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ABSTRACT 

Park, Joo Young. Ph.D., Purdue University, December 2015. A Comparison of Two 
Instructional Sequences in an Intelligent Tutoring Program on Multiplicative Concepts 
and Problem Solving of Students with Mathematics Difficulties. Major Professor: Yan 
Ping Xin. 
 
 
 

One of the crucial goals of the National Councils of Teachers Mathematics 

standards (2000) was to have all students, including students with mathematics 

difficulties (MD), to succeed in establishing a higher-order thinking in mathematic. 

However, there has been a lack of research on developing differentiated mathematics 

instructions necessary for students with MD to learn about multiplication concept. This 

study examines the differential effects of two instructional sequences taught in an 

intelligent tutor system that is designed to nurture students’ multiplicative concept to 

enhance their problem solving skills. A total of 18 third (n = 13) and fourth (n = 5) grade 

students with MD were assigned to one of the two treatment conditions (modules A-B-C-

D-E and A-C-B-D-E) by switching the order of mixed unit coordination (MUC) task. A 

repeated measure ANOVA design involved achievement measures. The results indicate 

that both instructional sequences improved, from pretest to posttest, their performance on 

the MR criterion test and COMPS near-transfer test. However, the alternative 

instructional sequence was more efficient for students with MD to establish 

multiplicative concepts as they took less number of sessions to achieve the same level of
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word problem solving skills. The results of this study suggests that students with MD can 

be expected to establish conceptual understanding of multiplication and show better 

performance on their multiplicative word problem solving when instructional framework 

is tailored towards their needs.  
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Mathematical proficiency has been considered by U.S. educational policies as one 

of the vital components essential for individual fulfillment, active citizenship, and career-

readiness in today’s highly technical society (National Education Goals Panel, 1999). 

Increasing evidence indicates that advanced mathematical thinking skills are necessary in 

today’s competitive workforce. Various state and federal educational policy makers 

encouraged a reform in the national educational framework and promoted systemic 

changes to ensure equitable educational opportunities and high levels of educational 

achievement for all students. For instance, the Science, Technology, Engineering and 

Mathematics (STEM) education initiative was established to focus on improving students’ 

mathematical thinking as well as to apply it to other related academic areas (e.g., science 

and engineering) to expand the pipeline of students set to enter college and the workforce. 

Thus, mathematics is a practical subject essential in life and needs to be learned properly.  

  The demand for advanced mathematical thinking, such as problem solving and 

reasoning skills, has also led to a renewed interest in reforming the current mathematics 

curriculum. This is especially important in the early school years for all students, 

including those struggling in mathematics, so that they can be successful both in 

academic and occupational opportunities in the future (Maccini & Ruhl, 2000; Mercer 
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Jordan, & Miller, 1994; Xin, 2008). One of the key shifts in mathematics reform called 

for the need to enhance students’ understanding of mathematical concepts, and to 

improve their ability to associate between mathematical ideas and models to solve 

mathematics word problems (Common Core State Standards Initiative [CCSSI], 2012; 

National Council of Teachers of Mathematics [NCTM], 2000; National Research Council 

[NRC], 2001). The synergy between a solid conceptual understanding and procedural 

fluency skill may lead these students to be one step closer to solving word problems with 

various contexts and larger numbers. The initial step of acquiring advanced mathematical 

thinking requires the development of multiplicative reasoning by constructing the 

concepts of multiplication (Confrey, 1994; Harel & Sowder, 2005). Thus, mathematics 

reform calls for the need to seek adaptive pedagogies that could potentially facilitate all 

students, including those with mathematical difficulties, in developing conceptual 

knowledge of multiplication. 

1.2 The Current Problem 

The concept of multiplication is a foundational skill which children must learn in 

early elementary school in order to proceed to advanced mathematical thinking. 

According to the National Council of Teachers of Mathematics [NCTM], students 

develop the concepts of multiplication and division as early as third grade (2000). By 

fourth or fifth grade, most students are expected to have established the conceptual 

understanding of multiplication, have mastered multiplicative reasoning, and to be able to 

solve various types of multiplication word problems (Xin, Tzur, & Si, 2008). However, 

many U.S. elementary students encounter difficulties in developing mathematics 

problem-solving and reasoning skills (National Assessment Educational Progress 
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[NAEP], 2011). Previous international comparison studies over the past decades have 

revealed lower levels of mathematics problem-solving performance of U.S. students 

when compared to those from other countries (National Research Council [NRC], 2001). 

According to the most recent international comparison assessments of student 

mathematics achievement (The Trends in International Studies Mathematics and Science 

Study [TIMSS], 2011), which examined more than 12,000 fourth grade students from 57 

countries, American fourth grade students’ average mathematics proficiency gradually 

increased since 1995, and is now in the top fifteen education systems in mathematics 

(Mullis, Martin, Foy, & Arora, 2012). However, only 13% of the students were able to 

solve higher-level mathematical tasks (e.g., word problems and reasoning), which 

required them to solve various complex situations involving whole numbers and to 

explain their reasoning based on their mathematics concepts. While advanced 

mathematical thinking is difficult for normal-achieving students, approximately 6-7% of 

students who demonstrate low performance in mathematics will experience even more 

hardship in achieving higher mathematical thinking standards (No Child Left Behind 

[NCLB], 2002).  

Students with mathematical difficulties (MD) manifest poorer performance in 

transitioning to advanced mathematical thinking, leading them to remain considerably 

lower in mathematics abilities than their normal-achieving peers (Bottge, Rueda, Laroque, 

Serlin, & Kwon, 2007; Gagnon & Maccini, 2001; Woodward & Brown, 2006). One of 

the major reasons is that most students with MD experience difficulty transitioning from 

the concept of addition to the concept of multiplication (Harel & Confrey, 1994). The act 

of multiplying the numbers is more than performing a repeated addition (Steffe, 1994). 
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Students are reconceptualizing the numbers and the notion of units, which requires 

significant cognitive processing. Students with MD may require specialized instruction to 

undergo such complex information processing to construct multiplication concepts 

(Swanson, 1993).  

Helping students with MD to establish multiplication concepts has received 

critical attention from researchers and educators. However, little is known about how 

children with MD develop multiplicative concept reasoning. Given that many American 

students struggle with mathematics problem solving and reasoning, several questions are 

posed about how low-achieving students construct multiplicative reasoning and how the 

existing differentiated instruction would nurture their multiplicative reasoning. In 

particular, what are some indicators that signify students with good multiplicative 

reasoning skills? What are some difficulties that students with MD undergo during the 

conceptual leap between addition/subtraction to multiplication/division but that normal-

achieving students do not experience? And what are the current best practices of problem 

solving with a focus on promoting mathematics conceptual understanding for students 

with MD?  

1.2.1 Development of Multiplicative Concept 

Multiplicative concept has been a critical constructive resource for children to 

establish multiplication. Previous multiplicative concept studies have focused on students’ 

counting schemes in identifying students’ progress in constructing the concept of 

multiplication (Steffe, 1988; Steffe & Cobb, 1988). A multiplication counting scheme 

indicates students’ counting acts while solving multiplication word problems. According 
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to the constructivist point of view, normal-achieving children undergo numerous 

adjustments to re-establish their counting acts through their personal experience of 

counting (Steffe & Cobb, 1994). They gradually refine the notion of units from singletons 

(ones) to ultimately constructing composite units (CU): “2x3 is two units of three” (Steffe, 

1992). A CU is a set of an equal quantity of singletons (Clark and Kamii, 1996; Steffe, 

1988; Steffe & Cobb, 1988). Students in this stage can (a) mentally understand that three 

ones are taken as one three (Steffe, 1992), (2) coordinate the units between the CU and 

ones while solving word problems, and (3) represent the operation in an abstract manner 

(i.e., math sentence) in order to enhance their multiplicative reasoning skills.  

1.2.2 Existing Interventions 

Interventions used in the field of special education have mostly emphasized 

improving students’ problem-solving accuracy in an explicit manner. A number of 

interventions have applied cognitive perspective to teach word problem solving to 

children with MD (Montague, 1992; Montague, Applegate, & Marquard, 1993; 

Montague & Bos, 1986). During cognitive/metacognitive instruction, children follow the 

guidance of four to seven sequential steps when solving problems. Previous studies have 

comparable critical solving steps: (1) read the problem, (2) think about the solution 

process, (3) write the math sentences, (4) solve the problem by computing, and (5) 

recheck the solution process and the final answer. Other interventions have involved a 

series of representations (concrete-semi-concrete-abstract) to assist students with MD to 

depict problem situations from the concrete to the abstract level (Miller & Mercer, 1993).   



6 

 

  
6 

Other interventions have been designed to approach teaching word problems 

through teaching or broadening problem schema, which has been shown to be effective 

for students with MD (Jitendra & Hoff, 1996; Jitendra, Griffin, Deatline-Buchman, & 

Sczesniak, 2007; Marshall, Barthuli, Brewer, & Rose, 1989). The schema-based 

instruction (SBI) engages students in conducting semantic analyses of word problems to 

identify the common problem schemata for solution planning. During SBI, students map 

the problem features into the corresponding schema diagrams and determine the 

operation to use by applying a set of solution rules.  

Xin and colleagues (Xin, 2012, Xin, 2008; Xin, Wiles, & Lin, 2008; Xin & Zhang, 

2009) further developed the Conceptual Model-based Problem Solving (COMPS) 

approach. The COMPS approach engages students in representing word problems in 

mathematical model equations on the basis of an analysis of underlying problem structure. 

With the COMPS approach, mathematical model equations directly drive the solution 

plan including the selection of operations. The COMPS emphasizes the connection 

between mathematical ideas with the purpose of facilitating students’ generalized 

problem-solving skills.  

More recently, the Computer-Assisted Instruction (CAI) has been used as a tool to 

effectively convey problem-solving instruction on the basis of cognitive learning theory. 

The strategies used in CAI programs typically involved schema-based (Chang, Sung, & 

Lin, 2006; Leh & Jitendra, 2012), cognitive/metacognitive strategies (Seo & Bryant, 

2012; Shiah, Mastropieri, Scruggs, & Fulk, 1994-1995), and COMPS (Xin, 2012) 

approach. However, there is a lack of CAI programs that address a broader set of 

mathematics problem solving. Thus, there is still room for the development of 
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educational programs for higher mathematical thinking (e.g., concept-based approach and 

mathematical reasoning) that is aligned with the reform agenda.  

Overall, the existing problem-solving interventions in the field of special education 

are characterized as an explicit instruction primarily emphasizing performance outcome 

(Woodward & Brown, 2006). The recent development of the problem-solving 

interventions focuses on helping students enhance problem-solving performance through 

symbolic modeling and cognitive factors, which are often taught through explicit strategy 

instruction. Given that the recent reform promotes constructivist learning paradigm 

(Woodward, 2004), special educators need to reexamine the current practices used to 

teach problem-solving skills and explore effective ways to incorporate the constructivist 

view of learning to ensure that students with MD are taught using an instruction method 

consistent with the mathematics reform agenda (Woodward & Montague, 2002). 

1.3 The Alternatives 

Constructivist instruction is student-focused self-exploration, where mathematics 

learning revolves around students constructing their own representation of reality (Piaget, 

1973). Unlike direct instruction with teacher prompts, students in a constructivist-

learning environment are encouraged to develop their mathematics conceptual 

understanding based on their own experience. Due to the nature of constructivist 

instruction, teachers need to provide a minimum of prompts, and instead, to challenge 

students to think of how they solved the problem (Reid, 2002; Rosales, Vicente, 

Chamoso, Munez, & Orrantia, 2012). One of the crucial difficulties facing mathematics 

education for students with MD is how to help them enhance higher order thinking in 

mathematics (Baxter, Woodward, & Olson, 2001). Findings from qualitative methods by 
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Baxter and colleagues (2001) reported that most struggling students have lack of chance 

to engage in class mathematics discussions as normal-achieving students dominate the 

conversation. Struggling students further struggle during the current reform-based 

instruction, as it demands higher cognitive load while learning about complex concepts 

and reasoning skills. Thus, further instructional interventions tailored towards these 

students’ needs should be developed (Baxter et al., 2001; Baxter, Woodward, Voorhies, 

& Wong, 2002). Despite the demand, there is still lack of instructional approach 

educators could apply to help students with MD enhance their mathematics reasoning 

skills. 

1.3.1 Please Go and Bring Me (PGBM)-COMPS Tutor Program 

As the outcome of a collaborative work that integrates research-based practices 

from mathematics education and special education, a PGBM-COMPS intelligent tutor 

(Xin, Tzur, & Si, 2008) was developed to nurture MR skills in an explicit manner for 

students with MD. On one hand, the constructivist learning environment provided 

students a chance to explore multiplicative concept. On the other hand, COMPS approach 

(Xin et al., 2013) explicitly models word problem underlying structures (story-grammar). 

The PGBM-COMPS tutor was made of two parts: (1) the “Please Go and Bring Me...” 

(PGBM) turn-taking games that help students build multiplicative concept and (2) the 

COMPS (Xin, 2012) part, which engages students to represent mathematics word 

problems using the mathematical models. Various mathematics activities within the 

PGBM turn-taking games provide students with the chance to learn multiplicative double 

counting (mDC)—a fundamental idea for a multiplicative concept. During PGBM, 
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students are encouraged to make the distinctions between singletons and CUs as they go 

through the conceptual understanding at both the concrete and symbolic levels (Tzur et 

al., 2012). The sequence of mathematical tasks is guided by Steffe’s (1992) 

developmental stages of the multiplication concept underlying the hypothetical learning 

trajectory (HLT). COMPS fosters understanding of the problem structure and 

representation in mathematical models (Xin, 2012). The intelligent tutor has five modules: 

A, B, C, D, & E. Module A deals with mDC; Module B deals with mixed unit 

coordination (MUC) tasks. Module C deals with quotitive division (QD) tasks; and 

Module D with partitive division (PD) tasks. Finally, module E deals with multiplicative 

comparison (MC) tasks. 

Xin and colleagues have conducted a series of studies (e.g., Ma et al., 2014; Park 

et al., 2013; Xin, Hord, et al., 2012; Xin et al., 2013), which field-tested the impact of the 

PGBM-COMPS programs on enhancing the performance of students with MD.  Findings 

from these studies showed that the PGBM-COMPS tutor program elicited positive 

outcomes on enhancing overall multiplicative problem-solving performance of students 

with MD. In particular, a group comparison study (Xin et al., 2013) indicated that the 

students who received the PGBM-COMPS instructional approach showed a significantly 

greater improvement rate on the word problem-solving performance than those who 

received traditional instruction from their teachers. Although the students with MD 

seemed to benefit from the PGBM-COMPS approach on their overall 

multiplication/division word problem performance, the field notes and the process data 

(e.g., Xin, Hord, et al., 2012) showed that students with MD struggled on solving 

problems in Module B.  In particular, Module B involves MUC problem. The findings 
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from Xin, Hord, et al. (2012) were supported by another study from the same research 

group project by Park et al. (2013). These results may suggest that mastering mDC tasks 

(e.g., students count 2, 4, 6, 8 when solving for the total number of cubes of 2 towers of 4 

cubes in each) are insufficient for students with MD to perform MUC tasks. The issue has 

grown in importance in light of the possible differences in the conceptual learning 

processes of multiplication between students with and without MD.   

 According to Steffe’s teaching experiment (1992), normal-achieving students 

were able to apply previous knowledge of CU and coordination between the two units 

(i.e., ones and CUs) through multiplicative scheme tasks to solve MUC. Although the 

divisional scheme was not yet established, normal-achieving children acted by iterating-

up the CUs (e.g., double counting) to divide ones equally to construct CUs. That is, 

children counted a collection of units of 3 for example, 3, 6, 9, 12, 15, and found out that 

they could make 5 towers of 3 cubes each. The act of reversing the iterating-units forward 

or backward to solve unfamiliar tasks is “a precursor to partitioning a totality as required 

for division” (Tzur et al., 2012, p. 160). Because of the nature of their strategic 

knowledge deficiency, students with MD struggle to further expand their knowledge of 

unit coordination to solve for divisional scheme tasks, which is a crucial ability to 

reconstruct their learned knowledge and apply it while solving novel tasks (Steffe & 

Cobb, 1994).  

 Unlike other multiplicative schemes, MUC scheme (e.g., Tom has 6 towers with 3 

cubes in each. Sam gave Tom 15 more cubes. How many towers of 3 would Tom have in 

all?; hereafter 6T3 +15) entails two-step problems where students need to use both 

divisional (i.e., 15 cubes= 5T3) and unit coordination (i.e., 6T3 + 5T3) schemes to solve 
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for the solution. Thus, it requires children to hold on to the answer from the first step and 

apply it to the second step to derive the final solution. The above process is especially 

difficult for students with MD as they struggle with working memory deficits (Geary et 

al., 2007; Siegel & Ryan, 1989; Swanson, 1993). In the discussion, Xin, Hord, et al. 

(2012) suggested that appropriate scaffolding would be needed for students with MD on 

MUC tasks in order for them to organize and retain the information. Thus, the need for an 

adaptive sequence of multiplication schemes is apparent as students with MD undergo 

difficulties with the existing scheme, possibly due to their mathematics cognition deficits 

as well as their lack of ability to adapt their existing strategies to solve novel tasks. 

1.4 Present Study 

This study will compare the existing module sequence in the current PGBM-

COMPS tutor (A-B-C-D-E) with an alternative instructional sequence of A-C-B-D-E. An 

analysis of variance (ANOVA, 2 groups x 4 times) with repeated measures of time 

(pretest, posttest, and one follow-up test) will be used to compare which sequence of 

mathematical tasks is more effective for students with MD in enhancing multiplicative 

concepts and problem solving. This study will contribute to the literature by (1) 

examining the effectiveness of the PGBM-COMPS tutor program in improving the 

multiplicative reasoning and problem solving accuracy of students with MD, and (2) 

indicating the differentiated mathematics task sequence for students with MD. 
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1.4.1 Research Questions 

In order to meet the above goals, the following questions will be addressed in this study:  

1. What are the differential effects of the two instructional sequences (i.e., A-B-C-D-E 

vs. A-C-B-D-E) on the mathematics performances students with MD measured by the 

percentage of correct responses on a criterion test designed to evaluate students’ 

multiplicative reasoning and problem solving (MR-test)? 

2. Are students in both groups able to maintain the newly-acquired problem-solving 

skills after the completion of the PGBM-COMPS tutor program measured by the 

percentage of correct responses on a criterion test (MR-test)? 

3. Are students able to transfer the constructed multiplicative concept to novel word 

problems, measured by a comprehensive multiplicative word problem solving test 

(COMPS test, Xin, Wiles, & Lin, 2008), that entail similar structure but are different 

from problems used during the intervention? 

4. To what extent does the word problem-solving performance of students with MD 

differ with that of the normative reference (NR) group prior to and following the 

intervention on the MR criterion test?  

