoption, 

as a state or national identification document. As such, its logistics deserve some 

explanation. Attractive alternatives to cards are available in the form of various smart 

devices, etc. (Metras, 2005). Why then might the cards be preferable? Here are some of 

the most significant factors that, in the context of this dissertation, border and direct the 

path to the intended ID solution: 

 

2.2.5.1 Cost 

 

 To fulfill its purpose, the device must be affordable enough to be available to an 

entire population. If the cost of a smart phone on which to run an identification 

application is beyond the means of a user, then routine ID tasks will become unavailable 

with it. Likewise, if the cost to produce and maintain the device are much greater than the 

current cost of government ID documents, the responsible agencies will be under 

burdensome economic pressure. In the United States, even a slight increase in costs will 

be multiplied by a population of over 3 million people (US Census Bureau, 2013). The 

solution must be exceedingly affordable, in terms of not only the materials, but also the 

manufacturing process, distribution methods, and total operation after deployment.  
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2.2.5.2 Durability 

 

 ID documents that are issued for use over a period of five or ten years will clearly 

need to be made of materials that can withstand harsh handling. They may be carried 

daily in pockets, wallets, purses, or lanyards. They will be flexed often, and subject to 

temperature extremes. They will get wet. They will be dropped. They will be exposed to 

electromagnetic interference. To remain useful, the device must be resilient. This makes 

even card technologies such as electronic ink or touch-sensitive surfaces seem 

impractical. The electronics of RFID are, themselves, vulnerable to some sources (Juels 

et al., 2003), but they represent a mature technology that is in widespread use today. Card 

durability is well established in consumer environments, even under many harsh 

conditions (Xiang-jie & Hua, 2014). 

 

2.2.5.3 Size 

 

 The maximum dimensions of a device in regular use would probably be the 

passport, which itself is too big to fit in a common wallet. An ID device much larger than 

a driver's license presents a nuisance to the user that had previously stored a pocket-sized 

card. A design that had switches or connectors extending out from its surface would 

cause it to catch often on its container and on garments, and risk damage to both. It seems 

preferable, then, to use a smooth card with a form factor no larger than about 9cm by 6cm 

on its face, with a thickness no greater than about 1mm that does not require any outer 

covering thicker than 300μm.  
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2.2.5.4 Simplicity 

 

 It seems favorable to offer users a solution that exhibits security they can 

understand and privacy they can control (Smith & Spafford, 2004). Neither is possible in 

a system of profound complexity. A solution that operates at a lower level of abstraction 

is preferable to one at a higher level. One that is hardware-based, and thus able to 

function even below the software that might be run above it, is preferable to one that 

depends upon its software platform and its changing maintenance schedule. As discussed 

earlier, simplified RFID mechanisms for feedback and control have been demonstrated. 

Here they are applied in a manner that offers the user a simpler explanation. 

 

2.2.5.5 Familiarity 

 

 The user is a major cause of ID device failure, often caused by misunderstanding 

complicated technologies (Marqhardt et al., 2010). It is helpful, then, to deploy a product 

that has the look and feel of the cards already in use. The steps taken in using it should 

parallel steps taken with the earlier (print) cards. Where it is possible, it is beneficial to 

make the operation of the device intuitive and transparent. Where it is not, the designer 

might at least make the device behave in ways that suggest what is happening internally, 

so that users will be more likely to act accordingly. When technology serves human 

needs well, it often becomes so subtle it is taken for granted.  
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2.3 Converging on the Topic 

 

 It is clear from the literature that where RFID and information assurance intersect, 

a great variety of research opportunities arise. As discussed above, they narrow down 

from the general and numerous topics to the one specific topic addressed in this 

dissertation: 

 

 At the broadest level is the specter of identity "theft" and misrepresentation. This 

would include all conceivable ID documents and means of misusing them. It would also 

include the various ways to prevent misuse, and among these is the topic of access 

control for documents. As far as the type of document is concerned, all the most popular 

were studied. The passport was considered, of course, and the Social Security card, but 

special emphasis fell upon the state driver's license cards because of how widely they are 

carried and how often they are requested as a form of identification. The history of 

misuses involving a driver's license is still too large to deal with, particularly in light of 

current changes to the cards, so the factor of radio-frequency identification was 

considered particularly. A transition is occurring between printed cards and electronic 

cards, so it would seem a good time to bear down upon RFID for a card akin to the 

driver's license, or certainly something using its same pervasive form factor. It would 

need to be something small enough to fit in a wallet and be carried in the same way as the 

license. It would need to be affordable enough and durable enough that states and nations 

could scale deployment plans to include entire populations. Within all these constraints, 

an opportunity is found to further narrow the work to the prospect of documenting a 

mechanism for card data selection. It reworks established methods of intentionally 

detuning the antennas of an RFID card, using the particular overlay solution described in 

the Methods.  
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2.4 Prior Works 

 

 To help ensure that the design and function of this solution are in fact unique, an 

exhaustive search was made in the database of the United States Patent and Trademark 

Office. The text and illustrations were read for every patent since 1976 for search criteria 

germane to RFID card technology. All of the results returned were reviewed. Complete 

details may be found in the Appendix section.  

 

 None of the patents read incorporate a multiple-region card of this type, nor the 

selective detuning method described in this dissertation. Those patents that do incorporate 

aspects of the same work are distinguished accordingly. While it remains a matter for 

patent agents to argue, the proposed design appears novel, and deserving of a rigorous 

investigation.
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CHAPTER 3. METHODS 

3.1 Design Objectives 

 

 The introduction and validation of a novel RFID overlay solution was a necessary 

part of this research. Existing RFID cards used to identify personnel suffered from the 

limitations mentioned above, but an alternative card that was shown to overcome these 

limitations has been produced, inviting a discussion of the technologies used in it, and the 

prospect of deploying it for large-scale public use. Its first purpose was to be used here in 

response to the stated Research Questions: 

 

a) Is selective detuning a feasible mechanism for independent selection of RFID 

card data? 

b) Can a design for selective RFID detuning operate reliably enough to be practical? 

 

 Shown in figure 4 is the outward design of a popular RFID personnel card. Other 

than labels for the manufacturer's registered trademarks and an arbitrary decoration, the 

surface is blank. It conveys no visual descriptions of the data it contains or is prepared to 

release. There are no input devices on the card, and no indication of which regions on the 

card are most susceptible to detuning. Of particular note, there is no separation of its data 

fields (or references to fields); the card acts as a single monolithic container. When it is 

read, it releases all the fields (or a unique identifier that may be used to obtain all the 

fields). Until some external device has received and acted upon it, the output set is 

indivisible.



37 

 

3
7
 

 

Figure 4 Commercial RFID Card (HID, 2014) 

 

 The antenna inlay used inside this type of card is shown in figure 5 (2014). Its 

flexible coil follows the perimeter of the card in a nearly symmetric pattern. 

 

 

Figure 5 Antenna Coil Pattern of Common RFID Cards (Cram, 2014) 

 

 In contrast, the demonstrated model uses separate antennas, each of which forms 

an oblong coil. They are located in RF-sensitive regions that correspond to regions on a 
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printed card, but are insulated from it and are visibly labeled accordingly (see figure 6). 

Access to the data represented by each region may be toggled by obscuring that portion 

of the card with a conductive tape. This analogy makes the device behave in a familiar, 

intuitive way to the user, and does for RF visibility what it does for optical visibility. 

What the experiments were designed to test is whether an overlay of common aluminum 

tape would offer reliable coverage when used with the prototype card, changing it 

predictably from the readable to the unreadable state according to the exposure of the 

region. 

 

 

Figure 6 Labeled Prototype Card Surface 

 

 In studies concerning disclosure from printed cards, other researchers have done 

work with preformed opaque sleeves (Clement et al., 2012). These serve the same 

purpose as the tape, but allow for faster changing and easier storage. The findings of this 

study on pieces of tape coverage would transfer well to preformed sleeves of aluminum, 

and likely of any similarly conductive material. The aluminum tape was used here for 

three reasons that concern the end user: it is reasonably affordable, it is readily available, 

and it is highly variable. Less precise than machine-cut overlays, tape varies greatly as it 

is cut or torn by the user. Showing that it operates reliably even with a broad tolerance for 

the geometry of the overlay would allow a developer of this card to confidently claim that 

the machined overlays would perform at least as well as the tape overlays. 
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 The aluminum portion of the overlay was electrically continuous, and had no gaps 

within each data field. The total thickness of the metallic layer and its attached adhesive 

layer did not exceed 100μm. 

 

 A successful read outcome was one in which the obscured data fields of the card 

were concealed, but the exposed data fields were revealed. All other possible outcomes 

were considered error conditions, and counted accordingly. The number of errors 

amassed was analyzed statistically. Both the state of the field in question and the read 

outcome were considered categorical variables, and both were assigned binary values. 

