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ABSTRACT 

 

 

 

Ma, Wai Kit. Ph.D., Purdue University, December 2015. Characterization of the Function 

of the DEAD-box RNA Helicase Dbp2. Major Professor: Elizabeth Tran. 

 

 

 

 In eukaryotes, there are highly coupled mechanisms that require RNA-binding 

proteins to facilitate gene expression. Proper RNA structure and ribonucleoprotein (RNP) 

complex formation are critical for gene expression. DEAD-box proteins are the largest 

class of RNA helicases that play fundamental roles in RNA and RNP structure 

remodeling. However, the precise biological role of the vast majority of the ~ 40 

members in this family has not been completely described. Therefore, my research 

focused on characterizing the role of the DEAD-box RNA helicase Dbp2 during gene 

expression in S. cerevisiae. 

 To decipher the biological roles of DEAD-box proteins, I first demonstrated that 

the S. cerevisiae DEAD-box protein Dbp2 is an active RNA dependent ATPase and RNA 

helicase that unwinds RNA duplexes in vitro. Furthermore, I found that Dbp2 associates 

with actively transcribing genes via RNA and functions as a co-transcriptional RNA 

chaperone to promote efficient assembly of the mRNA binding proteins, Yra1, Nab2, and 

Mex67, onto poly(A)+RNA. This assembly is critical for 3’ end processing and mRNA 

export. I also showed that Yra1 interacts directly with Dbp2 and inhibits its unwinding 



 
 

 

xix 

activity by reducing single-stranded RNA-binding activity. This inhibition prevents over-

accumulation of Dbp2 on mRNA and stabilization of a subset of RNA Pol II transcripts. 

Collectively, my work shows that Dbp2 is recruited to nascent RNA to unwind aberrant 

structures and facilitate assembly of RNA-binding proteins, including Yra1, Nab2, and 

Mex67, during transcription. Yra1 then prevents further cycles of unwinding by 

inhibiting the ability of Dbp2 to associate with single-stranded RNA. This sequential 

order of events involving regulation of a DEAD-box RNA helicase is critical for efficient 

mRNP assembly and proper gene expression. These findings provide ideas on how 

DEAD-box proteins are regulated and insights on the role of DDX5, which is the human 

ortholog of Dbp2 and is often overexpressed in cancer cells.



 
 

 

1 

CHAPTER 1. INTRODUCTION 

1.1 mRNP biogenesis is critical for proper gene expression 

The cell is the basic unit of all living organisms. The survival and functions of a 

cell is dictated by proper gene expression, which is a highly complicated and regulated 

process that involves numerous interconnected steps to convert genetic information from 

DNA to RNA to protein. During transcription, different processing steps including 

addition of a 5’ methylguanosine cap, removal of introns, and 3’ end formation occur on 

the nascent RNA while it is being synthesized (Lee and Tarn 2013; Zorio and Bentley 

2004; Cramer et al. 2001). After the RNA is properly processed, it is exported out to the 

cytoplasm for translation. Throughout all of these maturation steps, the RNA is 

associated with different RNA-binding proteins to form distinct ribonucleoprotein 

complexes (RNPs) via a process called RNP assembly (Chen and Shyu 2014).  

RNA structure is one of the major factors that influence the efficiency of RNP 

assembly (Gosai et al. 2015). Several studies have demonstrated that secondary structures 

are found in mRNA in vivo and are overlapped with regulatory sites (Ding et al. 2014; 

Rouskin et al. 2014; Wan et al. 2014). Strong secondary structures tend to associate with 

alternative polyadenylation and splicing, suggesting that secondary structures regulate 

cleavage and splicing pre-mRNA. In contrast, start codons, stop codons, microRNA-
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binding sites and 5’ splice sites tend to have less structure (Ding et al. 2014; Wan et al. 

2014). This indicates that structural elements on RNA could potentially play a role in 

gene expression regulation. Furthermore, genome wide analyses have revealed that the 

pattern of RNA-protein interactions and RNA secondary structure in Arabidopsis 

displays an anti-correlative relationship (Gosai et al. 2015). This suggests that RNA 

unwinding is required for proper RNP assembly. Consistent with this idea, a stem-loop 

structure downstream of the 5’ splice site of the human tau exon 10 regulates alternative 

splicing (Kar et al. 2011). Remodeling of the stem-loop is necessary for U1 snRNP to 

access the 5’ splice site of exon 10, which promotes exon inclusion (Kar et al. 2011). 

Interestingly, mis-regulation of splicing in the tau gene is associated with dementia 

(Hutton et al. 1998; Hasegawa et al. 1999). This suggests that RNA remodeling is 

necessary to prevent human diseases. Similarly, the splicing of Troponin T (TNNT2) pre-

mRNA also requires remodeling of a stem-loop structure to promote association of the 

splicing factor MBNL1 (Warf and Berglund 2007). Resolving the stem-loop structure 

promotes binding of MBNL1 and facilitates alternative splicing of TNNT2 pre-mRNA 

(Laurent et al. 2012). These examples suggest that RNA structural rearrangement 

constitutes a mechanism for gene regulation.   