5. To what degree are the instructions in the PGBM-COMPS tutor program perceived as 

useful, effective support for multiplicative word problem solving by the students and 

their classroom teachers? 
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Null hypotheses. From the above four questions, the following null hypothesis and 

alternative hypothesis were developed: 

1. (a) There are no statistically significant differences between the two groups (A-B-C-

D-E vs. A-C-B-D-E) following the intervention based on the percentage of correct 

response for the MR criterion test. (b) There is no statistically significant effect on 

time (i.e., pretest, posttest, maintenance, and follow-up tests) for both groups based 

on the percentage of correct responses for the MR criterion test. (c) There is no 

statistically significant interaction between group and time.  

2. (a) There are no statistically significant differences between the two groups (A-B-C-

D-E or A-C-B-D-E) following the intervention based on the percentage of correct 

response for the MR criterion test. (b) There is no statistically significant effect on 

time (i.e., pretest, posttest, maintenance, and follow-up tests) for both groups based 

on the percentage of correct responses for the MR criterion test. (c) There is no 

statistically significant interaction between group and time.  

3.  (a) There are no statistically significant differences between the two groups (A-B-C-

D-E or A-C-B-D-E) following the intervention based on the percentage of correct 

response for the COMPS test. (b) There is no statistically significant effect on time 

(i.e., pretest, posttest, maintenance, and follow-up tests) for both groups based on the 

percentage of correct responses for the COMPS test. (c) There is no statistically 

significant interaction between group and time. 
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4. There is no statistically significant effect on time (i.e., pretest & posttest) for both 

groups based on the percentage of correct responses for the MR criterion test. 

Alternative hypotheses. 

1. (a) There are statistically significant differences between the two groups (modules A-

B-C-D-E vs. A-C-B-D-E) following the intervention based on the percentage of 

correct response for the MR criterion test. The hypothesis is as follows: the mean 

posttest for the A-C-B-D-E group will be greater than the mean posttest score for the 

A-B-C-D-E group. (b) There is a statistically significant effect on time (i.e., pretest, 

posttest, maintenance, and follow-up tests) for both groups based on the percentage of 

correct responses for the MR criterion test. The hypothesis is as follows: the mean 

score of the posttest will be greater than the mean score of the pretest. (c) There is a 

statistically significant interaction between group and time on the percentage of 

correct responses for the MR criterion test. The hypothesis is as follows: the increase 

in the mean score from pretest to posttest, maintenance test, and to follow-up test for 

the A-C-B-D-E group will be similar to the increase in the mean score for the A-B-C-

D-E group.   

2. There is statistically significant effect on time (i.e., posttest, maintenance test, and 

follow-up tests) for both groups based on the percentage of correct responses for the 

MR criterion test. The hypothesis is as follows: there is no significant change of 

performance from posttest to maintenance test to follow-up test for both groups. 

3. (a) There is statistically significant differences between the two groups (A-B-C-D-E 

or A-C-B-D-E) following the intervention based on the percentage of correct 

response for the COMPS test. The hypothesis is as follows: the mean posttest for the 
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A-C-B-D-E group will be greater than the mean posttest score for the A-B-C-D-E 

group. (b) There is statistically significant effect on time (i.e., pretest, posttest, 

maintenance, and follow-up tests) for both groups based on the percentage of correct 

responses for the COMPS test. The hypothesis is as follows: the mean score of the 

posttest will be greater than the mean score of the pretest. (c) There is statistically 

significant interaction between group and time. The hypothesis is as follows: the 

increase in the mean score from pretest to posttest, maintenance test, and to follow-up 

test for the A-C-B-D-E group will be similar to the increase in the mean score for the 

A-B-C-D-E group. 

4. There is a statistically significant effect on time (i.e., pretest, posttest) for both groups 

based on the percentage of correct responses for the MR criterion test. The hypothesis 

is as follows: the mean score of the posttest will be greater than the mean score of the 

pretest of the MR criterion test. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Students with Mathematics Difficulties  

Under IDEA, students with specific learning disabilities (SLD) are defined as “a 

disorder in one or more of the basic psychological processes involved in understanding or 

using languages spoken, or written, which may manifest itself in an imperfect ability to 

listen, think, speak, read, write, spell, or do mathematical calculations” (U.S. Office of 

Education, 1977, p. 65083). One of the major diagnostic criterions for students with SLD 

is the discrepancy between a child’s IQ and achievement. In particular, a child who has 

normal IQ level, based on the child’s age, but fails to achieve at that level (Raymond, 

2000, Vaughn & Fuchs, 2003). One of the areas of SLD is mathematics disability. 

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR, 

2000), students are diagnosed as mathematics disability when they are “substantially 

below that expected given the person’s chronological age, measured intelligence, and 

age-appropriate education” (p. 53) measured by standardized tests (Zentall, 2014).  

  An estimated 5-8% of school-age children are at-risk of mathematics disabilities 

(Geary, Hoard, Byrd-Craven, & DeSoto, 2004). These students are often referred as 

students with mathematics difficulties (MD). Many researchers have strived towards 

developing ways to best define students with (MD) (e.g., Fuchs, Fuchs, & Vaughn, 2008; 

Geary et al., 2007; Mazzocco & Myers, 2003; Murphy, Mazzocco, Hanich, & Early,
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 2007). With a divergence of terms used to describe MD (Hannell 2005), there is still no 

one agreeable operating definition of MD among the researchers. Diagnostic criteria for 

mathematics learning difficulties employed in the United States often include a student’s 

performance in class (Geary, 2007; Jordan & Hanich, 2000) as well as a student’s 

standardized achievement scores in mathematics (Geary, 1990). A common approach to 

measure and define students with MD is through the use of cut off scores (Geary et al., 

2007). Some researchers have used a strict criterion cut off score, ranging between the 

15th to 35th percentile (Fuchs, et al., 2008; Powell, Fuchs, Fuchs, Cirino, & Fletcher, 

2009), whereas other researchers have attempted to further differentiate between 

mathematics difficulty and disabilities by having a range of scores from lenient to 

restrictive. For instance, Geary and colleagues (2007) suggested that researchers use  

< 30th percentile for lenient and restrictive (< 5th or 10th percentile). As the purpose of this 

study was to examine the intervention developed particularly for students with MD, I 

purposefully use the term mathematics difficulty and have chosen the lenient 35th 

percentile as the cut-off score for this study (Jordan, Hanich, & Kaplan, 2003). 

More recently, the identification process of learning disability has been 

transitioning away from the traditional IQ-achievement discrepancy model and moving 

towards the “Response to Intervention” (RtI) model. RtI constitutes a multi-tiered 

approach to identifying children with learning disabilities who did not respond to 

evidence-based interventions (Fuchs & Fuchs, 2006; Hughes & Dexter, 2011; Lembke, 

Hampton, & Byers, 2012). The RtI model identifies potential at-risk students through 

early screening before the onset of extensive academic deficits. 
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During RTI, students who are identified as at-risk based on the universal 

screening measure go through three tiers of instruction. As they move on to further tier 

level, students are provided with more intensive progress monitoring and intervention. 

During Tier 1 instruction, the teacher monitors students’ progress weekly to bi-weekly 

(Fuchs & Fuchs, 2006). If they do not show sufficient response, students move on to Tier 

2 instruction where small group instruction and more progress monitoring by using 

curriculum-based measurement (CBM) are provided to them. Students who do not 

respond to Tier 2 move on to Tier 3 level. Tier 3 instruction provides students with more 

individualized instructions with special education services (Hughes & Dexter, 2011). 

According to Fuchs and colleagues (2007), those who are unresponsive towards Tier 2 

are likely to be identified as having a learning disability.  

Fuchs and Deshler (2007) suggested that students should be screened as early as 

kindergarten or first grade. Based on the results of students’ screening and progress 

monitoring, appropriate evidence-based interventions should be used to target the 

particular weak areas in mathematics. Hughes and Dexter (2011) illustrate a positive 

impact on academics, including mathematics. Although more recent attention has been 

focused on the area of mathematics, there is still a lack of literature on the use of RTI on 

this subject (Hughes & Dexter, 2011; Lembke et al., 2012). Furthermore, Hughes and 

Dexter (2011) emphasized a lack of research dealing with the evidence-based 

interventions for higher level thinking skills that could potentially be applied within the 

response to intervention (RTI) systems of service delivery. 
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2.1.1 Characteristics of Students with MD 

Students with mathematics difficulties (MD) share similar characteristics to 

students with mathematics learning disabilities (MLD). For every 2-3 years of academic 

learning, students with MLD often improve by 1 year’s worth of learning (Zentall, 2007). 

Difficulty with higher-order thinking skills is considered as one of the crucial deficits of 

MLD. Students with MLD undergo various academic problems, including conceptual 

understanding (Montague, 1997) and problem-solving skills. Conceptual knowledge is 

established when children link together bits of discrete information, obtained through 

personal observation and experience outside the formal learning environment (Goldman 

& Hasselbring, 1997). Children’s conceptual knowledge expands as they make links 

among information. However, students with MLD as well as MD struggle with 

conceptual knowledge because they are not successful in creating these links. 

Numerosity skills. According to Butterworth, Varma, and Laurillard (2011), one 

of the core deficits students with MD face is the concept of numerosity (sense of 

numbers). Numerosity skills are often developed naturally as early as 3 months old 

(Piazza et al., 2010). In particular, students with MD struggle to understand the meaning 

of the numerical quantities (Butterworth et al., 2011), which leads them to struggle to 

understand the meaning of math facts (Butterworth et al., 2011). Students with MD have 

poor understanding of the concept of number sets and poor ability to manipulate sets to 

solve problems (Geary et al., 2007). For instance, when solving for 18 + 4, students with 

MD are less likely to decompose the 4 into two sets of 2 to find the total (Koontz & 

Berch, 1996). 
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Cognitive skills. Mathematics requires various cognitive skills, including 

working memory (Butterworth et al., 2011; Swanson & Lee, 2001). Working memory is 

defined as “the ability to hold a mental representation of information in mind while 

simultaneously engaging in other mental processes” (Geary et al., 2007). According to 

Baddeley and Hitch's model, working memory consists of central executive, phonological 

processing, and visuo-spatial information (Baddeley, 1986, 1996). While the role of 

central executive processing is to arrange decision-making and flow of information, 

phonological processing and visual-spatial information store domain-specific information 

(Meyer et al., 2010). 

Students with MD are well known for their deficiency in working memory span 

tasks compared to normal students (Swanson, 1993; Swanson & Lee, 2001; Zentall 

2014). Poor working memory may compromise their problem-solving skills (Passolunghi 

and Pazzaglia, 2004). One of the reasons is due to their low phonological processing 

skills (Swanson, 1993). As such, students with MD struggle to store the verbal 

information in mind while simultaneously performing in other mental processes, such as 

decoding the text and identifying the solution strategy (Swanson & Lee, 2001).   

2.2 Students’ Development of Multiplicative Concepts 

Multiplication word problem solving can be permanently enhanced as students 

build their multiplication concepts. Establishing multiplication concepts occurs when a 

child makes a conceptual leap from addition to multiplication. This leap is made when 

students reconceptualize numbers and units through exploration to ultimately internalize 

numbers in an abstract manner (Steffe, 1994). Lamon (1996) indicated that more 
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sophisticated understanding of unit structure is one of the crucial mechanisms by which 

multiplicative reasoning develops. Previous literature on how normal achieving students 

develop multiplicative concepts, studies mainly the changes of the conception of the unit 

as students’ counting schemes are examined (Clark & Kamii, 1996; Steffe, 1988; Steffe 

& Cobb, 1988). As defined in the literature, a scheme is “a psychological construct for 

inferring into the mental realms of thinking and learning” (Tzur et al., 2012, p. 156). A 

multiplication counting scheme indicates students’ counting acts while solving 

multiplication word problems. According to the constructivist point of view, students 

undergo numerous adjustments to re-establish their counting acts through their personal 

experience of counting (Steffe & Cobb, 1994). Children who established multiplication 

concepts can coordinate between ones and a composite unit (CU).  

Overall, establishing CU involves two major counting schemes: unit coordination 

and unit segmenting schemes (Steffe, 1992). Steffe and Cobb’s study (1988) indicated 

that young children obtain the ability to coordinate with the two units (i.e., ones & CU) as 

they internalize the numbers by undergoing major developmental number sequences. 

Students continually refine the notion of units from singletons: “1, 2... 3, 4... 5, 6” to 

iterable units: “2, 4, 6” (one iterated two times leads to one two, which can also be broken 

down to two ones) to forming composite units (CU): “2x3 is two units of three” (Steffe, 

1992). Students in this stage can mentally understand that three ones are taken as one 

three (Steffe, 1992). As children reach a level where they are able to construct CU in their 

minds, building the concept of CU through unit coordination, normal-achieving students 

begin constructing the scheme of segmenting the units through decomposing CU to ones. 

According to Lamon (1996), “growth in sophistication of the unitizing process, signified 
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by the use of more composite units or larger units, should be reflected in students’ 

partitioning process” (p. 172). Steffe (1992) conducted teaching experiments exploring 

the developmental changes of unit segmentation scheme with 8-year-old normal 

achieving children as they underwent numerous adjustments of the number sequences. 

Thus, those who have established multiplication concepts have enough understanding of 

the relation between the two quantities to be able to flexibly interchange between the acts 

of unitizing and decomposing based on the CU (Steffe & Cobb, 1988). However, no 

empirical studies have examined the development of multiplicative scheme of students 

with MD. 

2.3 Existing Interventions in Special Education 

While the field of general education has been focusing on how children develop 

concepts, the field of special education is more intrigued by developing intervention that 

would enhance their problem-solving skill. Mathematical word problem-solving 

instructions for students with MD focus on explicit strategy training to enhance students’ 

acquisition, maintenance, and generalization of the learned skills (Hord & Xin, 2013). 

The following section discusses the different word problem-solving strategies. 

2.3.1 Interventions of Multiplicative Word Problem Solving 

Schema-based instruction (SBI). The problem-solving instruction that addressed 

SBI as a strategy emphasized the identification of crucial elements (e.g., key words) that 

relate to the problem schema (Marshall, 1990; Riley et al., 1983) and demonstrated a 

positive effect on students’ word problem solving performance with a wide range of age 

groups from elementary (Fuchs, Fuchs, Finelli, Courey, & Hamlett, 2004; Jitendra & 

Hoff, 1996) to college level (Zawaiza & Gerber, 1993). A schematic approach focuses on 
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semantic analysis of word problems and identification of shared problem schemata. In 

this dissertation study, problem type will be defined as a set of the problems 

incorporating the same schema. The schematic approach allowed students to identify the 

correct problem type based on their interpretation of the situation and key words in the 

word problem (problem situation) and then choose the correct representational diagram 

and the operation sign to solve the problem (Xin & Jitendra, 1999). The number of 

problem types can be categorized by available operation signs for students. For instance, 

some schema studies categorize addition, subtraction, multiplication, and division word 

problems into five different problem types: change, group, compare, restate, and vary 

(Marshall et al., 1989), while other studies categorize addition and subtraction word 

problems into three different types: change, compare, and parts and total (Jitendra & 

Hoff, 1996). 

According to Jitendra and Hoff (1996), the SBI strategy improved students’ one-

step addition and subtraction word problem performances. In particular, Jitendra and 

colleagues (1998) investigated the differential effects of two problem-solving 

instructional approaches, SBI and general strategy instruction, on solving one-step 

addition and subtraction problems with 34 elementary students who were at-risk or had 

mild disabilities. The students in the SBI group were encouraged to complete the 

following training phases: (a) identify the problem type based on the story situations, (b) 

map the important elements problem onto the schema diagram, (c) identify the key word 

to determine the appropriate operation depending on the problem type, and (d) solve the 

problem. Results indicated that students receiving SBI significantly outperformed the 
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general instruction group on an immediate posttest, a delayed posttest, and a 

generalization test.  

In related work conducted with low-performing elementary students, Fuchs and 

colleagues (2004) additionally found that merging SBI strategy and guided schema-based 

sorting practice (e.g., what kind of problem is this? Is this a transfer problem? What kind 

of transfer problem is it?) showed more promising results than that of an SBI-only 

strategy for students with and without disabilities. 

Conceptual model-based problem solving approach (COMPS). Building on 

existing research, Xin and colleagues (Xin, 2012, Xin, Wiles, & Lin, 2008, Xin et al., 

2011) recently developed the COMP approach that focuses on understanding and 

representing word problems in mathematical model equations. This approach prevents 

children from relying on rules to determine the choice of operation for solution. The 

COMPS approach helps students to apply their conceptual understanding of 

multiplication, for instance, by representing the problems in a COMPS diagram, and 

developing a solution plan driven by model equations. 

 Preliminary results (e.g., Xin, Wiles, & Lin, 2008) showed that the COMPS 

approach has facilitated students’ mathematics problem solving performance on 

researcher-developed criterion tests as well as the problem-solving subtest of the norm-

referenced standardized tests, such as KeyMath Revised Normative Update (KMR- NU; 

Connolly, 1998) and Stanford Achievement Test-10th edition (SAT-10; Pearson Inc., 

2004). According to Xin and Zhang (2009), the COMPS approach also showed positive 

effects on facilitating students’ complex real-life mathematics word problem solving 
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skills that involve rounding up or down a solution involving a decimal, irrelevant 

problems, pictograph problems, and multi-step problems. 

 In particular, Xin et al. (2011) examined the differential effects of two 

problem-solving instructional approaches, COMPS and general heuristic instructional 

approach (GHI), on enhancing the multiplication reasoning and problem-solving skills of 

29 third and fourth grade students with learning problems in mathematics problem-

solving skills. The students in the COMPS condition were asked to solve multiplication 

word problems (i.e., EG and MC problem type) using the conceptual model diagram and 

four-step problem-solving cognitive strategy called DOTS (Xin, Wiles, & Lin, 2008). 

Using the DOTS checklist, students (a) detect the problem type (i.e., Equal Group or 

Multiplicative Comparison problems), (b) organize the information using the conceptual 

model, (c) transform the diagram to a math equation, and (d) solve for the unknown 

quantity and check work. The students in the GHI condition were asked to solve 

multiplication problems using a five-step problem-solving checklist, “SOLVE (Search-

Organize- Look- Visualize-Evaluate)” (p. 836). Using the SOLVE checklist, students 

were asked to (a) search the question, (b) organize the information by highlighting the 

key words, (c) look for a strategy and identify which operation to use, (d) visualize the 

problem situation, and (e) evaluate the answer. Results showed that students receiving 

COMPS instruction significantly outperformed those receiving GHI instruction on the 

researcher-developed criterion test as well as the problem-solving subtest of a norm-

referenced standardized test.  

