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ABSTRACT 

Schram, Caitlin J. Ph.D., Purdue University, December 2015. Impact of Polymers on the 
Solution Crystal Growth Rate of a Poorly Water-Soluble Active Pharmaceutical 
Ingredient. Major Professors: Stephen Beaudoin, Lynne Taylor. 
 
 
 

Poor aqueous solubility is a major impediment to the oral delivery of over 75% of 

pharmaceutical compounds currently under development. The bioavailability of these 

compounds can be enhanced with the use of supersaturating dosage forms, due to their 

high flux rates across the gastrointestinal tract membrane. However, the success of this 

strategy hinges on the ability to inhibit crystallization of the supersaturated drug 

solutions. Polymers can be used to inhibit crystallization and prolong supersaturation, 

however the mechanisms of polymer inhibition are not yet fully understood. Therefore it 

is desirable to understand the attributes that render a polymer effective. In this work, the 

crystal growth rate of a poorly soluble pharmaceutical compound, felodipine, was 

measured in the presence of various polymers. The growth rate studies were performed 

using a rotating disk apparatus so that the growth kinetics could be controlled and 

mathematically modeled. It was found that both polymer ionization state and polymer 

hydrophobicity greatly impacted polymer effectiveness. Investigation of these systems 

with atomic force microscopy (AFM) revealed that these properties significantly 

impacted adsorbed polymer conformation. The polymers that adsorbed in an extended
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chain conformation were able to achieve a higher degree of surface coverage than those 

that adsorbed in a coiled globule formation. The surface coverage was found to directly 

correlate to polymer effectiveness. By modeling this correlation using the Kubota-Mullin 

model, polymer effectiveness could be predicted when surface coverage was known. This 

research also assessed the ability of a polymer to impact crystal morphology. It was 

found that when polymers were present during crystal evolution from an amorphous melt, 

they were able to impact the size and shape of the resulting crystals. This in turn 

influenced the rate of crystal growth from supersaturated solutions.  
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CHAPTER 1. LITERATURE REVIEW 

1.1 Introduction 

Many factors determine the rate and extent of absorption of an active 

pharmaceutical ingredient (API) from the gastrointestinal (GI) tract.1,2 Fundamentally, 

the API must be able to permeate through the GI tract membrane, and possess adequate 

aqueous solubility.3 Thus, a poorly soluble drug will have limited bioavailability, posing 

a challenge for oral dosage formulations. Modification of the solid state, for example, 

formulation as an amorphous solid, can increase solubility4–6 without compromising 

permeability.7 

The amorphous form possesses higher free energy and enthalpy compared to the 

crystalline form, and has no long-range molecular order.8–10 Thus, the energy required to 

dissolve an amorphous solid is significantly decreased relative to the crystalline form. 

Upon dissolving, the amorphous solid can generate a supersaturated solution.11 The 

supersaturated solution of a drug has a greater thermodynamic activity than its saturated 

solution, which can increase absorption.12–14 However, supersaturated solutions will 

quickly crystallize due to the increased activity; therefore, methods to slow crystallization 

and prolong supersaturation are of great interest. One such method is the use of additives, 

such as polymers, which can effectively inhibit crystal growth and stabilize 

supersaturated solutions by adsorbing to growth sites.15–17



 

 

2 
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 The overall objective of the work presented in this dissertation was to provide 

valuable insight into the specific mechanisms by which polymers can inhibit crystal 

growth in solution. Recent studies on polymer inhibition, which will be reviewed in the 

following sections, showed that polymer effectiveness varied greatly for a given API. 

Certain polymer properties that impacted effectiveness were identified, however, the 

details of how these properties contributed to effectiveness were unclear. The work 

presented in this dissertation reveals that polymer conformation and consequently, 

surface coverage, are key determinants of polymer effectiveness. 

 

1.2 Broader Impact 

Many industries, including fine chemicals, microelectronics, food, and 

pharmaceuticals, require the ability to control crystallization processes.18 This is because 

crystal form dictates the physical and chemical properties of a compound. In the 

pharmaceutical field, manipulating crystal form can be used as a means to enhance the 

bioavailability of oral dosage forms. This is important because it is estimated that about 

75% - 90% of promising drug candidates have poor aqueous solubility6,19 This 

compromises their absorption due to their inability to dissolve in the aqueous 

gastrointestinal lumen5. Therefore, methods to enhance the solubility, such as utilizing 

the amorphous form of the API, are necessary in order to ensure that pharmaceutical 

companies can put promising drug candidates on the market. 

 Two recently approved therapies highlight the importance of solid form 

manipulation. Vemurafenib is able to treat tumors by inhibiting mutations of the protein 

kinase B-RAF, common in melanoma. In its crystalline form, this compound yielded 
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modest drug exposure, so there was little tumor regression. But higher drug exposure was 

achieved by reformulating vemurafenib as micro-precipitated bulk powder (MBP). Thus, 

by utilizing the amorphous form, the bioavailability was proven to increase tenfold 

causing tumors to shrink significantly.20  

Another example is telaprevir, a treatment for the hepatitis C virus. In its 

crystalline form, telaprevir exhibited a lower aqueous solubility than that of marble. 

However, formulating this API as an amorphous spray dried suspension with a stabilizing 

polymer and surfactant greatly improved its bioavailability, such that the sustained viral 

response (SVR) rates in patients treated with the new telaprevir formulation was 60-

70%.21  

Both of the therapies mentioned above are used to treat serious, life-threatening 

diseases. The ability to improve the bioavailability of these drugs and others that suffer 

from low solubility, has significant implications for patients seeking life-saving 

treatments.    

 

1.3 The Amorphous Form 

Solubility can be expressed as19,22  

 

ln! = − ∆!! !!!!
!" − ln!    (1.1) 

 

where X is the mole fraction aqueous solubility, ΔSm is the entropy of melting, Tm is the 

melting temperature, R is the gas constant, T is the temperature, and ϒ is the activity 



 

 

4 
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coefficient. This expression assumes that heat capacity is independent of temperature. 

The second term in the equation reflects the affinity of the solute for the solvent, or the 

lyophilicity, which can either hinder or aid solubility.  

The first term in equation (1.1) reflects the crystallinity of the solid.22 In 

crystalline solids, molecules are arranged in a tightly packed lattice formation (Figure 

1.1a), maximizing a molecule’s interactions with neighboring molecules, and increasing 

overall stability of the solid. Amorphous solids on the other hand lack long-range 

molecular order (Figure 1.1b), and are considered a supercooled liquid or a glass.8 Thus 

an amorphous solid does not exhibit a phase transition to the liquid state and the first term 

in equation (1.1) can be neglected thereby increasing the mole fraction solubility. 

 

 

Figure 1.1. Molecular arrangements of (a) a crystalline solid, and (b) an amorphous solid 

 

In other words, for a solid to enter into solution, the interactions between 

molecules must be disrupted. Due to the lack of long-range order in an amorphous solid, 

less energy is required (i.e. it is more favorable) to disrupt the intramolecular bonds. 

Upon dissolving, the amorphous solid can generate a supersaturated solution,11 which has 

greater thermodynamic activity than a saturated solution resulting in higher membrane 
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flux rates, and therefore, higher absorption.12–14 However, supersaturated solutions will 

crystallize rapidly due to the increased thermodynamic driving force, threatening the 

efficacy of this formulation strategy.23 Therefore, it is necessary to stabilize the 

supersaturated solution by inhibiting crystal growth for a sufficient amount of time, such 

that the solute can permeate the GI tract membrane and be absorbed successfully. 

 

1.4 Crystal Growth Theory 

The thermodynamic driving force for crystal growth, σ, is the chemical potential 

difference between a supersaturated and saturated solution of a given substance, Δµ.24 

This can be expressed in dimensionless form in terms of solute activity:25,26 

 

σ = !"
!" = ln !!

!∗     (1.2) 

 

where ab is the solute activity in the bulk solution, a* is the equilibrium solute activity, R 

is the gas constant, and T is the temperature. Equivalently, the driving force can be 

expressed in terms of the activity coefficient, ϒ, and concentration, C:24,26  

 

ln !!
!∗ = ln !!!!

!∗!∗     (1.3) 

 

Activities and activity coefficients are difficult to obtain. Therefore, the driving force is 

often expressed in terms of only the concentration ratio (eq 1.4a and 1.4b) or the 

concentration gradient (eq 1.4c): 
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σ ≈ ln !!
!∗      (1.4a) 

!! ≈ !!
!∗ = S     (1.4b) 

σ! ≈ !! − !∗     (1.4c) 

 

where S is the supersaturation ratio. Such expressions for the driving force in terms of 

concentration assume that ϒb ≈ ϒ* which is valid for ideal solutions with low 

supersaturation (S<1).27 

The overall crystal growth rate, RG, which is the rate of mass deposition, m, onto 

the crystal over time, t, is expressed in terms of the driving force as24 

 

R! = !!Aσ! = !"
!"     (1.5) 

  

where kG is the growth rate coefficient, A is the crystal surface area, and g is the overall 

growth order.  

Crystallization occurs by two distinct phenomena: nucleation and growth. Nuclei 

must be present in order for growth to occur. Nucleation is the materialization of a new 

solid phase from the supersaturated phase.26 Nuclei can form by the union of solute 

molecules in an uncontaminated homogeneous solution (primary homogeneous 

nucleation). It can be instigated by an impurity that provides an existing surface for solute 

molecules to attach to (primary heterogeneous nucleation). Or it can be induced by seeds 

of the material placed in the supersaturated solution (secondary nucleation).24  
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Once the nucleus reaches a critical size in solution, growth can begin. There are 

many mechanisms for crystal growth described in the literature. Adsorption layer theories 

are widely accepted and they are based on the adsorption of solute molecules onto the 

crystal face starting from a two-dimensional nucleus of critical radius, ρc. The critical 

radius will depend on several properties of the compound as well as the environment:15   

 

!! = !"
!!!(!"#)

     (1.6) 

 

Here, γ is the edge free energy of the compound, a is the area that a growth unit occupies 

on a crystal, kB is the Boltzmann constant, and T is the solution temperature. 

 In the step-growth theory developed by Kossel,28 growth units will attach at the 

highest energy ‘kink’ sites, and continue in a linear step-wise fashion across the width of 

the face, creating steps that are monoatomic in height. In the birth and spread mechanism, 

nuclei form at the edges or on faces of the crystals and monolayer growth proceeds in all 

directions from these nuclei.24,29 Knowledge of adsorption layer theories provides a basis 

for understanding additive inhibition theory (Section 1.5). The work shown in Chapter 6 

of this dissertation provides evidence of these growth mechanisms for the systems studied. 

 

Figure 1.2. Illustrations of the (a) step-growth mechanism, where the arrow is highlighting a kink 
site, and (b) the birth and spread mechanism. 
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The rate of crystal growth can be expressed by combining equations (1.4c) and 

(1.5): 

 

R! = !!A !! − !∗ !    (1.7) 

 

Equation (1.7) is the overall growth rate expression, however, crystal growth involves 

two separate steps, which are considered to occur in series. First, solute diffuses to the 

solid-liquid interface (Figure 1.2a), then it integrates into the crystal lattice. Figure 1.2b 

illustrates the integration process. According to the Gibbs-Volmer theory, once the solute 

arrives at the interface, it can diffuse over the surface until it finds a site to link into the 

lattice.24  

 

Figure 1.3. Illustrations of the two steps of a crystal growth process: (a) mass transfer of solute to 
the interface and (b) integration of solute into the crystal lattice 

 

Each growth step has a different rate associated with it and a different driving 

force. Equation (1.7) can then be separated into two steps:24,26 

 

R! = !!A !! − !!     (1.8) 

R! = !!A !! − !∗ !    (1.9) 
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Equation (1.8) represents the rate of mass transfer, where kd is the mass transfer rate 

coefficient, and CI is the concentration at the solid-liquid interface. Equation (1.9) 

represents the rate of integration, where kr is the integration rate coefficient, and r is the 

integration rate order.  

 When the rate of mass transfer is slower (i.e. the mass transfer step offers more 

resistance), the growth process is considered to be ‘mass transfer controlled.’ When the 

integration step offers more resistance, the growth process is ‘integration controlled.’ In 

the case of integration-controlled growth, the concentration at the interface, CI will 

approach the bulk concentration, Cb, and equation (1.9) can be approximated as 

 

R! = !!A !! − !∗ !    (1.10) 

The Damköhler number (Da) is used to compare the relative contribution of each 

step: 

 

Da = !! !!!!∗ !!!

!!
    (1.11) 

Thus, when Da is large, growth is mass transfer controlled (kd << kr) and when Da is 

small, growth is integration controlled (kr << kd).26 The objective of the work presented in 

Chapter 3 was to separate the roles of mass transfer and integration so that integration-

controlled growth rates could be studied.  
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1.5 Additive Inhibition: Theory and Model 

Supersaturated solutions will crystallize over time, compromising absorption. Thus, 

methods to slow crystallization and prolong supersaturation are of great interest. 

Additives, such as polymers, can effectively inhibit crystal growth and stabilize 

supersaturated solutions by competing for growth unit adsorption sites.15–17 To effectively 

inhibit growth, the impurities do not need to cover the entire crystal surface, rather they 

merely need to disturb the flow of growth layers.24 Cabrera and Vermilyea first proposed 

the pinning mechanism (Figure 1.4) which was then modified by Kubota and Mullin.  

 

Figure 1.4. Depiction of the pinning mechanism due to additive adsorption. 

 

In this mechanism, the impurities adsorb at kink sites along the steps at an 

average distance, l, apart. This forces the steps to curve, thus slowing step advancement. 

The radius of curvature of a pinned step, ρ, is equal to l/2. If ρ ≤ ρc (the critical nucleus 

radius), then step advancement will stop completely. Therefore, Kubota and Mullin have 

expressed the step velocity in the presence of additives, VP, relative to the step velocity of 

the pure system, V0, in terms of ρc and l:15,30 

!!
!!
= 1− !!

!      (1.12) 
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Expressing the step velocities in the absence and presence of impurities as a ratio is 

useful because V0/VP is a measure of additive effectiveness. When V0/VP >1, the additive 

is considered effective at slowing crystal growth.  

For many systems, at low supersaturations, additives can slow crystal growth 

significantly, or even stop it completely. However, at high supersaturations, the same 

additive may completely lose its effect.31–33 This impact of supersaturation can be 

explained by equations (1.6) and (1.12). With an increase in S, ρc will decrease, thus 

reducing the effectiveness of the additives.  

Combining equations (1.6) and (1.12), VP/V0 can instead be expressed in terms of 

the useful parameters α, the impurity effectiveness factor, and θ, the impurity fractional 

coverage, 

 

!!
!!
= 1− !"     (1.13a) 

! = !"
!!!(!"#)!

     (1.13b) 

! = !
!       (1.13c) 

 

where L is the average distance between active sites available for impurity adsorption.15 

Expressing VP/V0 as equation (1.13a) rather than (1.12) is useful because growth 

inhibition can be then expressed in terms of the impurity fractional coverage, θ, which 

assumes linear adsorption along the steps. This form of the expression is also useful 

because impurities act only at certain sites, not all available active sites. This is reflected 
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in the parameter, L, which will vary for each additive-drug combination. Therefore α 

takes into account the active sites specific to the system under study.30  

The rate of step growth, V, can be difficult to measure experimentally. Thus, 

Kubota and Mullin replaced the relative step velocity VP/V0 by the relative face growth 

rate GP/G0 under the assumption that V is proportional to G. This holds true if the growth 

proceeds by single-layer step growth and if the step heights remain constant.  

It is even easier to experimentally determine overall mass growth rates, RG, than 

individual face growth rates. Garside describes the following relationship between RG 

and face growth rate, G:26 

R! = !
! G ∙ A!!"    (1.14) 

 

where ζ is the crystal density, A is the total crystal surface area, and Ahkl represents the 

areas of all the individual faces. Therefore equation (1.13a) can be expressed in terms of 

the overall crystal growth rates in the presence (RP) and absence (R0) of impurities as 

!!
!!
= 1− !"     (1.15) 

if the following assumptions hold true: the ratio of crystal density to total crystal surface 

area (ζ/A) does not change when impurities are added to the system, and the areas of the 

individual faces (Ahkl) do not change with the addition of impurities. 

 

1.6 Polymer Inhibition of Crystal Growth 

It has become increasingly more common to use polymeric additives as crystal 

growth inhibitors. Polymer adsorption onto a crystal is driven by the change in free 
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energy, ΔG due to favorable polymer-surface interactions. Adsorption causes the polymer 

to lose entropy, which is unfavorable. Therefore, adsorption must be enthalpically driven 

in order for the process to be favorable. In other words, the interaction energy between 

the polymer and drug must be large enough to overcome the entropy loss. Components of 

the interaction energy can include electrostatic, chemical, hydrophobic, and hydrogen 

bonding interactions.34 

The polymer-surface interactions will be influenced not only by the properties of 

the drug and polymer, but also by the liquid medium. If the interactions between the 

polymer and solvent are unfavorable, the polymer will want to minimize its interactions 

with the medium by adsorbing to the solid. If the polymer-solvent interactions are 

favorable, adsorption is less likely, unless the polymer can form even more favorable 

interactions with the drug than with the medium.35 

Recently, there have been increased efforts to determine the factors that impact a 

polymer’s effectiveness as a crystal growth inhibitor. Studies have shown that the 

hydrophobicity match between the polymer and the drug is of fundamental 

importance.36,37 Ilevebare et al. have demonstrated that for moderately hydrophobic drugs, 

the most effective polymers also possessed moderate hydrophobicity. In general for these 

systems, very hydrophobic polymers were ineffective, as were very hydrophilic polymers. 

This result could be explained by the adsorption theory described in the preceding 

paragraph. It is likely that very hydrophilic polymers will interact primarily with the 

solvent and little adsorption will occur. Very hydrophobic polymers, on the other hand, 

may be driven to adsorb, however they may adsorb in globular formations, severely  
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decreasing surface coverage.37 The objective of the work presented in Chapter 5 of this 

dissertation was to provide evidence of these phenomena.  

The above findings suggest that hydrophobic forces may be the key driving force 

for polymer adsorption in solution. However it has also been shown that specific surface-

polymer interactions, such as hydrogen bonding, can drive adsorption from solution as 

well.38,39 It is already well known that specific interactions are key for polymer 

effectiveness in amorphous solid dispersions (amorphous drug dispersed in a polymeric 

matrix).40,41 Studies on solid dispersions have demonstrated the importance of the relative 

functional group chemistries of the drug and polymer.42 According to Black and Davey, 

effective polymers in solution should contain a part similar to the drug molecule – the 

part that adsorbs to the crystal – and the part that emerges from the crystal should be 

different enough from the host molecule that its binding energy is modified, contributing 

to less favorable incorporation of growth units.17 

In a recent study by Ilevbare et al., it was observed that the presence of ionizable 

functional groups on a polymer and a higher degree of substitution increased polymer 

effectiveness.37 The authors completed a subsequent study comparing the effectiveness of 

several ionizable polymers at two pH conditions, above and below the pKa of the 

functional groups.33 The polymers were consistently more effective at the higher pH 

where they were ionized, despite having similar extent of adsorption to the crystal.  

It was hypothesized from these findings that pH most likely affected the adsorbed 

polymer conformation.43–45 Ionic polymers, or polyelectrolytes can undergo reversible 

conformation changes with an increase or decrease in pH due to shifts in charge density 

of ionizable groups.45,46 The objective of the work presented in Chapters 4 and 5 of this 
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dissertation was to gain more insight into the relationship between polymer conformation 

and crystal growth inhibition. 

Due to the effect polymers can have on the advancement of growth steps, over 

time the polymers can impact crystal morphology. Some studies have found that the 

presence of impurities alter crystal size and shape.36 Holder and Winkler found that 

polymers selectively poisoned the 011 face of n-paraffin wax. The crystals proceeded to 

grow only in the remaining crystallographic planes and the thus the polymers modified 

the crystal habit. Land et al and Gratz and Hillner found in their respective studies that 

impurities distorted the shape of macrosteps, or terraces. The objective of the work 

presented in Chapter 6 of this dissertation was to evaluate the impact of changes in 

crystal morphology due to polymer surface poisoning on crystal growth rates. 
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CHAPTER 2.  METHODS AND MATERIALS 

2.1 Rotating Disk Apparatus Theory  

Crystal growth rates are impacted by the rate of solute mass transfer to the crystal 

interface, and rate of integration into the lattice, as explained in Chapter 1. A rotating disk 

apparatus (RDA) can be utilized to separate the roles of mass transfer and integration 

because it induces controlled forced convection. The rotation of the disk draws the fluid 

up in the axial direction toward the surface then throws it outward in the radial and 

tangential directions across the disk surface1 (see Figure 2.1). Thus, the rate of the mass 

transfer step will depend on the angular velocity, ω, of the rotating disk.  

 

Figure 2.1 Schematic of a rotating disk apparatus.
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The Navier-Stokes and continuity equations for the fluid motion due to a rotating 

disk have been solved,2–5 and the axial velocity component, vy, was determined to be:1 

 

v! ≈ −0.51 !!
! !

!    for ! ≪ !
!  (2.1) 

 

where v is the kinematic viscosity of the solution. Since forced convection toward the 

disk is in the axial (y) direction only, the concentration will not be a function of the radial 

or tangential directions. Thus, the Navier-Stokes convective diffusion equation (in 

cylindrical coordinates) becomes: 

v! !"!" = D !!!
!!!     (2.2a) 

with the boundary conditions 

! = 0, C = 0     (2.2b) 

! → ∞, C = Cb    (2.2c) 

where D is the diffusion coefficient of the solute in the solution. Solving for the 

concentration, C, and combining with equation (2.1), then differentiating to obtain mass 

flux, j, to the disk surface, the result is:1 

! = D !"
!" = 0.6205D!/!!!!/!!!/!Cb (2.3) 

Thus, the mass transfer rate coefficient, kd depends on ω according to the following 

relationship:6,7  

!! = 0.6205D!/!!!!/!!!/!   (2.4) 
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Therefore, when the crystal growth rate is mass transfer-controlled, it will depend on the 

rotational speed of the disk, ω, according to equation (2.4). As ω continues to increase, it 

will reach a critical velocity, ωc, where the growth rate plateaus because it is no longer 

dependent on disk rotational speed. Above ωc the growth rate is now limited by how 

quickly solute can integrate into the crystal lattice. Thus, the correlation between crystal 

growth rate, RG and ω1/2 should follow the trend shown in Figure 2.2. 