Any read condition that failed to read the entire contents of a data field during 

interrogation was considered a negative outcome. All others were considered positive. 

 

3.2 Experiment Design 

 

 From each of the two Research Questions first posed in the Introduction follows a 

testing track suitable for its inquiry. The hypotheses, variables, and experiments are 

separate for each of these tracks, and the statistical tools applied accordingly. Data were 

collected for each, and their patterns lead to two sets of results. From these, the unified 

Conclusions section was composed. 

 

3.2.1 Test 1: Independence 

 

[from Research Question A]: 

Is selective detuning a feasible mechanism for independent selection of RFID card data? 

 

 It is necessary to test whether there exists a relationship between the overlay 

coverage on a given data region of the card and the readability of other data regions. 

What is needed from a usable design is that no region of the card be detuned by overlay 

coverage outside its region. 
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3.2.1.1 Hypotheses 

 

3.2.1.1.1 H0a 

Access to the data of a given field will not depend upon the overlay coverage of a field 

other than its own. 

 

 The hypothesis stands unless access exhibits dependence on coverage of a region 

of the card other than the region labeled for its own field. That is, the test fails to reject 

H0a if the state of coverage for one region of the card does not reliably correlate with 

readability of data from the other region.  

 

3.2.1.1.2 H1 

Access to the data of a given field will depend upon the overlay coverage of a field other 

than its own. 

 

 The hypothesis stands if access exhibits dependence on coverage of a region of 

the card other than the region labeled for its own field. That is, the test rejects H0a if the 

state of coverage for one region of the card reliably correlates with readability of data 

from the other region. 

 

The value of α chosen in this test was .01, for a confidence level of 99%. 

 

3.2.1.2 Variables 

 

Involved in the direct effect testing: 

X Independent - coverage state of region (binary categorical) 

Y Dependent - readability of region (binary categorical) 
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Recorded for procedural purposes in the laboratory: 

region under test (binary categorical) 

current pass (scalar) and pass count (scalar) 

current orientation (trinary categorical) 

readability_roll 

readability_pitch 

readability_yaw 

 

3.2.1.3 Data Collection 

 

 Before testing the effect of the card's overlay mechanism, it was necessary to test 

the laboratory equipment and the core RFID technology. A baseline test was conducted, 

in each of the 3 axial orientations, with the card's data regions completely exposed. All 

the equipment passed. With the baseline complete, samples were taken with the data 

regions completely obscured. Results were compared to the baseline. Then, to make 

certain that the suppression of the obscured fields had been temporary, and had not 

resulted in any lasting effect to the card, additional samples were taken completely 

exposed. The equipment performed without malfunction, according to its normal 

advertised operation. 

 

 One of the two data fields was randomly selected for treatment in the first testing 

course. It was completely obscured, while the remaining field was completely exposed. 

Samples were taken in each of the 3 axial orientations. The second testing course 

proceeded in similar fashion with the coverage states exchanged, for an equal number of 

samples. Data were aggregated and compared against cycle count to obtain the total fault 

count. It is considered a "transfer fault" if the reader fails to obtain data from an exposed 

region of the card, and a "blocking fault" if the reader obtains data from an obscured 

region. 
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 The purpose of dividing the total run into 3 subsets is to represent the 3 axis of 

rotation. This serves to control for variation that might arise from the orientation of the 

card as it is presented to the reader. Cards were swept through the entire range of motion 

during each read attempt, and the results were separated according to axis so that any 

effect arising from orientation might be correlated with it during the statistical analysis. 

 

 As the arrangement also controlled for the rotation of the card as it approached the 

reader, it was important that the sampling be allowed to run for several thousand cycles in 

each record set, giving good opportunity for any card anomalies to be observed and 

separated from the effects of the overlay. Card antennas are not isotropic radiators, but 

rather do exhibit nulls, similar to the nulls at the ends of a dipole radiator, that may be 

clearly observed at a distance. They become increasingly less observable as the distance 

is reduced. Allowing the cards to rotate through their entire range of motion helped to 

ensure that any nearby materials that might have acted as parasitic radiators affected the 

entire set of subjects, with minimal bias (see figure 7). The card's own driven element 

was the only apparent source of backscatter. 
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Figure 7 Test I Experiment Flow 
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3.2.1.4 Statistical Analysis 

 

 The statistical significance of a variable's deviation may be found by comparing it 

to a χ² distribution (Cook, et al., 2001). This is among the most straightforward ways to 

test the independence of two categorical variables, which is precisely what was needed in 

this experiment. The relationship between the concealed region and the overlay coverage 

of the concealed region was tested, as was the relationship between of the exposed region 

and the coverage of the concealed region. This was done for each region's data against the 

opposing region's coverage to test whether it was possible for any of the coverings to 

affect data outside the boundaries of their respective regions. A test was then conducted 

for the relationship between the concealed region and its own coverage, to confirm that 

the covering directly affected data within its boundaries. 

 

3.2.2 Test 2: Reliability 

 

[from Research Question B]: 

Can a design for selective RFID detuning operate reliably enough to be practical? 

 

 For the card design to be practical in the hands of its users, it must function with 

an inconsistent overlay. If the aluminum tape is used, there may be variation between one 

application of the tape and another. The card must present a range of coverage within 

which a given field will assuredly be concealed and beyond which it will assuredly be 

readable. Just as the user name on a printed card field does not become completely 

readable if a mere 10% of the text is made visible, so this RFID card must not become 

completely readable if a mere 10% is made scannable, etc. 

 

 To test the variety of ways the aluminum overlay might be cut for use on the card, 

the pattern itself was randomized. The chosen region began with an overlay that 

completely obscured it. Each reduction was made with a single linear cut, separating 50% 

of the remaining material from the missing portion. The angle of the cut included the 
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polygon center--the point equidistant from each vertex--and followed a randomly selected 

line through half a unit circle, or π radians, describing the overlay (see figure 8). A new 

angle was chosen for each cut, and half the material was removed for each set, until its 

effect was deemed negligible. This occurred when read operation succeeded in spite of 

the overlay more often than 1% of the time in the testing course. 

 

Figure 8 Reduction Guide for the Overlay 

 

 To illustrate that the tapering of the observed effect is, in fact, caused by the 

tapering of the true effect, one additional testing course was taken, at one additional 

overlay reduction, beyond the course in which the 1% threshold was met. Only when the 

effect was observed in more than one successive course did the reductions and testing 

halt.  
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3.2.2.1 Hypotheses 

 

3.2.2.1.1 H0b 

The effect of the overlay will not show a predictable decline as its coverage is reduced. 

 

 The hypothesis stands if the transition effect from covered to uncovered state is 

not sufficiently pronounced. That is, the test fails if the graph of the effect trails off 

gradually through the transition rather than falling abruptly. The coverage area of the card 

regions were decreased logarithmically as the test continued, and the reliability of the 

read attempt recorded. If the effect is pronounced and reliable close to the transition point, 

then it should exhibit a significant difference across samples with different coverage 

areas, but not a significant difference among samples of the same coverage area. 

 

3.2.2.1.2 H2 

The effect of the overlay will show a predictable decline as its coverage is reduced. 

 

 The selective tuning design is considered reliable if its outcomes with respect to 

coverage percentage are so predictable as to beat chance at the stated confidence level. 

 

The value of α chosen in this test was .01, for a confidence level of 99%.  
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3.2.2.2 Variables 

 

Involved in the direct effect testing: 

X Independent - coverage percentage of region (categorical) 

Y Dependent - readability of region (binary categorical) 

 

Recorded for procedural purposes in the laboratory: 

region under test (binary categorical) 

current pass (scalar) 

pass count (scalar) 

current orientation (trinary categorical) 

number of unsuccessful interrogations on an exposed region. 

number of successful interrogations on the concealed region.  
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Figure 9 Test II Experiment Flow 
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3.2.2.3 Statistical Analysis 

 

 A binary logistic regression was plotted to test the relationship between the 

coverage of the target data region and the readability of the region. For the hypothesis of 

reliability to be accepted, there needs to be evidence that the difference between a 

readable and an unreadable region strongly correlated with its overlay coverage. Further, 

the transition region that occurs as the surface area of the overlay is reduced should be 

narrow, signifying that overlay dimensions exhibit little uncertainty. The binary 

distinction between an exposed region and a concealed region should be sharp. 

 

3.2.3 Experimental Protocol 

 

 These are the details of the experiment that are common to the two tests above. 

 

3.2.3.1 Subjects 

 

 Each subject unit of this experiment was a pass of the card through the RF field of 

the reader at a specified coverage and range of orientation. The process was automated by 

means of a mechanical conveyor, and require no human subject participation. While it 

could be argued that human bodies might impair readability of the card by adding field 

blockage or detuning, there is no apparent means by which they might improve 

readability of a card that has been obscured as unreadable. For this reason, card 

processing is automated. This served the interest of time, so that many cycles of the test 

procedures could be run, and statistical power strengthened. 

