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ABSTRACT 

Tamura, Kosuke. Ph.D., Purdue University, December 2015. Associations between the 

Built Environment and Physical Activity from Analyses of Spatial Clusters, Trail Use, 

and Locations Where Physical Activity Occurs. Major Professors: Philip J. Troped and 

David B. Klenosky. 

 

 

Over the past two decades, an increasing number of scientific studies have 

examined associations between the built environment and physical activity and obesity. 

These studies have documented positive associations between environmental variables, 

such as population density, street connectivity, and composite measures of neighborhood 

walkability and physical activity. Studies have also shown inverse relationships between 

the presence of neighborhood grocery stores and recreational facilities and obesity. 

Despite this evidence, there continues to be limitations in built environment studies 

conducted to date. The three dissertation studies described here were designed to address 

several different aspects of built environment research that warrant greater attention.   

The first study addressed the issue of whether physical activity and obesity is 

spatially clustered in relation to certain attributes of the built environment.  Many 

previous built environment studies used geographically referenced data, such as 

geocoded home addresses and locations of facilities. The use of these types of data 

neglected spatial relationships among observations. The first study applied spatial 

analytic techniques to better understand geographic patterns of physical activity and 
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obesity. The second study used objective monitoring of adults with accelerometers and 

global positioning system (GPS) units to objectively examine how trails are related to 

physical activity. Although studies have shown that trail use is associated with higher 

levels of physical activity, most of this research has relied on self-report measures of trail 

use and physical activity. The third study examined relationships between objectively 

measured built environment variables and minute-by-minute physical activity linked to 

each other via GPS coordinates. This represents a newer, more spatially dynamic 

approach to investigating these relationships; one that is not exclusively focused on 

where a person lives. 

In the first study, a spatial scan statistic was used to test for spatial clusters of 

physical activity and obesity. Nurses’ Health Study participants (mean age = 69.9 ± 6.8 

years) from California, Massachusetts, and Pennsylvania who completed survey items on 

physical activity (N = 22,599) and weight-status (N = 19,448) in 2004 were used in this 

study. Spatial clusters of physical activity were found in California and Massachusetts, 

whereas obesity clusters were found only in Pennsylvania.  Adjusting for husband’s 

education fully explained the physical activity clusters in California. In California and 

Massachusetts, population and intersection density in two higher physical activity 

clusters were significantly greater compared to areas outside the clusters. Overall, spatial 

clustering methods were able to detect higher and lower risk areas for physical activity 

and obesity. The results of the spatial analyses could be used to encourage researchers, 

practitioners, urban planners, and policy makers to design more geographically targeted 

interventions for both physical activity and obesity.     
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The second study examined whether objectively measured trail use was associated 

with physical activity and sedentary behavior. The study also quantified on-trail physical 

activity using two approaches: accelerometer counts only and both counts and GPS data. 

Participants (N = 141, mean age = 44.1 ± 13.0) were recruited on five trails in 

Massachusetts. They were asked to wear accelerometer and GPS devices for four days. 

Total physical activity, and daily minutes of light, moderate, and vigorous physical 

activity, and sedentary behavior were derived from accelerometer counts. A trail-use day 

was defined as a minimum of two consecutive monitoring minutes occurring on-trail. 

Linear mixed models were used to examine whether trail use was related to physical 

activity and sedentary behavior. Overall, statistically significant positive associations 

were found between trail use and physical activity.  Trail use was associated with about 

28 minutes of moderate physical activity per day compared to no trail use. On-trail 

vigorous physical activity minutes increased by 346%, based on accelerometer and GPS 

data compared to accelerometer counts only. This trail study provided evidence that 

adults engaged in more physical activity when they use trails. In addition, this study 

indicated that the use of both accelerometer and GPS data may be a useful method for 

classifying intensity of physical activity occurring trails; particularly facilities where 

bicycling is a common activity. 

In the third study, accelerometer data linked to GPS data were used to estimate 

relationships between built environment variables and minute-by-minute physical activity 

among adults in Massachusetts, irrespective of where the activity took place. Generalized 

linear mixed models were used to examine associations between population density, 

street density, land use mix (LUM), greenness, and walkability within a 50 meter buffer 
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around each minute and moderate-to-vigorous physical activity (MVPA) and light-to-

vigorous physical activity (LVPA). Overall, statistically significant, positive associations 

between population density and MVPA and LVPA were found. In contrast, inverse 

associations were found between street density, LUM, and walkability and MVPA and 

LVPA, which was inconsistent with current literature.   

Taken together, the three studies included in this dissertation – examining 

associations between the built environment and physical activity from analyses of spatial 

clustering, use of trails, and locations where physical activity takes place – contribute to 

our understanding of the relationship between the built environment and physical activity. 

These analyses should be used to inform further research on these topics; and eventually 

lead to the design and implementation of more effective location oriented physical 

activity interventions.   
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Physical inactivity and the obesity epidemic are the major public health issues in 

the United States [1].  Although the health benefits of physical activity have been well-

documented [1, 2], the majority of U.S. adults engage in less than the recommended 150 

minutes of moderate-intensity activity per week [3].  Efforts to influence individuals to 

participate in regular physical activity and reduce obesity could be facilitated by creating 

physical activity-friendly environments [4] and healthy food environments [5].   

Over the past two decades, broad-scale neighborhood environment and policy 

approaches to promote physical activity and decrease obesity at the population level have 

received increasing attention from physical activity and public health researchers [6, 7].  

Evidence of relationships between the built environment and both physical activity and 

obesity has been documented in numerous review studies [4, 5, 8-18]. Studies have 

shown that certain characteristics of the neighborhood built environment, such as a 

greater mixture of commercial and residential land uses, higher population density, 

greater street connectivity, and better access to facilities [11, 16], are positively 

associated with physical activity [4, 12, 15] among adults [13, 14] and older adults [10, 

18, 19].  In contrast, attributes of food environment, such as density of fast-food 

restaurants and convenience stores, are positively associated with obesity [20-22].



2 

 

 

2
 

Although these associations between the built environment and physical activity 

and obesity occur within a spatial context (e.g., using geocoded addresses), the majority 

of prior studies have not taken the spatial relationships into consideration. For example, 

nearby spatially referenced observations tend to share common information. Ignoring 

spatial relationships in observations would result in violation of the statistical assumption 

of independent observations.  Recently, a number of researchers have begun 

incorporating spatial dimensions into analyses to further understand geographic patterns 

of physical activity and obesity in relation to the built environment [23, 24].  Specifically, 

spatial cluster techniques may be a promising approach to detect geographic patterns in 

physical activity and obesity in relation to built environment attributes.  

Spatial clustering methods have been applied to studies of certain cancers [25, 26] 

and diabetes [27]. Only a few studies have applied these techniques to physical activity 

and weight-status in relation to built environment attributes. For example, Huang and 

colleagues employed a spatial scan statistic to identify clusters of active transportation via 

walking and biking among adults in California [23]. They found several spatial clusters 

of high and low prevalence of active transportation [23]. Another recent study tested for 

spatial clusters of obesity in the U.S. and found two high and low obesity clusters [28].  

However, there are three limitations of these studies: 1) covariate adjustments were 

limited to age and race; 2) limited evidence on built environment characteristics inside 

and outside clusters, and 3) spatial clusters of physical activity and obesity have not been 

tested among older adults. To address these limitations, the first study in this dissertation 

involved testing  for spatial clusters of physical activity and obesity and spatial 

confounding (i.e., geographic distribution of covariates, such as income, walking 
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limitations) using the data from Nurses’ Health Studies (NHS) participants from 

California, Massachusetts, and Pennsylvania. Further, this study compared individual 

characteristics and objectively measured built environmental factors inside and outside 

the spatial clusters for both outcomes. Thus, the findings from this study would provide a 

better understanding of how spatial clusters of physical activity and obesity may be 

linked to built environment exposures. To date no published studies have been examined 

to detect spatial clusters of physical activity and obesity in relation to objective measures 

of the built environment attributes.     

One of the key shortcomings in built environment and physical activity research is 

the primary focus on the home neighborhood environment and the assumption that most 

activity occurs within a buffer around the home. In other words, there has been a 

mismatch between exposures to certain environmental characteristics and locations where 

physical activity occurs [29]. There is a growing consensus that individuals’ daily 

mobility is not limited to residential areas and relevant neighborhood environments for 

physical activity behavior are  dynamic rather  than home-centric [29]. To address this 

limitation, more researchers have recently begun using accelerometers and GPS devices 

concurrently to objectively measure physical activity and identify all locations where 

physical activity takes place. Dissertation study 2 used both accelerometer and GPS data 

to examine associations between objectively measured trail use and physical activity and 

sedentary behavior. The third dissertation study used accelerometer and GPS data to 

estimate relationships between the built environment and minute-by-minute physical 

activity.  
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To date, researchers simultaneously used accelerometers and GPS units to 

objectively monitor physical activity at certain places, such as home and school [30, 31], 

in parks, and in open spaces [30-34]. However, another component of the built 

environment, community trails and paths, has not been examined using both devices. 

Community trails and paths have been considered an important resource for supporting 

physical activity [35].  However, previous studies on trails have used exclusively self-

reported surveys, which can result in potential recall bias [36]. Another limitation in these 

studies on trails is that self-reported measures focused on examining MVPA, since 

current physical activity recommendations for adults focus on this range of this intensity. 

However, there is increasing evidence that light-intensity physical activity may have 

positive health benefits [37]. Therefore, investigating how trails may also support light-

intensity physical activity is a key area to explore. The second study addressed these 

limitations by examining associations between trail use and light, moderate, and vigorous 

physical activity and sedentary time using accelerometer and GPS derived measures of 

activity. A secondary aim was to quantify physical activity and sedentary time occurring 

on trails using two approaches, one using accelerometer counts only and the other using a 

combination of accelerometer counts and GPS speed. The findings indicated that the use 

of both data may be useful for classifying intensity of physical activity, particularly on 

trails where individuals are likely to be bicycling. 

Previous studies using accelerometer data linked to GPS coordinates have 

provided evidence of relationships between the built environment factors and objectively 

measured physical activity. However, one key limitation was to focus on specific places 

(e.g., parks, schools, near residential areas), ignoring other potential environment features 
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that may be related to physical activity. Simultaneous use of accelerometer and GPS 

devices allows researchers to assess dynamic individual daily mobility beyond a certain 

location. Only a few studies have contextualized locations where physical activity 

occurred around each GPS monitoring minute. These studies estimated relationships 

between neighborhood exposures and minute-by-minute or 30s epoch physical activity 

among children [38, 39].  Study 3 addressed this limitation by using both devices to 

spatially contextualize locations where physical activity occurred and to examine 

associations between objectively measured built environment around each GPS minute 

and minute-by-minute physical activity. The results of study 3 indicated that there were 

statistically significant positive associations between population density and MVPA and 

LVPA. However, other built environment variables were inversely associated with both 

outcomes.  This study has significant public health relevance in a better understanding of 

environmental correlates, which could lead to more effective prevention efforts regarding 

physical activity.   

 

1.2 Study Aims 

1.2.1 Study 1 

The purposes of this study were to identify spatial clusters (i.e., areas with high 

and low levels) of physical activity and obesity among older women in California, 

Massachusetts, and Pennsylvania, to examine whether the geographic distribution of 

demographic and health-related factors account for spatial clusters, and to compare built 

environment characteristics inside and outside clusters. 
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1.2.2 Study 2 

The primary aim of the second study was to estimate relationships between trail 

use and physical activity and sedentary time. A secondary aim was to objectively 

quantify physical activity occurring on-trail among adults using two different approaches, 

accelerometer data only, and a combination of accelerometer and GPS data.  

 

1.2.3 Study 3 

The aim of the third study was to examine the associations between objective 

built environment measures factors and MVPA and LVPA linked to GPS coordinates 

among a sample of adults.  



7 

 

 

7
 

CHAPTER 2. LITERATURE REVIEW 

2.1 Overview 

The overall purpose of this chapter is to briefly review the literature relevant to 

the broad area of physical activity and public health. Specifically, it provides a review of 

literature on a physical activity and health promotion, conceptual framework for 

understanding correlates of physical activity, approaches to measuring the built 

environment, emerging approaches in built environment and physical activity research, 

and spatial data analysis in public health.   

 

2.2 Physical Activity and Public Health 

Physical inactivity is a major public health issue in U.S. populations [1, 3].  Lack of 

physical activity increases risks of cardiovascular disease, certain cancers, diabetes, 

hypertension, and obesity [1, 2, 4, 40].  In contrast, engaging in physical activity is one of 

the most effective ways to prevent and manage these chronic diseases and health 

conditions [1] and to improve one’s quality of life [41]. Over the past two decades, 

guidelines for regular physical activity participation have been published and promoted 

[1, 2]. For example, according to the current physical activity guidelines from the U.S. 

Department of Health and Human Services (USDHHS), it is recommended that adults     
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engage in at least 150 minutes of moderate activities per week (e.g., brisk walking) or 75 

minutes of vigorous activities per week, or equivalent combinations [1]. 

Parallel to the development of the current physical activity guidelines, national 

efforts to increase participation in physical activity have grown. For example, the 

physical activity objectives for Healthy People 2020, a government initiative promoting 

national health, are that individuals across populations, including youth, adults, and older 

adults should engage in regular physical activity that includes participation in moderate- 

and vigorous-intensity activities [42]. Moreover, various societal sectors, such as 

environmental [43], educational [44], international [45], healthcare [46], media [47], non-

profit [48], and recreational and sports sectors [49], have also been involved in the 

development of the U.S. National Physical Activity Plan, which was released in 2010 

[50]. The U.S. National Physical Activity Plan is a broad range of initiatives that include 

policies and programs collaborating with public and private sectors aiming to promote 

physical activity in the U.S. populations.   

Despite numerous national efforts to promote physical activity and to disseminate 

the health benefits of physical activity, the prevalence in self-reported no leisure time 

physical activity declined from 29.1% in 1996 to 24.1% in 2004 and was virtually stable, 

ranging from 24.0% in 2005 to 25.4% in2010  [51].  In addition, national surveillance 

data using accelerometers from the National Health and Nutritional Examination Survey 

(NHANES) showed that less than 4% of U.S. adults aged 20-59 years and less than 3% of 

older adults aged ≥ 60 years met physical activity recommendations [3].  
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2.3 Conceptual Framework for Understanding Correlates of Physical Activity 

As noted above, the promotion of regular physical activity is one of the national 

public health priorities in the U.S. [50, 52]. During the 1970s, prevention strategies and 

interventions focused heavily on an individual’s characteristics, choices, and behaviors 

[4]. However, during the 1980s, there was a shift in physical activity promotion strategies 

from individuals to a focus on the broader social and environmental context [4]. Thus, 

physical activity behavior was redefined as individual choices but these choices were 

thought to be influenced as well by interactions between people, social norms and values, 

neighborhood environments, and broader culture [53].  

Over the past couple of decades, researchers and practitioners have increasingly 

emphasized the application of multilevel social ecological models which generally posit 

that physical activity behaviors are influenced by factors at the individual, interpersonal 

and environmental levels to identify changes in environment and policy which would 

increase population-level physical activity for longer periods [4, 54-57]. The major 

principle of social ecological models is that each level of influence can affect behavior, 

and individuals can influence and are influenced by environment. In the following 

sections, the evidence on individual (e.g., demographics, biological factors), interpersonal 

(e.g., social support) and environmental (e.g., social and physical environmental 

attributes) correlates of physical activity among adults and older adults is summarized.  
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2.4 Correlates of Physical Activity 

2.4.1 Individual Factors 

Several reviews have summarized the evidence on various types of individual-

level factors that are related to physical activity [58-60]. Types of individual factors 

include demographic characteristics (e.g., age, gender, race/ethnicity), biological 

characteristics (e.g., weight-status), and constructs from individual-level behavioral 

theories such as the Transtheoretical Model (TTM), the Health Brief Model, the Theory 

of Reasoned Action, and the Theory of Planned Behavior.   

Age, gender, race, socioeconomic status, education, and overweight/obesity have 

been consistently associated with adult participation in physical activity [14, 59, 60].  In 

general, the findings from the application of health behavior theories have shown mixed 

or no associations for specific constructs [58-60], except self-efficacy for physical 

activity.  For example, researchers have found consistent evidence that people with 

higher self-efficacy engage in greater levels of physical activity and maintain their 

physical activity behavior [12, 14, 58-60].  King and colleagues found that behavioral 

skill incorporated with self-motivation accounted for a significantly large amount of 

variance in free-living physical activity [59]. Furthermore, other constructs, such as goal 

setting, feedback, self-monitoring, self-reinforcement, and self-efficacy were associated 

with physical activity [59].  

 

2.4.2 Interpersonal Factors 

The results from previous studies have indicated that interpersonal or social 

factors may play an important role in physical activity participation [58-60].  
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Interpersonal characteristics include social support (e.g., family, peers) and constructs 

from Social Cognitive Theory (SCT) [14, 59-61], such as reciprocal determinism (i.e., 

interrelationships among individuals, behavior, and environment), observational learning, 

social norms, etc.  There is strong evidence that social support from family and friends as 

well as support from other sources such as physicians, colleagues, fitness instructors or 

professionals, and exercise buddies are positive correlates of physical activity [14, 59-

61].   

SCT has been employed to explain physical activity behavior.  The focus of SCT 

is on reciprocal interactions between individuals and their environments [62].  In other 

words, SCT suggests that human behavior is a dynamic and ongoing process in which 

individual and environmental factors and human behavior interact with each other [62]. 

The major constructs of SCT include environment, behavioral capability, reciprocal 

determinism, observational learning, outcome expectancies, reinforcement, and self-

efficacy [14, 59-61]. 

 

2.4.3 Built Environment Factors 

Built environment research on physical activity and obesity has grown rapidly 

over the past 15-20 years. The built environment is defined as the physical design of 

communities that provide opportunities for physical activity, such as mixture of land use 

(e.g., residential, commercial, facilities, water areas), large scale environmental 

characteristics (e.g., landscaping), and transportation systems [63]. To date, numerous 

measures of the neighborhood built environment have been studied, including perceived 

and objective measures of the built environment. Perceived built environment measures 
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were derived based on self-reported surveys focusing on individuals’ perceptions for 

neighborhood environments. Objectively measured built environments were derived from 

existing geographically referenced data (e.g., geo-coded home address) by using 

geographic information system (GIS) technologies [63]. The most common GIS data 

include population density, density of facilities, access to destinations, mixture of land 

use, street connectivity, safety from traffic and personal safety, and aesthetics [63].   

 

2.5 Approaches to Measuring the Built Environment 

2.5.1 Perceived Built Environment 

Measures of perceived built environments are based on individuals’ perceptions 

for neighborhood environments from self-reported surveys. Survey instruments such as 

Neighborhood Environment Walkability Scale (NEWS) and an abbreviated version 

(ANEWS) are used to determine an individual’s perceptions of neighborhood 

environment. Most commonly assessed variables include residential density, LUM-

access, LUM-diversity, street connectivity, walking and biking facilities, traffic safety, 

personal safety, and aesthetics [63]. These perceived measures of built environment have 

been tested for reliability and validity in recent years [64-66]. For example, test-retest 

reliability of a NEWS survey was conducted by Saelens and colleagues in 2003 [65] and 

found moderate to high test-retest reliability overall, including reliability of the NEWS 

subscales [65]. Recently, NEWS and ANEWS surveys were tested for factorial validity 

by Cerin and colleagues [64, 66]. The purpose of their research was to assess how well 

survey items in each subscale measured a particular latent construct for neighborhood 

walkability [67]. The results showed that diversity of destination, infrastructure for 
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walking, aesthetics, traffic safety, residential density, and personal safety were positively 

related to transportation walking [66].  Furthermore, a cross-validation study, conducted 

to test the factorial validity of NEWS and ANEWS, confirmed that items in the subscales 

operated differently in different neighborhoods [64]. In addition, a recent study on 

factorial validity of the ANEWS demonstrated support for the construct validity of the 

ANEWS among older women in the U.S.[67]. One limitation of these studies is the 

question of whether or not these measures can be generalized to different populations [64, 

65] since the measures were tested only among adults living in metropolitan areas [64, 

65].  Further research is needed to test these measures across different age groups (i.e., 

youth, adults, older adults) and countries (i.e., non-English speaking countries) [64].  

 

2.5.2 Objective Measures of Built Environment 

There are mainly two approaches to create objective built environment variables: 

one using systematic observational methods (e.g., audits) with various neighborhood or 

street audit tools that have been developed, and the second, using public and private GIS 

datasets that can either be accessed for free or purchased through private vendors. For the 

first approach, audit tools are used for measuring quality and presence of the built 

environment attributes. Investigators utilize audit tools to evaluate characteristics of the 

physical environment which may not be available in GIS databases, such as the presence 

of street trees and the width of sidewalks [68]. Although the use of audit tools to measure 

the built environment attributes helps researchers capture important attributes of the built 

environment, a limitation of these techniques is that they can be time-consuming and 

require having well trained observers [63].  
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The use of GIS technologies to create objective measures of the neighborhood 

built environment that may be related to physical activity has grown rapidly since the 

publication of a few studies around 2000 [69]. GIS-based variables were derived from 

geographically referenced data (e.g., home addresses, longitude and latitude of locations) 

[63]. Commonly measured built environment characteristics using GIS technologies 

include population density, access to recreational facilities, street connectivity, greenness 

or vegetation index, and composite variables, such as LUM and walkability index [63]. 

Characterizing the built environment using GIS technologies is an efficient way to 

systematically create objective measures for studies among individuals in neighborhoods 

across large regions of interest [63].  

One limitation is that because this is a new and emerging field of study that 

requires continuous development and refinement, methodologies regarding the creation 

and classifications of these objective built environment measures have not been 

standardized [63, 70, 71].  For example, geographic scales range from administrative 

boundaries (e.g., census tracts) to buffers with distance along the street network (100 

meter, 500 m, 1 km, 1 mile, etc.) or buffers around participants’ homes [63].  As each 

GIS-based variable using a different geographic scale might influence physical activity 

differently, the appropriate geographic scale for GIS-based measures still needs further 

investigation.  It is important to note that understanding how to acquire, manage, and 

analyze GIS-based data requires a trained GIS staff and sufficient time to conduct these 

activities [63].   
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2.6 Evidence on Built Environment and Physical Activity 

Ten review studies on built environment and physical activity between 2002 and 

2012 were used to summarize evidence on associations between the neighborhood built 

environment and physical activity among adults and older adults.  The literature includes 

studies using both perceived and objective measures of the built environment and a 

variety of physical activity outcomes, including transportation, recreational-related, and 

general physical activity. Seven reviews provided evidence on associations between the 

built environment and transportation-related physical activity (e.g., transportation 

walking, biking, walking for errands, walking and biking to work, etc.). Seven out of 10 

reviews reported on associations between the built environment and recreational physical 

activity, such as leisure-time physical activity and exercise, walking, biking, and sports.  

Eight out of 10 review studies reported on associations between the built environment 

and general physical activity, such as total physical activity, total walking and biking, 

moderate and vigorous intensity activity.  

To review this literature, five broad categories of built environment variables 

were adapted from Ding and colleagues [72].  These included 1) neighborhood 

environment (i.e., LUM) and access to destinations, population density, street 

connectivity, and walkability index); 2) recreational environment (access to and density 

of parks, open spaces, bike paths, and recreational facilities), 3) transportation 

environment (infrastructure for walking and biking, traffic safety), 4) social environment 

(personal safety from crime); and 5) aesthetics (enjoyable scenery, friendly 

neighborhood) [72].  In addition, relationships between built environment measures and 

weight-status are also briefly summarized. 
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2.6.1 Current Evidence on Built Environment and Physical Activity and Weight-Status 

2.6.1.1 Perceived and Objective Measures of Built Environment and Transportation 

Physical Activity 

Overall, there was some evidence (two out of five broad categories) 

demonstrating significant associations between perceived built environment attributes 

and transportation-related physical activity (e.g., walking and biking to work, and 

walking for errands, etc.) among adults and older adults across seven reviews (See Table 

1).  For example, perceived LUM/access to destinations, population density, street 

connectivity, walkability index, and infrastructure for walking and biking were 

consistently positively associated with transportation-related physical activity such as 

walking and biking among adults [12, 15, 71].  In contrast, the findings for associations 

between perceived traffic safety, personal safety, aesthetics, and transportation-related 

physical activity were mostly null or more equivocal.  

