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ABSTRACT 
 

 

Opperwall, Timothy J. MSME, Ph.D., Purdue University, December 2015. Investigation 

of Noise Sources and Propagation in External Gear Pumps, Major Professor: Andrea 

Vacca, School of Agricultural and Biological Engineering. 

 

 

Oil hydraulics is widely accepted as the best technology for transmitting power in 

many engineering applications due to its advantages in power density, control, layout 

flexibility, and efficiency. Due to these advantages, hydraulic systems are present in many 

different applications including construction, agriculture, aerospace, automotive, forestry, 

medical, and manufacturing, just to identify a few. Many of these applications involve the 

systems in close proximity to human operators and passengers where noise is one of the 

main constraints to the acceptance and spread of this technology. 

As a key component in power transfer, displacement machines can be major sources 

of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering 

strategies to reduce noise is a key part of applying fluid power systems to a wider range of 

applications, as well as improving the performance of current hydraulic systems. 

The present research aims to leverage previous efforts and develop new models and 

experimental techniques in the topic of noise generation caused by hydrostatic units. This 

requires challenging and surpassing current accepted methods in the understanding of noise 

in fluid power systems. This research seeks to expand on the previous experimental and 

modeling efforts by directly considering the effect that system and component design 

changes apply on the total sound power and the sound frequency components emitted from 

displacement machines and the attached lines. 
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The case of external gear pumps is taken as reference for a new model to understand 

the generation and transmission of noise from the sources out to the environment. The 

lumped parameter model HYGESim (HYdraulic GEar machine Simulator) was expanded 

to investigate the dynamic forces on the solid bodies caused by the pump operation and to 

predict interactions with the attached system. Vibration and sound radiation were then 

predicted using a combined finite element and boundary element vibro-acoustic model as 

well as the influence of additional models for system components to better understand the 

essential problems of noise generation in hydraulic systems. This model is a step forward 

for the field due to the coupling of an advanced interal model of pump operation coupled 

to a detailed vibro-acoustic model. 

Several experimental studies were also completed in order to advance the current 

science. The first study validated the pump model in terms of outlet pressure ripple 

prediction through comparison to experimentally measured results for the reference pump 

as well as prototype pumps designed for low outlet pressure ripple. The second study 

focused on the air-borne noise through sound pressure and intensity measurements on 

reference and prototype pumps at steady-state operating conditions. A third study over a 

wide range of operating speeds and pressures was completed to explore the impact of 

operating condition and system design to greater detail through measuring noise and 

vibration in the working fluid, the system structures, and the air.  

Applying the knowledge gained through experimental and simulation studies has 

brought new advances in the understanding of the physics of noise generation and 

propagation in hydraulic components and systems. The focus of the combined simulation 

and modeling approach is to clearly understand the different contributions from noise 

sources and surpasses the previous methods that focus on the outlet pressure ripple alone 

as a source of noise. The application of the new modeling and experimental approach 

allows for new advances which directly contribute to advancing the science of noise in 

hydraulic applications and the design of new quieter hydrostatic units and hydraulic 

systems. 
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1. INTRODUCTION 

 

 

The introductory chapter is divided into several sections. First is a background and 

overview of the motivations behind the current work. Second is a general background and 

overview of sources and transmission of noise in hydraulic components and systems. The 

third section introduces the main reference case of the external gear pump (EGP). The 

fourth section explores the current state of the art in noise research in hydraulics. The final 

section of the introductory chapter covers the main research aims of the current work. 

 

1.1 Research Motivation 

Currently, oil hydraulics is the best technology for transmitting mechanical power 

in many engineering applications due to its advantages in power density, ease of control, 

layout flexibility, and efficiency. Due to these advantages, hydraulic systems are present 

in many different application including construction, agriculture, aerospace, automotive, 

forestry, medical, and manufacturing just to name a few. Many of these applications 

involve the systems in close proximity to human operators and passengers where noise is 

of the main constraints to the acceptance and spread of this technology. With the increase 

of environment health and safety standards such as OSHA 1910.95 (1990-2015), 

evaluating the amount of noise generated by hydraulic components has increased in 

importance. In lighter and quieter applications, the importance of the level of noise 

transmitting from the hydraulic components to the passengers and environment has 

developed into a primary design concern relatively recently. In order to increase the range 

of applications where fluid power is advantageous and acceptable, the noise generation 

must be better understood and ultimately reduced. Besides environmental concerns, 

decreasing the noise and vibration of hydraulic components has potential additional 
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benefits of improving control stability and increasing machine life and reliability. As the 

key component in power transfer, positive displacement machines can be major sources of 

noise in hydraulic systems. In many cases, the limiting factor in the adoption of hydraulic 

systems is the amount of noise and vibration introduced into the environment by the 

displacement machines, as opposed to the noise from valves, loads, and other hydraulic 

sources. Thus, investigation into the sources of noise is focused on the displacement 

machines and discovering strategies to reduce noise is a key part of applying fluid power 

systems to a wider range of applications. In particular, the applications for external gear 

machines (EGMs) have been widely researched under Dr. Andrea Vacca (2005-2015). 

These machines are selected as key component since open circuit pumps are required in 

nearly all hydraulic applications to deliver fluid from the tank to all the components of the 

hydraulic system. Due to their widespread use, EGMs are a key component for improving 

the noise performance of hydraulic systems. 

 

1.2 Noise Sources in Hydraulic Systems 

 Study of the physical phenomena of noise is typically separated into three 

categories: fluid, structure, and air-borne noise which are presented in Figure 1.1. 

Separation of sources into three separate domains is a useful division which is common in 

many studies of noise in hydraulic applications. However, the connection between the three 

domains shows that the mechanics of noise generation are a singular and continuous 

process from the internal sources out to the environment. 

 

Figure 1.1 Noise approach in three domains 
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 While many approaches are available to study the air-borne noise (ABN) for 

general acoustic applications, it is difficult to simulate the mechanisms of noise generation 

in hydrostatic units to predict the fluid-borne noise (FBN) and structure-borne noise (SBN) 

sources. The FBN can be composed of a variety of different phenomena. Primarily, there 

are large scale pressure fluctuations caused by the displacing action and the resulting 

loading forces. Additional point sources of noise can be localized cavitation, pressure 

peaks, and dynamic pressure gradients.  

As the loads applied by the unit operation interact with the solid body of the pump 

and attached structures, the SBN can be separated into two main aspects. The structure is 

typically considered both as impedance for the transmission of FBN to the environment, 

and also transmits its own sources of noise in the forms of forces and moments carried by 

the moving components. In an axial piston machine, the main sources of SBN are the 

moments on the swash plate.  In external gear machines, the main mechanical source of 

SBN is the contact forces between the two gears carried by the journal bearing forces. 

A separate and large source of noise on these systems is often an electric motor or 

engine driving the hydraulic pump. Due to the high power density of hydraulic systems, 

engines and electric motors of equivalent power must be significantly larger in volume and 

mass relative to pumps of equal power. Independent of fluid power applications many 

studies have been completed by the automotive industry for reducing engine noise by all 

engine manufacturers such as Usuda et. al. at Toyota (2002). As research efforts reduce 

engine noise, this shifts motivation for the current study towards the hydraulic noise. 

Additionally, the noise from hydraulics can often be more irritating to the human user than 

the engine noise due to the higher frequency components.  

As the most important component for noise in the hydraulic system, the internal 

sources must be better understood and the transmission of noise sources out the 

environment analyzed as shown in Figure 1.2. This summarizes and motivates for the 

sources of noise in a typical displacement machine. This includes the fluid behavior from 

the inlet through pressurization and delivery to the outlet, the bearing loads and structure-

borne transmission, and finally radiation out into the air. 



4 

  

 

 

Figure 1.2 Noise sources and propagation in an external gear pump. 

The goal of the research is to identify the important noise sources and how they 

propagate out into the system and the environment. All of the internal sources of noise to 

a displacement machine must propagate out through one of three available physical paths: 

first, through the fluid and out into the attached fluid system on the inlet or outlet of the 

machine; second, through the physical coupling of different solid bodies into the connected 

physical system (i.e. the shaft coupling, the pump flange and bolts, or hydraulic lines 

vibrated by the pump body); or third, in direct radiation of sound power from the surface 

of the pump body out into the environment. 

Stepping through this propagation of noise from inside to outside, first there is the 

sound transmission from the displacement machine through the fluid and out into the 

hydraulic system. Attached lines with impedances have fluid harmonic frequencies where 

the mass and stiffness of the fluid along with the geometry of the lines interact to result in 

potential resonant behavior. This results in the formation of standing waves in the fluid, 

which large magnitude pressure oscillations and noise transmission. Furthermore, there can 

be significant interactions with attached loads and other components in a typical hydraulic 

system. Foremost of these are valves. Each valve has its own resonant frequencies and 

these are greatly excited by the oscillations present in that flow. Valve noise typically 

occurs at higher frequencies than pumps and motors due to the smaller mass of the 

components involved. There are also cases where internal orifices and volumes occur in 
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valves which result in low resonant frequencies. Rapid movement of actuators or valve 

spools can also result in noise generation from fluid momentum changes with effects 

similar to the water hammer effect as shown by Subani (2015). A second application of 

system level load interaction occurs in hydrostatic transmissions between couple pumps 

and motors. These are examples where the fluid forms the transmission path for oscillatory 

energy to pass from one component to the rest of the system where the combined 

performance is potentially worse than the sum of the individual components. 

Other than the fluid path for noise to leave the displacement machine, the second 

path is to consider the coupling of the system due to mechanical and structural paths. The 

pump vibration can pass into the flange of the pump and then into the rigid structures of 

the machine that it is mounted to. Different types of mounting may mitigate this as a 

transmission path as shown by Skaistis (1988), but typically a stiff mounting must be used 

due to the large size of the displacement units. Second, the shaft of the displacement 

machines must be coupled to an engine or electric motor driving unit as previously 

mentioned. There is coupling between the engine shaft oscillatory dynamics to the torque 

oscillations in the hydraulic pump. Due to the discrete number of chambers in both engines 

and hydraulic pumps, there is uneven shaft torque throughout a single revolution which 

can introduce additional oscillations and vibrations to the system. However, simple 

experiments have shown more vibration transmitted from the prime mover into the 

displacement machine than vice-versa.  

The final solid parts connected to a pump are the lines or pipes that move fluid to 

the system. In production machines these will be made of steel-braided rubber hose or steel 

pipes. Vibration of the pump body results in vibrations of the attached line structures. For 

rubber hoses, the compliance of the material reduces the propagation of energy through the 

structural path. For steel pipes, fully rigid connections should be avoided due to creating 

structural paths for vibrations to transmit from the vibration of the pipe and the fluid inside 

the pipe into additional system components. 

The final path and the one that is generally of most interest to commercial ventures 

is the radiation from the solid surfaces of all the hydraulic components into the air and out 

into the environment. Fluid-borne noise sources at the inlet and outlet eventually propagate 
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out through the pump body and lines. Furthermore, the effect of pressure gradients, 

cavitation, and structure-borne noise need to evaluated in terms of their contributions to 

the overall radiated noise. Here is where all of the considerations must intersect in order to 

better understand the most important features in noise generation and propagation in 

hydraulic systems.  

 

1.3 Reference Case of the External Gear Pump 

The mechanics of noise generation are very similar between all types of positive 

displacement machines due to the physics of displacing action and oscillatory loads. The 

research methods are suitable for a wide range of different types of machines and different 

designs within those types as will be described in the state of the art section following. A 

widely used type of displacement machine, the external gear machine (EGM) is taken as a 

reference for this study with the particular case of the external gear pump (EGP). The 

relative sizes of units under consideration range from 10 cc/rev up to 40 cc/rev with 

maximum speeds up to 3600 rpm and pressures up to 250 bar. 

The present research aims to leverage previous efforts in the topic of noise generation 

in hydrostatic units while developing new methods to predict air-borne noise for the 

reference machine. In axial piston type units, the number of displacing chambers is 

generally less than eleven due to size and complexity/cost limitations of the rotating kit. 

The selection of number of pistons is a primary design concern for axial piston machines. 

The smaller number of displacing chambers generally leads to larger flow oscillations and 

therefore larger sources of noise due to the oscillating pressure and force loads and the 

design of such is shown by Ivantysynova (2009). The case of external gear machines often 

has twelve or greater number of teeth on the gears, the elevated number of chambers 

already limits the pulsations due to the displacing action compared to axial piston 

machines.  

Gear pumps and motors have major advantages in many types of fluid power 

applications. Primarily, they are very robust and durable. They are also inexpensive to 

manufacture with respect to other types of displacement machines due to their small 

number of parts and simple principle of operation. The key components of an EGP are the 
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drive gear and driven gear. The drive gear is directly coupled to a source of mechanical 

energy such as electric motor or engine as discussed in the previous sections. The contact 

forces between the gears provides for sealing and smooth transfer of energy. The final 

primary feature in an EGM is the lateral pressure plates which provide for the lateral 

sealing, bearing, and grooves for timing of the machine as shown in Figure 1.3. 

 

Figure 1.3. Internal components of a typical pressure compensated external gear pump. 

In high pressure EGM designs, the lateral plates are pressure compensated; they are 

specifically designed to float between the casing and the gears in order to provide good 

sealing on the lateral faces of the gears. These also provide lateral lubrication and load 

support. Additionally, many common EGPs use thicker lateral plates with pressed journal 

bearing built into the floating blocks. Reference Pump #1 and #2 use pressure plates, while 

Referece Pump #3 implements the journal bearings into the lateral bushings. These two 

common designs cover the vast majority of the high pressure EGM market. Grooves are 

often added to the lateral plates in order to control provide better pump performance. 

The displacing action in an EGM is achieved by the meshing of two gears, which 

causes the changes of the volume inside every tooth space volume (TSV) in each gear. The 

fluid is brought into the TSVs on the inlet side; it is then carried around the sides of the 

gears by the teeth. The displacing action occurs, where the fluid in the TSV is delivered to 

the output port, then new fluid is drawn from the inlet port. Both mechanics are 

accomplished by the meshing of the gears during the displacing action. A typical pressure 

profile from one TSV is shown in Figure 1.5. 

 There are many different designs for external gear pumps. The chosen reference 

pumps are among the most successful designs for high pressure (up to 300 bar) 

Driven Gear Drive Gear 

Lateral Sealing 

Plates 
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applications. The pump body is typically composed of two or three pieces which enclose 

the gears and have machined ports for connecting the pump to a hydraulic system. An 

example simplified geometry of an external gear pump is shown in Figure 1.4. The angle 

frame of reference is shown in yellow where the starting angle is the axis between the gears 

and the rotation is towards the inlet from the starting angle. 

 

Figure 1.4. Typical external gear pump. 

However, in EGMS, the displacing action occurs over a shorter portion of the 

machine revolution as shown in Figure 1.5 as opposed to the sinusoidal volume variation 

over each revolution in an axial piston machine. This rapidly changing volume can lead to 

large pressure peaks or cavitation inside a particular tooth space volume (TSV). 

 

Figure 1.5 Typical EGM working volume and pumping chamber pressure. 
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Noise and vibration are introduced into the system due to the discrete amount of 

pumping chambers. The flow delivered is uneven, which produces time transient pressure 

and force oscillations when acting against a load. Additionally, each chamber generally 

sees an oscillation from the inlet to the outlet pressure and back through the course of one 

shaft revolution seen at 110º and 355º. This force oscillation in the chamber during the 

chamber pressurization is a much greater magnitude than the inlet of outlet dynamic 

pressure fluctuations. When the fluid pressure changes rapidly, localized cavitation and air 

release can also happen in the fluid from 0º through 10º. Introduction of air vapor into the 

pump operation due to cavitation is undesirable due to loss in volumetric efficiency due to 

delivery of the air, and also because rapid pressurization of air vapor bubbles causes bubble 

collapse, which in turn can cause noise generation and solid surface degradation. In many 

types of displacement machines, there are also parts in solid contact or in 

hydrostatic/hydrodynamic force balances which are vulnerable to oscillating forces which 

result in micro-motion of the gears relative to the housing and motion of the lateral sealing 

plates relative to the gears and pump housing. An essential part of understanding external 

gear pump operation from a standpoint of noise generation is the modeling of the internal 

phenomena. A significant issue in the performance of displacement machines is flow 

pulsations created by the finite number of displacement chambers. During the meshing 

process, fluid can be trapped between the points of contact of the gears, this leads to 

pressure overshoots in the trapped regions. When the trapped volume begins to increase in 

volume again as it leaves the meshing zone, the pressure inside the tooth space volume 

(TSV) may also go below the vapor pressure of the fluid and cause the release of entrained 

air or violent suction flow. 

 When each TSV is trapped between the points of contact during the meshing 

process as shown in Figure 1.6, it is advantageous to avoid isolation from both the inlet 

and outlet ports while the volume is changing by connecting the volume to either the inlet 

or outlet port through grooves on the lateral pressure plates. This leads to smoother pump 

operation and a lower magnitude flow fluctuation. 
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Figure 1.6: Principle of operation of external gear machine. 

 Much research has been done on minimizing the pressure ripple in hydraulic lines 

both through improvements to the displacement machines through manipulation of grooves 

on the lateral bushings of EGMs. These grooves are also referred to as the suction groove 

on inlet side, the delivery groove on the outlet side, and the high speed backflow groove 

along the edge of the plate typically connected to the HP side and its presence is indicated 

by the TSVs colored in red in Figure 1.6. These delivery and suction grooves allow for 

precise timing of the connections between volumes are highlighted in Figure 1.7 according 

to their placement in the pump casing shown in Figure 1.3. 

 

Figure 1.7: Lateral pressure plates with grooves highlighted. 
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 Three main reference pumps were examined for the present work, the differences 

in size and teeth numbers are shown in Table 1.1. 

Table 1.1: Reference pump specifications. 

Pump# Description Displacement # of Teeth 

1 Pressure compensated design 22cc/rev 13 

2 Pressure compensated design 38cc/rev 14 

3 Pressure compensated design 12cc/rev 12 

 

 All three pumps were modeled in HYGESim (Hydraulic Gear machine Simulator). 

Reference pump #1 was used for the acoustic modeling and several experimental studies. 

Reference pump #2 was used for an optimization effort for reducing noise, and Reference 

Pump #3 was considered for the cavitation and inlet ripple study shown in Chapter 6. 

Evaluating several different designs is useful in order to compare and contrast differences 

in operation and noise generation. 

 For Reference Pump #1, a study was completed for modifying the backflow groove 

to smooth the pressurization timing and compare to the unmodified design. For Reference 

Pump #2, an new design for the lateral pressure plates was created for reduced outlet 

pressure ripple. This design is experimentally compared to Reference Pump #2 in Chapter 

4. Finally, for Reference Pump #3, an extreme design modification was made in order to 

test hypotheses about the presence of noise at the inlet of the pump. This study is shown in 

Chapter 6. 

 

1.4  State of the Art 

Hydraulic systems occupy an important role in both on and off-highway vehicles. 

Designing for improved noise performance of fluid power systems is an essential part of 

improving current systems and opening up new applications.  As the technology advances 

and spreads to lighter applications, the noise generation and propagation from hydraulic 

components becomes a primary design concern. The present work is motivated by the need 

for a better understanding of noise sources and propagation in hydraulic systems. The focus 

in most research on noise in fluid power is on reducing the peak to peak magnitude of the 
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pressure ripple at the outlet of displacement machines. This pressure ripple in pumps can 

be characterized using the ISO 10767 standards. The reduction of pressure oscillations is 

usually accomplished through manipulations of the volume connections using grooves 

such as the ones shown in Figure 1.7, or in the specific case of external gear machines, it 

can also be accomplished though changing the instantaneous volumes themselves, 

accomplished with geometry changes of the gears. Primarily, these past efforts are focused 

on only the peak-to-peak magnitude of the FBN. That is, the highest overall peak in the 

time domain is minimized with the expectation that the overall design will be quieter. 

Prototyping and design of new displacement machines is often done by trial-and-error 

procedures, but has also been accomplished through design changes guided by the use of 

advanced models and simulation-based optimization techniques, such as the studies by 

Devendran et al (2013) for external gear machines or by Seeniraj et al (2009) for axial 

piston units, just to mention some significant works in this area. These works often 

emphasize on the internal sources of FBN, such as work done by Mucchi (2014). Some 

work also focuses on reducing internal sources of structure-borne noise (SBN). In the 

example of axial piston pumps, the moments around the swash plate are considered strong 

sources of SBN which results in a large amount of case vibration. The work at Maha Fluid 

Power Research Center on designing new external gear machines has extended the focus 

on the FBN to include not only the peak-to-peak magnitude of the FBN, but also to consider 

all frequencies present in the pressure ripple as part of design optimization of the machine. 

All the noise sources in the FBN and SBN have an effect on the total radiated air-

borne noise (ABN). However, a method of quantifying the impact that different noise 

sources have on the radiated noise variables is not clear from a design perspective. This is 

the fundamental problem this research addresses. Previous efforts related to this work have 

focused on modeling the sound radiated from the pump body as well as the influence of 

the attached lines (Opperwall, 2013-2014). However, modeling efforts alone have been 

insufficient to identify the different noise sources and transmission paths due to the 

complexity of the problem. 

Difficulty in modeling the sources of noise comes mainly from the complexity of 

simultaneously modeling pump phenomena such as fluctuating fluid pressures on internal 
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surfaces, pressure peaks, cavitation, contact forces, and bearing performance. At Maha 

Fluid Power Research Center of Purdue University, modeling the operation of gear pumps 

and axial piston pumps has advanced through the development of multi-domain simulation 

models that combine different simulation approaches. The simulations aim to carefully 

analyze the complex fluid, structure, and thermal interactions characterizing the flow and 

the lubricating gap behavior in these machines with Vacca (2011) focusing on external gear 

machines and Ivantysynova (2009) focusing on axial-piston type machines. 