 

3.2.3.2 Instruments 

 

 The experimental card design is a customized passive RFID tag system that used 

13.56MHz ISM-band signaling. To verify that the overlay causes only one of the data 
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fields to be obscured without affecting the others, the card surface was divided into two 

labeling regions. Silkscreen marking on the surface corresponded to antenna boundaries 

in the substrate below (figure 10). 

 

 

Figure 10 Obscured Fields, and the Data Released 

 The reader was an ordinary ISO-14443 commercial board connected to the 

computer system via USB port, and to a commercial antenna inside a common 

polypropylene radome operating in unobstructed space, with a radiation lobe focused on 

a point midway in the conveyor path (figure 11). 
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Figure 11 Card, Conveyor, and RFID Reader 

 

 Any variation attributable to the direction of approach was controlled by 

approaching the read antenna from both directions, as shown. The apparatus was 

mounted far enough to carry the card beyond the confirmed read range, and close enough 

to pass through the antenna's near field. The configuration was similar to the robotic 

positioning system used in the Georgia Tech RFID testbed. It was needed because card 

performance can vary according to position in space (Johnson, 2008). 
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3.2.4 Laboratory Conditions 

 

 The card used in the experiment was designed for symmetric wireless regions, 

and constructed to minimize internal interference. The active regions were selected by 

detuning a portion of the onboard antenna with aluminum tape. A brief trial run was 

conducted for both the exposed, obscured, and partially obscured states to ensure that no 

apparent defect or bias in operation was visible. Card coverage was selected randomly 

without replacement to represent either 01 or 10, where 0 indicated that the region should 

be exposed and 1 indicated it should receive an overlay. 

 

 It is considered a Type I error for the reader to record an unsuccessful 

interrogation on an uncovered region. Note that this may be confounded by factors such 

as 

 Background radiation 

 Electrical utility glitches 

 Damage to the card 

 Physical obstruction 

 Insufficient dwell time 

 Wireless signal collisions 

 

 To control for these factors, the test were conducted in a prepared laboratory 

environment. A Geiger counter sweep confirmed that no significant ionizing source of 

radiation was present during the testing, and any interference from nuclear emissions was 

naturally occurring, at under .04mR per hour. A broadband field strength meter was used 

to confirm that non-ionizing background radiation was likewise no higher than the 

ambient noise floor, and at least 30dB below the manufacturers' advertised threshold of 

interference for the reader device. The temperature of no surface or air space was outside 

of a range from 20°C to 30°C. Humidity was controlled to between 40% and 50%, and 

barometric pressure was between 990hPa and 1025hPa. Personnel were in contact with 

0V-reference dissipative straps during work to prevent electrostatic discharge. Test 
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instruments were powered by a conditioned, uninterruptible electrical circuit at 

125VAC+/-2%.  

 

The cards used in the test were recently manufactured, inspected thoroughly on site, and 

handled with sufficient care as to prevent wear. The test apparatus provided an 

unobstructed line of sight between the interrogator antenna and the RFID card, passed it 

through the range of operation slowly enough to provide dwell necessary for a read 

operation, and avoided collisions with the radio fields of nearby cards by physically 

isolating the card under test. 

 

 It is considered a Type II error if the reader records a successful interrogation on a 

covered region. This may be confounded by factors such as 

 An inconsistent bond between the cover and card 

 Damage to the cover material 

 Misidentification of the card under test 

 Active interference 

 

 To control for these factors, the cover was fabricated from a tape of consistent 

manufacturing specifications, for which the aluminum and adhesive layers together did 

not exceed 100μm in thickness. This was applied directly to the card, with no additional 

buffer in between, and no cracks or wrinkles in the cover. In successive trials, the fields 

were swapped, which would have exposed the effect of any lasting damage to one field. 

 

 The cards used in this experiment were programmed with unique identification 

tokens, and as mentioned above, the test was conducted in an isolated environment, 

beyond the range of any card that might be misidentified as the test subject or other 

wireless device that might have interfered with the test to such an extent as to trigger a 

positive response. 
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 The question of usable range often arises in RFID discussions. There is no 

decisive answer on how far away a card may be used with a reader until it is specified 

what type of reader, antenna, power level, etc. are used in what environment, with what 

radio landscape, etc. Cards of this type are often categorized as "proximity" tags, 

intended for use within about 1m of a reader under normal operating conditions 

(Nogueira & Greis, 2009). This would easily satisfy conditions where a user might hold 

out a card before a reader on a door, etc. The experiments outlined in this paper took this 

into account with a testing apparatus placing the tags no farther than half the maximum 

distance published by the manufacturer. 

 

 As it is vital that obscured fields on the card are rendered unreadable for as long 

as the overlay is in place, the card's distance from the radome was not measured as a 

variable. Rather, the entire usable range was involved. Each pass began at a point 

considered unusable for reading, swept through the closest usable proximity to the 

radome, and continued until again beyond range. Successful interrogation at any distance 

in this range was considered a successful outcome. 

 

 The card was exposed to the maximum effective radiated power available within 

the constraints of the reader system and FCC regulations, to rule out the possibility that 

the overlays are only effective at lower power, as license and passport covers are (Lewan, 

2009). While this does not disprove that devices operating at unlawfully high power 

might yet be able to penetrate the overlay, it is sufficient for the purposes of a prototype. 

As mentioned earlier, the mass production design would use a switching method that is 

not diminished even if the radiated power is increased. 

 

 The orientation of the card remains a source of uncertainty in read success rates, 

so sampling was done on all three axis of rotation, using a dielectric swivel on which the 

card might rotate freely through its entire range of possible orientations. By connecting 

this to a servomotor rotating at a rate slow enough to prevent read interference yet fast 

enough to keep pace with the conveyor system, it was possible to expose both sides of the 
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card, at every angle with respect to the radome. While it would be possible, in practical 

settings, for the card to find itself in oblique orientations that would require spherical 

coordinates to describe, the radiation pattern advertised for the type of antennas used in 

the experiment covers these orientations as readily as those on orthogonal axis (Philips, 

2002). For this reason, 3D rotation is considered rigorous for removing this variable 

during testing. 

 

 It was vital that the experiment demonstrate not only that the obscured data field 

became unreadable, but also that the exposed fields did not. It has already been 

established that storing the card in a suitably shielded enclosure, under normal operating 

conditions, will reduce the readability of every field (Koscher et al., 2009). What was 

needed here was the means to select desired fields to be read while leaving all other fields 

unaffected. For this reason, the field to be obscured in each testing was randomized, and 

the read outcomes were recorded for all fields during every pass through the reader. 

 

 As each testing set was satisfied, half of the remaining aluminum overlay was 

removed from the affected fields, and testing resumed. Because the overlay is only a 

reliable switch if its effect on the card drops off steeply as its area is reduced, 

comparisons were made between each set of coverage. Reliability could then be 

confirmed if the difference between satisfying the stated confidence level and failing to 

satisfy occurred at a boundary between sets--that is, precisely after a portion of the 

overlay had been removed. 

 

3.2.5 Testing Schedule 

 

These are the steps taken for the experiments: 

 

1. Construct the 2-region prototype RFID card 

2. Mark fields and serial numbers of each region 

3. Verify uncovered reading on RFID interrogator 
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4. Verify failure to read fully obscured card (both regions taped at 100% coverage) 

5. Uncover both regions 

6. Verify that coverage effects are temporary and reversible 

7. Begin experimental taping: randomly select one of the 2 regions 

8. Apply tape to respective region 

9. Reset cycle count to 0 

10. Record serial numbers of covered and uncovered regions 

11. Mount card on conveyor, with motor set for rotation on pitch axis 

12. Run for 1000 cycles, recording read results 

13. Mount card on conveyor, with motor set for rotation on roll axis 

14. Run for 1000 cycles, recording read results 

15. Mount card on conveyor, with motor set for rotation on yaw axis 

16. Run for 1000 cycles, recording read results 

17. Conduct test of independence of the readings on the first region 

18. Record p-value; flag if greater than confidence level 

19. Shift overlays one position 

20. Repeat cycling procedure 

21. Continue experimental taping: randomly select one of the 2 regions 

22. Randomly select an angle from half of unit circle; halve the overlay along angle 

23. Repeat data recording for each of 3 axis, as described 

24. Compare data with confidence threshold; continue collection until met 

25. One threshold is met, record outcome 

26. Run for additional confirmatory course of 1000 cycles 

27. Perform final statistical analyses 

28. Report test results in terms of hypotheses  
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3.3 Statistical Analyses 

 

 The test process was modeled using 2x2 contingency tables of outcomes, with the 

state of coverage on one dimension, and the interrogation result on the other. Such a table 

accurately represents each of the 4 field state combinations. In successive tables, the total 

surface area of the overlay is halved. To test the extent to which the availability of card 

data is affected by the detuning of the overlays, one inviting instrument would be a 

regression analysis. 