Objective measures of the built environment such as LUM, population density, 

and infrastructure for walking and biking were positively and significantly associated 

with transportation-related physical activity [13, 71] (See Table 1).  Mostly, mixed or null 

associations were found for other objective built environment variables, such as street 

connectivity, walkability index, recreational facilities, traffic safety, personal safety, and 

aesthetics, and transportation-related physical activity [11, 14, 71].     
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2.6.1.2 Perceived and Objective Measures of Built Environment and Recreational 

Physical Activity 

Across seven literature reviews, evidence on relationships between the majority of 

perceived measures of the built environment and recreational physical activity (e.g., 

recreational physical activity, sports, walking, and biking) among adults and older adults 

were less clear (See Table 1).  For example, perceived aesthetics such as enjoying 

scenery had consistent positive associations with recreational physical activity in two 

reviews [11, 16]. However, in two other review studies, the findings of associations 

between perceived aesthetics and recreational physical activity were null or mixed [18, 

71].   

Across seven reviews, none of the objective built environment variables were 

consistently associated with recreational physical activity among adults and older adults. 

For example, the findings for associations between objective measures of LUM/access to 

destinations, street connectivity, walkability, and traffic safety, and recreational physical 

activity were null.  However, the findings of relationships between population density, 

recreational facilities, and infrastructure for walking and biking were more mixed.  

 

2.6.1.3 Perceived and Objective Measures of Built Environment and General Physical 

Activity 

The findings from eight reviews on associations between perceived measures of 

the built environment and physical activity (not classified as transportation or recreational 

physical activity) were generally inconsistent among adults and older adults, with the 
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exception of perceived aesthetics (See Table 1).  There was consistent evidence 

demonstrating significant positive associations between perceived aesthetics (e.g., such as 

enjoyable scenery, attractive local neighborhoods, etc.) and physical activity, among 

adults and older adults in four reviews [10, 11, 14, 16].  However, in other reviews [13, 

18, 71, 73], the findings for aesthetics were mixed or null. Mostly, there were mixed or 

null associations between LUM (including access and diversity of destinations), 

walkability index, and traffic safety and general measures of physical activity.  In 

addition, there were no consistent associations found for population density, street 

connectivity, and recreational environment, infrastructure for walking and biking, and 

personal safety from crime.    

Overall, the objective measures of the built environment were not consistently 

associated with general physical activity outcomes. For example, the findings for 

associations between objective measures of LUM/access to destinations, recreational 

facilities, and general physical activity were mostly mixed. Generally, associations 

between objective measures of population density, street connectivity, walkability index, 

infrastructure for walking and biking, traffic safety, and personal safety and general 

physical activity outcomes were mixed or null.    

 

2.6.1.4 Perceived and Objective Measures of the Built Environment and Weight-Status 

Generally, the evidence on associations between perceived and objective 

measures of the built environment and weight-status were less clear than they were for 

physical activity outcomes [4, 9, 20, 74]. For example, there was null or inverse 

associations between population density and obesity and BMI [75]. Walkable 
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neighborhoods are thought to protect against higher weight-status. However, four review 

studies reported inconsistent relationships between walkability index and weight-related 

outcomes [4, 9, 20, 74]. In addition, other built environment factors such as urban sprawl 

index, LUM, and recreational facilities were not related to obesity and higher body mass 

index (BMI) [4, 9, 20, 74].  The majority of studies examining associations between 

perceived and objective built environment factors and weight-status relied on a cross-

sectional study design. However, weight-status may change over time, so a longitudinal 

study design may be more appropriate for identifying the associations or impact of the 

built environments on weight-status [4, 20]. 

 

2.6.1.5 Summary 

Overall, there was inconsistent evidence of associations between both perceived 

and objective measures of built environment and physical activity among adults and older 

adults.  Despite these unclear relationships, perceived LUM was consistently associated 

with transportation-related activity, while there was some evidence of associations 

between perceived aesthetics and recreational physical activity.  Overall, there were no 

consistent patterns across reviews on associations between measures of built environment 

and recreation and transportation-related physical activity among older adults, except for 

objective measures of LUM and general physical activity.  

The evidence on built environment and physical activity summarized in this 

literature review is fairly consistent with the findings reported in  a recent review of 

review studies [17]. In this meta review, the authors found street connectivity and  



20 

 

 

2
0
 

Table 2.1 Summary of literature reviews of associations between built environment variables and physical activity 

Built environment 

characteristics 
Neighborhood environment 

Recreational 

environment 
Traffic environment 

Social 

environment 
Aesthetics 

Specific attributes 
LUM/access to 
destinations 

Population 
density  

Street 
connectivity 

Walkability 
index 

Recreational 
facilities, etc. 

Infrastructure for 
walking and biking 

Traffic 
safety 

Personal safety Scenery 

Transportation-related physical activity 

Perceived built environment                 

# of associationsa 3 2 1 2 0 1 0 0 0 

# of no associationsb 0 2 1 0 1 1 2 3 2 

# mixedc 1 0 1 2 4 3 2 1 3 

Objective built environment         

# of associations 1 1 0 0 0 1 0 0 0 

# of no associations 0 1 1 0 0 0 1 0 2 

# mixed 1 0 1 1 2 2 1 3 0 

Recreation-related physical activity 

Perceived built environment                 

# of associations 0 0 0 0 0 0 0 0 2 

# of no associations 1 1 1 2 4 1 2 1 1 

# mixed 4 1 0 0 1 2 2 4 1 

Objective built environment         

# of associations 0 0 0 0 0 0 0 0 0 

# of no associations 2 0 1 2 1 0 1 0 0 

# mixed 0 1 0 0 2 1 0 1 0 

 General physical activity 

Perceived built environment                 

# of associations 1 0 0 1 0 0 1 0 5 

# of no associations 2 0 0 2 0 3 4 5 2 

# mixed 5 3 2 1 7 2 3 2 1 

Objective built environment         

# of associations 1 0 0 1 0 0 0 0 1 

# of no associations 0 0 0 1 0 1 1 1 0 

# mixed 4 1 1 0 4 1 0 0 0 

Note: a indicates the number of consistent significant (positive (++) and negative (--)) associations between a built environment variable and physical 

activity.  b indicates the number of consistently no associations (00) as well as almost no associations (0) between a built environment variable and physical 

activity.  c indicates the number of mixed/inconsistent (+ or -) associations between a built environment variable and physical activity. See Appendix for 

detailed tables of summary literature reviews 
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Table 2.2 Classifications of strength of associations between variables and physical 

activity  

% of studies supporting 

association 

Summary 

code 
Meaning of code 

0 00 No association 

1-33 0 Weak, almost no association 

34-59 + or -  Mixed, inconsistent 

60-100 ++ or -- 
Consistent positive or negative 

association 

Note: If 6 out of 10 variables (e.g., LUM) in reviews are significantly positively 

associated with physical activity, this is coded as "++". If 5 out of 10 variables are 

significantly positively associated with physical activity, this is coded as "+". If 3 out 

of 10 variables are positively associated with physical activity, this is coded as "0". 

If no variables are associated with physical activity, this is coded as "00". 
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Table 2.3 Summary of associations between built environment variables and transportation-related physical activity from 10 literature reviews  

Transportation-

related physical 
activity 

  Neighborhood environment 
Recreational 

environment 
Traffic environment 

Social 

environment 
Aesthetics 

Study 

characteristics 
  

LUM/access 
to 

destinations 

Population 

density  

Street 

connectivity 

Walkability 

index 

Recreational 
facilities  (access, 

density) 

Infrastructure for 
walking and 

biking 

Traffic 

safety 

Personal 

safety 
Scenery 

Authors (year) # of studies                   

Humpel (2002) 19          

Trost (2002)  38          

Saelens (2003) Not stated P:++ P:++  P:++  P:++    

Owen (2004)  18 P:+   P:+ P:+ P:+; O:+  P:0 P:0 

Wendel-Vos (2007) 47 P:-; O: +     P:+; O:++ P:0; O: - P:0; O- P:+ 

Saelens (2008) 29 P:++; O:++ P:+; O:++ P:+; O:0  P:00; O:+ P:0; O:+ P:+;O:00 P:+; O:+ P:+; O:0 

Panter (2010) 36 P:++ P:++ P:++ P:++ P:+- P:+ P:-  P:+ 

Durand (2012) Not stated          

Conningham (2004) 27    P:+      

Van-Cauwenberg 

(2010) 
31 O:+ P:+; O:0 P:0; O:+ O:+ P:+; O:+   P:0; O:- P:0; O:+ P:0; O:00 

Note: “P” indicates a perceived built environment variable, whereas “O” indicates an objective built environment variable. Classifications of strength of associations between a built environment 
variable and physical activity are shown as follows: “++”: consistent positive association; “- -”: consistent negative association; “+”: positive, inconsistent/mixed association; “ - ”: negative, 

inconsistent/mixed association; “00”: consistent no association; and “0”: weak, almost no association.  
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Table 2.4 Summary of associations between built environment variables and recreation-related physical activity from 10 literature reviews 

Recreation-related 

physical activity 
  Neighborhood environment 

Recreational 

environment 
Traffic environment 

Social 

environment 
Aesthetics 

Study characteristics   

LUM/access 

to 

destinations 

Population 
density  

Street 
connectivity 

Walkability 
index 

Recreational 

facilities (access, 

density) 

Infrastructure for 

walking and 

biking 

Traffic 
safety 

Personal 
safety 

Scenery 

Authors (year) # of studies                   

Humpel (2002) 19 P:+    P:+;  P: 0  P:- P:++ 

Trost (2002)  38 P:+         

Saelens (2003) Not stated          

Owen (2004)  18    P:0; O:0 P:0; O:+  P:+ P:+ P:++ 

Wendel-Vos (2007) 47 P:0; O: 0    P:0; O:+ P:+ P:0   

Saelens (2008) 29 P:+; O: 0 P:0; O:+ P:0; O:0  P:0; O:0 P:+; O:+ P:+; O:00 P:+; O:+ P:+ 

Panter (2010) 36          

Durand (2012) Not stated          

Conningham (2004) 27        P:+  

Van-Cauwenberg 
(2010) 

31 P:+ P:+   P:0; O:0 P:0; O:+   P:0 P:00 P:0 

Note: “P” indicates a perceived built environment variable, whereas “O” indicates an objective built environment variable. Classifications of strength of associations between a built environment 

variable and physical activity are shown as follows: “++”: consistent positive association; “- -”: consistent negative association; “+”: positive, inconsistent/mixed association; “ - ”: negative, 
inconsistent/mixed association; “00”: consistent no association; and “0”: weak, almost no association.  
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Table 2.5 Summary of associations between built environment variables and general physical activity from 10 literature reviews  

General physical 
activity 

 Neighborhood environment 
Recreational 
environment 

Traffic environment 
Social 
environment 

Aesthetics 

Study 
characteristics 

  

LUM/access 

to 

destinations 

Population 
density  

Street 
connectivity 

Walkability 
index 

Recreational 

facilities  (access, 

density) 

Infrastructure for 

walking and 

biking 

Traffic 
safety 

Personal 
safety 

Scenery 

Authors (year) # of studies                   

Humpel (2002) 19 P:0; O:-    P:+; O: - P:00; P:+; O:0 P:0 P:++ 

Trost (2002)  38 P:+; O:+      P:0 P:0 P:++ 

Saelens (2003) Not stated          

Owen (2004)  18 P:++; O:+   P:0; O:0 P:+; O:+ P:0; O:0 P:0 P:0 P:++; O:++ 

Wendel-Vos (2007) 47 P:0    P:+ P:0 P:0 P:0 P:0 

Saelens (2008) 29 P:+; O:+ O:+ P:+; O:+ P:++; O:++ P:+; O:+ P:+; O:+ P:++ P:+; O:0 P:+ 

Panter (2010) 36          

Durand (2012) Not stated P:+ P:+  P:+ P:+     

Conningham (2004) 27 P:- P:-   P:+ P:+ P:+- P:0 P:++/-- 

Van-Cauwenberg 
(2010) 

31 P:-; O:++ P:+ P:+ P:0; O:0 P:+; O:-   P:0 P:+ P:00 

 

Note: “P” indicates a perceived built environment variable, whereas “O” indicates an objective built environment variable. Classifications of strength of associations between a built environment 

variable and physical activity are shown as follows: “++”: consistent positive association; “- -”: consistent negative association; “+”: positive, inconsistent/mixed association; “ - ”: negative, 
inconsistent/mixed association; “00”: consistent no association; and “0”: weak, almost no association.  
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walkability were significantly associated with transportation physical activity [17].  

However, in the present review, in addition to these two attributes, LUM/access to 

destinations, population density and infrastructure for walking and biking were also 

significantly associated with transportation physical activity.  

The findings from associations between the built environment and weight-status 

suggest that attributes of food environments such as density of fast food outlets seem to 

be consistently associated with weight-status outcomes. More careful selections of food 

environment attributes linked to diet and eating behavior, such as density, access, and 

availability of food outlets in a neighborhood, may be needed to better understand 

associations between the built environment and obesity.  

 

2.6.2 Current Evidence on Trails and Physical Activity 

Over the past decade, many built environment studies have demonstrated 

associations between perceived and objectively measured built environment factors, and 

physical activity [4, 14, 15, 18, 71, 76-78].  Among those built environment components, 

trails and paths have been recognized as a key neighborhood resource for encouraging 

physical activity among adults [79, 80]. Studies have demonstrated that newly 

constructed trails were positively correlated to physical activity [81, 82].  Another trail 

study showed that a park with a trail path had higher likelihood of being used for physical 

activity compared to parks without a trail [83]. A study investigating physical activity 

levels among trail users in the U.S. showed that individuals who used trails at least once a 

week were twice as likely to meet the current physical activity guidelines, as opposed to 

those who rarely or never used trails [84]. Application of built environment approaches, 
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including constructing and increasing accessibility to community trails, has been 

addressed by public health researchers and practitioners to promote physical activity [35, 

85].    

 

2.6.3 Emerging Approaches in Built Environment and Physical Activity Research 

To date, in most studies measures of the neighborhood built environment have 

focused on areas near or around the homes of participants [86]; for example, using some 

type of buffer around the home address. However, individuals are generally mobile and 

the relevant environmental exposures for physical activity have increasingly been 

recognized as being  dynamic rather than static [86].  In recent years, GPS units have 

been used to track where individuals engage in physical activity. These locational data 

have been linked to data from accelerometers that measure levels of physical activity [87-

89].  GPS and accelerometers can be used to determine one’s exact location and activity 

level at a point in time and GIS technologies can be used to characterize the built 

environment exposures for each location recorded by GPS units [90].  Examining 

locational data via GPS units, which are linked to physical activity data from 

accelerometers, is an emerging field of a study.   

Using simultaneous monitoring of participants with small GPS units and 

accelerometers, researchers have characterized the intensity and locations of physical 

activity among children [30, 31] and adults [88]. For example, in two studies researchers 

found that the majority of children engaged in moderate- and vigorous-intensity physical 

activity at school and at home [30, 31]. Furthermore, these studies showed that children 

generally do not participate in physical activity at parks and green spaces, which account 
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for only 2-10% of their total daily activities [30, 31].  Fewer studies have examined 

where physical activity occurs among adults.  For example, Troped and colleagues 

employed GPS and accelerometers to determine the locations and levels of physical 

activity occurring within one kilometer of the homes and workplaces of participants [88]. 

They found that there were positive associations of intersection density, LUM, and 

population density within a one km buffer around home with MVPA [88]. Alternatively, 

population density was the only variable that reached statistical significance within one 

km work buffer [88].  The findings from this study suggest that there exists a need for 

characterizing spatial locations other than those immediately surrounding home and 

workplace areas when examining relationships between the built environment attributes 

and physical activity. Two dissertation studies (2 and 3) employed GPS/accelerometer 

data to better understand associations between objectively measured trail use and 

physical activity; and to examine more dynamically relationships between built 

environment characteristics and objective physical activity occurring in all locations. 

 

2.7 Spatial Data Analysis in Public Health 

2.7.1 Rationale for Spatial Data Analysis 

The application of spatial data analysis to examine public health issues such as 

physical activity and obesity is informed by interactions of three distinct fields of study: 

statistics, epidemiology, and geography [91-93]. When using spatial public health data, a 

key issue is described by geographer and statistician, Waldo Tobler in his quote, 

“Everything is related to everything else, but near things are more related than distant 

things” [94]. This suggests the statistical notion of spatial autocorrelation that pairs of 
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observations nearby contain more similar attributes than ones farther away [95]. The 

issue of spatial autocorrelation is applicable to built environment studies as well.  For 

example, it is assumed that individuals who live in the same neighborhood are exposed to 

similar environmental characteristics which differ from those of individuals who live in a 

different neighborhood. Therefore, geographically correlated observations reduce 

variability in observations (i.e., sharing common information) due to correlated 

observations as compared to the same number of independent observations [95]. This 

reduces the statistical precision of parameter estimates [95]. This issue strongly underpins 

the use of spatial analytic and statistical methods for types of data which the proposed 

studies employed.   

 

2.7.2 Brief Background in Spatial Data Analysis in Public Health 

Since the early nineteenth century, the use of disease maps in epidemiologic 

analyses of disease outbreaks has made significant contributions to the control of 

infectious disease [96]. The best known example is Dr. John Snow’s maps demonstrating 

spatial patterns of cholera cases around London water pumps in the 1850s [95-97].  With 

careful spatial analysis of cholera cases, he eventually discovered that contaminated 

water sources were causing the epidemic [95, 97].  The visual assessment of disease cases 

with maps has been a useful method in the field of spatial epidemiology [95, 96, 98, 99]. 

Application of infectious disease mapping has continued for cholera [100], influenza 

[101], measles [102], and a re-examination of the geographic distribution of plague in the 

fourteenth century [103].  
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Parallel to mapping disease cases, statistical methods have become more 

advanced and these advancements in statistics have contributed to spatial statistics during 

the late twentieth century [95, 99].  For instance, in the early twentieth century, with 

simple statistical analysis of disease cases, the examination of linkages between 

exposures and disease outcomes was incorporated in epidemiologic research [96]. In the 

past few decades, developments in statistical computer software have made it possible to 

examine associations between exposures and outcomes for a fairly large dataset [99]. 

This advancement in statistical analysis resulted in developments in spatial statistical 

techniques that allowed us to investigate spatial relationships between environmental risk 

factors and disease outcomes in recent years [98, 99].      

With advancements in medical science in the early- and mid-twentieth century, 

the focus of public health concerns has gradually shifted from infectious diseases to 

chronic diseases such as certain cancers [25, 26] and diabetes [27].  Over the past decade, 

with the combination of mapping techniques for disease outcomes as well as 

advancement in spatial statistical techniques, epidemiologic analysis of chronic diseases 

has been extended to geographic patterns of lifestyle-related problems, such as physical 

activity and weight-status.  

 

2.7.3 Spatial Clustering Techniques and Application to Disease Outcomes 

Spatial analytic techniques have been used to investigate geographic patterns of 

certain outcomes. One way to examine these patterns is a spatial cluster detection 

analysis, which tests for areas with high and low prevalence of outcomes. The Centers for 

Disease Control and Prevention (CDC) define a cluster as actual or realized rare cases of 
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a particular disease that is temporally and/or geographically clustered [104].  During the 

past decade, spatial clustering methods have been applied to studies of chronic diseases 

such as liver [105],  colorectal [106], and breast [107] cancers, and diabetes [27, 108] .  

For example, researchers found spatial clusters of high rates of liver cancer [105] and 

diabetes [27].  Additionally, a spatial clustering method allows us to examine both spatial 

and temporal clusters of a certain outcome [109].  In other studies, spatial scan statistics 

were used to test for space-time clusters of breast [107] and colorectal [106] cancer and 

diabetes [108].  The authors found several space-time clusters of these outcomes across 

study periods and concluded that surveillance results from these types of spatial and 

space-time clustering techniques may have the potential for time trend monitoring for 

such chronic diseases. 

 

2.7.4 Application of Spatial Analytical Methods to Physical Activity and Obesity 

Recently, there has been a small, but increasing, interest in examining spatial 

patterns of physical activity [23, 24, 110] and weight-status [24, 28, 111-114] and only 

one study has investigated spatial patterns linked to built environment attributes [23].  For 

example, two U.S. studies used the spatial scan statistic [115, 116] to identify clusters of 

active transportation in California [23] and high/low body mass index (BMI) across the 

U.S.[28].  Four other studies employed the local Moran’s I to detect high/low BMI 

clusters from five U.S. states [113], geographic patterns of obesity across the U.S.[114], 

overweight/obesity clusters across Canada [111], and high/low clusters of physical 

activity and obesity in Vancouver, Canada [24]. One study utilized the Getis-Ord General 

G, and found high BMI clusters among mothers and their children in Kenya [112].    
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In addition to detection of spatial clusters of physical activity and obesity, 

researchers in one study tested for spatial clustering of physical activity in relation to the 

built environment [23].  The authors identified several high and low rates of active 

transportation via walking and cycling among adults in the Los Angeles and San Diego 

counties of California [23]. Built environment characteristics inside and outside spatial 

clusters of active transportation were compared [23].  Investigators found higher 

population density, employment density, and intersection density in high prevalence 

clusters of active transportation, compared to the areas outside clusters. They also found 

that these built environment characteristics had lower values in lower prevalence clusters 

of active transportation [23].  

 

2.8 Summary 

The dissertation research seeks to fill the gap in the existing literature by examining 

spatial patterns of physical activity and obesity in relation to objective built environment 

variables among older women (Study 1).  Further, it seeks to investigate associations 

between trail use and objectively measured physical activity and sedentary behavior 

(Study 2) and estimate relationships between objectively measured built environment 

variables and a minute-by-minute physical activity (Study 3). Research applying spatial 

clustering and examining associations that take into consideration the temporal and 

spatial context in the statistical models could shed light on intricate relationships between 

built environment and physical activity.
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CHAPTER 3. METHODOLOGY 

 

 

 

3.1 Overview for Study 1: Spatial Clustering 

For this study a cross-sectional design was used to test spatial clustering of self-

reported physical activity and obesity. This analysis focused on the NHS participants in 

Massachusetts (MA), Pennsylvania (PA), and California (CA). Associations of spatial 

clustering of self-reported physical activity and obesity in relation to individual 

demographic and objectively measured built environment variables were examined.  

 

3.1.1 Specific Aims for Study 1 

The purposes of this study were to identify spatial clusters (i.e., areas with high 

and low levels) of physical activity and obesity among older women in California, 

Massachusetts, and Pennsylvania, to examine whether the geographic distribution of 

demographic and health-related factors account for spatial clusters, and to compare built 

environment characteristics inside and outside clusters. 

 

3.1.2 Design and Methods for Study 1 

3.1.2.1 Study Participants 

The NHS is a prospective cohort study of women’s health initiated in 1976 with 

121,700 female registered nurses. At enrollment, the participants were 30-55 years of 
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age, and resided in 11 states. No restrictions for participation were made on the basis of 

ethnicity or race. However, participants were 97% white, reflecting the population of 

registered nurses at the time the study was initiated. Currently, NHS participants reside in 

all U.S. states. The cohort has been continuously followed with mailed questionnaires 

administered biennially on health outcomes, weight-related issues, and lifestyle factors 

such as physical activity.  