 

 

Figure 2.2. Theoretical correlation between growth rate and RDA rotational speed, showing mass 
transfer-controlled growth (I) and integration-controlled growth (II). ωc denotes the critical disk 

rotational speed above which the growth rate is independent of the rotational speed. 
 
 

In order for equation (2.4) to accurately describe the mass transfer, several criteria 

must be met:8 

i) Flow over the disc must be laminar.  

ii) Edge effects must be negligible. 

iii) The disc must be planar. 

iv) The disc surface must be ‘smooth’.  

v) The fluid must be considered an ‘infinite expanse’ 
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Explanations for how these criteria are met will be given in Chapter 3. In that chapter, a 

rotating disk apparatus was utilized to isolate the rate of integration and extract kinetic 

growth parameters. Once the integration-controlled growth regime was determined, the 

growth rate experiments in the following chapters were performed at rotational speeds 

above ωc. This is because the integration rate is the step that is impacted by polymer 

adsorption. 

 

2.2 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) is a widely-used scanning probe microscopy. 

This method can perform force measurements as well as topographical imaging. In this 

study, the mode of interest is imaging. The sample is placed on a piezoelectric column 

which can move in the x-, y-, and z-directions. A flexible cantilever tip placed above the 

sample interacts with the surface. A laser reflects off the cantilever to a photodetector. 

Therefore, as the cantilever moves due to attractive or repulsive forces from the surface, 

the deflections are recorded.9 The deflections are combined with the x-, y-, and z-

positions on the surface to create a topographical map. Analysis of topographical images 

can reveal surface roughness properties. 
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Figure 2.3: Schematic of an atomic force microscope 

 

For this study, the AFM was run in tapping mode, during which the cantilever 

oscillates at a resonant frequency. The phase response of the oscillating cantilever is of 

particular interest. During imaging, the phase lag between the excitation force and 

cantilever oscillation is recorded to produce a phase-contrast image. This phase lag is 

very useful to reveal differences in material properties. Thus, it is good for differentiating 

between surface components, revealing variations that the height measurements may not 

detect.10 This is particularly useful for detecting polymers because the viscoelasticity will 

differ from that of the drug surface. 

AFM coupled with infrared spectroscopy (AFM-IR) was also used in this work. 

The sample was illuminated from below with a laser, causing the sample to expand and 

contract. The amount of expansion and contraction correlated to how much IR 

illumination the sample absorbed at the particular wavelength. The AFM cantilever probe 

would oscillate due to the expansion and the amplitude of oscillation was recorded. This 

method was useful for chemically characterizing submicron polymer domains.  
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Figure 2.4. Schematic of AFM coupled with infrared spectroscopy 

 

2.3 Materials 

 The active pharmaceutical ingredient utilized as a model compound in this study 

was felodipine, a calcium channel blocker which treats hypertension. Felodipine has a 

low equilibrium solubility (C* = 0.5µg/ml at 25°C.11) and its crystal growth and 

nucleation kinetics have been well-studied.11–13 The polymers used in this study were 

hydroxypropylmethyl cellulose acetate succinate (HPMCAS) grade LF, 

hydroxypropylmethyl cellulose (HPMC), polyvinylpyrrolidone (PVP), poly(acrylic acid) 

(PAA), poly(vinyl acetate) (PVAc) poly(vinylpyrrolidone vinyl acetate) (PVPVA), and 

poly(2-vinylpyridine) (P2VP). The chemical structures of felodipine and these polymers 

are displayed in Figure 2.5. 
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Figure 2.5. Chemical structures of (a) felodipine, (b) PAA, (c) P2VP, (d) PVP, (e) PVAc,  

(f) PVPVA, (g) HPMC, (h) HPMCAS 
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CHAPTER 3.  UNDERSTANDING CRYSTAL GROWTH KINETICS IN THE 
ABSENCE AND PRESENCE OF A POLYMER USING A ROTATING DISK 

APPARATUS 

This chapter is a preprint with minor modifications of a manuscript submitted to Crystal 

Growth and Design with the same title by: Caitlin J. Schram, Ryan J. Smyth, Lynne S. 

Taylor, and Stephen P. Beaudoin 

 

3.1 Abstract 

Polymer inhibition of crystal growth from supersaturated solutions is an important 

area of study, particularly in the pharmaceutical field. Polymers can be used to modify 

crystal morphology or to slow crystal growth with the goal of enhancing oral drug 

absorption. In order to fully understand the effect of polymers on crystal growth it is 

important to understand the kinetics of the integration step. In this study, a rotating disk 

apparatus is used to isolate the integration step from the diffusion step so that the 

integration kinetics can be determined for growth rates in the absence and presence of 

polymers. The results indicate that the presence of polymers in solution greatly impacts 

the integration step, and has no impact on the mass transfer kinetics.
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3.2 Introduction 

Solution crystallization is a phenomenon central to many industries and fields of 

research. It is highly desirable to be able to manipulate a crystallization process because it 

can have a large impact on the physicochemical properties, and therefore the quality, of 

the product.1 Modification of crystal growth can be achieved through changes in the 

process environment, such as temperature or solvent. Another increasingly common 

approach to manipulate crystal form is to use polymeric additives.2,3  

 In the pharmaceutical field, polymers can be used to slow crystal growth rates and 

maintain supersaturated solutions in vivo, which will ultimately enhance drug delivery.4,5 

The use of this approach is of special interest for drugs that exhibit poor aqueous 

solubility, and thus are formulated as amorphous solids.6–8 In order to effectively inhibit 

crystal growth, it is important to have a good understanding of the kinetics of 

crystallization as well as a mechanistic understanding of how polymers inhibit growth.  

 Crystal growth occurs by two phenomena in series: transport of solute to the 

crystal-liquid interface, and integration of solute into the lattice.9,10 It is likely that 

polymers inhibit growth by inhibiting the integration step, because they compete with 

growth units for active sites on the surface.11–13 Once adsorbed to a site, they create a 

mechanical barrier for further growth units to attach at that site.13 It is therefore important 

to isolate the integration step to better study polymer inhibition. This can be done using a 

rotating disk apparatus.10 Rotating disks have traditionally been used to study the kinetics 

of chemical or electrochemical reactions.14,15 Relatively few studies have used rotating 

disks to study crystal growth,16,17 and currently this technique has not been used to study 

polymer inhibition of crystal growth.   
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 The objective of this work was to measure crystal growth rates of a poorly water-

soluble drug in the absence and presence of a polymer using a rotating disk apparatus. 

This will provide insight into the kinetics of crystal growth when polymers are present in 

the system, therefore providing a better mechanistic understanding of how polymers 

inhibit crystal growth.  

 

3.3 Experimental Section 

3.3.1 Materials 

Felodipine was provided by Attix (Toronto, Ontario, Canada). Methanol (HPLC 

grade) was purchased from Avantor Performance Materials (Center Valley, PA). 

Hydroxypropylmethyl cellulose acetate succinate (HPMCAS) LF grade, Mw 18 000 g 

mol-1, was supplied in powder form by Shin-Etsu Chemical Co, Ltd. (Tokyo, Japan). 50 

mM pH 6.8 phosphate buffer was used as the crystallization medium in all growth 

experiments. HPMCAS was pre-dissolved in the buffer for experiments where crystal 

growth rates were measured in the presence of polymer. The molecular structures of 

felodipine and HPMCAS are given in Figure 2.5. 

 

3.3.2 Rotating Disk Apparatus 

The experimental apparatus is illustrated in Figure 3.1a. The rotating disk 

apparatus (RDA) was provided by Princeton Applied Research (Oak Ridge, TN. Model 

#616). Seed crystals were mounted on a disk in a custom-made holder at the bottom of 

the RDA shaft, which rotated with angular velocity, ω. The disk was submerged in buffer 

solution (60 mL) containing dissolved felodipine alone, or containing both dissolved 
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felodipine and dissolved HPMCAS. The solution was contained in a jacketed beaker 

connected to a circulating water bath held at a constant temperature, 25°C. A UV probe, 

which was used to measure the amount of dissolved felodipine in solution (see section 

3.3.3), was also submerged in the solution.  

 

Figure 3.1. (a) Schematic of the experimental system, showing the seed crystal holder (I), 
rotating shaft (II), jacketed vessel (III), and UV probe (IV); and (b) close-up image of custom-

made seed crystal holder. Liquid flow patterns induced by the rotating disk are also shown. 
 

 Figure 3.1b shows an image of the custom-made Teflon seed crystal holder that 

was mounted at the bottom of the rotating shaft. Felodipine crystals, as supplied by the 

manufacturer were melted and poured into the custom holder. The surface of the melt 

was flattened using a glass coverslip and the melt was allowed to solidify. The surface 

must be completely flat and flush with the rim of the holder in order to fulfill criterion (iii) 

below, and therefore be suitable for use in the rotating disk apparatus. The amorphous 
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felodipine surface was then re-crystallized by exposure to an atmosphere of 75% relative 

humidity. 

 Several criteria must be met in the execution of experiments in order mass 

transfer to be accurately described by equation (2.4): 

i) Flow over the disk must be laminar.18  
 

This criterion is met if Re!"#$ = !!!!
!  < 2x105. The radius, rd, of the disk used 

in this study was 3 mm, and the highest rotational speed used was ω = 733 

rad/s. (The value of ν is given in Table 3.1). Thus the maximum Redisk = 

7.2x103 which is < 2x105, therefore all experiments were run well within the 

laminar region. Additionally, Redisk should remain above 1x102 to avoid 

effects of natural convection. This condition was also satisfied since the 

minimum value of Redisk at the lowest rotational speed used, ω = 20.9 rad/s, is 

2.1x102. 

ii) Edge effects must be negligible.18,19 
 
To meet this criterion, the radius of the disk, rd, must be > δH, where δH is the 

hydrodynamic boundary layer, which can be expressed as δ! = 3.6 !
!

!.!
. 

The lowest rotational speed used in this study was ω = 20.9 rad/s, which 

yields δH = 0.75 mm. Thus r = 3 mm > δH for all experiments. 

iii) The disk must be planar.10 
 
This criterion was satisfied due to the methods employed for seed crystal 

preparation as explained above.  
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iv) The disk surface must be ‘smooth.’10 
 
This criterion is met if the average height of the roughness elements of the 

crystal surface, Rq,av < δH. Characterization with atomic force microscopy of 

seed crystals revealed R q,av = 32.6 nm. The hydrodynamic boundary layer will 

be at a minimum at the highest rotational speed, ω = 733rad/s. At this speed, 

δH = 0.11 mm which is greater than Rq,av. Thus, this criterion was satisfied. 

v) The fluid must be considered an infinite expanse.19 
 
This criterion is met if the distance from the disk surface to the reservoir walls, 

and the distance from the disk to the air-solution interface are both >> δH. δH 

will be at a maximum at the lowest rotational speed, ω = 20.9 rad/s, which 

yields δH = 0.75 mm. Thus, this criterion was met by ensuring that the 

distance from the disk to the walls and from the disk to the solution interface 

were at least 7.5 mm. 

 

3.3.3 Crystal Growth Rate Measurements 

The growth rate of felodipine was measured in the absence and presence of 

HPMCAS. A stock solution of 10 mg/mL solubilized felodipine was prepared by 

dissolving felodipine in methanol. Supersaturated aqueous solutions were then generated 

by adding a small amount of the felodipine stock solution to pH 6.8 buffer alone, or 

buffer containing pre-dissolved HPMCAS (5 µg/mL). The equilibrium concentration, C*, 

of felodipine is approximately 0.5 µg/mL at 25°C.20 The experiments performed to 

determine the effect of rotational speed on the growth rate were carried out at initial bulk 



 34 

concentration, Cb = 2 µg/mL. Experiments performed to determine the integration rate 

constant, kr, and growth order, r, were carried out at Cb = 1 µg/mL, 1.5 µg/mL, 2 µg/mL, 

2.5 µg/mL, and 3 µg/mL. 

The concentration of felodipine in solution as a function of time was measured to 

determine a desupersaturation profile. This profile is considered to be directly 

proportional to the growth rate of felodipine, RG. Immediately after generation of 

supersaturated solutions, desupersaturation profiles were measured using a CCD Array 

UV-vis Spectrometer (SI Photonics, Tuscon, AZ). The intensity of an absorbance peak of 

felodipine (wavelength 238 nm) was recorded at 10-second intervals for 1 hour. 

Calibration solutions, prepared in methanol, were used to correlate peak intensity to 

concentration. The slope of the resulting concentration v. time curve was recorded as the 

growth rate, RG. All experiments were performed in triplicate. 

 

3.4 Results and Discussion 

The growth rate of felodipine was measured at various rotational speeds using a 

rotating disk apparatus. A plot of felodipine growth rate as a function of rotational speed, 

ω1/2, is shown in Figure 3.2. The results show that at first the growth rate increases 

linearly with increasing rotational speed. Eventually, the growth rate plateaus, remaining 

at a constant value, independent of ω.  
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Figure 3.2. Plot of felodipine crystal growth rate (initial Cb = 2 µg/mL) as a function of RDA 
rotational speed. Experimental growth rates (blue !) were measured in triplicate and error bars 

indicate one standard deviation from the mean. The theoretical curve (dashed line) was generated 
from equations (3.1) and (1.10). 

 

The observed experimental trend is in agreement with rotating disk apparatus 

theory (Figure 2.2). At lower rotational speeds, the crystal growth rate is limited by the 

rate of mass transfer of solute to the solid-liquid interface. Thus, as the rotational speed 

increases, so does the forced convection rate, which increases the overall crystal growth 

rate. At higher rotational speeds, the crystal growth rate is limited by the rate of 

integration of growth units into the crystal lattice. This rate is independent of bulk fluid 

velocity, thus the rate remains constant as rotational speed increases. 

For mass transfer-controlled growth, the growth rate can be expressed by equation 

(1.8), wherein the rate coefficient, kd, depends on ω1/2 according to equation (2.4). 

Combining equations (1.8) and (2.4) results in the following expression which relates the 

overall growth rate, RG to the rotational speed, ω1/2: 
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R! = 0.6205!!/!!!!/!!!/!A !! − !!  (3.1) 

 

Equation (3.1) was used to model the experimentally determined growth rates of 

felodipine at rotational speeds below ω1/2 = 17.7 (rad/s)1/2. The diffusion coefficient, D, 

was estimated using the Stokes-Einstein equation: 

 

D = !!!
!!"!!

      (3.2) 

 

where kB is the Boltzmann constant, T is the temperature, η is the dynamic viscosity of 

the medium, and rh is the hydrodynamic radius of a felodipine growth unit in solution. 

The numerical values of the constant parameters used in equations (3.1) and (3.2) are 

given in Table 3.1.  

 

Table 3.1. Values used in equations (3.1) and (3.2) to calculate mass transfer-controlled crystal 
growth rates of felodipine. 

 

Parameter Value 

ν 9.15 x 10-7 m2/s 

A 2.83 x 10-5 m2 

Cb 2 µg/mL 

kB 1.38 x 10-23 J/K 

T 298.15 K 

η 9.10 x 10-4 Pa"s 

rh 3.50 x 10-10 m 
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The value of T and Cb were set experimentally, and Cb is the initial bulk 

concentration of felodipine. A is the nominal cross sectional area of the crystalline 

surface. The values of η and ν were found in the literature for water at 25°C.21 The value 

of rh was estimated using the crystal structure visualization software Mercury,22 wherein 

the ‘measure distances’ tool was used to measure the length of a felodipine molecule.   

 The concentration at the interface, CI is not a constant. It will increase and 

approach the bulk concentration, Cb as the rotational speed increases,10 bringing more 

solute to the interface. Thus, the boundary conditions for CI are: 

 

ω = 0; CI = C*     (3.3a) 

ω # ∞; CI # Cb    (3.3b) 

 

The relationship between CI and ω was determined to be 

 

!! = !∗ + 0.024!!/!    (3.4) 

 

Theoretical growth rates were determined for 0 < ω1/2 < 17.7 (rad/s)1/2 by substituting 

equation (3.4) for CI along with the values given in Table 3.1 and the calculated value of 

D into equation (3.1). The theoretical curve is plotted (dotted line) along with the 

experimental values in Figure 3.2.  

 For ω1/2 > 17.7 (rad/s)1/2 the growth rate plateaus at a constant value. Here, the 

growth rate is limited by the rate at which growth units can integrate into the lattice. This 

growth rate can be described by equation (1.10). In order to model the integration-
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controlled growth rate using this equation, the rate coefficient, kr, and the integration 

order, r, must be known. These can be determined experimentally by measuring the 

crystal growth rate at various supersaturation conditions at a rotational speed above 17.7 

(rad/s)1/2 (when growth is integration-controlled). Since the growth rate correlates to (Cb - 

C*) according to equation (1.10), plotting RG/A v. (Cb - C*)  (Figure 3.3) allows for 

extrapolation of the values of kr and r by determining the equation of the best-fit curve. 

(Equation 3.5).  

 

 

Figure 3.3. Plot of integration-controlled growth rate as a function of the concentration gradient 
utilized to extrapolate the values of kr and r. Measurements were performed in triplicate and error 

bars indicate one standard deviation from the mean. 
 

!!
! = !! !! − !∗ ! = 5.67x10!! !! − !∗ !.!"  (3.5) 

 

Thus according to equation (1.10), kr is equal to the coefficient in equation (3.5), 

5.7 x 10-5 m/s, and r is equal to the exponent, 1.24. Plugging these values along with the 
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values of A, Cb, and C* into equation (1.10), the theoretical integration-controlled growth 

rate was determined to be RG = 2.56x10-3 µg/s, which agrees quite well with the 

experimentally determined growth rates, as shown by the dotted line in Figure 3.2. 

 The Damköhler number, Da, which represents the ratio of the integration and 

mass transfer rate coefficients (equation 1.11), was plotted as a function of RDA 

rotational speed. The result is shown in Figure 3.4. 

 

 

Figure 3.4. Plot of the Damköhler number as a function of rotational speed showing the transition 
from mass transfer to integration-controlled growth. 

 

In agreement with RDA theory, at low rotational speeds, Da is large, indicating 

mass transfer-controlled growth (kr >> kd). As rotational speed increases, Da becomes 

smaller. This indicates that the growth rate switches over to being controlled by the 

integration step (kd >> kr).  

 The good agreement between the experimentally-measured growth rates of 

felodipine and the theoretically-determined growth rates (from equations 3.1 and 1.10) 
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validate the use of the rotating disk apparatus to extract kinetic information. Thus, using 

this method to measure crystal growth rates in the presence of a polymer should provide 

insight into growth inhibition.   

The growth rate of felodipine was measured at various rotational speeds in the 

presence of the polymer HPMCAS. The results are presented in Figure 3.5 along with the 

pure felodipine growth rate results for comparison.  

The observed and predicted growth rates in the presence of HPMCAS follow the 

same overall trend as those of the pure drug; at first there is a linear increase in growth 

rate with rotational speed until the growth rate reaches a plateau indicating integration 

control. However, the magnitude of the growth rate at all rotational speeds is reduced due 

to the adsorption of HPMCAS on active sites at the solid-liquid interface. The adsorbed 

polymer creates a barrier, preventing felodipine growth units from attaching to the crystal, 

thereby slowing crystal growth.11 Evidence of HPMCAS adsorption to felodipine has 

been confirmed using atomic force microscopy (AFM),23 and these results will be shown 

in Chapters 4 and 5. 

 As will be discussed in more detail in Chapter 5, the fraction of felodipine surface 

covered by adsorbed polymers was measured using AFM for nine different polymer 

systems. It was found that adsorbed polymer surface coverage, Φ, correlated linearly to 

polymer effectiveness, RG/RP, where RP is the growth rate of felodipine in the presence of 

polymers (see Figure 5.5). This correlation was then modeled using the approach 

developed by Kubota and Mullin11,13 (equation 1.15). Briefly, all parameters in the model 

were known or could be determined experimentally (see Table 5.2) except the distance 

between adsorbed polymers, l. Thus, values for l were fitted to determine a general 
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relationship between l and Φ (equation 5.3). Substituting this into the model, it was 

determined that polymer effectiveness, RG/RP, is related to fractional polymer surface 

coverage, Φ, according to the following relationship:24 

 

!!
!!
= 3.918Φ+ 1    (3.6) 

 

Applying this relationship to the current study, theoretical RP values could be 

calculated from the theoretical RG values determined in this study and the experimentally 

measured HPMCAS fractional surface coverage (see Chapter 5), Φ = 0.53.24 This curve 

is plotted along with the experimental values in Figure 3.5 (red dotted line).  

 

 

Figure 3.5. Plot of felodipine crystal growth rate (initial Cb = 2 µg/mL) as a function of RDA 
rotational speed. Experimental growth rates in the absence (blue !) and presence (red $) of 

HPMCAS were measured in triplicate and error bars indicate one standard deviation from the 
mean. The theoretical curve for pure felodipine growth rates (blue - -) was generated from 

equations (3.1) and (1.10). The theoretical curve for growth in the presence of HPMCAS (red − −) 
was generated from equation (3.6). 
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It can be seen that the theoretical curve agrees with the experimental data 

regardless of whether the growth is mass transfer or integration controlled. This result 

confirms that the reduction in growth rate when polymers are present is purely a surface 

coverage effect even when the growth rate is mass transfer controlled. Thus, from 

equation (1.8), the reduction in growth rate can be attributed to a reduction in the nominal 

surface area available for integration, A, due to polymer adsorption at active growth sites, 

as well as changes in the interface concentration, CI. The rate coefficient, kd, however, 

will remain the same as the pure drug rate coefficient at each rotational speed, ω. This 

implies that polymers do not impact the kinetics of the mass transfer step. 

The integration constants, kr and r, for growth in the presence of HPMCAS were 

determined using the same approach used to determine the pure drug growth constants. 