 

 Linear regressions are frequently applied in similar studies, where continuous data 

values are possible, but the binary outcomes of the card interrogation in this case made a 

logistic regression analysis most appropriate. A thorough explanation of the differences 

between the two, and the unique suitability of the latter in binary cases such as this one 

appears in Iowa State University's project Beyond Traditional Statistical Methods (Cook, 

Dixon, Duckworth, Kaiser, Koehler, Meeker, and Stephenson, 2001). 

 

 Given the independence of the card observations, logistic regression would indeed 

seem a fitting tool. The experiment proposed involves thousands of samples, and involves 

nothing that would apparently skew the error distribution. 

 

Just as with ordinary least squares regression we need some means of determining 

the significance of the estimates of the model parameters. We also need a means 

of assessing the fit, or lack of fit, of the logistic model. Inference for logistic 

regression is often based on the deviance (also known as the residual deviance). 

The deviance is twice the log-likelihood ratio statistic. The deviance for a logistic 

model can be likened to the residual sum of squares in ordinary least squares 

regression for the linear model. The smaller the deviance the better the fit of the 

logistic model. A large value for the deviance is an indication that there is a 

significant lack of fit for the logistic model and some other model may be more 

appropriate. (Cook, et al., 2001)  
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Asymptotically, the deviance has a χ² distribution. Therefore, to perform tests of 

hypotheses regarding the fit of the model the deviance is compared to the 

percentiles of a χ² distribution. The degrees of freedom is determined by the 

number of observations less the number of parameters estimated. Keep in mind 

that this is an asymptotic (large sample size) procedure and the P-values 

calculated using the χ² distribution are approximate. (Cook, et al., 2001) 

 

The difference between the null deviance and the residual deviance represents the 

effect of adding the single explanatory variable to the logistic model. This is 

analogous to the change is the sum of squared residuals (sum of squares for error) 

in ordinary least squares regression. When an explanatory variable is added in 

ordinary least squares regression, the change in the sum of squares for error 

represents the amount of variability explained by that variable. The change in 

deviance in logistic regression can be compared to a χ² distribution to determine 

statistical significance. The degrees of freedom for the χ² is equal to the number of 

predictor variables added to the model, in this case, 1. Keep in mind that this test, 

like all the others, requires a large sample size and any results are approximate. 

(Cook, et al., 2001) 

 

An alternative to the change in deviance for determining statistical significance of 

predictor variables in logistic regression is given by an approximate z-test statistic: 

 

z= estimated parameter / standard error 

Figure 12 Approximate Z-Test Statistic 

 

This z-test statistic has an approximate standard normal distribution for large 

samples. For very large samples (another asymptotic result) the change in 

deviance and the square of the z-test statistic should give approximately the same 

value. (Cook, et al., 2001) 
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 To prevent the inaccuracies that may arise from hand transcription and 

mathematical operations, the analyses of this experiment were run in the laboratory using 

the statistical language R. Data sets were collected directly into computer files and 

hashed with an error-detection code. Resulting figures and tables were machine generated 

using standard function libraries. No transcription errors were detected in the data. 

 

 Reputable RFID tag testing is ordinarily conducted at a 95% or 99% confidence 

level (Maniyan, Ghassemi, & Rahrovy, 2012). Given the high manufacturing tolerance of 

most tags, confidence at both levels can be regularly met by technologies used as 

designed, within reasonable environmental limits (Shahzad & Liu, 2012). Testing was 

conducted at the higher confidence interval, as it has been shown that in similar lab test 

protocols, the number of tag responses differs little from the number of read attempts for 

sampling sizes above 1000 (Qiao, Chen, & Li, 2013).
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CHAPTER 4. RESULTS 

4.1 Test 1: Independence 

 

4.1.1 Preliminary Testing Overview 

 

 A baseline test was conducted with the card's data regions completely exposed. 

1000 samples were taken in each of the 3 axial orientations, for a total of 3000 samples. 

With the baseline established, and proper operation of the reader equipment demonstrated, 

the next 3000 were taken, with the data regions completely obscured. Results were 

compared to the baseline. Then, to make certain that the suppression of the obscured 

fields had been temporary, and had not resulted in any lasting effect to the card, an 

additional 3000 samples were taken completely exposed. No functional anomalies were 

observed. 

 

4.1.2 Direct Effect Test Overview 

 

 One of the two data fields was randomly selected for treatment in the direct effect 

test, which began with the fourth course, as shown in table 2. The selected field was 

completely obscured, while the remaining field was completely exposed. 1000 samples 

were taken in each of the 3 axial orientations, for a total of 3000 samples. The fifth 

course then proceeded in similar fashion with the coverage states exchanged, for an 

additional 3000 samples. Data were aggregated and compared against cycle count to 

obtain the total fault count. 

 



61 

 

6
1
 

 It is considered a "transfer fault" if the reader fails to obtain data from an exposed 

region of the card, and a "blocking fault" if the reader obtains data from an obscured 

region. To follow are the totals, separated by configuration on their axis. 

 

4.1.3 Data 

 

4.1.3.1 Preliminary Testing 

 

Table 1 Preliminary Test I Data 

Course Scan Total Coverage¹ Transfer Faults² Blocking Faults² 

1 3000 0,0 1 = (0+0+1) -NA- 

2 3000 1,1 -NA- 0 = (0+0+0) 

3 3000 0,0 0 = (0+0+0) -NA- 

Note: 

¹ 0: exposed, 1: concealed 

² total is sum of faults on axes (roll+pitch+yaw) 

 

4.1.3.2 Direct Effect Test 

 

Table 2 Direct Effect Test I Data 

Course Scan Total Coverage¹ Transfer Faults² Blocking Faults² 

4 3000 0,1 0 = (0+0+0) 0 = (0+0+0) 

5 3000 1,0 2 = (1+1+0) 0 = (0+0+0) 

Note: 

¹ 0: exposed, 1: concealed 

² total is sum of faults on axes (roll+pitch+yaw) 
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4.1.4 Analysis 

 

 The data are visibly compelling even before statistical tools are used. At full data 

field coverage, not a single instance of blocking failure has been observed. The incidents 

of data transfer failure have demonstrated no statistically significant pattern, and remain 

within the advertised tolerance of an RFID card under normal operating conditions. 

Using statistical tools, the independence of the regions under test may be quantified. 

 

 As explained above, the statistical significance of a variable's deviation may be 

found by comparing it to a χ² distribution (Cook, et al., 2001). A test for independence 

was conducted on the relationship between the blocking faults of both the concealed 

region and the exposed region with respect to the state of coverage on the concealed 

region. This involves placing the sums of the faults and states on opposing axes of a 

matrix and feeding them into the χ² test. The regions' coverage is considered independent 

unless the test returns a p-value below α. The following resulted from R: 

 

Table 3 Test for Independence of Data Fields 

Data Region χ² value degrees of freedom p-value 

1 0.0007 1 0.9794 

2 0.0007 1 0.9794 

 

 The input values for the second region were, of course, equal to the first but 

compared against the first region rather than the second. The output values were equal. 

 

 H0a (One data field will not depend upon the overlay coverage of another field.) 

has withstood the test, as its p-value is considerably higher than the boundary of .01. The 

null hypothesis is accepted. 

 

 Independence between data fields of the card has been determined.  
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4.1.5 Outcome 

 

 This hypothesis was put forth to test the first Research Question. Confirming it 

demonstrated that selective detuning is a feasible mechanism for independent selection of 

card data. 

 

4.1.6 Further Investigation 

 

 For additional rigor, the test was given a second run, but this time to measure how 

the target region's state of coverage affected its own readability. The result indicated a 

strong dependency (with a p-value well below the .01 boundary). In other words, the 

overlay affects readability of its own data, but only its own data: 

 

Table 4 Alternative Test for Independence 

Data Region χ² value degrees of freedom p-value 

1 5988.009 1 <.001e-3 

2 5988.009 1 <.001e-3 
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4.2 Test 2: Reliability 

 

4.2.1 Preliminary Testing Overview 

 

 A baseline test was conducted with the card's data regions completely exposed. 

1000 samples were taken in each of the 3 axial orientations, for a total of 3000 samples. 

With the baseline established, and proper operation of the reader equipment demonstrated, 

the next 3000 were taken, with the data regions completely obscured. Results were 

compared to the baseline. Then, to make certain that the suppression of the obscured 

fields had been temporary, and had not resulted in any lasting effect to the card, an 

additional 3000 samples were taken completely exposed. No functional anomalies were 

observed. See Data section of Test 1 for preliminary test data. 