This study used a cross-sectional design to examine 22,599 NHS participants 

residing in California, Massachusetts, and Pennsylvania who responded to the 2004 

survey and met the following inclusion criteria: 1) reported at least one of four physical 

activities (i.e., walking, jogging, running, bicycling), body weight, and walking 

limitations, 2) reported being able to walk, 3) had a geocoded home address; and 4) did 

not live in a nursing home.   

 

3.1.2.2 Physical Activity and Obesity Outcomes 

In the 2004 NHS survey, participants reported the average amount of time they 

spent per week on each of the following physical activities during the previous year: 

walking (for exercise or walking to work), jogging (< 10 min/mile), running (≥ 10 

min/mile), and bicycling (including stationary cycling). Participants also reported their 

usual walking pace outdoors (i.e., < 2 mph, 2-2.9 mph, 3-3.9 mph,  4 mph). The 

reproducibility and validity of these physical activity items were previously reported 

[117].  

In accordance with Ainsworth’s compendium of physical activities [118, 119] and 

previous NHS studies using physical activity data, a metabolic equivalent of task (MET) 
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is assigned to each type of physical activity. Moderate-intensity activities have MET 

values from 3.0 to 5.9.  Vigorous intensity activities have a MET ≥ 6.0. The 2008 

Physical Activity Guidelines for Americans recommends that adults perform 150 minutes 

of moderate-intensity activity, which is roughly equivalent to 500 MET-minutes/week 

[120].  

Two dependent variables were examined in this study. A binary physical activity 

outcome was created based on engaging or not engaging in 500 MET-minutes/week of 

walking [120]. Height self-reported in the 1976 survey and weight reported in 2004 were 

used to calculate body mass index (BMI= (weight in kilograms)/height in meters2). The 

obesity outcome was defined as BMI  30.0.  

 

3.1.2.3 Objective Built Environment Variables 

Three types of objective built environment variables were created using GIS 

technologies: 1) population density; 2) intersection density; and 3) facility density. All 

built environment variables were created using a 1200 meter line-based network buffer 

around the geocoded home address of each participant [121].   

Population density was calculated as the number of individuals per square 

kilometer of area within the 1200 m buffer by using Landscan data [122]. The data 

represent ambient population (integrating diurnal movements and collective travel 

habits), and incorporates road proximity, slope, land cover, and nighttime lights in 

addition to census counts.  Intersection density was calculated by dividing the number of 

3-way or greater intersections (nodes in street network) within 1200m network distances 

(from home address) by the total length of streets within 1200m buffer by using 
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StreetMapUSA [123]. Facility density (i.e., density of potential walking destination) was 

calculated by dividing the number of facilities by kilometers of road within each 1200 m 

buffer.  It was created using a InfoUSATM facility database [124] containing North 

American Industrial Classification System (NAICS) codes, as well as longitude and 

latitude for each facility (e.g., grocery stores, restaurants, banks, hotels, hospitals, 

libraries, and physical activity facilities) [125].  Further, eight different facility density 

variables were created to better understand associations of each type of facility density 

with physical activity and obesity outcomes. These eight types of facility density 

variables include retail, services, cultural/educational, physical activity, fast-food 

restaurants, full-service restaurants, convenience stores, and grocery stores.   

  

3.1.2.4 Covariates 

The following covariates were included in the spatial clustering analysis: 

participant’s age, nurse’s education (RN degree, bachelors, graduate degree), husband’s 

education (high school graduate or less, bachelors, graduate degree), walking limitations 

(yes: limited a lot or a little for walking; no: not limited at all), previous chronic diseases 

(yes/no: had heart disease, cancer, diabetes), smoking status (past, current, never), and the 

Alternate Healthy Eating Index (AHEI), which was developed to assess an individual 

adherence to U.S dietary guidelines [126].    

 

3.1.3 Statistical Analysis 

Descriptive statistics were used to summarize all study variables: physical activity 

outcomes, built environment variables, and covariates. A spatial scan statistic [115, 116] 
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was utilized to test for spatial clusters of self-reported physical activity and obesity. First, 

unadjusted tests were performed separately for each state.  A relative risk (RR) was 

computed for each spatial cluster along with a radius of the cluster. Monte Carlo testing 

was used to determine statistical significance of clusters. Statistical significance of the 

clusters was defined as a p-value less than 0.05 [115, 116].  Subsequently, models were 

adjusted for the geographic distribution of one covariate at a time. Adjusted covariates for 

physical activity included age, nurse’s and husband’s education, educational attainments, 

median household income, walking limitations, previous chronic disease, and obesity. 

For obesity analyses, covariates included age, nurse’s and husband’s education, 

educational attainments and median household income, walking limitations, previous 

chronic diseases, AHEI, smoking status, and physical activity.  As possible impacts of the 

neighborhood built environment on weight-status could take longer to appear than the 

effects on physical activity behaviors, obesity analyses were restricted to women who had 

lived at their address ≥ 4 years (N = 19,448).  Lastly, comparisons of socio-demographic, 

health-related, and objective built environment characteristics of participants inside and 

outside were performed. SaTScanTM version 9 and SAS version 9 for UNIX were used 

for the analyses.   

 

3.2 Overview for Study 2: Trail Use  

This study utilized a cross-sectional study design with the use of accelerometer 

and GPS devices to examine relationships between trail use and objectively measured 

physical activity and to quantify monitoring minutes occurring on study trails.  
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3.2.1 Specific Aims for Study 2 

The aims of the second study were to estimate relationships between trail use and 

physical activity and sedentary time and to objectively quantify physical activity and 

sedentary behavior occurring on-trail based on accelerometer counts only and a 

combination of GPS speed and counts.  

 

3.2.2 Design and Methods for Study 2 

3.2.2.1 Study Participants 

Participants for this accelerometer/GPS study of trail use and physical activity 

were recruited from 1194 adults who completed trail intercept surveys at five trails in 

Massachusetts in the fall of 2004 and the spring/summer of 2005.  Survey respondents 

who reported using the trails at least four times in the past four weeks were asked to 

participate in a second study in which they would wear an accelerometer and a GPS unit 

for a four-day period. Out of 294 individuals who expressed interest in the study and 

provided contact information, 178 wore the two devices. About 74% of the participants 

were white, 19.7% were African-American or black, and 6.8% were other races. Slightly 

over half (52.4%) of the participants were women.  

 

3.2.2.2 Data Collection 

Participants and a research assistant met prior to the beginning of the monitoring 

at public spaces. Participants were instructed to wear both accelerometer (ActigraphTM 

Model 7164, data collected at 1-minute epochs) and GPS (GeoStats Wearable 
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GeoLoggerTM, with data recorded at 5-second intervals) devices and were provided log 

sheets to record activity monitoring. After the four activity monitoring days, research 

staff received log sheets and two devices from the participants.  

 

3.2.2.3 Data Processing 

The procedures of data processing  have been previously described [88].  A 

research analyst reviewed the raw GPS data over the four-day monitoring period for each 

participant to identify outliers. GPS and accelerometer data were merged using their 

respective time stamps and processed into a database with one record for each minute of 

activity.  

A valid day of accelerometer monitoring was defined as ≥ 600 min of wear time 

based on procedures used with the National Health and Nutrition Examination Survey [3, 

127].  The definition of a valid GPS monitoring day (≥40 minutes) was previously 

described [88]. Among 178 participants, 147 met the accelerometer and GPS criteria for 

having at least one valid day of monitoring. Out of the 147, four participants were not 

included since they did not live in Massachusetts, and two had no demographic data, 

resulting in a final sample of 141 participants.  Two datasets were utilized: 1) 

accelerometer monitoring minutes linked to GPS readings (N = 60,342); and 2) all 

accelerometer monitoring minutes with or without GPS data (N = 460,744). For 

statistical purposes, both datasets were aggregated at the person-day.  
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3.2.2.4 Physical Activity Outcomes 

The raw output for each minute of monitoring from the accelerometer is referred 

to as an “activity count.” Using cut-points developed by Matthews and colleagues, each 

minute of activity in the database was classified as “inactive” (0-99 counts), “light” (100-

759 counts), “moderate” (760-5724), and “vigorous” (≥5725) [128, 129].  Light physical 

activity, moderate physical activity, vigorous physical activity, and sedentary behavior 

were expressed as mean min per day. Additionally, total physical activity outcome was 

created based on daily mean activity counts per min. 

 

3.2.2.5 Determination of Monitoring Minutes On or Off Trails 

An on-trail variable representing when study participants engaged in activities on 

study trails or off trails (1 = on-trail, 0 = off-trail) was created by a GPS vendor (Westat, 

Rockville, MD: https://www.westat.com/).  All GPS monitoring minutes were used to 

verify this on-trail variable from the vendor using ArcGIS 10 (ESRI, Redlands, CA). 

Manual inspection of the monitoring minutes to identify the location as on- or off-trail 

was conducted. To be determined as on-trail minutes, two sequential minutes were 

required to take place on-trail. We investigated all monitoring minutes simultaneously 

with preceding and following GPS minutes to evaluate discontinuity of activity. These 

procedures involved simultaneous investigations of the following aspects: average speed 

of each monitoring minute, distance of activity for each minute, and accelerometer counts 

of each minute.      

With visual assessment of monitoring minutes, the on-trail classifications from 

the vendor to our trail classification were compared using Cohen’s kappa statistic (i.e., 

https://www.westat.com/
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the measure of concordance between the two variables). Landis and Koch’s classification 

of kappa statistics was used and the coefficient was 0.89 (p-value = 0.035). As we found 

almost perfect agreement between the vendor’s classification and ours [130], we used our 

on-trail variable in identifying trail use day. 

 

3.2.2.6 Classification of Intensity of Activity On-Trail using GPS and Accelerometer 

Data 

Two approaches to determine activity taking place on the five trails were 

explored: 1) accelerometer counts only and 2) both accelerometer and GPS data.  Based 

on average speed from GPS data, intensity of activity on-trail was redefined using 

metabolic equivalent (MET) value from the compendium of physical activities for 

bicycling [131] and accelerometer counts. If the average speed for a minute was ≥ 9.52 

mph (MET = 6.0 [131]), then the activity was defined as vigorous intensity.  If the 

average speed for the minute was ≥ 2.5 mph and < 9.52 mph (MET = 3.0 – 5.9) and the 

activity count was < 5725 then the activity was classified as moderate intensity. Light 

intensity and sedentary behavior were defined using the Matthews thresholds described 

previously [128, 129]. 

 

3.2.2.7 Trail Use Days 

A dichotomous variable, whether a participant utilized a trail on a given activity 

monitoring day (1 = day with trail use, 0 = day without trail use), was created.  To be 

determined as a trail use day, at least two consecutive minutes needed to occur on-trail. 

This operational definition is similar to one employed in a park use study in which 
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investigators defined a park visit day as one when the participant was in the park for at 

least three consecutive minutes or longer [132].  

 

3.2.2.8 Covariates 

Covariates included in the statistical analyses included: age, gender, race (white 

or non-white), education (undergraduate degree or less, some graduate or more), first 

time using trail (< 3 years, ≥ 3 years), origin when using trail (home, or other origins), 

usual reason for using trail (exercise/recreation, transportation, both exercise/recreation 

and transportation), trail sites (Cutler Reservation, Franklin Park, Minuteman Bikeway, 

Nashua River Rail Trail, Southwest Corridor), and monitoring minutes on weekdays 

versus weekend days. 

 

3.2.3 Statistical Analysis 

Descriptive statistics were conducted to summarize variables used in this study. 

Multilevel models (PROC MIXED in SAS version 9.3, Cary, NC) were employed to 

examine associations of trail use days with total physical activity (counts per minute); 

mean daily minutes of light, moderate, and vigorous physical activity, and sedentary 

behavior. The unit of analysis for the statistical analyses were person-day based on daily 

minutes of physical activity and sedentary behavior for trail users (N = 429 person-days).  

An intraclass-correlation coefficient was used to evaluate the extent to which the total 

proportion of variability in each outcome came from the variability between participants 

as compared to variability within participants for each outcome. Age-adjusted models 

were first examined. Subsequently, models were fully adjusted for age, gender, race, 
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education, trail site, and time of week. Additionally, the model for sedentary time was 

adjusted for physical activity. Alternatively, models for light, moderate, and vigorous 

physical activity minutes were adjusted for sedentary behavior.  All the analyses were 

conducted using PROC MIXED with SAS version 9.3 (Cary, NC). 

 

3.3 Overview of Study 3: Built Environment and Physical Activity 

This study employed a cross-sectional study design using accelerometer data linked 

to GPS coordinates collected from adults who live in Massachusetts to spatially and 

temporally contextualize locations where physical activity occurred. Built environment 

variables were created using a 50 meter buffer around each GPS monitoring minute.  

 

3.3.1 Specific Aim for Study 3 

The aim of the third study was to examine the associations between objectively 

measured built environment factors and MVPA and LVPA among a sample of adults.   

 

3.3.2 Methods for Study 3 

Study participants, data collection, and accelerometer/GPS data processing are the 

same as in Study 2. 

 

3.3.2.1 Study Participants 

Study participants (n = 147 of 178) satisfied both the accelerometer and GPS 

criteria for a valid monitoring day and had at least one valid day. Participants who did not 

live in Massachusetts (n=4), and did not provide demographic information (n=2) were 
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excluded from the analyses, resulting in a final analytic sample of 141 participants.  

Additionally, accelerometer data without GPS coordinates were not used for the analyses. 

 

3.3.2.2 Physical Activity Outcomes 

Using the same cut-point approach used in Study 2 to classify intensity of activity 

for physical activity for each minute, two binary physical activity outcomes were 

analyzed in this study. One binary outcome was created with each minute classified as 

MVPA vs inactive and light. The other was created based on each minute classified as 

light, moderate, or vigorous versus sedentary time.  

 

3.3.2.3 Built Environment Variables 

A spatial and temporal approach was used to characterize the built environment. 

These were created using 50 meter circular buffers for the locations encompassed by each 

minute of activity monitoring, based on the starting and ending latitude and longitude for 

each minute [38]. In other words, the built environment variables were created for actual 

locations where physical activity occurred (i.e., light, moderate, or vigorous intensity) 

and locations where physical activity did not occur (i.e., inactive or sedentary time). The 

following built environment variables were created  including population density, street 

density, LUM [88], walkability [133], and greenness [134, 135].  

To date, there is no consensus on which buffer sizes should be used for examining 

built environment attributes around minute-by-minute GPS/accelerometer points among 

adults. For example, one study recently examined associations between built environment 

variables (e.g., population density, presence of recreational facilities, and fast-food 



44 

 

 

4
4
 

outlets) and minute-by-minute physical activity among adolescent females [38]. These 

researchers used a 50 meter circular buffer around each GPS/accelerometer point to 

create the built environment variables [38]. Based on the previous literature, adolescent 

females were understood to typically walk 66.6 to 93.3 meters per minute. To handle a 

lack of independence of the built environment variables, these researchers used a 50 

meter circular buffer [38]. In contrast, the participants in the present study were adults 

who engaged in various types of physical activity, such as walking, running, or biking or 

motorized transportation. Walking speeds for adult pedestrians usually range from 72 to 

144 meters per minute [136, 137]. Depending on the types of activity, the speed and 

distance covered within a minute could vary substantially. To avoid the lack of 

independence between built environment variables, a 50 meter buffer was used to 

examine built environment for each GPS/accelerometer point. All built environment 

variables were created using ArcGIS version 10 (ESRI, Redlands, CA). 

Population density was created using U.S. Census 2000 data at the block group 

level and was calculated as the number of persons per square kilometer of area within the 

50 meter buffers for each monitoring minute . Population at the census block group level 

was linked to each GPS minute. Each 50 meter buffer could overlap more than one 

census block. In such case, population density would be uniform in each census block 

[138].  Based on the area of the census block within the buffer, they assigned a proportion 

of the population in the census block to the buffer [138]. Using TIGER files from U.S. 

Census 2000, street density was calculated by dividing the total length of street network 

within the buffers around a GPS minute by the total land area within the buffers. A higher 

street density indicates higher street connectivity. A LUM variable was created using 



45 

 

 

4
5
 

Landuse2005 from the Office of Geographic Information in Massachusetts [139].  LUM 

was computed with an entropy formula used in previous studies [133, 140] that estimates 

the mixture of various types of land uses within the buffer (i.e., residential, commercial, 

recreational, and urban public). The possible values of LUM range between 0 (no 

diversity) and 1 (maximum diversity).  A greenness variable was created using Landsat 

satellite image 2000, and was measured using the normalized difference vegetation index 

(NDVI) [135] within the buffer. NDVI values range from +1 (i.e., healthy green 

vegetation) to -1 (i.e., non-vegetated land cover) [135]. In previous studies higher 

greenness was inversely related to children’s BMI [135] and positively associated with 

greater pedestrian trail traffic [134].  A walkability index is a measure used to describe 

the extent to which an environment is supportive to walking and active lifestyles [133]. A 

walkability index was created within the buffer around each GPS/accelerometer point 

using LUM, population density, and street density variables [133]. A normalized 

distribution (z-score) for each variable was  summed to create a walkability index [133].  

Higher values for the walkability index are generally indicative of a neighborhood built 

environment supportive of physical activity.   

 

3.3.2.4 Covariates 

Socio-demographic factors were examined as covariates. Survey items on age, 

gender (i.e., male/female), race (i.e., white, black, Asian, other), ethnicity (i.e., 

Hispanic/Latino: yes or no) and educational attainment (i.e., high school, college, post-

grad) were included in the statistical models.  
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3.3.3 Statistical Analysis 

Descriptive statistics were conducted for study variables. Analyses to estimate 

associations between built environment variables and physical activity were performed 

using the generalized linear mixed models (GLMM; PROC GLIMMIX in SAS) that deal 

with a multilevel data structure (e.g., minute-by-minute observations nested within 

individuals). In this study, a unit of analysis was minute-by-minute of physical activity. 

The total GPS/accelerometer monitoring minutes for the analyses were 60,342. As a first 

step, separate GLMMs were fitted for each built environment variable, age, and each of 

the two physical activity outcomes (MVPA, LVPA). Subsequently, GLMMs were fitted 

with all four built environment variables (i.e., population density, street density, LUM, 

and greenness index) in the model and sociodemographic covariates for both MVPA and 

LVPA outcomes. Since the walkability index was a linear combination of population 

density, street density, and LUM, GLMM was fitted for walkability with covariates.  
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CHAPTER 4. SPATIAL CLUSTERING OF PHYSICAL ACTIVITY AND OBESITY 

IN RELATION TO BUILT ENVIRONMENT FACTORS AMONG OLDER 

WOMEN IN THREE U.S. STATES 

Citation: Tamura et al.: Spatial clustering of physical activity and obesity in relation to 

built environment factors among older women in three U.S. states. BMC Public Health. 

2014. 14:1322. DOI:10.1186/1471-2458-14-1322. 

 

Note: Headings, sub-headings, and a reference style and its numbering have been 

modified from the original published version.  

 

4.1 Abstract 

Background: Identifying spatial clusters of chronic diseases has been conducted 

over the past several decades. More recently these approaches have been applied to 

physical activity and obesity. However, few studies have investigated built environment 

characteristics in relation to these spatial clusters. This study’s aims were to detect spatial 

clusters of physical activity and obesity, examine whether the geographic distribution of 

covariates affects clusters, and compare built environment characteristics inside and 

outside clusters. Methods: In 2004, Nurses’ Health Study participants from California, 

Massachusetts, and Pennsylvania completed survey items on physical activity (N = 

22,599) and weight-status (N = 19,448). The spatial scan statistic was utilized to detect 

spatial clustering of higher and lower likelihood of obesity and meeting physical activity 

recommendations via walking. Clustering analyses and tests that adjusted for socio-
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demographic and health-related variables were conducted. Neighborhood built 

environment characteristics for participants inside and outside spatial clusters were 

compared. Results: Seven clusters of physical activity were identified in California and 

Massachusetts. Two clusters of obesity were identified in Pennsylvania. Overall, 

adjusting for socio-demographic and health-related covariates had little effect on the size 

or location of clusters in the three states with a few exceptions. For instance, adjusting for 

husband’s education fully accounted for physical activity clusters in California. In 

California and Massachusetts, population density, intersection density, and diversity and 

density of facilities in two higher physical activity clusters were significantly greater than 

in neighborhoods outside of clusters. In contrast, in two other higher physical activity 

clusters in California and Massachusetts, population density, diversity of facilities, and 

density of facilities were significantly lower than in areas outside of clusters. In 

Pennsylvania, population density, intersection density, diversity of facilities, and certain 

types of facility density inside obesity clusters were significantly lower compared to areas 

outside the clusters. Conclusions: Spatial clustering techniques can identify high and low 

risk areas for physical activity and obesity. Although covariates significantly differed 

inside and outside the clusters, patterns of differences were mostly inconsistent. The 

findings from these spatial analyses could eventually facilitate the design and 

implementation of more resource-efficient, geographically targeted interventions for both 

physical activity and obesity. 
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4.2 Background 

High rates of physical inactivity and the obesity epidemic continue to pose major 

public health burdens that not only influence children and adults, but also affect older 

adults in developed countries such as the United States [1, 3, 141].  Despite the health 

benefits of physical activity [1], U.S. national data collected objectively with 

accelerometers showed that older adults attained the lowest levels of physical activity 

among all age groups[3].  Furthermore, a U.S. national survey from 1999-2008 on the 

prevalence of obesity among adults indicated that 37% of men (≥ 60 years; highest 

among all age groups) and 34% of women (≥ 60 years) were obese [142].  Among older 

adults, weight gain is associated with declines in functional performance and daily 

abilities, which in turn can lead to more sedentary lifestyles [143]. 

To address these issues, the U.S. Department of Health and Human Services [1] 

and the World Health Organization [144] have strongly emphasized the importance of 

physical activity-friendly environments [145] and neighborhoods with better access to 

healthy foods [5].  The influence of environmental exposures on individual health may 

increase with age as older adults spend longer periods of time in or near residential areas 

[146].  A review of the neighborhood influences among older adults indicated that 

neighborhood environments can affect the older population’s health and functioning 

[147].  The majority of the literature indicates that there are positive relationships 

between neighborhood built environment characteristics (e.g., LUM, population density, 

street connectivity, and access to recreational facilities) and physical activity among older 

adults [18, 76-78].  Certain characteristics of neighborhood environments (e.g., a higher 

density of fast-food restaurants) are positively associated with obesity [22, 75] and body 
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weight [148]. In contrast, neighborhood walkability (i.e., describing the extent to which 

an environment is conducive to walking and an active lifestyle) and LUM are negatively 

associated with obesity [78], body mass index (BMI) [149], and body weight [148] 

among older adults.  However, results from other studies indicate null associations of 

neighborhood walkability, green spaces, street connectivity, and urban sprawl with BMI 

[150, 151] and obesity [146, 151, 152] among older adults.  

The majority of the studies cited above utilized geographically referenced data 

(e.g., participant’s geocoded home address) in the analyses. If participants in a given 

study live close to each other, their corresponding environmental characteristics would 

tend to be more similar [95]. Thus, relationships between the built environment and 

physical activity and obesity are clearly embedded in a spatial context [95].  However, 

most built environment studies have not taken these spatial relationships into 

consideration in the analysis.  

Spatial analytic techniques are needed to better understand the geographic 

patterns of physical activity and obesity in relation to the built environment.  Spatial 

clustering analysis, which tests for unusually concentrated areas with high or low 

prevalence of specified outcomes, is one technique that can be used to investigate spatial 

patterns of physical activity and obesity. Spatial clustering techniques have been applied 

in studies of chronic diseases, such as certain cancers [105-107, 153-156] and type II 

diabetes [27], in order to identify specific geographic areas where public health 

professionals may need to increase disease screenings and other prevention-related 

activities.    
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Recently, researchers have begun to apply spatial clustering techniques to 

physical activity [23, 24, 110] and weight-related outcomes, such as obesity [24, 111, 

112, 114] and BMI [28, 113].  Spatial clusters were consistently identified across these 

studies despite differences in cluster detection methods, participant characteristics, and 

geographic areas [23, 24, 28, 110-114].  Collectively, these studies demonstrate the utility 

of spatial clustering techniques for studying physical activity and obesity.     