The resulting values are displayed in Table 3.2 along with the integration constants of 

pure felodipine.  

 

Table 3.2. Integration constants for felodipine crystal growth in the absence and presence of 
HPMCAS 

 
 kr (m/s) r 

Pure felodipine growth 5.7 x 10-5 1.24 

Growth with HPMCAS 1.4 x 10-5 1.75 

 

The rate constant, kr, was reduced for growth in the presence of HPMCAS, and 

the integration order, r was increased. The rate of integration depends on how quickly a 

solute molecule can position itself in the crystal lattice. This rate will decrease due to the 

presence of adsorbed polymers because as growth units diffuse across the surface in 
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search of active sites, the number of available sites will be reduced. This barrier to 

integration created by the adsorption of HPMCAS is reflected in the change to kr.  

The increase in the integration order, r, may be due to a shift in growth 

mechanism when polymers are present. Crystal growth of the pure drug proceeds in a 

linear step-wise fashion as described in Chapter 1 (Section 1.4). When HPMCAS is 

present, the steps are pinned and are forced to curve. Thus the presence of adsorbed 

polymers can result in a shift in growth mechanism, which will likely impact the order of 

integration. 

 Previous studies in which overall crystal growth rates were measured in the 

absence and presence of polymers have shown that the overall growth order (g in 

equation 1.7) increases when polymers are present, indicating a shift toward integration-

controlled growth.20 Studying growth with an RDA and isolating the integration step 

confirms that when polymers are present, the integration step is slowed. Thus, it offers 

more resistance to the overall growth rate resulting in the shift toward integration control. 

 

3.5 Conclusions 

A rotating disk apparatus was used to study the kinetics of crystal growth of 

felodipine in the absence and presence of the polymer, HPMCAS. The use of the RDA 

enabled the isolation of the mass transfer and integration steps so that the kinetic rate 

constants for each step could be determined. In the presence of polymer, it was shown 

that the felodipine crystal growth rate was slowed in both the mass transfer-controlled, 

and integration-controlled regions due to adsorption of the polymer on the crystal surface. 
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The use of this technique in crystal growth inhibition studies can enhance our 

understanding of the effects of polymers on growth kinetics. 
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CHAPTER 4. IMPACT OF POLYMER CONFORMATION ON THE CRYSTAL 
GROWTH INHIBITION OF A POORLY WATER-SOLUBLE DRUG IN 

AQUEOUS SOLUTION 

This chapter is a reprint with minor modifications of a manuscript published in Langmuir 

in December 2014 with the same title by: Caitlin J. Schram, Stephen P. Beaudoin, and 

Lynne S. Taylor. 

 

4.1 Abstract 

Poor aqueous solubility is a major hindrance to oral delivery of many emerging 

drugs.  Supersaturated drug solutions can improve passive absorption across the 

gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the 

delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and 

prolong supersaturation, therefore it is desirable to understand the attributes which render 

a polymer effective. In this study, the conformation of a polymer adsorbed to a crystal 

surface, and its impact on crystal growth inhibition was investigated. The crystal growth 

rate of a poorly soluble pharmaceutical compound, felodipine, was measured in the 

presence of hydroxypropyl methylcellulose acetate succinate (HPMCAS) at two different 

pH conditions: pH 3 and pH 6.8. HPMCAS was found to be a less effective growth rate 

inhibitor at pH 3, below its pKa. It was expected that the ionization state of HPMCAS 

would most likely influence its conformation at the solid-liquid interface. Further 
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investigation with atomic force microscopy (AFM) revealed significant differences in the 

conformation of HPMCAS adsorbed to felodipine at the two pH conditions. At pH 3, 

HPMCAS formed coiled globules on the surface, whereas at pH 6.8, HPMCAS adsorbed 

more uniformly. Thus it appeared that the reduced effectiveness of HPMCAS at pH 3 

was directly related to its conformation. The globule formation leaves many felodipine 

growth sites open and available for growth units to attach, rendering the polymer less 

effective as a growth rate inhibitor. 

 

Figure 4.1. Schematic showing the change in polymer conformation at the two pH conditions 
studied. 

 
 

4.2 Introduction 

Manipulating crystal formation is of fundamental importance to several fields 

including biomineralization, organic electronics and drug delivery. While the impact of 

polymers on inorganic crystallization1,2 and the effect of low molecular weight additives 

on organic crystallization3,4 have been widely studied, polymeric modification of 

crystallization in aqueous solutions of low molecular weight organic molecules is not 

widely understood.  

There is growing interest in combining polymers with poorly water soluble drugs 

to form amorphous drug-polymer blends, with the goal of enhancing oral 



 49 

bioavailability.5,6 The amorphous system is expected to generate a supersaturated solution 

in vivo upon dissolution.7,8 This is because the amorphous form possesses higher free 

energy and enthalpy compared to the crystalline form, and has no long-range molecular 

order.9–11 Thus, the energy required to dissolve an amorphous solid is significantly 

decreased relative to the crystalline form. Supersaturated solutions lead to higher 

membrane flux rates and hence can significantly improve passive drug absorption.5,6,12–14 

Therefore, amorphous drug-polymer blends can be used to improve the delivery of drugs 

with solubility-limited absorption. This is a pressing issue since it is estimated that up to 

80% of investigational drugs have suboptimum aqueous solubility15. The success of this 

strategy can be highlighted with two examples of recently approved therapies: the 

protease inhibitor telaprevir5 which is used to treat hepatitis C infections, and the B-Raf 

inhibitor, vemurafenib,6 used for melanoma. Both were developed as amorphous 

formulations in order to achieve adequate clinical efficacy, which could not be achieved 

with a crystalline form of the drug.  

The supersaturated solutions generated from amorphous solids will typically 

crystallize very rapidly because of the strong thermodynamic driving force.8 

Consequently, employing additives that slow crystallization is critical when using 

supersaturating dosage forms. Additives can effectively stabilize supersaturated solutions 

by either disrupting nucleation, or inhibiting crystal growth by adsorbing to growth sites 

and acting as a mechanical barrier16–18 Recently, there have been increased efforts to 

determine the factors that impact the effectiveness of polymers as a crystal growth 

inhibitors. Key factors thought to be of importance are the hydrophobicity match between 

the polymer and drug,19,20 and the ability of the polymer to form specific interactions via 
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hydrogen bonds to the drug.21,22 In a recent study, it was observed that pH impacted the 

effectiveness of several ionizable polymers.23 The polymers were consistently more 

effective at higher pH where they were highly ionized, despite having a similar extent of 

adsorption to the crystal at both pH values. A number of studies have shown that pH 

affects polymer conformation.24–26 When a polymer is ionized, the charged functional 

groups will self-repulse, causing the polymer chain to extend. In the unionized state, the 

polymer will coil due to intramolecular hydrogen bonding.26 Roiter and Minko confirmed 

these conformational transitions of poly(2-vinylpyridine) chains in aqueous solution as a 

function of pH using atomic force microscopy (AFM).27 

The objective of this study was to investigate the conformation of polymers on the 

surface of a drug crystal as a function of pH. It is hypothesized that pH influences the 

conformation of the adsorbed polymers at the solid-liquid interface, and that these 

changes in polymer conformation impact their ability to inhibit crystal growth. To test 

this hypothesis, the growth rate of the model compound, felodipine, was measured in the 

absence and presence of the ionic polymer, hydroxypropyl methylcellulose acetate 

succinate (HPMCAS) at different pH conditions. The conformation of HPMCAS 

adsorbed to felodipine at these same pH conditions was characterized using AFM phase 

imaging.  

4.3 Experimental Section 

4.3.1 Materials 

Felodipine was provided by Attix (Toronto, Ontario, Canada). Methanol was 

purchased from Avantor Performance Materials (Center Valley, PA). The carboxylated 

polymer used in this study was hydroxypropylmethyl cellulose acetate succinate 
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(HPMCAS) grade LF, MW 18,000 g mol-1, provided by Shin-Etsu Chemical Co, Ltd. 

(Tokyo, Japan) in powder form. The crystallization and adsorption media used in the 

growth and AFM experiments were 50 mM pH 3 phosphate buffer and 50 mM pH 6.8 

phosphate buffer. The chemical structures of felodipine and HPMCAS are shown in 

Figure 2.5. 

 

4.3.2 Crystal Growth Rate Measurements 

The effectiveness of HPMCAS as a crystal growth inhibitor was investigated at 

pH 3 and pH 6.8 by measuring the growth rate of felodipine in the absence and presence 

of HPMCAS. The pH values of 3 and 6.8 were chosen for this study because HPMCAS 

grade LF has a pKa of 5.5. Thus HPMCAS will be in different ionization states at the two 

experimental pH values. The concentration of felodipine in solution as a function of time 

was measured to create a desupersaturation profile. This profile is considered to be 

directly proportional to the overall growth rate of felodipine. The effectiveness (Eg) of 

HPMCAS was then expressed as a ratio of the measured growth rates 

 

!! = !!
!!

     (4.1) 

  

where R0 and RP represent the growth rate of felodipine in the absence and presence of 

HPMCAS respectively. Therefore, when Eg > 1, the polymer is considered to be effective. 

Felodipine seed crystals were prepared by first melting felodipine crystals, as 

supplied from the manufacturer, and re-crystallizing the melt by exposure to an 
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atmosphere of 75% relative humidity. Seed crystals were mounted on a rotating disc 

apparatus (RDA) which was set to a constant rotational speed, 1000 rpm, to ensure that 

the growth rate coefficent, kG, (equation 1.7) remained constant between experiments.28–

30 A stock solution of 10 mg/mL solubilized felodipine was prepared by dissolving 

felodipine in methanol. Supersaturated aqueous solutions were then generated by adding 

stock solution to pH 6.8 or pH 3 buffer. For felodipine, the equilibrium concentration, C* 

is approximately 0.5 µg/mL at 25°C.31 The initial felodipine solution concentration for 

growth experiments was 4 µg/mL in the absence and presence of 5 µg/mL HPMCAS. 

Stock solutions of 5 µg/mL HPMCAS were generated by dissolving the powder as 

provided in pH 6.8 or pH 3 buffer and mixing for 24 hours. The aqueous solubility of 

HPMCAS is poor at pH 3 compared to pH 6.8. Thus, highly concentrated solutions at pH 

3 appear cloudy. However, at the low HPMCAS concentration used in this study (5 

µg/mL), the solution is clear, indicating the polymer is completely dissolved and does not 

form agglomerates in solution at the experimental concentration.  

 Desupersaturation profiles were measured using a CCD Array UV-vis 

Spectrometer (SI Photonics, Tuscon, AZ) under isothermal conditions (25°C). Data 

collection began immediately after generation of supersaturated solutions. The intensity 

of an absorbance peak of felodipine (wavelength 360) was recorded at 10-second 

intervals for 1 hour. All experiments were performed in triplicate. Calibration solutions, 

prepared in methanol were used to correlate peak intensity to concentration. The slope of 

the resulting concentration v. time curve was recorded as the growth rate, R0 or RP in the 

absence or presence of HPMCAS respectively. 
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4.3.3 Atomic Force Microscopy 

Atomic force microscopy (Figure 2.3) (MultiMode 8 AFM, Bruker Corporation, 

Technology Forest, TX) was used to characterize adsorbed HPMCAS on crystallized 

felodipine. HPMCAS was added to phosphate buffer (0.2mg/mL) and dissolved by 

stirring for up to 24 hours. Seed crystals grown from the melt were exposed to polymer 

solutions using the RDA at 200 rpm for 2 hours.  The surface was not allowed to dry after 

adsorption. Samples were removed from the RDA holder and characterization with AFM 

commenced immediately. Images were taken in fluid using Tapping Mode with NPG-10 

silicon nitride triangular probes (Bruker Corporation, Technology Forest, TX) with 0.24 

N/m spring constant and 30 nm radius of curvature. The scan rate was set to 0.4 Hz and 

scan resolution was set to 512 x 512 pixels2. Characterization was conducted in the same 

liquid as that used for adsorption. For samples characterized at both pH conditions, the 

pH of the medium was increased using sodium hydroxide. No polymers were present in 

the bulk solutions added to the fluid cell during imaging. Height images and phase 

images were taken simultaneously. Incubation times ranged from 3-5 hours. No changes 

in the drug surface were detected over this timeframe. 

 

4.3.4 AFM Coupled with Infrared Spectroscopy 

Infrared images coupled with AFM (Figure 2.4) were obtained using nanoIR 

AFM (Anasys Instruments, Santa Barbara, CA). Images were acquired using C-450 

silicon cantilever probes in contact mode. An OPO nanosecond laser illuminated the 

sample at wavelengths characteristic to felodipine and HPMCAS. Upon irradiation, the 

sample expanded and contracted depending on how much infrared illumination was 
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absorbed, causing the AFM cantilever probe to oscillate a corresponding amount.32 Using 

this approach, IR spectra from sub micron domains can be obtained. IR spectra and 

images were thus obtained by recording the amplitude at various sample locations. IR 

spectra from 1620 to 1800 cm-1 were acquired in increments of 4 cm-1 with 128 laser 

pulses per wavelength. IR images were obtained by irradiating the sample at 1700 cm-1 

and 1720 cm-1 at a scan rate of 0.1Hz.  

 

4.3.5 AFM-IR Sample Preparation 

Samples characterized with AFM-IR were prepared directly on a ZnSe prism. A 

small drop of a 5 mg/mL methanolic solution of felodipine was placed on the prism and 

allowed to evaporate, creating a smooth, thin crystalline film. The method used to adsorb 

HPMCAS to the film was designed to mimic the adsorption method for samples 

characterized with fluid cell AFM. The ZnSe prism was suspended in buffer solution 

containing dissolved HPMCAS at a concentration of 0.2 mg/mL, such that the crystalline 

film was in contact with the solution. The solution was stirred for 1 hour. Upon removal 

from contact with the solution, the prism was dried with nitrogen to remove remaining 

liquid and any HPMCAS that was not adsorbed. 

 

4.4 Results and Discussion 

4.4.1 Polymer Effectiveness 

Plots of felodipine concentration as a function of time in the absence and presence 

of dissolved HPMCAS are shown in Figure 4.2. The slopes of the profiles for pure 

felodipine (R0) and felodipine in the presence of HPMCAS (RP) were measured from the 
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data. Table 4.1 displays the values of R0/RP in order to compare the effectiveness of 

HPMCAS at reducing the growth rate of crystalline felodipine at pH 3 and pH 6.8. While 

R0/RP > 1 at both pH conditions, indicating that growth is reduced, the effectiveness at 

pH 3 is decreased by a factor of about 1.8. A similar trend was observed for ritonavir and 

several carboxylated cellulose polymers.23,33 In these studies, the authors determined that 

the decrease in effectiveness was not due to a decrease in adsorption at the lower pH 

condition. Rather, the authors speculated that the difference in effectiveness might be due 

to changes in polymer conformation. 

 

Figure 4.2. Desupersaturation of felodipine (initial S of 8) in the absence of HPMCAS (♦), and 
in the presence of 5 µg/mL HPMCAS at pH 3 (red !) and pH 6.8 (blue !). Crystal growth rate 
experiments were performed in triplicate, and each data point represents the mean. Error bars 

indicate one standard deviation from the mean. 

Table 4.1. Effectiveness crystal growth rate ratio (Eg = R0/RP) of HPMCAS for felodipine at pH 3 
and pH 6.8. 

pH R0/RP 

3 1.28  

6.8 2.29  
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The pKa of HPMCAS is 5.5, therefore, it is nearly completely ionized at pH 6.8, 

and unionized at pH 3. Based on this information, and the literature previously 

mentioned24–27 it is hypothesized that HPMCAS will be in an extended chain 

conformation at pH 6.8, and form compact coils at pH 3. 

 

4.4.2 Polymer Conformation 

Atomic force microscopy (AFM) was used to analyze the conformation of 

adsorbed HPMCAS on felodipine, and to provide insight into how the conformation 

impacts polymer effectiveness. It should be noted that AFM analysis revealed the same 

felodipine crystal morphology regardless of growth conditions (pH or presence of 

additives), therefore changes to crystal morphology is likely not the cause of changes in 

growth rate.  Figures 4.3a and 4.3b show AFM phase contrast images of the polymer 

adsorbed to the crystal surface at pH 3 and 6.8. A phase contrast image of the pure drug 

with no adsorbed polymer is shown in Figure 4.3c for comparison. Phase contrast 

imaging is sensitive to changes in material properties, such as viscoelasticity,34 making it 

an ideal method for detecting adsorbed polymers.  

 

Figure 4.3. 2µm x 2µm AFM phase images of (a) HPMCAS adsorbed to felodipine at pH 3, (b) 
HPMCAS adsorbed to felodipine at pH 6.8, (c) felodipine with no HPMCAS adsorbed. Images 

were captured in liquid at room temperature with an incubation time of about 3 hours. 
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The results qualitatively confirm differences in HPMCAS conformation at the 

solid-liquid interface as a function of pH. The dark spots in Figure 4.3a are evidence of 

distinct globules of HPMCAS adsorbed to the crystalline drug surface at pH 3. In contrast, 

at pH 6.8, the AFM reveals dark shading (Figure 4.3b), over the entire surface. This dark 

shading is not present in the image of pure drug (Figure 4.3c), thus it is indicative of 

extended polymer chains dispersed across the drug surface. These results are in 

qualitative agreement with the proposed hypothesis. Specifically, the adsorbed polymer, 

when ionized, extends itself across the surface in order to isolate the charges present on 

its functional groups, while the unionized polymer does not suffer from internal 

electrostatic repulsion and can remain coiled. 

 Quantitative analysis of the topography of HPMCAS adsorbed to felodipine at 

both pH conditions can provide insight into how these changes in conformation impact 

the effectiveness of HPMCAS. Cross sections of the surface topography at both pH 

conditions are presented in Figure 4.4. The cross section of the surface at pH 6.8 (Figure 

4.4a), reveals a relatively even height distribution and small topographical features up to 

about 0.8nm in height. The molecular diameter of glucose (an approximate surrogate for 

the monomer units of HPMCAS) is about 0.75 nm, which is consistent with these height 

variations. Thus it can be deduced that the polymer chains lay parallel to the surface, and 

therefore may be able to cover multiple growth sites. 
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Figure 4.4. AFM cross-sectional height analyses of HPMCAS adsorbed to felodipine at (a) pH 
6.8, revealing a relatively even height distribution, and at (b and c) pH 3 illustrating sample 
globule dimensions and standard distances between adjacent globules. AFM images were 

captured in liquid at room temperature with an incubation time of 3-5 hours. 

 
 

Figure 4.4b shows a cross section of the surface at pH 3. Instead of many small 

topographical features, one large feature is present which has a radius of about 17 nm and 

a height of about 2 nm, providing an example of the size and shape of the adsorbed 

polymer globules at pH 3. The average radius, rp, of all globules present on a 1.5µm x 

1.5µm area was determined to be 15.4 nm using ImageJ analysis35 as shown in Figure 4.5. 
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The average polymer globule height, hp, was found to be 2.98 nm using cross-sectional 

analysis. These dimensions were applied to determine the average globule volume by 

modeling the globule as a spherical cap:36  

 

V = !
!!h!(3r!

! + h!!)   (4.2) 

 

From this equation, the average globule volume was determined to be 1.05x10-3 

nm3. Given this volume as well as the polymer density and molecular weight provided by 

the manufacturer, it was determined that an average of ~46 HPMCAS molecules were 

present in each globule. 

Figure 4.4c provides an illustration of the distance between globules on the 

crystalline drug surface at pH 3, whereby it can be seen that the distance between any two 

globules ranged from 25-50 nm. Further analysis using ImageJ (Figure 4.5) revealed the 

average distance between globules to be about 44 nm.  

 

Figure 4.5. ImageJ analysis of HPMCAS adsorbed to felodipine at pH 3. Analysis reveals 
polymer surface coverage and average globule size. Scale bar is 500 nm. 
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These results provide a mechanistic understanding of the role of polymer 

conformation on growth inhibition. The fact that multiple polymer molecules are present 

in each globule at pH 3 explains why polymer adsorption did not decrease at the lower 

pH condition in the study by Ilevbare et al. previously mentioned.23 The key 

consideration is the large distance between globules at pH 3. These spaces between 

globules leave a large number of felodipine growth sites open and available for growth 

units to attach; the molecular diameter of a felodipine molecule is about 0.9 nm, which is 

approximately 50 times smaller than the determined average distance between globules. 

From equations (1.15) and (1.13c), it is clear that as this average distance between 

globules, l, increases, the ratio RP/R0 increases. Thus, the effectiveness factor, Eg 

(equation 4.1) will be reduced at pH 3, which agrees with the results displayed in Figure 

4.2 and Table 4.1. Conversely, the extended polymer chain conformation observed at pH 

6.8 should have the ability to block more than one growth site, either by adsorbing to 

multiple sites, or by creating a barrier for growth units attaching to neighboring sites due 

to the extension of the chain, rendering it more effective at pH 6.8. 

 To determine if adsorbed polymer conformation is reversible, HPMCAS was 

adsorbed to felodipine at pH 3, and the topography was immediately characterized with 

AFM in pH 3 solution. The pH of the solution over the sample was then increased to pH 

6.8 and the topography of the same location on the sample was characterized again. The 

results, displayed in Figure 4.6, show a change upon increasing the pH. At pH 3, the 

coiled polymer chains, are revealed as distinct spots in Figure 4.6a. Despite the presence 

of less obvious spots in the phase image at pH 6.8 (Figure 4.6b), the corresponding 

topographical scan at pH 6.8 (Figure 4.6d) reveals that the polymers are no longer 
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arranged in a compact globular formation. This change in conformation is especially 

clear when compared to the topography at pH 3 (Figure 4.6c).  

 

 

Figure 4.6. (a) 2µm x 2µm AFM phase image and (c) corresponding 3D height image 
topography of HPMCAS adsorbed to felodipine at pH 3. (b) AFM phase image and (d) 

corresponding 3D height image topography of the same area after the pH of the system was 
increased to 6.8. Images were captured in liquid at room temperature with an incubation time of 

5 hours. 