Cognitive /Metacognitive instruction. During the past decade or so, many 

interventions have applied the cognitive perspective to teach word problem solving of 
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children with MD using direct modeling (Woodward, 2004). One of the interventions 

used in the field of special education is cognitive/metacognitive instruction where 

students learn several cognitive steps to understand problem-solving procedures. The 

cognitive steps usually involve dividing the word problem-solving process into four to 

eight sequenced steps, with cues presented depending on the content. All of these studies 

entailed comparable critical solving steps: (a) read the problem, (b) think about the 

solution process, (c) write the math sentences, (d) solve the problem by computing, and 

(e) recheck the solution process and final answer. The metacognitive strategy was used to 

support children’s self-regulation based on the given cognitive strategy. 

A number of studies investigated the effectiveness of the cognitive/metacognitive 

strategies on the mathematical word problem-solving performance of students with LD 

(Case, Harris, and Graham, 1992; Montague; 1992; Montague et al., 1993; Montague & 

Bos, 1986). For instance, Case and colleagues (1992) conducted a preliminary study that 

investigated the effectiveness of the cognitive and meta-cognitive instruction for 

enhancing the addition and subtraction word problem-solving skills to four elementary 

students with LD. The children were explicitly taught the five-step strategy (Read the 

problem aloud, Look for important words and circle them, Draw pictures to illustrate the 

situation, Write down the math sentence, Write down the answer) accompanying it with 

self-regulation strategy (i.e., self-assessment, self-recording, self-instruction). Initially, 

the teacher explicitly modeled the procedure with a think-aloud strategy. As the 

instruction further progresses, students had more responsibility in applying the strategy to 

obtain 100% accuracy on the targeted word problems. Overall, the results indicated that 

all students improved their performance on addition and subtraction word problems 
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during the intervention phase. Montague (1992) and Montague and colleagues (1993) 

further conducted research on the effects of integrating cognitive and meta-cognitive 

strategies with explicit instruction on the word problem solving performance of students 

with LD. Results showed substantial improvement not only on posttest, but also on 

generalization and maintenance tests. 

Concrete-semi-concrete-abstract (CSA) sequence. Throughout the years, many 

prominent math educators (e.g., Bruner, 1996; Piaget & Inhelder, 1958) believed that 

math is learned by going through a sequence of “enactive, iconic, and symbolic stages” 

(as cited from Miller & Mercer, 1993, p. 89). This is particularly crucial for students with 

MD as many of them fail to construct abstract concept as they are required to “understand 

theoretical properties and think beyond what a person can touch or see” (Witzel, Mercer, 

& Miller, 2003, p. 121). CSA sequence instruction, emphasizing the use of manipulative 

and pictorial representations, has been shown to be effective in developing students with 

MD to build mathematical conceptual knowledge (Allsopp, 1999; Butler et al., 2003; 

Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Miller & Mercer, 1993; Underhill, 

Uprichard, & Heddens, 1980). Using those representations, the CSA instructional 

approach allows students to illustrate their mathematical concepts at one of the three 

cognitive operational levels (concrete, semi-concrete, and abstract). The goal of the CSA 

approach is to have children further build on their current cognitive level of mathematical 

conceptual understanding and advance in levels until they are able to demonstrate the 

concept and solve the problems in an abstract manner. During the concrete level, students 

were asked to use concrete manipulative devices (e.g. Unifix cubes) to solve for the 

problems. According to Miller and Hudson (2007), the instruction progresses to the semi-
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concrete level when students have reached a pre-specified mastery level (e.g., 80% 

accuracy on independent practice tasks) by using the concrete objects. During the semi-

concrete level, students were asked to use any sorts of iconic imagery (e.g. drawing 

pictures or tallies) to illustrate their understanding. The instruction progresses to the 

abstract level when students have reached a pre-specified mastery level (e.g., 80% 

accuracy on independent practice tasks) by using the pictures. During the abstract level, 

students were asked to use mathematic symbols (e.g. operations, numbers) to illustrate 

their understanding.  

Computer-assisted instruction (CAI). Computer-assisted instruction (CAI) is an 

alternative tool that could deliver instructional content tailored towards the content areas 

and the needs of students (Larkin & Chabay, 1992). Researchers in the field of education 

have been incorporating mathematics instruction into CAI programs for students with 

learning disabilities (Babbitt & Miller, 1996). While previous CAI programs were 

developed to enhance students’ computational skills (Babbitt & Miller, 1996) by 

providing a drill-and-practice environment (Okolo, 1992), recent CAI programs have 

been developed to improve students’ word problem solving skills. According to the 

findings from research synthesis by Jitendra and Xin (1997), CAI for problem solving 

skills provided similar positive outcomes as the instructions delivered by the teacher (i.e., 

not significantly different). Furthermore, findings from meta–analytic reviews by Seo and 

Bryant (2009) reported that the current CAI studies in computation and word problem 

skills for students with LD demonstrated small but positive effect sizes with non-

significant math gains.  



29 

 

  
29 

CAI programs for mathematics word problem solving have the capability of 

providing ongoing prompts and feedback based on students’ performances (Kappa, 

2001). Furthermore, they bring forth more personalized instruction by recording a 

student's learning by indicating error rate, error patterns, time, and progress monitoring 

(Chang, Sung, & Lee, 2006), leading towards its use as a self-study tool (Abidin & 

Hartley, 1998). The chance to learn based on students’ pace would allow them to have 

control over their own learning, which would further increase their motivation (Chen & 

Liu, 2007). 

Academic improvements with technology rely primarily on the effectiveness of 

the instructional approaches used during tutor-student interaction (Clark, 1983). Studies 

show that word problem CAI programs developed for struggling students incorporated 

evidence-based practices such as schema-based (Chang, Sung, & Lin, 2006; Leh & 

Jitendra, 2012), cognitive/metacognitive strategies (Seo & Bryant, 2012; Shiah, 

Mastropieri, Scruggs, & Fulk, 1994-1995), and COMPS (Xin, 2012). However, there 

were fewer CAI programs focusing on higher mathematical thinking (e.g., concept-based 

approach and mathematical reasoning). 

Thus, there is a lack of research on exploring possible reform-based interventions 

developed for students with MD despite the crucial need for them to catch up with the 

recent reform agenda. Thus, further research is needed to find ways to successfully 

engage students with MD in a constructivist-learning setting, as a means to gain 

experience with “the process of gathering, discovering, and creating knowledge in the 

course of some activity” (Romberg, 1992, p.61). 
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2.4 Collaborative Work between General Mathematics and Special Education 

Much of the research has focused on how normal-achieving children develop 

multiplicative concepts. More recently, the multiplicative concept studies have expanded 

due to increasing interest in exploring differentiated instruction for students with MD in 

order to nurture multiplicative concepts (Ma et al., 2014; Park et al., 2013; Xin, 2012; 

Xin et al., 2013).   

As an outcome of a collaborative work that integrates best practices from 

mathematics education and special education, Xin, Tzur, and Si (2008) developed an 

intelligent tutor (PGBM-COMPS) that nurtures multiplicative reasoning to students with 

LD or those at-risk of LD, particularly in mathematics problem solving. The PGBM-

COMPS tutor program entails both a constructivist view of learning and conceptual 

model-based problem-solving approach to establish fundamental multiplicative reasoning 

concepts in an explicit manner. As part of the PGBM-COMPS program, the “Please Go 

and Bring Me…” (PGBM) turn-taking game nurtures children’s creation and 

differentiation between the unit of ones and the CU (Tzur, Xin, Si, Woodward, & Jin, 

2009). During the PGBM component, the program asks students to manipulate the Unifix 

cubes to form same-sized towers while solving various PGBM activities, which are 

aligned with the six multiplicative schemes. The Conceptual Model-based Problem 

Solving (COMPS, Xin, 2012) allows students to generalize their understanding of the two 

units to a more abstract mathematical model. During COMPS, students translate the 

mathematical relation in a word problem to a conceptual model equation to solve various 

real-life Equal Group (EG) and Multiplicative Comparison (MC) word problems. 



31 

 

  
31 

2.4.1 The Teaching Experiment  

Elaborating on the hypothetical learning trajectory of multiplication applied on 

Steffe’s constructivist teaching experiments (e.g., Steffe, 1992) and based on a teaching 

experiment from the Nurturing Multiplicative Reasoning in Students with Learning 

Difficulties (NMRSD) project, Tzur et al. (2012) developed a developmental framework 

that separates multiplicative development into six stages and providing sample tasks that 

are linked to each scheme.  

 The first scheme focuses on a child constructing Multiplicative Double Counting 

(mDC, Woodward, et al., 2009). The child’s goal is to identify the total of ones through 

simultaneous counting of CUs and ones that comprise each CU. For example, students 

may say:  2, 4, 6, 8 to solve two times four. Students may use their hands to double count 

by using one hand to keep track of the ones and the other hand to keep track of the CU. 

According to Kouba (1989), double counting may require more abstract processing skills, 

as students need to keep track of two counting sequences. 

The second scheme involves Same Unit Coordination (SUC), where students 

operate on CUs. This scheme typically asks students to find the sums of or differences 

between the two sets of CUs. For instance, it may ask: “Sam brought 7T3 and then Tom 

brought 4T3; How many towers do they have in all?” or “Sam brought 7T3; Tom brought 

a few more; Together, Sam and Tom have 11T3; How many towers did Tom bring?” 

(Tzur et el., 2012). Under this scheme, the child needs to pay attention to the CU and 

figure out the sum or difference.  

The third scheme involves Unit Differentiation and Selection (UDS, McClintock, 

Tzur, Xin, & Si, 2011). This scheme encourages children to indicate the similarities and 
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differences between two sets of CUs, and to find the differences in ones. For instance, 

“Sam has 7T3 and Tom has 4T3; How are our collections similar? Different? How many 

more cubes do you have?” (Tzur et el., 2012). There are two possible ways children could 

solve UDS. They can find the difference in 1s by either operating both sets on 1s and then 

obtaining the difference  (e.g., (7x3) – (4x3)) or operating both sets on CU to find the 

difference of CU, which they would then multiply by the unit rate (e.g., 3 (7-4)) to 

operate on 1s. Unit rate represents the number of singletons in each CU (Xin, 2012). 

According to Tzur et al. (2012), the UDS scheme is the onset of distinguishing between 

CU and 1s. 

The fourth scheme involves Mixed-Unit Coordination (MUC, Tzur et al., 2009). 

During MUC, children are coordinating and segmenting the units (Steffe, 1992). For 

instance, the scheme may ask: “Sam has 7T3; Tom gave Sam 18 more cubes; How many 

towers of 3 would Sam have in all?” (Tzur et al., 2012). MUC encourages children to 

segment the 1s into CU based on a given unit rate (18 cubes= 6T3) and add the total 

number of towers of both collections. According to Tzur and colleagues (2012), MUC 

provides a basis for partitioning a totality, as required for division.     

The fifth scheme involves Quotitive Division (QD). QD encourages children to 

iterate the CUs or segment the 1s into equal-sized groups. For instance, it may ask: 

“Jessica has 36 cubes. She wants to make towers of 4 cubes in each. How many towers 

will she make?” QD considers division as an inverse operation to multiplication (Tzur, et 

al., 2012).  

The final, sixth scheme is Partitive Division (PD). PD involves fair sharing where 

students are asked to equally distribute 1s to the given number of CUs for the solution. 
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For instance, PD may ask: “You want to put 36 cubes in 9 equal towers. How many 

cubes will you have in each tower?” (Tzur et al., 2012). Children may initially solve PD 

by distributing all given 1s to each CU one by one and gradually recognize that each 

round of distribution of 1s would make a CU. Once they have established this concept, 

children can solve PD tasks by using double counting to find the unit rate (# of items in 

each CU) without performing the distribution.  

The above sequence of multiplicative tasks was arranged as such for a few 

reasons. First, Tzur et al. (2012) proposed that the above sequence of multiplicative tasks 

unique to students with MD in constructing the multiplicative schemes to establish the 

concept of multiplication. Second, the task in each proceeding scheme could challenge 

students to establish more complex multiplicative schemes by having them solve novel 

multiplicative situations using their existing multiplicative schemes (assimilation) and 

modifying the existing multiplicative scheme (accommodation; Steffe & Cobb, 1988). 

According to Piaget, assimilation and accommodation are general processes that children 

go through to establish a more challenging multiplicative scheme (i.e., adaptation; 

Vergnaud, 1994). In the context of multiplication, adaptation is defined as a child’s 

ability to flexibly modify the current multiplicative scheme to solve for a novel task 

(Steffe & Cobb, 1994). As students establish multiplicative schemes by undergoing 

numerous adaptation process, their number sequence ability advance (Tzur et al., 2012). 

That is, various multiplicative tasks strengthens their understanding of CU as well as their 

ability to coordinate both CU and ones to solve multiplication word problems.  

However, not all students undergo the same learning trajectory to establish 

multiplicative concepts. Simon and Tzur (2004) noted that the trajectory of learning 
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mathematics would constantly need to be crafted based on students’ existing knowledge 

in mathematics and cognitive abilities. Thus, the effect of the above sequence of 

multiplicative schemes, based on the teaching experiment involving a few students with 

LD needs more empirical research to support this hypothesis. That is, it is still unclear 

how the six multiplicative schemes tasks would be best sequenced to benefit students 

with MD. 

2.4.2 Findings from Preliminary Studies of the PGBM-COMPS Tutor Program 

Xin and colleagues (Ma et al., 2014; Park et al., 2013; Xin, Hord, et al., 2012, Xin 

et al, 2013) conducted several studies exploring the impact of the PGBM-COMPS 

intelligent tutor on enhancing the problem-solving ability of students with MD. The 

outcomes of preliminary studies that investigated the PGBM-COMPS program using 

single-subject design (Ma et al., 2014; Park et al., 2013; Xin, Hord, et al., 2012) indicated 

that there seems to be a functional relationship between the intervention of this tutor and 

students’ performance on both a researcher-developed multiplicative reasoning (MR) 

criterion test and a comprehensive multiplicative word problem-solving test (Xin, Tzur, 

& Si, 2008).  

In addition to single subject design studies, Xin and colleagues (2013) conducted 

a randomized group comparative study which investigated the differential effects of two 

problem-solving instructional approaches, PGBM-COMPS and traditional teacher-

delivered instruction (TDI), on enhancing multiplication reasoning and problem-solving 

skills with 17 third and fourth grade students with learning difficulties in mathematics. 

The students in the PGBM-COMPS group were asked to work on the five modules of the 
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PGBM-COMPS intelligent tutor system. During the tutoring program, students were 

encouraged to manipulate the cubes and towers as they went through each multiplicative 

scheme tasks. They were also asked to complete the following sequential steps during the 

COMPS component: (a) detect the problem type (i.e., EG or MC), (b) organize the 

information using the conceptual model, (c) transform the diagram to a math equation, 

and (d) solve for the unknown quantity and check work (Xin, Wiles, & Lin, 2008). The 

students in the TDI group worked on the same word problem tasks as the PGBM-

COMPS group taught by the two third or fourth grade classroom teachers. These teachers 

used typical word problem-solving strategies used in the classroom such as using (a) 

repeated addition or subtraction to solve multiplication or division problems, (b) guess 

and check or key word strategies to decide which operation to use for the answer, and/or 

(c) multiplication or division directly with no further explanation. Results indicated that 

students in the PGBM-COMPS group had a significantly higher improvement rate on 

their multiplicative problem-solving performance than the students in the TDI group. 

More importantly, only the students in the PGBM-COMPS group significantly improved 

their performance, from pre- to posttest, on a far transfer norm-referenced assessment 

(Xin et al, 2013). 

2.4.3 Struggling Students’ Response to the Six Multiplicative Schemes 

Although the above preliminary studies show that overall, students’ performance 

was enhanced after the intervention with the PGBM-COMPS tutoring system, more in-

depth analyses of the process data from the single-subject studies clarify how students 

with MD progress across each of the modules of the PGBM-COMPS tutoring system. For 
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instance, Xin, Hord, et al. (2012) indicated that students with LD and those at-risk for LD 

showed variations in performance across six multiplicative schemes. In this study, in 

order to monitor students’ learning progress in multiplicative schemes during the 

intervention phase (working with the tutor program), students were asked to complete 

two probes after they completed each of the five modules in the PGBM-COMPS program. 

Each of the two equivalent probes consisted of six items that were similar to the tasks 

presented in each of the modules. Results suggested that all three participants did not 

perform as well on MUC problems (Module B) as on the other module problems. In 

particular, none of the participants obtained above 20% correct in the MUC probes. Xin, 

Hord, et al. (2012) noted that the knowledge obtained through the schemes prior to the 

MUC (i.e., mDC, SUC, and UDS) may be insufficient for low-performing students to 

make the conceptual leap to MUC. 

2.4.4 Mixed Unit Coordination (MUC) 

According to research with normal-achieving students (Steffe, 1992), the Mixed 

Unit Coordination (MUC, Tzur et al., 2009) scheme is introduced prior to engaging in 

divisional schemes (i.e., QD & PD), as it serves as a foundation of division that 

encourages students to decompose the total number of 1s (Tzur et al., 2012) by modifying 

the iterative scheme (i.e., double counting). The MUC task introduces children to the 

initial steps of division by requiring them to adapt the pre-existing iterative scheme 

knowledge that they obtained from the previous multiplicative schemes (i.e., mDC, SUC, 

& UDS). Specifically, the MUC task encourages children to flexibly modify an iterative 

scheme to solve for a divisional scheme (i.e., unit-segmentation), which they have not yet 

established. The MUC task triggers such adaptation by providing situations where 
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children need to perform both unit-coordination and unit-segmentation and invert the two 

counting acts for the solution (Steffe, 1992). Thus, the MUC scheme enables the 

transition from a multiplicative to a divisional scheme. 

During the MUC task, children need to identify which unit to operate on (ones or 

CU) and coordinate with the two units (i.e., CU & ones), and then segment the ones into 

CUs. There are two ways children could approach the MUC task by reversing the unit 

segmenting and unit-coordinating schemes for the solution. First, if the question asks: 

“Sam has 7T3. Tom gave Sam 18 more cubes. How many towers of 3 would Sam have in 

all?”, students could operate with units of ones by converting the towers of the first 

collection into cubes to find the total number of cubes (i.e., 7T3= 21 cubes; 21 cubes+18 

cubes= 39 cubes) and segment the ones into CU according to the given unit rate (i.e., 

segment 29 cubes into towers of three; 7T3). The second approach is to operate with units 

of CU by segmenting the cubes of the second collection to identify the number of units of 

threes they can make out of 18 cubes (i.e., 6 towers of three) and then find the total 

number of CUs (i.e., 13 towers of three). Both approaches require children to determine 

which unit to operate on (e.g. ones or CU) and coordinate the two units to solve for the 

solution as well as segment the ones into CUs. 