Nevertheless, these spatial clustering studies [23, 24, 28, 110-114] have certain 

limitations. First, adjustment for the geographic distribution of covariates, sometimes 

referred to as spatial confounders, has been limited to age [23, 28, 111] and race [28]. 

Failure to examine other covariates (e.g., education and income), is a key limitation since 

the geographic distribution of these factors could account for spatial clusters.  

Additionally, only one study examined differences in participants’ built environment 

attributes inside and outside spatial clusters of transportation-related physical activity 

[23].  Lastly, investigators have not yet tested for clusters of physical activity and obesity 

among older adults, a population known to be at greater risk for physical inactivity [157] 

and obesity [158].  Therefore, the objectives of this study were to: 1) determine whether 

or not meeting recommended levels of physical activity and obesity were spatially 

clustered among older women in California, Massachusetts, and Pennsylvania; 2) 

examine whether the geographic distribution of demographic and health-related variables 

account for spatial clusters; and 3) compare demographic, health-related, and built 

environment attributes for participants living inside and outside spatial clusters.  
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4.3 Methods 

4.3.1 Participants 

The Nurses’ Health Study (NHS) is an ongoing cohort study that began in 1976 

with 121700 female registered nurses (ages 30-55 years at recruitment, 97% Caucasians) 

from 11 states. Currently NHS participants live in all U.S. states. The initial focus of the 

NHS study was to prospectively examine risk factors for chronic diseases, such as 

cardiovascular disease and cancer [159]. Participants are mailed follow-up questionnaires 

biennially, which assess potential risk factors and health outcomes. The current study 

builds on an exploratory study of NHS participants in California, Massachusetts, and 

Pennsylvania that involved developing objective built environment measures and testing 

associations with physical activity and obesity [121]. Thus, the current study involved 

22,599 NHS participants from these three states who completed the 2004 NHS survey 

and met the following criteria: 1) had a geocoded home address; 2) had complete 

information on physical activity, body weight, and walking limitations; 3) reported they 

were able to walk; and 4) did not live in a nursing home. All procedures for this study 

were approved by the Institutional Review Boards at Purdue University, West Lafayette, 

Indiana, and the Human Subjects Committee at Brigham and Women’s Hospital, Boston, 

Massachusetts.  

 

4.3.2 Physical Activity and Obesity 

Participants reported their average time per week engaged in walking for exercise 

or to work during the previous year.  Participants were also asked to provide their 

walking pace (i.e., easy/casual [< 2.0 mph]; normal/average [2.0-2.9 mph]; brisk [3.0-3.9 
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mph]; and very brisk [≥ 4.0]). Consistent with previous NHS studies using physical 

activity data, walking metabolic equivalent (MET) minutes/week was calculated by 

multiplying duration by the assigned MET value based on reported walking pace.  A 

binary physical activity outcome was created indicating whether the participant met the 

current U.S. physical activity recommendation of 500 MET minutes/week of activity via 

walking (i.e., equivalent to 150 minutes/week of moderate-intensity activity) [1].  Self-

reported height in 1976 (last time reported by NHS participants) and weight reported in 

2004 were used to calculate BMI = (weight in kg)/(height in m2). Obesity was defined as 

a BMI≥30.0. Underweight (BMI<18.5) participants were excluded from all analyses 

(n=473). The reproducibility and validity of the physical activity [117] and weight [160] 

variables have been shown previously.   

 

4.3.3 Built Environment 

Eleven objective built environment variables were created using ArcGIS 9.3 

software (ESRI, Redland, CA) and employed methods described more fully in earlier 

work [121]: population density, intersection density, diversity of facilities, and eight 

facility density variables. Built environment variables were created within 1200 meter 

line-based road network buffer (i.e., residential buffer) that extended from the geocoded 

home address of each participant [121].  In the previous work by this group, they created 

both 800 meter and 1200 meter buffers and found that differences in built environment 

variables for two buffer sizes were negligible [121].  Population density was calculated as 

the number of persons per square kilometer of area within the buffer using Landscan data 

[161].  Intersection density was computed by dividing the number of 3-way or greater 
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intersections by the total length of roads [123] within the buffer using StreetMapUSA 

[162].  A 2006 InfoUSATM facility database, containing North American Industrial 

Classification System (NAICS) codes and longitude and latitude for each facility [163] 

was used to create the diversity of facilities and facility density variables within each 

buffer. Using five categories of facilities (food, retail, services, cultural/educational, and 

physical activity), diversity of facilities was calculated with an entropy formula [133, 

140] that estimates the mixture of facility types. Possible scores range from 0 (no 

diversity) to 1 (maximum diversity).  Eight facility density variables were created for 

retail (e.g., book store), services (e.g., post office), cultural/educational (e.g., school), 

physical activity (e.g., gym, golf course), as well as the density of food facilities further 

classified into four different types of densities, including fast-food restaurants, full-

service restaurants (e.g., table-service restaurant), convenience stores, and grocery stores 

(e.g., supermarkets). These variables were calculated by dividing the number of facilities 

by kilometers of road within each 1200 meter buffer. 

 

4.3.4 Covariates 

A number of socio-demographic and health-related factors were examined as 

potential spatial confounders.  For each covariate, values were averaged for all 

participants in a given county, resulting in one aggregate value for the county.  

Individual-level socio-demographic variables included age and both nurse’s and 

husband’s education (only assessed in 1992). At the census tract level, socio-

demographic variables included proportion of the population without a high school 

education and median family income. Health-related variables consisted of physical 
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activity (yes/no: meeting or not meeting physical activity recommendations), obesity 

(yes/no: obese or not obese), walking limitations (yes: limited a lot or a little for walking 

from one to several blocks; no: not limited at all), smoking status (past, current, never), 

history of chronic diseases (yes/no; had heart disease, cancer, diabetes), and the Alternate 

Healthy Eating Index (AHEI assessed in 2002, a higher value indicating healthier eating), 

which estimates adherence to U.S. dietary guidelines [126].  The four continuous 

covariates, including age, proportion of the population without a high school education, 

median family income, and AHEI, were expressed as quintiles. Quintiles are defined as a 

five-level categorical covariate. These percentile ranges are: 0-20, 20.1-40, 40.1-60, 60.1-

80, and 80.1-100. 

 

4.3.5 Statistical Analyses 

A spatial scan statistic [115, 116] based on the Bernoulli model was used to 

separately test for county-level spatial clustering of women meeting current physical 

activity recommendations and obesity.  Unadjusted tests for clustering were conducted 

separately for participants in each of the three states.  The null hypothesis was that no 

spatial clusters of physical activity and obesity would be detected [115, 116].  If the null 

hypothesis was rejected, this was interpreted to mean that participants inside of the 

cluster have a higher or lower likelihood of meeting physical activity recommendations 

or being obese, compared to participants outside of clusters.  A relative risk (RR) was 

generated for each cluster along with a radius of the cluster. Calculations of the sizes and 

locations of the clusters were based on the centroids of each county.  Tests for clustering 

were then conducted adjusting for the geographic distribution of one covariate at a time, 
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including demographic and health-related covariates (i.e., test for spatial confounding).  

This analytic approach was used due to the challenge of interpreting clustering results 

when more than one covariate was included.  In other words, in cases where a cluster was 

altered by covariate adjustment, it would not be possible to determine which covariate 

was affecting the cluster (e.g., its size or location). This approach is consistent with the 

recent clustering research on active transportation and obesity [23, 28].  Age, nurse’s and 

husband’s education, educational attainments and median household income at the census 

tract level, walking limitations, previous chronic disease and obesity were included as 

covariates in physical activity analyses. For obesity analyses, covariates were age, nurse’s 

and husband’s education, educational attainments and median household income at the 

census tract level, walking limitations, previous chronic diseases, AHEI, smoking status, 

and physical activity.  Since potential effects of the neighborhood built environment on 

weight-status may take longer to appear than the effects on physical activity behaviors, 

obesity analyses were restricted to women who had lived at their address ≥ 4 years (N = 

19,448).  Obesity analyses with the full sample were also performed. However, the 

differences in locations and sizes of the clusters were minor.   

Monte Carlo testing was utilized to determine statistical significance of clusters. 

Statistical significance of the clusters was defined as a p-value less than 0.05 [115, 116].  

To better understand the characteristics of physical activity and obesity clusters, socio-

demographic, health-related, and objective built environment characteristics of 

participants were compared inside and outside the clusters using t-tests for continuous 

variables and chi-square tests for categorical variables. Socio-demographics, health-

related factors, and built environment attributes were compared between participants 
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living inside and outside clusters. Analyses were conducted with SaTScanTM version 9 

and SAS version 9 for UNIX.  Maximum window sizes were tested from 10-50% (in 

10% increments) of participants at risk. Since these different window sizes did not affect 

the results, all reported results were based on the 30% maximum window size.  

All analyses were carried out at the county level to maximize available cases and 

controls. According to SaTScan guidelines [109], if cases or controls are missing in a 

given row of data within a county, that row of data must be deleted to properly run 

SaTScan. To avoid further missing data caused by using finer geographic scales, the 

county boundary was used. Missing data at a finer scale would reduce the analytic sample 

and might distort the development of a spatial cluster due to artifacts of the missing data 

[109].  

 

4.4 Results 

4.4.1 Participants Characteristics 

The average age of participants in 2004 was 69.9 ± 6.8 years and was similar for 

women living in Massachusetts, Pennsylvania, and California. Overall, 23% of the 

women met current physical activity recommendations via walking (25.6% in California, 

24.0% in Massachusetts, and 20.2% in Pennsylvania). Approximately 21% of participants 

were obese (16.8% in California, 21.8% in Massachusetts, and 24.4% in Pennsylvania). 

 

4.4.2 Spatial Clusters of Physical Activity 

Spatial clusters of women meeting physical activity recommendations via walking 

were identified in California and Massachusetts, but not in Pennsylvania. In California, 
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four statistically significant spatial clusters of physical activity were identified (Table 4.1 

and Figure 4.1). 

Participants inside clusters 1 and 2 had a 51% (RR = 1.51, p = 0.0024) and 17% 

(RR = 1.17, p = 0.035) higher likelihood of meeting physical activity recommendations, 

respectively, as compared to participants outside of clusters. In contrast, participants 

inside clusters 3 and 4 had a 58% (RR = 0.42, p = 0.0027) and 29% (RR = 0.71, p = 

0.047) lower likelihood of meeting recommendations, respectively, relative to women 

living outside of clusters. Separately, participant’s and husband’s education, and obesity 

fully accounted for both clusters 2 and 4. Adjusting for other covariate adjustments, the 

size or location of the clusters changed. For instance, when adjusting for age, husband’s 

education, and obesity, cluster 1 became larger and cluster 3 became smaller. When 

adjusting for walking limitations, cluster 2 became smaller and the location moved to 

somewhat north in the San Francisco Bay Area. Adjusting for previous chronic diseases 

had little effect on the size or location of the clusters 1–3 in California.  

In Massachusetts, one statistically significant cluster of physical activity and two 

borderline statistically significant clusters were detected (Table 4.1 and Figure 4.2). 

Participants inside clusters 5 and 6 had 39% (RR = 1.39, p = 0.0003) and 48% (RR = 

1.48, p = 0.053) higher likelihood of meeting recommendations, respectively, compared 

to women outside of clusters. Participants inside cluster 7 had a 14% (RR = 0.86, p = 

0.060) lower likelihood of meeting physical activity recommendations compared to 

participants outside the cluster. Adjusting for covariates had no effect on the three spatial 

clusters of physical activity in Massachusetts. 
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Table 4.1 Characteristics of spatial clusters of physical activity in California and Massachusetts and obesity in Pennsylvania 

 Area: Counties Radius (km) Participants Casesa Relative risk P-value 

Physical activity clusters in California      

Cluster 1 Coastal area: San Luis Obispo, Santa Barbara 96.74 232 88 1.51 0.0024 

Cluster 2 Bay Area: San Francisco, Santa Clara, Santa Cruz, 

Alameda, San Mateo, Marin, Contra Costa 

73.19 1837 527 1.17 0.035 

Cluster 3 South inland: Tulare, Kern Kings 121.09 129 14 0.42 0.0027 

Cluster 4 North inland: Lassen, Shasta, Tehama, Plumas, 

Butte, Glenn, Sierra, Yuba, Nevada, Placer, Sutter, 

El Dorado 

139.21 385 71 0.71 0.047 

Physical activity clusters in Massachusetts      

Cluster 5 Cape Cod: Barnstable, Dukes, Nantucket 50.67 427 138 1.39 0.0003 

Cluster 6 Boston: Suffolk 0b 122 43 1.48 0.053 

Cluster 7 Central/Western Massachusetts: Berkshire, 

Franklin, Hampshire, Hampden Worcester 

117.08 1432 306 0.86 0.06 

Obesity clusters in Pennsylvania      

Cluster 8 Western Pennsylvania: Allegheny, Armstrong, 

Beaver, Butler, Cambria, Clarion, Forest, Indiana, 

Jefferson, Lawrence, Venango, Washington, 

Westmoreland 

82.93 2424 657 1.17 0.029 

Cluster 9 Near Philadelphia: Montgomery, Chester, Delaware 36.54 1335 268 0.8 0.01 
a Cases are defined as participants meeting physical activity recommendations and as obese participants. 
b Since Suffolk County was the only county identified as cluster 5, the radius was 0. 
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4.4.3 Spatial Clusters of Obesity 

Two statistically significant s Two statistically significant spatial clusters of 

obesity were identified in Pennsylvania (Table 4.1 and Figure 4.3), whereas no obesity 

clusters were identified in Massachusetts and California. Participants inside cluster 8 had 

a 17% (RR = 1.17, p = 0.029) higher likelihood of obesity and in cluster 9, a 20% (RR = 

0.80, p = 0.010) lower likelihood of obesity, as compared to participants outside of 

clusters. None of the covariate adjustments accounted for the two spatial clusters of 

obesity in Pennsylvania, nor did these adjustments affect the size or location of the two 

clusters, except for four cases. For instance, when adjusting for age, the proportion of the 

population without a high school education, median family income, and AHEI, cluster 9 

became slightly smaller, but was at the same location.  

 

4.4.4 Comparison of Demographic and Health-Related Factors Inside and Outside 

Clusters   

In California there were several statistically significant differences in 

demographic and health-related factors. However, the magnitude of the differences in 

some (e.g., age) was relatively small and no consistent patterns in the covariates were 

observed, except for median family income at the census tract level (Table 4.2). The two 

low physical activity clusters 3 and 4 in California had lower family income than did 

areas outside the clusters. 

In Massachusetts, there were statistically significant differences in demographic 

and health-related factors (Table 4.3). For example, educational attainments at the census 

tract level was significantly greater inside high physical activity cluster 5, compared to 
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outside this cluster; and it was significantly lower in clusters 6 and 7, compared to outside 

these clusters. The results are inconsistent that higher education might contribute to the 

development of high physical activity cluster 5, but not in cluster 6. Census tract level 

median family income was significantly lower inside high and low physical activity 

clusters 5–7. 

In Pennsylvania, there were statistically significant higher percentages of 

participants in high obesity cluster 8 with walking limitations and chronic diseases, a 

higher percentage of participants who never smoked, as well as lower family income, 

compared to areas outside of clusters (Table 4.4). Both individual and census tract 

educational levels and AHEI were significantly higher in the lower obesity cluster 9 

compared to outside the cluster. 

4.4.5 Comparison of Built Environment Factors Inside and Outside Clusters 

4.4.5.1 Physical Activity Outcome 

In California and Massachusetts, women living in two of the four higher physical 

activity clusters 2 and 6, respectively, had statistically significant higher population 

density (e.g., 2252 versus (vs.) 2003 persons/km2), intersection density (e.g., 6.08 vs. 

4.01), and diversity of facilities (e.g., 0.77 vs. 0.52) and facility density (consistent with 

higher walkability), compared to outside of clusters. Alternatively, the values for these 

built environment characteristics were significantly lower for women in three lower 

physical activity clusters (clusters 3 and 4 in California and cluster 7 in Massachusetts). 
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Figure 4.1 Spatial clusters of higher and lower likelihood of women meeting physical 

activity recommendations in California. The red color represents higher physical activity 

levels (clusters 1 and 2), whereas blue represents lower physical activity levels (clusters 3 

and 4). All clusters are from unadjusted tests. Since the analyses were conducted at the 

county-level, clusters were visualized using a county boundary. The radius for each 

cluster was reported in Table 1. 
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Figure 4.2 Spatial clusters of higher and lower likelihood of women meeting physical 

activity recommendations in Massachusetts. The red color represents higher physical 

activity levels (clusters 5 and 6), whereas blue indicates a lower physical activity level 

(cluster 7). All clusters were from unadjusted tests. Since the analyses were conducted at 

the county-level, clusters were visualized using a county boundary. The radius for each 

cluster was reported in Table 1. 
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Figure 4.3 Spatial clusters of higher and lower likelihood of obesity in Pennsylvania. The 

red color represents a higher obesity level (cluster 8), whereas blue indicates a lower 

obesity level (cluster 9). Both clusters are from unadjusted tests. Since the analyses were 

conducted at the county-level, clusters were visualized using a county boundary. The 

radius for each cluster was reported in Table 1.
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Table 4.2 Participant characteristics inside and outside of recommended levels of physical activity clusters in California (N = 7153) 

Factors Higher recommended levels of PA clusters Lower recommended levels of PA clusters Outside clusters 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 (n = 4570) 

(n = 232) (n = 1837) (n = 129) (n = 385) 

Socio-demographics 

Individual level 

Age, %a 

57.5 – 64.9 years 15.95 21.94** 17.05 17.92 19.67 

64.9 – 69.4 years 23.71 21.45 20.16 22.6 18.84 

69.4 – 73.5 years 23.28 19.22 20.16 18.96 19.89 

73.5 – 78.1 years 19.4 18.56 20.16 22.6 20.18 

78.1 – 85.4 years 17.67 18.84 22.48 17.92 21.42 

Nurse’s education, % 

RN degree 61.64 52.42 55.81 58.44 53.26 

Bachelors 22.41 29.01 26.36 27.01 26.87 

Graduate degree 8.19 11.7 6.98 8.83 11.9 

Missing 7.76 6.86 10.85 5.71 7.96 

Husband’s education, % 

High school graduate or less 28.88 22.81** 28.68 29.09 26.37 

Bachelors 27.16 24.93 18.6 28.83 24.86 

Graduate degree 25.43 29.23 23.26 23.12 25.73 

Missing 18.53 23.03 29.46 18.96 23.04 

Census tract level 

Proportion of population without high 

school education, %a 

0 – 20% 4.74*** 33.86*** 2.33*** 13.25*** 16.24 

20.1 – 40% 28.02 26.84 5.43 14.03 17.79 

40.1 – 60% 24.57 17.15 17.83 26.23 20.46 

60.1 – 80% 31.47 14.53 26.36 28.83 20.72 

80.1 – 100% 11.21 7.62 48.06 17.66 24.79 

Median family income, %a 

$18917 – 50034 18.10*** 2.67*** 54.26*** 41.30*** 24.25 

$50034 – 61942 35.34 7.57 27.91 37.92 22.47 

$61942 – 76251 29.31 16.82 10.85 7.01 22.21 

$76251 – 94702 13.36 28.31 3.88 9.61 18.32 

$94702 – 200001 3.88 44.64 3.1 4.16 12.76 
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Health-related factors 

Walking limitations, % 

     

Yes 25.43* 26.29*** 37.21 32.73 33.13 

No 74.57 73.71 62.79 67.27 66.87 

Previous chronic diseases, %      

Yes 31.47 28.91*** 34.11 33.77 34.42 

No 68.53 71.09 65.89 66.23 65.58 

Walking MET min/wk, mean (SD) 533.40 (607.40)*** 431.50 (586.10)*** 216.60 (339.20)*** 331.60 (505.00) 374.40 (540.10) 

BMI, mean (SD) 25.64 (4.27) 25.59 (4.73)* 26.60 (4.99) 26.18 (5.21) 25.89 (4.75) 

Built environment, mean (SD)      

Population densityb 1218.90 (812.00)*** 2252.40 (1768.20)*** 1358.50 (942.30)*** 743.50 (748.30)*** 2003.20 (1335.80) 

Intersection densityc 3.98 (1.11)* 4.41 (0.89)*** 3.73 (1.21)*** 3.22 (1.23)*** 4.14 (1.04) 

Diversity of facilitiesd 0.47 (0.34)** 0.59 (0.29)*** 0.46 (0.34)** 0.28 (0.33)*** 0.55 (0.31) 

Facility density (total)e 1.31 (1.56)* 1.89 (2.25)*** 0.90 (0.97)*** 0.64 (1.21)*** 1.59 (1.82) 

Retail 0.42 (0.60)*** 0.70 (0.98)*** 0.29 (0.40)*** 0.22 (0.49)*** 0.59 (0.80) 

Services 0.08 (0.15) 0.09 (0.15)*** 0.04 (0.07)*** 0.03 (0.10)*** 0.07 (0.14) 

Cultural/educational 0.31 (0.31) 0.36 (0.32)*** 0.21 (0.21)*** 0.14 (0.22)*** 0.29 (0.27) 

Physical activity 0.05 (0.09) 0.08 (0.10)*** 0.04 (0.05)*** 0.03 (0.06)*** 0.06 (0.09) 

Fast-food restaurants 2.48 (3.77)* 4.20 (7.68)*** 1.43 (2.09)*** 1.00 (2.58)*** 3.14 (5.33) 

Full-service restaurants 0.88 (1.49) 0.88 (1.47)*** 0.87 (1.59) 0.41 (1.52)*** 1.04 (1.66) 

Convenience stores 0.21 (0.42) 0.21 (0.42) 0.28 (0.45) 0.16 (0.45)** 0.23 (0.43) 

Grocery stores 0.37 (0.67) 0.41 (0.72)** 0.17 (0.37)*** 0.13 (0.46)*** 0.35 (0.65) 

Note: P-values are based on the t-test for continuous variables and chi-square test for categorical variables. The values are compared between participants in a 

specific cluster and those outside the cluster. SD = standard deviation. PA = physical activity. *p < 0.05; **p < 0.01; ***p ≤ 0.001. 
a A five-level categorical covariate expressed as quintiles. 
b Population density (number of persons per km2 of area within residential buffer) was averaged inside and outside of clusters. 
c Intersection density (number of intersections divided by total road length within residential buffer) was averaged inside and outside of clusters. 
d Diversity of facilities within residential buffer (ranging from 0 [no diversity] to 1 [max diversity]) was averaged inside and outside of clusters. 
e Facility density (number of facilities divided by kilometers of road within residential buffer) was averaged inside and outside of clusters. 
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Table 4.3 Participant characteristics inside and outside of recommended levels of physical activity clusters in Massachusetts (N = 5329) 

Factors Higher recommended  

levels of PA clusters 

Lower recommended  

levels of PA clusters 

Outside clusters 

Cluster 5 Cluster 6 Cluster 7 (n = 3348) 

(n = 427) (n = 122) (n = 1432) 

Socio-demographics     

Individual level     

Age, %a     

57.5 – 62.4 years 12.88*** 22.95 19.41** 20.91 

62.4 – 66.4 years 17.8 19.67 17.6 21.21 

66.4 – 70.7 years 21.55 20.49 19.76 20.13 

70.7 – 75.7 years 23.19 18.03 20.95 19.27 

75.7 – 83.4 years 24.59 18.85 22.28 18.49 

Nurse’s education, %     

RN degree 65.11 56.56 71.37*** 65.29 

Bachelors 18.74 21.31 11.8 17.89 

Graduate degree 8.43 9.02 8.45 8.99 

Missing 7.73 13.11 8.38 7.83 

Husband’s education, %     

High school graduate or less 25.29 22.13 38.06*** 30.35 

Bachelors 25.53 25.41 22 25.81 

Graduate degree 23.42 24.59 17.04 20.58 

Missing 25.76 27.87 22.91 23.27 

Census tract level     

Proportion of population without high school 

education, %a 

    