 Research by Casoli et al (2008), Vassena and Vacca (2010), Devendran and Vacca 

(2012), for EGMs; and Seeniraj (2008, 2011), Ericson et al.(2009) for the similar case of 

axial piston units has been done to reduce these primary pressure fluctuations through 

design optimization. However, although empirical approaches have been investigated, as 

discussed in Hartmann et al (2012), for all different designs of hydrostatic units there is not 

a clear correlation between the features of the pressure ripple and the ABN. Because of 

this, additional research is required to better understand the relationship between the FBN 

and the ABN, and other sources of noise in the displacement machine. This includes all 

internal sources of noise including pressure transition regions and inlet cavitation which 

have not been comprehensively studied previously in EGMs. 

 

1.4.1 Solutions to reduce noise 

An important part of the state of the art is the current implementation of quiet pump 

designs by industry. There are general methods for solutions to reduce noise which are 

generally focused on adding porting grooves between the inlet and outlet volumes and the 

pumping chambers. There are many efforts by researchers specifically conceived to reduce 

these sources of noise emissions in EGMs. In particular, design methods for the lateral 

sealing plates are described in Casoli and Vacca (2010) and in Wang et al (2011) aimed to 

realize an optimal and gradual timing for the commutations between the TSVs and the inlet 

and outlet ports. Beyond manipulations of the port connections in external gear machines, 

there are also advanced designs of the gears which provide for either better sealing or 

smoother operation. In particular, there are dual flank contact designs where each tooth 

contacts both adjacent teeth on the other gear during the meshing process as shown by 
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Negrini (1996). The gears in the Reference Pump #1 and #2 contact on a single flank, while 

some external gear pump designs use dual-flank gears which remain in contact in two 

places during meshing as shown in Figure 1.8.  

 

Figure 1.8 Single-flank contact (left) and dual-flank contact (right) gear designs. 

 The suggestion of mismatched pairs of gears as a source of noise was investigated 

by Mucchi (2010). There are also less cost effective solutions based on helical gear designs 

with epicycloidal profiles which provides for nearly continuous delivery of flow to the 

outlet as shown by Lätzel (2012). Another design option pursued for noise is asymmetric 

gear profiles. These types of designs are currently in use by large scale pump 

manufacturers. A limitation of these efforts is that they are based only on kinematic 

evaluations, meaning, they consider only the displaced volume or number of teeth. This 

shows the need for a comprehensive model in order to understand the importance of 

different frequency and compressibility effects on the noise generated by the pump. 

 Many researchers have tried to reduce the radiated noise by minimizing the pressure 

ripples in the lines of hydraulic systems. This has been done using targeted attenuators such 

as Helmholtz resonators and expander mufflers demonstrated by Ortwig (2005) shown in 

Figure 1.9 and Figure 1.10. Other concepts relating to attenuating line pressure ripple were 

presented by Earnhart and Cunefare (2012). 
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Figure 1.9: Standard types of passive dampers in noise transmission by Ortwig (2005). 

In these cases, the attenuators damp the FBN in a targeted frequency range. However, this 

approach leads to more complicated and expensive systems and is limited to targeted 

frequencies. An additional limitation is that small variations in the excitation frequencies 

can result in a large reduction in attenuation effectiveness. 

 

Figure 1.10: Resulting attenuation for passive dampers by Ortwig (2005). 

 Another attenuation method uses an adaptive Helmholtz resonator in the system 

with a variable length cylinder to reduce frequencies in a key range Kela (2010). This 
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allows for the system to respond to the excitation frequencies to remain at maximum 

effectiveness for different operating conditions. 

 Modeling noise from cavitation shockwaves was completed by Seo (2008), and a 

computational fluid dynamics (CFD) code for a cavitation model by Singhal (2002). There 

was also a study of sound generation from turbulence using CFD by Seror (2001), and the 

simulation and measurement of noise from jet streams using numerical simulations was 

done by Moore (2007). A proposed source of noise in the journal bearings in external gear 

machines was presented by Bonanno (2008).   

 An exploration into noise source identification and reduction in farming equipment 

with hydraulic systems was done by Balaban (2010). Edge (1999) presents a variety of 

methods for designing quieter hydraulic systems. Fiebig (2007) ranked sources based on 

the entire hydraulic system. He found that the frequencies of the pressure ripple are the 

main frequencies present in the noise radiated. He damped the system by submerging the 

pump in the oil tank. Fiebig also modeled and designed a pump using compression filter 

volumes connected to the trapped volumes in the meshing zone (2010). This solution is 

aimed to improve the noise emission in traditional external gear machines. There are 

several other solutions for positive displacement machines. Seeniraj (2009) worked on 

optimizing axial piston machines through use of silencing grooves and pre-compression 

filter volumes. This proved effective at reducing FBN and resulted in much smoother 

operation.  

 

1.4.2 Efforts for modeling noise propagation 

There are many developments in techniques to model and understand the noise 

generation of various types of rotating machinery. These types of machinery typically have 

strong peaks in frequency in the ABN due to the highly cyclical nature of their operation. 

An early model of noise was done by Jeannon (1975). In this model of a gerotor pump, an 

approximation was made by modeling a single piston source in an infinite baffle. Various 

approaches were also tried as demonstrated by Kesseler (1999) who used a modal analysis 

approach for modeling rotating machinery. In another model for noise analysis, Nandi 

(2004) examined the fluid-structure interaction problem for sound radiation from a 
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refrigeration compressor. Still later, a finite element and Rayleigh Integral approach to 

predicting noise radiation of a gearbox was used by Abbes (2008). 

 There are also a variety of solutions for measuring the noise of rotating machinery, 

with Cho and Bolton (2004) with a statistically optimized acoustic holography to locate 

sources of noise radiation. Instrumentation for measuring noise and vibration in fluid power 

systems as well as types of passive damping and noise reduction were presented by Gerges 

(2011). Measuring sound intensity in an anechoic chamber for a hydraulic transmission 

was completed by Klop and Ivantysynova (2010). Klop and Ivantysynova (2008) also 

investigated reducing noise sources in the cylinder pressures and swash plate moments in 

axial pistons machines and studied system interactions between pumps and motors and the 

length of the intermediate lines.  

 From a classical structural acoustics point of view, Cremer (2005) explained that 

generation of the noise in this case is the oscillatory pressures and the resulting forces on 

the structure. The forces then propagate throughout the structure, and the finally radiate to 

the surroundings. Advanced methods that are most similar to what is proposed by this thesis 

were shown in a finite element method (FEM) and boundary element method (BEM)  

model for an axial piston machine using basic equations for the input loads to predict 

surface vibration and radiation of noise Yamazaki and Kojima (2003), and by Schleihs and 

Murrenhoff at the University of Aachen (2014,2015). A model in predicting sound power 

from an induction motor also used FEM/BEM shown by Wang (2004). 

 BEM computational approaches have been improved through using Modal 

Acoustic Transfer Vectors (MATVs) to increase simulation speed for simulating multiple 

operating point in rotating machinery, which are independent of the load condition 

McCulloch (2002).  A simplification can be made by observing the participation of the 

various modes by Lau (2004). A model of the response of a structure with an acoustic 

cavity which compared a finite element model to a modal matching technique was done by 

Puri (2007). A BEM model for a gearbox of a centrifuge achieved noise reduction via 

modification of casing material properties for attenuation in a certain frequency range as 

shown by Engelen (2009). More structure designs based on minimizing radiated sound 

power was shown by Constans (1998), and structurally optimizing to reduce radiated sound 
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power by Choi (2011). There are also several recent books which describe methods for 

calculating radiation from structures by Vasques (2011) and Cremer (2005). 

   

1.5 Research Aims 

 The primary goal of this research is to advance the understanding of the noise 

generation and propagation in external gear pumps. More specifically, it is to enhance 

understanding of the phenomena connecting pressure and force fluctuations to radiated 

noise, and to formulate ideas for the design of quieter and better performing pumps and 

motors. The primary aims of the research are as follows: 

(1) Accurately model the fluid-borne noise for the reference EGPs and attached lines using 

the pump model HYGESim with the goal of identifying all important internal sources in 

the FBN. 

(2) Validate the pump model for the reference external gear pump through experimental 

study of the fluid-borne noise in a steel pipe connected to a reference EGP. 

(3) Model the vibro-acoustic behavior of typical hydraulic unit with a focus on a reference 

EGP. 

(4) Measure the noise generation and propagation in multiple domains over many different 

operating conditions to gain a complete picture of the pump operation with respect to noise. 

(5) Experimentally study the impact additional system components in order to better 

understand the propagation of noise from the internal sources out the environment. 

 To accomplish the first aim, a methodology is needed to take advantage of existing 

fluid dynamic tools. Pressure fluctuations must be accurately modeled to capture the main 

components of fluid-borne noise. The lines in a physical system must be included to allow 

for a comparison and validation of the predicted pressure ripple for the second aim. 

 The third aim is accomplished by multiple analyses and modeling efforts based on 

understanding the noise propagation as it moves from the internal sources modeled by 

HYGESim and then through the structural and acoustic domains modeled by finite and 

boundary element methods. 

 Once the nature and generation of the internal sources is understood, the noise 

generation can be quantified experimentally by determining radiated sound power intensity 
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off a physical EGP and the attached lines using the semi-anechoic chamber and testing 

equipment present at Maha Fluid Power Research Center. These measurements will 

determine sound pressure level (SPL) and sound intensity (used to calculate total sound 

power level SWL). The total SWL of the pump can be used as a benchmark for design 

improvements, and plots of sound intensity on a virtual grid surrounding the pump can help 

guide design of noise-reduction solutions. Quantifying the noise performance as dependent 

on operating condition is a primary concern of the study. 

 With a proven simulation approach, investigation will move to a further level with 

reduction of noise sources identified during the experimental and simulation studies. 

Management of the sources of noise can be used as design variables for the existing pump 

optimization algorithms for external gear machine design by researchers under Dr. Vacca. 

Starting from a clear understanding of noise generation phenomena will permit the 

reduction of noise generation in the design phase of the unit.  
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2. EXTERNAL GEAR MACHINE FLUID MODEL 

 

 

 The reference displacement machine considered for the remainder of the document 

is the reference external gear pump. Although they are inexpensive, their operation is 

characterized by several aspects that are very difficult to simulate. This chapter is divided 

into sections covering an introduction to the pump model, the lumped parameter fluid 

dynamic model development, and results of the model. This model also serves as the basis 

for further development in understanding noise sources in EGPs through validation 

experiments. 

 

2.1 Introduction to HYGESim 

 One of the main reasons for modeling displacement machines is to better 

understand the mechanism of flow and pressure pulsations. The model described in this 

section has been under development by researchers under Dr. Andrea Vacca at Maha Fluid 

Power Research Center of Purdue University. This model is named HYGESim (HYdraulic 

GEar machines Simulation). 

 The modeling activity proposed here takes advantage of an existing simulation 

model for EGP which was presented and validated by Vacca and Guidetti (2011). The main 

focus for noise modeling is on the force and pressure oscillations caused by the main unit 

in pumping operation. Other noise sources such as cavitation and pressure peaks are 

included in the lumped model. The main characteristics of the pump model operation are 

shown in Figure 2.1.  
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Figure 2.1 Layout of pump model 

Pressures and flows inside the pump casing and the interior of the lines are found through 

a combination of an advanced geometric model and customized submodels coded in C++ 

in the AMESim environment. The outputs of this model are used as the main inputs for the 

acoustic models discussed in Chapter 3.  

 HYGESim permits the study of the machine when it is used in generic or specific 

circuits. This allows a prediction of the flow resulting from the interaction between 

different hydraulic systems with the external gear machine. The geometrical model 

provides the different orifice areas and control volumes at each angular step of rotation of 

the gears for the lumped parameter approach. The fluid dynamic model evaluates the flow 

through the machine, the pressure inside the TSV, and also the different forces acting on 

the gear. The most advanced version of the model also calculates contact forces and casing 

wear in the machine as well as predicting the axial balance of the machine. 

 The model has been leveraged for use not only in simulation of existing solutions, 

but also for design purposes as has been published in the works of Vassena (2010) and 

Devendran (2012, 2013) for optimal design of grooves and gears, and Thiagarajan (2014) 

for optimization of the axial balance. New designs have been produced and validated, and 

the tool is used to optimize not only for volumetric efficiency, but also for the design of 

quieter gear machines. 
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2.2 Lumped Parameter Pressure Model 

 The external gear machine model under development at Purdue University 

combines several simulation strategies to create an efficient model for different fluid 

phenomena. The principal design of the model involves four main control volumes. They 

are the inlet port volume, the outlet port volume, the set of control volumes for the tooth 

space volumes (TSVs) in the drive gear, and the set of volumes for the TSVs in the driven 

gear. 

 As represented in Figure 2.2, the model can simulate the unit starting from the CAD 

drawings of the machine. HYGESim solves the main flow through the unit considering the 

radial micro-motion of the gears and the features of the lubricating gap flow between the 

gears and the lateral bushings. This section provides a simplified description of the fluid 

dynamic model used by HYGESim used in the following part of this research. Further 

details about HYGESim can be found in Vacca and Guidetti (2011), Vacca et al (2011), 

and in Dhar (2012). 

 

Figure 2.2. Key features of the reference EGP. 
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 The external geometric model converts standard CAD files into area plots for 

connections between the various control volumes shown in Figure 2.3. This is an abstract 

way to picture the different volumes of the machine shown in Figure 2.2. The two pistons 

V1 and V2 represent the volumes occupied by the set of TSVs. The connections to the LP 

and HP volumes represent the time in each revolution when the TSV is connected to the 

inlet or outlet ports of the pump. According to the lumped parameter approach, the pump 

is subdivided in a number of control volumes in which fluid properties are assumed 

uniform and only time dependent. As shown in Figure 2.3, the model considers a control 

volume (CV) for each tooth space volume of both gears. Under the hypothesis of same 

number of teeth on the drive and the driven gears, as the shaft rotates, the particular tooth 

space volume V1,i  of driver gear always meshes with the corresponding V2,i of the driven 

gear. 

 

Figure 2.3: Elementary control volume connections for HYGESim model. 

 The diagram in Figure 2.3 shown is simplified to emphasize the key control 

volumes and connections in an external gear machine. The descriptions of these key 

connections are shown in Table 2.1. For the simplified model, the laminar flow equation is 

used for flow around the gear tooth tip as described in the subsequent sections. 
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Table 2.1: Descriptions of connections between the various control volumes. 

 Description 

FG 
Connection between the two corresponding TSVs (the 

connection is closed outside the meshing zone). 

HV 
Connection between the TSV and the HP volume through 

the gear whole depth. 

LV 
Connection between the TSV and the LP volume through 

the gear whole depth. 

HG 
Connection between the TSV and the HP port through the 

recesses machined on the lateral pressure plates.  

LG 
Connection between the TSV and the LP port through the 

recesses machined on the lateral pressure plates.  

 

 The connections between the TSVs and the grooves on the lateral plates are 

shown by the HG and LG connections in Table 2.1.  

 The model takes into account the different connections between the TSV and the 

surroundings as well as the changing of net volume in the meshing zone. The pressure 

inside the volume as a function of fluid properties, geometric volume variation and the net 

mass transfer with the adjacent volumes can be given by the pressure build up equation 

from Vacca (2011). 

𝑑𝑝𝑗

𝑑𝑡
=

1

𝑉𝑗

𝑑𝑝

𝑑𝜌
|

 
 
 

𝑝 = 𝑝𝑗

[∑ 𝑚̇𝑖𝑛,𝑗 − ∑ 𝑚̇𝑜𝑢𝑡,𝑗 − 𝜌 |

 
 
 

𝑝 = 𝑝𝑗

(
𝑑𝑉𝑗

𝑑𝑡
−

𝑑𝑉𝑣𝑎𝑟,𝑗

𝑑𝑡
)] 

The summation terms in brackets are used to indicate the overall mass flow rates entering 

and leaving a particular control volume (CV). The term Vi represents the instantaneous 

volume of the considered CV. In case of a TSV in a gear pump, the displacing action is 

obtained by means of the variability of this volume.  

 The flow areas connecting each TSV with its surroundings and the actual values of 

volumes are considered depending on the shaft angular position. In this way, the pressure 

inside each CV can be predicted accurately. By also considering the performance of the 

 (2.1) 
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shaft journal bearings, the inter-axis micro motion of the gears can be predicted, which in 

turn can be used to predict casing wear. The mass flow equations are shown in Equations 

2.2 and 2.3 from Vacca (2011). For turbulent flow,

  

𝑚̇𝑖,𝑗 =
(𝑝𝑖 − 𝑝𝑗)

|(𝑝𝑖 − 𝑝𝑗)|
𝜌(𝑝𝑖,𝑗̅̅ ̅̅ )𝑐𝑒𝑞(𝑅𝑒𝑒,𝑗)𝛺𝑖,𝑗(𝜃)√

2(𝑝𝑖 − 𝑝𝑗)

𝜌(𝑝𝑖,𝑗̅̅ ̅̅ )
 

For laminar flow in simplified gaps at the tooth tips 

𝑚̇𝑖,𝑗 = 𝜌 [−
ℎ3

12𝜇

𝑝𝑖−𝑝𝑗

𝐿
+

𝑢ℎ

2
] 𝑏 

Where u is the velocity and h, L, and b are the height, length, and width of the gap 

respectively. 

 A more advanced version of the model can also be used for detailed analysis as 

shown in Figure 2.4. Instead of relying on the laminar flow equation for the flow in the 

lateral gaps, the coupled CFD gap model for considering the phenomena in the lateral gap 

has been added. The adjacent TSVs are connected to a particular TSV through two different 

main leakages. The first is around the tip of the tooth through the clearance between the 

gear tip and the casing. The second leakage is through the lateral gap between the gear 

lateral face and the lateral pressure plate. The lateral leakage is calculated by the coupled 

CFD code (Dhar, 2012). 

 

Figure 2.4: Connections between control volumes in HYGESim. 

 (2.2) 

(2.3) 
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A description of the additional connections is shown in Table 2.2. 

Table 2.2: Additional connections in the coupled CFD model. 

 Description 

TLP 

TLN 

Leakages between adjacent TSV due to clearances among 

tooth tip and casing. TLP refers to the connection with the 

previous TSV on the same gear, while TLN is for the 

connection with the following TSV. 

TTL 
Leakage from radial gap flow into lateral gap from the tooth 

tip, subtracted from TLP and TLN. 

TSL Leakage from TSV into lateral gap. 

BPL Connection between a tooth space volume and shaft bearing. 

LPL Leakage from low pressure into lateral gap. 

HPL Leakage from high pressure into lateral gap. 

DL Leakage from lateral gap into drain. 

 

 The CFD model takes care of the evaluation of the various hydrostatic and 

hydrodynamic effects taking place in the lateral gaps of the machine and also for the axial 

motion of the lateral pressure plates. More information about the externally coupled model 

is found in Vacca, Dhar, and Opperwall (2011). The pressure boundary conditions are 

provided by the HYGESim fluid dynamic module. The finite volume solver then calculates 

the pressure and flow fields in the lateral gap in order to accurately model the 

hydrodynamic behaviour of the floating pressure plate according to the Reynold’s 

equation. This allows for calculation of the total leakages from each control volume, which 

are communicated back to the main solver. 

 The total load on the gears is of interest for noise since this force is transmitted to 

the pump body through the shaft journal bearings. The total force on the gears is the sum 

of all forces in x and y directions due to pressure as calculated by  



27 

  

 

𝐹𝑝,𝑥(𝜗) = ∑ ∑ 𝑓𝑥,𝑖,𝑘(𝜗)

𝑁𝑠

𝑘=1

  𝑤ℎ𝑒𝑟𝑒 𝑁𝑠 = 1 𝑜𝑟 3

𝑧

𝑖=1

 

(2.4) 

𝐹𝑝,𝑦(𝜗) = ∑ ∑ 𝑓𝑦,𝑖,𝑘(𝜗)

𝑁𝑠

𝑘=1

  𝑤ℎ𝑒𝑟𝑒 𝑁𝑠 = 1 𝑜𝑟 3

𝑧

𝑖=1

. (2.5) 

The caluculation of force areas is shown in Figure 2.5. 

 Figure 2.5: Forces on gear due to modeled fluid pressure in each TSV. 

The total net force on the gear due to the pressure in each TSV during operation must be 

reacted by the force carried in the journal bearing. 

 

2.3 Model Results 

An example input and output of HYGESim is shown in Figure 2.6. The right side 

scale and blue line shows a single TSV around a full revolution. A single TSV is at full 

volume for approximately 270° of the gear rotation, and decreases down to a minima at the 

center of the meshing zone. The resulting pressure in that TSV is generated from an orifice 

load and is shown by the left side scale and the red line. Several sources of predicted noise 

are also shown in the pressure in Figure 2.6 as described previously. The figure shows the 

rate at which the fluid pressurizes and decompresses. Also, the pressure peak at around 

350° is caused by the trapped volume in the meshing zone. Since the TSV is not connected 

to either the HP or LP ports at that time while the volume is also decreasing, pressure 
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overshoot occurs in that volume. Likewise, from 355° through 10°, the pressure in the TSV 

can fall below atmospheric due to the increasing volume of the trapped TSV. 

 

Figure 2.6: Pressure distribution in a TSV around one revolution. 

 When the TSV is connected to the outlet HP port via a specially machined groove 

typically on the lateral pressure plate, the pressure rapidly rises in the chamber to near the 

outlet pressure. Additionally, the outlet pressure ripple can be observed and compared to 

experiments as shown in Figure 2.7. 

 

Figure 2.7: Filtered experimental and simulated data for outlet pressure ripple. 
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 The HYGESim model can be used with a variety of different lines and loads to 

compare to physical hydraulic systems as shown in Figure 2.8. 