Steffe (1992) conducted a study on 8-year-old normal-achieving children’s 

development of the multiplicative scheme and described the use of this counting scheme 

for solving the MUC task. He found that high achievers, who were not yet exposed to the 

divisional scheme, frequently used repeated addition to represent the ones in order to 

continue to form a CU identical to that of the previous set. Students obtained the answer 

by adding the number of CUs on both sets. Using the above MUC task, for example, a 
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student may first recognize that the first set is already organized into units of three and 

continue segmenting the ones to counting-by-threes (e.g., 3, 6, 9, 12, 15, 18; 6 towers). 

That is, the child modified the iterative scheme and used it to find out how many 

iterations of CU he would need to construct to get known number of ones. The act of 

iterating-up-to unit is one of the indicators that students have constructed “flexibility of 

iterative scheme” (Steffe and Cobb, 1994, p.54). This ability allows children to flexibly 

adapt the iterative scheme to iterate-up the units when attempting to solve novel tasks 

within a variety of settings (Steffe & Cobb, 1994). 

Although the current placement of the MUC task may facilitate some children’s to 

establishment of MUC scheme through flexibly modifying an iterative scheme to solve 

for a divisional scheme, the current placement of the MUC tasks has been shown to be 

difficult for students with learning disabilities (LD) and those with MD to adapt their pre-

existing knowledge of the iterative scheme to novel situations by themselves without 

receiving direct guidance from the teacher (Ma et al., 2014; Park et al., 2013; Xin, Hord, 

et al., 2012). That is, students with MD experience difficulty assimilating and 

accommodating mDC, SUC, and UDS schemes to solve for the MUC task. Weakness in 

the child’s executive functioning skills might have contributed to his or her low 

performance on adaptation skills (ability to apply acquired knowledge to novel tasks), 

one of the crucial characteristics of students with MD. Particularly, students with MD 

lack ability to review long-term memory and match previously learned information to the 

newly encountered task (Bottge, 2001). 

Xin, Hord, et al. (2012) also stated that the MUC scheme may be difficult for 

students with MD as it involves a two-step problem (e.g., I have 8 towers of 9 cubes in 
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each and 45 more single cubes. If I put the 45 single cubes in towers of 9 cubes each, 

how many towers of 9 will I end up with?), where they need to operate multiplicatively 

through unit segmentation (e.g., 45÷9 = 5; 5T9) and addition (e.g., 8T9 +5T9). According 

to many researchers (e.g., Bottge, 2001; Swanson & Lee, 2001), students with MD 

struggle to solve for two-step word problems due to their cognitive disadvantages. 

Because of their disabilities, children with MD often have restricted amount of 

processing capacity available to solve for complex mathematics word problems. Solving 

MUC tasks exceeds their available processing capacity, as they require identifying the 

two units (ones and composite unit) and coordinating these two units multiple times for 

the solution. 

Due to inadequate cognitive processing capacity, children with MD also have a 

considerable difficulty performing working memory (Siegel & Ryan, 1989; Swanson, 

1993), leading them to struggle with successfully grasping the result from the first step 

and then applying it to the second step for the final solution, which is a necessary skill 

needed to solve for the MUC task. 

Based on the above limitations, children with MD might benefit from direct 

guidance on divisional scheme (QD) prior to solving the MUC task. Establishing the 

division concept prior to MUC task could facilitate their understanding of dividing ones 

(cubes) into CU (equal-sized towers) to find the number of equal-sized towers using a 

collection of cubes. Furthermore, the development of divisional scheme could provide 

more exposure to new ways to operate and coordinate the two units. This experience may 

help reduce the heavy cognitive load required to successfully solve MUC task. Thus, 

further research is needed to explore differentiated instructions that would allow students 
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with MD to construct fundamental multiplication concepts “by linking new learning to 

previously acquired concepts” (Montague, 1997, p.164). 
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CHAPTER 3. METHODOLOGY 

This study was conducted within the larger context of the National Science Foundation-

funded project, Nurturing Multiplicative Reasoning in Students with Learning 

Disabilities/Difficulties project1 (NMRSD; Xin, Tzur, & Si, 2008), in which the PGBM-

COMPS intelligent tutor program has been developed.  

3.1 Research Design 

This study applied a pretest–posttest, comparison group design with   

 to compare the differential effects of the two instructional sequences (i.e., A-B-C-D-E 

and A-C-B-D-E) on solving multiplication and division word problems by third and 

fourth grade elementary students with mathematics difficulties (MD). To calculate the 

needed sample size for this study, a power analysis conducted with an alpha level of .05 

and an effect size of 1.25 per existing research (e.g., Xin et al., 2011). This power 

analysis indicated that each group should consist with a minimum of nine participants in 

order to obtain a power of .87 for 2 x 4 repeated measure analyses of variance (ANOVA, 

Friendly, 2000). Thus, nine participants in each group should provide sufficient statistical 

power to indicate any difference in word problem performance between the two groups.

                                                
1 This research is supported by the US National Science Foundation under grant DRL 

0822296. The opinions expressed do not necessarily reflect the views of the Foundation.!
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3.2 Participants and Settings 

Institutional Review Board (IRB) approval was secured prior to the recruitment of 

participants. Participants were third and fourth grade students with Mathematics 

Difficulties (MD) from one elementary school in the Midwestern United States. The 

school was selected based on the following criteria: (a) a school with a minimum of 10 

students for both 3rd and 4th grade to have a sufficient number of students with MD in 

each grade level, (b) a school that provided an after school program, and (c) a school with 

a minimum of eight computers with Internet access. All of the participants received the 

assigned interventions in an after-school program (November 2014-March 2015). Table 1 

indicates demographic information of the participants’ gender, grade, age, ethnicity, 

classification, IQ scores, and standardized achievement scores in math and reading. 

According to the state academic standards (2014), students in these two grade levels are 

expected to solve real-life multiplication and division word problems involving equal 

groups by forming the equation with a symbol for the unknown number (3.AT.2 & 

4.AT.3). Criteria for selecting the participants were as follows: (1) recommended by the 

school teachers as those who struggled in mathematics problem solving, (2) performance 

on the researcher-developed MR criterion test below 60% correct, and (3) performance 

on the problem-solving subtest of the Stanford Achievement Test-10th edition (SAT-10, 

Pearson Inc., 2004) below 35 percentile. The current convention in the field of special 

education suggests that students scoring below 35th percentile be considered as at-risk in 

mathematics word problem solving (Jordan, Hanich, & Kaplan, 2003). Thus, students 

who tested below the 35th percentile on the SAT word problem-solving subtest were 

considered having MD in mathematics problem solving.
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Table 1. Demographics Table 

Variable Experimental Group 
A-C-B-D-E  

Comparison Group 
A-B-C-D-E  

Total 

Gender    
Male 4 5 9 
Female 5 4 9 

Grade    
3rd  7 6 13 
4th  2 3 5 
Mean 3.2 3.3 3.3 

    
Age in months 

Mean (SD) 
106.7 (8.2) 111 (8.4)  

    
Ethnicity    

Caucasian 1 2 3 
African 

American 
1 1 2 

   Hispanic 6 6 12 
Multiracial 1 0 1 

    
Classificationa    

LD 0 0 0 
LI 1 2 3 
OHI 0 2 2 
NL 8 5 13 
    
 A-C-B-D-E Group A-B-C-D-E Group Total 
IQb Mean (SD) n Mean (SD) n Mean (SD) n 
Verbal 86 (9) 7 82 (10.2) 8 84 (9.6) 15 
Performance 87 (9.1) 7 82 (18.4) 8 85 (13.4) 15 
Full Scale 86 (4.5) 7 81 (13.1) 8 83 (10.6) 15 
       

Achievementc 

(Percentage) 
      

Math  34 (11.5) 9 36 (10.7) 9 35 (11.2) 18 
Reading 30 (9.1) 8 29 (13.6) 9 29 (11.3) 17 

Note. a LD= Learning Disability; LI: Language Impairment; OHI: Other Health 
Impairment; NL: Not Labeled. b IQ scores were obtained from Otis Lennon Standardized 
Assessment Test (OLSAT) School Ability Index (SAI) scores. cAchievement scores for 
both math and reading were obtained from the Acuity Test.  
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Although both grade levels expect students to solve multiplication/division problems, the 

fourth grade students will have had more exposure to learning multiplication/division 

than the third grade students by the time the experiment is in progress. To increase the 

accuracy in terms of identifying students with learning difficulties in mathematics 

problem solving, this study used grade-appropriate SAT scores as a primary measure to 

identify students with learning difficulties. That is, the third grade students were not 

penalized for having lower skill set compared to the fourth grade students. Previous 

longitudinal research in the field of special education indicated that children who were 

identified with MD in first grade continuously show deficits in academic achievement 

and cognitive characteristics through fourth grade (Vukovic & Siegel, 2010). 

A total of 18 elementary students with MD meeting the above criteria were recruited 

in this study. This study used a stratified random-sampling procedure based on students’ 

pretest scores (e.g., SAT-10 and MR criterion test) to randomly assign 18 participants 

into two comparison conditions, with 9 students in each condition: (a) the instructional 

sequence that follows modules A-B-C-D-E (comparison group), and (b) the instructional 

sequence that follows modules A-C-B-D-E (experimental group). In addition, 13 third 

grade and 11 fourth grade normal-achieving students were recruited in the same school 

where the students with MD were also recruited for the study to be served as the 

normative reference (NR) group, who completed MR pretest and posttest. They were 

recruited by referral from classroom teachers in each grade level and scored within the 

mid range (between the 40th and 60th percentile) on their mathematics achievement tests. 

The NR group served as a benchmark for the experimental group to compare the progress 

rate. Thus, the NR group did not receive any intervention in this study.  
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All of the assessment and intervention sessions with the intelligent tutor were 

conducted in the participating school’s library during the after-school program. The 

library was equipped with desktop computers on top of the table, round tables in the 

middle of the room, chairs, and unifix cubes. Each desktop had Internet access with a 

Windows operating system that had access to the PGBM-COMPS tutor program. All of 

the desktops were equipped with a mouse and a headset. A vacant classroom, near the 

computer lab, was used for testing purposes. 

3.3 Measurement 

The dependent variables used in this study consisted of measures of students’ 

multiplicative word problem solving performance, students’ attitude toward mathematics 

and their own mathematics achievement, and students’ satisfaction with the appointed 

instructional sequence in the PGBM-COMPS tutor program. 

3.3.1 Multiplicative Reasoning (MR) Criterion Test 

As part of the NMRSD project (Xin, Tzur, & Si, 2008), a ten-item multiplicative 

reasoning (MR) criterion test (Purdue Research Foundation, 2011) was developed to 

assess students’ multiplication concepts and problem solving acquisition, maintenance, 

and follow-up. The MR criterion test was developed based on the literature from both 

mathematics and special education, as well as input from both mathematics education 

researchers and educators. According to Xin et al. (2013), the test-retest reliability of the 

MR criterion test was .89. The MR test consisted of various multiplicative problems that 

were designed to assess the concepts of multiplicative double counting (mDC), same unit 

coordination (SUC), unit differentiation and selection (UDS), mixed unit coordination 
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(MUC), quotitive division (QD), and partitive division (PD). Please refer to Table 3 for 

sample problem of all types. The problem context varied ranging from towers and cubes 

to real-life contexts (e.g., money) using two to three-digit numbers. In particular, the MR 

criterion test included two mDC problems, one SUC problem, two MUC problems, three 

QD problems, and two PD problems. Problems in MR test can be found in Appendix A. 

The participants will be required to provide numerical solution and written responses to 

justify their answers. 

3.3.2 Stanford Achievement Test (SAT-10) 

The mathematical problem solving subtest of the Stanford Achievement Test-10th 

Edition (SAT-10, Harcourt, 2004) was used as a participant selection criterion as well as 

a far-transfer measure. The SAT-10 is a standardized achievement test that is norm-

referenced and criterion-referenced, which has undergone extensive reliability and 

validity. While the SAT-10 has two alternate forms, Form A was given to all of the 

participants throughout the study. The problem-solving subtest of the SAT-10 aligns with 

the National Assessment of Educational Progress (NAEP), and measures mathematics 

concepts as well as processes in accordance with the National Council of Teachers of 

Mathematics Principle and Standards for School Mathematics (PSSM, Pearson Inc., 

2004). The mathematics concepts assessed include number sense and operation, 

relationship and algebra, and measurement. The mathematics processes skills assessed 

computation and representation, estimation, and reasoning and problem solving, which 

are necessary to solve problems at the grade level (Pearson Inc., 2004). The third grade 

level problem-solving subtest consisted of 46 items, and the fourth grade level included 

48 items. This far-transfer test was administered before and after the tutor instruction to 
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assess the students’ ability to solve problem solving to more challenging word problems 

with larger numbers and varied situations. The internal consistency of the problem 

solving subtests for Grades 3 and 4 were 0.91 and 0.90, respectively. The alternate-form 

reliability of the problem solving subtests for these grades ranged from 0.74 (Grade 4) to 

0.85 (Grade 3). 

3.3.3 Comprehensive Multiplicative Word Problem Solving (COMPS) 

The COMPS test developed by Xin, Wiles, and Lin (2008) was used as a near-

transfer measure to assess students’ ability to solve multiplicative word problem with 

various contexts (see Appendix B). The COMPS test includes six Equal Groups (EG) and 

six Multiplicative Comparison (MC) problem types. The sample problems can be found 

in Table 5. As shown in Table 5, items in the COMPS test involve a range of real-life 

contexts and one- to three-digit numbers. The COMPS test included four alternative 

forms. Four alternative forms of COMPS tests (Xin, Wiles, & Lin, 2008) were used for 

pretest, immediate posttest, and two more follow- up tests. According to Xin, Si, et al. 

(2012), the alternate form reliability of this test was .84. Internal consistency of this test 

(Form A) was .86 (Xin, Si, et al., 2012).  

3.3.4 Students’ Attitude and the Survey Questionnaire 

Test of mathematical abilities-2nd edition (TOMA-2). An Attitude toward 

Math (AT) subtest of the Test of Mathematics Abilities, 2nd Edition (TOMA-2, Brown, 

Cronin, & McEntire, 1994) was used to evaluate any possible changes in students’ 

attitude about mathematics before and after the PGBM-COMPS tutor program. This 

subtest consists of 15 items asking the students about their perception of mathematics 

instructions and their own achievement. Students would respond to each of the items 
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using a four-point Likert scale ranging from Strongly Disagree to Strongly Agree (Yes, 

definitely; Closer to Yes; Closer to No; No, definitely), with 4 indicating Strongly Agree 

and 1 indicating Strongly Disagree. For each item, students marked one of the four 

choices. The purpose of administering TOMA-2 is to identify the participants’ attitude 

towards general mathematics and their achievement in mathematics. 

Satisfaction questionnaire. A five-item questionnaire was developed to assess the 

social validity of the PGBM-COMPS intelligent tutoring program (see Appendix C). The 

satisfaction questionnaire was given to the participants and to the school teacher, who 

served as the session supervisor, following the intervention. The questionnaire enabled 

the researcher to solicit opinions from both the participants and the school teachers who 

was be involved in this study about the tutor program. The items asked about the 

usefulness of the tutor program (e.g., Do you think the program helped you do better on 

multiplication word problems?) as well as their acceptability (e.g., would you use this 

program in the future? Would you recommend this to your colleagues as well as other 

students with mathematics difficulties in your school?). The items were developed using 

the framework by Xin (2003). The statements in the questionnaire were developed based 

on Johnson and Christensen’s (2011) principles of questionnaire construction. Both the 

participants and the school teachers answered each question using a four-point Likert 

scale ranging from Strongly Disagree (1) to Strongly Agree (4) was used. Follow up 

interviews were conducted after the completion of the questionnaires to further 

investigate their responses.
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3.4 Procedures 

Table 2 presents a summary of overall procedures that will be organized for this 

study. 

Table 2. Overall Procedural Checklist 

 Pretest  Intervention Posttest Maintenance 
Test 

Follow-up 
Test 

Comparison  
Group 

(A-B-C-D-E) 

MR/COMPS/ 
SAT 

PGBM-
COMPS* MR/COMPS/SAT MR/COMPS MR/ 

COMPS 

Experimental 
Group 

(A-C-B-D-E) 

MR/COMPS/ 
SAT 

PGBM-
COMPS* MR/COMPS/SAT MR/COMPS MR/ 

COMPS 

NR* 
Group MR - MR - - 

Note. NR= Normative Reference; PGBM-COMP= Please Go and Bring Me- Conceptual 
model-based Understanding Intelligent Tutoring System; SAT= Stanford Achievement 
Test Problem solving subtest (SAT-10). 
 
Both comparison and experimental groups completed the following: (1) TOMA-2, 

criterion test (MR), near-transfer (COMPS) test, and far-transfer (SAT-10) test 

respectively prior to working on the PGBM-COMPS tutor program, (2) the PGBM-

COMP tutor program with respective module sequences, and (3) the posttest (MR), 

maintenance (MR), near-transfer (COMPS), and far-transfer (SAT-10) tests following the 

PGBM-COMPS tutor program. Maintenance test was given one to two weeks following 

the termination of the tutor program, and the follow-up test was conducted three to five 

weeks following the PGBM-COMPS tutor. In addition to the tests listed in the table, 

TOMA-2 was given to both groups before and after working on the tutor program. The 

satisfaction questionnaire was given to both groups upon completion of the intervention 

program. The NR group completed the MR pretest and posttest during the same time as 

the other two groups.  
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3.4.1 Testing Procedures 

The testing in this study was conducted in an adequate workspace so that the 

physical environment was conducive to the participants’ concentration (e.g., free from 

noise and any interruptions). During testing sessions, the seating was arranged so that the 

students were seated far away from each other to prevent any temptation to observe each 

other’s test materials. During the paper testing administration, participants were asked to 

read the problems carefully and to show their work. Plenty space was given on test sheet 

for students to show their problem solving process. Scratch papers, pencils were given 

with the test sheet. They were reminded to try their best while solving the problems. The 

examiner assisted in reading the problems if a student requests it. However, no prompts 

were given regarding their solution process and/or solution at any time. Students were 

provided with sufficient time to complete the tests. A calculator was allowed throughout 

the experiment to accommodate their arithmetic calculations. 

The far-transfer testing procedure followed as directed in the SAT-10 manual 

(Harcourt Assessment Inc., 2004). Apart from the standard procedures used for all the 

rest of the tests (e.g., read the problems carefully and mark your answer), the 

administrator went through a sample problem with the students to show how to mark the 

answer on the answer sheet. Along with the materials used during the other tests, students 

were given a paper ruler with inch and centimeter markings. The testing procedure of the 

TOMA-2 An Attitude Toward Math (AT) subtest was followed as directed in the 

TOMA-2 manual (Brown et al., 1994). One of the major roles of the examiner was to go 

over the two sample items together and make sure that the student will be able to mark an 

"x" that is the closest to the way he/she felt about each statement. Lastly, the exit 
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questionnaire survey was answered immediately after the posttest. The procedure of this 

questionnaire survey was identical to that of the TOMA-2 An Attitude Toward Math (AT) 

subtest. 