0 – 20% 29.51*** 12.30*** 8.10*** 24.07 

20.1 – 40% 27.87 5.74 14.46 22.1 

40.1 – 60% 20.61 18.03 17.81 20.58 

60.1 – 80% 17.33 22.13 30.03 16.16 

80.1 – 100% 4.68 41.8 29.61 17.08 

Median family income, %a     

$17246 – 55125 47.31*** 34.43*** 36.59*** 8.87 
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$55125 – 64456 39.58 21.31 27.3 14.22 

$64456 – 73101 6.32 21.31 19.27 21.54 

$73101 – 86110 6.79 9.84 12.02 25.96 

$86110 – 191062 0 13.11 4.82 29.42 

Health-related factors 

Walking limitations, % 

Yes 32.79 30.33 37.57*** 32.5 

No 67.21 69.67 62.43 67.5 

Previous chronic diseases, % 

Yes 33.72 31.15 28.84 29.48 

No 66.28 68.85 71.16 70.52 

Walking MET minutes/wk, mean (SD) 474.90 (600.50)*** 484.60 (591.60)* 338.80 (516.90) 364.90 (515.70) 

BMI, mean (SD) 25.92 (4.53)** 26.62 (5.67) 26.87 (5.13) 26.63 (5.02) 

Built environment, mean (SD) 

Population densityb 396.70 (294.00)*** 5530.70 (7422.20)*** 813.60 (879.70)*** 1214.90 (1271.30) 

Intersection densityc 4.14 (0.95)* 6.08 (1.13)*** 3.38 (1.30)*** 4.01 (1.34) 

Diversity of facilitiesd 0.35 (0.35)*** 0.77 (0.09)*** 0.44 (0.36)*** 0.52 (0.33) 

Facility density (total)e 0.69 (1.08)*** 4.21 (4.75)*** 0.97 (1.14)*** 1.22 (1.36) 

Retail 0.21 (0.42)*** 1.22 (1.22)*** 0.30 (0.42)*** 0.41 (0.54) 

Services 0.04 (0.09)*** 0.24 (0.38)*** 0.06 (0.11)*** 0.08 (0.12) 

Cultural/educational 0.13 (0.18)*** 0.91 (1.05)*** 0.25 (0.28)* 0.27 (0.28) 

Physical activity 0.04 (0.07)*** 0.12 (0.14)*** 0.04 (0.07)*** 0.06 (0.09) 

Fast-food restaurants 1.44 (3.00)*** 15.69 (27.58)*** 1.53 (2.68)*** 2.20 (3.52) 

Full-service restaurants 0.26 (0.72)*** 1.70 (2.13)*** 0.53 (0.96) 0.53 (1.10) 

Convenience stores 0.27 (0.64)*** 2.43 (2.35)*** 0.44 (0.81) 0.48 (0.76) 

Grocery stores 0.14 (0.38)*** 0.57 (1.02)*** 0.15 (0.43)*** 0.21 (0.52) 

Note: P-values are based on the t-test for continuous variables and chi-square test for categorical variables. The values are compared between participants in a 

specific cluster and those outside the cluster. SD = standard deviation. PA = physical activity. *p < 0.05; **p < 0.01; ***p ≤ 0.001. 
a A five-level categorical covariate expressed as quintiles. 
b Population density (number of persons per km2 of area within residential buffer) was averaged inside and outside of clusters. 
c Intersection density (number of intersections divided by total road length within residential buffer) was averaged inside and outside of clusters. 
d Diversity of facilities within residential buffer (ranging from 0 [no diversity] to 1 [max diversity]) was averaged inside and outside of clusters.  
e Facility density (number of facilities divided by kilometers of road within residential buffer) was averaged inside and outside of clusters.
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Table 4.4 Participant characteristics inside and outside of obesity clusters in Pennsylvania (N = 8598) 

Factors Higher obesity cluster Lower obesity cluster Outside clusters 

 Cluster 8 (n = 2424) Cluster 9 (n = 1335) (n = 4839) 

Socio-demographics    

Individual-level    

Age, %a    

57.5 – 62.4 years 19.93 21.42 19.05 

62.4 – 66.8 years 19.60 19.40 20.40 

66.8 – 71.1 years 21.16 18.50 19.98 

71.1 – 76.2 years 20.13 19.78 20.40 

76.2 – 83.5 years 19.18 20.90 20.17 

Nurse’s education, %    

RN degree 69.6 66.37*** 72 

Bachelors 13.78 14.38 12.69 

Graduate degree 6.64 10.19 5.95 

Missing 9.98 9.06 9.36 

Husband’s education, %    

High school graduate or less 41.46 30.04*** 42.28 

Bachelors 20.87 25.47 20.15 

Graduate degree 15.35 21.57 16.28 

Missing 22.32 22.92 21.29 

Census tract level    

Proportion of population without high 

school education, %a 

   

0 – 20% 21.95*** 49.66*** 11.94 

20.1 – 40% 25.95 23.07 17.23 

40.1 – 60% 22.81 11.69 20.56 

60.1 – 80% 18.81 8.46 22.42 

80.1 – 100% 10.48 7.12 27.84 

Median family income, %a    

$10461 – 42667 22.57** 1.12*** 23.25 

$42667 – 50341 25.70 2.77 21.49 

$50341 – 58152 21.20 10.94 22.32 

$58152 – 70096 18.65 22.25 20.79 

$70096 – 200001 11.88 62.92 12.15 

Health-related factors    

Walking limitations, %    

Yes 35.60** 30.71 32.32 

No 64.4 69.29 67.68 

Previous chronic diseases, %    

Yes 33.25** 31.69 29.68 

No 66.75 68.31 70.32 

Healthy Eating Index, %a    

22.5 – 44.5 18.89 17.30* 19.74 

44.5 – 50.8 19.64 17.30 19.22 

50.8 – 56.8 19.35 19.25 18.43 

56.8 – 63.8 19.02 18.43 18.64 

63.8 – 93.8 16.67 22.25 18.43 

Missing 6.44 5.47 5.54 

Smoking status, %    

Previous smoker 47.73* 44.42* 49.37 

Current smoker 43.19 47.34 43.36 
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Never smoked 8.99 8.09 7.11 

Missing 0.08 0.15 0.17 

Walking MET min/wk, mean (SD) 309.40 (492.90) 300.60 (460.60)* 331.90 (513.90) 

BMI, mean (SD) 27.41 (5.32) 26.47 (5.16)*** 27.18 (5.28) 

Built environment, mean (SD)    

Population densityb 941.60 (997.40)*** 1253.70 (913.20)* 1174.90 (1525.60) 

Intersection densityc 3.90 (1.54)*** 3.69 (1.16)*** 4.07 (1.59) 

Diversity of facilitiesd 0.50 (0.34)*** 0.53 (0.35)** 0.56 (0.33) 

Facility density (total)e 0.97 (1.08)*** 1.17 (1.16) 1.18 (1.24) 

Retail 0.30 (0.43)*** 0.39 (0.49) 0.37 (0.47) 

Services 0.06 (0.10)*** 0.08 (0.13) 0.08 (0.11) 

Cultural/educational 0.27 (0.26)*** 0.28 (0.23)*** 0.32 (0.30) 

Physical activity 0.04 (0.07) 0.05 (0.08)*** 0.04 (0.06) 

Fast-food restaurants 1.65 (2.68)*** 1.92 (2.47)** 2.20 (4.65) 

Full-service restaurants 0.66 (1.26)* 0.59 (1.16)*** 0.73 (1.25) 

Convenience stores 0.30 (0.54)*** 0.32 (0.52)*** 0.46 (0.64) 

Grocery stores 0.16 (0.39)*** 0.26 (0.55) 0.26 (0.59) 

Note: P-values are based on the t-test for continuous variables and chi-square test for categorical variables. 

The values are compared between participants in a specific cluster and those outside the cluster. SD = 

standard deviation. *p < 0.05; **p < 0.01; ***p ≤ 0.001. 
a A five-level categorical covariate expressed as quintiles. 
b Population density (number of persons per km2 of area within residential buffer) was averaged inside and 

outside of clusters. 
c Intersection density (number of intersections divided by total road length within residential buffer) was 

averaged inside and outside of clusters. 
d Diversity of facilities within residential buffer (ranging from 0 [no diversity] to 1 [max diversity]) was 

averaged inside and outside of clusters. 
e Facility density (number of facilities divided by kilometers of road within residential buffer) was averaged 

inside and outside of clusters.
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Contrary to expectations, higher physical activity cluster 1 in California and cluster 5 in 

Massachusetts had built environment characteristics that indicated lower walkability, in 

comparison to the areas outside of clusters. In the California cluster 1, which 

encompassed San Luis Obispo and Santa Barbara counties, values for several variables, 

such as population density (i.e., 1219 vs. 2003 persons/km2), intersection density (i.e., 

3.98 vs. 4.14), and diversity of facilities (i.e., 0.47 vs. 0.55) were significantly lower than 

outside of clusters. This pattern existed despite the fact that women in the cluster had 159 

more MET minutes/week of walking than those outside the clusters (Table 2). In 

Massachusetts, participants in cluster 5 (Cape Cod area) had statistically significant lower 

values for most built environment attributes (i.e., the differences were in unexpected 

directions), yet women in this cluster had 110 more MET minutes/week of walking than 

outside the clusters (Table 3). 

 

4.4.5.2 Obesity Outcome 

In Pennsylvania, the values for built environment characteristics inside obesity 

clusters tended to be lower compared to outside the clusters, regardless of whether or not 

it was a higher or lower obesity cluster (Table 4). In the higher obesity cluster 8, values 

for built environment characteristics, such as population density (i.e., 942 vs. 1,175 

persons/km2), intersection density (i.e., 3.90 vs. 4.07), diversity of facilities (i.e., 0.50 vs. 

0.56) and most facility density variables were significantly lower than outside the cluster. 

Among eight statistically significant differences in built environment characteristics 

inside and outside the lower obesity cluster, differences in three attributes were in the 
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expected direction was lower inside the cluster compared to outside (e.g., fast-food 

facility density; 1.92 vs. 2.20). 

 

4.5 Discussion 

The present study applied spatial scan statistics to identify spatial clusters of 

physical activity and obesity among approximately 20,000 older women in California, 

Massachusetts, and Pennsylvania. High and low physical activity clusters were identified 

in California and Massachusetts, while none were identified in Pennsylvania. High and 

low obesity clusters were detected only in Pennsylvania. The majority of the adjustments 

for demographics and health-related factors did not fully account for physical activity and 

obesity clusters, suggesting that other factors may be contributing to the development of 

these spatial clusters. Although some statistically significant differences in demographic 

and health-related characteristics inside and outside of clusters were found, not all 

patterns in differences were consistent. Furthermore, built environment characteristics 

inside and outside clusters of physical activity and obesity generally showed statistically 

significant differences. In a number of cases, higher physical activity clusters had higher 

values of population density and intersection density, expected to be associated with 

higher walkability. This finding is supported by a previous study on spatial clustering of 

active transportation in California [23]. However, in several other cases, built 

environment factors typically associated with higher neighborhood walkability were 

lower in high physical activity clusters, particularly along coastal areas in California and 

Massachusetts. 
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Identification of higher physical activity clusters in areas adjacent to the ocean in 

California and Massachusetts is generally consistent with findings from two previous 

U.S. studies [23, 114].  In a recent investigation of active transportation in California, 

researchers detected clusters of higher transportation-related walking near coastal areas 

around Long Beach and Santa Monica in Los Angeles County [23].  Another study, using 

data from the Behavioral Risk Factor Surveillance System (BRFSS) from 2000-2006, 

showed higher physical activity clusters in parts of the San Francisco Bay Area, 

northwest coastal states (Washington and Oregon), and by Lake Michigan [114].  

Collectively, the results from these recent U.S. studies [23, 114], earlier studies in 

Australia, which indicated a positive influence of coastal areas on physical activity [164, 

165], and the present study, suggest that living near large bodies of water has a positive 

relationship with physical activity.  However, since all of this evidence is from cross-

sectional studies, the direction of these effects cannot be determined.  A plausible 

alternative explanation is that more active, outdoor-oriented, and health conscious adults, 

including older adults such as those in the present study, seek to live in areas closer to 

lakes and oceans. 

The detection of higher and lower obesity clusters among participants in western 

and eastern Pennsylvania contrasts findings from two recent U.S. studies that used 

BRFSS data [28, 114].  In one study of U.S. adults, ages 22 to 74 years, researchers 

applied the spatial scan statistic to data from 1999 to 2003 and detected clusters of high 

and low BMI prevalence in southern (e.g., Louisiana) and western (e.g., California) states 

of the U.S., respectively [28]. However, they found no clusters of high or low BMI 

prevalence in Pennsylvania [28].  In another study of U.S. adults (aged ≥18 years) 
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investigators used the local Moran’s I to identify clusters using BRFSS data from 2000 to 

2006 [114].  They found significantly low obesity clusters in mountain regions of the 

U.S. (e.g., Colorado) and in some New England (e.g., Massachusetts) states as well as 

high obesity clusters in southern states (e.g., Texas) [114]. However, they did not detect 

significant clusters of obesity in Pennsylvania [114].  The present study’s findings may 

vary from these previous investigations due to differences in sample characteristics (e.g., 

older adults, women only, predominantly white), use of different spatial analytic 

techniques, the geographic scope of the study area (i.e., three states vs the entire U.S.), 

and the scale differences for the analyses (i.e., individual’s and census tract level 

variables at county level analyses for each state vs. county level variables for the analyses 

at the entire U.S.). 

Although a number of socio-demographic and health-related factors were 

examined as spatial confounders in the current study, there was limited evidence that 

these covariates accounted for spatial clusters of physical activity and obesity. The issue 

of spatial confounding has received little attention in previous cluster analyses of physical 

activity and weight status.  In two investigations of active transportation and BMI, only 

participants’ age [23, 28] and race [28] were evaluated as potential confounders.  In these 

studies, there was mixed evidence that age was a spatial confounder.  In one study 

adjusting for age fully accounted for a lower BMI cluster (i.e., disappearance of the 

cluster after adjustment), but only partially accounted for a higher BMI cluster (i.e., size 

of the cluster became larger, and location moved further south) [28].  However, in a study 

of active transportation clusters in San Diego County in California, age adjustment did 

not account for clusters [23].  Race fully explained spatial clusters of high and low BMI 
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detected in the U.S.[28].  The limited investigation of spatial confounders suggests the 

need for testing other types of factors that might account for spatial clusters of physical 

activity and obesity.  For example, these studies could include psychosocial variables 

(e.g., social support, self-efficacy, psychosocial hazards) that have been assessed in 

recent built environment studies [22, 56, 57, 166, 167] as well as eating behaviors (e.g., 

eating habits in the past year, eating-out behavior since it is hypothesized that obesity 

would be influenced by an individual’s past eating behaviors or habits) [22, 166].  

To the best of this group’s knowledge, this study is only the second one to 

compare objective built environment characteristics inside and outside of spatial clusters 

of physical activity and the first to do so with obesity.  Generally, a mixed pattern of 

differences in built environment characteristics was found, in some cases consistent with 

what would be hypothesized (e.g., higher connectivity in higher physical activity clusters) 

and in others contradicting these expectations.  In contrast to the present study, Huang 

and colleagues found a consistent and expected pattern of built environment differences 

inside and outside clusters, for example, where inside high active transportation clusters 

the values of population density and intersection density index were higher than in areas 

outside of clusters in Los Angeles and San Diego counties in California [23].  The 

findings from the present study highlight the complexity of built environment and 

physical activity relationships, resulting in consistent and inconsistent patterns in the built 

environment factors.   

There were consistent patterns in the built environmental attributes in the two 

high physical activity clusters 2 and 6 in California and Massachusetts, respectively. The 

majority of the built environment variables, including population density, intersection 
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density, diversity of facilities, and most of facility densities, were consistently higher 

compared to outside of clusters. These two clusters were located in more populous areas 

(San Francisco Bay Area and Boston) compared to the other two high physical activity 

clusters 1 and 5.  In contrast, low physical activity clusters 3, 4, and 7 were located in 

inland California and middle to western Massachusetts, and most of the built 

environment values for these clusters were consistently lower than outside of clusters. 

Inconsistent patterns of built environment factors across the clusters were also found, for 

example, the average level of walking for participants in higher physical activity cluster 1 

in California with lower built environment values, including population density, 

intersection density, diversity of facilities and some densities of facilities (i.e., 

hypothetically less favorable for walking) was 102 MET minutes/week higher than for 

women in higher physical activity cluster 2 with higher built environment values. One 

possible explanation for these findings is that certain unmeasured built environment 

characteristics, such as availability and condition of sidewalks, aesthetics, outdoor 

recreational facilities including trails and parks, or neighborhood safety (e.g., crime 

rates), may account for the differences in walking between these two clusters. Future 

analyses of physical activity clusters should examine a more comprehensive list of both 

perceived and objective built environment variables.   

The present study has several limitations.  The findings may not be applicable to 

more diverse groups of older women in the U.S., since the sample is predominantly 

Caucasian, moderately well-educated, and generally aware of health issues due to their 

background in nursing. The walking measure did not differentiate between walking for 

leisure and transportation. If separate measures of walking for recreation and 
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transportation had been available, different clusters might have been detected and 

patterns in built environment characteristics inside and outside of spatial clusters might 

have been different for the two types of walking. Thus, inconsistencies in built 

environment characteristics might have been observed in this study.  This study examined 

clustering at the county level and the actual spatial clustering of physical activity and 

obesity may not coincide with geo-political boundaries [168, 169].  Obesity estimates 

may be biased since self-reported height from 1976 was used to calculate BMI, resulting 

in misclassifying some participants as either obese or non-obese. As individual level 

income was not available, median family income at the census tract level was used in the 

analyses. Since the geographic distribution of individual level income would differ from 

the distribution of median family income, this scale difference may influence the 

existence of the physical activity and obesity clusters. A scan statistic based on the 

Bernoulli model restricts the type of the covariate adjustment to only categorical 

variables. In the present study, continuous covariates (e.g., median family income) were 

categorized into quintiles. Depending on arbitrary categories for these covariates, the 

assessment of the spatial clusters may be impacted with respect to the size or location, or 

disappearance of the cluster. The results from covariates expressed as binary and 

quartiles were compared to those of quintile covariates. However, the differences in 

results were minor. 

 

4.6 Conclusions 

The present study contributes to the sparse literature on spatial clustering of 

physical activity and obesity among older women, including the limited assessments of 
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spatial confounders, and comparisons of built environment characteristics inside and 

outside of clusters. Although spatial clusters of physical activity were detected, the 

majority of the spatial confounders examined did not explain the identified clusters. The 

patterns of the built environment values inside and outside of clusters revealed complex 

relationships. Higher street connectivity was consistently found in higher physical 

activity clusters 2 and 6, whereas inconsistent patterns even among high physical activity 

clusters 1 and 2 were found (i.e., a higher level of walking for cluster 1 with unsupportive 

built environment characteristics, compared to cluster 2). These findings were not fully 

consistent with existing built environment literature. The spatial clustering methods and 

findings have implications for future directions in public health research and practice.  

For example, the findings from this study and others [23, 28] suggest that further 

examination of factors that contribute to the development of spatial clusters of physical 

activity and obesity is needed.  One way to address this gap would be to examine space-

time clustering of physical activity and obesity, which may have the potential to shed 

new light on determinants, including neighborhood built environment factors.  In terms of 

public health practice, where surveillance data on physical activity and obesity are 

available along with geographic identifiers, public health officials could take advantage 

of existing cluster detection software, such as SaTScanTM [170], to identify clusters. 

Results of these spatial analyses could facilitate the design and implementation of more 

geographically targeted, resource-efficient interventions for both physical activity and 

obesity.  
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CHAPTER 5. ACCELEROMETER AND GPS ANALYSIS OF TRAIL USE AND 

ASSOCIATIONS WITH PHYSICAL ACTIVITY 

 

 

 

5.1 Abstract 

Purpose: To examine associations between trail use and physical activity and 

sedentary behavior and to quantify on-trail physical activity using accelerometers only 

and a combination of accelerometer and global positioning system (GPS) data.  Methods: 

Participants (N = 141, 53% female, 19-78 yr), who were recruited on five trails in 

Massachusetts, wore accelerometer and GPS units concurrently for one to four days. 

Total physical activity (daily mean activity counts∙min-1), and daily minutes of light, 

moderate, or vigorous physical activity, and sedentary behavior were derived from 

accelerometer counts. A trail use day was defined as a day on which a participant 

engaged in a minimum of two consecutive minutes of activity on a trail. Mixed models 

were used to examine whether trail use was associated with light, moderate, or vigorous 

physical activity, and sedentary behavior.  Intensity of activity on trails was quantified in 

two ways: using accelerometer counts only and using a combination of counts and GPS 

speed. Results: In multivariable models, trail use had statistically significant positive 

associations with total physical activity, moderate, and light physical activity. Minutes of 

vigorous physical activity on trails increased by 346% when accelerometer and GPS data 

were used to define intensity, compared to using accelerometer counts only.  
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Alternatively, on-trail minutes of light, moderate, and sedentary behavior decreased by 

15%, 91%, and 85%, respectively, when accelerometer and GPS data were used to 

classify intensity.  On three linear trails where bicycling was a more common activity, 

vigorous physical activity minutes increased between 786% and 1015%.  Conclusions: 

This study demonstrated that adults accumulated more total physical activity, moderate, 

and light physical activity on days when they used study trails, indicating the importance 

of these outdoor facilities for supporting regular activity. Exploratory analyses indicated 

that the combination of GPS and accelerometer data may be useful for classifying 

intensity of physical activity, particularly on trails where individuals are likely to be 

bicycling. Keywords: Exercise, sedentary behavior, geographic information system. 

 

5.2 Introduction 

Recent U.S. national guidelines for physical activity indicate that adults should 

engage in 150 minutes/week of moderate-intensity physical activity; or 75 minutes/week 

of vigorous-intensity physical activity or some combination of the two [1]. Well-

demonstrated health benefits of moderate-to-vigorous intensity physical activity (MVPA) 

include reduced risks for heart disease, some cancers, stroke, diabetes, hypertension, and 

psychological issues [1]. Beyond the focus on MVPA, there has been increasing interest 

in examining the protective effects of light-intensity physical activity on individual health 

[171]. Recent studies have shown that independent of MVPA, light physical activity is 

positively associated with physical health [172], such as biomarkers of cardiometabolic 

health [173, 174] and psychosocial health [172, 175].  
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Over the past two decades, social ecological frameworks that emphasize the use 

of environmental and policy approaches to increase physical activity have been embraced 

by researchers and practitioners [145]. Numerous studies have shown beneficial 

relationships between the neighborhood built environment, including a greater mix of 

residential and commercial land uses, street connectivity, access to parks and open 

spaces, and physical activity [18, 76-78]. One specific component of the built 

environment, community trails, has received growing attention as an important resource 

for supporting physical activity among adults [79, 80]. For instance, studies have shown 

that new community trails were positively associated with physical activity [81, 82]. 