 
 

Computation of the root mean square roughness of a 1.5µm x 1.5µm area at both 

pH conditions reveal a 29.3% decrease in surface roughness at pH 6.8 compared to pH 3. 

This quantitatively confirms that the polymer chains are no longer coiled when the pH is 

increased to 6.8. Polymer adsorption is considered to be irreversible, however, it is 

possible that after the pH increases, polymer chains that were previously coiled in a 

globule but not adsorbed will diffuse into the bulk solution and adsorb elsewhere on the 

surface. However, the phase image at pH 6.8 (Figure 4.6b) reveals dark spots, unlike 
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Figure 4.3b. It can be deduced that these spots in Figure 4.6b represent a large density of 

extended polymer chains in the location of the pre-existing globules. This result suggests 

that when the polymers become ionized and extend, it is not likely that they migrate away 

from their original cluster to open growth sites on the surface within the timeframe of 

these experiments. Rather, they extend to occupy growth sites in the local vicinity of their 

original deposition coordinate.  

 To summarize, the conformation of HPMCAS adsorbed on a crystalline 

felodipine surface is pH-dependent. At pH 6.8, above its pKa, HPMCAS is ionized, 

therefore its functional groups will self-repulse and the polymer chains will extend. This 

has a favorable effect on the polymer’s ability to inhibit crystal growth because it allows 

for more extensive growth site coverage for a given mass of deposited polymer. At pH 3, 

below its pKa, HPMCAS is unionized, and the polymer chains remain coiled due to 

intramolecular bonding. It is now known that multiple coils will combine, forming 

globules on the surface of the drug. This has an unfavorable impact on the polymer’s 

ability to inhibit crystal growth because it leaves growth sites vacant for drug growth 

units to attach. 

 

4.4.3 Chemical Identification of Polymer Adsorption 

To confirm chemically that HPMCAS adsorbs to felodipine, the drug was 

characterized with infrared spectroscopy coupled with AFM (AFM-IR) before and after 

exposure to HPMCAS in solution at pH 6.8. Due to the nature of the measurement, 

samples could not be characterized in liquid. Following polymer adsorption, the surface 

was dried with nitrogen resulting in agglomeration of HPMCAS molecules on the surface, 
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as revealed by the large aggregates in the topographical image (Figure 4.7). Therefore it 

should be noted that AFM-IR experiments were completed for the purpose of chemical 

characterization only, not to gain any conformational information. The corresponding 

color-coded spectra in Figure 4.7 reveal that the large agglomerates on top of the smooth 

drug layer exhibit an absorbance peak at 1720 cm-1 (green and black) which arises from 

the carbonyl group found in HPMCAS, confirming that the aggregates are polymer. In 

contrast, spectra taken at various positions on what is expected to be the pure drug layer 

(blue and red) do not have a peak at 1720 cm-1, but do exhibit four absorbance peaks 

from 1650 – 1700 cm-1, which arise from felodipine functional groups. The spectra taken 

on the HPMCAS agglomerates also show absorption bands from 1650 – 1700 cm-1, 

characteristic of felodipine. The presence and reduced height of these peaks can be 

attributed to the fact that the IR laser must pass through the drug layer underneath 

adsorbed HPMCAS. Thus, at these locations, the sample exhibited absorbance at the 

characteristic drug frequencies in addition to the characteristic polymer frequency. 

However, the presence of adsorbed HPMCAS considerably dampened the signal arising 

from the drug that reached the AFM tip.  
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Figure 4.7.  AFM-IR spectra from 1620-1800 cm-1 of felodipine (red and blue) and HPMCAS 
adsorbed to felodipine (green and black), and their corresponding locations on the AFM height 

image. 

 

 Figure 4.8 shows the chemical images captured as the sample was selectively 

illuminated at 1700 cm-1 and 1720 cm-1, wavenumbers characteristic of felodipine and 

HPMCAS respectively. Pure felodipine was characterized prior to HPMCAS adsorption 

(Figure 4.8a). Illumination at 1700 cm-1 reveals a uniform absorbance at this wavelength, 

as expected for a chemically homogeneous surface. The sample was illuminated again at 

1700 cm-1 after exposure to HPMCAS. The result, Figure 4.8b, now reveals dampened 

absorptivity (purple) when the AFM tip encountered a polymer agglomerate. This same 

area was irradiated at 1720 cm-1, (Figure 4.8c), and it is immediately clear that the 

resulting image is the inverse of that shown in Figure 4.8b. There was strong absorptivity 

(orange) when the tip encountered a polymer agglomerate, and little absorptivity at this 

wavenumber on the drug crystal surface. The absence of signal from some of the smaller 

HPMCAS features in Figure 4.8c is due to the lesser thickness of these small 
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agglomerates compared to the drug layer. Since the IR laser passes through both layers, 

the signal that reaches the AFM tip is dominated by the thicker drug layer. 

 
 

 

Figure 4.8. 5µm x 5µm AFM-IR chemical images of (a) pure felodipine illuminated at 1700 cm-

1 (b) felodipine after exposure to HPMCAS illuminated at 1700 cm-1 and (c) 1720 cm-1. 

 
 
 These results provide clear evidence that HPMCAS adsorbs to felodipine under 

the conditions specified in the current study. After exposure to HPMCAS, agglomerates 

were present on the felodipine surface, whereby submicron chemical imaging confirmed 

the chemical identity of the agglomerates.  

 

4.5 Conclusions 

When the moderately hydrophobic carboxylated cellulose polymer, HPMCAS, was 

not ionized in aqueous solution, it was found to adsorb onto the surface of crystalline 

felodipine in the form of compact coils resulting in distinct polymer globules with poor 

total surface coverage. In contrast, when ionized, HPMCAS chains extended, presumably 

due to charge repulsion between molecules, resulting in a more uniform surface coverage. 

In concert, it was noted that the inhibitory effect of HPMCAS on the solution crystal 
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growth of felodipine was considerably diminished at a low pH when the polymer is not 

ionized relative to at a higher pH when the polymer is ionized. Thus it is apparent that the 

reduced inhibitory impact of the polymer on crystal growth at low pH arises from the 

globule formation which leaves many growth sites available on the crystal; in contrast 

more growth sites are blocked when the polymer is more evenly distributed on the 

surface as a consequence of repulsive interactions and growth rate is more effectively 

reduced. The insights gained from this study with felodipine and HPMCAS can be 

applied to other drug-polymer systems, and can be used to identify polymers which both 

adsorb to the crystal surface and provide a high degree of surface coverage. This will 

ultimately improve the delivery of poorly water soluble therapeutics, which rely on the 

creation of supersaturated solutions to drive passive absorption across the gastrointestinal 

tract membrane. 
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Notes 
 
 
 

 Several crystallographic planes were identified as being present on the 

recrystallized amorphous films, as determined by measuring the angles between the faces 

(Figure 4.9 and Table 4.2). Polymer adsorption was observed, for example, on the (1 1 -

1), (1 -2 -2), and (1 -1 1) faces. Each of these faces presents a different surface chemistry 

(Figures 4.10 – 4.12), with potential exposure of multiple functional groups including 

methyl, chlorine, and oxygen atoms. No difference could be discerned in the density of 

HPMCAS adsorption between these three faces, suggesting that adsorption is nonspecific. 

 

Figure 4.9. 2µm x 2µm AFM phase image of HPMCAS adsorbed to a felodipine crystallite at pH 
3. The crystallite was formed following recrystallization of the amorphous material by exposure 
to buffer solution. The image reveals that HPMCAS adsorbs with comparable density to multiple 

crystal faces. The corresponding crystallographic planes were determined from the angles 
between crystal faces as reported in Table 4.2. 
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Table 4.2. The measured angles between faces of the felodipine single crystal shown in Figure 
4.9, compared to the predicted angles between crystallographic planes. Angles were measured 
from the corresponding AFM height image using cross sectional analysis. Small discrepancies 
between measured and predicted values are due to instrument error and limitations of the top-

down cross sectional analysis method. 
 

Angle Measured with AFM Predicted 

A 100.1° 97.66° 

B 87.6° 86.8° 

C 75.5° 75.66° 

D 103.5° 103.23° 

 

 
Figure 4.10. Surface chemistry of the (1 1 -1) face. Methyl groups and oxygen atoms are exposed 

at the surface. 
 

 

Figure 4.11. Surface chemistry of the (1 -1 1) face. Chlorine atoms and methyl groups are 
exposed at the surface. 
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Figure 4.12. Surface chemistry of the (1 -2 -2) face. Methyl groups, amine groups, and oxygen 

atoms are exposed at the surface. The varying surface chemistry between this face and the (1 1 -1) 
and (1 -1 1) faces suggests that HPMCAS adsorption is non-specific. 
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CHAPTER 5. INFLUENCE OF POLYMERS ON THE CRYSTAL GROWTH RATE 
OF FELODIPINE: CORRELATING ADSORBED POLYMER SURFACE 

COVERAGE TO SOLUTION CRYSTAL GROWTH INHIBITION 

This chapter is a reprint with minor modifications of a manuscript published in Langmuir 

in September 2015 with the same title by: Caitlin J. Schram, Lynne S. Taylor, and 

Stephen P. Beaudoin. 

 

5.1 Abstract 

The bioavailability of orally administered drugs that exhibit poor aqueous 

solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of 

these forms by preventing or inhibiting crystallization in solution is an important area of 

study. Polymers can be used to stabilize supersaturated systems, however the properties 

that impact their effectiveness as crystal growth rate inhibitors are not yet fully 

understood. In this study, the impact of various polymers on the crystal growth rate of 

felodipine and the conformation of these polymers adsorbed to crystalline felodipine was 

investigated in order to gain a mechanistic understanding of crystal growth inhibition. It 

was determined that polymer hydrophobicity impacted polymer adsorption as well as 

adsorbed polymer conformation. Polymer conformation impacts its surface coverage, 

which was shown to directly correlate to the polymer’s effectiveness as a growth rate
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 inhibitor. By modeling this correlation, it is possible to predict polymer 

effectiveness given the surface coverage of the polymer.   

 

5.2 Introduction 

The crystal form of a compound can greatly impact its physical, chemical, and 

mechanical properties. Therefore, the ability to manipulate crystallization from 

supersaturated solutions is of importance to many industries. In the pharmaceutical field, 

controlling crystal formation is fundamental to optimizing drug formulation and 

delivery.1 In particular, there is growing interest in slowing or inhibiting crystallization of 

organic molecules using polymeric additives.2–4  

The ability to inhibit crystallization is desirable because nearly 80% of 

investigational drugs have suboptimal aqueous solubility.5 Formulating a drug as an 

amorphous solid can result in increased dissolution rates and the generation of a 

supersaturated solution.6–8 In this form, the drug will permeate across gastrointestinal (GI) 

tract membranes at a faster rate, thereby greatly increasing absorption.9,10 A major 

challenge to the utilization of supersaturating delivery systems, however, is the difficulty 

in maintaining supersaturation, because of the driving force for crystallization.11,12 Thus, 

preventing crystallization to maintain supersaturation is crucial to increasing drug 

exposure.  

Additives, such as polymers can inhibit crystallization and stabilize supersaturated 

solutions.13 While many studies have been conducted to identify effective polymers, the 

key properties that render a polymer effective are not widely understood. Several recent 
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studies determined that polymer hydrophobicity can greatly impact effectiveness,3,14,15 

however the explanation for this phenomenon has not yet been determined.  

The objective of this study was to investigate the adsorbed conformation of a 

group of polymers of varying hydrophobicity on the surface of crystalline drug, and the 

corresponding effect of this adsorption on crystal growth. A polymer’s adsorbed 

conformation has been shown to influence its ability to inhibit crystal growth.16 Therefore, 

it is hypothesized that polymer hydrophobicity will greatly impact adsorbed polymer 

conformation, consequently influencing the effectiveness as a growth inhibitor.  

 

5.3 Experimental Section 

5.3.1 Materials 

Felodipine was provided by Attix (Toronto, Ontario, Canada). Methanol (HPLC 

grade) was purchased from Avantor Performance Materials (Center Valley, PA). The 

polymers used in this study were hydroxypropylmethyl cellulose acetate succinate 

(HPMCAS) LF grade, Mw 18 000 g mol-1 and hydroxypropylmethyl cellulose (HPMC) 

606 grade (Shin-Etsu Chemical Co, Ltd., Tokyo, Japan), polyvinylpyrrolidone (PVP), Mw 

40 000 g mol-1, polyacrylic acid (PAA) Mw 450 000 g mol-1, and poly(vinyl pyrrolidone 

vinyl acetate) (PVPVA), Mw 50 000 g mol-1 (Sigma-Aldrich Co., St. Louis, MO), and 

poly(2-vinylpyridine) (P2VP), Mw 40 000 g mol-1  and polyvinyl acetate (PVAc), Mw 90 

000 g mol-1  (Polysciences Inc., Warrington, PA). The crystallization and adsorption 

media used in all experiments was 50 mM pH 6.8 phosphate buffer.  The chemical 

structures of felodipine and the polymers used in this study are given in Figure 2.5. 
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5.3.2 Crystal Growth Rate Measurements 

The growth rate of felodipine was measured in the absence and presence of the 

polymers shown in Figure 2.5. The concentration of felodipine in solution as a function 

of time was measured to determine a desupersaturation profile. This profile is considered 

to be directly proportional to the overall growth rate of felodipine. The effectiveness (Eg) 

of each polymer can then be expressed as a ratio of the measured growth rates 

 

!! = !!
!!

     (5.1) 

  

where R0 and RP represent measured growth rates of felodipine in solution in the absence 

and presence of polymer respectively. Therefore, when Eg > 1, the polymer is considered 

to be effective. 

Felodipine seed crystals were prepared by first melting felodipine crystals, as 

supplied from the manufacturer, in a custom PTFE holder and re-crystallizing the melt by 

exposure to an atmosphere of 75% relative humidity. This yielded a flat surface of well-

defined and consistent surface area. Seed crystals in the holder were mounted on a 

rotating disc apparatus (RDA) (Princeton Applied Research, model 616), which was set 

to a constant rotational speed, 6000 RPM, to ensure that the measured growth rate was 

independent of mass transfer and reflected the rate of integration only. A stock solution 

of 10 mg/mL solubilized felodipine was prepared by dissolving felodipine in methanol. 

Supersaturated aqueous solutions were then generated by adding a small amount of the 

felodipine stock solution to pure pH 6.8 buffer, or buffer containing pre-dissolved 

polymers. The initial solution concentration for growth experiments was 2 µg/mL. The 
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equilibrium concentration of felodipine is approximately 0.5 µg/mL at 25°C,17 thus the 

experiments were carried out at initial S = 4. Polymers were pre-dissolved in pH 6.8 

buffer to create stock solutions with concentrations of 5 and 10 µg/mL. 

 Desupersaturation profiles were measured using a CCD Array UV-vis 

Spectrometer (SI Photonics, Tuscon, AZ) under isothermal conditions (25°C). Data 

collection began immediately after generation of supersaturated solutions. The intensity 

of an absorbance peak of felodipine (wavelength 238 nm) was recorded at 10-second 

intervals for 1 hour. All experiments were performed in triplicate. Calibration solutions, 

prepared in methanol were used to correlate peak intensity to concentration. The slope of 

the resulting concentration v. time curve was recorded as the growth rate, R0 or RP in the 

absence or presence of polymers.  

 

5.3.3 Atomic Force Microscopy 

Atomic force microscopy (Figure 2.3) (MultiMode 8 AFM, Bruker Corporation, 

Technology Forest, TX) was used to characterize adsorbed polymers on crystallized 

felodipine. Seed crystals grown from the melt were exposed for two hours to the same 

polymer stock solutions used for growth experiments. Samples were removed from the 

RDA holder and characterization with AFM commenced immediately. The surface was 

not allowed to dry after adsorption, and images were taken in the same liquid as that used 

for the adsorption step. Characterization was done using Tapping Mode with NPG-10 

(0.24 N/m spring constant, 30 nm radius of curvature) or SNL-10 (0.24 N/m spring 

constant, 10 nm radius of curvature) silicon nitride triangular probes (Bruker Corporation, 

Technology Forest, TX). The scan rate was set to 0.4 Hz and scan resolution was set to 
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512 x 512 pixels2. Height images and phase contrast images were obtained 

simultaneously. Phase contrast imaging is sensitive to changes in material properties, 

such as viscoelasticity,18 thus it is an ideal method for detecting adsorbed polymers. 

 

5.3.4 Determination of Polymer Surface Coverage 

AFM phase contrast images were analyzed using ImageJ19. Each image was 

converted to an 8-bit bichromatic image such that polymers stood out as black objects on 

a white background. The threshold limits were set to be consistent between all systems 

such that the analysis could eliminate felodipine surface effects and accurately represent 

the size of polymers as shown in the phase contrast images. The software could then 

determine the percentage of the image area occupied by black pixels.  

 

5.3.5 Contact Angle Measurements 

Contact angle measurements of DI water and ethylene glycol on a crystalline 

felodipine surface were taken in order to determine the surface energy of felodipine. 

Measurements were taken under ambient conditions using a Ramé-Hart model 500 

goniometer and DROPimage advanced software. Ten drops were measured for each 

liquid, and a total of ten measurements were taken per drop in order to obtain an average 

contact angle for each of the two liquids on felodipine. The surface energy was then 

estimated using the harmonic mean approach, or two liquid method proposed by Wu.20 

This approach uses the harmonic mean of the disperse and polar components of both the 

liquid and solid surface tensions to determine the solid-liquid interfacial tension. The 
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surface energy can then be determined from the calculated interfacial tension and 

measured contact angles using Young’s equation.21 

 

5.3.6 Determination of Felodipine Growth Unit Size 

The size of a felodipine growth unit was determined using the crystal structure 

visualization software, Mercury.22 The molecular structure of felodipine (form DONTIJ) 

was provided by the Cambridge Crystallographic Data Centre (CCDC) structural 

database. The measure distances tool in Mercury was used to determine the length and 

width of a felodipine molecule. These measurements were used to calculate the area 

occupied by a growth unit on a crystal surface. 

 

5.4 Results and Discussion 

Polymer adsorption to a solid-liquid interface is driven by energetically favorable 

interactions between the polymer and solid as influenced by the medium. In short, 

whether or not a polymer will adsorb to a solid is determined by how favorably the 

polymer interacts with the solid compared to how favorably it interacts with the solvent.23 

In a poor solvent, the polymer will want to escape the medium and will consequently 

adsorb to the surface.24 However, even in a good solvent, a polymer will adsorb if it 

forms more favorable intermolecular interactions with the solid than with the solvent. 

These can include electrostatic interactions, hydrogen-bonding interactions, and chemical 

interactions.23  

 



 80 

5.4.1 Impact of Polymer Hydrophobicity on Adsorption 

The crystal growth rate of pure felodipine (R0) and the growth rate of felodipine 

in the presence of polymers (RP) were measured to determine the growth rate ratio, R0/RP, 

which indicates polymer effectiveness (equation 5.1). The results are shown in Figure 5.1, 

arranged in order of increasing polymer hydrophobicity. The order was determined from 

previously published solubility parameters calculated for each polymer.25  

 

 

 Figure 5.1. Effectiveness crystal growth rate ratio of felodipine at initial S of 4 with various 
polymers present at a concentration of 5 µg/mL. Growth rate experiments were performed in 

triplicate and each column represents the mean. Error bars indicate standard error of the mean. 
 

Figure 5.1 shows that polymer hydrophobicity plays an important and complex 

role in polymer effectiveness. The very hydrophilic and hydrophobic polymers are 

relatively ineffective (Eg ~1-1.5), whereas the moderately hydrophobic polymers are two 

to three times more effective. A similar trend was observed in a previous study for the 
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API ritonavir.15 In this study, the authors hypothesized that polymer hydrophobicity may 

affect the extent of adsorption of polymer to the drug.  

 To test this hypothesis, each polymer was adsorbed to felodipine and 

subsequently analyzed with atomic force microscopy (AFM). The results for select 

systems are presented in Figure 5.2 along with a pure felodipine surface (Figure 5.2e) for 

comparison.  

 

 

Figure 5.2. 750 nm x 750 nm AFM height and corresponding phase contrast images of felodipine 
after exposure to (a) PAA, (b) PVP, (c) HPMCAS, and (d) PVAc, and (e) pure felodipine with no 

exposure to polymers. Images were captured in liquid at room temperature with an incubation 
time of 4-5 h. 

 

The very hydrophilic polymer PAA (Figure 5.2a) shows no evidence of 

adsorption to crystalline felodipine. This explains why PAA has no effect on the growth 

rate of felodipine (R0/RP = 1). Very hydrophilic polymers such as PAA interact favorably 

with water; therefore PAA has little driving force to adsorb to the drug surface.  At the 

other end of the spectrum, PVAc, a very hydrophobic polymer, shows evidence of 
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adsorption (Figure 5.2d), however, it adsorbs in aggregates. This can be seen from the 

dark spots in the phase image as well as the raised globules in the corresponding 3D 

height image. A similar result was observed by Amiel et al. for hydrophobic polymers.26 

This result suggests that hydrophobic polymers such as PVAc are driven to adsorb to the 

drug surface in order to minimize interactions with water. The adsorbed aggregated 

conformation also reflects the polymer’s desire to minimize surface contact with water. 

Therefore, although PVAc is present on the drug surface, the poor surface coverage due 

to aggregation results in poor growth rate inhibition as shown in Figure 5.1. 

 Of the four systems shown, HPMCAS, which is a moderately hydrophobic 

polymer, adsorbs with the highest degree of surface coverage, as evidenced by the 

relatively uniform dark shading in the AFM phase image (Figure 5.2c). This result 

suggests that HPMCAS has a certain hydrophilic/hydrophobic balance necessary to not 

only drive adsorption to the surface but to interact favorably with both the drug and the 

aqueous medium once adsorbed. The height image reveals no obvious surface features, 

suggesting that HPMCAS chains are spread fairly flat on the surface. This was shown to 

be the case for HPMCAS at pH 6.8 in Chapter 4. Because HPMCAS contains both 

hydrophobic and hydrophilic functional groups and favorably interacts with both the 

aqueous medium and the more hydrophobic drug surface, it provides a high degree of 

surface coverage, and is a more effective growth rate inhibitor (Figure 5.1).  