3.4.2 Scoring Procedures  

As for the MR criterion test, each correctly solved problem was awarded one 

point. When a problem involved a set of sub-questions, the points were evenly distributed 

to each of the sub-questions. For example, if there were two questions within a problem, 

each sub-question was worth 0.5 point. As for the reasoning “why” supplemental 

question on the MR criterion test, each student response was scored according to the 

student’s response in an original handwritten sentence, a mathematics operation sentence, 

and/or correct answer. When a student solved the second problem shown in Appendix A, 

“Do you think you will say the number 84 if you continue counting seven cubes in the 

towers?”, and the student answers “yes” for the main problem and put “7x12=84,” or “84” 

a full point was given. If a student wrote “I do not know” or other incorrect reasoning, no 

credits were given. If a student wrote “I just added” or gives another ambiguous reason, 

the research assistant further asked the student to give more information right after 

completing the assessment to clarify their answers.  

As for the COMPS near-transfer test, each correctly solved problem was awarded 

one point. When a student provided correct mathematics operation sentence with an 

incorrect answer, a full point was given. The main focus of this assessment was to 

measure students’ ability to form correct mathematics equation using the correct 

operation rather than their computational skills. The SAT scoring was consistent with 
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scoring procedure indicated in the SAT-10 manual (Harcourt Assessment Inc., 2004). 

The TOMA-2 scoring was consistent with the scoring procedure indicated in the TOMA-

2 manual (Brown et. al., 1994). 

3.4.3 Instructional Procedures 

The intervention was conducted over a period of 16 weeks during the afterschool 

(2:45pm - 3:45pm). There were four sessions per week (one session per day, Monday to 

Thursday), each session lasting approximately 60 minutes. Participants worked with the 

PGBM-COMPS tutor program individually using the desktops in the school’s 

participating lab. These desktops had Internet access and Microsoft Windows operating 

systems. Prior to the study, a research assistant majoring in computer science visited the 

school to ensure that all the desktops in the lab are able to access to the PGBM-COMPS 

tutor program.  

Five research assistants (four in special education, one in educational psychology) 

and one undergraduate assistant (majoring in mathematics education) served as the 

session supervisors. In addition, one research assistant in computer science was 

responsible for technical issues (e.g., computer malfunction and/or error). One school 

teacher also served as the session supervisor in charge of gathering the students for the 

after school program and monitoring students during each session. All session 

supervisors went through a one-hour training session on assessment administration and 

PGBM-COMPS instructional strategy. Each session supervisor (a) monitored two 

participants during the intervention, (b) wrote the program log for progress monitoring 

purposes, (c) detected program malfunctions and redirect the students back to the 
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program, and (d) wrote field notes whenever additional human assistance occurred during 

the session. During the first four intervention sessions, the session supervisor introduced 

the turn-taking game PGBM (Tzur et al., 2012) to the participants using physical cubes 

prior to using the PGBM-COMPS tutor program. The purpose of playing the PGBM 

game with concrete manipulatives was to help students get familiar with the game before 

they use the computer program where virtual manipulative was used. To play this game, 

each session supervisor worked with five participants as a group. Thus, the game was 

played between the session supervisor and the participants in a ratio of one-to-five, 

respectively. The session supervisor placed a box of Unifix cubes in another part of the 

classroom. During the PGBM game, the session supervisor’s role was the sender and the 

participants’ role was to be the bringer. The sender asked the bringer to build equal-sized 

towers (e.g., "Could you bring two towers of 3 cubes"; 2T3). After all of the towers are 

made, the sender asked a group of participants the following questions: (1) How many 

towers did you bring? (2) How many cubes are in each tower? (3) How many cubes are 

there in all?, and (4) How did you figure it out?  

  Each participant logged into his or her account and began working on the program 

based on the assigned instructional sequences. All of the participants were engaged in the 

intervention four times a week, with each session lasting approximately 20-25 minutes. 

During the one-hour afterschool program, the two groups each took turns working on 

computer for a half an hour time slot. The order for each group to work on the computer 

will be counterbalanced. That is, one day, the comparison group worked on computer 

first (while the other group engage in homework) and vice versa. 
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3.4.4 PGBM-COMPS tutor program 

Following the tutor session with concrete manipulatives, both groups engaged 

with the PGBM-COMPS intelligent tutor program. The tutor program is a game-based 

instructional program developed for third and fourth grade students with learning 

disabilities and is designed to enhance their mathematical concepts and problem-solving 

skills through a hybrid instructional approach (constructivist and explicit instructional 

approaches). Incorporating research-based instructional practices, PGBM-COMPS 

immerse students in an interactive hands-on experience of using virtual manipulatives 

(cubes) to promote multiplicative conceptual understanding. The tutor program also 

applies animations to visually illustrate the problem situation as well as a mathematical 

model to explicitly represent the relationship among the numbers. Depending on the 

nature of the task, students input their answers in various ways including making towers 

with cubes and inputting the correct answer and/or the label. Various types of feedback, 

including corrective feedback, are incorporated into the PGBM-COMPS tutor program to 

allow students to understand the correctness of their performance, while hints provide 

students further prompts when they fail to come up with the solution on their first trial. 

All of the directions and feedback are delivered both in written text and by voice.  

Both groups worked on the PGBM-COMPS program during the intervention 

phase. The difference between the two groups was the sequence of the modules in the 

tutor program. Specifically, the comparison group went through the A-B-C-D-E 

instructional sequence whereas the experimental group went through the program using 

the A-C-B-D-E. The PGBM-COMPS tutor program consists of five modules (A, B, C, D, 

E). Figure 1 presents the five modules in the program (adapted from NMRSD project 
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Concept Map, Xin, Tzur, and Si, 2008). As shown in Figure 1, the PGBM and COMPS 

components go hand in hand. 

 

Figure 1. Five Modules in the PGBM-COMPS Tutor Program (© NMRSD Project; Xin, 
Tzur, & Si, 2008) 

Note. 7T3= 7 towers of 3 cubes in each; this concept map is adapted from the NMRSD 
project and it is copyrighted by the NMRSD project. All rights reserved. No part of this 
concept map may be used for any purposes without prior permission from the Project 
Director (yxin@purdue.edu). 
 

PGBM component. The PGBM component focused on developing multiplication 

concepts by going through the six multiplicative schemes (i.e., mDC, SUC, UDS, MUC, 

QD, & PD). Table 3 presents sample tasks in each module applied in the NMRSD-

COMPS tutor program.
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Table 3. Sample Tasks in the NMRSD-COMPS Tutor Program (adapted from the PGBM-
COMPS Tutor Program; Xin, Tzur, & Si, 2008) 

Module Multiplicative Scheme/ 
Problem Type Sample Task 

A 

mDC 

 

SUC 

 

UDS 

Pretend I asked you to bring 4 towers. Each 
tower has 8 cubes in it. How many cubes 
would you bring in all? 

You have 11 towers. Each tower has 6 cubes. I 
have some more. Together we have 14 towers. 
How many towers do I have? 

John has collection of 10 towers with 8 cubes 
in each. Sarah has collection of 7 towers with 
8 cubes in each. Who has more cubes? How 
many more cubes does John have than Sarah? 

B MUC 

Tom has a collection of 4 towers of 6 cubes in 
each.  If Tom brought 18 more cubes, how 
many towers of 6 would Tom have? 
 

C QD 

I have 40 cubes. I want to divide into towers 
of 10 cubes each and bring back the pile. How 
many towers will I bring back to the pile? 

 

D 

 

PD 

 

I want to make 6 towers with 12 cubes. How 
many cubes will there be in each tower? 

Note. mDC= Multiplicative double counting; SUC= Same Unit Coordination; MUC= 
Mixed Unit Coordination; QD= Quotitive Division; PD= Partitive Division 

Module A provides tasks designed to give them the skills of multiplicative double 

counting (mDC). When working with mDC (e.g., PGBM 7T4; How many cubes in all?), 

students identify the two units (e.g., # of towers, and total # of cubes) and count two 

number sequences. Using the knowledge of double counting, students would go through 

same unit coordination (SUC) and unit differentiation and selection (UDS) schemes. 

While solving SUC (e.g., 6T3 + 3T3; how many towers in all?) encourages students to 
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operate with CU [towers], UDS (e.g., 8T3 + 6 cubes; How many cubes in all?) 

encourages them to operate with ones [cubes]. Module B includes multiplicative mixed 

unit coordination (MUC) tasks (e.g., 8T7 + 14 cubes = ? T7). Students need to 

differentiate the CU and ones they are operating on while comparing the two collections 

of towers and cubes. Students first choose the correct unit for the solution, whether it is 

the number of cubes [the ones] or the number of towers [the CU], and perform 

coordinating and segmenting the operating units. It is important to note that MUC is the 

only multiplicative scheme, which requires multiple steps of problem solving. Module C 

contains quotitive division (QD) tasks where students divide the cubes into equal-sized 

groups to figure out the number of groups of cubes. Module D provides partitive division 

(PD) tasks where students solve the problems through equally distributing the ones to the 

given number of CU for the solution.  

Overall, there are four different types of tasks for each of the schemes (i.e., mDC, 

SUC, UDS, MUC, QD, PD) in the PGBM component. Thus, each scheme is divided into 

four blocks in the PGBM-COMPS tutor program. The tasks in block1 encourage students 

to manipulate with virtual representations of concrete cubes and towers to solve for the 

tasks. As students undergo each block, the tasks become progressively more challenging 

and abstract. The tasks in block 2 involve towers that the software brings and covers, and 

then it presents four questions for students to solve the task. When students do not have 

visible towers to operate on when answering the four questions, they would imagine the 

towers (or mentally re-present them in their mind’s eye). Eventually, a third type of task 

is presented, in which the student is asked to pretend—imagine in the abstract—that there 

are some number of towers composed of an equal number of cubes (e.g., 7 towers with 4 
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cubes in each). During block 3, students were asked to solve the task with no cubes. 

Lastly, the tasks in block 4 include novel contexts other than cubes and towers 

Promotion criteria for PGBM. In general, the tutor program promoted students 

based on their previous performance. In particular, the tutor applied a criterion of “three 

consecutive correct answers” to promote students from one scheme to the next one (e.g., 

mDC ! SUC). In order to understand which instructional sequence is more effective, 

two additional criteria were used in this study. First, if students struggle to solve three 

consecutive problems, they would be moved to the next block within the module. Second, 

students who exceed the maximum number of sessions they are allowed to work on 

would be moved to the next block. The number of sessions students were able to work on 

each of the modules were as follows: module A (24 sessions); module B (4 sessions); 

module C (4 sessions); module D (4 sessions), and module E (4 sessions). These numbers 

of sessions were determined based on the previous field-testing experience. It is 

important to note that module A required more sessions to complete as it consisted of 

many tasks, including PGBM activity, three scheme tasks (i.e., mDC, SUC, UDS), and 

COMPS component. 

While the PGBM-COMPS tutor promoted students from one scheme to the next 

one based on the criterion stated above, the promotion also occurred within a scheme 

using different number layers and cognitive level of operation when solving for 

problems/tasks. For each scheme, promotion proceeded based on the four number layers 

(e.g., within mDC, from Layer 1 to Layer 2 to Layer 3 to Layer 4). Table 4 provides the 

numbers used for each number layer. The layer began with numbers that are easy for a 

child to conceptualize the operation (coordination) on the two units (see Table 4). That is, 
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the numbers in Layer 1 did not necessarily require students to think mathematically in 

order to operate with CUs. This is due to the fact that they can mentally recall these 

numbers without a challenge. As students work towards higher layers, they were asked to 

work on tasks with larger numbers. 

Table 4. Number for Number Layer (adapted from NMRSD Project, Xin, Tzur, & Si, 2008) 

Layer Sample Task 

  
Layer 1 whole number:  2, 5, or 10 

Layer 2 
 
Whole number of 3 and 4 
 

Layer 3 whole number of  6, 7, 8, and 9 
 

Layer 4 all numbers in the second decade (11, 12, 13, 14, 15, 16, 17, 18, 19, 
20)  

 

Another promotion criterion within the scheme was the cognitive level of operation. As 

stated above regarding the block structure of PGBM component, the tasks become 

progressively more challenging and abstract. However, if students experience difficulty 

solving any task, the tutor will indicate that the cognitive level of operation represented in 

the current task is beyond the students’ ability to reason. To ensure appropriate learning 

for all leaners, the same task the student was struggling with will be represented in a 

lower cognitive level of operation. For example, if students struggle to solve mDC task in 

an abstract manner, they will then be given a virtual representation of the physical cubes 

and towers to solve the problems. Eventually, students will need to solve the task at the 

abstract level of operation for each of the six schemes.
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COMPS component. At the end of Module A, Module C and Module D, the 

COMPS component challenges the students to represent real-world equal group (EG) 

problems in COMPS diagram equations (e.g., UR x # of Units = Product, Xin, 2012) and 

then to solve the problem using the diagram equation. Ultimately, this hybrid approach 

between the two components would help students to connect the fundamental 

multiplicative concepts the students learned from the PGBM part of the program and the 

mathematical models they would use to solve real-world problems with large numbers.  

Then, Module E focused on solving Multiplicative Comparison (MC) 

multiplication word problems. The EG problem type dealt with a number of equal units, 

whereas the MC problem type compared the two given numbers where one quantity is a 

multiple/part of the other quantity (Xin, 2012).  Table 5 shows samples of the EG and 

MC problems. As shown in Table 5, both EG and MC problems had three variations 

based on the placement of the unknown number. 
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Table 5. EG and MC Multiplicative Word Problems (adapted from Xin, 2012) 

Problem Type Sample Problems 
Equal Groups (EG) 
 
Unit Rate (UR) 
Unknown 
 
 
 
Number of Units unknown 
 
 
 
Product unknown 

 

It costs a total of $400 to buy 50 math books. If each 
book costs the exact same price, how much does each 
math cost? 

 
There are 72 marbles. If the Susan wants to put 9 
marbles in each bag, how many bags does she need? 
 
Bob’s grandmother cooked 4 batches of cookies. 
Each batch has 13 cookies in it. How many cookies 
did she bake? 
 

Multiplicative Compare (MC) 
 
Referent Unit unknown 
 
 
 
Multiplier Unknown 
 
 
 
 
Product Unknown 
 

 
 
Bob finished 182 math problems for homework. Bob 
finished 13 times as many problems as John. How 
many problems did John finish? 
  
A farmer named Bob has 238 cows on his dairy farm. 
Another farmer named John has only 17 cows on his 
farm. The number of cows Bob has is how many 
times the number of cows John has? 
 
Tom baked 7 muffins. John backed 6 times as many 
muffins as Tom. How many muffins did John bake? 

 

The COMPS instruction (Xin, 2012) was carried out by four different phases: (1) 

introducing the concept of equal groups (i.e., same number of items in each group), (2) 

representing the EG/MC problem situation in the conceptual model equation, (3) 

developing the solution plan that is driven by the conceptual model representation, and (4) 

practice solving EG/MC problems in various contexts. Students went through these four 

phases for EG problems (Module A, C, and D) and then for MC problems (Module E). 
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 Introduction to the concept of equal groups (EG). During this phase of 

instruction, the tutor provided a short presentation depicting the concept of equal groups, 

a crucial component in multiplicative reasoning (Xin, Si, et al., 2012) through grouping 

the items equally (see Figure 2). Both equal group examples and non-equal group 

examples were introduced to the students during this phase. When a non-equal group 

example is presented, students were asked to correct it to make it into an equal group 

problem. Students were asked to solve mDC problem using cubes and towers similar to 

the PGBM component. The tutor program later engaged students to solve mDC problem 

and emphasize that the towers made are equal-sized towers, which would represent equal 

groups.  

 

 

Figure 2. The Equal Group Concept (adapted from Xin, Si, et al., 2012) 
 

Representation of the EG problem situation. During the second phase of 

instruction, students were asked to identify the three elements (i.e., unit rate, # of units, 

and product) in the given EG problems to complete the EG conceptual model equation. 

The first three tasks were story problems where all of the numbers for the three elements 

will be known. This was to encourage students to focus on mapping a complete 
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representation so that they could have sufficient time to comprehend mathematical 

relation among the three elements. The concrete modeling from the computer simulation 

allowed students to establish the connection between the visual representations of a 

concrete object to the abstract level by understanding “(1) unit rate as the number of 

items in each group, (2) the # of units as the number of groups, and (3) the product as the 

total number of items in all groups” (Xin, Si, et al., 2012, p.77; see Figure 3). 

 

Figure 3. Equal Group Problem Representation (adapted from Xin, 2012) 

 

Developing the solution plan using the conceptual model representation. After 

students had sufficient experience filling in the numbers in the conceptual model, the 

tutor challenged students to solve the problems by finding the unknown number. Students 

were asked to use the letter "a" to represent the unknown number. During this phase, 

students were encouraged to transition from the conceptual model to a mathematics 

equation. Students then learned procedural steps to solve for unknown numbers. If the 

product was unknown, students would multiply the two factors as indicated in the model 
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equation. If one of the two factors was unknown, students divided the product by the 

known factor (Xin, Si, et al., 2012). A calculator was provided on the screen for students 

to use when finding for the unknown number. During this phase, students solved various 

real-life contexts with larger numbers. 

  After students completed the three stages of EG problem solving (i.e., 

introduction of EG, representation, representation using COMPS model), they went 

through the three stages of MC problem solving (e.g., The height of the doghouse is 4 

feet. The house is 3 times as tall as the doghouse. The height of the house is 12 feet.). As 

stated earlier, MC problem solving involved a comparison sentence that contains “one 

quantity as a multiple or a part of the quantity” (Xin, 2012, p. 14). Using the same 

conceptual model from the EG problem, students were asked to figure out the meaning 

behind the MC problem situation. The labels used in the MC problem model were the 

following: “(referent) unit”, “multiplier (i.e., multiple or part),” and “product” (Xin, 2012, 

p. 123). In the above MC problem, for instance, the height of the house is compared to 

the height of the doghouse. Thus, the doghouse is the referent unit (see Figure 4). 

 

Figure 4. MC Problem Representation (adapted from Xin, 2012) 

Practice solving EG/MC problems. Next, the students practiced solving EG and 

MC problems. During this phase, students were introduced to a four-step DOTS (Detect-
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Organize-Transform-Solve) checklist (Xin, 2012, p. 107) to support their problem 

solving process (see Figure 5). In step 1, students were to “detect the problem type” (i.e., 

EG, MC, or addition/subtraction). Step 2 asked students to “organize the information 

using the conceptual model”. By filling in the diagram, students were encouraged to 

figure out the meaning and the underlying structure within the context of the MC problem 

situation. Step 3 encouraged students to use the completed conceptual model in a 

mathematics equation. This diagram functioned as intermediate scaffolding, which 

ultimately allowed students to form a math sentence when solving the problems. Step 4 

asked students to “solve for the unknown quantity” and to “check their answer” by using 

the onscreen calculator. 