Another study demonstrated that a park with a trail was more likely to be used for 

physical activity than parks only [83]. Finally, a study examining physical activity levels 

among trail users in the U.S. indicated that individuals who used trails at least once a 

week were twice as likely to meet physical activity guidelines, compared to those who 

rarely or never utilized trails [84]. Despite evidence for the physical activity benefits of 

trail use, there are two key limitations in this research area. First, the majority of trail 

studies have relied on self-report surveys [176]. These measures are limited by recall [36] 

and social desirability bias [177]. Although some studies have utilized infrared counters 

to objectively measure trail use [178, 179], these methods are not designed to quantify 

activity at an individual level; instead they provide aggregate measures of trail traffic at 

different locations and times. Another limitation of the current evidence on trails is that 

self-report measures have focused on assessing MVPA [85]. Given the growing evidence 

that light physical activity may have positive health effects, examining how trails may 

also support light physical activity is important to explore. 
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Simultaneous use of accelerometers and GPS units could be used to quantify 

physical activity occurring on trails and thereby provide a better understanding of how 

community trails can support regular physical activity [38, 132]. To date, researchers 

have concurrently used these devices to objectively assess how much physical activity 

occurs at home and school [30, 31], in parks and recreational facilities, and in open 

spaces [30-34]. One recent study used accelerometer and GPS monitoring with adults to 

demonstrate that bouts of daily MVPA were greater on days when participants visited a 

park [132]. Although this is a rapidly emerging research area, to our knowledge no 

studies have examined the association between trail use and light, moderate, vigorous 

physical activity, and sedentary behavior measured through simultaneous accelerometer 

and GPS monitoring. Therefore, the primary aim of this study was to examine 

associations between trail use and light, moderate, vigorous physical activity, total 

physical activity, and sedentary behavior among a sample of Massachusetts adults. A 

secondary aim was to objectively quantify physical activity and sedentary behavior 

occurring on-trail, using two approaches--the first using accelerometer counts only and 

the second using both accelerometer counts and GPS speed data.  

 

5.3 Methods 

5.3.1.1 Participants and Trail Characteristics 

The sample for this study was recruited from 1194 adults who completed brief 

intercept surveys at five trails in Massachusetts during the fall of 2004 and the 

spring/summer of 2005. The trails were: 1) Cutler Reservation (suburban conservation 

land with about two mile circular dirt path, highly wooded and water views); 2) Franklin 
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Park (500 acre urban park with three mile circuit of trail paths); 3) Minuteman Bikeway 

(11 mile suburban rail-trail, asphalt); 4) Nashua River Rail Trail (12 mile rural rail-trail, 

mostly asphalt); and 5) Southwest Corridor (five mile urban linear park, asphalt). Survey 

respondents who reported having used a trail at least four times in the past four weeks 

were asked to participate in a second study that involved wearing an accelerometer 

(ActigraphTM Model 7164) and global positioning system (GPS) unit (GeoStats Wearable 

GeoLoggerTM) for a four-day period (two weekdays, two weekend days). Of 294 

individuals who initially provided contact information, 178 wore the two devices. 

Recruitment procedures were described in detail in a prior study [88]. All procedures 

were approved by the Institutional Review Boards at Purdue University and the Human 

Subjects Committee at the Harvard School of Public Health. Participants provided written 

informed consent and were told that the main purpose of the study was to assess how 

much of their activity occurred while they were on a trail or at other places.  

 

5.3.1.2 Data Collection 

Research staff met participants at public places (e.g., libraries) to deploy and pick 

up equipment. Staff instructed participants how to wear the two devices and provided 

daily log sheets to record time-on and time-off for both devices. Participants were 

instructed to wear the accelerometer at all times for four days, with exceptions for periods 

of sleeping, bathing, or swimming.  The Actigraph was initialized to collect data using 

one-minute epochs. Participants were also instructed to wear the GPS device when they 

were outside irrespective of being active, driving a car, or taking a bus. Data were 

collected at five-second intervals. 
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5.3.1.3 Data Processing 

The data processing procedures were described previously [88]. GeoStats 

software was used to download raw data from the GPS receivers. For each participant, a 

research analyst evaluated the GPS data for the four-day period to identify outlying 

points that may be due to poor GPS signals. These points were subsequently removed 

from the database. GPS points were then aggregated to one-minute intervals, which had 

latitude and longitude for both the starting and ending points of each minute.   

Accelerometer data were downloaded using Actigraph software. GPS and 

accelerometer data were merged by using their respective date and time stamps. A valid 

monitoring day was defined as having a minimum of 40 minutes with GPS readings [88]  

and ≥ 600 minutes of valid accelerometer wear time [3, 127]. Among 178 participants, 

147 met both GPS and accelerometer criteria and had at least one valid monitoring day.  

Of these 147 participants, four were excluded due to not residing in Massachusetts and 

two had no demographic data, leaving a final sample of 141 individuals. These 

participants had 429 person-days of observations; a mean number of valid monitoring 

days = 3.1 days (± 1.1) per person. To examine associations between trail use and 

physical activity, two datasets were used: one using only monitoring minutes where 

accelerometer counts were linked to actual GPS readings (N = 60,342). The other dataset 

included all accelerometer monitoring minutes (N = 460,744), both with and without 

GPS coordinates. For statistical analyses, minutes in each dataset were aggregated to the 

person-day level.  
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5.3.1.4 Physical Activity and Sedentary Behavior Outcomes 

Using cut-points developed by Matthews, each monitoring minute was classified 

as sedentary behavior (i.e., 0-99 counts), light (100-759), moderate (760-5724), or 

vigorous (≥5725) [128, 129].  Light, moderate, vigorous physical activity, and sedentary 

behavior were expressed as mean minute/day. Additionally, total physical activity was 

defined as daily mean activity count/minute.   

 

5.3.1.5 Determination of Monitoring Minutes On Trails 

A variable indicating whether participants were on one or off one of the five study 

trails (1 = on-trail, 0 = off-trail) was initially created by a GPS vendor (Westat, Rockville, 

MD: https://www.westat.com/).  The vendor used automated procedures (.NET 

Framework v1.1.) to define trips as sets of GPS points grouped in time and space. To 

verify the on/off-trail classification created by the vendor, we manually inspected all the 

GPS monitoring minutes by overlaying the data on publicly available aerial photography 

and other GIS data sources (i.e., Open Street Map (https://www.openstreetmap.org) using 

ArcGIS 10.2 (ESRI, Redlands, CA)    

Visual checks of monitoring minutes to determine the location as on- or off-trail 

were performed by the lead author. To be categorized as on-trail, a minimum of two 

consecutive monitoring minutes needed to occur on the trail. This criterion excluded 

isolated GPS points that were classified as on-trail when a participant may have happened 

to cross a trail, for example, when traveling along a road that intersects a trail [132]. Each 

monitoring minute was examined concurrently with the preceding and following minutes 

to assess whether any spatial or temporal discontinuity of activity existed. These 

https://www.westat.com/
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procedures involved examination of the following: average speed for each minute, 

distance covered during a given minute, and accelerometer counts for each minute. 

Average of 5 - 10 minutes for each participant per day were spent to assess these 

procedures above.       

After visually inspecting each minute, we compared the on-trail classifications 

from the vendor to our trail classification using Cohen’s kappa statistic. Among all 

monitoring minutes (N = 60,342), 16% (n = 9625 minutes) were classified as on-trail and 

80.9% (n = 48,794) were classified as off-trail by both the vendor and our classifications. 

The vendor classified 1.7% (n = 1017) of all minutes as on-trail, whereas our group 

classified these as off-trail. Similarly, the vendor classified 1.5% (n = 906) as off-trail and 

we reclassified these minutes as on-trail. Based on Landis and Koch’s classification of 

kappa statistics [130], the coefficient was 0.89 (p-value = 0.011), indicating “almost 

perfect” agreement between the vendor’s classification and ours.  

The following four cases were most commonly observed during the 

reclassification process. First, some monitoring minutes that occurred in parking lots 

adjacent to trails were initially classified by the vendor as on-trail. Based on our visual 

checks, these minutes were reclassified as off-trail. Second, we reclassified some minutes 

as on-trail that the vendor initially classified as off-trail due to an average speed of 0 

MPH for the minute despite geographic proximity to a trail. In the third case, some 

monitoring minutes were misclassified by the vendor as on-trail since the GPS points 

occurred in close proximity, but not directly on a trail. For example, the participant was 

using a sidewalk or road that closely paralleled a trail segment. After our visual checks, 

these minutes were reclassified as off-trail. Fourth, some minutes initially classified as 
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on-trail had high average speeds, low accelerometer counts, and covered long distances. 

Our group reevaluated these minutes and determined that they would not be considered 

on-trail. They appeared to occur while the participant was driving a car on roads either 

parallel to the trails or on roads that crossed a trail. Since the visual inspection of 

monitoring minutes had almost perfect agreement with the original classification, the on-

trail variable for this study was based on our classification. 

 

5.3.1.6 Classification of Intensity of Activity On-Trail Using GPS and Accelerometer 

Data 

We explored two approaches to classifying intensity of activity on trails, one 

using accelerometer counts only (using cut-points) and one using a combination of counts 

and GPS speed. For the second approach, intensity of activity was classified based on 

average speed from the GPS device for a given minute, the  metabolic equivalent (MET) 

value for bicycling at that speed [131], and activity counts from accelerometer data. If the 

average speed for a minute was ≥ 9.52 mph (i.e., MET = 6.0 for bicycling [131]), then the 

activity was classified as vigorous.  If the average speed for the minute was ≥ 2.5 mph 

and < 9.52 mph (i.e., MET = 3.0 – 5.9) and the activity count was < 5725, then the 

activity for a given minute was classified as moderate. Light intensity and sedentary 

behavior were classified based on the Matthews cut-points described previously [128, 

129]. 
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5.3.1.7 Trail Use Days 

A binary variable was created to indicate whether or not a participant used any of 

the five study trails on a given day (1 = yes, used trail, 0 = no, did not use trail). To be 

defined as a trail use day, at least two consecutive minutes had to occur on-trail. This 

operational definition is analogous to one used in a recent study of parks in which 

researchers defined a park visit day as one where the user was in the park for ≥ three 

consecutive minutes [132]. Since several trails in our study are used for bicycling and a 

relatively long distance can be covered in two minutes, we decided to use a lower 

threshold for defining trail use.  

 

5.3.1.8 Covariates 

The following variables were included in multivariable models: age, gender, race 

(white or non-white), and education (undergraduate degree or less, some graduate school 

or more). In addition, several other variables were included as covariates since they might 

confound relationships between trail use and physical activity and sedentary behavior. 

These included: first time using a study trails (< three years, ≥ three years), origin when 

using trails (home or other), usual reason for using trails (exercise/recreation, 

transportation, both exercise/recreation and transportation), trail sites (Cutler Reservation, 

Franklin Park, Minuteman Bikeway, Nashua River Rail Trail, Southwest Corridor), and 

weekday versus weekend use [180]. 
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5.3.2 Statistical Analysis 

Descriptive statistics were performed to summarize all study variables.  Linear 

mixed models (PROC MIXED in SAS) were used to estimate relationships between trail 

use and total physical activity (counts/minute/day); mean daily minutes of light, 

moderate, vigorous physical activity, and sedentary behavior. Two datasets were used to 

analyze these relationships: one with accelerometer data linked to GPS coordinates 

(N=60,342), and the other with all accelerometer data (N= 460,744).  The unit of analysis 

was a person-day (daily minutes of activity were aggregated to the person-day level). The 

data structure was hierarchical, representing that person-day observations (level 1) were 

nested within an individual (level 2). For all outcomes, an intraclass-correlation 

coefficient (ICC) with an intercepts-only model was used to assess the extent to which 

the total proportion of variability in each outcome came from the variability between 

participants, as compared to the variability within participants. Using accelerometer data 

linked to GPS coordinates, the ICC ranged from 0.12 to 0.39 indicating that 12-39 % of 

the total variability in each outcome was due to the variability between participants.  In 

turn, using the larger accelerometer dataset, the ICC ranged from 0.17 to 0.46.  Models 

were fully adjusted for age, gender, race, education, trail site, and time of week. 

Sedentary time was adjusted for light, moderate, and vigorous physical activity outcomes, 

while minutes of physical activity was adjusted for in models for sedentary behavior. 

Based on the Akaike’s Information Criterion for model selection, trail use variables such 

as first time using trail, origin when using the trail, and usual reason for using trail were 

not included in the fully adjusted models. All analyses were performed with SAS version 

9.3 (Cary, NC, See Appendix A for SAS code).     
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5.4 Results 

5.4.1 Participants’ Characteristics 

The average age of participants was 44.1 ± 13.0 years (Table 1). Slightly over half 

(53.2%) were women; the majority (72.3%) were white, 20.6% were African-American 

or black, and 7.1% were Asian, Native Hawaiian, or other Pacific Islander. The majority 

had at least undergraduate degrees (95%). 

Approximately 48% of the participants (n=68) had four valid monitoring days 

with accelerometer data linked to GPS coordinates; 21% (n=30) had three days; 18% 

(n=25) had two days; and 13% (n=18) had one day. There were 231 participant-

monitoring days with trail use and 198 days without. Mean monitoring minute/day was 

155.1 ± 87.3 on days with trail use and  140.7 ± 91.5 on days without trail use (p = 

0.0945). Daily mean counts/minute were higher on days with trail use (1707.8 ± 1151.9), 

compared to days without trail use (1186.0 ± 1542.9, p <.0001). Average moderate 

physical activity minutes/day was higher on days with trail use (65.5 ± 43.9), compared 

to days without use (35.3 ± 35.8, p < .0001).  No statistical differences were found for 

average vigorous physical activity minutes/day on trail use (6.1 ± 13.9) and on non-trail 

use days (5.6 ± 15.9, p = 0.7290), and average light physical activity minutes/day with 

trail use (49.0 ± 52.3) and without trail use (41.9 ± 44.1, p =0.13.16). Average sedentary 

behavior minutes/day was lower on days with trail use (72.4 ± 134.7), compared to days 

without trail use (66.7 ± 90.6, p = 0.6035). 
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Table 5.1 Participants' demographic and trail-use characteristics, overall and by trail (N=141) 

 Overall 
Cutler 

Reservation 
Franklin Park 

Minuteman 

Bikeway 

Nashua River 

Rail Trail 

Southwest 

Corridor 

  N = 141 n = 20 n = 35 n = 33 n = 20 n = 33 

Age, mean (SD) 44.1 (13.0) 42.0 (9.2) 46.5 (12.9) 42.2 (12.6) 49.1 (16.2) 41.8 (13.0) 

Gender, n (%)       

  Female 75 (100) 10 (13.3) 12 (16.0) 16 (21.3) 12 (16.0) 17 (22.7) 

  Male 66 (100) 10 (13.5) 23 (31.1) 17 (23.0) 8 (10.81) 16 (21.6) 

Race, n (%)       

  White 102 (100) 17 (16.7) 3 (2.9) 31 (30.4) 20 (19.6) 31 (30.4) 

  African-American or Black 29 (100) 0 (0) 28 (96.6) 0 (0) 0 (0) 1 (3.5) 

  Others 10 (100) 3 (30.0) 4 (40.0) 2 (20.0) 0 (0) 1 (10.0) 

Education, n (%)       

  Some college or less 7 (100) 0 (0) 5 (71.4) 0 (0) 2 (28.6) 0 (0) 

  Undergraduate degree 73 (100) 9 (12.3) 23 (31.5) 11 (15.1) 10 (13.7) 20 (27.4) 

  Some graduate or graduate degree 61 (100) 11 (18.3) 7 (11.5) 22 (36.1) 8 (13.1) 13 (21.3) 

First time using trail, n (%)       

  < 12 months  13 (100) 2 (15.4) 2 (15.4) 2 (15.4) 3 (23.1) 4 (30.8) 

  1 - 3 years 39 (100) 10 (25.6) 5 (12.8) 6 (15.4) 8 (20.5) 10 (25.6) 

  > 3 years 89 (100) 8 (9.0) 28 (31.5) 25 (28.1) 9 (10.1) 19 (59.4) 

Origin when using trail, n (%)       

  Home 111 (100) 14 (12.6) 29 (26.1) 28 (25.2) 18 (16.2) 22 (19.8) 

  Work 8 (100) 4 (50.0) 1 (12.5) 2 (25.0) 0 (0) 1 (12.5) 

  Home and work 21 (100) 2 (9.5) 5 (23.8) 3 (14.3) 2 (9.5) 9 (42.9) 

  School 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 

Travel time from home to trail, n (%)       

  <15 minutes 111 (100) 12 (10.8) 30 (27.0) 27 (24.3) 12 (10.8) 30 (27.0) 
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  15-29 minutes 15 (100) 3 (20.0) 4 (26.7) 2 (13.3) 5 (33.3) 1 (6.7) 

  30-120 minutes 6 (100) 1 (16.7) 0 (0) 2 (33.3) 3 (50.0) 1 (0) 

  Missing 9 (100) 4 (44.4) 1 (11.1) 2 (22.2) 0 (0) 2 (22.2) 

Usual reason for using trail, n (%)       

  Recreation 99 (100) 20 (20.2) 33 (33.3) 18 (18.2) 20 (20.2) 8 (8.1) 

  Transportation 21 (100) 0 (0) 0 (0) 3 (14.3) 0 (0) 18 (85.7) 

  Both recreation and transportation 21 (100) 0 (0) 2 (9.5) 12 (57.1) 0 (0) 7 (33.3) 

Trail use, mean number of days (SD)b       

  Weekdays 0.9 (0.8) 0.4 (0.6) 0.9 (0.8) 1.0 (0.8) 0.7 (0.7) 1.1 (1.0) 

  Weekend days 0.8 (0.7) 0.6 (0.8) 0.8 (0.7) 0.9 (0.8) 0.8 (0.6) 0.7 (0.8) 

Mean min∙d-1 (SD)b       

  VPAc 5.9 (14.9) 4.9 (9.9) 7.2 (15.2) 8.7 (21.4) 3.6 (9.2) 3.5 (9.6) 

  MPAd 51.6 (43.0) 44.2 (36.9) 51.0 (39.8) 51.3 (42.8) 45.7 (42.5) 61.4 (49.0) 

  LPAe 45.7 (48.8) 32.1 (23.4) 43.4 (38.1) 42.5 (42.6) 78.7 (75.6) 37.3 (43.8) 

  SBf 69.8 (116.4) 60.0 (56.4) 48.1 (58.8) 70.2 (125.1) 66.0 (81.2) 99.8 (178.3) 

Note: a Others = American Indian, Asian, Native Hawaiian or other Pacific Islander. b SD = Standard Deviation. c VPA = vigorous-intensity 

physical activity. d MPA = moderate-intensity physical activity. e LPA = light-intensity physical activity. f SB = sedentary behavior.  
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Table 5.2 Distribution of physical activity and sedentary minutes on trails based on accelerometer data only (A)a and both accelerometer and GPS data (A/G)b (N= 10,531) 

 Overall minutes on-trail Cutler Reservation Franklin Park Minuteman Bikeway Nashua River Rail Trail Southwest Corridor 

  A A/G ∆%c A A/G ∆%  A A/G ∆%  A A/G ∆%  A A/G ∆%  A A/G ∆%  

VPAd 999 4454 +345.8 94 96 +2.1 546 595 +9.0 195 2061 +956.9 109 1215 +1014.7 55 487 +785.5 

MPAe 6839 5800 -15.2 670 709 +5.8 2976 3029 +1.8 1618 921 -43.1 742 511 -31.1 833 630 -24.4 

LPAf 2189 199 -90.9 29 11 -62.1 118 36 -69.5 1109 59 -94.7 679 58 -91.5 254 35 -86.2 

SBg 504 78 -84.5 27 4 -85.2 42 22 -47.6 130 11 -91.5 284 30 -89.4 21 11 -47.6 

Note: aA = Accelerometer counts were used to define intensity of activity, using the cut-points: sedentary = 0-99, light = 100-759, moderate = 760 – 5724, and vigorous ≥ 5725).  b A/G = 

Accelerometer counts and average GPS speed for each minute were used to define intensity of activity. Definition of vigorous intensity physical activity:  If average speed ≥ 9.52 mph, 
then intensity = vigorous.  Definition of moderate intensity physical activity: If average speed = 2.5 mph - 9.51 mph and counts ≤ 5725 then intensity = moderate.  The rest of monitoring 

minutes were based on cut-points for the accelerometer counts above. c Percent change = [(A/G - A)/A]*100. d VPA = vigorous-intensity physical activity. e MPA = moderate-intensity 

physical activity. f LPA = light-intensity physical activity. g SB = sedentary behavior. 
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Table 5.3 Associations between trail use and objective measures of physical activity and sedentary time (N=429 person-days) 

 Accelerometer data linked to GPS coordinatesa Accelerometer datab 

 Age adjusted modelc Fully adjusted modeld Age adjusted modelc Fully adjusted modeld 

 Beta (95% C.I.) p Beta (95% C.I.) p Beta (95% C.I.) p Beta (95% C.I.) p 

TPAe 583.17 (338.95, 827.39) <.0001 522.15 (272.66, 771.63) <.0001 113.81 (68.55, 159.08) <.0001 117.87 (71.35, 164.39) <.0001 

VPAf 1.88 (-0.29, 4.06) 0.0879 2.05 (-0.13, 4.24) 0.0653 2.25 (-0.30, 4.81) 0.0831 2.44 (-0.16, 5.03) 0.0651 

MPAg 28.49 (20.49, 36.48) <.0001 28.29 (19.99, 36.60) <.0001 31.34 (20.10, 42.58) <.0001 30.54 (18.99, 42.08) <.0001 

LPAh 5.65 (-1.67, 12.97) 0.1283 7.73 (0.35, 15.12) 0.0404 14.05 (-0.68, 27.41) 0.0397 14.09 (1.53, 26.64) 0.0284 

SBi -0.32 (-16.53, 15.90) 0.9689 -7.51 (-25.45, 10.42) 0.4069 2.32 (-27.54, 32.19) 0.8773 4.96 (-26.56, 36.48) 0.7550 

Note:  a GPS/Accelerometer data (N = 60,342): accelerometer counts are linked GPS recordings. bAccelerometer data (N = 460,774) including GPS recordings 

(n=60,342), imputed GPS recordings (n=381,084), and missing GPS recordings (n=19,348). d Adjusted for age, gender, race, education, trail site, weekday vs. weekends, 

and sedentary time (for physical activity outcomes, except total PA), and LPA, MPA, VPA minutes (for sedentary outcome). eTPA = total physical activity based on daily 

mean activity counts∙min-1.  f VPA = vigorous-intensity physical activity. gMPA = moderate-intensity physical activity. hLPA = light-intensity physical activity. iSB = 

sedentary behavior. 
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5.4.2 Trail Use Patterns 

The majority of participants (63.1%, n=89) used one of the study trails for the 

first time at least three years ago (Table 1). Home was the point of origin for 78.7% of 

participants (n=111) when they used trails. Approximately 5% of participants (n = 8) 

came from work and 15% (n = 21) came from both home and work. Most participants 

(78.7 %, n = 111) traveled less than 15 minutes to the trails and 13.5% (n = 19) traveled 

15-44 minutes. Ninety-nine participants (70.2%) reported that they use the trails for 

recreational purposes, 21 (14.9%) for transportation, and 21 (14.9%) for both recreation 

and transportation. Most participants reported that walking (n = 50, 35%) or bicycling (n 

= 45, 31.9%) were their usual activities when they used the trails for recreational 

purposes. Fifteen-percent reported jogging/running as their usual activity. 

 

5.4.3 Classification of Trail Activity Using Accelerometer Only Versus Accelerometer 

and GPS  

The distribution of light, moderate, vigorous physical activity and sedentary 

behavior minutes on five study trails differed substantially depending on whether it was 

based on accelerometer counts only or on the combination of accelerometer and GPS data 

(Table 2). Overall minutes of vigorous physical activity increased about 346% using a 

combination of accelerometer and GPS information, while minutes of moderate and light 

physical activity, and sedentary behavior decreased by 15%, 91%, and 85%, respectively. 