 

4.2.2 Direct Effect Test Overview 

 

 For the first testing course, a randomly selected data field was obscured except for 

50% of the surface area of the overlay, which was removed along a randomly selected 

angle through its midpoint (as described in Methods). 1000 samples were taken in each of 

the 3 axial orientations, for a total of 3000 samples. It is considered a "blocking fault" if 

the reader obtains data from an obscured region. The number of such faults was 

compared against the threshold value of 30 (obtained by taking the number that is 1% of 

the total number of samples in the testing course). This number did not meet the threshold, 

so the test continued. 

 

 For the second testing course, the data field's overlay surface area was further 

reduced to 25% in another randomly selected portion. 1000 samples were taken in each 

of the 3 axial orientations, for a total of 3000 samples. The number of blocking faults was 

compared against the threshold value. This number met the threshold. The testing 

schedule called for a third course. If the trend continued through this confirmatory course, 

testing would halt.  
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 For the third testing course, the data field's overlay surface area was further 

reduced to 12.5% along another randomly selected angle. 1000 samples were taken in 

each of the 3 axial orientations, for a total of 3000 samples. The number of blocking 

faults was compared against the threshold value. This number, too, met the threshold, so 

the tapering trend was confirmed and testing was halted. 

 

4.2.3 Data 

 

Table 5 Direct Effect Test II Data 

Course Scan Total Coverage¹ Transfer Faults² Blocking Faults² 

1 3000 .5 0 = (0+0+0) 0 = (0+0+0) 

2 3000 .25 0 = (0+0+0) 1 = (1+0+0) 

3 3000 .125 0 = (0+0+0) 3000 = (1000+1000+1000) 

Note: 

¹ percentage of surface area 

² total is sum of faults on axes (roll+pitch+yaw) 

 

4.2.4 Analysis 

 

 A binomial logistic regression is needed to visualize the transition of a data field 

from its exposed state to its concealed state. The result of its test signifies whether the 

effect should be seen as reliable, and the slope of the regression curve provides an 

illustration of how close to the binary ideal this physical implementation has come: 
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Table 6 Binary Logistic Regression Test for Reliability 

Deviance Residuals 

Min. 1Q Median 3Q Max. 

-6.7280 0.0000 0.0000 0.0008 0.0365 

Intercept Coefficients 

Estimate Std. Error z value   

22.633 1.732 13.07   

Coverage 

Estimate Std. Error z value  Pr(>|z|) 

-61.279 4.899 -12.51  <.001e-3 

 

 When the read outcomes of testing at all coverage levels are aggregated and 

plotted, a sharp transition becomes visible between 25% and 50% coverage. The logistic 

regression curve follows its characteristic S-shaped pattern, but with a steep slope in the 

transition region: 
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Figure 13 Logistic Regression Curve of Overlay Effect 

 

 This indicates that the card has succeeded in separating clearly the distinction 

between a concealed region and an exposed region. Its behavior is as close to binary as 

practical, and tends toward the shape of a square wave. 

 

 H0b (The effect of the overlay will not show a predictable decline as its coverage 

is reduced.) has been rejected as its probability is considerably lower than the boundary 

of .01. 

 

 H2 (The effect of the overlay will show a predictable decline as its coverage is 

reduced.) has been confirmed. 
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 The success rate fell from 100% to 99.9% as coverage was reduced from 50% to 

25%, yet from 99.9% to 0% when coverage was reduced from 25% to 12.5%. The 

reliability of the coverage effect on the data field readability has been empirically 

demonstrated. 

 

4.2.5 Outcome 

 

 This hypothesis was put forth to test the second Research Question. Confirming it 

demonstrated that selective detuning operates reliably enough to be practical even in a 

user landscape where the coverage area is likely to be inconsistently applied, due to 

human variation and error. 

 

4.2.6 Further Investigation 

 

 Given how the antenna pattern geometry varies in different directions, it seems 

reasonable to suspect that orientation of the overlay on the card data region would 

become highly influential near the surface area transition. For this reason, several other 

orientations of 25% surface area were tried, and eventually one was found that resulted in 

a blocking fault, but only a single blocking fault in the entire course: 
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Table 7 Alternative Orientation Test 

 

Course Scan Total Coverage¹ Transfer Faults² Blocking Faults² 

4 3000 .25 0 = (0+0+0) 1 = (1,0,0) 

Note: 

¹ percentage of surface area 

² total is sum of faults on axes (roll+pitch+yaw) 

 

 The same attempts were made at 12.5% coverage, but no such orientation was 

found. The user may be confident that coverage greater than half of the region will 

completely prevent reading, and coverage less than an eighth of the region will leave it 

completely readable. 
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CHAPTER 5. CONCLUSIONS 

5.1 Research Question I 

 

 The following line of investigation began with the first Research Question: 

"Is selective detuning a feasible mechanism for independent selection of RFID card 

data?" 

 

 From this came hypothesis H0a: 

"Access to the data of a given field will not depend upon the overlay coverage of a field 

other than its own." 

 

 This hypothesis has been tested experimentally and accepted. 

 

 Building a card with multiple sensing regions is simple and affordable, as it is 

with existing RFID card models. Selecting regions with a readily available material such 

as aluminum tape works decisively to select card data, provided that over 50% of the 

region is covered. It is effective even when the user is imprecise and the environmental 

effects arduous enough to damage the overlay. Data fields are not significantly affected 

by changes to the coverage status of their neighbors. The feasibility of the overlay 

method has been demonstrated. 

 

5.2 Research Question II 

 

 The following line of investigation began with the second Research Question: 

"Can a design for selective RFID detuning operate reliably enough to be practical?"
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 From this came the second Hypothesis: 

"The effect of the overlay will decline reliably as its coverage is reduced in the tested 

region." 

 

 This hypothesis has been tested experimentally and accepted. 

 

 The design tested here exhibited few operating failures. Data intended for 

disclosure was successfully read as often, on average, as with existing RFID cards. Data 

intended for concealment was successfully kept from being read in every instance where 

overlay coverage of the data region was between 50% and 100%. Excess overlay material 

was not a source of interference, provided that it caused no more than 25% coverage. 

Subject to statistical tests , this proved to be a reliable design, both in terms of the 

independence of data fields and the responsiveness of any given data field. 

 

5.3 Discussion 

 

 RFID card technology is frequently billed as an upgrade to printed cards, and a 

likely if not inevitable successor. It seems reasonable that if a device is called an 

"upgrade", it offers at least the functionality of its predecessor. By making the granular 

selection of data fields impossible, popular RFID cards have shown at least one way in 

which they represent a decline in value to the user. It is a difference that has been felt, 

and is quantifiably significant to them, such that they are willing to shape their behavior 

accordingly (Clement et al., 2012).The model illustrated here restores selection function, 

and allows it to happen by a familiar method that closely parallels what had been done to 

conceal fields on printed media. 

 

 Owing to its simple, affordable design, the model card is a practical solution to 

the needs of a large user population. It does not suffer from the granularity limitations of 

older RFID cards, nor the durability limitations of mechanically switched cards, nor the   
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cost barriers of processor-based cards. It is ready for mass production and distribution. It 

is easily replaced if lost or damaged. Its size is comparable to the form factor of existing 

cards, and it may be used in the manner of existing cards. It simply adds to them the new 

functionality of non-contact RFID technology. The switching mechanism is of an 

importance that grows in proportion to public concern over the unauthorized acquisition 

and use of personal information from identification cards. RFID allows data to be 

acquired from a distance, and without any user notification, so a means to toggle card 

access is immediately attractive. Refining that access down to the level of specific data 

fields adds a flexibility to the experience that was not available in the comprehensive card 

shielding solution used in established cards. 

 

 It was expected that a novel design with independent switching regions of this 

type could be constructed. Early modeling suggested that the electromagnetic 

compatibility requirements could be met using the antenna geometries described here for 

the card. Experimentally, it was found that independence had indeed been demonstrated 

with each data field against the other, consistently enough to meet the threshold of 

statistical hypothesis testing. While internal coupling of charge would have been a 

problem for various other designs outside this study's scope, it has been successfully 

prevented here by the unique approach used. The extent to which the data fields have 

been made independent is sufficient to support the claim that what is done to reveal or 

conceal one field shall not have an effect on any other fields. 

 

 As the reliability of RFID read operations on established card designs is very high, 

it was expected that the reliability of the prototype cards during normal reading would 

fare no worse in test. This was indeed confirmed. It was the prospect of achieving 

similarly high likelihood of blocking operations that made the experiment following 

Research Question II so inviting. As discussed earlier, blocking methods involving 

detuning can exhibit very high reliability. Since the prototype was constructed to exacting 

specifications and given preliminary testing that presented no surprises, it was expected 

that either it would perform reliably during the long formal sessions of the test or some 
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remarkable anomaly would become apparent. No anomaly was recorded. Blocking 

performance not only met but exceeded that of read performance, suggesting that in 

applications involving longer periods of recording and larger numbers of users the 

overlays would be as reliable as comprehensive card shielding. 