 
Figure 2.8: HYGESim in an example system. 

This allows for many applications of the model under different load conditions and 

different attached systems.  

 

2.4 Model of Hydraulic Lines 

 Modeling line contributions to noise is important since the lines provide a key path 

for noise to propagate from the sources out into the environment. The geometry and 

dynamics of the lines and the load can play an important role in how the forces and 

pressures are applied to the interior of the lines, and also the subsequent propagation 

through the walls of the lines and out to the environment. The effects of the hydraulic lines 

are present for every hydraulic system. The goal of modeling the noise propagation through 

the hydraulic lines is to characterize the effect on noise that a basic hydraulic line causes 

and to determine how to design better systems. 

  The relevant base speeds of free wave propagation are shown in Table 2.3. The 

speeds in fluids were calculated according to: 

𝑐 = √
𝐾

𝜌
 

(2.6) 
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K is the bulk modulus and ρ is the fluid density. For ISO 46 oil at 50ºC and 250 bar, c=1474 

m/s.  

Table 2.3 Speed of wave propagation in relevant mediums 

Medium 

Free wave propagation 

speed [m/s] 

Oil 1474 

Steel 6000 

Braided rubber hose 900-1150 (Klop 2010) 

Air 343 

 

Understanding the propagation of noise from the internal sources out to the surrounds 

requires an understanding of how the waves travel through each media.  

The hydraulic line model is based on a distributed one dimensional line with 

lumped elements. This model takes into account frequency dependent friction and flexure 

of the line walls, which allows for determining source terms for acoustic excitation and 

radiation. The 1D model assumes a high length to diameter ratio of the line such that the 

pressure is assumed to be homogenous through the cross section of the pipe and varies only 

along the length. Considering the fidelity of the line model is an important detail that 

greatly affects the simulation results. If too few nodes along the pipe length are considered, 

a poor approximation of the loading conditions is provided. If too many elements are 

added, the effective stiffness of the fluid exceeds the true behavior and results in 

amplification of higher order frequencies due to an increased number of potential fluid 

harmonics. 

According to lumped parameter models there is a limit to the number lumped 

masses for a given volume based on its geometry. A simplified spring-mass-damper 

simplification to explain the physics of the distributed line model is shown in the following 

figures. The distributed line model contributes to frequency content because of added 

stiffness. An example single degree of freedom system is shown in Figure 2.9. 
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Figure 2.9 One and two degree of freedom systems. 

With a single mass, and two equal springs representing the fluid stiffness, then the fluid 

harmonic frequencies occur at multiples of ω=(2s/m)1/2.With two equal masses such that 

M1+M2=M with the same total mass. Two masses and 3 equal springs the resonance can 

occur at two frequencies, ω1=(2s/m)1/2 and ω2=(3s/m)1/2. The estimated modal resonant 

frequencies of simplified system are shown in Figure 2.10. 

 

Figure 2.10 Example modal frequencies based on simple system 

More nodes results in two changes in the system, more total stiffness (total mass is 

constant) means higher frequencies, and more modal frequencies in all frequency ranges. 

This contributes to the consideration for the harmonic frequencies of the oil in the pipe. 

Similar to many instruments, the fluid inside a cylindrical shell acts in a harmonic way 

according to the geometry of the cavity and the properties of the fluid. This dominates 

when the system does not have a strong forced excitation at certain frequencies, and may 

amplify existing frequencies in the system. 
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 Basic equations for fluid motion inside a cylindrical shell can be derived from the 

geometry by making simplifying assumptions. An example simplified diagram of the fluid 

behavior in the steel pipe where the pump has been replaced by a single oscillating piston, 

and the load orifice is represented by a simple mechanical impedance as shown in Figure 

2.11. 

 
Figure 2.11 Simplified pipe model for fluid harmonic study 

 The fluid harmonic behavior can be modelled as forward and backward travelling 

plane waves from left to right in the diagram.  

𝑝 = 𝐴𝑒𝑗[𝜔𝑡+𝑘(𝐿−𝑥)] + 𝐵𝑒𝑗[𝜔𝑡−𝑘(𝐿−𝑥)] 

By assuming different end conditions, one can approximate harmonics of the fluid 

analytically as shown by McKee et al. (2009). 

Rigid end cap at right: 

 

      n=1,3,5…    

Open pipe at right:  

 

      n=1,2,3… 

Harmonic frequencies of the fluid based on the geometry of the pipe and the fluid 

properties. Harmonics take the form of standing waves in the pipe at different frequencies 

if the excitation is not being forced to specific frequencies. The fluid harmonic behavior in 

the test setup pipe is between the two extreme values based on the mechanical impedance 

of the orifice plate. The harmonics couple to the excitation frequencies when under a forced 

excitation similar to the oscillation of flow introduced by the pump since they are in a 

similar frequency range. This results in the observed fluid behavior in simulation and 

practice. 

(2.7) 

𝑓 =
𝑛𝑐

4(𝐿 + 0.4𝑑)
 

(2.8) 

𝑓 =
𝑛𝑐

2(𝐿 + 0.3𝑑)
 

(2.9) 
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The analytical fluid harmonics estimate take the shape of sine and cosine waves in 

the fluid pressure. The frequencies that these shapes occur at are shown in Table 2.4 for 

two different end conditions. 

Table 2.4 Analytical wave modal frequencies. 

closed pipe (Hz) open pipe (Hz) 

365 731 

1094 1463 

1824 2194 

2554 2926 

3283 3657 

4013 4389 

4742 5120 

5472 5851 

6201 6583 

6931 7314 

7661 8046 

8390 8777 

9120 9509 

9849 10240 

10579 10971 

  

The actual fluid model implemented uses lumped fluid elements, where L is the 

total line length and V is the total line volume. The pressure derivatives are calculated at 

the nodes and at the ports of the model with the formula: 

𝜕𝑄

𝜕𝑡
=

𝐴

𝜌

𝜕𝑃

𝜕𝑥
− 𝑣 ∙

𝜕𝑄

𝜕𝑥
−

𝑓𝑓 ∙ 𝑄2 ∙ 𝑠𝑖𝑔𝑛(𝑄)

2 ∙ 𝐷 ∙ 𝐴
 

Which is dependent on the pipe properties of the cross-sectional area of the pipe A, and the 

friction factor ff according to Binder (1956). 

 Now, applying this to the pump model to while comparing results from number of 

nodes in the outlet line with 1000rpm operation in Figure 2.12 shows the coupling between 

the excitation pressure frequencies with the harmonic frequencies of the fluid in the pipe. 

(2.10) 
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Five nodes is the suggested number according to the length to diameter ratio of the line. 

This number of nodes also allows for the best validation of the pressure ripple shown in 

the following section. The frequency spectra derived from a Fast Fourier Transform (FFT) 

is also shown. 

 

Figure 2.12 Outlet pressure ripple and FFT with varying number of nodes 

The higher frequencies of pressure ripple are emphasized for more nodes which 

depends on the way to apply the load as discrete functions. The pressure at all five nodes 

considered is shown in Figure 2.13. 
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Figure 2.13 Pressure functions at five nodes in the pipe. 

Considering pressures at 10 nodes as a surface in order to better visualize the pressure field 

as shown in Figure 2.14 and Figure 2.15. 

 

Figure 2.14 Pressure sensor locations for modeled result. 

The large number of fluid nodes considers does limit the accuracy of the predicted 

magnitudes of the pressure waves. However, it is very useful for the sake of visualization 

and understanding of how the waves propagate in the pipe fluid volume. 
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Figure 2.15 Pressure at 10 nodes in the pipe. 

The modeled line pressure ripple at 1000rpm as shown above was then turned into 

a surface with time, length, and pressure as the axes shown in Figure 2.16. 

 

Figure 2.16 Pressure in the pipe 

 The fluid pressure oscillates from one end of the pipe to the other in a strong 

coupling between the fluid harmonics and the forcing frequencies. 
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In order to model line contributions to noise, a better understanding of the fluid 

harmonics in the pipe is needed. This then couples to the structure and the air. The free 

wave propagation speed in different materials is shown below. 

Pressure is pulsing back and forth in the 1m pipe with a node at center point of pipe (0.5m). 

This behavior dominates performance, out of phase by 180 degrees at opposite ends as 

shown in the magnitude of the frequency spectra of the pressure ripple in Figure 2.17.  

 
Figure 2.17 Frequency spectra magnitude. 

 Now instead of considering the pressure field across the length of the pipe, the 

knowledge gained in modeling the line leads the conclusion that an effect should be seen 

in the pressure ripple where there is an interaction between the harmonics of the fluid and 

the excitation frequencies of the pump. Consider a single pressure location at the outlet of 

the pump as shown in Figure 2.18. 

 

Figure 2.18 Single pressure sensor location at pump outlet. 

If excitation frequencies align with harmonic frequencies of the fluid in the pipe, 

large outputs can occur in the line pressures. Such as around 650 Hz, which corresponds 

well with the analytical values calculated previously. This result is shown in Figure 2.19 

in the highlighted bands around 700 and 1400 Hz in the frequency spectra, the pressure 
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ripple outputs are interacting with the harmonics of the line at each different speed, which 

results in a larger output. The outlet pressure for a range of pump shaft speeds is shown, 

and the harmonic behavior of the fluid is visible in the heavier bands. 

 

 
Figure 2.19 Simulated pressure spectra under varied speeds 

The interaction between the fluid harmonics and the shape of the pipe has a large 

impact on the fluid behavior inside the pipe volume. If the forcing frequencies of the pump 

change (due to change in speed or number of pumping chambers), or if the harmonics of 

the fluid volume change (due to adjusting the pipe length or diameter or load impedance), 

then the coupled results will also be different. This makes for a very complicated problem, 

but understanding the interactions is a good step towards improving the system noise 

performance. 

 

2.5 Model-based Design of External Gear Pumps 

Model based analysis of EGPs allows for design of new units with unique fluid 

porting and volume variation. This is primarily done in EGPs through design of lateral 

pressure plates with porting grooves built in. A primary hypothesis in the creation of quieter 

hydraulic systems is the reduction of the FBN through the reduction of pressure ripples in 

the lines. Ways to achieve this reduction were discussed in the literature review. Several 
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new designs for low pressure ripple and high efficiency were proposed for the lateral 

pressure plates of the reference gear pump #2 by Devendran (2012) using a genetic 

algorithm based in Mode Frontier coupled with the HYGESim lumped parameter model. 

The design allow for small changes to be made to the LP and HP grooves on the lateral 

plates which improve the performance of the reference pump without increasing the 

complexity of the machine or adding components. The objective functions considered are 

to minimize pressure ripple, minimize pressure peak, minimize localized cavitation, and 

maximize volumetric efficiency. The pressure ripple is determined by summing the energy 

of the ripple frequency spectra in bands. The pressure peak in the TSV pressure that occurs 

in the trapped volume in the meshing zone. Local cavitation is the drop below ambient 

pressure. Volumetric efficiency is characterized by the provided flow rate with respect to 

the pump speed and geometric displacement.  

An optimized design of the lateral plates was selected according to the above 

parameters and optimization routine in order to be tested alongside the Reference Pump 

#2. This design will be referred to as prototype 12, and it was designed with minimized 

outlet pressure ripple in order to test the influence on noise. 

 

2.6 Experimental Validation 

 The HYGESim model was validated previously by Vacca (2011) with 

measurements of both the TSV chamber pressure as well as the outlet pressure and flow. 

A new unit under consideration for the present work contains different features for 

consideration and the understanding of the performance of the unit is improved by a new 

validation. The validation of the pump performance is important to the overall noise 

research due to the use of the pump model as a load function for the acoustic model. 

Understanding the noise generation and propagation begins with the internal loads, and 

experience gained through measuring the FBN experimentally is useful for guiding the 

later stages of modeling and experiments. An additional validation of the pump model was 

completed with respect to the mean measured flow rates in comparison to simulated data. 
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2.6.1 Pressure ripple measurements 

 The main characteristics of interest in comparing HYGESim predictions to 

experimental values are to consider the total flow rate and the ripple in the pressure caused 

by flow ripples under a load condition. The test rig setup was realized on the Multi-Purpose 

Test Rig (MPTR). The schematic of the test setup is shown in Figure 2.20. 

   

 

Figure 2.20: Pressure ripple measurement test rig layout. 

The test pump is driven by an electric motor and a load is applied by use of a fixed orifice 

plate at the end of a steel pipe and also a proportional valve controlled by the data 

acquisition software. The steel pipe is the same as used by Klop (2008) and allows for 

precise measurement of the pressure ripple cause by the displacing action due to the fast 

response of the sensors. The rigid pipe and fixed orifice are more accurate to model than 

other line types and the pipe also tends to amplify the frequencies of the pressure ripple 

which allows for a more detailed comparison. The descriptions of individual components 

are shown in Table 2.5. 
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Table 2.5: Description of test rig components. 

# Description Details 

1 Inlet temperature 

sensor 

Omega K-type resistive thermocouple, range 0-120° C, 

accuracy 1% FS 

2 Electric motor ABB, 93 kW, range 4000 rpm 

3 Shaft speed sensor HBM 10F/FS, not used in experiments 

4 Shaft torque sensor HBM 10F/FS, not used in experiments 

5 Test pump External gear pump Reference Pump #2 

6 Calibrated steel pipe 

with embedded 

pressure sensors  

Kistler 603B1 piezoelectric, 0-1000 bar, accuracy 1.1% 

FS, sensors located at 230mm, 350mm, and 950mm 

from outlet port including fittings. 

7 Line pressure sensor WIKA, 0-400 bar, accuracy 0.25% FS  

8 Flow meter VS 4 by VSE, gear type, 0-400 L/min, accuracy 1% FS 

9 Pressure relief valve 300 bar safety setting. 

10 Proportional valve Hydraforce TS10-26A-8T-N-12DR proportional orifice 

11 Oil tank  SAE 46 oil 

 

 The calibrated pipe used in the experiments is shown in Figure 2.21. The pipe is 

one meter in length and has a constant inner diameter of 25.4 mm. More details are 

described in Table 2.5. 

 

Figure 2.21: Calibrated steel pipe with embedded sensors. 

 The results from the pressure ripple experiments will be compared in the following 

section to the simulated pump for the purpose of validation.  
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2.6.2 Frequency analysis of loading pressure 

 The primary frequencies in Hz in the simulated and measured data are at 

𝑓1 =
𝑛𝑐∙𝑛

60
. 

Where n is the speed of the pump and 14 is the number of discrete pumping 

volumes. There are 14 discrete volumes on each gear, however, in the meshing action, a 

pair of volumes one on each gear act together as a single pumping volume when gears with 

single flank contact are used as in the reference pump. For example, at 1000rpm, f1 occurs 

at 233Hz and the subsequent integer multiples of this frequency compose most of the 

energy in the frequency at frequencies in this range. There are additional peaks at multiples 

of the shaft frequency 

𝑟1 =
𝑛

60
. 

 A Butterworth filter was created to achieve the band pass effect and to remove low 

frequency noise from shaft oscillations that are not predicted by HYGESim. The band pass 

filter is from 100 to 5000Hz. Notice that this does not remove all of the shaft oscillation 

frequency. The first three main peaks in the unfiltered data are at approximately 16.7Hz, 

33.3Hz, and 50Hz. The sum of the first pump frequency f1 and the third multiple r3 of the 

shaft oscillation creates a new peak inside of the filter band of interest that will be present 

in the experimental data but not the simulations as shown in Figure 2.22 at approximately 

290Hz. The low frequency content is created by small eccentricities caused by the shaft 

coupling. Note that for frequencies above 100 Hz, the filtered and unfiltered data lie on top 

of each other. 

(2.11) 

(2.12) 
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Figure 2.22: Filtering out of low frequency noise for comparison of results. 

 While the unfiltered data contains the trend of a sinusoidal oscillation of the moving 

average at 16.6Hz, the filtered data has a constant trend at as shown in Figure 2.23. The 

cause of the 16.6Hz oscillation is due mainly to eccentricity of the coupling between the 

electric motor and the pump.  

 

Figure 2.23: Comparison of filtered and unfiltered data.  

 When the shaft oscillation is removed, the comparison to the simulated data is 

excellent in the time and frequency domains. However the lack of shaft frequency in the 

simulated data is a limitation of the model when it comes to predicting the shaft frequency 

as a source of noise. This source is heavily dependent on the particular experimental setup 
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including possible eccentricities between the primary mover and the pump. The main 

features of the pressure ripple are captured by the model. This includes the mean value as 

well as the amplitude of the major sinusoidal components as shown in Figure 2.24. 

 

Figure 2.24: Filtered experimental and simulated data for outlet pressure ripple. 

 The Fourier spectra of the simulated and experimental pressure ripple are shown in 

Figure 2.25. The amplitude of the primary peaks is captured to a very accurate degree and 

this is a validation of the HYGESim model for Reference Pump #2. The spectra shows that 

as predicted, the pressure ripple at the pump outlet (which is connected to much of the 

interior of the pump casing by the high-speed groove) is highly oscillatory with the 

majority of the energy focused on multiples of the primary pump fundamental frequency 

f1 which is created by the number of TSVs and the shaft speed of rotation. 

 

Figure 2.25: Frequency spectra of experimental and simulated data. 
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 A linear display of the frequency spectra was shown here and will be repeated 

throughout the current studies in order to emphasize the peak values dominating the 

measured and simulated behavior of the system. While a logarithmic scale is often used in 

acoustic studies in order to better correlate with the dynamic hearing range of the human 

ear.  

 The accurate pressure prediction and pump model forms the basis of the noise 

model of internal sources. If the FBN and the other internal phenomena of the pump can 

be predicted, then an accurate acoustic model can be built on top of the model of internal 

sources.
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3. ACOUSTIC MODEL FOR PUMP NOISE RADIATION 

 

 

 From the background shown in previous sections, the need for an acoustic model 

directly predicting the sound radiation from displacement machines was shown. The pump 

output in the lines and inside the case of the units themselves is dominated by the flow 

ripples caused during the displacing action. This chapter will explain the acoustic model 

built as a primary part of the research activity. This begins with a an overview of the 

assumptions made in modeling the pump, the theoretical basis for the model, an overview 

of the model layout, and a discussion of the results.  

 

3.1 Acoustic Model Methodology 

 A vibro-acoustic model was developed using a combined Finite Element Method 

(FEM) and Boundary Element Method (BEM) approach. The FEM/BEM approach was 

chosen due to its efficiency and accuracy in predicting the ABN. In order to fully model 

the loading forces, the structure response, and the transmission to the air, a model is needed 

for each. The HYGESim model provides the loading forces. FEM models are widely 

accepted for the structural vibration, and BEM is accepted as the best for modeling the 

near-field acoustic effects in models that are placed in unbounded environments, for 

example, outdoors or in anechoic spaces. BEM is chosen because the fluid-structure 

coupling interaction between the radiated air pressure and the structure vibrations can be 

neglected due to the differences in stiffness and density as described by Sandberg (2009) 

Another simplification is the effect of the of the internal pump components such as the 

gears and the lateral plates in that they are included only the generation of the loading 

conditions, but not in the current acoustic propagation model. In the current model, the 

interaction of the structural components of the main body is considered through the fluid 
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separating the internal components from the case. The BEM wrapper mesh technique is 

used for calculation of the transmission of sound from the pump surface mesh out to the 

field. The model type considers the interaction of the load conditions with the mode shapes 

of the structure. The main structure is adapted from the BEM acoustics methodology for 

Virtual.Lab Acoustics and suggested by Desmet et al. (2012)  

The additional information that is needed is the specification of the acoustic 

environment for the EGP. The basic inputs for the acoustic simulation are the pump model 

results delivered from the fluid dynamic model along with the environment information. 

Processing the fluid dynamic model results involves selecting load and surfaces and 

mapping loads onto the correct nodes of a structural Finite Element Method (FEM) mesh. 

The simulation results are solved for in LMS Virtual.Lab Acoustic.  

A summary of the acoustic model is shown in Figure 3.1. This is an extension of the 

HYGESim model for the purpose of predicting sound radiation from the pump body. 

 

Figure 3.1: HYGESim model schematic including coupled acoustic model. 

 The predicted forces and pressures in the form of functions of frequency from the 

HYGESim model are used as loading functions since frequency loading allows a good 

estimation of the applied load without needing to perform long time-transient computations 

in the BEM solver. Potential areas of interest to noise that are considered in the HYGESim 

model were discussed previously and they include inlet and outlet dynamic pressure, 
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chamber pressurization phenomena, and bearing forces are considered in the ABN 

evaluation for radiation from the pump body. The acoustic model makes some key 

assumptions with respect to the input sources of FBN. The Fast Fourier Transform (FFT) 

is used to compute the frequency spectra of the loading forces. In EGPs, there are no 

mechanical parts directly in contact with and exciting the pump structure except through 

fluid boundaries. By comparison, the swash plate control in axial-piston type units can have 

a strong impact on the radiated noise. While in the EGP, all noise passing to the pump 

housing passes through the fluid in the pumping chambers, the ports, or the fluid bearings 

inside the unit. The force loads on the structure then propagate to the air-borne noise (ABN) 

which is what is heard and measured at the field points as shown in Figure 3.2.  

 

Figure 3.2: Transmission of sound from working fluid to field points. 

 The equations put into practice in the model are described in detail by Desmet et al 

(2012) and published by Opperwall (2012). The primary governing equation for the steady-

state acoustic pressure is the second-order Helmholtz equation given by 

𝛻2𝑝(𝑥, 𝑦, 𝑧) + 𝑘2𝑝(𝑥, 𝑦, 𝑧) = −𝑗𝜌0𝜔𝑞(𝑥, 𝑦, 𝑧). 

Where p is the pressure at any node and q is the excitation. 