 Although PVP is a very hydrophilic polymer, AFM characterization reveals that it 

adsorbs to felodipine (Figure 5.2b). This suggests that PVP adsorption to felodipine may 

be driven by specific interactions between the polymer and drug. Previous studies have 

provided evidence of PVP adsorption due to hydrogen bonding.14,27,28 Karavas et al. 
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confirmed that PVP interacts with felodipine via a hydrogen bond, which forms between 

the carbonyl group of PVP and the amino group of felodipine.29 In fact, their results 

indicated that PVP forms two specific interactions with felodipine. The second 

interaction could be formed with the amide group of PVP.30 

It is possible that the adsorption of PVP to felodipine is due in part to 

hydrophobic effects as well. PVP has been known to adsorb to hydrophobic surfaces, 

such as graphite in water. According to Esumi et al., graphite preferentially interacts with 

PVP over water due to the solid’s hydrophobic nature.31 Thus, PVP adsorption to 

graphite is not a result of poor polymer-solvent interactions, but due to unfavorable 

surface-solvent interactions. This effect could contribute in concert with hydrogen 

bonding to the adsorption of PVP on hydrophobic felodipine. 

  Although PVP adsorbs to felodipine, it has limited impact on the growth rate 

(Figure 5.1) due to its aggregated conformation (Figure 5.2b). This conformation is a 

result of hydrophobic effects. The hydrophilic polymer forms aggregates in order to 

minimize contact with the hydrophobic drug surface.32  

In summary, the results indicate that polymer hydrophobicity is an important 

factor which influences polymer effectiveness due to its impact on adsorption and 

adsorbed polymer conformation. Very hydrophilic polymers will likely not adsorb 

because they prefer to remain in solution. As polymer hydrophobicity increases, it is 

more likely to interact with the drug in order to minimize contact with the aqueous 

solution. Polymer hydrophobicity also impacts the polymer’s adsorbed conformation. 

Very hydrophobic polymers will aggregate to minimize interactions with the aqueous 

medium whereas more hydrophilic polymers will aggregate to minimize contact with the 
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hydrophobic drug surface. Polymers with intermediate hydrophobicity will interact 

favorably with both the medium and the drug surface, resulting in a spread out 

conformation. These variations in conformation impact the polymer surface coverage, 

which influences growth rate inhibition. 

In Figure 5.1, the growth rate results of felodipine with PVPVA, the random co-

polymer of PVP and PVAc, reveal that PVPVA is a better growth rate inhibitor than the 

same concentration of either PVP or PVAc alone. This is most likely because PVPVA 

has a higher net driving force for adsorption than PVP or PVAc alone. PVPVA 

adsorption to felodipine is driven by the combination of hydrophobic interactions (PVAc 

units) and specific interactions (PVP units), resulting in greater overall surface coverage.  

Greater surface coverage by PVPVA suggests that PVP and PVAc may adsorb to 

different felodipine sites. To gain more insight into this, crystal growth rates were 

measured in the presence of a polymer mixture composed of equal parts PVP and PVAc 

at two different concentrations. The results are displayed in Figure 5.3 along with the 

results for PVPVA, PVP, and PVAc for comparison.  
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Figure 5.3. Effectiveness crystal growth rate ratio of felodipine at initial S of 4 with various 
polymers present at a total polymer concentration of 5 or 10 µg/mL. Growth rate experiments 

were performed in triplicate and each column represents the mean. Error bars indicate standard 
error of the mean. 

 

The results indicate that the polymer mixture at both 5 and 10 µg/mL total 

concentrations have the same effect on the growth rate of felodipine as the copolymer. 

The fact that the polymer mixture is also able to achieve greater coverage than the same 

concentration of PVP or PVAc alone suggests that PVP and PVAc are able to bind to 

different felodipine sites and do not necessarily compete for equally energetic sites on the 

surface.  

 

5.4.2 Polymer Surface Coverage 

To determine the surface coverage of each polymer adsorbed to felodipine, Φ, 

samples were characterized with AFM phase imaging. It should be noted that the surface 

coverage is a physical parameter that describes simply the macroscopic fraction of the 

felodipine surface covered by polymer, while θ, the fractional coverage as defined by the 
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Kubota-Mullin model (equation 1.15), represents the ratio of the average distance 

between sites available for impurity adsorption to the average distance between adsorbed 

impurities (as described in equation 1.13c).  While these parameters may be proportional, 

they are not identical.  The AFM images were then analyzed using ImageJ analysis.19 The 

results are presented in Figure 5.4 in order of increasing polymer coverage. Table 5.1 

displays the fractional coverage values determined from ImageJ.  

 

 

 
Figure 5.4. 750 nm x 750 nm AFM phase images and corresponding ImageJ analysis images of 

(a) PVP, (b) P2VP, (c) PVAc, (d) PVPVA, (e) PVP + PVAc (10 µg/mL), (f) PVPVA (10 µg/mL), 
(g) HPMCAS, (h) HPMC adsorbed to crystalline felodipine. Polymer solution concentrations 

were 5 µg/mL unless otherwise indicated. AFM images were captured in liquid at room 
temperature with an incubation time of 4-5 h. 
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Table 5.1. Fractional surface coverage values for each polymer adsorbed to felodipine 
determined using ImageJ analysis. Values given are the average of three measurements. 

 

Polymer Φ 

PAA 0 

PVP 0.08 ± 0.008 

P2VP 0.10 ± 0.014 

PVAc 0.14 ± 0.007 

PVPVA 0.19 ± 0.025 

PVP + PVAc (10 µg/mL) 0.28 ± 0.021 

PVPVA(10 µg/mL) 0.31 ± 0.018 

HPMCAS 0.53 ± 0.025 

HPMC 0.54 ± 0.008 

 

These results, when compared to the growth rate results presented in Figures 5.1 

and 5.3, indicate that there is a correlation between polymer coverage and polymer 

effectiveness. The polymers that adsorb with higher coverage are the most effective 

growth rate inhibitors, and polymers that adsorb with the lowest coverage are less 

effective.  Plotting polymer effectiveness, R0/RP, as a function of fractional surface 

coverage (Figure 5.5) reveals that there is a linear correlation between polymer coverage 

and polymer effectiveness as a growth rate inhibitor. 
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Figure 5.5. Plot of crystal growth rate ratios (polymer effectiveness) as a function of fractional 

polymer coverage, demonstrating a linear correlation. Error bars indicate standard error from the 
mean. 

 
 

5.4.3 Modeling the Correlation between Growth Rate and Polymer Coverage 

According to the Kubota-Mullin model, a greater fractional coverage by the 

polymer, θ, will result in a reduced growth rate when polymer is present, RP, as shown in 

equation (1.15).  As mentioned above, the definition of fractional coverage expressed in 

the model, θ, is the ratio of the average distance between available sites for adsorption 

and the average distance between adsorbed polymers. This is different from the definition 

of polymer surface coverage, Φ, which is a parameter that is determined experimentally.  

However the two parameters are expected to be proportional. Modeling the experimental 

results using the Kubota-Mullin model can confirm this proportionality. 
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Equation (1.15) can be applied in the current study because the first condition 

given in Section 1.5 is satisfied by the fact that seed crystals were grown in a holder of 

constant area for all experiments. The second condition is assumed to be true based on 

observations made with atomic force microscopy. There was no noticeable difference in 

surface area of the individual felodipine faces for the imaged systems with adsorbed 

polymer compared to the pure drug system. Thus, equations (1.15), (1.13b), and (1.13c) 

were combined to give the following expression: 

 

!!
!!
= 1− !"

!!!(!"#)(!")
!   (5.2) 

 

The value of each parameter, except the average distance between adsorbed polymers, l, 

was known or experimentally determined. The values of these constants are given in 

Table 5.2. Temperature supersaturation, S, were determined from the experimental 

conditions. The size of a felodipine growth unit, a, was determined using the crystal 

structure visualization software Mercury,22 as explained in section 5.3.6. To determine 

the surface energy of crystalline felodipine, !, the contact angles of two different liquids 

on a crystalline felodipine surface were measured with a goniometer. ! was then 

calculated from the measured contact angles using the harmonic mean approach20 as 

outlined in section 5.3.5. 
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Table 5.2. Values used in equation (5.2) 

Constant Parameter Value 

! 3.9E-20 J/nm 

a 0.584 nm2 

k 1.38E-23 J/K 

T 298.15 K 

lnS 1.39 

 

The average distance between polymers, l, varies for each system and is 

dependent on polymer surface coverage. Thus, it was necessary to determine a 

relationship between l and Φ. Values of l for all polymer systems except PVPVA at 

initial concentration 10 µg/mL were fitted to equation (5.2) to minimize the residual error 

at each value of Φ such that the experimental and theoretical values of R0/RP converged. 

These fitted values for l were then plotted against Φ as shown in Figure 5.6, resulting in 

the power relation given in equation (5.3). 

 

 

Figure 5.6. Values determined for the average distance between polymers plotted against Φ. 



 91 

 

! = 4.13Φ!!.!!   (5.3) 

 

With this general expression to relate l and Φ, the unknown parameter, l, in 

equation (5.2) can be determined from the measured surface coverage. Substituting this 

relation into equation (5.2) for l produces the theoretical values for R0/RP plotted in 

Figure 5.7. It can be seen that by using this model, the theoretical values for R0/RP are in 

good agreement with the experimental values. 

 

 

Figure 5.7. Plot comparing experimental R0/RP values (red !) to theoretical R0/RP values (blue ♦) 
determined using the Kubota-Mullin model, and the predicted effectiveness of 10 µg/mL PVPVA 

("). 
 

 The agreement between experimental and theoretical results suggests that the 

model should be able to predict polymer effectiveness given the AFM determined 
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fractional coverage of the polymer. To demonstrate the predictive ability of the model, 

the equation of the best-fit line for the linear theoretical relationship was determined to be  

 

!!
!!
!= !3.918Φ!+ !1    (5.4) 

!

Entering the experimentally determined Φ for PVPVA (initial concentration 10 

µg/mL) adsorbed to felodipine into equation (5.4) results in a predicted R0/RP value, 

which is in good agreement with the experimental value (Figure 5.7). This suggests that a 

polymer’s effectiveness can be accurately predicted using this model.   

 In summary, the results shown in Figure 5.7 provide clear evidence that there is a 

linear correlation between polymer effectiveness (R0/RP) and polymer surface coverage. 

This correlation can be modeled using the Kubota-Mullin model whereby the distance 

between polymers depends on the polymer surface coverage according to the relation 

given in equation (5.3). Thus, using this model, polymer effectiveness can be accurately 

predicted if the polymer surface coverage is known.  

 

5.5 Conclusions 

In this study, the ability of a group of polymers with varying hydrophobicity to 

inhibit the crystal growth rate of felodipine in aqueous solution was assessed. The results 

indicated that moderately hydrophobic polymers were two to three times more effective 

than the very hydrophilic or very hydrophobic polymers. It was concluded that polymer 

hydrophobicity drives adsorption and also impacts adsorbed polymer conformation. In 
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addition, polymer fractional surface coverage was shown to correlate linearly to polymer 

effectiveness. This correlation can be modeled using the Kubota-Mullin model, and used 

to predict polymer effectiveness when surface coverage is known.  

The results of this study provide a better mechanistic understanding of the process 

by which polymers can effectively inhibit crystal growth. Specifically, they demonstrate 

that surface coverage due to adsorbed conformation is a critical determinant of 

effectiveness. This knowledge can aid in polymer selection during formulation of drug 

products.  
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CHAPTER 6. POLYMER INHIBITION OF CRYSTAL GROWTH BY SURFACE 
POISONING 

This chapter is a preprint with minor modifications of a manuscript submitted to Crystal 

Growth & Design with the same title by: Caitlin J. Schram, Stephen P. Beaudoin, and 

Lynne S. Taylor. 

 

6.1 Abstract 

Controlling the rate of crystal growth from supersaturated solutions is a desirable 

capability in the pharmaceutical field. The biological absorption of poorly-soluble drugs 

can be enhanced by inhibiting crystal growth and prolonging the duration of 

supersaturated solutions formed in vivo by dissolving supersaturating dosage forms. The 

use of polymeric additives to slow crystal growth is an emerging area of interest, yet the 

mechanisms of polymer inhibition are still being explored. In this study, the ability of a 

polymer to poison crystal growth and impact crystal morphology is assessed for 

felodipine crystallized from the amorphous material under different conditions. It was 

found that when polymers are present during crystal evolution from an amorphous solid 

exposed to water, they can impact the size and shape of the resulting crystals. This in turn 

influences the subsequent rate of crystal growth from supersaturated solutions. Therefore, 

when testing the ability of polymers to impact crystal growth, and the impact of crystal 

seeds on the rate of desupersaturation, the crystallization conditions and treatment of the 
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seed crystals should be carefully considered in order to better evaluate the 

desupersaturation risk for supersaturating dosage forms.  

 

6.2 Introduction 

Control of crystallization from supersaturated solutions is essential in many 

industries. In the pharmaceutical field, crystallization control is important for 

manufacturing purposes, and as a means of enhancing drug delivery. The bioavailability 

of BCS Class II drug compounds is limited by their ability to dissolve to sufficiently high 

concentrations in the gastrointestinal tract,1 therefore these compounds are often 

formulated as amorphous solids in order to improve solubility.2,3 The higher free energy 

of the amorphous form compared to the crystalline form allows for increased dissolution 

rates and the generation of supersaturated solutions in vivo.4–6 Thus, this strategy has 

been found to increase drug absorption because supersaturated solutions can achieve 

superior membrane transport.7–9 However, rapid crystallization of these supersaturated 

solutions in vivo threatens the efficacy of this formulation strategy.10 Thus, the ability to 

inhibit crystal nucleation or growth to prolong supersaturation is desirable. 

 The ability of additives to modify crystal growth has been recognized for several 

decades.11,12 Additives can adsorb at active sites of growing crystals and impact growth 

either by altering the crystal’s interfacial energy,13 or by pinning growth steps, thus 

reducing the rate of step advancement.14 Polymers in particular have been successful at 

poisoning crystals, thereby reducing growth rates and stabilizing supersaturated solutions 

when added to the growth medium.15–17 Previous works have shown that their success 
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depends on their ability to adsorb to the crystal surface and achieve a high degree of 

surface coverage.18,19  

Additives such as polymers can also modify crystal morphology at the 

macroscopic scale.20–22 Adsorption of polymers and their subsequent effect on the 

advancement of steps of monomolecular height can impact the evolution of macrosteps, 

or terraces.21 Polymers have been shown to impede growth of specific crystal faces so 

that growth continues only in the direction of certain crystallographic planes, thus 

resulting in habit modification.20  

For amorphous formulations, crystal seeds may form during manufacturing or 

storage, or during the dissolution process. Therefore, there is interest in understanding 

how low levels of crystallinity can impact desupersaturation rates, and how polymers can 

retard this process. However, there is little understanding of how crystal seeds with 

different origins may impact the desupersaturation rate. It is likely that crystal seeds 

formed by crystallization of an amorphous drug will be different from material produced 

through conventional solvent crystallization, and that the presence of a polymer during 

the crystallization process (a polymer will be present in the majority of amorphous 

formulations) will further impact the seed characteristics. 

The goal of this work was to study polymer poisoning of crystal surfaces formed 

under different crystallization conditions and relate the changes in crystal morphology to 

variances in solution crystal growth rates. Polycrystalline surfaces of the active 

pharmaceutical ingredient (API) felodipine were grown from the amorphous melt in the 

absence and presence of the polymer HPMCAS. The crystalline surfaces were then 

exposed to supersaturated solutions of felodipine in the absence and presence of 



 100 

HPMCAS and crystal growth rates were measured under carefully controlled 

hydrodynamic conditions. The surfaces were also characterized with atomic force 

microscopy (AFM). It was hypothesized that AFM characterization would reveal 

differences in crystal morphologies at the macroscopic scale as well as crystal growth 

mechanisms at the microscopic scale due to differences in how the polymer interacts with 

the drug at the molecular level. These variances were expected to impact crystal growth 

rates from supersaturated solutions.  

 

6.3 Experimental Section 

6.3.1 Materials 

The model poorly water-soluble API used in this study, felodipine, was purchased 

from Attix Pharmaceuticals (Toronto, Ontario, Canada). Methanol (HPLC grade), used to 

dissolve felodipine and create supersaturated solutions, was purchased from Avantor 

Performance Materials (Center Valley, PA). The polymer used in this study, 

hydroxypropylmethyl cellulose acetate succinate (HPMCAS) LF grade, Mw 18 000 g 

mol-1, was supplied by Shin-Etsu Chemical Co, Ltd. (Tokyo, Japan) in a powder form. 50 

mM pH 6.8 phosphate buffer with or without pre-dissolved HPMCAS was used as the 

medium for seed crystal growth from the amorphous melt, as well as for supersaturated 

solution crystal growth experiments. 50 mM pH 3 phosphate buffer was used as the 

medium for seed crystal growth from the amorphous solid dispersions. The molecular 

structures of felodipine and HPMCAS are given in Figure 2.5. 
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6.3.2 Seed Crystal Preparation 

Amorphous felodipine was prepared by melting the crystalline material from the 

supplier and pouring the melt onto AFM pucks (Ted Pella, Inc. Redding, CA), which sat 

inside custom-made cylindrical Teflon holders. The custom holders were necessary for 

crystal growth experiments using a rotating disk apparatus, explained further in Section 

6.3.3. Amorphous solid dispersions were made by grinding a 10% w/w mixture of 

HPMCAS powder and felodipine crystals using a mortar and pestle. The ground mixture 

was then melted and poured in the custom holders in the same manner as for the pure 

drug. Before the melts of pure drug or polymer/drug mixtures cooled, the surfaces were 

flattened using a glass coverslip, then allowed to cool before removal of the coverslip.  

 Polycrystalline surfaces were prepared from amorphous felodipine using four 

different methods. The methods, outlined below are also illustrated in Figure 6.1.  

i) Amorphous felodipine was exposed to aqueous phosphate buffer (pH 6.8) for up 

to 24 hours, allowing the surface to fully crystallize. 

ii) Amorphous felodipine was exposed to aqueous phosphate buffer (pH 6.8) for up 

to 24 hours, allowing the surface to fully crystallize. The crystalline surface was 

then exposed to buffer containing 5 µg/mL dissolved HPMCAS for three hours to 

allow maximum adsorption of the polymer onto the crystal surface, prior to 

commencing crystal growth rate experiments. 

iii) Amorphous felodipine was exposed to aqueous phosphate buffer (pH 6.8) 

containing 5 µg/mL dissolved HPMCAS for up to 24 hours, allowing the surface 

to fully crystallize. 
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iv) An amorphous solid dispersion of felodipine and HPMCAS was exposed to 

aqueous phosphate buffer (pH 3) for up to a week, allowing the surface to fully 

crystallize. 

These various preparation methods were chosen to explore the role of polymer in 

impacting the growth surface produced upon crystallization of the amorphous material. 

Method (i) serves as the control, method (ii) allows for evaluation of the impact of pre-

poisoning on the subsequent growth rate, while methods (iii) and (iv) enable assessment 

of the impact of having a polymer present when crystallization first occurs from the 

amorphous solid. Method (iv) represents the most likely scenario for an amorphous 

formulation, while methods (i) and (ii) more closely represents the type of approaches 

previously used to evaluate the impact of polymers on crystal growth. 

 

 

Figure 6.1. Illustrations depicting the different preparation methods of crystalline felodipine 
surfaces used in growth rate studies. The methods are described in Section 6.3.2. Beakers are 

color-coded to match the results presented in Section 6.4. Orange felodipine surfaces indicate that 
the surface was amorphous and the yellow surface indicates that the surface was crystalline. 
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6.3.3 Crystal Growth Rate Measurements 

Solution crystal growth rates of felodipine were measured in the absence and 

presence of dissolved HPMCAS. To generate supersaturated solutions, a small amount of 

a stock solution of 10 mg/mL solubilized felodipine in methanol was added to pH 6.8 

buffer alone, or buffer containing 5 µg/mL pre-dissolved HPMCAS or 100 µg/mL pre-

dissolved SDS. The equilibrium concentration, Ceq, of felodipine is approximately 0.5 

µg/mL at 25°C,15 and the generated bulk concentration, C, for growth experiments was 2 

µg/mL. Thus the experiments were performed at S = 4. 

Immediately after generation of supersaturated solutions, the polycrystalline 

surfaces prepared using the methods explained in Section 6.3.2 were exposed to the 

supersaturated solution. The concentration of felodipine as a function of time was 

measured to determine a desupersaturation profile, which is proportional to the growth 

rate. The custom-made Teflon holders containing the polycrystalline surfaces were 

mounted to a rotating disk apparatus (RDA) (Princeton Applied Research, Oakridge, TN. 

Model #616). The RDA was set to a constant rotational speed, 3000 rpm, at which there 

was no effect of the rate of solute mass transfer to the solid-liquid interface.23 Thus, the 

growth rates measured were determined purely by the rate of solute integration; the step 

impacted by polymer adsorption.  

Desupersaturation profiles were measured using a CCD Array UV-vis 

Spectrometer (SI Photonics, Tuscon, AZ). The intensity of an absorbance peak of 

felodipine (wavelength 238 nm) was recorded at 10-second intervals for 1 hour. All 

experiments were performed in triplicate. Calibration solutions, prepared in methanol, 

were used to correlate peak intensity to concentration. The slope of the resulting 
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concentration v. time curve was recorded as the growth rate, R0 or RP, where R0 is the 

growth rate of felodipine crystals prepared with method (i) in supersaturated solutions 

containing no HPMCAS (i.e. the only growth experiment in which HPMCAS was not 

present in solution or on the seed crystals). RP represents the growth rate for all other 

experiments where HPMCAS is present on the seed crystals or dissolved in solution, or 

both. RP also represents the growth rate for experiments where SDS was dissolved in 

solution. The values of RP obtained were then compared to R0 by taking the ratio of the 

two.  

 

!! = !!
!!