The percent increase in vigorous physical activity ranged from 2% at Cutler Reservation 

to 1016% at the Nashua River Rail Trail. The largest percentage increases in vigorous 

physical activity were found at three linear trails (i.e., Minuteman Bikeway, Nashua 
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River Rail Trail, and Southwest Corridor). Moderate physical activity minutes increased 

by 2% at Franklin Park and 6% at Cutler Reservation, whereas moderate physical activity 

decreased 24 - 43% on the other three trails. Minutes of light physical activity decreased 

by 62 - 95% on the 5 trails and sedentary behavior decreased 48 - 92%.   

 

5.4.4 Associations between Trail Use and Physical Activity and Sedentary Behavior 

Based on accelerometer data linked to GPS coordinates (N=60,342), there were 

statistically significant positive associations between trail use and physical activity and an 

inverse association with sedentary (Table 5.3), with a few exceptions for LPA. Trail use 

was positively associated with total physical activity, though attenuated from β = 587.8 

counts/minute to β = 530.2 counts/minute in the fully adjusted model. Trail use was 

positively associated with moderate physical activity (approximately 28 mean 

minutes/day more compared to no trail use). Trail use was also significantly associated 

with light physical activity in the fully adjusted model (β = 7.73 mean minutes/day). 

However, trail use was not associated with vigorous physical activity and sedentary 

behavior. 

With the use of accelerometer dataset (N=460,744), there were statistically 

significant positive associations between trail use and total physical activity (β = 117.87 

mean counts/minute) and moderate physical activity (β = 24.48 minutes/day) in fully 

adjusted models.  In contrast, trail use was not associated with vigorous physical activity 

and sedentary behavior.   
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5.5 Discussion 

Simultaneous assessment of physical activity with accelerometers and GPS units 

with 141 trail users in Massachusetts indicated that trail use was positively associated 

with daily minutes of light, moderate, and total physical activity (daily mean 

counts/minute). However, trail use was not associated with vigorous physical activity and 

sedentary behavior.  Using a larger dataset with all available accelerometer data (with or 

without GPS coordinates), positive associations between trail use and total physical 

activity and moderate physical activity were also found. However, the magnitude of these 

effects was lower compared to the results from GPS/accelerometer data. No associations 

were found between trail use and vigorous physical activity and sedentary behavior using 

this larger dataset that included accelerometer data without locational information.  

The amount of vigorous physical activity on study trails changed substantially 

when it was classified with a combination of accelerometer counts and GPS speed, 

compared to classification with counts only.  Overall on-trail vigorous physical activity 

minutes increased four to five-fold based when GPS speed data was used.  In contrast, 

on-trail light and moderate physical activity, and sedentary behavior minutes decreased 

by approximately 15%, 91%, and 85% respectively, when the combination of both 

accelerometer and GPS data was used to classify intensity of activity.  On-trail vigorous 

physical activity minutes increased from 786% to 1015% on three linear trails where 

bicycling is a more common activity.     

Our findings of significant positive associations between trail use and total 

physical activity, vigorous, moderate physical activity were comparable to the results 

from a recent study by Evenson and colleagues [132] on parks and physical activity in 
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five U.S. states. Using accelerometer and GPS data collected from 218 adult men and 

women (age ranged from 18-85), researchers found significantly higher levels of total 

physical activity (343 median counts/minute versus 287) and moderate physical activity 

(26.4 median minutes/day versus 16.7) on days with a park visit compared to days 

without a visit [132]. However, there were no significant differences in vigorous physical 

activity between days when parks were used and days when they were not used. In our 

study, trail use was associated with 522 counts/minute higher and with 28 minutes/day 

higher moderate physical activity. These associations were expected since these trails are 

settings that support moderate physical activity, particularly walking, which is the most 

common on-trail activity identified by participants. The findings that trail use was not 

associated with vigorous physical activity may in part be the overall low levels of 

vigorous physical activity among participants. This low level of vigorous physical 

activity is consistent with national surveillance data from accelerometers, which showed 

that adults about four minutes/day of vigorous physical activity or less [3]. 

Our findings from analysis of a larger accelerometer dataset are generally 

consistent with the findings for mean counts/minute and moderate intensity physical 

activity based on the smaller accelerometer dataset linked to GPS coordinates. Consistent 

with findings from accelerometer data linked to GPS coordinates, trail use was not 

associated with vigorous physical activity and sedentary behavior.  Our findings that a 

trail use day was positively associated with daily light physical activity and not 

associated with minutes of sedentary behavior differ from Evenson and colleagues’ 

findings for park visits among adults (age ranged from 18-85) [132]. These researchers 

found almost the same amount of light physical activity on days with and without a park 
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visit; 167.9 minutes/day and 169.8, respectively [132]. Alternatively, we found almost 

eight more minutes of light physical activity on days with trail use. On days with a park 

visit, participants accumulated more sedentary minutes compared to days without a visit 

(447.5 minutes/day and 430.6, respectively); whereas in the present study trail use was 

not associated with sedentary time. Parks are often designed with a wide range of 

amenities that not only support different types of physical activity, but also  support 

sedentary behaviors such as sitting and reading on a bench or having a picnic. 

Alternatively, trails by their very design are intended to support moving about; in other 

words, physical activities such as walking, jogging, and bicycling [83].  

 When we examined associations with the larger accelerometer dataset, trail use 

was positively associated with light physical activity and was not associated with 

sedentary behavior. These findings were consistent with those from the smaller dataset 

linked to outdoor location via GPS and in general seem to bolster the finding that use of 

trails may be associated with higher levels of light intensity physical activity.  A large 

volume of sedentary behavior in daily activities might dilute associations between trail 

use and sedentary behavior.  

A growing number of studies have applied accelerometer and GPS units to 

examine relationships between the built environment and physical activity, whereas 

others focused on classifying modes of activity using accelerometer or GPS data [89, 

181, 182]. For example, a recent study examined modes of transportation such as 

walking, bicycling, driving a car, and taking a bus or train, based on GPS speed only 

[181].  Another study utilized both GPS speed and accelerometer counts to identify mode 

of activity [89]. A recent study examined whether routes of activity for transportation-
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related physical activity can be determined by intensity and speed of activity (i.e., 

commutes to/from workplace) using GPS, accelerometer, and survey data [182]. These 

studies have demonstrated that GPS data can be utilized to identify types of activities 

such as walking, running, bicycling, or driving a car.  In contrast, we attempted to 

classify intensity of activity occurring on-trail by using two approaches, accelerometer 

counts only, and the combination of accelerometer counts and GPS speed.  

On-trail vigorous physical activity minutes substantially increased on three linear 

trails, the Minuteman Bikeway, Nashua River Rail Trail, and Southwest Corridor, 

whereas moderate, light physical activity, and sedentary behavior minutes decreased. In 

contrast, on-trail vigorous physical activity minutes increased on Cutler Reservation and 

Franklin Park, but to a small extent, compared to the three linear trails. A plausible 

explanation for these differences is that Cutler Reservation and Franklin Park are circular 

trails generally used for walking, jogging, and running. Conversely, Minuteman 

Bikeway, Nashua River Rail Trail, and Southwest Corridor are relatively long, asphalt-

surfaced rail-trails and linear parks that experience a high volume of bicycling, in 

addition to walking, and jogging/running. For example, intercept survey data indicated 

that more than half of the participants recruited on the Minuteman Bikeway (n = 18 of 33 

participants) and the Nashua River Rail Trail (n=17 of 20) reported that their usual 

activity on the trails was bicycling. In contrast, few participants recruited from the other 

two trails reported that bicycling was their usual activity. The use of GPS and 

accelerometer data to classify intensity of physical activity may be better suited to 

specific outdoor settings such as trails, where researchers can be more certain that faster 

speeds are indicative of bicycling or in-line skating versus driving a car.    
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This study has several strengths that further bolster its contribution to the 

evidence base on trails and physical activity.  The use  of accelerometer data linked to 

GPS coordinates  allowed us to objectively determine trail use days; a distinct advantage 

over previous studies which relied almost exclusively on self-reports to identify trail use. 

Furthermore, as the majority of previous trail studies using survey data focused on 

MVPA, this study added to limited literature on associations between trail use and 

objectively measured light physical activity and sedentary behavior. This has public 

health relevance given the growing evidence that light physical activity may have health 

benefits and that sedentary behavior has health risks independent of physical activity. 

Strength of this study was the manual checking and verification of monitoring minutes 

occurring on- and off-trail. We found almost perfect concordance between a previous 

vendor’s classification and ours. We reclassified the intensity of activity occurring on-

trail based on the combination of GPS and accelerometer data. Using GPS speed data in 

addition to accelerometer counts may help to improve the classification of intensity of 

physical activity in such contexts, particularly areas where cycling is a common activity.  

 This study has several limitations. Participants were generally well-educated, 

outdoor-oriented, frequently used trails, and their levels of physical activity were greater 

than those of the representative U.S. population.  Therefore, the findings from this study 

are not necessarily generalizable to adults using other trails in Massachusetts or 

elsewhere in the U.S. Since only five study trails were used to define trail use day, 

associations between trail use and physical activity and sedentary behavior may be 

biased. Several variables including intra-personal (e.g., attitude, enablers, and barriers 

towards physical activity [82]), interpersonal (e.g., social support [183]), and 
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environmental factors (e.g., weather conditions [176]) in the ecological frameworks, were 

not included in this study. Some of these variables may confound or moderate the 

associations between trail use and physical activity and sedentary behavior. For example, 

attitude toward being physically active among intrapersonal factors is known to be 

positively associated with physical activity [12]. Social support from families and friends 

is also related to higher physical activity levels [14]. Furthermore, weather conditions 

such as temperature and daylight hours are positively associated with physical activity 

[180]. Thus, the findings from our study could potentially be confounded by individual, 

interpersonal, and environmental variables. 

 

5.6 Conclusions 

Simultaneous use of accelerometer and GPS data allowed us to examine 

associations between trail use and objective measures of light, moderate physical activity, 

vigorous, total physical activity, and sedentary behavior. Trail use days were positively 

associated with light, moderate and total physical activity. These findings are consistent 

with prior research on the benefits of trails in terms of supporting regular physical 

activity and further support the Community Preventive Services Taskforce 

recommendations that creates and enhances accessibility to places for physical activity 

[79].  In addition, this study provides preliminary evidence that trails may contribute to 

higher levels of LPA, which in turn might contribute to reducing risk of adverse health 

outcomes, such as cardiometabolic disease [173, 174]. Finally, this study’s findings 

indicate that combined accelerometer and GPS monitoring may provide an improved 
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method to measure physical activity on trails, particularly those where bicycling is a 

common activity.  
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CHAPTER 6. APPLICATION OF ACCELEROMETER AND GPS MONITORING TO 

EXAMINE RELATIONSHIPS BETWEEN BUILT ENVIRONMENT AND 

PHYSICAL ACTIVITY  

 

 

 

6.1 Abstract 

Accelerometer counts linked to global positioning system data were used to 

estimate associations between the built environment and minute-by-minute physical 

activity among 141 adults in Massachusetts. Generalized linear mixed models were fitted 

to examine associations between five built environment variables and MVPA and LVPA. 

Overall, there were statistically significant positive associations between population 

density and MVPA and LVPA. Alternatively, street density, LUM, and a walkability 

index were inversely associated with MVPA and LVPA. These inverse relationships 

contrast evidence from most built environment studies in adults, though a direct 

comparison is not possible. Most studies have focused on buffers around home locations, 

rather than all locations where activity occurs, as was done in the present study.  

 

6.2 Introduction 

It is well documented that regular physical activity is beneficial for primary (i.e., 

risk reduction before the onset of disease ) to tertiary prevention of chronic diseases (i.e., 

reducing impact of diseases ) [1]. Over the past two decades, there has been a dramatic 
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shift in strategies for physical activity promotion from one heavily focused on individual 

or intrapersonal factors, such as self-efficacy, to one emphasizing the influence of 

neighborhood environmental factors [4, 145]. Systematic reviews on physical activity 

interventions conducted by the U.S. Community Preventive Services Task Force 

provided evidence for a creation of improved accessibility to locations for physical 

activity [184, 185]. 

The majority of built environment studies have focused on the environment 

around individuals’ homes (i.e., residential areas) in relation to physical activity [29, 86, 

186-188]. For example, it has been a common practice to obtain home addresses from 

study participants, geocode these addresses, and then, using various types of buffering 

approaches (e.g., circular buffers, line-based road network buffers), quantify different 

built environment variables within the buffer. One key limitation with this approach is the 

potential for a spatial mismatch between environmental exposures and locations where 

physical activity takes place. Adults are generally mobile and engage in daily activities 

that are not restricted to locations close to their homes. Therefore, relevant built 

environment exposures for physical activities, such as walking and bicycling, are more 

spatially dynamic rather than static [86, 187]. An ethnographic study of 10 families who 

resided in Boston indicated that only 6% of daily activities such as those involving work, 

education, child care, social services, and food or non-food shopping occurred within 

their residential census tract, while 21% of these activities occurred within adjacent 

census tracts and 73% in non-adjacent tracts [189].  Recent time-use surveys have also 

shown that many adults engage in exercise and sports activities outdoors approximately 

25% of the time, 25% of the time at home, 8% at gyms, 3% at work, 36% unspecified, 
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and 3% unusual places [190]. These studies have demonstrated that people frequently 

engage in daily activities, including physical activity, at places away from where they 

live [86, 191].   

An emerging method in built environment studies involving the simultaneous 

monitoring of activity with accelerometers and global positioning system (GPS) devices 

permits researchers to spatially and temporally link built environment exposures to 

physical activity. A number of recent studies have used GPS units to identify various 

locations where physical activity occurs, linking geographic coordinates to accelerometer 

measures of physical activity among children [192, 193]  and adults [88, 132].  In one 

study among youth, neighborhood walkability and intersection density were positively 

associated with GPS-accelerometer measured walking and bicycling, and were inversely 

associated with the time spent traveling in a vehicle [192]. Another  recent study 

examining associations between the built environment and MVPA among adolescents 

indicated that they engaged in more MVPA when they were at school, on sidewalks, and 

in parks and playgrounds, compared to at home [193]. Only a few studies using both 

accelerometer and GPS methods have spatially contextualized physical activity and 

sedentary behavior taking place among adults [88, 132, 194]. One study  found that 

within 1 kilometer buffers around participants’ homes, population and intersection 

density, and LUM were positively associated with MVPA occurring within the buffer, 

but not with total MVPA (at any location) [88]. Another study assessed physical activity 

and sedentary behavior occurring in parks and indicated that park visits were associated 

with more minutes of moderate, MVPA, and sedentary time compared to days without 

park visits [132].  
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A couple of studies in youth have spatially contextualized physical activity at a 

finer scale and examined associations between the built environment and minute-by-

minute or 30s samples of physical activity [38, 39].  One such study found that a greater 

number of MVPA minutes occurred at parks, schools, and in high population density 

areas, compared to sedentary time [38]. Another study found that children who were 

exposed to green space for longer than 20 minutes  engaged in almost five times more 

physical activity than those who were not exposed to any greenness [39]. Despite this 

evidence, there is a lack of built environment studies that have directly linked physical 

activity to built environment exposures via accelerometer and GPS monitoring, especially 

among adults. Therefore, the aim of the present study was to examine relationships 

between built environment variables and MVPA and LVPA linked to locations via GPS 

coordinates.  

 

6.3 Methods 

6.3.1 Study Participants and Data Collection 

During the fall of 2004 and spring/summer of 2005, 1194 adults, aged 19-78 

years, completed brief intercept surveys while they were engaging in various types of 

physical activity (e.g., walking, jogging/running, bicycling, or in-line skating) at five 

trails in Massachusetts. Respondents who reported using a trail at least four times in the 

past four weeks were recruited to participate in a sub-study and asked to wear an 

Actigraph™ accelerometer (Model 7164) and a GeoStats-GeoLogger™ (Atlanta, GA) 

GPS unit for four days (i.e., two weekdays and two weekend days). Among the survey 

participants, 294 (24.6 %) agreed to take part in this study and provided contact 



108 

 

 

1
0
8
 

information. However, 116 individuals did not participate due to loss of interest in the 

study, scheduling conflicts, or could not be contacted. Consequently, two devices were 

deployed to 178 study participants [88].  

Research staff met with participants to instruct them how to wear the 

accelerometer and GPS units and to provide log sheets for recording when the devices 

were worn or taken off.  Participants were asked to wear the accelerometer unit for four 

consecutive days, except while bathing, swimming, or sleeping. Participants were 

instructed to wear the GPS unit during all times spent outside.  The Actigraph 

accelerometer was programmed to collect data using 1-minute epochs.  The GPS unit was 

programmed to collect data at 5-second intervals.  

 

6.3.2 Data Processing 

Data processing procedures for the accelerometer and GPS data were described in 

more detail previously  [88]. A research analyst downloaded the raw GPS data using 

GeoStats software (Atlanta, GA). To identify improbable points or locations, the analyst 

manually reviewed GPS points over the monitoring period for each participant. GPS 

points were aggregated to one-minute intervals with latitude and longitude for both 

starting and ending points of each minute.  

Accelerometer data were downloaded using Actigraph software. By using the date 

and time stamps in the accelerometer and GPS unit, data from the two devices were 

merged. Each minute of GPS recordings was linked to the corresponding accelerometer 

count for that minute.  A valid monitoring day for the accelerometer was defined as a day 

with ≥ 600 minutes of valid wear time. [3, 127].  A valid day also required ≥ 40 minutes 
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of GPS data; the rationale for this approach was described in a  previous study [88]. One 

hundred forty-seven out of 178 participants had at least one valid monitoring day based 

on two criteria. Six participants were excluded either due to not living in Massachusetts 

(n=4) or not having any demographic information (n=2), resulting in a final sample of 

141 individuals.  Accelerometer data without GPS points and GPS points without 

accelerometer data were excluded from the analyses.  The unit of analysis was minute-

by-minute physical activity (N=60,342).  

 

6.3.3 Study Measures 

6.3.3.1 Physical Activity Outcomes 

Intensity of activity was classified using activity count cut-points developed by 

Matthews and Crouter [128, 129]: 0-99 counts = sedentary; 100-759 counts = light; 760-

5724 counts = moderate; and ≥ 5725 count = vigorous.  Two binary outcomes were 

created for each monitoring minute:  moderate-to-vigorous physical activity (1) versus 

sedentary-to-light activity (0). The second outcome was light-to-vigorous intensity 

physical activity (1) versus sedentary (0).    

 

6.3.3.2 Built Environment Variables 

Five built environment variables were created: population density, street density, 

LUM [88], walkability [133], and greenness [134, 135], using the ArcGIS version 10.2 

(ESRI, Redlands, CA). These were created using a 50-meter circular buffer around the 

ending latitude and longitude of each monitoring minute. This approach is consistent  
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with one used in a recent  study of adolescents that linked accelerometer data to GPS 

coordinates [38].  

Population density was created using U.S. Census 2000 data at the block group 

level and was calculated as the number of persons per square km of area within the 50 m 

buffer [138]. Street density was created using TIGER street files from the U.S. Census 

2000 and was calculated by dividing the total length of the street network within the 

buffer by the total land area within the buffer.  LUM was created using Landuse2005 

from the Office of Geographic Information in Massachusetts [139].  LUM was calculated 

with an entropy formula [133, 140] that estimates the mixture of different types of land 

use within the buffer (i.e., residential, commercial, recreational, and urban public). The 

possible values for LUM range from 0 (no diversity) to 1 (maximum diversity).  A 

greenness index was created within each buffer based on the mean normalized difference 

vegetation index (NDVI), which was measured using Landsat satellite images from 2004 

and 2005 (downloaded from the U.S. Geological Survey at http://earthexplorer.usgs.gov) 

[135]. NDVI values range from +1 (i.e., healthy green vegetation) to -1 (i.e., non-

vegetated land cover, or water body) [135].  A walkability index was created within the 

buffer using LUM, population density, and street density variables [133]. A normalized 

distribution (z-score) for each variable was summed to create the walkability index [133].  

Higher values for the walkability index generally indicate that an environment is more 

conducive to walking and an active lifestyle. 

 

http://earthexplorer.usgs.gov/
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6.3.3.3 Covariates and Moderator 

Participant demographics included age, gender, race (White versus Non-White), 

and education (undergraduate degree or less vs. some graduate courses or graduate 

degree). Other covariates were included in the models which could confound associations 

between the built environment and physical activity. These include time related 

covariates and monitoring minutes occurring on and off trails. Time of week and time of 

day variables were created based on the GPS and accelerometer time stamps since 

individuals may change their behavior during weekdays versus weekend days [38]. A 

time of day variable was created based on minutes occurring at midnight (12 am – 5:59 

am), morning (6 am – 11:59 am), afternoon (12 pm – 5:59 pm), and evening (6 pm – 

11:59 pm) [195].  An on-trail/off-trail variable (1= on-trail; 0= off-trail) was also 

included as a covariate since environmental characteristics could be different on trails and 

off trails. On-trail monitoring minute variable was also tested as a moderator to examine 

whether the associations between the built environment and physical activity varied. 

Community trails and paths are regarded as one component of the built environment to 

increase physical activity [84, 196]. However, it is not well-known what environmental 

characteristics trails encompass and how trails attract or pull individuals to engage in 

activities.  To date, no studies using both accelerometer and GPS data have explored 

whether associations of built environment characteristics and physical activity differ by 

monitoring minutes occurring on- and off-trails.     
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6.3.3.4 Variables Accounting for Minute-by-Minute Physical Activity 

To account for the temporal data structure of the minute-by-minute physical 

activity data, two new classification variables were created using the time stamps from 

the accelerometer and included in statistical models. The first classification variable was 

an “episode” of activity. An episode was considered a continuous bout of activity where 

there were no more than five consecutive minutes of missing accelerometer and GPS 

information. For example, if accelerometer and GPS data were available from 8:00 am to 

8:30 am and then were not available until 8:40 am, the first time frame would be 

considered episode #1 and the second starting at 8:40 would be classified as episode #2. 

In addition, to investigate the consistency of results based on different discontinuities 

between minutes of GPS and accelerometer data, a ≥ 10 minute criterion was used to 

define a new episode. Since the modeling results using the five and ten minute criteria for 

new episodes were fairly consistent, results using the five minute criterion for a new 

episode were presented.  Sequences of the activity within each episode were numbered to 

account for correlated data structure.  For example, if episode #1 has 30 consecutive 

minutes from 8:00 am to 8:30 am, then each minute from 8:00 am to 8:30 am was 

numbered from 1 to 30.   

 

6.3.4 Statistical Analysis 

Descriptive statistics were performed on all variables. Associations between built 

environment variables and MVPA and LVPA were conducted using generalized linear 

mixed models (GLMM; PROC GLIMMIX in SAS, see SAS code in Appendix B) to 

handle the multilevel data structure. Minute-by-minute observations (level 1) were nested 
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within each episode of activity for an individual (level 2), and which in turn were nested 

within an individual (level 3). In addition, due to temporal data (i.e., one minute 

intervals), we used an autoregressive model to examine the correlation structure of time 

series data within each episode of activity for an individual. Separately, GLMMs were 

used to examine relationships between each built environment variable, and MVPA and 

LVPA, while controlling for age. Subsequently, we fitted GLMMs with the four built 

environment variables (i.e., population density, street density, LUM, and greenness 

index) in the model, and controlled for age and race. Since gender, education, time of 

week and time of day were not statistically significant in any fully adjusted models, these 

covariates were not included in the final model. Since the walkability index represented 

the linear combination of population density, street density, and LUM, models were 

separately estimated for the walkability index in both age and fully adjusted models.  

 Prior to the stratified analyses, statistical interactions among five built 

environment variables and the on/off trail variable were examined. Statistically 

significant interactions were found for all built environment variables (p <.05) and 

associations with MVPA. No statistically significant interactions were found for LVPA. 

Subsequently, an on-trail variable was used to examine whether the associations between 

the built environment and physical activity varied. 