The structural dynamics are described by Hooke’s Law where: 

([𝐾𝑠] + 𝑗𝜔[𝐶𝑠] − 𝜔2[𝑀𝑠]){𝑤𝑖} = {𝐹𝑠}. 

 (3.1) 

 (3.2) 
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Here, [𝐾𝑠] is the stiffness matrix, [𝐶𝑠] is the damping matrix, [𝑀𝑠] is the mass matrix, and 

{𝐹𝑠} is the boundary conditions set.  

The structural finite element model is shown by: 

{

𝑤̂𝑥(𝑥, 𝑦, 𝑧)

𝑤̂𝑦(𝑥, 𝑦, 𝑧)

𝑤̂𝑧(𝑥, 𝑦, 𝑧)

} = [𝑁𝑠]{𝑤𝑖} + [𝑁𝑤]{𝑤𝑖} 

Where [𝑁𝑠] and [𝑁𝑤] are the global shape functions for the unconstrained and constrained 

translational and rotational degrees of freedom on the body. The w and its subscripts refer 

to the translational and rotational displacements of the corresponding nodes.  

The acoustic boundary element approximations for steady state pressure and 

surface normal velocity are shown in: 

𝑝̂(𝑟𝑎) = [𝑁𝑎]{𝑝̂𝑖} 

𝑣𝑛(𝑟𝑎) = [𝑁𝑎]{𝑣𝑛𝑖} 

Where 𝑟𝑎 are the surface vectors and 𝑁𝑎 is the matrix of global shape functions which are 

associated with the nodes on the boundary surface. 

The boundary elements of the pump consist of the external surfaces. The BEM 

mesh is based on an upper limiting frequency of 10000Hz where higher frequency results 

in a smaller wavelength and thus smaller elements are needed. A maximum frequency of 

10000Hz exceeds the main excitation frequencies of the loading forces. The procedure 

aims to create six elements per wavelength of sound in air with 340 m/s (speed of sound in 

air) divided by 5000Hz for an allowed element length of up to 68mm. 

By combining the structural and acoustic models, the coupled FEM/BEM equation is 

shown in  

[

𝐾𝑠 + 𝑗𝜔𝐶𝑠 − 𝜔2𝑀𝑠 𝐿𝐶 0

𝜌0𝜔2𝐵11𝑇𝑠 𝐴11 𝐴12

𝜌0𝜔2𝐵21𝑇𝑠 𝐴21 𝐴22

] {

𝑤𝑖

𝑝̂𝑖1

𝑝̂𝑖2

} = {
𝐹𝑠

𝐹𝑎1

𝐹𝑎2

} 

Where the A and B are terms of the nodal degrees of freedom of the acoustic model. 

The interaction of the structure surface vibrations with the acoustic environment 

allows for the calculation of radiated sound power. 

A more detailed flow chart of the model process is shown in Figure 3.3. 

 (3.3) 

 (3.4) 

 (3.5) 

 (3.6) 
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Figure 3.3: Block diagram schematic of acoustic model solving steps. 

 

3.2 Model of Internal Noise Sources 

The key physical phenomena for noise sources need to be modeled and understood 

in order to use them as loading conditions for an acoustic model. The basic assumption is 

made that all forces internal to the pump must pass through the pump casing in order to 

radiate out to the surroundings, or they must pass into the attached hydraulic system. This 

simplification neglects the influence of forces transmitting through the drive gear and 

coupling into the electric motor or other prime mover. The advantage of this assumption is 

that if the forces on the interior of the casing separating the interior moving parts from the 

casing can be accurately modeled, then the moving parts can be removed from the acoustic 

simulation and be replaced by the equivalent forcing functions. The main components are 

shown in Figure 3.4 for Reference Pump #1. 
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Figure 3.4 Pump geometry for acoustic simulation. 

 First, to account for forces on the lateral bushings, the force on the balance side of 

the bushing must be modeled. This is accomplished through calculating the effective area 

and center of force application for both the high pressure and low pressure balance areas 

as shown in the following figure. Note that the seal area dividing the balance side of the 

pressure plates is not colored red for clarity, but it is included in the high pressure area 

calculation. 

 

Figure 3.5 Balance areas on case side of lateral bushings. 
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 The behavior on the balance side of the lateral bushings opposes the forces applied 

in the lateral gap. According to our simplifying assumption, only the forces applied on the 

case directly need to be considered, so the forces in the lateral gap are only considered 

based on the effect they have on the balance area forces. The full areas of application for 

the high and low pressure are shown in profile view in Figure 3.6. 

 

Figure 3.6 Load areas for high and low pressure. 

The areas of case contact with the outlet pressure are shown in red and occur at the 

outlet port, around case radius of the gears according to the backflow (high-speed) groove, 

and the high pressure balance area on lateral bushing. This load pressure is shown in the 

following figures along with the frequency spectra which is computed to use as a forcing 

function. Pressures were converted to a total dynamic force by the total area of application 

derived from the pump physical geometry. The inlet pressure ripple area of application is 

also shown in Figure 3.6 in blue. This again includes the port area, the case around the 

gear, and the balance area around the lateral pressure plate and journal bearing. 

A summary of the force locations for one half of the pump is shown in Figure 3.7. 

In particular, the inlet load is shown in blue, the outlet load in red, four different transition 

region vectors in purple, and the journal bearing load in black. One of the main topics of 

study in previous optimization efforts is the pressure peak and depressurization in the 

meshing region. However, in order for the forces to propagate out of the body of the pump 

they must transmit either through the gears and into the journal bearings, or into the lateral 

pressure plates which are balanced with fluid pressure. Since the journal bearings and 
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lateral plate balance pressures are considered in the acoustic model, the pressurization in 

the TSV during meshing is already accounted for as long as the floating bearing assumption 

holds. 

 

Figure 3.7 The location of noise source loads inside the pump case. 

 First, there is the region influenced by the inlet region. The pressure load is 

simplified to a single force vector through the area of application specified from the 

geometry for Reference Pump #1. The time domain and frequency spectra are shown in the 

Figure 3.8 and Figure 3.9. 

 

Figure 3.8: Inlet pressure ripple total force 1000 rpm 100 bar. 
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Note that this is for the operating condition of 1000 rpm shaft speed and 100 bar outlet 

pressure where inlet is drawing through a simulated line from a tank at atmospheric 

pressure. Other operating conditions also considered for the acoustic model are 1000 rpm 

200 bar, 2000 rpm 100 bar, and 2000 rpm 200 bar. 

 

Figure 3.9: Inlet pressure ripple total force summed FFT 1000 rpm 100 bar. 

Again, this is the total force applied via the inlet pressure, converted to force through the 

geometrical area calculation, and then converted via FFT into a frequency spectra. It should 

be noted that the inlet ripple has a very small dynamic component as predicted by the 

model. 

Likewise, the outlet pressure ripple can be converted to a dynamic force using the 

total area of application which is 1.4 times larger than the area of application of the inlet 

ripple. This difference in area is emphasized in Figure 3.6.  
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Figure 3.10: Outlet pressure ripple total force summed 1000 rpm 100 bar. 

 

Figure 3.11: Outlet pressure ripple total force summed FFT 1000 rpm 100 bar. 

The transition region where the pressurization happens is shown in purple in Figure 3.6. 

The pressurization occurs at every 360º rotation of the pump for each TSV. An example 

simulated TSV pressure for a simulated revolution is shown at 1180º in Figure 3.12 which 

is showing the pressure over one revolution of the pump. 



56 

  

 

 

Figure 3.12: TSV pressure profile for Reference Pump #1. 

The transition region affects an angle along the casing equivalent to the arc length 

of one TSV back from the start of the backflow groove. As each chamber rapidly 

pressurizes, the pump case inside the current TSV sees a hammering effect from the rapidly 

changing pressure. To better understand and discretize this effect, the transition region was 

divided into 4 equal areas and considering the force applied by the fluid pressure on the 

center of each area as normal to the surface of the casing at the center of each of the four 

areas. These four areas help approximate the hammering effect of the fluid in the TSV 

pulsing from inlet to outlet pressures over time. These vectors are shown in purple in Figure 

3.7 and the following eight figures show the dynamic force profile at each point shown by 

the purple vectors. 

 First, the point closest to the inlet remains at inlet pressure for approximately 87% 

of the time as each TSV rotates past the fixed location on the case. This percentage is 

defined by the fact that each equivalent area is 25% of the length of one TSV and the fixed 

point being considered is at the center of each quarter of the TSV angle. This time profile 

is shown in Figure 3.13. 
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Figure 3.13: Gear 1 position 1 of TSV transition zone force 1000 rpm 100 bar. 

The frequency spectra is shown in Figure 3.14 which demonstrates that there are some high 

magnitude components and high frequency components in the force applied on the casing 

in the transition region. 

 

Figure 3.14: Gear 1 position 1 of TSV transition zone force FFT 1000 rpm 100 bar. 

The second point on the case in the transition region shows a balance of inlet to outlet 

pressure of approximately 63% to 37% respectively as explained for the previous point on 

the case. This is shown in Figure 3.15. 
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Figure 3.15: Gear 1 position 2 of TSV transition zone force 1000 rpm 100 bar. 

Likewise, the frequency spectra of the force is shown in Figure 3.16 which is now on the 

same order of magnitude of the outlet pressure ripple force. This consideration shows that 

the transition region is a significant contributor to the total dynamic noise sources in the 

pump. 

 

 

Figure 3.16: Gear 1 position 2 of TSV transition zone force FFT 1000 rpm 100 bar. 

The third position on the case in the transition region is shown in Figure 3.17. This is nearly 

an inverted image of Figure 3.15 since its position on the case is a reflection over the 

centerline of the transition region from the previous point. 
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Figure 3.17: Gear 1 position 3 of TSV transition zone force 1000 rpm 100 bar. 

The very similar transition region frequency profile is shown in Figure 3.18. 

 

Figure 3.18: Gear 1 position 3 of TSV transition zone force FFT 1000 rpm 100 bar. 

Finally, the fourth point in the transition region is shown in Figure 3.19. This position is a 

reflection over the TSV arc angle centerline of the position for the force profile shown in 

Figure 3.13 which shows that the four points selected are a reasonable and fair estimate of 

the changing dynamic force loads in the transition region. 
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Figure 3.19: Gear 1 position 4 of TSV transition zone force 1000 rpm 100 bar. 

The frequency spectra for the fourth point on the case in the transition region is shown in 

Figure 3.20. 

 

Figure 3.20: Gear 1 position 4 of TSV transition zone force FFT 1000 rpm 100 bar. 

Different numbers of points and areas were evaluated for the transition region and they 

showed that the four points are sufficient for capturing the dynamic behavior of the force 

load in the transition region. For greater definition, a similar method to the area subdivision 

shown in the previous eight figures could be used for the entirety of the pump, but that 

would excessively complicate setting up the simulation. 
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 Similar loading forces were evaluated for the driven gear transition region, but they 

are effectively identical to the load conditions for the drive gear since the pressurization 

timing for the pump is symmetric between gear 1 and gear 2. For the sake of space, the 

forces for the transition region on gear 2 are omitted. 

 The final loads considered are those calculated by the total force on the journal 

bearings in the pump. The total load of the bearing is converted to a single force vector as 

shown in Chapter 2 and this net force on each bearing is shown in black in Figure 3.7. The 

time transient force on the gear is the summation of the net pressure loads on the gear for 

gear 1 and is shown in Figure 3.21. 

 

Figure 3.21: Gear 1 total bearing force summed 1000 rpm 100 bar. 

The frequency spectra for the gear 1 total bearing load is shown in Figure 3.22 which shows 

a magnitude comparable to the total force applied by the outlet ripple. 
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Figure 3.22: Gear 1 total bearing force summed FFT 1000 rpm 100 bar. 

Gear 2 is the driven gear, which is also reacting the force transmitted through the contact 

points between the gears. This results in a higher required bearing force than the driven 

gear as shown in Figure 3.23. 

 

Figure 3.23: Gear 2 total bearing force summed 1000 rpm 100 bar. 

This also results in the frequency spectra shown in Figure 3.24. 
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Figure 3.24: Gear 2 total bearing force summed FFT 1000 rpm 100 bar. 

 The bearing forces are then split in half assuming a symmetric loading of the 

journals at either end of the gear shafts. 

Summarizing the previous figures and also showing the load conditions for all four 

operating points are shown in Figure 3.25. 

 

Figure 3.25: Summary of loading forces 

This emphasizes that the transition regions where the pressurization happens and the 

SBN source of the bearing load are large sources of noise inside the system and when only 

the body of the pump is considered, the outlet ripple is actually smaller than the other loads. 

However, if hydraulic lines are also included, the contribution of the outlet load will 
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increase with respect to the total noise generation. More so, compared to the outlet ripple, 

the other sources of noise predicted by the model have much larger high-frequency 

components which are likely to interact with the structural resonances of the solid body of 

the pump while the outlet pressure ripple is more likely to interact with the much lower 

resonances of other components in the system as is discussed in following sections. The 

main loads of the pump increase with both an increase in speed and also with an increase 

in outlet pressure. It should be noted that increasing the pressure in the pump model does 

not increase the dynamic component of the predicted outlet pressure ripple. So the total 

dynamic force on the outlet region of the pump does not actually change with increasing 

the outlet pressure for this specific pump design and attached lines. Increasing the pump 

speed not only increases the respective pressure derivative terms, but it also increase the 

number of pump oscillations in a predetermined time period. These two terms are 

interrelated and drive the linear increase in dynamic loading forces with speed. 

 

3.3 Structural Model and Load Attachment 

A structural model of the pump is required for determining the potential resonant 

behavior of the pump under operating loads. For the acoustic model, the body of the pump 

is assembled in ANSYS as shown in Figure 3.26. The internal components are neglected 

for the current stage of the model. This study was done for Reference Pump #1 which is 

made of a cast iron body. 

 

Figure 3.26: Body case assembled for meshing. 
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Before meshing, the two bodies are merged along contact surface, the openings in the 

model are blocked with 1cm of solid material, and the small surface details shown in the 

previous figure are removed to end up with the mesh shown in Figure 3.27. 

   

Figure 3.27: FEM mesh for example reference pump. 

The goals for the FEM mesh are to accurately model the modal harmonics and the surface 

vibration of the pump body.  

From the FEM model, the mode shapes and modal resonant frequencies can be 

calculated. Various refinements of the meshing parameters were studied until convergence 

in the predicted modal frequencies was reached. A FEM analysis of the reference pump 

body shows that all of the constrained modal frequencies of the body are predicted to be 

above 5000Hz. A first step interpretation of the FEM results predicts that the structural 

resonances have a minimal interaction with the excitation frequencies since the excitation 

frequencies in the FBN are dominated by frequencies below 5000 Hz. Since the excitation 

frequencies are far below the main resonances of the structure, a simple model may also 

be considered for the case of the particular reference external gear machine with structural 

resonances similar to as shown. However, for the general case, the full model is more 

suitable and robust for current and future work. 

 After evaluating the full mesh, a simplified pump body was also considered for 

more efficient computation during more case studies. This mesh is shown in cross-sectional 

view in Figure 3.28. This simplified mesh preserves the same geometrical dimensions of 

the original body while simplifying the amount of elements needed and hence the 
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simulation time by an order of magnitude. The material maximum frequency for the 

simplified geometry is 10 kHz. 

 

Figure 3.28: FEM mesh for simplified pump geometry. 

 The simplified mesh had attributes of 9954 elements including 5616 QUAD4, 956 

TRIA6, and 3382 TETRA10 elements. The loads were attached to the simplified mesh as 

shown in Figure 3.29. One side of the mesh was constrained along the edge where the 

pump flange is usually located. The inlet and transition regions were applied to the interior 

surface facing the inlet side as shown in Figure 3.29 in purple, while the outlet force was 

applied on the opposite side, and the four bearing forces were applied to the lateral interior 

faces. 

 

Figure 3.29: Simplified internal geometry 
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The load point node selection on the mesh of the real pump geometry is shown in Figure 

3.30 where the outlet of the pump is shown in red on the right, the inlet in blue on the left, 

the transition region forces in a purple arc, and the bearing loads in orange. The node 

selection cannot be perfect on a real mesh, so the nearest suitable node was selected for 

each force. 

 

 

Figure 3.30: Location of force vector application on pump mesh 

Modal frequencies are the frequencies that structural components will react at most 

strongly if the structure is excited periodically. Mode shapes are the forms the structure 

will take when it vibrates at a modal frequency. The first six modes are called free body 

modes, which displacements and rotations around the primary orthogonal XYZ axes. 

Several example mode shapes from higher frequencies are shown in Figure 3.31 for the 

unconstrained pump body. The magnitude of the modal response is dependent on the 

magnitude of the exciting force, so the scale of deflection is arbitrary. The red regions 

indicate areas of more deflection, while the blue areas indicate regions of low deflection. 

In practice, the vibration of the pump geometrically at a particular frequency will see the 

areas of high and low deflection exchange places in one cycle of vibration. 
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Figure 3.31: Four example mode shapes. 

 The simplified geometry must be compared to the original geometry in terms of 

resonance frequencies. Both geometries were meshed as shown in the following figure. 

 

 

Figure 3.32 Meshed and constrained geometries. 

The geometries were tested with and without constraints and with different mesh types. 

The selected mesh and constraint is shown in the previous figure with the blue areas 

constrained to ground. These meshes are shown as the light blue (constrained standard) 

and light red dots (constrained simplified cube) in the Figure 3.33. 
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Figure 3.33 Predicted resonant frequencies. 

Constraining the mesh moves all frequencies up in magnitude due to increased stiffness of 

the system. The free body modes now act in response to the constrained points and act at 

non-zero frequencies. The first three free-body modes are shown in Figure 3.34 for both 

the simplified and the full mesh after constraining the bodies. As can be seen, the simplified 

mesh follows the same general deflection shapes as the full pump geometry. 

 

Figure 3.34 Comparing free-body modes. 
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 Again, the magnitude of the modal response is dependent on the magnitude of the 

exciting force, so the scale of deflection is arbitrary. The red regions indicate areas of more 

deflection, while the blue areas indicate regions of low deflection since they occur in the 

constrained part of the pump. In the constrained modal analysis, the rest of the pump body 

can only move relative to the constraint. The standard geometry is nearly cubic in shape, 

while the simplified geometry is exactly cubic. The simplified geometry therefore has an 

increased concentration of degenerate modes due to the symmetry of the system. Breaking 

up the symmetry and using a more intermediate simplification is likely a useful extension 

of the work in order to examine the influence of having multiple resonant modes centered 

on narrow bands of frequency in the simplified model. 

 In order to better investigate structural effects, a deeper examination of modal 

harmonic modeling was considered. In the modal analysis, constraint study, the impact of 

applying constraints to the body during the modal analysis was investigated. The resonant 

frequencies of the simplified body are very close to those of the regular mesh. Even more, 

the location in the frequency domain of the first several resonant frequencies is highly 

dependent on the stiffness of the constraint that is chosen. From this, it is concluded that 

the simplified geometry is sufficient for various case studies to be completed using the 

loading conditions for Reference Pump #1. Modal damping was set to 2% for all modes 

which is the recommended value and also similar to the experimental values between 

0.89% and 4.11% for the first 4 modes on an axial piston motor measured by Schleihs 

(2014). 

The final steps to the acoustic model are the boundary element surface mesh shown 

in Figure 3.35. For the simplified geometry, using the external surface elements of the 

simplified rectangular volume as the BEM mesh is sufficient, while for the more complex 

geometry, the boundary element method is advantageous for computation. 
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Figure 3.35 Boundary element surface mesh. 

The BEM mesh size is chosen to 5mm maximum element size in order to achieve a material 

maximum frequency above 10 kHz. 

Note that the acoustic model treats a reflecting plane (the wall or floor) the same 

way as a symmetry line. Instead of actually calculating the reflection at a surface, it places 

a mirror image of the model on the opposite side of the plane and in this way achieves the 

same effect. The field point mesh can be similar to the microphone grid on the real test 

chamber, or much finer for a close look at noise features that are infeasible to 

experimentally measure due to the time it would take. A standard ISO sound power mesh 

of a 1m radius sphere centered at the pump was chosen for ease of analyzing directionality 

in the results. 

 

3.4 Potential for Structural Resonance in the Attached System 

 The internal dynamic forces in the pump are the main driving sources of noise in 

the system. However, the attachment of the pump to the system is a key determining factor 

in how the noise propagates out to the environment. The three dimensional structural 

harmonics of the attached pipe structures have an impact on the vibration and acoustic 

radiation from the system. A FEM model of a 1m steel pipe was developed based on the 

pipe geometry shown in Figure 3.36 in order to investigate what that influence might be. 

This pipe was selected as it is the same as used in the pressure ripple experimental 

validation shown in Chapter 2. 
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With a better understanding of the fluid harmonics described in Chapter 2, focus 

can now be placed on the interaction between the fluid and the structure of the steel pipe. 

The main structure exhibits sinusoidal geometric behavior at its own modal frequencies 

similarly to the pump structure. The shape is affected by both the geometry and material 

properties of the pipe as well as how it is constrained to the pump or other structures. 

 

 

Figure 3.36 FEM model of the pipe with results. 

With the 3D model, it is difficult to balance number of elements with sufficient elements 

across the pipe wall thickness due to the high length/diameter ratio of the pipe. Several 

example mode shapes are shown in Figure 3.37. 

 

Figure 3.37 Higher order mode shapes for steel pipe. 

Again, they take on the form of sine and cosine waves in the various geometric directions. 

The present work considers the effects of the lines on the total noise radiation. As 

shown in Figure 3.38, the steel pipe is predicted to have more interacting harmonic 

behavior between the excitation frequencies and the structural modes due to the presence 

of structural harmonics in the lower frequency range. This leads to the conclusion that the 
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lines are very important acoustically and selection of line lengths and materials should be 

a primary design criteria for quiet hydraulic systems. 