 

 The review of literature pertinent to RFID began in the mid-1990s. All material 

was taken into account, and all published in 2000 or later was considered for citation here. 

Articles from a variety of the most popular academic and public news sources were read 

in search of ideas for how the data field granularity issue was being addressed. The 

catalogs of major RFID manufacturers were regularly reviewed also, as their products 

were being used in earlier research projects. For this particular project, the question of 

whether detuning overlays had been presented as a solution for independent field 

selection was specifically posed using Purdue's library search facilities--some of the most 

powerful in the nation. The US Patent and Trade Office was likewise searched 

comprehensively for claims to any invention that might sound similar enough in 

description to indicate that it was no longer a novel approach (see Appendix for details). 

As nothing of this nature was found, it is introduced here. Other researchers clearly knew 

that detuning without complete shielding was possible, but did not present it as a means 

of data field selection. As far as determined, the description presented above is original. 

 

5.3.1 A Review of the Testing Protocol 

 

 As the experimental portion of this work was being prepared, an early and 

obvious question concerned what are the factors most influential in the success and 

failure of ordinary RFID read operations. In the Experiment Design appears the complete 

list of factors that were controlled, but in practical use there are two that tend to dominate 

all others. The first is distance between the card and reader. As explained, a proximity 

card is only usable on the order of a few meters during normal operation. It was clear that 

during the experiment the card would need to be close enough to the reader to accurately 

represent such a span. Moreover, it would need to approach the reader while it is 
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transmitting at a continuous duty cycle, and from a distance. It would need to move 

smoothly through the full range of space at a speed slow enough to allow any area of 

weakness in the card or the radiation pattern to become observable. 

 

 The second dominant factor is card orientation. As detailed under the Data 

Collection section of Chapter 3, the radiation pattern of the antennas used in RFID cards 

(both the prototype design and its commercial predecessors) is not equal in all spherical 

directions. In fact, the differences can be profound enough that, for example, a user might 

find a card held in orientation perpendicular to the panel antenna commonly used with 

readers is not readable, even on the order of a few centimeters away, until the card is 

rotated in hand. This brings the elements of both antennas closer to parallel, and closer to 

coupling for maximum energy transfer. In order to test card performance in terms of 

independence or reliability, it would first be necessary to control for how the card's 

orientation varies during common use. This is why the test apparatus comprises a 

separate motorized mount that sweeps each pass of the card through its entire range of 

axial orientations. It was chosen as a practical way of proving that no superior card 

position had been overlooked during the course of testing. 

 

 The mechanical gantry illustrated in figure 11 had to reliably support the mounted 

shuttle and rotator over many cycles as they that conveyed the card into and out from the 

read zone. They had a simple path to travel, but plenty of ways to glitch if assembled 

without regard for detail. The power supply driving them was connected to a conditioned 

municipal source, and rectified to direct current. Batteries were avoided, as their voltage 

would vary over time as they discharged. The gears and bearings were housed in fully 

enclosed boxes to keep them resistant to dust and debris. The timing of the system was 

microcontrolled, not because the degree of precision this offers was required for the card 

passes, but because the ease by which feedback may be used here for keeping the parts 

synchronized is great, while the cost of simple microcontroller boards is low. 
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 As construction of the experimental system was happening, a great deal of testing 

was done on the possible detuning effects of the motors, hardware, and other parts of the 

system. The focus of testing was the overlay, and care was taken to ensure that no other 

parts involved confounded the results. A transistorized dip meter was employed to 

measure the absorption by the card's antennas of RF energy on the fixed frequency of 

operation, 13.56MHz. It was quickly determined how far from the antennas other 

conductive materials would have to be in order to prevent interference with the overlay. 

System hardware interference was reduced below detectable levels by increasing the 

parts' distance from the antenna portions. A spacing was chosen to promote compatibility 

between the moving parts and the electromagnetic fields near them. 

 

 The practical efficacy of this card has been demonstrated in a controlled setting. It 

beckons further studies that might include test replications. If experiments related to this 

work are undertaken in the future, they might be conducted differently, with some of 

these points considered: 

 

 To the extent they are available, university research facilities may be an expedient 

and helpful source of existing test equipment. There is much common preparation in all 

such experiments, and energy could have been saved if the space had been available 

already. Instead, it had to be prepared for RFID testing and then the specifics of this 

paper. Future investigators are encouraged to collaborate with institutions of higher 

education that might already have space designated for this type of RF testing, or be 

planning the establishment of labs for such a purpose. Often this is not advertised outside 

the school, or even to other colleges on the same campus. 

 

 The capacitive switching model described in the Delimitations has in fact been 

prototyped, but could not be included in the testing here because its thickness was too 

great for use as an RFID card, and thus too large for the test system of the Methods. 

While it brings perhaps too much material to include in the same dissertation, this method 

of switching is the natural successor to the detuning methods described here. If a suitable 
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fabrication facility could have been involved in the preparation of prototypes, there could 

have been included a comparison between the two card technologies, and illustrative 

examples of how they differ. For the time being, it must do that the proof of concept has 

been made. The overlay scheme used in it would only be given greater precision and 

flexibility in a capacitive system. More work done to miniaturize its components is 

desired. 

 

 More involvement from people is needed in order to make this RFID solution 

demonstrably relevant and effective in terms of a practical deployment. Matters as 

seemingly small as the feel and appearance of the overlays can have a major impact on 

results in the field. In line with the studies mentioned in the Literature Review, more is 

needed for interdisciplinary work here. Many questions about personal values, routine, 

and propriety can be answered only by those whose lives are affected by the technology 

change. Since every new device embodies a paradigm, it is important that users be 

observed and surveyed over a long term to see whether this paradigm is one in which 

they are comfortable. Trends shift according to factors that card engineering cannot 

address, such as media coverage of the topics, or prevailing government and regulatory 

stance. It would seem favorable to include research on human subjects in more ID work, 

which is after all directly relevant to personnel. Carrying and manipulating cards is a 

process much less invasive in a subject's life than many proposals that come before an 

institution review board. This factor is useful in securing approval for it, provided a direct 

and articulate researcher can drive those differences home.  
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5.3.2 Additional Laboratory Observations 

 

 Though separate from the observations following the Research Questions, these 

points were illustrated during the experiments, and seem salient enough to include: 

 

 Consistent with industry claims, the RFID card and reader performed with high 

reliability before overlay technology was introduced, exhibiting on average fewer 

than one read error per thousand attempts (over 99.9% reliability). 

 The general effectiveness of detuning conductors was visible immediately and 

strikingly throughout testing. Not a single error arose in the read blocking at any 

state of coverage over 50%, even after many thousands of iterations. 

 The effects of the aluminum tape were found to be temporary and completely 

reversible, having no lingering effect on the card between applications when 

tested for independence at 99% confidence. 

 

5.3.3 Exclusions and Limitations 

 

 The purpose of this dissertation is not to test all of the factors that make 

traditional plastic cards attractive, but to test the particular mechanism outlined. The other 

factors, though vital, are considered to have been adequately tested by the governing 

agencies that deployed them, and proven over many decades of public use. Adding RFID 

technology to cards of familiar composition and size eases the transition, which helps to 

explain why electronic cards are already used as national identification in Hong Kong, 

Malaysia, Estonia, Finland, Belgium, Portugal, and Spain (Nogueira & Greis, 2009). 

 

 As this was a technological investigation, it did not offer testing of human factors. 

This remains a vital aspect of any successful deployment. With the model cards now 

available and shown to function as claimed, those inclined to conduct research on their 

usability would find a prime invitation. It would seem helpful if there could be studies in 

the future that address public eagerness or hesitance to use RFID cards regularly in this 
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way, ease of data field selection using common tape and overlays, the indirect benefits of 

information separation, and so forth. New technologies cannot achieve widespread 

acceptance unless they are introduced at a time conducive to it, and in a cultural 

landscape where a great variety of people will find the solution preferable. At the least, it 

is needed that many real users are exposed to overlay selection cards and given a chance 

to show researchers any practical objections to implementation might have been 

overlooked. 

 

5.4 Recommendations 

 

 Readers will note that in the course of this experiment, some findings have 

appeared that would have implications for those involved in management of an RFID 

deployment, and others that would have implications for those in research and 

development. Below are some of the things to keep in mind when taking the RFID 

solution of this dissertation out of the laboratory and into popular use, as well as the 

things that follow from the particular work done in this technology, in terms of its future 

research potential. 