DOTS Checklist 

Detect the problem type 

Organize the information using the conceptual model diagram 

Transform the diagram into a meaningful math equation 

Solve for the unknown quantity in the equation and check your answer 

Figure 5. DOTS Problem Solving Checklist (adapted from Xin, 2012) 

 

Promotion criteria for COMPS. Similar to the PGBM component, the tutor 

applied criterion of “three consecutive correct answers” to promote students from one 

block to the next one (e.g., COMPS A block 1 !COMPS A block 2). Specifically, 

students were promoted to the next block when they attain a score of 100% correct on 

mapping and solution. 
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A-C-B-D-E Instructional sequence condition. The participants worked on the same 

tutor program as those with the A-B-C-D sequential condition, except that the MUC task 

was introduced after module C. Each participant will work with the computer tutor one-

on-one. Similar to the A-B-C-D-E group, the same research assistants monitored each 

session.  

3.5 Fidelity of Implementation 

Several steps were taken to ensure the procedures were implemented as expected. 

Prior to the study, the five session supervisors met with the project coordinator or the 

author and memorized the script for assisting students when the PGBM-COMPS tutor 

program malfunctioned or when students ask questions regarding math problems. The 

session supervisors also role-played with each other to practice applying the script in 

various situations. During the intervention, session supervisors observed their assigned 

students to ensure that students went through all of the mathematical contents in the 

PGBM-COMPS program in assigned sequence (i.e., the comparison group went through 

modules A-B-C-D-E sequence and the experimental group went through modules A-C-B-

D-E). In addition to observation, session supervisors also used students’ progress data, 

reported from the database for each student’s account, to ensure that the participants 

followed the intervention as planned. Prior to every school visit, each session supervisor 

visited the project’s progress report website to conduct a daily-based progress and record 

the date of which the child completed the module on his/her school visit log. The 

information facilitated session supervisors to reconfirm their observation and helped keep 

track of each participant’s pace while working on the program.
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3.6 Inter-rater Reliability  

The researcher scored all of the tests using the answer key. Unaware of the purpose 

of the study, a research assistant re-scored 30% of each test given to the participants in 

this study. Inter-rater reliability was computed by dividing the number of agreements by 

the total number of agreements and disagreements and multiplying by 100%. Inter-rater 

ability was 97%. 
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CHAPTER 4. RESULTS 

4.1 Pretreatment Group Equivalency 

A one-way analysis of variance (ANOVA) for standard instructional sequence  

(A-B-C-D-E) and experimental instructional sequence (A-C-B-D-E) on students’ MR  

criterion and COMPS pretest performance was performed to examine pretreatment group 

equivalency. The comparison group (A-B-C-D-E) solved an average of 1.44 problems 

(SD = 1.69) during the pre-intervention on MR criterion test while the experimental 

group (A-C-B-D-E) solved an average of 1.11 problems (SD = 1.34) correctly. Results 

indicated no significant difference between the two groups on the MR pretest (F(1, 16) 

= .22, p = .65). As for the COMPS pretest performance; the comparison group obtained 

an average of 1.33 problems correct (SD = 2.40) while the experimental group obtained 

1.22 problem correct (SD = 1.64). Similar to the MR criterion test, there was no 

statistically significant difference between the two groups on the COMPS pretest (F(1, 16) 

= .01, p = .91). To further evaluate pretreatment group equivalency, a simple statistical 

analysis was conducted by comparing the average percentile ranks of both groups’ 

pretreatment Standardized Achievement Test (SAT) word problem solving subtest. While 

students in the comparison group achieved a mean of the 16th percentile rank, those in the 

experimental group achieved a mean of the 16th percentile rank, assuring pretreatment 

equivalency between the two groups’ word problem solving performance.
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4.2 Acquisition and Maintenance of the PGBM-COMPS Tutor Program 

A 2 (Comparison and Experimental groups) x 4 (Time: pretest, posttest, 

maintenance test, follow-up test) repeated measures of ANOVA was conducted to 

compare the effects of two instructional sequences in the PGBM-COMPS tutor program 

(i.e., module A-B-C-D-E vs. A-C-B-D-E) on students’ multiplicative word problem 

solving performance. All of the participants in this study completed all of the tests. 

Descriptive statistics for the two groups at four times can be found in Table 6. 

Table 6. Students' Performance on MR Criterion Test 

 Comparison Group 
 (A-B-C-D-E) 

 Experimental Group  
 (A-C-B-D-E) 

 

 M n SD  M n SD d 
Pretest 1.44 9 1.69  1.11 9 1.34 - 0.22 
Posttest 8.67 9 1.30  9.22 9 .94 + 0.48 

Maintenance  8.67 9 .87  8.83 9 .35 + 0.24 
Follow-Up 8.72 9 .97  9.28 9 .57 + 0.70 

Note. d = Cohen’s d value (experimental group mean minus the comparison group 
divided by the pooled standard deviation); a positive d indicates a favorable effect for the 
experimental group and a negative d indicates a favorable effect for the comparison 
group. 
 

Results revealed that the main effect of time in MR criterion test performance was (F(3, 

14) = 213.75, p = .00, partial !!!= .979), which indicated that both groups showed 

significant improvement (positive) across four times. In addition, the main effect for 

group showed no statistically significant difference in MR criterion test performance (F(1, 

16) = .39, p = .54, partial !! = .024). This result indicates that, overall, both groups did 

not significantly differ in their MR criterion test performance across four times. 

Furthermore, there was no statistically significant interaction between time and group 

(F(3, 14) = .66, p = .59, partial !! = .124). That is, the two instructional sequences did 
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not have differential effects on students’ word problem solving performance across four 

times. In other words, the two groups improved their performance at a similar rate across 

four times. Figure 6 depicts comparable performance between the comparison and 

experimental group. 

As shown in Figure 6, both groups showed similar performance during the pretest. 

Following the PGBM-COMPS tutor program in the assigned instructional sequence, 

participants in both groups substantially improved their performance (M = 8.67, SD = 

1.30 for the comparison group; M = 9.22, SD = .94 for the experimental group). 

Although both groups showed similar rates of group mean increase from pretest to 

posttest on the MR criterion test, the experimental group showed a relatively higher mean 

increase than the comparison group. While the comparison group increased to an average 

of 72.3% correct, the experimental group increased to an average of 81.1% correct. 

Furthermore, positive effect sizes for MR post (d = .48), maintenance (d = .24), and 

follow-up tests (d = .70) indicate an overall small to medium differential effects between 

two groups during posttreatment assessment, favoring the experimental group. 
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Figure 6. Two Groups' Performance on the MR Criterion Test 

 
To further investigate the significance level differences between each time on 

both groups’ word problem solving performance, a post hoc analysis with a Bonferroni 

adjustment was conducted. According to Perneger (1998), this statistical adjustment is 

used when multiple dependent or independent statistical analyses are being conducted 

simultaneously on each data set. Because four MR criterion tests were compared 

simultaneously in this study, a Bonferroni adjustment adjusts the p level by dividing the 

standard p value (.05) by four to have p < 0.0125 as the minimum alpha level. Thus, p < 

0.05 indicated in the post hoc test results correspond to p < 0.0125. The result revealed 

that students’ word problem solving performance improved significantly from pretest to 

posttest (Mean difference = -7.67, 95% CI [-8.89, -6.44], p = .00), but not from posttest 

to maintenance test (Mean difference = .19, 95% CI [-.51, .90], p = 1.00) and 

maintenance test to follow-up test (Mean difference = - .25, 95% CI [- .70, .20], p = .69) 

Comparison Group 
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for both groups. These results indicate that both groups improved their problem-solving 

performance following either the A-B-C-D-E sequence of instruction or the A-C-B-D-E 

sequence of instruction, and they maintained their improved posttest performance during 

maintenance and follow-up phases. 

4.3 Near-transfer Effects of Word Problem Solving Performance 

A 2 (Comparison and Experimental groups) x 4 (Time: pretest, posttest, 

maintenance test, follow-up test) repeated measures ANOVA were conducted to 

investigate the effects of two instructional sequences in PGBM-COMPS tutor programs 

(i.e., module A-B-C-D-E vs. A-C-B-D-E) on students’ near-transfer word problem 

solving performance using the COMPS test. Descriptive statistics for students by group 

across four times can be found in Table 7.  

Table 7. Students' Performance on the COMPS Test 

 Comparison Group 
 (A-B-C-D-E) 

 Experimental Group 
 (A-C-B-D-E) 

 

 M n SD  M n SD d 
Pretest 1.33 9 2.40  1.22 9 1.64 - 0.05 
Posttest 10.78 9 .83  10.78 9 .97 0 

Maintenance 10.67 9 .87  11.22 9 .67 + 0.71 
Follow-Up 11.11 9 .78  11.00 9 .71 - 0.15 

Note. d = Cohen’s d value (experimental group mean minus the comparison group 
divided by the pooled standard deviation); a positive d indicates a favorable effect for the 
experimental group and a negative d indicates a favorable effect for the comparison 
group. 
 
While the main effect of time showed a statistically significant difference on the COMPS 

test performance (F(3, 14) = 177.07, p = .00, partial !!= .974), the groups showed no 

statistically significant difference on COMPS (F(1, 16) = .07, p = .80, partial !! = .004). 

That is, both groups’ performance on the near-transfer word problem solving measure 

significantly improved across four times. Results also showed no statistically significant 
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interaction between time and group (F(3, 14) = .54, p = .66, partial !! = .104). That is, 

the two instructional sequences did not have differential effects on students’ progress in 

solving near-transfer problems across four times. Figure 7 illustrates the two groups’ 

performance across four times.  

 As shown in Figure 7, both groups showed similar performance during the pretest 

(M = 1.33, SD = 2.40 for the comparison group; M = 1.22, SD = 1.64 for the 

experimental group. See Table 7). Although the average number of correct responses 

during the pretest for the comparison group was slightly higher than the average for the 

experimental group during the pretest, the difference between the two mean scores was 

not statistically significant. After completing the PGBM-COMPS tutor program in the 

assigned instructional sequence, participants in both groups showed significant 

improvement on their near-transfer word problem solving performance (M = 10.78, SD 

= .83 for the comparison group; M = 10.78, SD = .97 for the experimental group). Both 

groups also showed a similar mean increase from pretest to posttest on the COMPS test. 

While the percentage of mean increase for the comparison group was 78.8%, the 

percentage of mean increase for the experimental group was 79.7%. Although both 

groups showed similar rates of group mean increase from pretreatment to posttreatment 

on the COMPS test, positive effect sizes for COMPS post (d = 0) and maintenance (d 

= .71) and a negative effect size for follow-up test (d = - .15) indicated an overall 

differential effects between two groups. While there were negligible to small differential 

effects during the posttest and follow-up test, the effect size for the maintenance test 

indicated a stronger differential effect between both groups, favoring the experimental 
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group. Overall, both groups maintained their improved posttest performance during the 

maintenance and follow-up tests. 

 
Figure 7. Two Groups' Performance on Near-transfer Problems 

 

To further examine the significance level differences between time on both 

groups’ word problem solving performance, a post hoc analysis with a Bonferroni 

adjustment was conducted. The results revealed that students’ near-transfer performance 

in both groups significantly improved from pretest to posttest (Mean difference = -9.50, 

95% CI [-11.22, -7.78], p = .00), but not from posttest to maintenance test (Mean 

difference = - .17, 95% CI [-1.16, .82], p = 1.00) and maintenance test to follow-up test 

(Mean difference = - .11, 95% CI [- .90, .68], p = 1.00). These results indicate that both 

groups improved their problem-solving performance on the near transfer test following 

either the A-B-C-D-E sequence of instruction or the A-C-B-D-E sequence of instruction. 

 

Comparison Group 
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In addition, both group students’ improved posttest performance was stable during 

maintenance and follow-up tests. 

4.4 Normative Reference Comparison 

To compare the multiplicative word problem solving of the students in the 

experimental group to that of the normative reference group (NR) before and after the 

intervention, a 2 (Experimental Group and NR) x 2 (Time: pretest and posttest) repeated 

ANOVA was conducted. The NR group consisted of 13 third grade students. As 77.8% 

of students in the experimental group were in the third grade (Mean age: 9.3), we used a 

total of 13 third grade students (Mean age: 9) from an average-performing class (all the 

students in that class) as the NR group (note: in the participating school, students were 

grouped into high-performing class, average performing class, low performing class, as 

well as special education class based on achievement level). Thus, nine students in the 

experimental group and 13 third grade students in the NR group were involved in this 

analysis. The analysis regarding the 4th grade normative comparison group will be 

discussed later in the discussion section. Table 8 gives descriptive statistics of the two 

groups’ multiplicative word problem solving performance across two times. 

Table 8. Two Groups' MR Criterion Word Problem Solving Performance Across Time  

 Experimental 
group 

(A-C-B-D-E) 
 3rd grade NR 

Group  4th grade NR  
Group 

 M n SD  M n SD  M n SD 
Pretest 1.11 9 1.34  2.42 13 1.57  5.36 11 1.67 
Posttest 9.22 9 .94  4.81 13 1.68  6.23 11 1.98 
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Results indicate a statistically significant main effect of time (F(1, 20) = 109.54, p 

= .00, partial !! = .846 ) and of group (F(1, 20) = 16.43, p = .00, partial !! = .451). More 

importantly, the results showed a statistically significant interaction between time and 

group (F(1, 20) = 32.61, p = .00, partial !!!= .620 ), indicating differential effects of 

instruction on students’ performance across two times. Results from Paired-Sample T 

Test indicate a statistically significant performance change from pretest to posttest for the 

experimental group (t(8) = -12.9, p = .00) and for the 3rd grade NR group (t(12) = -3.36, p 

= .01). Figure 8 illustrates differences in the performance between the three groups across 

two times. 

  

Figure 8. Three Groups' Performance on MR Criterion Test 

 
As shown in Figure 8, the third-grade NR group had a slightly higher group mean than 

the experimental group on the MR criterion test (M = 1.11, SD = 1.34 for the  
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experimental group; M = 2.42, SD = 1.57 for the 3rd NR group), although the difference 

between the two groups was not statistically significant. However, the experimental 

group had a higher mean increase (81.1%) than the 3rd grade NR group (23.9%) from 

pretest to posttest.  

4.5 Efficiency of Two Instructional Sequences 

To compare the efficiency of the two instructional sequences in learning the  

multiplicative word problem solving performance, an independent-samples t-test was 

conducted to compare the number of the intervention sessions it took for students in the 

two groups to complete the PGBM-COMPS program. It is important to note that the tutor 

program allowed participants to progress at their own pace. Thus, the number of sessions 

(each session is fixed in duration of 25 to 30 minutes) of the intervention phase was 

served as an indicator of student efficiency in learning multiplicative word problem 

solving. The results show a statistical significant difference in the number of sessions it 

took the two groups to finish the tutor program (t(16) = 2.19, p = .04). The descriptive 

statistics also indicates that the experimental group  (M = 26.11, SD = 5.33) took fewer 

sessions than those in the comparison group (M = 31.56, SD = 5.25). That is, students 

who went through the PGBM-COMPS tutor program using the alternative instructional 

sequence completed the tutor program five days less on average than those in the 

comparison group. 

4.6 Perceptions of Mathematics 

In regards to students’ perception in mathematics prior to the PGBM-COMPS 

program, Table 9 summarizes students’ pre-TOMA likert-scale survey responses (note: 

the percentages shown to interpret the pre and post TOMA results combined strongly 



78 

 

  
78 

agree and agree responses together and disagree and strongly disagree together). 

Approximately 27.8% students suggested that it was not fun to work math problems in 

the Likert-scale survey questions from TOMA with the rest disagreeing (72.2%). As for 

the students’ perceptions of their ability to solve math problems, slightly more than half 

of the students (55.6%) reported that they were not better at math than their peers, while 

44.4% reported they were better at math compared to their peers. The majority of the 

students (72.2%) indicated mathematics was interesting and exciting with five students 

disagreeing (27.8%). Furthermore, 10 out of 18 students (55.6%) believed math tests 

were usually easy for them and the rest of the students (44.4%) reported math tests were 

difficult for them.  

Half of the students (50%) reported liking to talk or read about problems in math 

books, and the other half of the students disagreed. In a follow-up interview, students 

who did not like to talk or read about the problems in math books believed math 

problems need to be solved quietly by themselves. These students also thought that 

talking was unnecessary when solving mathematics problems because finding out the 

correct answer and writing it in the book is the most important thing to do. Lastly, 27.8% 

of the students reported that they use math a lot outside of school with the majority of 

students disagreeing (72.2%).
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Table 9. Pre-TOMA Survey Responses 

 Strongly 
Agree Agree Disagree Strongly Disagree 

It’s fun to work math 
problems.  
 

10 
55.6% 

3 
16.7% 

0 
 

5 
27.8% 

I’m better at math than most 
of my friends. 
 

4 
22.2% 

4 
22.2% 

5 
27.8% 

5 
27.8% 

Math is interesting and 
exciting. 
 

11 
61.1% 

2 
11.1% 

2 
11.1% 

3 
16.7% 

Math tests are usually easy 
for me. 
 

4 
22.2% 

6 
33.3% 

4 
22.2% 

4 
22.2% 

When we use math books, I 
like to talk or read about the 
problems we do.  
 

7 
38.9% 

2 
11.1% 

2 
11.1% 

7 
38.9% 

I use math a lot outside of 
school.  

5 
27.8% 

0 2 
11.1% 

11 
61.1% 

Note. N = 18 

Post-TOMA survey.  Following the PGBM-COMPS program, all students 

believed that solving mathematics problems was fun (see Table 10 for a summary of 

students’ post-TOMA survey responses). More than half of the students (55.6%) 

indicated that they were better at math than most of their friends with 44.4% of students 

disagreeing. The majority of students (94.4%) responded that math was interesting and 

exciting and that math tests were usually easy for them (83.3%). As for students’ 

perception of the usefulness of mathematics following the intervention, the majority of 

students (77.8%) reported that they like to talk or read about the mathematics problems 

when using math books. In addition, more than two thirds of the students (83.3%) 

suggested that they use math a lot outside of school. 
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Table 10. Post-TOMA Survey Responses 

 Strongly  
Agree 

Agree 
 

Disagree 
 

Strongly  
Disagree 

It’s fun to work math 
problems.  
 

11 
61.1% 

7 
38.9% 0 0 

I’m better at math than most 
of my friends. 7 

38.9% 
3 

16.7% 

 
7 

38.9% 
 

1 
5.6% 

Math is interesting and 
exciting. 
 

13 
72.2% 

4 
22.2% 

1 
5.6% 0 

 
Math tests are usually easy 
for me. 

 
5 

27.8% 

 
10 

55.6% 

 
1 

5.6% 

 
2 

11.1% 
 
When we use math books, I 
like to talk or read about the 
problems we do.  

 
11 

61.1% 

 
3 

16.7% 

 
3 

16.7% 

 
1 

5.6% 

 
I use math a lot outside of 
school.  