 
Figure 3.38 Simulated modes of fluid and pipe resonant frequencies 

Due to the time constraints of the current study and the stated focus of the work on the 

displacement machines, the contribution of the attached lines should be noted for further 

study and used for comparison. However, it will not be under consideration for the main 

acoustic model of the pump. Likewise, the pump coupling via flange to a test bed or 

working machine is another potential path of noise propagation through solid structures as 

described in Chapter 1. However these also are left from the current considerations and are 

a potential path for future work on the topic. Several details from a similar methodology 

considering a test bed frame were shown by Schleihs and Murrenhoff (2015). 

 

3.5 Acoustic model results 

The acoustic model considers the interaction of the loads with the predicted 

resonances of the structures. For radiated sound power, sound intensity is the multiplication 

of sound pressure and the velocity field where:  

𝐼 = 𝑝̂𝑣̂𝑛 

 The frequency function as applied to the structure and the resulting radiated sound 

power is shown in Figure 3.39. This was calculated every 10.8 Hz between 0 Hz and the 

top frequency threshold of 20 kHz. This margin was set in the loading functions to achieve 

a balance between number of frequencies and simulation time. However, the accuracy of 

the simulation decreases above 10 kHz due to mesh size limitations. The noise floor 

between pump frequencies is below -200 dB and hence is not shown in the results for focus 

on the main peaks. For further optimization of the simulation, the frequency points in 

between load frequencies can even be removed from the acoustic calculation. The 

 (3.7) 
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difference between considering all loads as described in section 3.2 and considering the 

outlet load only in the calculation is shown. 

 

Figure 3.39 Simulated sound power of total loads vs outlet only 

 This shows a strong dependence in the acoustic radiation prediction on the source 

loads. Also, the first resonance of the simplified structure occurs at approximately 4kHz, 

so the structure begins to radiate more efficiently as that frequency is approached. 

Furthermore, the total sound power prediction is in a resonable range only when all of the 

load conditions are considered. When only the outlet load is considered, the predicted 

sound power is unreasonable in magnitude which indicates the importance of including all 

internal noise sources. 

 The sound pressure on the field point sphere centered on the pump is shown in 

Figure 3.40 for the first pump frequency at 216 Hz. Note that the positive X direction is 

the inlet of the pump, the negative X is the outlet of the pump, and the positive Z direction 

is the contrained surface. The elements are shrunk so that the sound pressure on the back 

side of the sphere can be observed. 
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Figure 3.40: First load frequency 216 Hz at 1000 rpm 100 bar. 

The sound pressure predicted shows a bias towards the inlet side of the pump, which is 

expected due to the higher point forces applied on the inlet side of the geometry. Also, 

since the modes that are being excited are the lowest resonant frequencies around 4000 Hz, 

the radiation of the pump resembles the motion of the pump body according to translation 

in the x direction resulting in the sound pressure resembling an acoustic dipole. The second 

and third pump forcing frequencies are shown in Figure 3.41 and Figure 3.42. 
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Figure 3.41: Second load frequency 433 Hz at 1000 rpm 100 bar 

 

 

Figure 3.42: Third load frequency 649 Hz at 1000 rpm 100 bar  

A higher fidelity sound power field points was also considered. The result for the third load 

frequency is shown in Figure 3.43 for the same orientation of the pump. Again this shows 

the trend towards higher sound pressure and sound power for the inlet surface of the pump. 
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Figure 3.43: Third load frequency 649 Hz at 1000 rpm 100 bar finer mesh. 

Comparing other operating conditions to the all loads 1000 rpm 100 bar case are shown in 

Table 3.1. This indicates the corresponding increase in radiated sound power at each of the 

four operating conditions considered. 

Table 3.1 Acoustic model results 

 

1000 rpm  

100 bar 

2000 rpm 

100 bar 

1000 rpm 

200 bar 

2000 rpm 

200 bar 

Simulated SWL for Reference Pump #1 67.6 dB 69.9 dB 71.8 dB 79.0 dB 

Simulated dB change ref +2.3 dB +4.2 dB +11.4 dB 

 

 Experimental measurements for sound power on similar units saw a measured SWL 

of +4 dB at 2000 rpm 100bar, +2 dB at 1000rpm 200bar, and +7 dB at 2000rpm 200bar. A 

similar trend has also been seen in measured sound pressure level for a variety of pumps 

where there is a larger increase in measured sound radiation for an increase in speed 

compared to the simulation which is predicting the larger increase from an increase in 

pressure. Both simulation and experimental agree that there is a non-linear increase in 

radiated sound power when both speed and pressure are increased.  
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 A hypothesis for why the model under predicts the increase in SWL when speed is 

increased is that at high speeds the pump operation becomes more dependent on the 

interaction of the pump with the prime mover. This effect is not present in the acoustic 

model, which leads to the decreased accuracy of the model prediction.  

 A second conclusion would be that the experimental data includes radiation from 

the hydraulic lines and pressure. These components are in deep contact with the lower 

frequency components of the outlet and inlet pressure ripple. 

 The model is very useful for understanding the impedance of the structural elements 

and allows for further development of acoustic models that can be used as a transfer 

function for noise from internal sources out to the environment. Also, it indicates the 

importance of including features which are difficult to model including internal part motion 

and mounting techniques. These features can have a large impact on the experimental setup 

while not affecting the acoustic model of the pump body. 

 Through acoustic modeling, a greater understanding of the phenomena of noise 

generation in EGMs can be found. The potentials of the research include applying new 

knowledge to improving gear pump designs through structural modifications, targeted 

quiet speed ranges, and general noise performance improvement. An additional benefit is 

in predicting noise improvements for prototypes designs before production. The primary 

goals of the continued research are to validate numerical noise predictions in each domain 

of fluid, structure, and air by comparing to experimental data. 

 The previous work on fluid-borne noise included optimized designs of prototypes 

with internal additional volumes or internal holes connected to TSVs and ports. Also there 

were efforts for reduction of flow and pressure pulsations at outlet while still maintain 

efficiency and performance. The acoustic performance of the new designs can now be 

predicted before prototypes are produced. More investigation is needed including 

comparing experimental results to simulation and gaining a better understanding of 

phenomena to relate force pulsations in different areas in the pump to noise. 
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3.6 Impact of modal damping 

 A final consideration is the impact of modal damping on the predicted acoustic 

radiation. The modal damping is applied individually on each resonant mode of the 

structure and this method is useful for both fast computation as well as evaluating the 

different effects of damping on a mode-by-mode basis as opposed to general Rayleigh 

damping as shown by Bianchi (2010). Schleihs (2014) measured modal damping of 

between 0.89% and 4.11% for the first 4 modes on an axial piston motor. This indicates a 

reasonable range of values for similar stiff structures. However, Schleihs measurements 

were completed with a case drained of oil, so an additional modal damping percentage of 

10% was also considered and tested using the acoustic model. The spectra for these results 

are very similar as shown in Figure 3.44, with the only difference coming near the first 

resonant frequency of the pump structure at 4000 Hz. 

 

 

Figure 3.44: Radiated sound power spectra depending on modal damping. 

 The summary of the predicted sound power as a function of modal damping is 

shown in Figure 3.45. This shows a decaying of the sound power as damping increases. 

While the modal damping for every mode is not the same, the reasonable range of values 

investigated here shows the range that the true physical pump might operate in while 

running. 
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Figure 3.45: Radiated sound power depending on modal damping. 

 Experimental observations show that the higher frequency components and smaller 

than the first few pump frequencies as measured in the ABN. The original hypotheses were 

that this was due to the presence of strong high frequency sources in the pump body. Since 

the hydraulic lines are not included in the simulation, the lower frequency components 

would be reduced in the simulation. An additional conclusion from the modal damping 

sensitivity study is that it is possible that high damping the pump body is also acting to 

reduce the sound power radiation at high frequencies. 
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4. EXPERIMENTAL INVESTIGATION OF AIR-BORNE NOISE 

  

 

 The goal of the experimental investigation test the ISO standards for sound power 

and simple noise measurements and to develop new experimental methods and analyses in 

order to determine the underlying phenomena behind the noise propagation through the 

system. This addresses the goal of driving improvements both in modeling and in design 

of new quieter displacement machines. The Reference Pump #2 was tested in order to 

determine the noise performance. A goal of the noise experiments was to compare the 

average sound power of several of the reference pumps to examine the differences due to 

manufacturing tolerances and small changes in the system. A new design for the lateral 

plates for Reference Pump #2 was also implemented with the housing and gear kit of the 

reference pump which was designed according to the optimization procedure presented by 

Vassena (2010) with a focus on lower outlet pressure ripple. This new pump is referred to 

as prototype 12 and is compared to the Reference Pump #2. This chapter introduces the 

test rig used for total sound power, discusses the measured results, and explores the effect 

operating condition has on the frequencies radiated by the pump.  

 

4.1 Anechoic Chamber Test Rig 

The first aim is to quantify the noise created by the reference external gear pump 

and the modified prototype pump and to study the effect different operating conditions 

have on the noise performance in terms of sound pressure and total sound power using ISO 

International Standards (1989, 1999, 2001, and 2003).   

The anechoic chamber hydraulic test rig circuit developed for this study is similar 

to the setup used in the pressure ripple experiments on the MPTR. The main difference is 

that the MPTR operates in an open circuit fashion. That is, the oil is drawn directly from 
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the tank. The anechoic room test rig is located some distance from the supply tank and thus 

has the fluid delivered to the inlet via a delivery pump. The main challenge involved in this 

is the integrity of the open circuit pump running on such a circuit. For stable operation of 

the relief valve and reliable delivery of oil to the test pump a supply pressure of 20 bar is 

chosen. A proportional orifice is used to realize a pressure drop from the supplied delivery 

pump down to near ambient pressure <1 bar. A proportional/integral closed loop feedback 

control system was built in order to realize the pressure drop from the approximately 20 

bar supply pressure down to 1 bar for safe pump operation. The circuit is shown in Figure 

4.1. 

 

Figure 4.1: Anechoic chamber test rig hydraulic schematic. 

A description of the components is shown in Table 4.1. 
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Table 4.1: Details of test rig components. 

# Description Details 

1 Inlet temperature 

sensor 

Omega K-type resistive thermocouple, range 0-120° C, 

accuracy 1% FS 

2 Electric motor SSB, 500 Nm, speed +/-3000 rpm 

3 Shaft speed sensor HBM MC60, max 5000rpm, 0.05 Accuracy class 

4 Shaft torque sensor HBM MC60, scale 0-500Nm, 0.05 Accuracy class 

5 Test pump Reference pump #2 external gear machine 

6 Inlet pressure sensor WIKA, 0-100 bar, accuracy 0.25% FS 

7 Line pressure sensor WIKA, 0-400 bar, accuracy 0.25% FS  

8 Flow meter VS 4 by VSE, gear type, 0-400 L/min, accuracy 1% FS 

9 Pressure relief valve Safety feature only, set to 300 bar. 

10 Proportional valve Hydraforce TS10-26A-8T-N-12DR proportional orifice 

11 Oil tank  Shell Tellus 32 oil, held to 52° C for 20 cSt 

12 Hydraulic accumulator  2 L accumulator to damp inlet, no added precharge 

13 Proportional valve Hydraforce TS10-26C-8T-N-12DR proportional orifice 

for pressure reducing to 1 bar 

14 Pressure relief valve  For setting inlet line pressure from delivery pump 

15 Maha hydraulic 

supply 

Delivery unit, 80 cc/rev, 1185 rpm axial piston 

machine 

 

 This test setup measures temperature at inlet, pressure upstream and downstream 

of pump, and flow rate downstream in the pressurized zone. Shaft speed and torque 

requirement for the pump was also measured. The outputs of sensors (6) and (7) are shown 

in Figure 4.2 for an example operating condition of 1000 rpm 100 bar. The operating 

conditions considered were from 500-2500 rpm and 50-250 bar. 
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Figure 4.2 Pressure ripple measured during 1000 rpm 100 bar testing. 

The complicated inlet pressure ripple which is caused by an interaction of the delivery 

pump (15) with the proportional valve (13) and the inlet accumulator (12). The primary 

frequencies are 110 Hz and its fourth multiple 440 Hz. The magnitude of the inlet ripple is 

very small with respect to the outlet ripple. 

 

4.2 Acoustic Measurements 

 The sound pressure and sound intensity are calculated in the same manner as Klop 

and Ivantysynova (2011) and use the same equipment shown in Table 4.2. 

Table 4.2: Description of noise measurement equipment. 

Item Type  Description  

Sound intensity probe  GRAS, three microphones Type 40A0 – Sensitivity 0.2 

dB ref 2∙10-5 Pa, ½“ diameter  

Pre-amplifier  GRAS, Type 26CB, ¼“ diameter  

Signal acquisition module  NI 9234, 4 channels, 51.2 kS/s per-channel maximum 

sampling rate, ±5 V input  

High speed USB Carrier  NI USB 9162 – bus powered carrier for portability  

Sound power source  B&K type 4205; SWL range 40-100 dB ref 10-12 W, 

frequency range 100 Hz to 10000 Hz.  

 

 The sound intensity probe used is shown in Figure 4.3. The noise measurements 

were made using two sets of microphone pairs. The two microphone pairs (three 

microphones total) for increased frequency range with reduced error in calculating sound 
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power. The blue padding around the third microphone pre-amplifier is for increased 

stability in clamping the probe at specific locations on the microphone grid. One pair is 

used for frequencies above 500Hz, and the pair farther apart is used for frequencies lower 

than 500Hz for greater accuracy. The measurements are made on a virtual surface 

enclosing the pump, and the entire setup is placed inside the semi-anechoic space.  

 

Figure 4.3: GRAS three microphone intensity probe. 

 Figure 4.4 shows a two dimensional view of the principle of measuring sound 

power. All noise generated by the source must leave the virtual boundary exactly once. The 

directionality of the sound is found by the phase lag between microphone pairs since the 

pairs are oriented perpendicular to the measuring surface. Moreover, the surrounding 

anechoic space does not allow reflections of sound back to the source so some 

characteristics of the measured sound field directionality can be used to observe the 

acoustic performance of the pump at discrete points. 
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Figure 4.4: Measuring sound leaving the virtual boundary. 

The primary phenomenon measured by the microphones is the sound pressure fluctuations. 

From this, the root-mean-square (rms) pressure can be found  

𝑝𝑟𝑚𝑠 = √
𝑝1

2+𝑝2
2+⋯+𝑝𝑛

2

𝑛
. 

Where n is the number of terms. According to the standard reference pressure pref = 20 µPa 

= pressure oscillation on the threshold of human hearing, the sound pressure level is 

𝐿𝑝 = 10𝑙𝑜𝑔10 (
𝑝𝑟𝑚𝑠

𝑝𝑟𝑒𝑓
)

2

𝑑𝐵 

Where 1 Pa oscillation = 94 dB is considered a loud sound, hearing damage can start at 

85 dB over long-term exposure. Note: 6 dB is a doubling of sound pressure oscillation 

level, (e.g. 2 Pa is 100 dB). The sound intensity is found from 

𝐼 = 𝑝̂𝑣̂𝑛 =  
𝐼𝑚(𝐺𝑥𝑦)

𝜔𝜌0∆𝑟
 

Which is pressure times velocity, which is found based on the phase lag between the two 

microphones in the pair through the cross-spectral density term G. Sound power through 

the surface (positive if leaving) can be found by summing the intensity over the surface 

areas such that the total sound power is given by 

 

(4.1) 

(4.2) 

(4.3) 
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𝑊 = ∑ (𝐼𝑛𝑖𝑆𝑖)
𝑁
𝑖=1           𝑊[𝑑𝐵] = 10𝑙𝑜𝑔10 (

𝑊

𝑊𝑟𝑒𝑓
) 

 The reference sound power level is Wref = 1e-12 Watts. The measurements are 

completed according to ISO 16902-1 (2003) standard for measuring sound intensity and 

deriving sound power of pumps and motors. This allows for mappings of Sound Pressure 

Level (SPL) and Sound Power Level (SWL) as demonstrated in the following image made 

during a test setup calibration experiment. This was made from 62 total measurements on 

four planes shown in Figure 4.5 with data taken at 50 kHz sampling for 4 second periods. 

 

Figure 4.5 Locations of four measurement surfaces. 

 The advantage of this method is that the total sound power of the pump can be accurately 

measured without an impact of the structures and equipment outside of the grid volume. 

The main disadvantage is the time required for each operating condition when using a 

single intensity probe and manual movement of the microphones. This leads to a very 

coarse grid of operating points which is not good for spotting spatial trends related to 

changing speed or pressure and introduces more uncertainty into the measurements.  

 

4.3 Acoustical Testing Results 

 The following are the results of many noise measurements completed on the 

reference pump. Four identical pumps of were acquired for a comparison of the consistency 

(4.4) 
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with respect to manufacturing tolerances. The representative pump was tested. The SPL 

mapping shows the general location of the highest sound pressure levels, while the SWL 

mapping shows where the most energy is leaving the surface. An example operating point 

is shown in Figure 4.6. 

 

Figure 4.6: Noise measurements, reference pump 1000 rpm, 50 bar. 

 The high SPL near the edges is due to a concentration of sound pressure leaving 

the surface near the boundary due to reflections from nearby surfaces inside of the 

boundary. The SWL map shows a sum value (83.1 dB in the above case) which can be 

used as a characteristic descriptor of the total pump noise generated. The rough distribution 

of the sound intensity plot shows why understanding the energy leaving the pump through 

measurements is very difficult since there are pockets of high intensity next to pockets of 

low intensity scattered over the virtual surface. 

 A goal of the noise experiments was to compare the average sound power of several 

of the reference pumps to examine the differences due to manufacturing tolerances and 

small changes in the system. Figure 4.7 shows the total sound power of four different 

manufacture Reference Pump #2 under the same set of operating conditions. This is to test 

the robustness of the test setup and repeatability of the pump design and manufacturing 

with respect to noise performance. Two speeds and two outlet pressures were selected so 

that the impact of changing speed or pressure can be observed independently. Also shown 

is the result for the new prototype pressure plate pump where the only modification from 
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the base design for Reference Pump #2 is the geometry of the grooves on the lateral plates 

similar to what is shown in Figure 1.7. 

  

Figure 4.7: Variation in SWL across different pumps. 

 The first three pumps performed very similarly in terms of sound power across all 

measurements, as well as the test at 1000 rpm and 100 bar for pump four to test for 

consistency with the prototypes. The average SPL in Figure 4.8 shows a similar trend to 

the sound power in that the standard pumps is very similar and the prototype pump is less 

at the 1000 pm 200 bar operating condition.  

 

Figure 4.8: Variation in average sound pressure level across different pumps. 
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 This is a very good result showing a large improvement of the prototype pump 

where the only change made was introducing the new lateral pressure plates. The mean 

value and standard deviation of the standard pump is shown in Table 4.3 to compare the 

statistical significance of the prototype measurements according to an expected normal 

distribution from accumulation of manufacturing tolerance and acoustic measurement 

errors. The 1000 rpm 100 bar and 2000 rpm 100 bar operating conditions for the prototype 

are shaded gray to indicate that there is very insignificant change from the standard pump. 

The 2000 rpm 200 bar condition is shaded light red to indicate that there may be slight 

increases in the sound power at this condition with respect to the standard deviation. The 

1000 rpm 200 bar operating condition is shaded green to indicate the large improvement 

in the sound power at that operating condition. 

 

Table 4.3: Comparison of total sound power for standard and prototype EGPs. 

Operating point 

SWL average of 

Reference Pump 

#2 [dB] 

SWL standard 

deviation [dB] 

Prototype design for 

Reference Pump #2 

pump SWL [dB] 

1000 rpm 100 bar 83.8 0.6 83.0 

1000 rpm 200 bar 89.2 0.7 82.8 

2000 rpm 100 bar 87.5 1.5 88.1 

2000 rpm 200 bar 87.9 0.4 89.4 

 

 The table shows that for 1000 rpm 100 bar and 2000 rpm 100 bar, the prototype 12 

sound power falls within the first standard deviation of the mean value of the standard 

pump. This leads to the conclusion that statistically, the prototype pump is very similar to 

the standard pump at these operating conditions considering manufacturing tolerances. 

However, at 2000 rpm 200 bar, the prototype has actually slightly higher total sound power, 

which is 3.4 standard deviations away from the standard pump and is statistically very 

likely that it generates slightly more noise than the standard pump. This result is less 

significant because the standard deviation of the standard pumps is the smallest at this 

operating condition. If the average standard deviation was used, it would fall just outside 
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of one standard deviation from the mean. The best result among these four operating 

conditions occurs at 1000 rpm 200 bar. For this operating condition, the prototype pump 

created 6.4 dB less total sound power compared to the average and significantly lower 

amounts of noise than the standard pump. This amount of improvement is statistically 

significant and presents an interesting case to focus on to explain the difference between 

the SWL at various operating points. 

 A comparison of the average SPL and total SWL for the standard and prototype 

pump at 1000 rpm 200 bar are shown in Figure 4.9 and Figure 4.10. 

 

Figure 4.9: Sound pressure maps for standard (left) and prototype (right). 

 The SPL shows an overall depression in the sound pressure across the grid. 

 

Figure 4.10: Sound power maps for standard (left) and prototype (right). 

 The results from the acoustic model did not have a favorable magnitude comparison 

to experimental sound power measurements due mainly to the differences between the 

idealized model boundary conditions compared to the real experimental setup. The main 

0
50

100
0

50

100
0

50

100

 

Sound Pressure Map
SPL = 80.0284 dBA ref 20E-6 Pa

 76

78

80

82

84

0
50

100
0

50

100
0

50

100

 

Sound Pressure Map
SPL = 77.5886 dBA ref 20E-6 Pa

 76

78

80

82

84

0
50

100
0

50

100
0

50

100

 

Sound Intensity Map [dB ref 1E-12 W/m2]
SWL = 90.0605 dB ref 1E-12 W

 

70

75

80

85

0
50

100
0

50

100
0

50

100

 

Sound Intensity Map [dB ref 1E-12 W/m2]
SWL = 82.7683 dB ref 1E-12 W

 

70

75

80

85



92 

  

 

differences include the presence of hydraulic lines, the attached electric motor, and the 

frame of the test rig. These structures contribute to both noise generation and noise 

propagation.  