     (6.1) 

 

This gives the polymer effectiveness, Eg, in order to compare how effectively HPMCAS 

poisons felodipine crystal growth for each of the conditions studied. The larger the value 

of Eg, the more effectively HPMCAS has poisoned the surface and retarded crystal 

growth and hence the rate of desupersaturation.  

 

6.3.4 Surface Characterization with Atomic Force Microscopy 

Atomic force microscopy (Figure 2.3) (Multimode 8 AFM, Bruker Corporation, 

Technology Forest, TX) was used to characterize the crystalline surfaces following the 

growth experiments. Samples, which were already mounted on AFM pucks in the holder, 

were removed from the holder and immediately characterized in the same liquid used for 

growth experiments to ensure there was no surface dissolution. Characterization was 

performed using Tapping Mode. SNL-10 (0.24 N/m spring constant, 10 nm radius of 
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curvature) or NPG-10 (0.24 N/m spring constant, 30 nm radius of curvature) silicon 

nitride triangular probes (Bruker Corporation, Technology Forest, TX). Scan resolution 

was set to 512 x 512 pixels2 with scan rates of 0.4 – 0.5 Hz.  

Height images, amplitude images, and phase images were obtained 

simultaneously for each system. Height and amplitude both provide information on 

topographical changes of the surface. The amplitude is the raw feedback of tip deflection 

due to these changes; whereas height scans are the output of the tip deflection calibrated 

to a z-scale in order to generate 3D topographical images. Phase contrast imaging is 

sensitive to changes in material properties on the surface, thus it can be used to detect 

adsorbed polymers. 

Images were analyzed using NanoScope Analysis (v1.5, Bruker Corporation, 

Technology Forest, TX). Surface areas were determined using the software’s Roughness 

Analysis tool after images were normalized to a midline. Surface height features were 

measured using the software’s Cross Section tool.  

 

6.3.5 Contact Angle Measurements 

The contact angles of DI water and ethylene glycol on a crystalline felodipine 

surface grown from amorphous material in aqueous buffer were measured in order to 

determine the surface energy of crystalline felodipine. A Ramé-Hart model 500 

goniometer (Ramé-Hart Instrument co., Succasunna, NJ) and DROPimage advanced 

software were used. Ten contact angle measurements were taken for ten drops of each of 

the two liquids. From these results, an average contact angle for each of the two liquids 
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on felodipine was determined. The surface energy was then estimated using the harmonic 

mean approach proposed by Wu.24  

 

6.3.6 Determination of Felodipine Growth Unit Size 

The size of a felodipine growth unit was determined using the crystal structure 

visualization software, Mercury.25 The measure distances tool was used to measure the 

length and width of a felodipine molecule (form DONTIJ from the Cambridge 

Crystallographic Data Centre (CCDC) structural database). Using these measurements, 

the area occupied by a growth unit on a crystal surface was calculated. 

 

6.4 Results and Discussion 

6.4.1 Growth Rate Results 

Polycrystalline felodipine surfaces were exposed to supersaturated solutions of 

felodipine in the absence and presence of HPMCAS, and the crystal growth rate of 

felodipine was subsequently measured. The polycrystalline felodipine surfaces were 

prepared using four different methods (outlined in Section 6.3.2 and shown pictorially in 

Figure 6.1) in order to compare the impact of crystal preparation conditions on 

subsequent solution crystal growth rates, specifically the impact of having polymer 

present when the crystals first form from the amorphous material. Figure 6.2 shows the 

results of the growth rate studies, which are presented as the effectiveness ratio, R0/RP, 

defined in Section 6.3.3. Each of the four preparation methods is represented by a 

different color in Figure 6.2. The columns overlaid with a grid pattern represent growth 
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rates measured in the presence of HPMCAS in solution, whereas the columns with no 

pattern have only felodipine in solution.  

 

 

Figure 6.2. Crystal growth rates of felodipine (S=4) presented as a ratio of the pure felodipine 
growth rate over the growth rate of crystals poisoned by HPMCAS (the effectiveness ratio). 

Gridded columns have 5 µg/mL HPMCAS present in solution during the growth rate 
measurements whereby samples were prepared using methods (i-iv). Non-gridded columns 

represent the same samples, which were crystallized using methods (i-iv), but where subsequent 
growth rate measurements were performed in a solution free of polymer. Experiments were 

performed in triplicate and each column represents the mean. Error bars indicate the standard 
deviation. 

 

The results in Figure 6.2 are presented in order of increasing effectiveness, Eg, 

which ranges from about 2 to 12. It is clear that crystal preparation method greatly 

impacted effectiveness. Additionally, whether or not HPMCAS was present in solution 

during growth also greatly impacted the resultant effectiveness factor. To understand 

mechanistically how crystal preparation environment produces these differences in 

polymer growth inhibition effectiveness, the systems were analyzed with atomic force 
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microscopy.  The growth rate results will be presented again in subgroups in order to 

focus on each preparation method separately.  

 

6.4.2 HPMCAS Pre-adsorbed on Seed Crystals 

Seed crystals were grown from amorphous felodipine immersed in liquid buffer, 

and then exposed to a solution containing dissolved HPMCAS for several hours (method 

ii). Thus, HPMCAS should have attained maximum surface coverage through adsorption 

to the crystal surface, before exposure to felodipine supersaturated solutions, which will 

drive new growth. Figure 6.3 compares the growth rate results for samples prepared with 

this method with the result for seed crystals grown in liquid with no HPMCAS pre-

adsorbed (method i). 

 

Figure 6.3. Effectiveness growth rate ratios for felodipine poisoned by HPMCAS. Effectiveness 
ratios of surfaces prepared using method (ii) are compared to method (i). Gridded columns have 5 
µg/mL HPMCAS present in solution during growth rate determination experiments. Experiments 

were performed in triplicate and each column represents the mean. Error bars indicate the 
standard deviation. 
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 The results indicate that when HPMCAS was pre-adsorbed on the crystalline 

felodipine surface and the growth rate was determined with HPMCAS in solution (red, 

gridded column), growth was considerably slower relative to the sample where HPMCAS 

was not pre-adsorbed and growth was measured with HPMCAS in solution (blue, gridded 

column). This result is anticipated since HPMCAS can attain greater surface coverage, 

and therefore more effectively pin growth steps when it has had time to reach a maximum 

surface coverage through the initial equilibration of the crystal surface with a solution 

containing polymer. However, when HPMCAS is not pre-adsorbed, it must compete with 

felodipine growth units for adsorption to active sites (blue, gridded column), and the 

polymer cannot block as many growth sites and therefore will not be as effective.  

The impact of first poisoning the surface by pre-adsorption of polymer, followed 

by growth experiments in a fresh solution containing no polymer was also examined. It is 

generally accepted that polymers adsorb irreversibly,26 therefore, the pre-adsorbed 

HPMCAS should remain adsorbed to the surface when exposed to fresh buffer, and 

would be expected to have some impact on growth rate.  Interestingly, when HPMCAS 

was pre-adsorbed and growth was measured with no HPMCAS in solution (red column 

on the left), the effectiveness was reduced compared to the sample prepared the same 

way, but with HPMCAS in solution during growth (red, gridded column). The growth 

rate was also more effectively reduced for a fresh crystal surface exposed to a 

supersaturated solution containing HPMCAS (blue, gridded column). This result 

indicates that the presence of HPMCAS in solution during the growth rate measurement 

is a key determinant of effectiveness, regardless of the pre-equilibration step.  
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AFM characterization of the crystalline surfaces after growth (Figure 6.4) 

provided insight into these results. Figure 6.4a is an image of a felodipine surface 

crystallized from the amorphous material from a solution free of polymer. The height 

features show monomolecular steps, which extend across the crystal face, providing 

evidence of step growth. 

 

Figure 6.4. 1 µm x 1 µm AFM amplitude images characterizing a single felodipine crystal face 
after one hour of growth from the supersaturated solution at initial S=4. (a) and (b) were prepared 
using method (i) and (c) and (d) were prepared using method (ii). Only (b) and (d) had HPMCAS 
(5µg/mL) present in the supersaturated solution during crystal growth. Images were captured in 

liquid at room temperature with an incubation time of about 3 h. 
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 Figure 6.4b shows the result of AFM characterization after the growth experiment 

in which HPMCAS was present in solution during growth rate measurements (there was 

no HPMCAS pre-adsorbed on the surface; this sample corresponds to the blue gridded 

column in Figure 6.3). The steps along the crystal face in Figure 6.4b look very different 

from those in Figure 6.4a. Instead of relatively even and linear steps across the face, the 

layers appear to be pinned at several points along each step, providing evidence of the 

pinning mechanism discussed in Section 1.5 and depicted in Figure 1.4. The result 

suggests that HPMCAS adsorbed at active growth sites along the steps and effectively 

pinned them, thereby slowing step advancement and increasing the step curvature. This 

explains the measured reduction in growth rate when HPMCAS was present in solution 

during the growth rate experiments. 

 Figure 6.4c shows the result of AFM surface characterization after growth of the 

felodipine crystal surface in a supersaturated solution which did not contain any polymer, 

whereby the initial crystal surface had pre-adsorbed HPMCAS (corresponding to the first 

red column in Figure 6.3). The surface appears very similar to that of felodipine 

crystallized completely in the absence of polymer (Figure 6.4a), and provides insight into 

why the effectiveness of this system is so low (Figure 6.3). Although HPMCAS was pre-

adsorbed onto the crystalline surface, felodipine growth was able to continue as if there 

was no polymer present on the surface. This suggests that when there is no polymer in the 

supersaturated solution competing for growth sites, a felodipine layer can grow over the 

adsorbed polymer molecules that are present on the crystal surface due to the pre-

adsorption step.  
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A second growth experiment, which was conducted immediately after the first 

growth experiment in a freshly supersaturated felodipine solution, confirmed that this is 

the case. The result, displayed in Figure 6.3 (second red column from the left) reveals an 

effectiveness ratio close to 1, that is, the pre-adsorbed polymer had no effect on the 

growth rate. It can therefore be concluded that during the first growth experiment, 

felodipine growth unit attachment was slowed slightly by the presence of the pre-

adsorbed polymer molecules, but nevertheless a pure drug layer was able to grow on top 

of the initially poisoned surface, creating a fresh surface for growth. Thus, in the second 

growth experiment, there was no inhibition of growth at all because the surface was 

essentially free of polymer. A similar result was observed in a study by Gratz and 

Hilner,22 in which re-growth was observed on poisoned crystals when introduced to a 

fresh supersaturated solution. This result points to the importance of having dissolved 

polymer present in solution during growth for effective inhibition. 

 Of all the growth rate results shown in Figure 6.3, the case where HPMCAS was 

present in the supersaturated solution during growth combined with pre-adsorption onto 

the surface (red, gridded column) achieved the greatest growth inhibition. Figure 6.4d 

reveals the AFM characterization of this sample after growth. The surface appears 

different from both of the previously discussed poisoned surfaces. Growth layers do not 

appear as steps traversing across the entire width of the face. Instead, they seem to 

originate from a point and grow outward in all directions, similar to the birth and spread 

mechanism (Figure 1.3b).11 Thus, when polymers are covering the surface prior to drug 

growth, and competing with drug growth units in solution for active sites, it appears that 

step pinning is so effective, it forces the entire step to curve rather than only forcing 
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localized curves along a linear step. This provides clear evidence that surface poisoning 

by polymers can change how the crystals evolve. 

 

6.4.3 Seed Crystals Grown in HPMCAS Solution 

The next logical step of investigation was to evaluate how polymers might disrupt 

the crystal surface during the initial crystallization from the amorphous material. Thus 

seed crystals were grown from amorphous felodipine in a solution containing dissolved 

polymers (method iii). The subsequent solution growth rate results for these crystals in 

the absence and presence of dissolved HPMCAS are presented in Figure 6.5. The growth 

rates of these surfaces are again compared to the growth rate of a surface crystallized 

initially in buffer and then further grown in the presence of HPMCAS (method i).  

 

Figure 6.5. Effectiveness growth rate ratios for felodipine poisoned by HPMCAS. Effectiveness 
ratios of surfaces prepared using method (iii, green columns) are compared to method (i, blue 
column). Gridded columns had 5 µg/mL HPMCAS present in solution during the growth rate 

measurements. Experiments were performed in triplicate and each column represents the mean. 
Error bars indicate the standard deviation. 
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The results in Figure 6.5 indicate that when seed crystals were initially formed in 

the presence of HPMCAS (gridded green column), the growth rate was considerably 

slower (higher effectiveness) than for seed crystals grown in pure buffer (gridded blue 

column), when HPMCAS was not present in solution during the growth rate 

determination. Just growing the crystals from the amorphous material in the presence of 

HPMCAS appeared to impact their ability to subsequently grow when exposed to a fresh 

supersaturated solution without polymer (green column). 

To understand the impact of HPMCAS on seed crystal growth from amorphous 

felodipine, the crystal surfaces were characterized with AFM. The resulting 3D 

topographical maps are shown in Figure 6.6, and they indicate that the presence of 

HPMCAS in the solution greatly impacts the size and shape of the resulting seed crystals 

that form from the amorphous drug. When grown in pure buffer solution (Figure 6.6a), 

the felodipine crystals had much larger macroscopic features than when they were grown 

in a solution containing HPMCAS (Figure 6.6b). This suggests that the HPMCAS in 

solution interfered with the growth mechanism, and impacted how the crystals evolved.  

 

Figure 6.6. 5 µm x 5 µm AFM 3D topographical maps of polycrystalline felodipine surfaces 
prepared using (a) method (i) and (b) method (iii). Images were captured in liquid at room 

temperature with an incubation time of 2-3 h. 
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The morphology in Figure 6.6b could be the macroscopic effect of the growth 

pattern shown in Figure 6.4d. Since the crystals grew from amorphous felodipine in the 

presence of HPMCAS, which may have adsorbed to the surface prior to crystallization, it 

is likely that the polymer had an even more disruptive effect on crystal morphology, 

preventing the development of continuous, linear layer growth characteristic of the 

system crystallized in the absence of polymer, instead causing the growth of curved steps. 

Thus it is likely that the effect seen in Figure 6.4d is magnified in Figure 6.6b, whereby 

the crystallites were forced to grow vertically, similar to island growth, instead of 

horizontally as layers, as for the polymer-free crystalline surface. Consequently, the 

surface is composed of rough, spike-like features, rather than the large flat features seen 

in Figure 6.6a. 

The surface areas of both images were determined using roughness analysis 

(explained in Section 6.3.4), and the values are displayed in Table 6.1. It can be seen that 

despite the differences in morphology, the surfaces have very similar areas, therefore a 

surface area difference cannot explain the differences in the measured growth rates 

(Figure 6.5), as one might expect given their relationship (equation 1.5).  Instead, the 

growth rate differences must arise based on the relative availability of active growth sites 

for the different morphologies. The larger seed crystallites (Figure 6.6a), which grew at a 

faster rate from the supersaturated solution, have large faces, each of which contain many 

steps that extend across the face. The smaller crystallites (Figure 6.6b) cannot have such 

long, uninterrupted steps, resulting in fewer accessible high-energy sites and slower 

growth.  
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Table 6.1. Surface area values 

Figure A (µm2) 
6.6a 33.4 
6.6b 31.2 

 

 

6.4.4 Seed Crystals Grown from Amorphous Solid Dispersions 

For amorphous solid dispersion (ASD) formulations, crystals will most likely 

evolve from the ASD during production, storage or the hydration step of the dissolution 

process, and it is of interest to determine the extent to which crystals evolved from this 

environment can lead to desupersaturation. Thus, seed crystals were grown from 

amorphous solid dispersions containing felodipine and HPMCAS (method iv). When the 

crystallized ASD was exposed to supersaturated solutions of felodipine, the resulting 

growth rate inhibition (yellow columns) was even greater than for the previously 

discussed case of seed crystals grown from a pure felodipine melt in the presence of 

HPMCAS (green columns). This is displayed in Figure 6.7. For the case where HPMCAS 

was present in solution during growth (yellow, gridded column), the effectiveness ratio is 

12, indicating a very significant reduction in growth rate due to highly effective surface 

poisoning by the polymer.  
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Figure 6.7. Effectiveness growth rate ratios for felodipine poisoned by HPMCAS. Effectiveness 
ratios of surfaces prepared using method (iv) are compared to method (iii). Gridded columns have 
5 µg/mL HPMCAS present in solution during growth. Experiments were performed in triplicate 

and each column represents the mean. Error bars indicate the standard deviation. 
 

 Such effective surface poisoning is likely due to the fact that an ASD is an 

intimate mixture of API and polymer. In previous studies that have assessed the ability of 

polymers to stabilize ASDs, it was found that the more effective stabilizers could form 

strong specific interactions with the API.27,28 These interactions between polymer and 

drug can disrupt crystal evolution more effectively than any of the methods previously 

discussed where the polymer is only present in the solution phase, and not mixed with the 

amorphous drug. Based on the results presented in Section 6.4.3, it was hypothesized that 

the surface features of seed crystals grown from an ASD would be even smaller than the 

features of seed crystals grown in polymer solution (method iii). 
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Figure 6.8. 1 µm x 1 µm AFM 3D height images of polycrystalline felodipine surfaces prepared 
using (a) method (iii) and (b) method (iv). Images were captured in liquid at room temperature 

with an incubation time of 2-3 h. 
 

 AFM height characterization (Figure 6.8) confirmed this hypothesis. Seed crystals 

grown from the ASD (Figure 6.8b) had much smaller features than seed crystals grown 

from a felodipine melt in HPMCAS solution (Figure 6.8a). (Note that the scan area of 

Figure 6.8 is smaller than that of Figure 6.6). The very small features in Figure 6.8b 

appear to be a result of the pinning mechanism. Cross-sectional analysis was performed 

to determine if the features were monomolecular in height. Two examples of the results 

obtained from the analysis are shown in Figure 6.9. Table 6.2 displays the average value 

of the step height, h, determined from the analysis along with the average value of h for 

the pinned steps of the system shown in Figure 6.4b for comparison. The analysis 

indicates that the average height features of these systems are similar and are both 

comparable to the molecular length of felodipine, which is about 0.8 nm. Thus, it was 

concluded that the small, rounded surface features in Figure 6.8b are the result of step 

pinning. 
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Figure 6.9. AFM cross-sectional height analysis of steps on a crystalline surface grown from an 

ASD of felodipine and HPMCAS. 

 

Table 6.2. Values of h and l determined from AFM cross-sectional analysis. 

Figure h (nm) l (nm) 

6.8b 0.77 ± 0.2 15.8 ± 7.4 

6.4b 0.81 ± 0.2 68.5 ± 9.4 

 

According to the Kubota-Mullin model, which describes growth inhibition by 

adsorbed impurities such as polymers, a smaller radius of curvature, ρ, of a pinned step 

results in better growth inhibition, and ρ = l/2, where l is the average distance between 

adsorbed polymers.  If l ≤ ρc (the critical nucleus radius) then step advancement will stop 

(equation 1.12).14 Thus, values of l were determined by measuring the step radii using 

cross-sectional analysis. The results for both the crystals grown from the ASD, and for 

the pinned steps shown in Figure 6.4b are presented in Table 6.2.  

The average distance between adsorbed polymers for the surface grown from the 

ASD was more than four times smaller than that of the pinned steps in Figure 6.4b (the 

result of growth in the presence of HPMCAS on a crystalline face grown from pure 
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amorphous felodipine exposed to just buffer). The critical nucleus radius, ρc, was 

calculated using equation (1.6) in order to compare its value to these measured values of l. 

The quantities used in equation (1.6) are listed in Table 6.3, and explanations for how 

values of γ and a were obtained are given in Sections 6.3.5 and 6.3.6.  

 

Table 6.3. Values used to calculate ρc (equation 1.6) 

Parameter Value 

! 3.9x10-20 J/nm 

a 0.584 nm2 

k 1.38x10-23 J/K 

T 298.15 K 

lnS 1.39 

 

The critical nucleus radius for felodipine at the current experimental conditions 

was determined to be ρc = 3.98 nm. Comparing this to the measured values of l 

(displayed in Table 6.2), ρc is smaller than both values, explaining why felodipine growth 

was not stopped completely in either case. However, the value of l for the ASD is much 

closer to ρc, providing quantitative validation for why the effectiveness ratio of the ASD 

was about three times greater in the absence of HPMCAS (yellow column compared to 

blue gridded column in Figure 6.2), and nearly five times greater in the presence of 

HPMCAS (yellow gridded column compared to the blue gridded column in Figure 6.2).  
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6.4.5 Impact of Growth Environment 

Thus far, the impact of the environment during crystallization of amorphous 

felodipine has been shown to be of great importance to the morphology of the resultant 

crystalline surface, with surface poisoning effects by HPMCAS being readily apparent. 

This in turn impacts how quickly the crystals can grow in a supersaturated solution. The 

other important factor highlighted in the results so far is the presence of dissolved 

HPMCAS in solution, which competes with felodipine growth units for active growth 

sites on the surface, reducing the rate of crystal growth. The results indicated that when 

HPMCAS was present in the growth medium, it could continue to effectively poison the 

surface and dictate how the crystals evolved. However, for the cases where HPMCAS 

was incorporated onto the crystal surface, but was not present in the growth medium, 

felodipine could deposit as fresh layers on top of the poisoned surface and the impact of 

surface poisoning by the polymer was reduced. This highlights the importance of the 

solution growth environment.  

To further probe the importance of growth environment, felodipine crystal growth 

rates (of seed crystals prepared using method i) were measured in the presence of the 

surfactant, SDS. Surfactants are frequently present in solution both during in vitro testing 

of amorphous formulations and in vivo, and may even be added to the formulation The 

results are presented in Figure 6.10 along with the result for growth in the presence of 

HPMCAS alone for comparison. 
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Figure 6.10. Effectiveness growth rate ratios for felodipine in the presence of SDS (100 µg/mL) 
and/or HPMCAS (5µg/mL). Felodipine surfaces for all experiments were prepared using method 

(i). Gridded columns have HPMCAS present in solution during growth. Experiments were 
performed in triplicate and each column represents the mean. Error bars indicate the standard 

deviation. 
 