 

5.4.1 Concerning Technology Deployments 

 

5.4.1.1 Uniquely Identifying People 

 

 RFID is used, in this context, for distinguishing documents such as cards, from a 

distance. It is not directly involved in distinguishing people. For that, some unique human 

factors would need to be measured and stored in the RFID card. This is the realm of 

biometrics, which is a separate but often connected discipline. For long, the photograph 

on the card along with simple details such as height and eye color have been used to tie 

the card to its bearer. It is of utmost importance that plans for an RFID-enabled personnel 

solution include at least as much effort. If it becomes possible for another party to 

physically obtain the card, then the privacy limiting mechanisms discussed in earlier 
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chapters may be disabled by him just as readily as by the legitimate owner. If the 

biometric factors do not uniquely and exclusively tie the card to its owner, then it may 

become possible for others to use the card for impersonation. As discussed in the 

delimitations, such matters are beyond the scope of this dissertation. They nonetheless 

must be recognized and dealt with if its findings are to be applied practically. 

 

5.4.1.2 Large-Scale Applications 

 

 Any RFID technology for personnel requires the backing of legislation if it is to 

be deployed on the scale of a state or country. Though policy issues form another matter 

beyond scope, these conclusions and recommendations might still serve to prepare those 

who wish to propose or defend policy changes. RFID-enabled driver's license cards are 

already in use in several states (DMV.org, 2015) and card field selection by means of 

overlays has been shown to work well (Clement et al., 2012). The discussion might now 

move toward tailoring the prototype card of this dissertation to the exact specifications 

required for the state or national entity that would use it. Those involved in the design 

and production of such technologies could be bolstered greatly by the support of 

legislative bodies that commit to the use of their results. 

 

 Among the primary specifications to be made there is the number of fields needed 

for a specific deployment. This will affect the number of switching regions into which the 

card space will be divided, and thus the size of each region. Manufacturers such as 

Murata have produced antennas as small as 3.2mm²--small enough to fit inside the "d" of 

an Indiana state driver's license, and clearly smaller than any card region a user would 

need to cover (Swedberg, 2012). Its .7mm thickness is less than the 1mm maximum listed 

above in Design Factors as well, so there is no apparent technological barrier to resizing 

the model fields accordingly. This is simply one of the factors that planners will need to 

recognize and specify early. 

 



80 

 

8
0
 

 The trend of replacing a printed card with an electronic card as the driver's license 

has expanded steadily, not only in the United States, but worldwide. It has included, 

among others, El Salvador in the late 1990s, several states of India in 2003, Japan in 2007, 

Morocco in 2007, Mexico in 2007, Indonesia in 2009, Australia in 2010, Croatia in 2013, 

France in 2013, and Ireland in 2013. Several of these such as Japan, Morocco, and 

Indonesia were RFID-enabled cards (Stoltz, 2014). Above in the Literature Review, 

"enhanced" driver's license cards were discussed. RFID is considered a fundamental 

technology for these cards (U.S. Customs and Border Protection, 2014). At the time when 

this section was written, the states of Washington, Vermont, New York, and Michigan 

had fully implemented EDL cards. Arizona and Texas were in progress (DMV.org, 2015). 

It is strongly recommended that interested parties in these states consider how selection 

mechanisms will figure in the future of such cards. 

 

5.4.1.3 Ramifications of a Detuning Approach 

 

 Those planning to propose a deployment based on the findings here might wish to 

mention some of the facts that make it especially attractive: 

 

 The presented shielding method works even on RFID cards have no die, such as 

those commonly used for electronic article surveillance in stores, etc. The 

8.2MHz LC tank circuit sticker used for loss prevention is a good example. 

 The foil works on either side of the card, so it's possible to obscure the RFID 

replies (by taping the back of the card), while leaving the front visible. 

 The foil prevents not only read operations, but also write operations, protecting 

the user against attempts to alter or destroy card data. 

 

 To ease the transition to a detunable card, users should be assured that it presents 

no drastic change in usability. Its look, feel, and performance make it resemble one of the 

existing RFID-enabled driver's license cards. Those that would prefer to use it as such are 

free to do so. Some will not even realize that there is any change in the detunable design. 
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Those that wish to use the selection feature, though, will be able to do so in much the 

same way they did with the old print cards. The only difference is that instead of 

selecting a visibly opaque tape for cover, they will be selecting an electromagnetically 

opaque tape (or tape alternative overlay such as film, sleeve, bar, etc.) Common 

aluminum tape is sold near masking tape in hardware stores across the country. No 

sophisticated electronic accessories are needed to enable the feature. 

 

 User education will be of importance here, as it is not possible for the card to 

discern the will of those holding it. It will need to be established early that there is a 

difference in selectivity between keeping the card in an enclosed sleeve (which renders it 

completely unreadable until removed), and obscuring only particular regions of the card 

(which renders only those regions unreadable). All the usual warnings concerning 

electro-static discharge, extreme temperatures, and strong magnetic fields will need to be 

included when the card is introduced. This will not be difficult, as it is nearly identical to 

the warnings for common chip-and-PIN smart cards issued for credit and debit, etc. 

Finally, it is advisable to remind the user that because the print and the RF emissions of 

the card are not drawn from one common data store, there does exist the possibility that, 

in the case of accident or tampering, they might disagree. As the magnetic stripe of a card 

must be verified against its print, so must the RFID output against its print, and against 

any other means of storing the data in such a card (recall earlier caveats from Inviting the 

Card Overlay Solution).  
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5.4.2 Concerning Research and Development 

 

 Perhaps the most important recommendation to other researchers is that they take 

the results of this work into experiments involving practical users in realistic 

environments. This could be an excellent opportunity for specialists in the humanities to 

prepare work similar to what Clement et al. did in their 2012 study of identification cards. 

Events such as conferences and workshops provide ready groups of attendants who 

would be issued identification cards anyway. Such cards could be modified for selective 

detuning, and developments during the event deliberately chosen as an incentive to users 

for selection. These attendants could later be surveyed on the experience, to evaluate their 

acceptance of the model and any usability concerns that might have arisen. 

 

 College campuses are another inviting test bed for ID card technologies. Many 

have huge student, staff, and faculty populations who will be attending the institution on 

the order of years, making a longitudinal study more practical. Questions of how the card 

might wear over time could be answered empirically by following marked users over 

time. Questions of whether users understand the value of the personal data selection 

could be answered by brief and regular online surveys. Playful contests might be 

introduced as an incentive for the user to apply the selection mechanism to prevent mock 

antagonists from tracking their activity or obtaining their private data. Those who manage 

to stay safe while still passing legitimate transactional data (such as student ID number, 

etc.) might become eligible for gift drawings, etc. Those "victims" whose private data are 

successfully "stolen" might receive an e-mail message warning them about the threat of 

real antagonists and fraud. 

 

 As mentioned often in this paper, the public has had an ambivalent relationship 

with RFID, wary of it even as they show interest in its offerings. Some privacy experts 

studying their reaction summarize it in this way: 
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Research indicates consumers are willing to make certain tradeoffs of their 

privacy for benefits such as convenience... but individuals want to know when 

there is a potential that their privacy might be at risk, and they want to retain 

control of the choice to change that level of risk. (Schenke, 2010). 

 

 If users are to be trusted in accepting and using a system as designed, inspiring 

their confidence in it is of tremendous importance, regardless of whether the anticipated 

problems manifest. The state of California, for instance, had planned to roll out a new 

driver's license card in kind with Arizona and Texas, but in 2013 suspended legislation to 

put RFID technology in it due to complaints from privacy groups (Kravets, 2013). This is 

where technology ambassadors have a chance to resolve such conflict in other states and 

countries. 

 

 The method described here places the privacy tool in the users' hands, which not 

only helps the issuing entity illustrate its commitment to user protection, but also might 

help reduce its liability. More attention from researchers in fields such as Communication, 

Sociology and Anthropology is highly recommended, as there appear to be many 

opportunities for study of changing attitudes surrounding this technology. 

 

 While the testing reported here dealt with a hardware-level solution that is usable 

even with passive RFID device, a small step from it takes related research into smart card 

technology, and the prospect of using the conductive overlays as a means of directly 

manipulating the settings of an onboard computer. The earlier discussion of capacitive 

switching outlines how this would become possible. To the user, the use of overlays 

would be no different, but would control a larger set of possible functions, including 

anything within the capabilities of cards containing processing circuitry. 
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5.4.2.1 Linking Data Fields 

 

 It is not necessary, with this model, to use only one card per user. Multiple cards 

may be produced, linking any of desired fields of the user's record, and excluding from a 

particular card's storage all other fields. Data set relations is a separate topic, but deserves 

brief mention here. It is important in cases where a card would be physically passed, and 

the privacy overlay could be removed. For example, in contexts needing age verification 

or name verification, this could allow it even at the high speed of RFID processing, 

without risk that additional information be obtained by manipulating the card. The 

detuning approach cooperates with a variety of data isolation strategies at the hardware 

level, and so system architects planning for a deployment would do well to consider 

exactly which data fields are desirable for which cards, and in which contexts. 