In the case of increasing the outlet pressure, typically the magnitude of the pressure 

ripple increases and thus the noise does also. For the case of increasing speed, the pump 

also becomes louder. The hypothesis was made that the noise generation between two of 

the measured points in Figure 4.13 is not linear with increasing speed or pressure. To test 

this, additional data at a finer resolution of pressure and speed points was taken at the single 

representative microphone location shown in the following section. 

 

4.4 Representative Point Comparisons 

 Since the prototype pump only showed an improvement in the SWL at one of the 

four operating conditions, further studies were made to gain a deeper understanding of the 

noise characteristics. In order to make comparisons at a finer set of operating points, a 

single representative point is chose that reflects the average value of sound pressure level 

(SPL) at many points as shown in Figure 4.10. Taking measurements of noise on the 62 

point grid is time consuming due to the manual movement of the microphone, so this 

experiment was chosen in order to gain a good understanding of the pump noise 

performance at a large variety of operating conditions.  

 The location of the point was chosen according to the following requirements. First, 

it must be far away from any features that could affect the microphone near field. Second, 

it must accurately reflect the average values of both the sound intensity plots and also the 

sound pressure plots for nearly all the available operating conditions. At the time that the 

representative point was chosen, sound measurements had been completed at twelve 

different operating conditions with at least four points repeated for three different pumps. 

According to these results, the point at X=1 Y=3, Z=0 was chosen according to the grid 

and shown in Figure 4.11. For the representative point, the magnitudes of the sound 

pressure cannot be reliably used for characterizing the total pump performance, but the 

frequency content can be analyzed on a finer set of operating points due to the increased 

speed of measurements when taking a single point instead of the entire 62 point grid.   
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Figure 4.11: Representative point location on noise measurement grid. 

A set of measurements was completed at 50 bar outlet pressure with speeds 

changing from 500 to 2500 rpm, and the other set was completed at 2500 rpm changing 

pressure from 30 to 200 bar. Figure 4.12 shows the data taken with all three microphones 

for two separate pumps at the same representative point. Since there is good agreement, we 

can make the conclusion that the pumps under consideration perform within reasonable 

variation of the same acoustic profile taking into account manufacturing and assembly 

tolerances. In this case, the measurements for one pump can be considered as descriptive 

of trends for the pump in general. The six lines in the figure represent each of the three 

microphones used in the measurement with two colors of each line because the experiment 

was repeated for two different pumps. The figure is an interesting result since it shows the 

pump as it passes through different frequency regimes of the components as the pump 

speed increases and there is excellent agreement between the two pumps. This will be 

explored in more detail in this section and the next chapter. 
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Figure 4.12: Average SPL for three microphones for two different pumps. 

 At constant pressure (50 bar), and varied RPM (from 500 rpm to 2500 rpm). There 

is a relatively coarse resolution in pump speed (every 50 rpm), and a very fine resolution 

in frequency due to the high sampling rate and long measurement period (Fs=50 kHz, T=~4 

s). Figure 4.13 highlights the frequency content that appears at multiples of the primary 

pressure ripple in the form of angled lines on the graph. Lines perpendicular to the 

frequency axis on the graph show frequency content present at all operating speeds. These 

lines are due to system and structure that appear regardless of excitation frequencies.  
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Figure 4.13: Speed-dependent PSD of ABN with 50 bar outlet pressure 

A higher resolution (every 10 rpm from 500 rpm to 2500 rpm) of measurements at the 

representative point were recorded for the prototype pump with the same outlet pressure of 

50 bar which is shown in Figure 4.14. 

  

Figure 4.14. PSD of measured ABN at representative point for prototype 

 The frequency features due to the speed of the pump shaft and due to the number 

of teeth can be clearly seen. The vast majority of the energy is located at the multiples of 

the shaft frequency and the frequency of the teeth rotating past the outlet. 

 In order to better understand the dominating frequency features, the PSD is summed 

across frequency from left to right. This is shown in Figure 4.15. The total value can be 

seen from the value reached at the right-most edge of the graph. The peak levels occur at 

1000rpm, 1250rpm, and 2000rpm. For speeds from 1000rpm through 2000rpm, the 

dominating frequencies in the ABN noise closely match those in the outlet FBN. For speeds 

above 2100rpm, the first frequency of the shaft becomes the dominant frequency. 

Hypotheses about pump performance can be made from this result. Mainly, the pump 

undergoes several regime changes when speed is increased. This leads to different 

 r1  f1 
f2 
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dominant frequencies at different speeds. Furthermore, the shaft frequency plays a large 

role in the noise at higher speeds above 2000rpm. 

 The presence of shaft frequencies is consistent with results presented by Bonanno 

(2008) and points toward further study into the effect of the journal bearing and shaft load 

on ABN at higher speeds. 

 

Figure 4.15. PSD summed over the frequency domain from left to right. 

The comparison of the SPL for the reference and prototype pumps is shown in Figure 4.16. 

The SWL is also shown where the sound intensity is considered as representative for the 

measurement grid through the single element. 

 

 

Figure 4.16. Comparison of measured SPL and SWL for representative point. 
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 The SPL follows the same trend for both pumps, with small reductions in the overall 

value for the pump at speed 2 ranges from 1200rpm to 1800rpm where the FBN frequencies 

were dominant. The sound power was approximated from the single measurement point 

taken and shows that the prototype performed more poorly at speeds of below 700rpm and 

above 2000rpm. Nearly the exact frequencies of the FBN are the dominating effect in the 

ABN at the speed range from 1300rpm to 1800rpm. 

 To summarize, the reduced pressure ripple in the prototype pump was very effective 

at reducing the output power over a range of speeds from 1200rpm to 1800rpm where 

multiple peaks in the FBN are the dominating effect in the ABN. This result validates the 

initial assumption of the contribution of FBN in the ABN at those frequencies. However, 

at speeds where the pump frequencies are not dominating the radiated noise, improvements 

for the prototype were not seen. 

Another trend is shown that the prototype pump generates more sound power at the 

representative point at the key speeds of 1000 and 2000rpm while generating less sound 

power at most other speeds over the entire grid. This shows the danger of measuring sound 

power at a few discrete operating conditions, since improvements to the sound power are 

very dependent on the excitation frequencies. 

 It is likely that at some speeds, the prototype plates provide for as much as 10dB 

improvement in sound power. In the range of 1200 rpm to1800 rpm, the optimization for 

low pressure ripple of the pump results in a significant reduction in the measured sound 

power. At other speeds, which includes the reference speeds of 1000 rpm and 2000 rpm, 

the prototype pump may perform equally to, or worse than the standard pump. To 

summarize, the reduction of pressure ripple due to the optimization was very effective at 

reducing the output power of the pump over a range of speeds from 1200 rpm to 1800 rpm 

where multiple peaks in the FBN are the dominating effect in the ABN. However, at speeds 

where the other effects dominate the noise, the optimization was not as effective. 

 Another experimental exploration was done with a fixed pump speed of 2500 rpm 

and variation of outlet pressure with the standard pump. The previous figures showed the 

changes due to different features of the structure and system transmitting energy more 
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readily under differing excitation frequencies, but there are also changes that are due to 

increasing pressure while holding constant speed.  

 

Figure 4.17: Frequency distribution of noise pressure as a function of outlet pressure. 

The primary pump frequency features show up as vertical lines in this graph since 

the excitation frequencies are fixed with constant speed. The main conclusion that can be 

made from the figure is that the largest component of the noise at 2500 rpm is made up of 

low frequency content caused by the shaft oscillations. There is a mainly linear trend in 

Figure 4.17 of the power spectral density of the sound pressure slowly increasing as the 

pump outlet pressure increases as shown in Figure 4.18. 

 

Figure 4.18 Average SPL as a function of outlet pressure at 2500rpm 
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This trend is expected since the excitation force is increasing but the frequencies 

that are being excited are not changing. An interesting note is the higher SPL at very low 

pressures. The main hypothesis for this behavior is that the balance of the gears inside the 

case was designed for high pressure use, and hence is slightly less stable at extremely low 

pressures. Also that the increase in overall noise rises nearly linearly with increasing outlet 

pressure, but “turning on or off” of some frequencies at certain pressures can result in 

breaks from that trend when the operating regime of the pump changes under different 

loads. Predicting this distribution is less interesting in general than the variation of speeds 

case, and it is also more difficult since changes in performance due to pressure increase are 

less noticeable in the model than changes to speed. 

 

4.5 Conclusions of Noise Measurements 

 The measured SPL and SWL is very consistent between the four reference pumps. 

This demonstrates the repeatability of the measurements and also the repeatability of 

manufacturing with respect to noise generation.  Surface plots of total SPL and SWL across 

multiple operating conditions should be taken as discrete points and evidence towards 

overall trends, but linearity between the points on a lightly populated surface cannot be 

assumed as was demonstrated with the representative point measurements. The 

representative point measurements show that the true behaviour is not linear between 

varying speeds or pressure and that discrete noise graphs should be evaluated carefully. 

The results found allowed for a greater understanding of the noise characteristics of EGPs. 

To highlight the comparison to the model as discussed in the previous section. The 

model predicted no increase in SWL for increasing the outlet pressure from 100 bar to 200 

bar with both simulations at 1000 rpm. The experimental data averaged over multiple 

measurements show that the total SWL increases by 3.5 dB by measuring the entire sound 

grid at the same two operating conditions. Experiments were also completed increasing the 

speed to 2000 rpm and a 4 dB increase in SWL was measured over the 1000 rpm operating 

condition with the outlet pressure set to 100 bar for both experiments, which is less than 

what was predicted by the simulations. First, this shows that the model still has much room 

to improve in order to better match the trends seen in the experiments. Second while 
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comparing the trends is useful, the experimental setup is influenced by much more than 

just the pump body. The SWL measured includes influences from the attached electric 

motor and hydraulic lines present in the real system even though the measurement 

technique is designed to limit this influence. This means that the absolute SWL value for 

the measurements and simulations cannot directly be compared to simplified model 

predictions. This also motivates deeper experimental studies in order to better understand 

the features of the pump and the system as they respond to changing operating condition.
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5. MULTI-DOMAIN NOISE PROPAGATION EXPERIMENTS 

  

 

 This chapter documents the research efforts towards better understanding the 

different noise components present in an experimental system. This experimental analysis 

attempts to leverage all the previous measurements and modeling information in order to 

investigate the interaction of the system and structures with the sources of noise. The need 

for new methods for identification of noise sources and transmission is evident in order to 

direct future modeling and experimental efforts aimed at reducing noise emissions of 

current fluid power machines. This goal is accomplished through the formulation of noise 

functions used to identify contributions and transfer paths from different components of 

the system including Reference Pump #1. 

 

5.1 Background 

 A new approach for evaluating the noise of external gear pumps was developed. 

This method is similar to the transfer path analysis approach used by Plunt and by Citarella 

(2005) both in experimental and in modeling applications, where they focused mainly on 

automotive applications instead of  EGMs and the goal was to determine correlations and 

influences between one part of a complex system and another. One established application 

of a transfer path approach has been implemented by Siemens PLM (2015) software 

evaluating similarities in frequency content between different parts of a complex system. 

In hydraulic applications, frequencies that are present in one domain such as the FBN may 

not propagate into the structure very strongly and hence may not be important factors in 

the SBN or ABN. Likewise, the resonant frequencies of structures and geometry of the 

system (such as fluid volume harmonics) may play a large role in the total ABN radiated 

due to resonant behavior. The present work seeks to build on those efforts and combine 
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with techniques previously presented in order to gain a cohesive picture of noise 

propagation using standard instrumentation and new data processing methods. This allows 

for a simple and fast analysis to extract more detailed information about the performance 

of the system than typically used methods. 

 The experimental method for noise transfer path analysis was developed and tested 

on a simple hydraulic system composed of reference external gear pump #1, attached lines, 

and loading valve. Pressure oscillations in the working fluid are measured at the outlet of 

the pump. Surface vibrations are measured at multiple locations on the pump and connected 

system. Finally, the radiated air-borne noise is measured at a fixed distance from the pump. 

A post-processing algorithm was developed to identify key frequency features present in 

each domain as well as the transmission between different physical domains. The main 

outcomes of this research consists of a method to separate the contributions of fluid-borne 

noise or structure-borne noise to the overall air-borne noise emissions of the unit or system. 

The method developed for EGMs has general applicability to many different fields, and 

results allow for separation of the different noise contributions and better understanding of 

the overall noise emissions. 

 Measuring noise sources and transmission in the domains of the fluid, structure, 

and air can give deeper insight. The change in frequency content as the sound propagates 

through the system can then be better understood. The three domains are on different scales 

and units. On the fluid side, the oscillations are on the order of 1 bar, or 105 Pa. The 

structural vibrations range up to 20 m/s2 while the measured air pressure oscillations range 

up to only 2 Pa. 

 As part of the work previously shown, the modal frequencies can be estimated using 

finite element solvers or analytical methods. Also, from previous research, the system and 

structural harmonics of the pump and the attached system can be estimated. An analytical 

estimation of the delivery fluid volume harmonics and the structural response of the 

attached lines on the outlet was calculated and shown in Figure 3.38. Predicted resonant 

frequencies for the Reference Pump #1 geometry such as the internal plates for pressure 

compensation, the gears, and the pump body itself are also shown in Figure 3.33. 



103 

  

 

 The pressure and force loading due to the pump operation applied on the external 

system occur in an oscillatory way most strongly in the low frequency range below 2 kHz 

from multiples of the shaft speed and the number of pumping chambers. However for 

Reference Pump #1, the structural resonances of the body of the pump and the internal 

components are not expected to have a large effect until frequencies above 4 kHz. The 

simple system attached to the pump including the fluid in a 1m pipe and the structure of 

the steel pipe do resonate at frequencies close to the excitation frequencies and are expected 

to have a large effect on the result. 

 The excitation of the system and structures occurs in two primary ways. First, the 

modal interaction between the forces and the natural modes of the system and structures at 

their resonant frequencies. The second is the forced response where the system is 

responding at the forcing frequencies according to the impedance of the structures. This 

study attempts to simplify the investigation of the system performance by analyzing the 

measured frequency response in different physical domains according to the expected 

response. This includes comparing the measured results both to the expected excitation 

frequencies coming out of the oscillatory performance of the machine, and also comparing 

to the expected resonant response of different parts of the system. 

 The investigation of these effects allows for quantitative definition of what 

frequencies in the FBN, SBN and ABN strongly correlate to each other, as well as what 

frequencies do not strongly correlate across domains. This makes analysis of the 

contribution and separation of different noise effects possible. 

 

5.2 Data Processing Approach 

 The approach is directed at the motivation for the research, to better understand the 

sound generation and propagation from sources to the environment. This is accomplished 

by data processing methods on noise measured in each domain. The main idea of the 

approach is dividing each iBN frequency component of the measured noise in the working 

fluid, structure, or air domains (that is, the FBN, SBN, or ABN) with the corresponding 

frequency components in a different domain in order to better understand correlations and 

anti-correlations between noise and vibration across different physical domains. The 
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experiments are described in the next section, but the main detail of the measurements 

includes the Reference Pump #1 along with an attached steel pipe at the delivery side. 

Measurements representative of the FBN, SBN and ABN were taken of the fluid pressure 

at the outlet, the structural surface vibration on the pump and lines surfaces, and the 

radiated sound pressure. These were recorded for a large range of operating conditions on 

the reference test circuit.  

 The recorded analog voltages were scaled according to the specified sensitivity of 

each equipment which resulted in pressure and acceleration ripples with approximate 

ranges of 0 to 10 bar for the FBN, 0 to 20 m/s2 for the SBN, and 0 to 2 Pa for the ABN. 

The data is processed in several ways according to the following steps. 

 

5.2.1 Fourier transform 

 For comparing between results, one second of data xiraw is taken for each set iBN 

which stands for a measurement in either the FBN, SBN, or ABN domains used in the fast 

Fourier transform (FFT). Since there are three different sampling rates FS, taking the same 

period of data for all three domains yields the same amount of signal energy for the Fourier 

transform. 

Each time domain signal is centered on a mean value of zero.  

𝑥𝑖 = 𝑥𝑟𝑎𝑤 − 𝑚𝑒𝑎𝑛(𝑥𝑟𝑎𝑤) 

 The FFT is accomplished in MATLAB® without zero padding in order to control 

the output frequency resolution to the required specification. No windowing was included 

as the signal is highly periodic and the period is of sufficient length to minimize end effects. 

The amplitude was calculated as the absolute value of the FFT divided by the length of the 

signal vector. 

𝐴𝑖𝐵𝑁 = |
𝑓𝑓𝑡(𝑥𝑖)

𝑁𝐹𝐹𝑇𝑖
| 

The frequency vector can also be easily calculated as 

𝑓𝑖𝐵𝑁 =
𝐹𝑆𝑖

2
𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒 (0,1,

𝑁𝐹𝐹𝑇𝑖

2
+ 1) 

 Which is a linear frequency vector between zero and the Nyquist frequency at a 

frequency resolution of the Nyquist frequency divided by the number of points in the time 

 (5.1) 

 (5.2) 

 (5.3) 
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vector. When this is done for the period T time samples, this calculates the magnitude of 

the frequency vector at 1/T resolution with the same scaling for all three different domain 

measurements, even though they were recorded at different sample rates. Since small 

differences in sample rate can occur between different experimental setups despite system 

design, this is overcome by reading the data, calculating the sampling frequency from an 

average of the time domain increments, and then using the calculated sample frequency to 

define the length of one second of data. 

 

5.2.2 Power spectral density 

 For displaying the results and calculating signal power more accurately, Welch’s 

power spectral density (PSD) estimate can also be used. In this case, the time domain signal 

was segmented into eight partitions zero padded out to next higher power of two with 50% 

overlap. A symmetric hamming window of the segment length is applied to each partition 

before zero padding. This was accomplished using the MATLAB® according to the 

recommended parameters. The same frequency function is equivalent to the autocorrelation 

function of the Fourier transform of the signal.  

𝑃𝑖𝐵𝑁 = 𝐴𝑖𝐵𝑁𝐴∗
𝑖𝐵𝑁 

The PSD is then converted into decibel form 

𝑃𝑖𝐵𝑁,𝑑𝐵 = 20𝑙𝑜𝑔 (
𝑃𝑖𝐵𝑁

𝑝𝑟𝑒𝑓
2

) 

Where the values are scaled according to a chosen value for reference power. 

 

5.2.3 Cross-correlation 

 The cross-correlation function demonstrates the similarity in noise frequency 

between the internal pressure ripples, structural vibrations, and airborne noise for hydraulic 

units. Using the frequency spectra calculated using the Fourier transform, the similarity of 

the two spectra can be found using the MATLAB® cross-correlation function on the 

spectra.  

𝑃𝑐𝑜𝑟𝑟𝑖𝐵𝑁,𝑗𝐵𝑁 = 𝑥𝑐𝑜𝑟𝑟(𝐴𝑖𝐵𝑁 , 𝐴𝑗𝐵𝑁) 

 (5.4) 

 (5.5) 

 (5.6) 
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Only frequency content that is shared between both signals will be strongly present in the 

cross-correlation. 

 

5.2.4 Anti-correlation 

 The previous step attempts to emphasize the influence of shared frequency content 

between two signals, but additional knowledge can be gained by instead removing the 

shared frequency content. This step seeks to create a function in frequency that is 

independent of the shared frequency content between two signals. For example, to remove 

those frequencies from the ABN which are being directly driven by the FBN frequencies 

in the pump.  

 The different frequency spectra calculated by the FFT are scaled to the same 

relative magnitudes. The same frequency resolution was forced, and a chosen frequency 

band can be taken across all the data to decrease the resolution of the result if desired. This 

has the positive effect by reducing the influence small mismatches in frequency have on 

the scaled results when comparing two different measurements. The transfer equation 

simply takes the band averaged frequency spectra 𝐴𝑏𝑖𝐵𝑁 and divides by the spectra from a 

different domain measurement.  

𝑇𝑝𝑖/𝑗 =
𝐴𝑏𝑖𝐵𝑁

𝐴𝑏𝑗𝐵𝑁
 

 This allows for reducing the impact of shared frequency content between the two 

domains. Essentially calculating an averaged anti-correlation function between the two 

signal’s frequency spectra. This simplified approach has the negative result of negating the 

phase-dependent aspects of the compared frequency spectra. However, the goal of the 

paper is to investigate the similarities and differences between physical domains, and the 

simplified anti-correlation approach allows for separation of the potential paths for energy 

to propagate out of the system as noise. The remaining calculated frequency content is that 

which is not strongly correlated between the two domains, and a sum of this function across 

multiple operating conditions is used to determine the influence of different components 

in the system on the transfer path of noise. 

 

 (5.7) 



107 

  

 

5.3 Experimental Setup 

 The experiments were completed on the Multi-Purpose Test Rig at Purdue’s Maha 

Fluid Power Research Center. The hydraulic schematic circuit and locations of sensors are 

shown in Figure 5.1. The Multi-Purpose Test Rig allows for easier testing of more 

operation conditions for open circuit designs. 

 

Figure 5.1 Experimental test schematic 

A picture of the test setup with the pressure sensors, accelerometers, and microphone 

locations highlighted is shown in Figure 5.2. 
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Figure 5.2 Experimental test setup 

There are three pressure sensors in the steel pipe; an accelerometer on the pump body near 

the inlet, outlet, and at the end of the attached steel pipe; and a microphone at 55 cm from 

the pump. The frequency content was measured during a range of operation with a 100 bar 

outlet pressure in the steel pipe. The measured values from the different sensors is shown 

in the following figures.  