For the case where SDS and HPMCAS were both present in solution, crystal 

growth was faster than for the case of HPMCAS alone. It was hypothesized that this 

could be due to the possibility that SDS prevents HPMCAS from adsorbing on the 

surface via steric hindrance by adsorbed SDS molecules. However, AFM phase 

characterization, which is sensitive to surface material properties, provided evidence that 

this was not the case. Figure 6.11 shows AFM phase contrast imaging of a pure 

felodipine surface (Figure 6.11a), a felodipine surface after exposure to HPMCAS 

(Figure 6.11b), and a felodipine surface after exposure to a mixture of HPMCAS and 

SDS (Figure 6.11c). It can be seen that Figures 6.11b and 6.11c look similar, wherein 

both exhibit dark shading indicative of adsorbed HPMCAS. By comparison, the pure 
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drug surface does not have this dark shading. If SDS prevented the adsorption of 

HPMCAS, Figure 6.11c would be expected to look similar to Figure 6.11a. 

 

 

Figure 6.11. 1µm x 1µm AFM phase images of (a) a pure felodipine crystal face, (b) a felodipine 
crystal face after exposure to HPMCAS (5 µg/mL), and (c) a felodipine crystal face after 

exposure to a mixture of HPMCAS (5 µg/mL) and SDS (100 µg/mL). Images were captured in 
liquid at room temperature with an incubation time of 2-3 h. 

 

 A possible explanation for the increase in growth rate in the presence of SDS 

could be a change in the interfacial energy of felodipine in contact with water due to the 

adsorbed surfactant. Thus, the growth rate of felodipine was measured in the presence of 

SDS only. It can be seen in Figure 6.10 that the effectiveness ratio, R0/RP < 1, indicating 

that the growth rate when SDS was present was actually faster than the growth rate of the 

pure drug. A similar result was observed by Chen et al. where some surfactants were 

shown to accelerate crystallization.29 This result can be explained by a reduction in the 

interfacial energy, γ, by the surfactant, thereby decreasing the critical nucleus radius 

(equation 1.6).  

This result highlights the importance of the crystallization medium. Drug 

formulations include several excipients, and often surfactants are used as solubilizing 
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agents.30 If a formulation includes a combination of polymer and a surfactant such as 

SDS, this could potentially negatively impact stabilization of the supersaturated solution 

once the drug has dissolved in vivo, and thereby decrease drug absorption. 

 

6.5 Conclusions 

The ability of the polymer HPMCAS to poison felodipine crystals was assessed. 

Polycrystalline felodipine surfaces were prepared from amorphous material using four 

different methods involving exposure to aqueous solutions with and without HPMCAS 

and it was found that the solution growth rates of the resultant crystals varied greatly. 

Characterization of the surfaces with atomic force microscopy revealed discernible 

differences in the morphology of the surfaces as well as the growth mechanisms. It was 

concluded that surface poisoning by polymers can have a large impact on crystal 

morphology and consequently, crystal growth rates.  

In addition, it was found that the presence of HPMCAS in solution during growth 

reduced growth rates, regardless of the surface preparation method. AFM characterization 

revealed that when crystals were grown in solution in the absence of HPMCAS, fresh 

layers of drug were able to grow on top of the poisoned surface. When HPMCAS was 

present in solution during crystal growth, evidence of step pinning was observed, 

explaining the reduced crystal growth rates. This study highlights that seed crystals 

prepared in different environments have different abilities to subsequently grow, a factor 

that should be considered when evaluating polymers as growth rate inhibitors, and 

evaluating the risk of desupersaturation from amorphous formulations containing residual 
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crystals. The insights gained from this study can be used to control crystallization and 

improve the delivery of therapeutics with poor aqueous solubility. 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

In the work presented in the preceding chapters of this dissertation, the impact 

of adsorbed polymers on crystal growth inhibition was studied. Several important 

conclusions were made from the results of this work. It was found that crystal growth 

in the presence of polymers impacted the kinetics of solute integration onto the 

crystal lattice. Another conclusion was that adsorbed polymer conformation greatly 

impacted the effectiveness of polymers as crystal growth inhibitors. The adsorbed 

conformation was affected by certain polymer properties such as ionization state and 

hydrophobicity. Finally, it was found that polymers impacted crystal morphology and 

crystal growth mechanism. These conclusions and the results that led to them open up 

many new questions and possibilities for future studies.   

In Chapter 3, the kinetics of felodipine crystallization was impacted by the 

presence of HPMCAS. Specifically, the kinetic constants for the integration steps, kr 

and r were shown to change. It was speculated that the change in r, the integration 

order, could be due to change in growth mechanism when polymers are present. The 

work of Chapter 6 provided evidence that the presence of polymers can indeed 

change growth mechanism. However, a definite link between integration order and 

growth mechanism has not yet been made. Therefore, it is recommended that the 

integration kinetics for systems with different growth mechanisms be studied in order 

to confirm this correlation. 
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The work presented in Chapters 4 and 5 showed that polymers that adsorbed 

in a coiled globule formation had reduced inhibitory impact compared to polymers 

that adsorbed in an extended chain conformation. This is because the globule 

formation leaves many growth sites open and available on the crystal for drug growth 

units to adsorb. In contrast, more growth sites are blocked when the polymer is more 

evenly distributed on the surface. Accordingly, in Chapter 5, polymer fractional 

surface coverage was shown to correlate linearly to polymer effectiveness. 

This work served as a proof-of-concept for this correlation between surface 

coverage and polymer effectiveness. The ultimate goal is that the correlation can be 

used to aid in polymer selection during drug product formulation. However, it is not 

practical for pharmaceutical companies to measure the surface coverage for every 

drug-polymer combination in order to predict effectiveness.  

Therefore, it is recommended that this work be expanded upon to include 

other active pharmaceutical ingredients (API) and an even broader range of polymers. 

If other APIs with properties similar to felodipine are found to exhibit a very similar 

correlation when studied with the same group of polymers, then that correlation 

would be proven to be predictive for new drug compounds with properties similar to 

felodipine.  

Next, another set of model compounds that exhibit different properties from 

the set already studied could be assessed in order to build up a model correlation to 

describe polymer effectiveness for new drugs similar to that set. Expanding the study 

in this fashion would build up a robust framework in order to predict polymer 

effectiveness. 
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Another finding of the work in Chapter 4 was that HPMCAS adsorption was 

shown to adsorb to multiple crystal faces with various surface chemistries. Thus, it 

was concluded that HPMCAS adsorption was non-specific. It is possible that this 

non-specificity is due to the fact that HPMCAS has both hydrophilic and hydrophobic 

groups. For the polymers, such as PVP that are very hydrophilic, or PVAc that are 

very hydrophobic, it is still unclear whether these polymers will selectively adsorb to 

faces that exhibit properties similar to their own.  

Therefore, another recommendation for future work is to study polymer 

adsorption onto amorphous drug surfaces. Using these surfaces, it is possible to 

control for surface chemistry because it is homogeneous. It is hypothesized that 

hydrophobic polymers would be more likely to adsorb to the more hydrophobic APIs 

and vice versa. This study would provide valuable insight into polymer adsorption 

specificity. 

In Chapter 6, it was concluded that growth environment greatly impacted 

crystal growth rates. When poisoned crystalline surfaces of felodipine were exposed 

to supersaturated solutions containing HPMCAS, the growth rates were consistently 

slower than when they were exposed to solutions with no HPMCAS. Furthermore, 

when SDS was present in solution during growth, felodipine growth rates increased 

compared to the pure system.  

Therefore, it is recommended that the impact of growth environment be 

explored further. In particular, it would be interesting to simulate the conditions of the 

stomach or GI tract in both the FaSSIF and FeSSIF states. These studies could 
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determine if other components present in the digestive system such as bile salts have 

an impact on polymer adsorption or conformation.  

Finally, in the work presented in this dissertation, properties such as polymer 

concentration as well as API supersaturation remained constant within each study in 

order to keep the experiments controlled. The exception to this was the study in 

Chapter 5, in which PVPVA adsorption was studied at a higher polymer 

concentration. It was found that doubling the polymer concentration increased 

polymer surface coverage, but not by a factor of two. PVPVA adsorbed in the globule 

conformation at both the lower and higher concentrations, and the higher 

concentration increased the number of globules, but not the size of them. The latter is 

certainly a possibility, as is the suggestion that polymer concentration could change 

the adsorbed conformation altogether. Therefore it would be interesting to study the 

impact of polymer concentration on adsorbed conformation. The evidence from one 

system is not enough to draw any certain conclusions. Furthermore, it would be 

interesting to study the impact of API concentration on polymer conformation. These 

suggestions for future studies would greatly enhance our understanding of the impact 

of polymers on crystal growth inhibition.   
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Appendix A. ASSESSING THE STABILIZATION POTENTIAL OF VARIOUS 

POLYMERS FOR SPRAY-DRIED AMORPHOUS LACTOSE 

This appendix is a preprint with minor modifications of a manuscript submitted with the 

same title by: Caitlin J. Schram, Tony Howes, and Stephen P. Beaudoin. It describes 

research completed at the University of Queensland under the Purdue-UQ Research 

Exchange Grant. 

 

A.1 Abstract 

A large proportion of pharmaceutical compounds have poor aqueous solubility, 

hindering their bioavailability. Formulating these compounds as amorphous solids, using 

methods such as spray drying, can improve their solubility and enhance delivery. 

Additives, such as polymers, are often utilized to stabilize amorphous solids, therefore it 

is necessary to evaluate how they can influence crystallization behavior. In this study, the 

stabilization potential of five different polymers was assessed, with the goal of examining 

the impact of both functional group chemistry and backbone structure. It was found that 

PAA and PVP were the best crystallization inhibitors due to their functional group 

chemistries.  

 

A.2 Introduction 

! More than 75% of active pharmaceutical ingredients (API) currently under 

development have poor aqueous solubility1. This poses a problem for oral therapeutics 

due to decreased bioavailability2. Utilizing the amorphous form of the drug, which has a 
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higher overall free energy than the crystalline form, is an effective method to alleviate 

solubility issues and therefore improve drug delivery3,4.  

Recent literature has described methods that attempt to stabilize the inherently 

unstable amorphous form and prevent crystallization2. One such method is the addition of 

polymers to the system. The ability of polymers to stabilize an amorphous API has been 

attributed to several factors including decreased molecular mobility and the formation of 

specific drug-polymer interactions5–7. Thus, the formation of a solid drug-polymer 

dispersion, in which the API is dispersed as an amorphous material within a polymeric 

matrix, is reported as an effective means of inhibiting crystallization8–10. Amorphous 

solid dispersions can be prepared in a number of ways8. Spray drying is one such method 

that has proven to produce amorphous material due to rapid conversion of a liquid 

solution to a dry powder by evaporation11. 

Although not an API, lactose is chosen as the model for this study due to its well-

documented crystallization properties12–15 as well as its wide use as an excipient in solid 

dosage forms16.  Due to its thermodynamic instability, amorphous lactose will crystallize 

over time when exposed to a humid environment. Amorphous lactose is extremely 

hygroscopic. Its molecules are configured such that hydrogen bonding sites are 

exposed13. As these sites bind to the water molecules in the air, the water content in the 

solid increases and the glass transition temperature (Tg) of the solid decreases. When the 

Tg drops below the experimental temperature, the lactose will crystallize17. In other 

words, exposure to humid air lowers the activation energy barrier towards 

crystallization12. Thus, the extent of lactose crystallization increases with increasing RH 

and time13.  
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In this study, α-lactose monohydrate was spray dried with a number of polymers 

and exposed to humid air in order to assess the effectiveness of each polymer at 

inhibiting lactose crystallization. Previous studies have indicated that the polymers that 

form stronger hydrogen bonds with the compound can more effectively stabilize an 

amorphous system18–20. Other studies have suggested that polymers that can decrease the 

molecular mobility of the compound by increasing its Tg will be effective21. Each of the 

polymers used in this study were selected solely based on their structure, with the 

intention of examining the effect of functional groups and backbone structure on a 

polymer’s ability to interact with lactose and inhibit crystallization.  

 

A.3 Materials and methods 

A.3.1 Materials 

 α-lactose monohydrate (Mw 360.31 g mol-1), Poly(vinylpyrrolidone) (PVP, Mw 

40,000 g mol-1), and polyacrylonitrile (PAN, Mw 150,000 g mol-1) were purchased from 

Sigma-Aldrich (Sydney, Australia). Poly(acrylic acid) (PAA, Mv ~450,000 g mol-1), 

Poly(ethylene succinate) (PES, ave Mw 10,000 g mol-1), and Poly(trimellitic anhydride 

chloride-co-4,4’-methylenedianiline) (PTM, Mw not given) were purchased from Sigma-

Aldrich (St Louis, MO, USA). Figure A.1 shows the molecular structures of the polymers 

and lactose. Saturated salt solutions of K2CO3 and NaCl were used to generate air of 44 

and 75% RH. 
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Figure A.1. Chemical structures of (a) α-lactose monohydrate, (b) PES, (c) PAA, (d) PVP, (e) 

PTM, and (f) PTN 
 
 
 

A.3.2 Spray Drying 

 Pure α-lactose monohydrate or a mixture of lactose and 20% (w/w) polymer was 

added to DI water to give a solution containing 20g solid/100mL solution. The solutions 

were spray dried using a Buchi B-290 Mini Spray Dryer (Buchi Labortechnik AG, 

Switzerland). The process conditions, given in Table A.1, were constant for all 

experiments, except for the lactose/PAA composite, which was spray-dried at a lower 

inlet temperature due to the low decomposition temperature of PAA. To ensure rapid 

drying of this sample at the lower inlet T, the feed rate was also lowered. The spray-dried 

powders were stored in a desiccator for 24 hours before being moved to RH chambers 

where they were stored for 3 or 10 days. 
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Table A.1. Spray drying process conditions 

Parameters Settings 

Feed flow (ml/min) 8.5 

Inlet temperature (°C) 185 

Drying gas volume flow 

(m3/h) 

35 

 

A.3.3 Assessment of crystallinity 

 X-ray diffraction (XRD) patterns were obtained using a D8 Advance X-ray 

Powder Diffractometer (Bruker Corporation, Billerica, MA), to assess the crystalline 

content of each sample before and after storage at 44% and 75% RH. Samples were also 

assessed using a differential scanning calorimeter (DSC) (Q10, TA instruments, New 

Castle, DE, USA, aluminium non-hermetically sealed pans, calibration with indium). 

Samples were heated from 30°C to 260°C at a rate of 10°C/min. DSC has been shown to 

be a suitable semiquantitative method to determine the crystallinity of lactose22. XRD and 

DSC were performed on the pure spray dried lactose sample and each of the 7 spray dried 

lactose/polymer composites before and after storage in controlled relative humidity 

environments. 
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A.4 Results and discussion 

A.4.1 Properties of spray-dried powders before storage 

X-ray diffraction patterns for spray-dried lactose and composite particles before 

storage are shown in Figure A.2. Each pattern shows broad and diffuse maxima, 

indicating that all spray-dried samples were amorphous.  

 
Figure A.2. XRD patterns of spray-dried lactose and lactose/polymer composites before storage 

 
 

DSC thermograms of the spray-dried materials before storage are shown in 

comparison to α-lactose monohydrate in Figure A.3. The thermogram of crystalline α-

lactose monohydrate exhibits a broad endothermic peak at ~150 °C, signifying 

dehydration of crystalline water12,22. In contrast, pure spray dried lactose shows an 

exothermic reaction at ~103 °C, signifying the crystallization event12,22. The five spray-

dried composites also exhibit the exothermic peak typical of an amorphous material, 

however this peak is shifted to a higher temperature for each of the composites (up to 

~130 °C), indicating that the incorporation of polymers requires more energy for 



 139 

crystallization to occur. This has been observed in previous studies of spray-dried 

lactose/PVP composites23.  

 
Figure A.3. DSC thermograms of spray-dried lactose and lactose/polymer composites before 

storage. 
 

Spray drying and recrystallization of lactose can result in mutarotation of α-

lactose to β-lactose13. The two forms differ in the orientation of a hydroxyl group on the 

glucose unit24. The mechanism of mutarotation occurs via an intermediate aldehyde form. 

This mechanism can be modelled as a first order reaction in which proton transfer, 

assisted by a water molecule, and the opening of the pyranosidic ring occur 

simultaneously25.  

It can be seen from Figure A.3 that both α-lactose monohydrate and pure spray-

dried lactose exhibit an endothermic heat of fusion peak at ~222 °C, indicative of the 

alpha form. Spray-dried lactose also shows a very small β peak at 230°C, demonstrating 

that a small amount of mutarotation has occurred upon crystallization. This is as expected 

since lactose is dissolved in aqueous solution before spray drying, and the two isomeric 

forms are both present in aqueous solution in a reversible equilibrium24. The spray-dried 
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composites each exhibit a different ratio of the α and β forms upon re-crystallization 

compared to pure spray-dried lactose. The effect of polymers on mutarotation will be 

discussed further in Sections A.4.3 and A.4.4. 

 

A.4.2 Impact of Polymers on Lactose Crystallization 

In order to assess the stabilizing effect of polymeric additives on lactose 

crystallization, each of the spray-dried samples were exposed to air of 44% and 75% 

relative humidity for three days. The critical RH for lactose crystallization has been 

reported as between 43 and 45% RH26. The XRD patterns for each sample are shown in 

Figure A.4. The patterns are displayed with the diffractogram of a-lactose monohydrate 

for comparison. The diffractograms show that all samples possess some degree of 

crystallinity, and that as expected, the samples exposed to 75% RH have higher and 

sharper peaks, and therefore possess a higher degree of crystallinity than the samples 

exposed to 44% RH due to the increased crystallization driving force at the higher 

relative humidity.  
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Figure A.4. X-ray diffraction patterns after storage at 44% (red) and 75% (green) relative 
humidity of spray-dried (a) pure lactose, and spray-dried composites containing (b) PES, (c) 
PAA, (d) PVP, (e) PTM, and (f) PAN. Diffractograms are compared to crystalline α-lactose 

monohydrate (black).  
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The percent of lactose crystallized at 75% RH for each sample (calculated relative 

to α-lactose monohydrate) are displayed in Table A.2. It can be seen that the composite 

spray-dried with PAA has the lowest percent crystallinity, indicating that PAA is the 

most effective crystallization inhibitor. For the samples exposed to 75% RH, the order of 

effective inhibitors is: PAA > PVP > PES > PAN > PTM. 

 

Table A.2. Calculated % Crystallinity of lactose 

Sample % Crystallinity 

Pure lactose 55.5 

PES composite 50.6 

PAA composite 39.8 

PVP composite 45.5 

PTM composite 53.8 

PAN composite 51.9 

 

 

All freshly spray-dried composites were also stored for 10 days at 75% RH. These 

samples along with the samples stored at 44% and 75% RH for 3 days were characterized 

with DSC, and the results are shown in Figure A.5. It can be seen that the thermograms 

for samples stored at 75% RH for 10 days compared to 75% RH for 3 days look very 

similar for all samples. This implies that there were not many changes in stability during 

storage over the longer term.  
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Figure A.5. DSC thermograms of spray-dried (a) pure lactose, and spray-dried composites 
containing (b) PES, (c) PAA, (d) PVP, (e) PTM, and (f) PAN. Characterization was performed 

before storage (black) and after storage at 44% RH for 3 days (red), at 75% RH for 3 days (blue), 
and at 75% RH for 10 days (green). 
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The DSC thermograms of pure lactose after storage (Figure A.5a) exhibit 

dehydration peaks around 150°C, which increase in magnitude as RH increases, as 

expected due to higher % crystallinity. The dual dehydration peaks indicate the presence 

of two types of hydrates17. Composites with PTM and PAN (Figures A.5e and A.5f) have 

similar DSC thermograms compared to the pure lactose samples at all three storage 

conditions. This is not surprising given that the XRD results indicate that these two 

polymers had little effect on lactose crystallization. The DSC thermograms of PAA and 

PVP composites (Figures A.5c and A.5d) stored at 44% RH for 3 days both exhibit an 

exothermic peak indicative of amorphous material, similar to the spray-dried sample 

before storage. These results agree with the XRD results, which indicated that PVP and 

PAA were the most effective stabilizers.  

 

A.4.3 Assessment of Lactose Mutarotation 

The XRD diffractograms of recrystallized pure lactose (Figure A.5a) show peaks 

at 10.5° and 21°, both of which are not present in the α-lactose monohydrate spectrum. 

Peaks at these two diffraction angles are characteristic of the β form27. Therefore, it is 

evident that mutarotation occurs upon recrystallization of spray-dried lactose, in 

agreement with the DSC results discussed in Section A.4.1. Previous studies have shown 

a similar result13 and it could be due to high spray-drying temperatures. Similarly, the 

XRD patterns of lactose spray dried with PES (Figure A.4b), PTM (Figure A.4e), and 

PAN (Figure A.4f), also show evidence of mutarotation for both storage conditions. 

Interestingly, lactose spray-dried with PAA (Figure A.4c) does not mutarotate to the β 

form upon recrystallization, and lactose spray-dried with PVP (Figure A.4d) is only 
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present in the β form when exposed to 75% RH. The DSC thermograms of the samples 

(Figure A.5) after storage show similar results, whereby the β form (endothermic peak at 

~240°C) dominates for all stored samples, except PAA composites, and PVP composites 

stored at 44% RH. 

These results suggest that mutarotation is linked to stability. PAA was determined 

to be the best stabilizer, and there is no evidence of transformation to the β form for 

lactose spray-dried with PAA. PVP was the second best stabilizer and composites with 

PVP remained in the α form at the lower relative humidity. All other samples, which 

were not stabilized as effectively by the polymers, transformed to the β form upon 

crystallization. This will be explored further in Section A.4.4. 

 

A.4.4 Assessment of polymer structure on stabilization  

 The ranking for crystallization inhibition was: PAA > PVP > PES > PAN > PTM. 

Comparing this order to the polymer molecular structures shown in Figure A.1, it is clear 

that there is no significant effect of polymer backbone structure on stability. PTM was the 

polymer studied which did not have a chain backbone. It was hypothesized that its ring-

structured backbone could increase its stabilization potential because it could more 

effectively hinder the mobility of lactose molecules, slowing their arrangement into a 

lattice structure. Because of its larger backbone structure, PTM also had the highest Tg. It 

was thought that this should increase the Tg of the lactose composite and therefore slow 

crystallization. However, since it was the least effective stabilizer, the results indicated 

that functional group chemistry, not backbone structure or Tg, is the most important 

factor. 