 

 The discussion of wireless cards for identification is not complete without a 

discussion of the databases against which the card data are to be compared. In such a 

system, it must be clearly delineated which data should reside on the card and which 

should reside in the database, related to the card by some unique identifier. In 

deployments involving drivers' license cards over the past two decades, it has been 

common for the RFID component to release only the unique identifier. A computer 

network relates this identifier to as many user fields as desired. Database management is 

beyond the scope of the discussion here, but it must be taken into account for a practical 

case, as cards that provide individual field selection call for a different engineering 

philosophy than is currently in use. 

 

 RFID-enabled driver's license cards from Washington, to cite one representative 

example, are used to poll a central database of biometric data (Washington State 

Department of Licensing, 2015). Without this, the wireless feature of the card is not 

complete as a form of personal identification. It is really only self-identification of the 

card. Exploring how many fields belong in the database and on the card, as well as how 

the keys tying them should be exchanged is clearly worth recommendation. The overlay 
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solution presented above provides a means to select and disclose such keys, but without 

the cooperation of those entities that control the database, the purpose of the overlays 

could be neglected during implementation. 

 

5.4.2.2 Other Prospects 

 

Some suggestions for further research in overlay selection technology include 

 

 Adding to RFID the type of challenge/response interactions popular in encrypted 

smart cards. This could unite the technology of both nicely, but give the user the 

ability to control its operation with overlays. 

 Experimenting with fields specifically shaped for pinching with a fingertip. 

Above it was discussed how pinch switches can be quite handy to enable reading 

of a card that is handled often (Huber, 2012). Mechanical switches are thick and 

prone to damage, but surface capacitor plates that sense the proximity of a finger 

may be as thin as the card. 

 Using capacitive pads to allow user selection of PINs and such. Ordinarily, such 

cards are programmed with an external unit, but if several configurations were 

known to be useful in the future, they could all be programmed, and the user 

could later select between them by using the pads as a simplified wireless 

keyboard. 
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5.5 Summary 

 

 A novel RFID card design has been introduced to provide a data selection 

function through the use of conductive overlays. The mechanism undergirding it has been 

validated through laboratory tests and shown highly reliable. Its effects are temporary and 

reversible, requiring no external electronics to perform selection. Users interact with it 

through familiar, intuitive methods. Its composition and dimensions are as familiar as in 

existing cards, allowing it to be carried in the same fashion. This is important, as many 

civil functions call for personnel identification, and the license-sized plastic card has 

become an unofficial standard form of ID. Radiofrequency identification has been used 

with increasing popularity in this and many other identity documents. The user can retain 

discretion over whether the wireless communication features of the card are enabled, and 

for which fields. It is a technology platform suitable for innovation. 

 

 The model design offers distinct advantages over existing RFID deployments for 

personnel identification. It extends the functionality of traditional printed cards and 

empowers the user to better limit unauthorized disclosure of personal data. Granular 

selection of card data fields is possible with this design, which was not possible with the 

RFID cards that preceded it. This brings the prospect of technologies to follow, and 

implementation at the large community level. Many of the concerns that have held back 

other identification initiatives have been addressed here, with explanations of how the 

new design could bring remedy. A detailed explanation of the experiments was given, as 

an invitation to others that might perform related testing. Several opportunities for further 

research and application of the mechanism were discussed. 
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APPENDIX 

These are details of the search through existing Patent applications for prior work similar 

to that proposed for this dissertation. 

 

The text and illustrations were read for every patent since 1976 the title of which 

contained the terms "RFID" and "card". A total of 35 patents were reviewed: 

 

Secure data card with passive RFID chip and biometric sensor 

(U.S. Patent No. 8,823,497, 2014) 

 

Security feature RFID card 

(U.S. Patent No. 8,820,639, 2014) 

 

Dynamic information radio-frequency identification (RFID) card with biometric 

capabilities 

(U.S. Patent No. 8,816,819, 2014) 

 

RFID reporting personal health card and related systems 

(U.S. Patent No. 8,800,877, 2014) 

 

Turbo card table game with RFID card identifier 

(U.S. Patent No. 8,777,727, 2014) 

 

Switchable RFID card reader antenna 

(U.S. Patent No. 8,763,893, 2014) 
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Semi-rigid radio frequency identification (RFID) card, manufacturing method and 

machine for its production 

(U.S. Patent No. 8,746,575, 2014) 

 

Controllable RFID card 

(U.S. Patent No. 8,624,740, 2014) 

 

RFID clamshell style card 

(U.S. Patent No. D690, 767, 2013) 

 

Method and system for securing a transaction using a card generator, a RFID generator, 

and a challenge response protocol 

(U.S. Patent No. 8,397,988, 2013) 

 

Integrated RFID tag in a card holder, cage, lid, and rack for use with inventorying and 

tracking of cage occupants and equipment 

(U.S. Patent No. 8,161,910, 2012) 

 

Light enabled RFID card 

(U.S. Patent No. 8,111,160, 2012) 

 

RFID reporting personal health card and related systems 

(U.S. Patent No. 8,066,192, 2011) 

 

Small RFID card with integrated inductive element 

(U.S. Patent No. 7,961,101, 2011) 

 

Sampling to obtain signal from RFID card 

(U.S Patent No. 7,932,813, 2011)  
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Silicone card frame with RFID payment device 

(U.S. Patent No. D635, 359, 2011) 

 

Circuit arrangement for wirelessly exchanging data and RFID chip card device 

(U.S. Patent No. 7,912,430, 2011) 

 

RFID card using Korea paper and the manufacturing method thereof 

(U.S. Patent No. 7,909,258, 2011) 

 

Semiconductor device, IC card, IC tag, RFID, transponder, paper money, valuable 

securities, passport, electronic device, bag, and clothes 

(U.S. Patent No. 7,795,617, 2010) 

 

Assembly of SIM card and RFID antenna 

(U.S. Patent No. 7,784,693, 2010) 

 

Proximity payment card with cost-effective connection between user-actuatable input 

switch and RFID IC 

(U.S. Patent No. 7,762,471, 2010) 

 

Manufacturing method of semiconductor device, and IC card, IC tag, RFID, transponder, 

bill, securities, passport, electronic apparatus, bag, and garment 

(U.S. Patent No. 7,666,722, 2010) 

 

Semiconductor device, IC card, IC tag, RFID, transponder, bills, securities, passport, 

electronic apparatus, bag, and clothes 

(U.S. Patent No. 7,663,473, 2010) 
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Currency dispensing ATM with RFID card reader 

(U.S. Patent No. 7,584,885, 2009) 

 

Silicone card frame clip with RFID payment device 

(U.S. Patent No. D597, 307, 2009) 

 

Memory module and card with integrated RFID tag 

(U.S. Patent No. 7,564,359, 2009) 

 

RFID card retention assembly 

(U.S. Patent No. 7,523,870, 2009) 

 

Power detection circuit for non-contact IC card or RFID tag 

(U.S. Patent No. 7,439,781, 2008) 

 

RFID card issuing system 

(U.S. Patent No. 7,387,233, 2008) 

 

Mobile terminal having smart card coupled with RFID tag and method for  performing 

RFID function in such mobile terminal 

(U.S. Patent No. 7,374,100, 2008) 

 

ATM with RFID card, note, and check reading capabilities 

(U.S. Patent No. 7,284,692, 2007) 

 

Currency dispensing ATM with RFID card reader 

(U.S. Patent No. 7,004,385, 2006) 
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RFID (radio frequency identification) and IC card 

(U.S. Patent No. 6,972,662, 2005) 

 

Manually operated switch for enabling and disabling an RFID card 

(U.S. Patent No. 6,863,220, 2005) 

 

Ferroelectric memory used for the RFID system, method for driving the  same, 

semiconductor chip and ID card 

(U.S. Patent No. 6,097,622, 2000) 

 

 None of these patents incorporate the multiple-region card nor the selective 

detuning method described in this dissertation. The nearest in concept were 8,624,740 

(2014); 7,762,471 (2010); and 6,863,220 (2005); which involved switchable functions, 

but no antenna overlay. Of these, the closest prior work was probably 6,863,220, as it 

does mention capacitive coupling. What sets it apart, though, is that it calls for an 

external key device to enable data transfer, rather than the conductive overlay to disable it 

(2005). 

 

 Patents were also searched with the additional strings "select", "cover", "overlay", 

"field", and "privacy" (individually appended). No matching patents were found. With 

"security", one patent was found: 

 

Security feature RFID card 

(U.S. Patent No. 8,820,639, 2014) 

It deals primarily with optical scanning, and makes no mention of field selection (2014). 
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With "data", two more were found: 

 

Secure data card with passive RFID chip and biometric sensor 

(U.S. Patent No. 8,823,497, 2014) 

This deals with biometrics rather than RF selection (2014). 

 

Circuit arrangement for wirelessly exchanging data and RFID chip card device 

(U.S. Patent No. 7,912,430, 2011) 

This deals with security only in terms of encryption, and is unrelated to hardware 

overlays (2011). 
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