 The test setup is highly flexible and allows for rapid testing of different pump 

prototypes and system architectures. The test setup shown here is used for quantifying 

pump performance for comparison to model results predicting the outlet pressure ripple of 

the pump. Initially, total sound power measurements were completed in the semi-anechoic 

chamber as discussed in Chapter 4. Those measurements indicated that a single microphone 

measurement was sufficient for analyzing the frequency content of the radiated ABN. 

Measuring the ABN at a single location in a reverberant space limits the analysis that 

completed using the data due to the large contributions of the room geometry. The location 

directly pointed at the pump at 55 cm distance was chosen as it is as far away from the 

nearfield of the pump as allowed by the enclosure without being in close proximity to other 

components. However, comparisons between ABN measurements in the semi-anechoic 

space compared to the reverberant space showed good agreement in terms of frequency 

content. The ease of measuring the large number of operation conditions allowed by the 

single-location microphone was compared as a trade-off allowing the reduced robustness 
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of the ABN measuring methods. Additionally, the pump is now run in the design way 

drawing fluid directly from the tank, so the effect of the supply system is reduced compared 

to the experimental setup in Chapter 4. Adding sensors for measuring not only the FBN, 

but also the SBN and ABN allows for the deeper investigation of transfer paths and 

frequency-based correlations shown in the following section. The noise in three domains 

was recorded using the equipment shown in Table 5.1. 

Table 5.1: Sound measurement equipment 

Item Type  Description  

Pressure sensors Kistler type 603B1, 0-1000 bar, accuracy 1.1%FS 

Sampled at 15kS/s 

Accelerometers Three locations, 3-axis, PCB model 356A16, sensitivity 

10mV/(m/s2)  

Sampled at 15kS/s 

Sound intensity 

probe  

GRAS, three microphones Type 40A0 – Sensitivity 0.2 dB ref 

2∙10-5 Pa, ½“ diameter  

Sampled at 52kS/s  

GRAS, Type 26CB, ¼“ diameter pre-amplifier 

 

An operating range of 500 rpm to 2100 rpm was considered with 100 bar pressure at the 

pump outlet set using the variable orifice and fixed orifice plate. The inlet oil temperature 

was held to 50ºC.  

 

5.4 Measured Results 

 The FBN time signal is showing the ripple in pressure in the pipe caused by each 

gear tooth passing into the meshing zone. Show in Figure 5.3, three distinct ripples are 

shown which corresponds to ¼ of a shaft revolution in 0.015 s for the 13 tooth pump 

according to:  

𝑓𝑛 =
𝑛 ∙ 𝑛𝑐 ∙ 𝑟𝑝𝑚𝑠ℎ𝑎𝑓𝑡

60
  (5.8) 
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 For n higher multiples of the number of chambers multiplied by the shaft speed. 

Example time domain measured signals for each measurement of FBN, SBN, and ABN 

are shown in the following figures for a fixed operating condition of 1000 rpm 100 bar. 

The time domain signals at the reference operating condition shown below have been 

scaled to a reference value in each domain according to a fixed root-mean-square value to 

equalize the different domain signals. 

 

Figure 5.3 FBN time signal 

 The time domain signal for the same period showing the measured SBN is in Figure 

5.4. This signal is dominated by higher frequency signal content such that the FBN 

frequencies are difficult to see in the time signal. 

 

Figure 5.4 SBN time signal 

 Finally, the measured ABN for the same period is shown in Figure 5.5. The ripple 

of the main FBN frequency is clearly shown again, but there are many additional 

frequencies that were not present in the FBN. 
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Figure 5.5 ABN time signal 

 The frequency spectra for one second time samples were found using the FFT as 

discussed in the previous sections. They are shown after the FFT was applied for the three 

time domain signals in the three previous example figures. 

 Again, the FBN signal is the cleanest as expected from the time domain, with sharp 

peaks in the frequency spectra corresponding to the integer multiples of the pump 

frequencies. The first peak reaches a value of 0.2 on the magnitude axis. The lower vertical 

axis range was selected for comparison with the figures following for SBN and ABN.  

 

Figure 5.6 FBN frequency spectra 

 The spectra for the SBN is shown in Figure 5.7. Not shown in Figure 5.7 are the 

higher frequency contributions >2 kHz that are dominating the time signal in the 5 kHz to 

10 kHz range. Even though the time domain in Figure 5.4 was not clearly matching the 

frequencies of the pump, the frequency spectra shows that the structure of the pump body 

is also vibrating at the frequencies it is being excited at. That is, mainly the same 

frequencies of the FBN are present in the SBN. However, the magnitudes of those 

frequencies compared to each other is different in the structure domain. 
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Figure 5.7 SBN frequency spectra 

 Similar results are shown in the spectra for the measured ABN in Figure 5.8. There 

are also additional large frequency contributions in the ABN which were not clearly present 

in the FBN or SBN. Similar to the FBN, the peak at 433 Hz reaches outside the figure 

bounds to 0.1 but the figure is zoomed in to show detail at lower magnitudes. 

 

Figure 5.8 ABN frequency spectra 

 The goal of the following sections is to investigate the correlations between 

domains across a wide operating range as compared to the FFT shown for a single operating 

condition in the previous figures. 

 

5.4.1 Power spectral density 

 As explained in the procedures, power spectral density (PSD) is time domain 

autocorrelation of each signal to identify repeating patterns and frequencies. At a single 

operating condition, these are very similar to the frequency spectra as shown in the previous 

section. However, when a large number of operating conditions, every 10rpm increment 

from 500rpm to 2100rpm, are combined together, a clearer picture of the overall machine 

performance can be seen as in Figure 5.9. The variation of speed test was chosen to be 
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repeated compared to the variation of pressure test which was also evaluated in Chapter 4 

due to the interest in phenomena dependent on the variation of pump frequencies. Mainly, 

the same considerations can apply to different pump pressure levels, but mainly only the 

magnitude of the sound source is changing with pressure while in the speed variation test, 

the frequency of excitation is also changing. 

 

Figure 5.9 FBN PSD 

 System and structural frequencies can be seen as vertical lines in the measured 

FBN. Pump and shaft frequencies originate from (0,0) on the plot and are present at 

multiples of the shaft speed frequency and the number of pumping chambers according to 

equation 8. These occur as dark black and red angled lines at frequencies and overtones of 

the main pump frequency. The shaft frequency can now also be clearly seen at the far left 

of the figure as a dark black band, and overtones of the shaft frequency are also prevalent 

at all operating conditions. These occur at multiples of the shaft frequency in-between the 

main pump frequencies. Likewise, the PSD for the SBN is shown in Figure 5.10.  

 Stronger bands at high frequencies from the beginning of structural resonant modal 

behavior are shown in Figure 5.10. The figure shows the values from the pump casing 

accelerometer, but recorded measurements on the steel pipe showed even higher overall 

magnitudes due to interaction of pump excitation frequencies and pipe structural 

resonances. 
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Figure 5.10 SBN PSD outlet accelerometer 

The increase in higher frequency content in the SBN agrees with the expectation of 

structural resonances. The vibration response of the structure is a combination of the forced 

response due to the high forces exciting at low frequency, and the modal response of the 

structure at higher frequencies. The ABN PSD is shown in Figure 5.11.  

 

Figure 5.11 ABN PSD 
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Again, the power spectra of the ABN domain is very similar to the FBN and SBN. There 

are many more vertical bands present in the ABN than there were in the FBN, which is 

indicating the impact of the structural transfer path. The total measured response shows the 

clear impact of both the excitation frequencies and the modal response of the system. 

Comparing the raw power spectra of the three domains can be done visually, but the present 

research seeks to quantitatively determine correlations between matching and non-

matching frequencies across all three domains. 

 

5.4.2 Cross-correlation 

 The first step is to emphasize the similarities in frequency spectra using the cross-

correlation function as described in the approach section. The cross-correlation compares 

the similarity in shared frequencies between two spectra from different measured domains. 

An example of this function at a single operating condition of 1000 rpm 100 bar is applied 

to the three different combinations of data is shown in Figure 5.12. 

 

Figure 5.12 Cross-correlation example at 1000rpm 

 As shown in the figure, there is a very strong correlation between all three 

combinations of data at the multiples of the pump and shaft frequency every 217Hz. This 

means that below 2000Hz, the excitation frequencies coming from the pumping action of 
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the unit are strongly present not only in the working fluid, but also in the structure and 

radiating to the environment. Note that there is a very weak correlation between the FBN-

SBN and FBN-ABN at frequencies higher than 1000Hz. This is because the higher 

frequency content is not present in the FBN, so there is no strong matching between the 

FBN and the other two domains at high frequency. Alternatively, there is strong matching 

of higher frequency noise between the SBN-ABN even at higher frequencies which 

indicates that higher frequency content in the ABN is correlating well with frequencies that 

are not present in the FBN. This means that traditional design optimization efforts that seek 

to minimize the radiated ABN by reducing the FBN alone are potentially failure-prone due 

to not considering important features in the structures of the system. 

 Figure 5.12 shows just a slice of the operating range at 1000rpm. Instead, the entire 

operating range from 500rpm to 2100rpm is shown in the next three figures. A linear 

comparison was used since a logarithmic display of the data does emphasize the difference 

in magnitudes when displayed in the following waterfall plots. 

 The cross-correlation function comparing the FBN and SBN frequency spectra at 

the entire operating range is shown in Figure 5.13.  

 

Figure 5.13 FBN-SBN cross-correlation function 
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 As the figure shows and was repeated in the example measurement in Figure 5.12, 

there is almost no correlation except at the pump frequencies since those are the only 

frequencies present in the FBN. The correlation between FBN and SBN steeply drops off 

above 1 kHz. Values below 0.01 correspond to very little correlation in the data between 

domains. 

 Likewise, the FBN-ABN comparison shown in Figure 5.14 is nearly identical to 

the previous figure since the only shared frequencies between the FBN and ABN are those 

which are directly excited by the pump operation. This reinforces that reducing the pump 

pressure ripple through design changes will have an effect on the radiated ABN at the 

frequencies that the pump is excited at since there is a strong correlation between them. 

However, this picture is still incomplete since it does not consider the influence at other 

frequencies. 

 

Figure 5.14 FBN-ABN cross-correlation function 

 Finally, the SBN-ABN correlation function is shown in Figure 5.15. This now 

shows that there are dark regions of the graph at higher frequencies due to the presence of 

higher frequency noise in both signals. Unlike the previous two figures, the correlation 

between SBN and ABN does not decrease as frequency increases. Instead, there is still a 
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strong correlation between the SBN and ABN at a wide range of frequencies that includes 

much higher multiples of the shaft and pump frequencies than was seen in Figure 5.13 and 

Figure 5.14. 

 

Figure 5.15 SBN-ABN cross-correlation function 

 The cross-correlation functions emphasize the similarity in noise frequency content 

between different measured domains. They succeed in removing the extra frequencies 

which are present in only one domain. The emphasis here is that when considering the FBN 

domain, the main shared frequencies with either the SBN or ABN domains are only the 

frequencies coming directly from the pump and shaft speeds. For example if there was a 

fluid harmonic behavior in the pipe, that would show up as a vertical band in the FBN 

spectra at all operating speeds. If that harmonic behavior also was exciting the structure, 

the same vertical band would appear in the SBN or ABN domains. The cross-correlation 

function would then also exhibit the same frequency behavior. The lack of such vertical 

bands in the cross-correlation functions indicates that the transmission of noise from the 

FBN domain to the structure is heavily dominated by the pump frequencies instead on a 

resonant excitation behavior. On the other side, the presence of higher frequencies in the 

SBN-ABN correlation shows that a large range of different frequencies and noise paths are 

now being driven as they transfer through the structures and out to the environment. 
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5.4.3 Anti-correlation 

 Removing frequency content through anti-correlation cancelling allows for 

identification of frequencies that do not correlate across different noise and vibration 

domains. This is the inverse of the goals of the previous section. The first step is 

removing the FBN from the ABN frequency spectra using the procedure described in the 

approach section. The FBN frequency content due to the shaft and pump frequencies are 

now at a minimum instead of at a peak, and bands appear where there are frequencies in 

the ABN that do not correlate as strongly with the FBN. This seeks to emphasize 

frequency features that do not correlate with the pump driving frequencies. The figure is 

shown only to 2000Hz in order to show more detail in the low frequency range. The 

algorithm was applied at all the operating conditions and the result is shown in Figure 

5.16.  

 

Figure 5.16 ABN with FBN removed 

 The previous figure shows strong trends in vertical black lines in the plot. 

Essentially, there is now very little speed-dependent (angled lines) portion of the signal 

remaining. This component has been removed along with the pump frequencies. The 

emphasis is now on the non-speed-dependent features present in the measured noise. 
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Furthermore, most of the remaining frequency features present in Figure 5.16 are present 

at all operating speeds. The speed dependence can finally be removed by summing along 

the vertical pump speed axis results in Figure 5.17 to create a single speed-independent 

function. This function shows a summary of what frequency content in present most 

strongly in the ABN when the internal loading condition of the FBN removed. The 

remaining frequencies are broad spectrum noise frequencies. The tallest peaks remaining 

in the low frequency range were compared with the expected geometry of the measurement 

space where λ~1 m standing waves in the air which occurs at ~400 Hz. 

 

Figure 5.17 ABN with FBN removed 

The individual locations of large peaks in the anti-correlation function shows which lower 

impedance transfer paths are propagating noise from the sources inside the pump out to the 

environment as well as other system resonances that are being excited. 

 Likewise, the same method was used to remove the FBN frequencies from the SBN 

as shown in Figure 5.18. 
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Figure 5.18 SBN with FBN removed 

 Very strong black vertical bands now appear across the operating range, and again 

the data can now be summed across the vertical speed axis in order to quantify a speed-

independent function of the energy transfer from the internal fluid sources into the 

structures. Two different accelerometer locations were considered for the summed function 

shown in Figure 5.19 (the pump case, and on the line).  

 

Figure 5.19 SBN with FBN removed 
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 There is very little low frequency content remaining when comparing the case 

accelerometer data SBN – FBN. Therefore the pump is not dominantly vibrating in a 

resonant way at low frequencies. However, with the FBN frequencies removed from the 

accelerometer data taken at the end of the steel pipe, there are very strong peaks that 

correlate well with the predicted structural resonances of the steel pipe that are shown in 

Figure 3.38.  

 The tall peaks in line accelerometer data show that the pipe is vibrating at resonant 

frequencies which are excited at all operating conditions. The presence of these peaks was 

not obvious in the raw data, but the anti-correlation function allows for the identification 

of the path that energy takes from source to receiver as well as identification of which 

sources and transmission paths are effecting the result the most. This particular result 

shows that the geometry of the system and lines has a large impact on how noise is 

transmitting from the sources out to the environment. A noise reduction optimization that 

does not take into account the effect of the system may not be as effective. 

 The final comparison is shown in Figure 5.20 for the ABN with the SBN removed 

considering the same two different accelerometer locations for the SBN. This is showing 

what frequencies are present in the ABN that do not correlate with measured SBN 

frequencies. 

 

Figure 5.20 ABN with SBN removed 
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 A strong correlation at the low frequencies is shown for the case accelerometer, but 

as in the summary function in Figure 5.21, the higher frequencies do not have matching for 

the ABN compared to the line accelerometer data since the steel pipe is strongly vibrating 

at frequencies near the predicted resonances. The strong correlation between signals results 

in a small magnitude for the black line in Fig. 23. Since the higher frequencies are present 

in both the measured ABN as well as the line accelerometer, they are therefore not present 

in the anti-correlation function. These frequencies are not a large contributors to radiated 

ABN above 2 kHz while they are one of the highest contributors at frequencies below 1 

kHz. 

 

Figure 5.21 ABN with SBN removed 

 Less high frequency content remains in the ABN-SBN function than in the ABN-

FBN anti-correlation. This means that high frequencies waves are present in SBN, but not 

FBN. From the estimated resonances in Fig. 2, this is the expected result since the pump 

structure has much higher resonant frequencies due to thickness and size of the structure. 

Even though the excitation frequencies are mainly below 1 kHz, the higher multiples of 

the FBN are still exciting higher resonances in the structure of the lines and the pump body 

which appear in the SBN and ABN measurements. 

 The cross-correlation functions show how similar the frequency content is across 

the three measured domains. However, the cancelling anti-correlation algorithm allows for 
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identification of system and structural influences that are not apparent from the raw data. 

Summing across a wide range of operating conditions yields a quantitative speed-

independent function of the transfer paths for key sources of noise. Comparing the three 

anti-correlation functions shows that the pipe structure is vibrating strongly in resonance 

and excited by the pump frequencies. The presence of strong peaks in the SBN-FBN plot 

and the ABE-FBN plot, but not the ABN-SBN plot shows that there is a strong transfer 

path between the pipe vibration and the air-borne noise despite this frequency content not 

directly correlating to the FBN. 

 

5.5 Conclusions on New Data Analysis Methods 

Experimental techniques and data processing algorithms were developed for use in 

identifying important noise features of the hydraulic system. Individually, measuring the 

pressure ripple generated by the pump under load has previously been used to validate the 

EGP model developed at Maha Fluid Power Research Center and to aid in design for 

reducing the sources of FBN in the system. Vibration in the steel pipe used to characterize 

the FBN according to the ISO standard could be influenced by resonances of both the fluid 

inside the pipe and the pipe structure. The results show that even if the primary pump 

frequency magnitude is reduced, higher frequency noise sources may be introduced by this 

method, the resulting noise propagation through the system will excite higher frequency 

resonances more strongly and result in overall larger surface vibration and ABN radiation. 

Measuring the surface vibration of the pump and lines sheds light on the influence 

structural and system considerations have on the pump operation and radiated noise, and 

allows for smarter optimization and design of new quieter pumping units. Measuring the 

radiated sound pressure is used to validate noise models and determine if design changes 

accomplished the desired goals of quieter systems. 

 Combining all three domains of measurements gives a more detailed picture than 

any one domain by itself. The new experimental and data processing techniques point out 

the direction for models so that the most important noise sources and propagation paths 

can be simulated more efficiently. The key potential future applications of this 

methodology is to improve system designs through structural modifications or targeted 
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operating ranges. It also allows for new more efficient and accurate modeling techniques 

that would be not be possible without the complementary experimental technique. 

 Overall, this technique and data processing algorithm expands the idea of transfer-

path analysis in a new direction and applies it on hydraulic components and systems. Using 

this analysis directly aids in the improvement of hydraulic components and similar analysis 

can be used to better understand the transmission of noise in many different applications. 
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6. MULTI-DOMAIN NOISE CAVITATION STUDY 

 

  

 An additional case study was investigated comparing the relative magnitudes of 

pressure ripple on the inlet and outlet sides of the pump using Reference Pump #3 as shown 

in Figure 6.1. Beyond just the magnitudes, the effect on the pump noise is evaluated. 

 

Figure 6.1 Inlet vs outlet ripple comparison 

The purpose of this chapter is to answer the following questions. First, how much 

is it possible to change the inlet pressure ripple through design variations? This is tested 

through an extreme design change to the lateral grooves shown in Figure 6.2. 

 

Figure 6.2 Baseline vs design made for increased suction ripple. 

 This modification to the standard design for Reference Pump #3 moves the inlet-

side groove down by an order of 0.001m from the original placement as shown. This 
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extreme design change was selected in order to evaluate and quantify the performance of 

all cases between the optimal one and the extreme bad design. Where the bad design is 

intended to induce localized cavitation as well as greatly increase inlet flow ripple. 

 The second question to be answer is what is the possible impact that such a variation 

in the inlet ripple may have on the radiated ABN? And finally, is the model sensitive to the 

inlet flow ripple and what changes are predicted in the radiated noise for a similar design 

change. 

 

6.1 Effect of suction groove placement 

 The suction groove connection timing of the pump, shown in blue in Figure 6.3, 

while the delivery groove is shown in red. 

 

Figure 6.3 Typical groove connection timing for an EGP. 

 Typically, as found in the standard design for Reference Pump #3, the transition 

point between the suction and delivery grooves occurs near the minimum point in the TSV 

during the meshing zone. Instead, the new design of the pump for cavitation and inlet ripple 

offsets the inlet groove and creates a significant angle where the TSV is changing in volume 

show in Figure 6.4, but is also trapped, as indicated by points D and S where the gear tooth 

contact traps the fluid inside the TSV. Since the volume is rapidly changing, the pressure 
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in the pumping chamber drops rapidly which can create localized cavitation. Also, once 

the groove does open up to the suction, the current low pressure in the chamber causes fluid 

to enter the TSV at high velocity thus also inducing higher inlet flow ripple. 

 

Figure 6.4 Modified groove timing for pump designed for inlet cavitation 

Since the modification is limited to the suction side groove, the goal of this design 

modification is to introduce a large disturbance on the inlet side of the pump while keeping 

the outlet side of the pump unchanged. 

 

6.2 Experimental setup 

 The experimental setup was the same with respect to the multi-domain noise 

propagation study shown in the previous chapter with the addition of one pressure sensor 

was moved from the outlet pipe to a new 1 meter long steel pipe on the inlet of the pump. 

This sensor was located at 0.1m from the inlet port of the pump. Also, the pump design 

was changed from Reference Pump #1 to Reference Pump #3. Please refer to chapter 5 for 

more details on the experimental setup. 
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6.3 Measurement results 

 The measured results for inlet pressure ripple with its mean value removed and its 

corresponding frequency spectra are shown in Figure 6.5. The pressure shown is taken 

from an operating condition of 1500 rpm and 200bar outlet pressure. 

 

Figure 6.5 Inlet ripple (top) and FFT (bottom) for baseline pump. 