 146 

 PAA and PVP were the most effective crystallization inhibitors. Both polymers 

contain a C=O group, which is a strong hydrogen bond acceptor. Trasi et al. have shown 

evidence using FTIR of hydrogen bonding between the carbonyl groups of PAA and PVP 

and the –OH group of acetaminophen19. It can be seen from Figure 1 that lactose contains 

numerous –OH groups, a strong hydrogen bond donor group. As stated in Section A.2, 

crystallization of lactose in humidity occurs via binding of water to the exposed –OH 

groups13. Thus, it can be concluded that PAA and PVP are able to hydrogen bond 

strongly to these groups, inhibit the interactions between lactose and water, and therefore 

slow crystallization. This conclusion aligns with the mutarotation results discussed in 

Section A.4.3. Water molecules assist the proton transfer step during mutarotation25. 

Since polymers that are able to form strong hydrogen bonds with lactose are inhibiting 

the interaction of lactose with water molecules, it follows that they would also inhibit 

mutarotation.  

 

A.5 Conclusions 

 The ability of five different polymers to stabilize spray-dried amorphous lactose 

was assessed. It was found that PAA and PVP were the best crystallization inhibitors. 

The results suggest that polymer functional group chemistry is more important than 

polymer backbone structure for crystallization inhibition.  PAA and PVP both have 

strong hydrogen bond acceptor groups, thus they are able to interact strongly with lactose 

and inhibit the interaction of lactose with water. This allows the polymers to stabilize the 

amorphous material and slow crystallization. 
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Appendix B. SUPPORTING DATA 

 

This appendix shows the desupersaturation profiles measured using UV-vis spectrometry. 

The slopes of these profiles were used to generate the data points of the growth rate 

figures presented in this dissertation. Each data point is the average of three profiles, each 

multiplied by the volume of the solution. The raw data filenames are given for the UV 

data as well as all AFM data presented in this dissertation. 
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B.1 Data for Figures 3.2 and 3.5 

a) 01-30-2015_RDAexpPure_200rpm_60-12-T25 

 
b) 01-30-2015_RDAexpPure2_200rpm_60-12-T25 

 
c) 01-31-2015_RDAexpPure_200rpm_60-12 

 
Figure B.1. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 200 rpm. 
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a) 11112014_RDAexp_500rpm_Sof4 

 
b) 12012014_RDAexp_500rpm_Sof4 

 
c) 01-30-2015_RDAexpPure_500rpm_60-12-T25 

 
Figure B.2. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 500 rpm. 
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a) 11102014_RDAexp_1000rpm_Sof4 

 
b) 09042015_RDAexp_Sof4_1000rpm 

 
c) 09042015_RDAexp_Sof4_1000rpm_2 

 
Figure B.3. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 1000 rpm. 
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a) 12012014_RDAexp_1500rpm_Sof4 

 
b) 06252015_RDAexp_Sof4_1500rpm 

 
c) 09042015_RDAexp_Sof4_1500rpm 

 
Figure B.4. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 1500 rpm. 
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a) 12022014_RDAexp_2000rpm_Sof4_2 

 
b) 07152015_RDAexp_Sof4_2000rpm 

 
c) 01-31-2015_RDAexpPure_2000rpm_60-12 

 
Figure B.5. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 2000 rpm. 
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a) 11102014_RDAexp_3000rpm_Sof4 

 
b) 11112014_RDAexp_3000rpm_Sof4 

 
c) 08052015_RDAexp_Sof4_3000rpm 

 
Figure B.6. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 3000 rpm. 
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a) 11112014_RDAexp_4000rpm_Sof4 

 
b) 08122015_RDAexp_Sof4_4000rpm 

 
c) 09042015_RDAexp_Sof4_4000rpm_2 

 
Figure B.7. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 4000 rpm. 
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a) 12-07-2014_60-12-T25_5000rpm 

 
b) 12-07-2014_60-12-T25_5000rpm(2) 

 
c) 12192014_RDAexp_5000rpm_Sof4(2) 

 
Figure B.8 (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 5000 rpm. 
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a) 10172014_RDAexp_6000rpm_Sof4(2) 

 
b) 11112014_RDAexp_6000rpm_Sof4 

 
c) 01-25-2015_RDAexpPure_6000rpm_60-12-T25 

 
Figure B.9. (a-c) Desupersaturation profiles for pure felodipine (S of 4, no polymers 
present). ω = 6000 rpm. 
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a) 04-02-2015_RDAexpHPMCAS_200rpm_60-12-T25 and 04-02-
2015_RDAexpHPMCAS_200rpm_60-12-T25(1.2) 

 
b) 05272015_RDAexp_Sof4_200rpm_wHPMCAS 

 
c) 06122015_RDAexp_Sof4_200rpm_wHPMCAS 

 
Figure B.10. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 200 rpm. 
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a) 02-17-2015_RDAexpHPMCAScomp_500rpm_60-12-T25 

 
b) 11122014_RDAexp_500rpm_Sof4_wHPMCAS 

 
c) 05282015_RDAexp_Sof4_500rpm_wHPMCAS 

 
Figure B.11. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 500 rpm. 
 
 
 
 



 
 

162 

a) 11122014_RDAexp_1000rpm_Sof4_wHPMCAS 

 
b) 03-03-2015_RDAexpHPMCAS2_1000rpm_60-12-T25 

 
c) 03-03-2015_RDAexpHPMCAS_1000rpm_60-12-T25 

 
Figure B.12. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 1000 rpm. 
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a) 11132014_RDAexp_1500rpm_Sof4_wHPMCAS 

 
b) 12232014_RDAexp_1500rpm_Sof4_wHPMCAS 

 
c) 02182015_RDAexp_1500rpm_Sof4_wHPMCAS 

 
Figure B.13. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 1500 rpm. 
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a) 11142014_RDAexp_2000rpm_Sof4_wHPMCAS_2 

 
b) 12232014_RDAexp_2000rpm_Sof4_wHPMCAS 

 
c) 08272015_RDAexp_Sof4_2000rpm_wHPMCAS 

 
Figure B.14. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 2000 rpm. 
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a) 11122014_RDAexp_3000rpm_Sof4_wHPMCAS(2) 

 
b) 02-26-2015_RDAexpHPMCAScomp_3000rpm_60-12-T25 

 
c) 09082015_RDAexp_Sof4_3000rpm_wHPMCAS_2 

 
Figure B.15. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 3000 rpm. 
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a) 12222014_RDAexp_4000rpm_Sof4_wHPMCAS(2) 

 
b) 02-26-2015_RDAexpHPMCAScomp2_4000rpm_60-12-T25 

 
c) 05272015_RDAexp_Sof4_4000rpm_wHPMCAS 

 
Figure B.16. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 4000 rpm. 
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a) 03-03-2015_RDAexpHPMCAS_5000rpm_60-12-T25 

 
b) 05222015_RDAexp_Sof4_5000rpm_wHPMCAS_2 

 
c) 05222015_RDAexp_Sof4_5000rpm_wHPMCAS_3 

 
Figure B.17. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 5000 rpm. 
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a) 11122014_RDAexp_6000rpm_Sof4_wHPMCAS 

 
b) 12222014_RDAexp_6000rpm_Sof4_wHPMCAS 

 
c) 04072014_RDAexp_6000rpm_Sof4_wHPMCAS_2 and 
04072014_RDAexp_6000rpm_Sof4_wHPMCAS_2(2) 

 
Figure B.18. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS present in solution. ω = 6000 rpm. 
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B.2 Data for Figure 3.3 

a) 08122015_RDAexp_Sof2_4000rpm 

 
b) 08122015_RDAexp_Sof2_4000rpm_2 

 
c) 08262015_RDAexp_Sof2_4000rpm 

 
Figure B.19. (a-c) Desupersaturation profiles for felodipine (S of 2, no polymers present). 
ω = 4000 rpm. 
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a) 07312015_RDAexp_Sof3_4000rpm 

 
b) 08032015_RDAexp_Sof3_4000rpm 

 
c) 09082015_RDAexp_Sof3_4000rpm 

 
Figure B.20. (a-c) Desupersaturation profiles for felodipine (S of 4, no polymers present). 
ω = 4000 rpm. 
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a) 07312015_RDAexp_Sof5_4000rpm 

 
b) 08032015_RDAexp_Sof5_4000rpm 

 
c) 08122015_RDAexp_Sof5_4000rpm 

 
Figure B.21. (a-c) Desupersaturation profiles for felodipine (S of 5, no polymers present). 
ω = 4000 rpm. 
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a) 07312015_RDAexp_Sof6_4000rpm_2 

 
b) 08122015_RDAexp_Sof6_4000rpm 

 
c) 07172015_RDAexp_Sof6_4000rpm 

 
Figure B.22. (a-c) Desupersaturation profiles for felodipine (S of 6, no polymers present).  
ω = 4000 rpm.
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B.3 Data for Figure 4.2 

a) From RS data  

 
b) From RS data  

 
c) From RS data  

 
Figure B.23. (a-c) Desupersaturation profiles for felodipine (S of 8, no polymers present) 
at pH 6.8. ω = 1000 rpm. 
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a) From RS data  

 
b) From RS data  

 
c) From RS data  

 
Figure B.24. (a-c) Desupersaturation profiles for felodipine (S of 8) with 5 µg/mL 
HPMCAS present in solution at pH 3. ω = 1000 rpm. 
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a) From RS data  

 
b) From RS data  

 
c) From RS data  

 
Figure B.25. (a-c) Desupersaturation profiles for felodipine (S of 8) with 5 µg/mL 
HPMCAS present in solution at pH 6.8. ω = 1000 rpm. 
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B.4 Data for Figure 5.1 

a) 01092015_RDAexp_6000rpm_Sof4_wPAA_2 

 
b) 01092015_RDAexp_6000rpm_Sof4_wPAA_4 

 
c) 03312015_RDAexp_6000rpm_Sof4_wPAA and 
03312015_RDAexp_6000rpm_Sof4_wPAA(2) 

 
Figure B.26. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL PAA 
present in solution. ω = 6000 rpm. 
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a) 11142014_RDAexp_6000rpm_Sof4_wPVP 

 
b) 02112015_RDAexp_6000rpm_Sof4_wPVP 

 
c) 02202015_RDAexp_6000rpm_Sof4_wPVP 

 
Figure B.27. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL PVP 
present in solution. ω = 6000 rpm. 
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a) 01262015_RDAexp_6000rpm_Sof4_wPVPVA_2 

 
b) 01262015_RDAexp_6000rpm_Sof4_wPVPVA and 
01262015_RDAexp_6000rpm_Sof4_wPVPVA(2) 

 
c) 02182015_RDAexp_6000rpm_Sof4_wPVPVA_3 

 
Figure B.28. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
PVPVA present in solution. ω = 6000 rpm. 
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a) 02112015_RDAexp_6000rpm_Sof4_wHPMC_2(3) 

 
b) 02112015_RDAexp_6000rpm_Sof4_wHPMC_3 

 
c) 02202015_RDAexp_6000rpm_Sof4_wHPMC_3 

 
Figure B.29. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMC present in solution. ω = 6000 rpm. 
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a) 11132014_RDAexp_6000rpm_Sof4_wP2VP 

 
b) 03252015_RDAexp_6000rpm_Sof4_wP2VP 

 
c) 03252015_RDAexp_6000rpm_Sof4_wP2VP_2 

 
Figure B.30. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL P2VP 
present in solution. ω = 6000 rpm. 
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a) 01212015_RDAexp_6000rpm_Sof4_wPVAc 

 
b) 01292015_RDAexp_6000rpm_Sof4_wPVAc_4 

 
c) 04072014_RDAexp_6000rpm_Sof4_wPVAc and 
04072014_RDAexp_6000rpm_Sof4_wPVAc(2) and 
04072014_RDAexp_6000rpm_Sof4_wPVAc(3) 

 
Figure B.31. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL PVAc 
present in solution. ω = 6000 rpm. 
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B.5 Data for Figure 5.3 

a) 03102015_RDAexp_6000rpm_Sof4_wPVPVA_10ug 

 
b) 03102015_RDAexp_6000rpm_Sof4_wPVPVA_10ug_2 

 
c) 03102015_RDAexp_6000rpm_Sof4_wPVPVA_10ug_3 

 
Figure B.32. (a-c) Desupersaturation profiles for felodipine (S of 4) with 10 µg/mL 
PVPVA present in solution. ω = 6000 rpm. 
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a) 03112015_RDAexp_6000rpm_Sof4_wPVPandPVAc_5ug_2 

 
b) 03112015_RDAexp_6000rpm_Sof4_wPVPandPVAc_5ug_3 

 
c) 03132015_RDAexp_6000rpm_Sof4_wPVPandPVAc_5ug_4 and 
03132015_RDAexp_6000rpm_Sof4_wPVPandPVAc_5ug_4(2) and 
03132015_RDAexp_6000rpm_Sof4_wPVPandPVAc_5ug_4(3) 

 
Figure B.33. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL PVP 
& PVAc present in solution. ω = 6000 rpm. 
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a) 02252015_RDAexp_6000rpm_Sof4_wPVPandPVAc 

 
b) 02252015_RDAexp_6000rpm_Sof4_wPVPandPVAc_2 

 
c) 03102015_RDAexp_6000rpm_Sof4_wPVPandPVAc_10ug and 
03102015_RDAexp_6000rpm_Sof4_wPVPandPVAc_10ug_2 

 
Figure B.34. (a-c) Desupersaturation profiles for felodipine (S of 4) with 10 µg/mL PVP 
& PVAc present in solution. ω = 6000 rpm. 
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B.6 Data for Figures 6.2, 6.3, 6.5, and 6.7 

a) 07012015_RDAexp_Sof4_3000rpm_afterHPMCAS_freshbuffer 

 
b) 07012015_RDAexp_Sof4_3000rpm_afterHPMCAS_freshbuffer_2 

 
c) 07082015_RDAexp_Sof4_3000rpm_afterHPMCAS_freshbuffer 

 
Figure B.35. (a-c) Desupersaturation profiles for felodipine (S of 4) prepared using 
method (ii). Growth was measured with no polymer present. ω = 3000 rpm. 
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a) 08262015_RDAexp_Sof4_3000rpm_afterHPMCAS_freshbuffer_aftergrowth 

 
b) 08262015_RDAexp_Sof4_3000rpm_afterHPMCAS_freshbuffer_aftergrowth_2 

 
c) 08262015_RDAexp_Sof4_3000rpm_afterHPMCAS_freshbuffer_aftergrowth_3 

 
Figure B.36. (a-c) Desupersaturation profiles for felodipine (S of 4) prepared using 
method (ii). Growth was measured with no polymer present, 2nd growth experiment. ω 
= 3000 rpm. 
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a) 12032014_RDAexp_3000rpm_Sof4_wHPMCAS_pre 

 
b) 06092015_RDAexp_Sof4_3000rpm_afterHPMCAS_same soln 

 
c) 08042015_RDAexp_Sof4_3000rpm_afterHPMCAS_samesoln 

 
Figure B.37. (a-c) Desupersaturation profiles for felodipine (S of 4) prepared using 
method (ii). Growth was measured with 5 µg/mL HPMCAS present in solution. ω = 
3000 rpm. 
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a) 07012015_RDAexp_Sof4_3000rpm_seedgrowthwHPMCAS_freshbuffer 

 
b) 07012015_RDAexp_Sof4_3000rpm_seedgrowthwHPMCAS_freshbuffer_2 

 
c) 07082015_RDAexp_Sof4_3000rpm_seedgrowthwHPMCAS_freshbuffer_2 

 
Figure B.38. (a-c) Desupersaturation profiles for felodipine (S of 4) prepared using 
method (iii). Growth was measured with no polymer present. ω = 3000 rpm. 
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a) 06262015_RDAexp_Sof4_3000rpm_seedgrowthwHPMCAS_samesoln 

 
b) 06302015_RDAexp_Sof4_3000rpm_seedgrowthwHPMCAS_samesoln 

 
c) 06302015_RDAexp_Sof4_3000rpm_seedgrowthwHPMCAS_samesoln_2 

 
Figure B.39. (a-c) Desupersaturation profiles for felodipine (S of 4) prepared using 
method (iii). Growth was measured with 5 µg/mL HPMCAS present in solution. ω = 
3000 rpm. 
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a) 08272015_RDAexp_Sof4_3000rpm_soliddisp10 

 
b) 08272015_RDAexp_Sof4_3000rpm_soliddisp10_2 

 
c) 08272015_RDAexp_Sof4_3000rpm_soliddisp10_3 

 
Figure B.40. (a-c) Desupersaturation profiles for felodipine (S of 4) prepared using 
method (iv). Growth was measured with no polymer present. ω = 3000 rpm. 
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a) 09082015_RDAexp_Sof4_3000rpm_soliddisp_polysoln 

 
b) 09082015_RDAexp_Sof4_3000rpm_soliddisp_polysoln_2 

 
c) 09082015_RDAexp_Sof4_3000rpm_soliddisp_polysoln_3 

 
Figure B.41. (a-c) Desupersaturation profiles for felodipine (S of 4) prepared using 
method (iv). Growth was measured with 5 µg/mL HPMCAS present in solution. ω = 
3000 rpm. 
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B.7 Data for Figure 6.10 

a) 08192015_RDAexp_Sof4_3000rpm_wHPMCASandSDS_2 

 
b) 08192015_RDAexp_Sof4_3000rpm_wHPMCASandSDS_3 

 
c) 08192015_RDAexp_Sof4_3000rpm_wHPMCASandSDS_4 

 
Figure B.42. (a-c) Desupersaturation profiles for felodipine (S of 4) with 5 µg/mL 
HPMCAS and 100 µg/mL SDS 5µg/mL present in solution. ω = 3000 rpm. 
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a) 09212015_RDAexp_Sof4_3000rpm_felodipineSDS 

 
b) 09212015_RDAexp_Sof4_3000rpm_felodipineSDS_2 

 
c) 09212015_RDAexp_Sof4_3000rpm_felodipineSDS_3 

 
Figure B.43. (a-c) Desupersaturation profiles for felodipine (S of 4) with 100 µg/mL 
SDS present in solution. ω = 3000 rpm. 
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B.8 AFM and IR-AFM Data 

Table B.1. AFM Data Filenames  

Figure Filename 

4.3a cjs_20130716_NPG_c_felodipineHPMCAS_liq_pH3_2um_3.000 

4.3b cjs_20130724_NPG_c_felodipineHPMCAS_liq_pH6.8_2um_3.000 

4.3c cjs_20140205_NPG_c_felodipine_liq_pH6.8_2um_4.003 

4.4a cjs_20130724_NPG_c_felodipineHPMCAS_liq_pH6.8_500nm_3.000 

4.4b cjs_20130716_NPG_c_felodipineHPMCAS_liq_pH3_500nm_2.001 

4.4c cjs_20131030_NPG_c_felodipineHPMCAS_liq_pH3_2um_1.004 

4.6a/c cjs_20131030_NPG_c_felodipineHPMCAS_liq_pH3_2um_1.005 

4.6b/d cjs_20131030_NPG_c_felodipineHPMCAS_liq_pH6.8_2um_1.002 

4.7 cjs_20131220_felodipineHPMCAS H6 Spectra w markers 

4.8a cjs_20131208_1209_felodipineHPMCAS_IR 

4.8b cjs_20131220_felodipineHPMCAS_1700_IR4 

4.8c cjs_20131220_felodipineHPMCAS_1720_IR6 

4.9 cjs_20131030_NPG_c_felodipineHPMCAS_liq_pH3_2um_1.002 

5.2a cjs_20150506_SNL_c_felodipinePAA_liq_1um_3.000 crop750 

5.2b / 5.4a cjs_20150206_NPG_c_felodipinePVP_liq_2um_3.001 crop750 

5.2c / 5.4g cjs_20150221_SNL_c_felodipineHPMCAS_liq_1um_2.002 crop750 

5.2d / 5.4c cjs_20150122_NPG_c_felodipinePVAc_liq_2um_3.000 crop750 

5.2e cjs_20150505_SNL_c_felodipine_liq_1um_2.004 crop750 

5.4b cjs_20150317_SNL_c_felodipineP2VP_liq_1um_2.001 crop750 
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5.4d cjs_20150217_SNL_c_felodipinePVPVA_liq_1um_2.000 crop750 

5.4e cjs_20150303_SNL_c_felodipinePVPandPVAc_liq_1um_2.000 crop750 

5.4f cjs_20150605_NPG_c_felodipinePVPVA10_2_liq_3um_1.000 crop750 

5.4h cjs_20150217_SNL_c_felodipineHPMC_liq_1um_2.001 crop750 

6.4a cjs_20150811_NPG_c_felodipine_aftergrowth_liq_1um_1.001 

6.4b cjs_20150807_NPG_c_felodipine_wHPMCAS_aftergrowth_liq_1um_4.0
02 

6.4c cjs_20150807_NPG_c_felodipine_afterHPMCAS_aftergrowth_freshbuffe
r_liq_1um_1.002 

6.4d cjs_20150811_NPG_c_felodipine_afterHPMCAS_aftergrowth_samesoln
_liq_1um_2.002 

6.6a cjs_20150722_NPG_c_felodipine_liq_5um_2.000 

6.6b cjs_20150722_NPG_c_felodipine_seedgrowthwHPMCAS_liq_5um_4.00
0 

6.8a cjs_20150722_NPG_c_felodipine_seedgrowthwHPMCAS_liq_1um_3.00
0 

6.8b / 6.9 cjs_20150917_NPG_c_felodipineHPMCAS_soliddisp_liq_1um_2.001 

6.11a cjs_20150505_SNL_c_felodipine_liq_1um_2.004 

6.11b cjs_20150221_SNL_c_felodipineHPMCAS_liq_1um_2.003 

6.11c cjs_20150901_SNL_c_felodipineHPMCAS&SDS_liq_1um_2.001 
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