6.4 Results 

6.4.1 Participant Characteristics and Activity Monitoring Patterns 

Participants’ ages ranged from 19 to 60 years of age, with a mean of 44.0 ± 13.0 

years (Table 6.1). Approximately 53% were women, the majority (72.1%) was white, 
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52% had undergraduate degrees and 43% had some graduate education or more. On 

average participants had 3.05 ± 1.09 valid monitoring days.  Participants wore 

accelerometers for a daily mean of 892.5 ± 95.8 minutes. Mean accelerometer wear time 

linked to GPS coordinates was 144.6 ± 65.3 minutes/day.  Participants engaged in an 

average of 52.4 minutes of MVPA per day. Average minutes of light intensity physical 

activity was 42.9 per day and 42.3 minutes per day for sedentary behavior.   

 

6.4.2 Associations between Built Environment and MVPA and LVPA 

Population density had statistically significant positive associations with MVPA 

and LVPA in fully - adjusted models, but had null associations in age-adjusted models 

(Table 6.2). In age - adjusted models, street density was inversely associated with MVPA 

and LVPA. In fully - adjusted models, the associations between street density and MVPA 

and LVPA were slightly attenuated but still statistically significant, with odds ratios of 

0.67 and 0.78, respectively. Similarly, in age-adjusted models, LUM had significant 

inverse associations with MVPA and LVPA; associations were attenuated, but still 

significant in fully adjusted models. Greenness index had significant inverse associations 

with MVPA in fully-adjusted models and with LVPA in age - adjusted model only. In 

age and fully adjusted models, walkability index had consistent inverse associations with 

MVPA and LVPA, though the magnitude of effects was small. 
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6.4.3 Built Environment Associations with MVPA, Stratified by On-Trail and Off-Trail 

Location 

For minutes that occurred both on and off trails, there were statistically significant 

positive associations between population density and MVPA (Table 6.3). In both cases, 

the magnitude of associations was relatively small with odds ratios of 1.06 and 1.04, 

respectively. Street density had a significant inverse association with MVPA for minutes 

occurring off-trail, but had a null association for on-trail minutes. For monitoring minutes 

occurring on-trail, there was statistically significant inverse associations between LUM 

and MVPA, but no association was found for minutes off-trail. Greenness index had a 

significant inverse association with MVPA for off-trail monitoring minutes, but had a 

null association for on-trail minutes.  For on and off trail locations, there were statistically 

significant inverse associations between walkability and MVPA, with odds ratios of 0.97 

and 0.98, respectively.  

6.5 Discussion 

This study utilized accelerometer and GPS monitoring of adults in Massachusetts 

to more directly link built environment exposures to physical activity. In an analysis that 

examined relationships between built environment characteristics within 50-meter buffers 

and minute-by-minute measures of physical activity, population density was positively 

associated with MVPA and LVPA. Alternatively, street density, LUM, and walkability 

index within these small buffers were inversely associated with MVPA and LVPA. For 

monitoring minutes that occurred both on and off trails, population density had consistent 

positive associations with MVPA, while the walkability index was inversely associated 
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Table 6.1 Participant (N=141) and built environment characteristics 

N 

Age, n (%) 

   19-29 years 19 (13.5) 

   30-39 years 37 (26.2) 

   40-49 years 36 (25.5) 

   50-59 years 32 (22.7) 

   ≥ 60 years 17 (12.1) 

Gender, n (%) 

   Female 75 (53.2) 

   Male 66 (46.8) 

Race, n (%) 

   White 102 (72.4) 

   Non-white 39 (27.6) 

Education 

   Undergraduate degree or less 80 (56.7) 

   Some graduate or graduate degree 61 (43.3) 

Activity, mean min per person (SD) 

   MVPA 53.7 (31.5) 

   Light physical activity 44.1 (35.7) 

   Sedentary behavior 65.6 (67.1) 

Built environment, mean (SD) 

   Population density per sq. km 3330.2 (2611.8) 

   Street density per sq. km 16.2 (3.7) 

   LUM 0.18 (0.09) 

   Greenness index 0.21 (0.10) 

   Walkability index 0.70 (2.98) 

Note: * African-American or Black, Asian, Native Hawaiian or other Pacific Islander 
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Table 6.2 Associations between built environment variables and moderate-to-vigorous physical activity (MVPA) and light-to-vigorous 

physical activity (LVPA) (N=60,342)  

 MVPA  LVPA 

 
Age-adjusted 

modelsa 
Fully-adjusted 

modelb 
Age-adjusted 

modelsa 
Fully-adjusted modelb 

Covariates OR 95% CI OR 95% CI OR 95% CI OR 95% CI 

Built environment characteristics within  
50 m buffer around each minute of activity 

      

Population density (1000 people per sq. km) 1.00 1.00, 1.01 1.04 1.03, 1.05 1.00 0.99, 1.00 1.02 1.01, 1.03 

Street density (10 km per sq. km) 0.66 0.63, 0.69 0.67 0.64, 0.70 0.75 0.73, 0.77 0.78 0.76, 0.81 

LUM 0.54 0.46, 0.63 0.69 0.59, 0.81 0.54 0.47, 0.61 0.67 0.59, 0.76 

Greenness index 0.85 0.70, 1.04 0.59 0.48, 0.73 1.27 1.08, 1.49 0.91 0.77, 1.07 

Walkability index 0.97 0.97, 0.98 0.98 0.97, 0.98 0.97 0.97, 0.98 0.98 0.97, 0.98 

Note: a Each built environment variable was first examined separately in age-adjusted models. b One fully-adjusted model included age, 

race, on-trail monitoring minutes, population density, street density, LUM, and greenness. A second fully-adjusted model included the 

same covariates and the walkability index. OR = odds ratio. 95% CI = 95% confidence interval. 
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Table 6.3 Associations between built environment variables and moderate-to-vigorous 

physical activity by on-trail and off-trail location 

 On-trail (n=10,531) Off-trail (n=49,811) 

Covariates OR 95% CI OR 95% CI 

Built environment characteristics within  
50 m buffer around each minute 

    

Population density (1000 people per sq. km) 1.06 1.02, 1.10 1.04 1.03, 1.05 

Street density (10 km per sq. km) 0.89 0.78, 1.01 0.66 0.63, 0.69 

LUM 0.46 0.29, 0.72 0.88 0.74, 1.05 

Greenness index  0.84 0.48, 1.48 0.52 0.42, 0.64 

Walkability index 0.97 0.96, 0.99 0.98 0.98, 0.99 

Note: One fully-adjusted model included age, race, population density, street density, LUM, 

and greenness. A second fully-adjusted model included the same covariates and the 

walkability index. OR = odds ratio. 95% CI = 95% confidence interval. 
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with MVPA. Street density and greenness index were inversely associated with MVPA at 

off trail locations. In contrast, LUM was inversely associated with MVPA only for 

activity on trails. 

The results from the present study on positive associations between population 

density and MVPA are consistent with previous studies using accelerometer and GPS 

data [38, 88, 192]. For example, in a study examining relationships between population 

density and minute-by-minute MVPA among female adolescents in San Diego and 

Minneapolis, researchers found that higher population density was associated with 1% 

and 4% greater odds of MVPA, respectively [38]. Another recent study using 

accelerometer and GPS units among adolescents indicated that residential density within 

1 km of home was positively associated with walking [192]. In addition, an earlier 

analysis of the same sample of adults used in this study, which took a more home-centric 

approach, found that residential population density was positively associated with MVPA 

occurring within 1 km of home and work buffers [88]. The results from the previous 

studies [38, 88, 192] and our study indicated that those who reside in highly populous 

areas tend to engage in more MVPA.  

In our study street density was inversely associated with MVPA and LVPA, 

findings that are not consistent with a recent review on influences of the built 

environment on walking and bicycling within residential areas [197]. Overall the authors 

of the review study reported that street connectivity or density is positively associated 

with transportation and recreational walking and transportation bicycling [197]. In 

contrast, a recent study examining associations of street connectivity with walking 

patterns among the elderly in Bogota, Columbia, indicated that greater connectivity was 
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inversely associated with walking [198]. The researchers concluded that more 

intersections and busy streets could be related to a perceived risk of traffic accidents 

among older adults [198]. Another recent literature review  on the built environment and 

pedestrian safety documented that higher cross-street density is directly related to 

pedestrian crashes and traffic volumes are consistently associated with higher pedestrian 

injuries [199]. A possible explanation for the inverse association between street density 

and physical activity in the present study could be that participants who were physically 

active may intentionally avoid areas with more intersections and busy streets to engage in 

physical activity.  

LUM showed similar inverse relationships with both MVPA and LVPA. Two 

review studies reported that associations between LUM and recreational physical activity 

and walking were generally weak or null [13, 71]. Contrary to the hypothesized direction 

of  effects of LUM on physical activity, a recent study investigating relationships 

between LUM and transportation physical activity among Brazilian adults showed that 

greater LUM was negatively associated with bicycling for transportation (OR = 0.52, 

95% CI = 0.31 - 0.81)  [200].  Additionally, a recent study examined a potential 

mismatch between perceived and objectively measured LUM and self-reported measures 

of walking for recreation and transportation among adults in Australia [201]. Researchers 

found significant discordance between objective and perceived measures of LUM [201]. 

Among 42% of participants’ perceptions of LUM did not agree with objectively 

measured LUM [201]. They concluded that perceiving high LUM as low walkable 

environments is significantly related to less walking [201]. Conversely, perceiving low 

LUM as high walkable environments is associated with higher levels of walking [201]. A 
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possible explanation for the inverse associations found for LUM in the present study 

might be that participants’ perceptions do not align with the objective measures and 

perceptions may be driving their physical activity behavior.  

Our finding on inverse associations of greenness index with MVPA was 

inconsistent with recent studies with youth that used accelerometer and GPS assessments 

[39, 202]. These studies found positive associations of NDVI [39] and greenspaces [202] 

with MVPA. One general assumption with greenness is that the attractiveness of the 

scenery (e.g., trees, grass) would be conducive to engaging in outdoor physical activity. 

A possible explanation for these findings may be that some participants might prefer to 

be near water areas to engage in physical activity. However, areas with water areas are an 

indication of negative values in the greenness index. In addition, the greenness index is 

measured using satellite images and these can be influenced by weather conditions when 

they were taken. These two factors (water bodies and the weather conditions) might 

account for the inverse relationships between greenness and MVPA. 

The results from the present study indicating that walkability is inversely 

associated with MVPA was inconsistent with a  recent review study [203]. This review 

study indicated that high walkability encourages more MVPA among adults, by factors 

influencing the walkability index, such as presence or nonexistence of parking, 

sidewalks, or LUM, community trails or paths, safety, or intersection density [203]. 

Additionally, a recent study on neighborhood walkability and GPS-derived physical 

activity among adolescents found that higher walkability was positively associated with 

walking and bicycling time [192]. In our study, the walkability index was based on the 

combination of population density, street density, and LUM. Although population density 
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was positively associated with MVPA and LVPA, street density and LUM were 

negatively associated with MVPA and LVPA. Thus, the combination of street density 

and LUM might have driven inverse associations of walkability index with MVPA and 

LVPA. 

The strength of the present study is the concurrent use of accelerometer and GPS 

units to spatially contextualize immediate environments where physical activity takes 

place. . This dynamic approach addressed one key limitation in built environment 

research, which is the mismatch between environmental exposures and physical activity.  

The majority of the built environment studies have focused on an area around residential 

areas. However, an individual’s activity is not limited to locations around home. The 

present study spatially contextualized any locations where physical activity occurs. This 

approach has been supported by recent built environment studies [29, 86, 188].  

There are several limitations that should be addressed regarding the study sample, 

and GPS and accelerometer measures in this study. Participants were mostly white and 

resided in the City of Boston, Massachusetts. Their daily mobility may differ from 

individuals from rural areas. Thus, the findings from this study are not generalizable to 

those who live away from urban areas in Massachusetts. Data used in this study only 

monitoring minutes with GPS coordinates linked to accelerometer counts. It is likely that 

outdoor monitored minutes in metropolitan areas in Boston, and under tree canopy, as 

well as indoors may impede GPS satellite signals. Therefore, GPS coordinates would be 

missing, which may bias the estimated associations. Since only GPS monitoring minutes 

with geographic coordinates were used in this study, indoor activities occurring at 

locations such as fitness centers and shopping malls were not included in the analyses.  
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6.6 Conclusion 

Use of accelerometer data linked to geographic coordinates through GPS units 

allowed us to investigate relationships between objectively measured built environment 

around GPS points and minute-by-minute physical activity. The results of the present 

study are consistent with previous studies examining associations between population 

density and physical activity. However four other built environment variables were 

inversely associated with physical activity, in contrast to prior evidence. A potential 

explanation for the contradictory findings may be that adults who frequently used trails  

and generally engaged in higher levels of  physical activity, sought out environments with 

less dense roads and streets and less commercial activity [199].  Differences in some 

associations for on and off trail locations indicate that built environment variables may 

have different relationships with physical activity depending on the specific 

environmental context. Further research is needed to investigate places where objectively 

measured physical activity takes place and associations with built environment exposures 

at those locations.  
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CHAPTER 7. DISCUSSION 

7.1 Summary 

The research in this dissertation broadly focused on the built environment and 

physical activity using three distinct approaches. These included testing for spatial 

clustering of self-reported physical activity and obesity among older women in three U.S. 

states, examining relationships between objective measures of trail use and physical 

activity among Massachusetts adults, and investigating associations between the built 

environment and minute-by-minute physical activity using a combination of 

accelerometer, GPS unit, and GIS methods. Collectively, these studies contribute to the 

area of built environment and physical activity research both methodologically and add to 

the current evidence base.  

The first study demonstrated the utility of spatial clustering analysis for physical 

activity and obesity among older women in the U.S. Prior to this study, researchers had 

only tested age and race as variables that could possibly account for spatial clusters of 

physical activity and obesity. The present study tested additional covariates, such as 

education, income, and walking limitations that might explain spatial clusters. Most 

covariate adjustments did not change the size or location of spatial clusters. Further 

research is needed to better understand socio-demographic factors that might account for 

the development of physical activity and obesity clusters. In addition, comparisons of the  
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built environment characteristics inside and outside of clusters demonstrated that 

population density and intersection density were greater in higher physical activity 

clusters. This finding was consistent with a previous study examining spatial clusters of 

active transportation among adults in California [1].  Also, application of spatial 

clustering methods to various population sub-groups (based on age, gender, race and 

ethnicity) and in more diverse geographic areas within the U.S. may yield better 

understanding of how physical activity and obesity spatially cluster in relation to built 

environment characteristics. Finally, given the low prevalence of U.S. adults meeting 

physical activity guidelines and having a healthy weight, spatial clustering techniques 

may also have broad applicability for identifying areas where public health resources 

need to be devoted.  

The second study examined relationships between objective measures of trail use 

and physical activity and sedentary behavior using accelerometers and GPS units. The 

intensity of activity occurring on-trail was also quantified using two approaches, one 

based on accelerometer counts only and the other based on a combination of GPS speed 

and count data. Overall, this study demonstrated significant positive associations between 

trail use and total, vigorous, moderate, and light physical activity and an inverse 

relationship with sedentary behavior. Findings from this study also indicated that the 

combination of accelerometer and GPS speed data could be used to refine classification 

of physical activity intensity on trails since activities such as bicycling would tend to be 

classified as low intensity if based on accelerometer counts only. Further research is 

needed to determine the benefits of using accelerometer and GPS output to classify 

physical activity intensity in specific outdoor settings such as trails.  
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The findings from this study demonstrate the utility of simultaneous monitoring 

of physical activity with accelerometers and GPS units in specific outdoor settings such 

as trails and parks; more specifically this study demonstrated that trail use was positively 

associated with physical activity.  Since most previous trails and physical activity 

research has relied on self-reported measures, future studies should build on the objective 

methods used in this study in order to better understand how trails support physical 

activity.    

Using the same data collected for study 2 via accelerometer and GPS monitoring 

of 141 adults, the third dissertation analysis focused on the relationships between built 

environment characteristics within small buffers and minute-by-minute physical activity. 

The finding of positive relationships between population density and physical activity 

were consistent with previous studies using accelerometers and GPS data [2-4], as well as 

studies using less-spatially dynamic methods (i.e., those focused on a buffer around 

home). However, findings of inverse associations between street density, LUM, 

greenness, and walkability and physical activity outcomes were generally inconsistent 

with results from previous studies [5-7]. A plausible explanation may be that most 

previous studies have focused on an area around the home residence and have assumed 

that most, if not all activity, occurs near home. An individual’s daily mobility, however, 

is not restricted to the area near home. If all locations where people circulate in their 

environment are studied, the relationships between built environment characteristics and 

physical activity may be different than what has been traditionally found. The findings 

from this study seem to provide initial evidence that this be the case.  
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7.2 Strengths and Limitations 

A general strength of this dissertation research is that it expanded upon methods 

(e.g., spatial clustering analysis, simultaneous monitoring of physical activity with 

accelerometers and GPS) that have just started to find their way into built environment 

studies and addressed several unique questions in each of the three studies undertaken. 

The first study not only identified spatial clusters of physical activity and obesity, but it 

also attempted to address the question of whether or not built environment characteristics 

would be different inside and outside clusters. To our knowledge, there was limited 

research on this topic prior to this study. Findings indicated that certain built environment 

characteristics, such as population density and intersection density, were higher in some 

high physical activity clusters, but this depended on the location of the clusters. It has 

been noted previously that more and more studies are using GPS and accelerometer 

monitoring to identify locations where physical activity occurs, as well as to examine 

relationships between the built environment and physical activity. However, in 

dissertation studies 2 and 3 we expanded the types of questions being addressed in studies 

using accelerometers, GPS, and GIS methods. A strength of study 2 was that it examined 

trail use in relation to light physical activity, in addition to moderate and vigorous 

physical activity. This is significant given the growing evidence that engaging in light 

physical activity may confer important health benefits, such as cardiometabolic health [8, 

9] and psychosocial health [10, 11].  Previous trail studies have used self-reported data 

and focused on MVPA only. A second strength of this study was classification of 

intensity of physical activity on-trail, based on a combination of accelerometer counts 

and GPS speed. Although this approach needs further testing, it could eventually help to 



128 

 

 

1
2
8
 

better quantify intensity of activity on-trails and other outdoor settings. Also as noted 

earlier, the majority of previous built environment studies have exclusively focused on 

residential areas as the relevant areas for built environment exposures, based on the 

implicit assumption that most physical activity occurs within those areas [12-14]. This 

dissertation research used accelerometer, GPS, and GIS to avoid this potential spatial 

mismatch between built environment exposures and physical activity. The third study 

specifically examined associations between the built environment around each 

monitoring minute and minute-by-minute physical activity. 

 There are several limitations in this dissertation research. One of the common 

issues related to spatial clustering techniques is geographic scale. This research tested for 

spatial clustering of physical activity and obesity at the county level. However, the actual 

clustering may not emerge within such a broad geo-political boundary. To better 

understand how physical activity and obesity spatially cluster, analyses may need to be 

performed at a finer geographic scale, such as at the census-tract or census-block level. A 

limitation with studies 2 and 3 is that many accelerometer monitoring minutes did not 

have GPS data. Missing GPS data could be due to several factors, ranging from running 

out of battery life, to trees or buildings blocking satellite signals outdoors, to being 

indoors where signals were blocked completely [15]. The associations between trail use 

and physical activity (study 2) and between built environment variables within 50 meter 

buffers and minute-by-minute physical activity may have been biased by these missing 

data. Future research could incorporate imputed GPS data into analyses to better 

understand activity occurring at any locations.  Future research needs to develop better 
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monitoring devices which could measure both indoor and outdoor activities to overcome 

these technology-related limitations. 

 

7.3 Implications 

The findings from the dissertation have implications for future physical activity 

and built environment research. Physical activity researchers should consider testing for 

spatial clustering of physical activity and obesity at finer geographic levels and/or 

involving diverse populations and study areas. Findings from such studies could be used 

to design and implement location-oriented interventions to promote physical activity and 

reduce obesity.  Based on the findings of studies 2 and 3, researchers should continue to 

examine the relationship between objective measures of trail use and physical activity 

and sedentary behavior using accelerometer and GPS data. Such work would contribute 

to our understanding of how trails support physical activity. While study 2 did examine 

how trail use is related to light physical activity, study 3 did not. Given the recent 

evidence of the protective effects of light intensity activity on individual health [16], 

future investigations should be conducted to better understand the locations where light 

intensity physical activity may occur.   

Taken together, the three studies reported in this dissertation – examining 

associations between the built environment and physical activity from analyses of spatial 

clustering, use of trails, and locations where physical activity takes place – contribute to 

our understanding of the relationship between the built environment and physical activity. 

These analyses should be used to inform further research on these topics; and eventually 
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lead to the design and implementation of more effective location oriented physical 

activity interventions.  
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Appendix A for Study 2 

/* Outcome and covariates 

Participant’s ID: 

Filename 

Outcomes:  

Total = Daily mean physical activity count per min per day 

Vigorous = Vigorous intensity activity person-day 

Moderate = light intensity activity person-day 

Covariates: 

Age (continuous) 

Gender: Male = 1, Female = 0 

Race: Whites = 1, Non-whites = 0 

Education: Undergraduate degree or higher = 1, less than undergraduate 

degree = 0  

Ontrail: Monitoring minutes occurring on(=1)or off(=0)trail. 

Site: Cutler Reservation, Franklin Park, Minuteman Bikeway, Nashua 

River Rail Trail, Southwest Corridor = 6 

*/

/* Intercept only model for intraclass correlation coefficient */ 

proc mixed data = Kosuke_study2 noclprint covtest info method=ml; 

class  Filename; 

model  Outcome = / s ddfm = bw; 

random Intercept / subject=Filename type = un; 

run; 

/* Age adjusted model */ 

proc mixed data= Kosuke_study2 noclprint covtest info method=ml; 

class  Filename ontrail; 

model  Outcome = ontrail age /s ddfm=bw cl ; 

random Intercept ontrail /subject=Filename type=un; 

run;

/* Fully adjusted model */ 

proc mixed data= Kosuke_study2 noclprint covtest info method=ml; 

class  Filename ontrail gender race education site weekday; 

model  Outcome = ontrail age gender race education site weekday/s 

ddfm=bw cl; 

random Intercept ontrail /subject=Filename type=un; 

run; 
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Appendix B for Study 3 

/*VARIABLES USED IN MODELS 

Outcome = MVPA, LVPA  

IV: 

Population density 

Street density 

LUM 

NDVI_avg 

Walkability 

Covariates: 

Age = age in years 

Whites = Whites = 1, Non-whites= 0 

Ontrail = monitoring minutes on(=1) and off(=0) trails 

Class: 

filename = Participant's ID 

Episode = Episode of activity nested in participants  

Interval = Interval of activity nested in episode, which is nested 

within participants 

*/ 

/*Age adjusted model */ 

proc glimmix data= Kosuke_final; 

class Filename Outcome Episode Interval ; 

model Outcome(desc) = IV age / distribution=binary link=logit solution 

oddsratio ddfm=satterthwaite; 

random Interval / subject=Filename*Episode type=ar(1); 

run; 

/*Fully adjusted model */ 

proc glimmix data= Kosuke_final; 

class Filename Outcome Episode Interval Whites Ontrail; 

model Outcome(desc) = IV age Whites Ontrail/ distribution=binary 

link=logit solution oddsratio ddfm=satterthwaite; 

random Interval / subject=Filename*Episode type=ar(1); 

run; 

/*Stratified model */ 

proc glimmix data=Kosuke_final; 

class Filename Outcome Episode Interval Whites Ontrail; 

by Ontrail; 

model Outcome(desc) = IV age whites / dist=binary link=logit solution 

oddsratio ddfm=satterthwaite; 

random Interval / subject=Filename*Episode type=ar(1); 

run; 
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