 
8 

44.4% 

 
7 

38.9% 

 
2 

11.1% 

 
1 

5.6% 
Note. N = 18 

Perceptions of the PGBM-COMPS program. After completing the PGBM-

COMPS program, students completed an exit survey (see Appendix C). Overall, all of the 

students in the comparison and experimental group enjoyed working with the PGBM-

COMPS program (see Table 11). Furthermore, all of the students in both groups believed 

that the tutor program helped them to understand and solve multiplication/division 

problems. For instance, one student stated during the follow-up interview, “Well at 

school I’m getting better at math.”  

 In regards to the perceptions of the two instructions embedded in the PGBM-

COMPS program, approximately 88.9% of students in each group believed that the 

Please Go and Bring Me (PGBM) game was helpful when solving multiplication/division 
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problems with 11.1% of students in each group disagreeing. Thus, there was no 

difference on their perceptions of the PGBM game between the two groups. As for the 

COMPS instruction, all of the students in both groups believed that the EG diagram was 

helpful when solving multiplication/division problems. According to the follow-up 

interview, the majority of students believed the EG diagram to be particularly helpful 

when solving problems with larger numbers. One student said, “ It tells you to solve 

difficult questions with big numbers, but we got to solve them… so that is like learning.” 

In fact, most of the students believed that their understanding of unit rate and the EG 

diagram were mostly used in their math class. For example, one student stated during the 

follow-up interview, “[I used] like unit rate… on the computer…what you have been 

showing us…. unit rate and stuff in class.” 

Slightly more than half of the students in each group (55.6% for the comparison 

group; 66.7% for the experimental group) reported that they were using what they learned 

in the PGBM-COMPS program in their classroom all the time or often, and 33.3% of the 

students in each group replied sometimes. In the follow-up interview, students described 

how they applied what they learned during math class: “Well in my math class, they told 

us [to solve problems] with the one with dividing, and I already know what division 

means because the program helped me.” There were some things [problems] about the 

towers. Sometimes I don’t really get that question, [but] I already know because you guys 

[the program] already helped me.” Yet, one student (11.1%) in the comparison group 

reported that he never used what they learned through the tutor program. 
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He explained that his math teacher rarely asked him to use the EG diagram while solving 

multiplication and division word problems. Furthermore, he stated that his math teacher 

rarely asked him to explain why multiplication/division needed to be used. Lastly, all of 

the students reported that they want to recommend the PGBM-COMPS program to their 

peers. 

Teachers’ perceptions. Following the data collection, four teachers were 

interviewed about their perceptions of the PGBM-COMPS program using the same exit 

survey that was given to the students. All of the teachers believed that the students either 

enjoyed the tutor program very much or sometimes. In addition, three out of four teachers 

believed that the computer program was either very helpful or sometimes helpful to 

students in understanding and solving multiplication/division problems. As for the two 

instructional strategies in the tutor program, three out of four teachers believed that the 

Please Go and Bring Me (PGBM) game was helpful. One teacher reported that the 

PGBM game was not really helpful. According to the follow-up interview, she felt some 

students took a longer time to understand the purpose of building equal towers with the 

given cubes. She strongly believed that more explicit instruction is needed for these 

students to understand the purpose of the PGBM game activity. In regards to the COMPS 

instruction, three out of four teachers reported that the EG diagram was helpful to 

students when solving multiplication/division problems. These teachers explicitly stated 

that they have seen their students frequently use the diagram during their math class. One 

teacher who disagreed was skeptical about the EG diagram because the ordering of the 

factor in the diagram differed from the diagram taught in their mathematics textbook. 

While the EG diagram asked students to identify the Unit Rate (number of items in each 
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group), the number of units (number of groups), and the product (total number of items) 

respectively, the diagram they teach during mathematics class asked students to identify 

the number of units first and then the unit rate. Thus, the teacher believed that this 

inconsistency might confuse the students. Lastly, all of the teachers believed that the 

students used what they have learned in the computer program in their classrooms.  
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CHAPTER 5. DISCUSSION 

The present study was designed to compare the differential effects of the two 

instructional sequences (i.e., A-B-C-D-E and A-C-B-D-E) for teaching 

multiplication/division word problem solving skills to students with mathematics 

difficulties (MD). In a school district with an afterschool math program in place for third 

and fourth grade students, the study was conducted as an attempt to seek a better 

instructional sequence that would meet the needs of students with MD while solving 

multiplicative word problems. Overall, the results indicate that the alternative 

instructional sequence (A-C-B-D-E) not only leads to positive achievement of 

mathematics problem solving outcomes but also increases students’ learning efficiencies 

and their ability to solve for complex multiplication/division word problems. 

5.1  Effects of the tutor program on MR Criterion Test  

Results of the MR criterion test indicate that there were no differential effects of 

the two instructional sequences (i.e., A-B-C-D-E and A-C-B-D-E) on students’ 

multiplication and division word problem solving performance. Furthermore, both groups’ 

performances were maintained at a 2- and 3- week follow up. Both groups showed 

positive improvements on the MR criterion test items at a similar rate after the 

intervention. Both groups’ maintenance and follow-up test performance on the MR 

criterion test indicate that, regardless of the instructional task sequence, the PGBM- 
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COMPS tutor program facilitated students’ maintaining of their performance for a 

lengthy period of time. Overall, these results are in line with those of previous studies on 

the effectiveness of the PGBM-COMPS tutor program on multiplicative word problem 

solving by third and fourth grade elementary students with MD (Ma et al., 2014; Park et 

al., 2013; Xin, 2012; Xin et al., 2013). 

5.1.1 Potential Differential Acquisition Effect 

The results of this study show that students who went through the alternative 

instructional sequence obtained higher mean increases from pretest to posttest than those 

who went through the standard instructional sequence. The effect size (Cohen’s d = .48), 

calculated on the basis of both groups’ pre-posttest gain scores, indicates a moderate 

differential effect. A possible explanation for the positive effect size is that the students in 

the experimental group, who followed the alternative instructional sequence, were more 

likely to solve the Mixed Unit Coordination (MUC) tasks. While all of the students in the 

experimental group (100%) solved the MUC tasks on the MR criterion posttest, fewer 

students in the comparison group (66.7%) solved them. Similarly, those who went 

through the alternative instructional sequence obtained higher mean increases during 

maintenance and follow-up phases than those who went through the standard 

instructional sequence. While a small differential effect was shown (d = .24) between the 

two groups on the maintenance, a larger differential effect was shown (d = .70) between 

the two groups on the follow-up phase. It may be that the alternative sequence benefitted 

students with MD from better sustaining their learned problem-solving skills. 

During the study, an opportunity arose to interview a student in each group while 

solving MUC tasks during Module B. Though deduction through such an interview 
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cannot be made, sharing its outcome of the difference in the MUC solving approaches 

between the two groups may be noteworthy.  

Annie, a female, Caucasian student with a mathematics difficulty placed in the 

experimental group (A-C-B-D-E), illustrated the most advanced problem-solving strategy 

during her first trial in solving the MUC tasks. Following her learning of quotitive 

division problem solving during Module C, Annie’s approach in solving the MUC tasks 

was typical of the other students in the experimental group. Her MUC solving approach 

during the interview was as follows:  

[Q]: Tom has a collection of 4 towers with 6 cubes in each. Tom brings 30 more cubes. 
Tom wants to put the 30 cubes into towers with 6 cubes in each, and put them under the 
red cover. How many towers of 6 cubes each will Tom have altogether? 
 
R: Okay so how did you.. So you have 30 cubes over here, and you have to make towers 
of six. You did that by…? 
A: I did that by… um dividing 30 divided by six.  
R: And then you got… 
A: And then I got Five.  
R: Okay. So what’s the final answer for this question? So there’s five towers of six cubes. 
And so how many total towers of six cubes do we have? 
A: Nine. 
R: Nine. Okay. How did you get nine? 
A: Because five plus four equals nine.  
R: Okay. 
 
Like other students in this group, she learned the quotitive division (QD) scheme prior to 

solving the mixed unit coordination (MUC) tasks. Annie first approached the MUC tasks 

by dividing the number of given cubes in the second set of a collection to form equal-

sized towers. She then added the existing towers from the first collection to find the total 

number of towers. As Annie assimilated and accommodated her prior knowledge of the 

divisional scheme, she successfully solved the MUC scheme tasks. It is important to note 
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that Annie’s solving approach showed her ability of assimilation and accommodation in 

solving the novel problems. 

Tom, a male, Caucasian student with a mathematics difficulty placed in traditional 

instructional sequence (A-B-C-D-E), performed a more primitive approach commonly 

used by students in the comparison group when solving MUC tasks. Like many other 

students in this group, he solved MUC tasks based on the multiplicative double counting 

(mDC) scheme. During module B, Tom notably used repeated addition to solve MUC 

tasks. His solving approach during the interview was as follows: 

[Q]: Tom has a collection of 4 towers with 6 cubes in each. Tom brings 30 more cubes. 
Tom wants to put the 30 cubes into towers with 6 cubes in each, and put them under the 
red cover. How many towers of 6 cubes each will Tom have altogether? 
 
T: Twenty-one [cubes]. 
R: Twenty-one cubes. So you have six [cubes] here and six [cubes] there. Oh, I think you 
mistakenly drew this. You only have five (cubes) over here.  
T: Twenty-four.  
R: Twenty-four? Okay. So you had twenty-four cubes right so far? Why don’t you keep 
going? 
T: I don’t know.  
R: Okay. I just want to let you know that we have thirty cubes, and you made towers of 
six. Do you think we can make another tower of six? You used twenty-four [cubes], and 
we have thirty. So do you think we can make another tower of six? 
T: 1, 2, 3,4, 5, 6.  
R: Then how many total cubes do we have over here?  
T: Thirty.  
R: Very good. So how many towers of six did you make? 
T: Five.  
R: Very good. Are we done? 
T: No.  
R: Good. How many total towers do you have? 
T: Four. 

Unlike Annie, Tom used double counting to find the number of equal towers, counting by 

six. During this process, he kept tracking the remaining number of cubes to find out when 

to stop double counting. As shown in the above interview, Tom successfully made four 
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towers of six cubes in each using 24 cubes. However, he was unaware of the remaining 

six cubes and that another tower of six cubes could be made until the research assistant 

prompted him by asking whether he could made another equal-sized tower. According to 

Tom’s interview above, he felt unsure about when to stop adding six cubes, and said that 

it was difficult keeping track of the remaining cubes. In addition, Tom struggled to solve 

the second step of the MUC task, which was to add towers. Although Tom figured the 

number of towers during the first step of the problem, he struggled to proceed to the final 

step, which is finding the total number of the towers. Tom needed further prompting that 

would break down the problem solving processes. 

While Tom, in the comparison group, applied the double counting scheme, the 

only scheme they learned prior to MUC tasks, Annie, in the experimental group, applied 

the divisional scheme when trying to partition the single cubes into equal-sized towers. 

Although both approaches lead to the solution, experimental group students’ knowledge 

of the quotitive divisional (QD) scheme could have contributed to their better 

performance in solving the MUC tasks in the MR criterion test. According to Fischbein 

and colleagues (1985), the double counting method is considered a primitive approach to 

multiplication. There were some limitations on the use of repeated addition to solve the 

first step of the MUC tasks, which is a QD problem. According to Hitch and McAuley 

(1991), it is common for students with MD to make errors during counting procedures 

mainly due to their limited working memory, leading them unable to monitor their 

progress during the calculation procedures. Furthermore, those who used repeated 

addition to solve MUC tasks was more likely to forget to proceed to the second step to 

solve for the final answer, which was to add the existing towers of the first collection. 
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These results are consistent with those of Xin and colleagues (2013) who stated that 

students struggle to solve MUC tasks may be due to their lack of ability to divide the 

given number of cubes to form equal-sized towers (Xin et al., 2013). Thus, students with 

MD struggle to manipulate their mDC, SUC, and UDS schemes to solve for the MUC 

tasks. Clearly, double counting (mDC) and the ability to operate with CU (SUC) and ones 

(UDS) skills were insufficient for the students to solve for the MUC tasks. Students with 

MD are well known to have problems with the acquisition and generalization due to their 

disadvantages in memory and cognitive processing (Kroesbergen & Van Luit, 2003). 

Without introducing the concept of division explicitly, students with MD experience 

difficulty identifying the units and flexibly interchanging the two units to solve for novel 

tasks. 

The MUC tasks were more approachable for students with MD when they went 

through the quotitive division (QD) scheme tasks. Introducing the concept of partition 

prior to the MUC tasks may facilitate the process of accommodation, leading towards a 

better adaptation in the MUC tasks for students with MD. According to Steffe & Cobb 

(1994), students who use division operation are able to mentally partition a collection of 

given items into equal groups without the counting acts. Students at this stage have the 

ability to explicitly reverse the unit coordination by partitioning the total number of cubes 

by unit rate (UR). By understanding the QD scheme, students required less cognitive load 

to mentally partition the cubes into equal-sized towers as they explicitly learned to divide 

the product by the number of cubes in each tower. The QD scheme also positively 

affected students’ ability to flexibly coordinate with the two units (i.e., unit rate and # of 

units), which led them to arrive at the final solution to find the total number of equal-
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sized towers. The result of this study suggests that explicit learning of the divisional 

scheme, prior to solving MUC tasks, could better accommodate students with MD to 

adapt to the new scheme (i.e., MUC).  

5.1.2 Differential Efficiency Effect 

Results of the efficiency comparison of the two instructional sequences further 

support the use of the alternative instructional sequence over the standard instructional 

sequence for students with MD. Given the fixed duration of each session, the 

experimental group completed the program approximately five days earlier than the 

comparison group. The alternative sequence, as opposed to the standard sequence, 

enabled the students to make the same improvements in a relatively shorter period of time. 

A possible explanation for this might be that students in the experimental group needed a 

shorter period of time to solve the MUC tasks with the use of the divisional scheme. 

Furthermore, students’ ability to mentally operate division prevented them from making 

errors during the counting activity, which led to consistent accuracy in solving MUC 

tasks and earlier promotion to the next module. 

Furthermore, students’ early exposure to the QD scheme may have had a positive 

effect on their ability to adapt to other novel schemes introduced after MUC tasks (i.e., 

PD and MC). By establishing QD scheme, students in the experimental group had a 

stronger ability to identify the two units (ones and composite unit) and coordinate these 

two units, which are crucial skills to transition from multiplicative scheme to divisional 

scheme.  
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5.1.3 Effects on Closing the Achievement Gap 

Results of the normative comparison with the MR criterion test are encouraging. 

A large mean difference (4.41) during posttest between the experimental group and the 

third grade normative reference (NR) group, favoring the experimental group, provides 

further insights into the effectiveness of the alternative sequence in the PGBM-COMPS 

tutor program. Although both groups showed improvement between pretest and posttest, 

the experimental group outperformed third grade normal-achieving students on the MR 

criterion test. It is important to note that instructional grouping was in effect in the 

elementary school when this study was conducted. That is, students were grouped into 

different ability classes on the basis of their academic performance. The normal-

achieving students in this study were from a class where students are between the 40th 

and 60th percentiles on their mathematics achievement.  

These results indicate that the PGBM-COMPS tutor program helped close the 

performance gap between the participating students with MD and their normal-achieving 

peers on multiplication/division word problem-solving skills. An interesting issue to note 

is that the third grade normal-achieving students’ performance on the MR criterion 

pretest was relatively low (24.2% correct). Although they performed better than students 

with MD, the difference in the pretest mean between the two groups’ MR performance 

was small (see Figure 8). One of the possible reasons for their unexpected low 

performance on MR criterion tests during the pretest might be that the third grade 

normal-achieving students were not yet exposed to various multiplicative schemes while 

solving multiplication word problems. According to the teacher who taught this level of 

mathematics class, the students were beginning to practice solving one-digit 
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multiplication basic facts and word problems when this study was conducted. Due to 

limited resources, the study did not further examine the strategies the teacher used to 

implement the curriculum to teach students in the mathematics class. According to the 

mathematics textbook used by third grade students in the elementary school, the intended 

computational curriculum involved in understanding the concept of multiplication using 

equal-groups, area array, and equal jumps on the number line models. The curriculum 

also involved establishing fluency of multiplication and division facts using whole 

numbers from zero to ten (enVisionMath Common Core, 2012). As for the problem 

solving skills, the third grade students were expected to solve real-world problem solving 

using whole numbers up to 100. The strategies promoted in the textbook include 

illustrations, metacognitive strategy, and/or mathematics equation in the context of equal 

groups, arrays, and measurement (enVisionMath Common Core, 2012). While the 

COMPS model (Xin, 2012) led students to solve various word problems by using a 

mathematical model, which required students’ conceptual understanding of equal groups 

and the relationship among the three numbers, the textbook used the context of equal 

groups to visually represent the problem situation and encouraged them to multiply the 

two numbers. 

The experimental group also outperformed fourth grade normal-achieving students. 

This result is somewhat surprising, as a majority of the experimental group were third 

grade students, who had less exposure to solving multiplication/division word problems 

than the fourth grade students. In addition to the intended curriculum on multiplication 

they learned during their previous year, the fourth grade students were expected to 

multiply a whole numbers up to four digit numbers by two-digit numbers by using 
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property of operation and place value strategies. As for the problem-solving skills, the 

fourth grade students were expected to solve real-life multiplication and division word 

problems using bar diagrams, metacognitive strategy, and the relationship between 

addition and multiplication or between subtraction and division (enVisionMath Common 

Core, 2012). The fourth grade students also work on representing and solving 

multiplicative comparison word problems using the same strategies as listed above 

(enVisionMath Common Core, 2012).  

 A possible explanation for their low performance on the MR criterion test might 

be that the third and fourth grade normal-achieving students were not exposed to all of 

the multiplication/division word problem types covered in the MR criterion test. While 

their textbooks covered problem types involving mDC, QD, PD, and MC schemes, they 

did not cover problem types involving SUC, UDS, and MUC schemes. Thus, a few word 

problems presented in the MR criterion test might have been unfamiliar to the normal-

achieving students.  

Granted that both groups eventually solved the quotitive division problems, and 

that the only difference was the sequence of when it was learned, students from both 

groups positively performed at a similar rate. However, the duration needed for students 

from the experimental group to complete the PGBM-COMPS intelligent tutor program 

was shorter than the comparison group. These findings suggest that while both 

instructional sequences bring positive outcomes to students with MD, the alternative 

instructional sequence seems to be a more efficient approach for students with MD to 

establish multiplicative concepts as they took less number of sessions to achieve the same 

level of word problem solving skills. In particular, the alternative sequence prepared the 
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students with MD to solve challenging word problems (i.e., two-step problems), 

including MUC tasks, by explicitly teaching quotitive divisional scheme (QD) prior to 

solving MUC tasks. This finding supports the previous research on the positive effects of 

explicit and strategic instruction (Montague, 1992; Montague et al., 1993). 