 There are clearly identifiable frequencies from the pump performance as well as 

the shaft frequency of the driving electric motor. The new design for Reference Pump #3 

with the extreme placement of the suction grooves is shown in Figure 6.6. 
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Figure 6.6 Inlet ripple (top) and FFT (bottom) for cavitation pump. 

At the listed operating condition of 1500 rpm 200 bar, the inlet pressure ripple was 

successfully increase by an order of magnitude. The final consideration for whether the 

design modification was successful is to compare the outlet side pressure ripple as shown 

in Figure 6.7 for the operating condition of 2000 rpm 200 bar. 
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Figure 6.7 Time domain comparison of outlet ripples 

 This shows that the outlet pressure ripple is very similar between the two designs 

and that the modification to the suction groove which greatly changed the inlet performance 

of the pump did not have a large effect on the outlet side. This is confirmed in the frequency 

spectra shown in Figure 6.8 and Figure 6.9. 

 

Figure 6.8 Comparison of FFT for outlet ripple for baseline pump. 
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Figure 6.9 Comparison of FFT for outlet ripple for cavitation pump. 

 The next step is to leverage some of the techniques demonstrated in Chapter 4 and 

Chapter 5 in order to analyze the noise performance of the two different design in different 

physical noise domains, that is, the fluid, structure, and air. A fixed outlet pressure of 100 

bar was selected, and the pump speed was carried on 50 rpm increments from 500 rpm 

through 2500 rpm. The comparison of the power spectral density (PSD) for the baseline 

design and the design with induced inlet flow ripple is shown in Figure 6.10 and Figure 

6.11. All scales are taken with reference to the sound power ref of 1e-12 W. However, the 

fluid pressure data was taken in units of bar and this was preserved through the power 

spectra. This causes the measured fluid pressure data to be scaled by a factor of 105 

compared to similar ABN power spectra. The difference is convenient since it places the 

three different domains on a similar range of decibels, while the important scaling to 

consider is the difference in decibels between measured signals in the same domain. 
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Figure 6.10 Inlet ripple PSD for baseline design 

 

Figure 6.11 Inlet ripple PSD for cavitation design 

 The cavitation design shows a 30dB increase in inlet ripple for the primary pump 

frequency (dual flank) at all operating conditions. A very interesting region for the baseline 

pump is the range around 2000 rpm where the primary frequencies of the pump are not 

visible in the PSD. This indicates a performance regime where the inlet ripple is small 

enough to have very little effect on the noise coming from the EGP in operation. 

 The same plots for the measured outlet pressure ripple are shown in Figure 6.12 

and Figure 6.13. 
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Figure 6.12 Outlet ripple PSD for baseline design. 

 

Figure 6.13 Outlet ripple PSD for cavitation design. 

 As was shown in the earlier figures at a single operating condition, the outlet ripple 

is very similar between the two designs at most operating conditions. The only significant 

difference occurs at the shaft frequency, which has a 10 dB larger magnitude for the 

cavitation design at low pump speeds. 

 The same power spectral method can also be shown for the measured surface 

vibration and radiated sound pressure as described in chapter 5. The resulting comparison 

of the case vibration up to 5 kHz is shown in Figure 6.14 and Figure 6.15. 
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Figure 6.14 Case vibration PSD for baseline design.  

 

Figure 6.15 Case vibration PSD for cavitation design. 

The measured case vibration for the cavitation design shows a tendency for higher 

magnitude high frequency components showing up as vertical bands. However, the main 

frequencies measured on the surface acceleration of the two pumps shows very little 

increase in overall magnitudes of the surface acceleration. 

 The measured sound pressure power spectra is shown in Figure 6.16 and Figure 

6.17. 
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Figure 6.16 Sound pressure PSD for baseline design. 

 

Figure 6.17 Sound pressure PSD for cavitation design. 

 Similarly to the SBN, the two designs have very similar sound pressures at all 

frequencies with slightly higher high frequency noise present in the ABN for the cavitation 

pump. The PSD can be summed across frequency in order to characterize the sound 

pressure levels at each operating condition. A similar methodology can be used to sum up 

the measured data in the fluid and structure domains as shown in Figure 6.18. Shown are 

the results for the baseline standard design and the cavitation design where the grooves are 

shifted down 2mm. As was explained before, all scales were taken with reference to the 

sound power ref of 1e-12 W which results in the measured fluid pressure data to be scaled 

by a factor of 105 compared to similar ABN power spectra. The difference is convenient 

since it places the three different domains on a similar range of decibels, while the 

important scaling to consider is the difference in decibels between measured signals in the 

same domain. 
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Figure 6.18 Summed PSD for all operating conditions 

 Comparing the red lines for the inlet ripple first, Figure 6.18 shows that the 

modified cavitation design is increased in inlet ripple at all operating conditions by an 

average of 5dB. The outlet ripple is larger in magnitude below 1500rpm due to the 

increased shaft frequency, and then above 1500rpm is nearly the same between the two 

designs. The case vibration also shows a large increase and the radiated noise shows a small 

increase at nearly all operating conditions. For a second comparison, the A-weighting curve 

was applied to the frequency data and then the data was summed in the same way as before. 

This A-weighted experimental result is shown in Figure 6.19. 

 

Figure 6.19 A-weighted summed PSD for all operating conditions. 
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 The A-weighting removes most of the shaft frequency that was previously showing 

a difference between the two designs for the outlet ripple shown in black. The ABN also 

shows an increase as emphasized in Figure 6.20. 

 

Figure 6.20 A-weighted summed PSD for ABN at all operating conditions. 

 The design with increase inlet ripple and cavitation shows an average increase of 

2.6dB across all operating conditions with maximum of nearly 10dB increase in sound 

pressure at 1700rpm. This demonstrates that the cavitation and inlet ripple are a contributor 

to the radiated ABN which deserves more investigation. A final subjective comparison of 

the noise measured in different domains is shown in Figure 6.21. 

 

Figure 6.21 Comparing the PSD shapes for different domains. 
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 The similarities in shape again show the importance of the pump driving 

frequencies in the structural vibration and the radiated sound pressure. There are some 

similarities in the shape of the inlet FBN vs the ABN in particular the dead portion of the 

first pump frequency between 2000rpm and 2200rpm. This dead band is not present in the 

outlet FBN. Furthermore, the general activation of structural resonant frequencies is 

evident in the SBN and ABN plots with increasing content beginning around 4 kHz which 

agrees with the acoustic model predictions from before. 

 

6.4 Impact on the acoustic model for increased inlet load 

 In order to simulate the acoustic impact of an increased inlet load similar to the 

experimental study completed on Reference Pump #3, the dynamic portion of the inlet 

ripple predicted by the model for Reference Pump #1 was increased by a factor of 200 as 

shown in Figure 6.22, please compare to the unmodified force spectra in Figure 3.9. 

 

Figure 6.22 Increased inlet dynamic force load by 200x. 

 The resulting loads are identical to the previously simulated pump #1 at 1000 rpm 

100 bar with the replacement of the increased factor on the inlet load as shown in Figure 

6.23 
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Figure 6.23 Increased inlet load by 200x compared to modeled load. 

 This magnification of the inlet load increases the total dynamic load applied on the 

acoustic model by a total of 10.9% on the inlet side, with most of the power from the new 

inlet ripple term coming at the first several frequency multiples. 

 The result from the acoustic model as was explained in Chapter 3 predicts 

effectively a zero increase in the total radiated sound power with the increase in inlet load 

compared to the standard HYGESim predicted load. This is mainly due to the low radiation 

efficiency of the pump structure with respect to the low frequency components present in 

the expanded inlet ripple, and the presence of those same frequency components in the 

other noise source terms.  

 However, in the real experiments, an increase in inlet ripple would also increase 

radiation from the inlet lines and attached structures, this is likely the largest contribution 

to the measured ABN increase shown in the current study. The potential for induced 

cavitation noise sources in the experimental study introduced an additional point source of 

noise due to implosion of gaseous air bubble which was not considered in the acoustic 

model. These are two important noise sources which were most likely the largest 

contributors to the larger ABN measured in the experiments. 

 Again, this study on the sources of noise in Reference Pump #3 investigated the 

inlet of the pump as a potential source of noise. For that aim, a modified design on 
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Reference Pump #3 was created in order to measure the difference between a pump that 

operates with minimal inlet flow ripple and cavitation, and one where there is an extreme 

amount of induced inlet noise sources. The second part of the study leveraged the previous 

work using Reference Pump #1 in order to evaluate what the acoustic model would predict 

for a similar increase in the inlet pressure ripple as what was seen in the experiments. The 

model result showed that the structural response of the pump body was minimal to the 

increased inlet load which agrees with the measured vibration of the pump body seen in 

Figure 6.14 and Figure 6.15. This also indicates that the attached inlet lines and structures 

as well as the potential for cavitation noise sources were the main contribution to the 

measured increase in ABN shown in Figure 6.16 and Figure 6.17 and hence were not 

captured in the model modifications which only considered the modified inlet pressure in 

the pump.
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7. TRANSITION REGION SOURCE DESIGN CASE STUDY 

 

 

 There are two transition regions in typical EGP operation where there are steep 

transitions in the pressure which results in potential sources of noise. The main of study in 

previous optimization efforts is the pressure peak and depressurization in the meshing 

region. However, considering this as a source of noise shows that the forces induced by the 

depressurization of the chamber show that in order for the forces to propagate out of the 

body of the pump they must transmit either through the gears and into the journal bearings, 

or into the lateral pressure plates which are balanced with fluid pressure. Since the journal 

bearings and lateral plate balance pressures are considered in the acoustic model, the 

pressurization in the TSV during meshing is already accounted for. The second location 

that a sharp pressure gradient occurs in an EGP is when the TSV connects to the backflow 

groove which ports the high pressure fluid back to previous TSVs as discussed in detail in 

Chapter 3. An investigation was made into decreasing the total noise sources of the pump 

through smoothing the transition of pressure during the pressurization of each TSV. For 

this goal, a new groove orifice model was developed and a new TSV pressure profile for 

Reference Pump #1 was designed and examined for its impact on the predicted radiated 

noise. 

 

7.1 Model of the displacement chamber pressure rise 

 For this consideration, a new submodel was developed for HYGESim which allows 

for the capability for better modeling of backflow groove designs which have narrow 

connections. The previous model considered typical EGP designs where there is a large 

connection equivalent to a direct orifice from each TSV to the HP volume. In the previously 

considered designs, the groove is very large and deep, so the red area is treated in Figure 
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7.1a is considered as the constricting orifice. However, if the groove depth is small, the 

constricting orifice instead must be considered as shown in Figure 7.1b where the red part 

is the maximum flow cross-section. The blue line indicates the geometry of a large 

backflow groove connecting the TSV to the outlet port. 

The pump model prior to this development used the red area in Figure 7.1a as the equivalent 

area of connection from the TSV directly to the outlet. 

 

 

Figure 7.1 (a) Orifice connections for backflow groove. (b) Constricting area. 

The prior assumptions of the model for the backflow groove connection is reasonable if 

the groove is very large, however, the model needed to be developed to include a better 

approximation of the groove behavior when the groove is very small as shown in Figure 

7.2. 

 

 

Figure 7.2 (a) Orifice connections between TSVs (b) Small orifice. 
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 The new model development connects the backflow groove calculation internal to 

the model for the TSVs. An internal orifice connection was coded to port flow between 

adjacent TSVs according to the constricting orifice size. At the ends of the groove, the prior 

modeling method is used for when the groove is opening or closing. This allows for tapered 

ends to the backflow groove as calculated by the standard geometric code while also having 

a more accurate model for the fluid behavior in a small groove.  

 The new model developed for this study now allows for optimization of the 

backflow groove geometry in order to change the pressure rise to a more favorable profile. 

The initial design goal is to reduce the slope of the pressure rise to a minimum amount 

within the allowable space, that is, to pressurize the chamber more smoothly. 

The goal of this design exercise was to modify the backflow groove for the purpose 

of changing the slope of the pressure rise from a near a step function smooth curve within 

the allowed angle of one TSV. Extending the curve beyond the angle of one TSV is 

impossible since adjacent TSVs would then interfere. The TSV pressure model results are 

shown in Figure 7.3. In this case of the standard groove, the slope of the pressure rise is 

nearly vertical. The new groove was designed to have the midpoint of the pressure rise at 

the same pump rotation angle as the original design at 1000 rpm 100 bar in order to preserve 

extremely similar gear balancing and hence journal bearing loads between the two cases. 

This curve is nearly ideal since it uses the entire TSV to accomplish the pressure rise.  
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Figure 7.3: TSV pressure for different groove designs. 

Furthermore, the new groove has no impact on outlet pressure ripple or volumetric 

efficiency since no additional leakage is incurred. The proposed modifications are very 

small, on the same order of magnitude as machining tolerances in the 10 to 100μm range. 

This means that further study is necessary to understand the feasibility of implementing 

the new designs as well as the accuracy of the pump model for small magnitude leakages 

through all gaps becomes paramount since the leakages are on the same scale as the 

proposed flow through the backflow groove extension. Implementation of the new designs 

both in acoustic modeling and in experimental prototypes is an area that can be further 

studied for noise improvement. One possible concern is that other leakages in the pump 

already achieve some partial effect of the smoother pressure rise, so a new measuring 

methodology would need to be created in order to accurately capture the improvement in 

TSV pressure profile. 

 

7.2 Resulting load modifications 

Modifying the transition region load conditions using the new smoothed pressure 

profile is shown in the following 8 figures. Please compare them to Figure 3.13 through 

Figure 3.20 in the Chapter 3. As was shown in the model introduction to noise sources, 

first the time domain dynamic force is shown as a function of pump rotation angle, and 

then the frequency spectra of the force is shown. 
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 The inlet load at the first point on the case in the transition region approaches the 

profile of a saw tooth wave shown in Figure 7.4 with the frequency spectra shown in Figure 

7.5. 

 

Figure 7.4: Gear 1 position 1 of TSV smooth force 1000 rpm 100 bar. 

The frequency spectra is similar in profile to that which was previously seen in chapter 3 

for the standard design. 

 

Figure 7.5: Gear 1 position 1 of TSV smooth force 1000 rpm 100 bar FFT. 

The second position in the transition region begins to show the improvement in the 

smoothness of the pressure rise. Effectively half of the pressure gradient hammering seen 

by the case of the pump has been removed as shown in Figure 7.6. 



147 

  

 

 

Figure 7.6: Gear 1 position 2 of TSV smooth force 1000 rpm 100 bar. 

The frequency spectra has also been greatly decreased in Figure 7.7 compared to the 

standard design shown in Figure 3.16. 

 

Figure 7.7: Gear 1 position 2 of TSV smooth force 1000 rpm 100 bar FFT. 

The third position on the case shows a similar improvement where the general smoothness 

of the pressure seen by the fixed point on the pump case is greatly improved. 
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Figure 7.8: Gear 1 position 3 of TSV smooth force 1000 rpm 100 bar. 

The improvement in the time domain again causes a large decrease in the frequency 

components related to the sharp pressure transitions as shown in Figure 7.9. 

 

Figure 7.9: Gear 1 position 3 of TSV smooth force 1000 rpm 100 bar FFT. 

The fourth and final point on the case in the transition region is very similar to the second 

and third points, but is included here for completeness and for comparison to the originally 

simulated design. 
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Figure 7.10: Gear 1 position 4 of TSV smooth force 1000 rpm 100 bar. 

 

Figure 7.11: Gear 1 position 4 of TSV smooth force 1000 rpm 100 bar FFT. 

 As was shown in the model introduction, the gear 1 and gear 2 dynamic forces in 

the transition regions are symmetric, so the driven gear transition forces are not shown here 

to remain concise. The comparison of simulated results for the smoothing effort at the same 

four geometrical points is shown in Figure 7.12. 
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Figure 7.12: Summary of transition dynamic forces for gear 1 at 1000 rpm100 bar. 

Considering the load conditions as symmetric leads to a total dynamic force of 144 kN for 

the smoothed transition region per gear compared to 191 kN for the original transition 

region. This is a total benefit of 24.8% reduction in the dynamic force on the transition 

region and an 11.0% reduction in the total predicted noise sources. This also includes a 

significant decrease in the amount of high frequency noise sources coming from the 

transition region, which were shown to interact with the pump structure in Chapter 3. 

 The forces were applied to the simplified structure and the result from the acoustic 

model shown in Chapter 3 was calculated for the modified transition region. The model 

predicts a 1.5 dB decrease in the radiated sound power for the smoothed transition pressure 

profile of 11.0% decrease in source. This shows how the acoustic model can be leveraged 

to improve current designs and prove the effect of modifications. Where the case study in 

Chapter 6 which had a similar magnitude change in the sound sources did not show a 

predicted model improvement in sound radiation from the pump body, the case study 

shown here does predict an improvement in the radiated noise from the pump. The main 

reason was that modifying the transition region changes a high frequency source internal 

to the pump, and hence it effects the radiation from the pump model. However, the inlet 

ripple change discussed in the Chapter 6 case study has a greater effect on the inlet lines 
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than the pump body, and hence the experimentally measured increase in sound pressure 

was not found in the model predictions.  

 The next steps to prove the concept are to prepare prototypes with modified 

backflow grooves and test the performance with respect to noise and efficiency. As 

discussed before, this requires a careful evaluation of the model performance to ensure that 

the small flows required for smooth pressurization are delivered by the controlled modified 

groove as opposed to a different leakage source. 
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8. CONCLUSIONS 

 

 

In conclusion, a numerical model of the sources of FBN in external gear pumps was 

improved and investigated. The lumped parameter model HYGESim (HYdraulic GEar 

machine Simulator) was expanded to investigate the dynamic forces on the solid bodies 

caused by the pump operation and to predict interactions with the attached system. 

Vibration and sound radiation were then predicted using a combined finite element and 

boundary element vibro-acoustic model as well as the influence of additional models for 

system components to better understand the essential problems of noise generation in 

hydraulic systems. This model is a step forward for the field due to the coupling of an 

advanced internal model of pump operation coupled to a detailed vibro-acoustic model. 

The impact of internal sources on the radiated ABN was shown under a variety of loading 

conditions. The sources of noise in EGPs were investigated to a deeper level with respect 

to their influence on the radiated ABN. This was achieved both through experimental 

studies and through development and analysis of a FBN model for noise generation through 

adaption and improvement of the HYGESim pump model.  

The common assumption that the outlet pressure ripple is the primary source of ABN 

was challenged through both a combined fluid-dynamic and structural-acoustic model, and 

also through experimental results at a wide variety of operating conditions. The FEM/BEM 

model showed the pump body resonances have only a few notable frequencies in the same 

range as those of the pressure load, and thus at speeds where the FBN frequencies 

dominate, an improvement in the FBN will likely see a corresponding improvement in the 

ABN. However, other sources of noise including the chamber pressurization transition 

region and the gear journal bearing forces have large high frequency components that 

interact with the pump structural resonances. These internal sources have a large impact on 
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the sound radiation from the body of the pump. The FBN source in the inlet and outlet lines 

are still a very important contributor to the total noise of the system. In particular, design 

of the outlet system and attached lines is key to preventing the FBN sources from 

propagating out into the attached system. These simulation studies demonstrate that a 

complete approach is required in order to better understand, and ultimately reduce the 

noise. 

Several experimental studies were also completed in order to advance the current 

science. The first study validated the pump model in terms of outlet pressure ripple 

prediction through comparison to experimentally measured results for the reference pump 

as well as prototype pumps designed for low outlet pressure ripple. The second study 

focused on the air-borne noise through sound pressure and intensity measurements on 

reference and prototype pumps at steady-state operating conditions. A third study over a 

wide range of operating speeds and pressures was completed to explore the impact of 

operating condition and system design to greater detail through measuring noise and 

vibration in the working fluid, the system structures, and the air.  

 The numerical modeling and experimental investigation gives a deeper 

understanding of the mechanisms of noise generation and how the loading forces propagate 

out to the ABN. The work shows additional interactions that are not visible in single-

domain noise studies, in particular, the impact of the journal bearings and the 

compressibility effects. The experimental studies give more details as to which components 

of the pump and system operation have the largest effect on the ABN and thus can be used 

to predict the effectiveness of future design efforts. A combination of the numerical and 

experimental approaches allows for deeper insights into the propagation of noise in 

displacement machines. The presented work and future efforts aid in the development of 

quieter pumps and motors. Applying the knowledge gained through experimental and 

simulation studies has brought new advances in the understanding of the physics of noise 

generation and propagation in hydraulic components and systems. The application of the 

new modeling and experimental approach allows for new advances which directly 

contribute to advancing the science of noise in hydraulic applications and the design of 

new quieter hydrostatic units and hydraulic systems. 
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8.1 Novel Contributions 

 The following contributions of this work are considered as novel and advance the 

science of noise in fluid power components and systems. First, development of the lumped 

parameter model HYGESim was completed for better modeling of sources of noise in 

displacement machines. Experimental validation of the pump model through development 

of a test rig for measuring the FBN was used to verify accuracy of the load sources. A 

simplified model of the harmonic characteristics of hydraulic lines was also considered in 

order to better understand the system level interaction introduced by the lines. Next a vibro-

acoustic model for sound radiation from the body of an EGP was developed considering 

all internal sources of noise applied directly to the pump housing. A test circuit for 

measuring the sound power radiated by EGPs was implemented with a system for 

controlling the inlet port pressure of the pump. Noise measurements were expanded to 

account for the noise propagation in the fluid, structure, and air domains to create frequency 

domain transfer path analysis considering correlations between the different domains. 

Finally, the previous work was leveraged to analyze the impact of different noise sources 

including case studies on the inlet and transition regions. 

 The work demonstrated and published contributions for better understanding of 

mechanics of noise generation and propagation in displacement machines with the 

particular case of external gear pumps. 
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