5.2 Effects of the tutor program on COMPS Test   

The study also used a repeated measure ANOVA across time to investigate the 

differences between the two multiplicative instructional task sequences (i.e., A-B-C-D-E 

and A-C-B-D-E) based on students’ near-transfer word problem solving performance, 

measured by a comprehensive near-transfer multiplicative word problem solving test (i.e., 

COMPS test). The results analyses indicate that there were no significant differences 

between the two instructional groups on their near-transfer performance. That is, both 

groups showed an increase in their near-transfer performance across four times at a 

similar rate. Overall, the negligible to small effect sizes on the post-treatment further 

indicate no significant difference between the two groups. Further, the results were 

maintained at a two- and three- week follow up. These results are in accord with recent 

studies examining the effects of the PGBM-COMPS tutor program on the improvement 

of students’ near-transfer performance (Park et al., 2013). 

Interestingly, the effect size on the maintenance phase, favoring the experimental 

group, was higher than those for the post-test and the follow-up phases (see Table 7). 

However, a pairwise comparison analysis confirmed that there was no significant 

difference between the two groups during the maintenance phase. Thus, it is difficult to 

claim that the experimental group maintained significantly better on the COMPS test than 

the comparison group. The above results indicate that the PGBM-COMPS tutor program, 
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regardless of the instructional sequences, facilitated the students in transferring the 

learned multiplicative schemes to solve for novel word problems that entail similar 

problem structure but different story contexts.  

There are two likely reasons for the no significant differences between two groups’ 

near-transfer performance. First, it may be that both groups completed the COMPS part 

of the instruction in the PGBM-COMPS tutor program. Although the order of which they 

learned quotitive division (QD) was different, both groups went through all of the 

multiplicative schemes (i.e., QD and PD) that brought direct effects to solving the items 

on the COMPS test. Secondly, the COMPS test consisted of one-step multiplication and 

division word problems similar to the ones commonly shown in their mathematics 

textbook. The COMPS test did not included Mixed Unit Coordination (MUC) problems. 

Thus, potential difference in understanding in MUC between the two groups may not 

have critically affected their near-transfer performance.  

5.3 Effects of the TOMA Test   

Overall, results on the Attitude towards Math subtest in the Test of Mathematical 

Abilities (TOMA) and follow-up interviews provide support for the benefits of their 

attitudes about mathematics for students with mathematics disabilities (MD) after 

completing the PGBM-COMPS tutor program. There seems to be a positive change in 

students’ perceptions of mathematics before and after the intervention phase. That is, the 

PGBM-COMPS tutor program positively affected students’ attitude toward mathematics.  

  Pre-survey results revealed how most struggling students perceive mathematics 

in general. Many students with MD are prominent for their lack of self-esteem in solving 

mathematics word problems. Many participants believed that mathematics was fun and 
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an interesting subject, but they also believed that they were not better at mathematics 

compared to their peers. In addition, they had a lack of understanding of how 

mathematical knowledge could be applied in everyday activity. The pre-survey also 

reflected the need for more opportunities for students with MD to engage in reform-based 

mathematics curriculum. For instance, many students in this study did not consider 

discussing their solving process as part of mathematics learning activities. This is not 

surprising as the use of explicit and strategic instructions with students with MD has been 

well documented in the field of special education (Montague, 1992; Montague et al., 

1993). Students with MD are continuously accustomed to the traditional notion of solving 

word problems, where finding the correct numerical answer is the ultimate goal. Because 

of their lack of experience in process-focused mathematics instruction, it is challenging 

for students with MD to engage in mathematics discussions where they reason. Baxter, 

Woodward, and Olsen (2001) reported that low-achieving students contribute less during 

mathematics discussions, as normal-achieving students generally dominate the 

conversation. 

Overall, the post-survey results indicate that the PGBM-COMPS tutor program has 

a positive effect on students’ perception towards mathematics problem solving. The 

students seemed to have enhanced motivation, as more students believed that math was 

interesting (from 72.2% to 94.4%) and fun (from 72.2% to 100%). Following the 

intervention session, many students seemed to have gained a substantial amount of 

confidence in problem solving following the intervention sessions. More students (from 

44.4% to 55.6%) believed that they were better at mathematics than most of their friends 

compared to their pretest TOMA response. Furthermore more students (from 55.6% to 
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83.3%) reported that mathematics was easy when compared to their pretest TOMA 

response. Their responses on the post TOMA survey also suggest that more students 

(from 50% to 77.8%) were transitioning their understanding of the act of problem solving 

from a conventional notion to a reform-based notion of problem solving. That is, many 

students were starting to believe that solving word problems requires not only finding the 

answer but also explaining how they solved a problem. Lastly, the post-survey results 

indicate that the PGBM-COMPS tutor program has a positive effect on students’ ability 

to connect mathematics with their daily lives. 

As for students’ perception of the PGBM-COMPS tutor program, a majority of 

students seemed to have enjoyed working with the tutor program. Overall, both groups 

believed the PGBM-COMPS tutor program to be helpful in understanding and solving 

multiplication/division problems. Many students also believed that the tutor program 

prepared them to be successful in their mathematics classes. However, according to the 

observation during the intervention session, there was a slight difference between the two 

groups in their perception of the PGBM-COMPS tutor program when they were working 

on module B, which consisted of the MUC tasks. Many students in the comparison group 

expressed their frustration in solving the MUC tasks, as they were unable to proceed to 

the next problem fast enough. Many students in the comparison group were spending a 

significant amount of time on each MUC task as they struggled to find the solution. Thus, 

it seems possible that students with MD experience more limitations and frustrations on 

the MUC tasks when going through the PGBM-COMPS tutor program with the 

instructional sequence of A-B-C-D-E.  
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5.4 Limitation and Future Research 

In our attempts to compare the differences in multiplicative word problem solving 

performance for the two groups, this study had several limitations. First, the findings are 

derived from a modest sample size that was needed to perform statistical analysis. Thus, a 

caution is due here, as the findings might not be extrapolated to all students with 

mathematics difficulties (MD). Second, this study is limited given that the students’ 

progress on word problem-solving performance was determined on the sole basis of their 

accuracy of responses. The MUC scheme establishment may have affected aspects of 

mathematics knowledge other than their response accuracy. 

  For example, the study did not conduct a further analysis on students’ progress on 

the conceptual development. As many researchers (e.g., Steffe, 1994; Vergnaud, 1988) 

have indicated, establishing multiplicative schemes takes a lengthy period of time. Steffe 

(1994) noted that, “any knowledge that involves carrying out actions or operations cannot 

be instilled ready-made into students or children but must, quite literally, be actively built 

up by them” (p. 4). The intervention phase in this study provided students only 11 weeks 

to learn six types of multiplicative schemes and was restricted by the time to complete the 

PGBM-COMPS tutor program. A longitudinal study should be undertaken to investigate 

how students with MD progress in their conceptual development as they go through the 

PGBM-COMPS tutor program. Moreover, further research is needed to investigate 

whether any differences exist between the two instructional sequences on students’ 

maintenance of the multiplicative scheme knowledge over time. The above results could 

help further clarify whether there are any differential effects between the two 

instructional sequences on their establishment of the multiplicative schemes. 
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Thus, greater efforts are needed to research in greater depth the instructional support as 

well as accommodations needed for students with MD to enhance their higher-order 

thinking skills. 

In addition, it is important to bear in mind the possible threat to external validity. 

In this study, the PGBM-COMPS tutor program delivered the instruction, and the 

researchers mainly assisted at times of technical difficulties and during the assessment 

phase. Although the classroom teachers engaged in this study, they directly worked with 

the researchers to notify them when students came across technical difficulties. Thus, it is 

difficult to claim that the results of this study could be generalized when teachers apply 

the tutor program in their mathematics classroom without direct assistance.  

In order for educators to benefit from the use of the PGBM-COMPS tutor program to 

improve students’ word problem solving skills, they need to understand overall structure 

and the functionality of the tutor program as well as their role in monitoring students’ 

interaction with the intelligent tutor program. Therefore, further efforts need to be made 

to implement professional development for the teachers, which would help them to 

understand the theory and application of the PGBM-COMPS instructional program in 

order to have a better knowledge of implementing this tutoring program in their 

classroom settings. There have been an increasing number of CAI programs developed 

for students with MD to enhance their mathematics problem solving skills. However, 

there is a lack of computer-assisted tutoring program that incorporate the constructivist 

learning/instructional pedagogy; as such it is critical to focus on the professional 

development component in order to better prepare the synergistic role of the teachers in 

using such intelligent tutor program in their classroom settings. In addition to the 
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knowledge of the tutor program teachers’ attitudes towards computer-assisted instruction 

(CAI) should also be of special interest. A number of researchers have reported how 

teachers’ perspectives about the use of CAI have a significant role on students’ success in 

learning from CAI (Dorman, 1998).  

Lastly, while conducting the study, students were gradually less motivated to 

work on the program by the time when they were particularly working on module C (i.e., 

QD). Many of the students were frequently asking how much they had completed and 

when they would be done with the tutor program. One of the primary reasons for their 

lack of motivation may be due to the lack of a progress-monitoring feature in the current 

version of the PGBM-COMPS program. That is, students were unable to see their overall 

progress while working on the tutor program In fact, to address this drawback, the 

researchers in this study begin each session by telling the students where they were 

currently working and how many more blocks were left for them to complete the tutor 

program by using the main menu screen. The above activities enabled students to 

understand how much they had accomplished and how much further progress needed to 

be made to finish the tutor program. The research assistants also applied a progress chart 

for each student to visually keep track of their progress using smiley stickers. When they 

completed each block, students received three smiley stickers to put on top of their name. 

Additional stickers were given to the students when they showed good behavior while 

working on the tutor program. For future enhancement of the PGBM-COMPS tutor 

program, more effort is needed in developing such features towards motivating students. 
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CHAPTER 6.  CONCLUSION 

The present study was designed to explore differentiated multiplicative 

instructional sequence that aims to nurture multiplicative concept to enhance the word 

problem solving performance of students with mathematics difficulties (MD). In 

particular, this study compared the differential effects of two instructional sequences 

taught in the PGBM-COMPS intelligent tutor system on the performance of students with 

MD. The present study makes several noteworthy contributions to the reform-based 

mathematics instructions in the field of special education. The first finding interests the 

learning of multiplicative word problem solving skills through a combination of 

constructivist and the Conceptual Model-based Problem Solving instructional approaches 

(COMPS, Xin, 2012) to teach students with MD the multiplicative concept in an explicit 

manner. With the right amount of knowledge of the PGBM-COMPS program, the results 

of this study suggest that teachers could use it as an intervention in their classrooms to 

help students with MD to enhance their multiplicative concepts as well as their overall 

performance on various multiplicative word problems.  

The second finding stresses the importance of the appropriate instructional 

sequence of multiplicative scheme tasks to accommodate students with MD. Although 

both instructional sequences (modules A-B-C-D-E and A-C-B-D-E) had positive effects 

on the students’ multiplicative word problem solving skills, further comparisons between
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the two groups’ performance on the MUC tasks and their efficiency in learning 

multiplication word problem solving suggest that the alternative instructional sequence 

better accommodates students with MD who are working through challenging 

multiplicative schemes, leading them to become better mathematics problem solvers. In 

particular, the alternative sequence of the multiplicative schemes enabled students with 

MD to solve MUC tasks after they solved the quotitive divisional (QD) scheme tasks. 

The students’ knowledge of the QD scheme (prior to the MUC tasks) accommodated 

their disadvantages in cognitive processing and working memory during the process of 

solving the MUC scheme tasks by explicitly learning the divisional scheme.  

 Therefore, by sequencing the multiplicative scheme tasks to accommodate 

students with MD, conceptual understanding of multiplication could be taught by using 

the constructivist approach alongside the explicit teaching of conceptual model-based 

problem-solving (COMPS) strategies. Consequently, students with MD could have more 

opportunities to establish higher order, complex mathematics thinking skills with the 

right amount of scaffolding. 

The third finding suggests that CAI programs could improve the mathematics 

word problem solving skills for students with MD. Many teachers struggle in a 

mathematical reasoning interaction with students with LD, as teachers have long been 

recommended to use the systematic model of teaching (i.e., explicit and concrete based 

strategies) when teaching mathematics to students with LD (Woodward, 2004). It is still 

uncertain how mathematics in special education should adopt the constructivist approach, 

as the explicit instruction, an approach different from the constructivist approach, has 

been used to teach students who are struggling in mathematics (Baker, Gersten, & Lee, 
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2002). The adoption of the PGBM-COMPS program seems to overcome obstacles to 

delivering a reform-based instruction tailored towards the needs for students’ learning. In 

addition, the CAI enabled academically diverse students to progress without 

compromising other students’ abilities to reach their highest level of mathematics 

performance. While integrating CAI into students’ learning has many benefits, the study 

suggests that the instructional features of the computer program play a crucial role in the 

students’ learning experience (Seo & Bryant, 2009). As discussed earlier, no progress-

monitoring feature was embedded into the current version of the PGBM-COMPS 

program so students could not keep track of their progress. Thus, with the appropriate 

instructions and features, students with MD appear to profit from learning multiplicative 

word problem solving skills with CAI. 

Finally, this study suggests that students with MD benefit from the PGBM-

COMPS tutor program by improving their perception of mathematics in general. Both 

instructional sequences of multiplicative scheme tasks taught with the tutor program 

seem to generate positive attitudes towards mathematics among students with MD. It 

appears that the PGBM game activity and Conceptual Model-based Problem Solving 

instructional approach (COMPS; Xin, 2012) play a critical role in students’ confidence 

level in solving multiplicative word problems.  

In conclusion, the discovery-based mathematics teaching in itself is inadequate to 

promote mathematics learning of students with MD (Woodward, 2004). Overall, this 

study strengthens the idea that the differentiated instruction tailored towards the students’ 

needs may be effective in improving their multiplicative word problem solving skills.
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Appendix A Multiplicative Reasoning (MR) Criterion Test 

1. Grandma baked 27 cookies. She has 3 grandchildren: Manuel, Erika, and Anna. 
She gave all cookies to the children, and each grandchild received the same number of 
cookies. How many cookies did each grandchild get? 
 
2. There are 28 students in Ms. Franklin’s class. During reading, she puts all students in 
groups of 4. She asked a student (Steve): “How many groups will I make?” Steve said: 
“32. Because 28+4 is 32.” Do you think that Steve is correct? Why? 
 
3. A clown at the circus sells balloons in bunches. To make each bunch, he tied 5 
balloons together. He made 13 bunches. How many balloons does he have in all 13 
bunches? 
 
4. Tonya bought some new shirts. Each new shirt has 6 buttons. There are 42 buttons in 
all. How many new shirts did Tonya buy? 
 
5. Rachael has built 13 towers with 2 cubes in each. Mary has built 7 towers with 4 cubes 
in each. Who has more towers, Rachael or Mary? How many more towers does she have? 
 
6. Pretend that you have made many towers, each made of 7 cubes. How many cubes are 
in every tower? How many cubes are in the first 4 towers? So we can count those by 
seven, “7, 14, 21, 28 …” Do you think you will say the number 84 if you continue 
counting cubes in the towers? Why? 
 
7. Maria made birthday bags. She wants each bag to have 6 candies. After making 3 bags, 
she still had 12 candies left. How many bags will she have altogether after putting these 
12 candies in bags? 
 
8. Tom’s father bought 6 pizzas. Each pizza had 4 slices. Tom’s mother bought a few 
more pizzas. Then, there were 9 pizzas. How many more slices did Toms’ mother bring? 
 
9. Ali wants to buy a T-shirt that costs $6.50. He has a jar full of quarters. How many 
quarters will he need to buy the T-shirt?  

One (1) dollar = 100 cents 
One (1) quarter = 25 cents 
There are 4 quarters in a 
dollar 

10. After an art class, there were 78 crayons out on the tables. There are 6 boxes for the 
crayons. Ms. Brown puts the same number of crayons in each box. How many crayons 
would she put in each box?    

( Purdue Research Foundation, 2011)
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Appendix B 4th Grade COMPS Test Form A 

1. It costs a total of $384 to buy 24 pizzas. How much does each pizza cost? 
 

2. Francis received a total of $116 for his birthday. He wants to buy some 
schoolbooks. Each schoolbook costs $29. How many schoolbooks can he buy? 

 
3. It takes 15 stamps to mail one package. How many stamps would you need to 

send 22 packages? 
 

4. Mrs. Bond ordered 165 sheets of crepe paper to be shared equally among 5 art 
classes. How many sheets will each class get? 

 
5. Pretend you are going to bake some chocolate chip cookies. Each cookie needs 26 

chocolate chips. How many chocolate chips will you need if you want to bake 15 
cookies? 

 
6. There are 572 people in a school. There are 22 people in each classroom. How 

many classrooms are there in the school? 
 

7. Brendan has been on the basketball team for 18 days. His friend Kali has been on 
the basketball team 27 times as long as Brendan. How long has Kali been on the 
basketball team? 

 
8. Elliot has 187 pennies in a jar. Elliot has 11 times as many pennies as his sister 

Sandra. How many pennies does Sandra have? 
 

9. Peter has 360 points. Caley has 20 points. Peter has how many times as many 
points as Caley? 

 
10. Larry has 12 baseball cards. His friend Angel has 16 times as many baseball cards 

as Larry. How many baseball cards does Angel have? 
 

11. Roger has answered 78 of his homework questions. If Roger has answered 3 times 
as many homework questions as his classmate Julian, then how many homework 
questions has Julian answered? 

 
12. A farmer named Bob has 196 cows on his dairy farm. Another farmer named John 

has only 28 cows on his farm. The number of cows Bob has is how many times 
the number of cows John has? 

 
(Xin, Wiles, & Lin, 2008) 
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Appendix C Exit Questionnaire 

Please circle one statement that gives you the best picture of your experience of the 
computer tutor program.  
 
A. How much did you enjoy the computer program? 
1. enjoyed it very 
much 

2. sometimes enjoyed 
it, sometimes not 

3. did not enjoy it 4. did not enjoy it at 
all 

 
B. How helpful was the computer program in understanding and solving 
multiplication/division problems? 
1. very helpful 2. sometimes helpful 3. not really helpful 4. not helpful at all 
 
C. How helpful was the Please go and Bring Me game in the computer program   
when solving multiplication/division problems? 
1. very helpful 2. sometimes helpful 3. not really helpful 4. not helpful at all 
 
D. How helpful was the EG diagram in the computer program when solving     
multiplication/division problems? 
1. very helpful 2. sometimes helpful 3. not really helpful 4. not helpful at all 
 
E. Are you using what you have learned in the computer program in your  
classroom? 
1. never 2. sometimes  3. often 4. all the time 
 
F. Will you recommend the computer program to your friends?  
1. never 2. sometimes  3. often 4. all the time 
 

  
 

(adapted from Xin, 2003) 
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