1.2 Helicases 

Helicases are a class of P-loop NTPases that contain the typical Walker A and B 

sites for NTP binding and hydrolysis (Abdelhaleem 2010). As the name implies, these 

enzymes usually function as molecular motors that convert energy from NTP binding 

and/or hydrolysis to perform mechanical work on nucleic acid, such as translocation 
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along nucleic acid, double-stranded nucleic acid unwinding and disruption of protein-

nucleic acid complex (Durr et al. 2006; Szczelkun 2000; Kawaoka and Pyle 2005; 

Guenther et al. 2009; Jankowsky et al. 2001). Helicases are ubiquitously expressed in 

every organism and are catagorized into six different superfamilies, SF1 – SF6, based on 

amino acid sequence (Singleton et al. 2007). Helicases are classified into DNA and RNA 

helicases depended on the nucleic acid that the enzymes target. In humans, there are 95 

helicsaes of which 31 are DNA helicases and 64 are RNA helicases (Umate et al. 2011). 

DNA helicases are found in all six superfamilies and have been implicated in genome 

maintenance processes including replication, DNA repair and homologous recombination 

(Singleton et al. 2007; Labib et al. 2000; Manosas et al. 2013; Pakotiprapha et al. 2012; 

West 1996).  

Unlike DNA, RNA is a dynamic macromolecule that tends to form mis-folded, 

local secondary structures that are long-lived and require large amounts of energy to 

transition between alternative structural conformations (Herschlag 1995; Pan and Russell 

2010). In addition, RNA polymerase II synthesizes approximately 2000 RNA bases per 

minute in yeast and the newly synthesized RNA can fold co-transcriptionally (Mason and 

Struhl 2005; Wong et al. 2005; Pan et al. 1999). This allows the nascent RNA to grow at 

a rapid pace and fold into different local secondary structures, providing a narrow 

window of opportunity for RNP formation. Therefore, there is a great need of RNA 

helicases to accelerate the structural conversion of RNA in order to overcome these 

challenges in vivo (Jarmoskaite and Russell 2014; Leitão et al. 2015). 

RNA helicases are found in all domains of life and some have even been 

identified in viruses. Unlike DNA helicases, RNA helicases are only found in SF1 – SF5 
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(Singleton et al. 2007). Besides the predominant role in RNA biology, some RNA 

helicases are also able to utilize DNA for NTP hydrolysis and unwind DNA/RNA 

hybrids and/or DNA duplexes (Kim et al. 1999; Guenther et al. 2009; Bhattacharya et al. 

2000; Lee and Hurwitz 1992; Bayliss and Smith 1996; Kawaoka and Pyle 2005; Pang et 

al. 2002; Shu et al. 2004; Brennan et al. 1990). Furthermore, RNA helicases do not 

necessarily display unwinding activity in vitro or function to unwind duplexes in cells. 

Some RNA helicases have been reported to function as annealers, nucleotide sensors, 

RNA clamps and NTP-driven translocases (Leitão et al. 2015; Putnam and Jankowsky 

2013b).  

1.2.1 SF3 – SF5 RNA helicases 

The SF3 – SF5 superfamilies consist of both DNA and RNA helicases. They all 

contain one helicase core with only one RecA-like domain that can oligomerize and form 

a hexameric ring structure. The hexameric ring structure is formed around the central 

channel from six individual protomers (Fig 1.1, (Mancini et al. 2004; Enemark and 

Joshua-Tor 2006)). Six identical ATP binding sites are located at the interface between 

two adjacent protomers. Nucleic acid-binding sites are found within the central channel 

of the ring (Skordalakes and Berger 2003). This architecture allows the hexameric 

helicase to unwind duplex by translocating along the nucleic acid that is bound within the 

central channel while excluding the complementary strand from the ring (Rabhi et al. 

2010; Patel and Picha 2000). Thus far, only three RNA helicases have been identified in 

SF3 – SF5 (Jankowsky et al. 2011). They are Simian virus 40 (SV40) large T antigen 

(TAg) in SF3, P4 in SF4, and Rho in SF5. These hexameric RNA helicases are involved 
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in numerous functions ranging from transcription termination to viral replication and 

assembly (Table 1.1).  

SV40 is the founding member of the Polyomaviridae, a family of small dsDNA viruses. 

TAg of SV40 is a well-characterized helicase that oligomerizes into hexamers in the 

presence of ATP and magnesium ions (Uhlmann-Schiffler et al. 2002). TAg plays a key 

role in hijacking the cellular replication machinery for viral replication inside the host-

cell nucleus (Ahuja et al. 2005). TAg binds to the viral origin of replication and unwinds 

the DNA duplex by translocating along one of the DNA strands in the 3’ to 5’ direction 

in an ATP-dependent manner (Stahl et al. 1986). This provides a template for the cellular 

DNA polymerase machinery to replicate the viral genome. In addition to DNA duplex 

unwinding activity, TAg also unwinds RNA duplexes with a 3’ overhang in a processive 

manner (Scheffner et al. 1989; Uhlmann-Schiffler et al. 2002). However, the function of 

the RNA unwinding activity of TAg during the viral life cycle is still not clear. Unlike 

DNA unwinding, TAg cannot utilize ATP to unwind RNA duplexes efficiently. Instead, 

TAg uses UTP, CTP or GTP to unwind RNA duplexes (Scheffner et al. 1989). Thus, the 

bound nucleotide might be the decisive factor for TAg to act as a DNA helicase or as a 

RNA helicase.  
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Figure 1.1. RNA helicases from SF1 – SF5. Superfamilies 1 and 2 (SF1 and SF2) 

consist of non-ring forming RNA helicases that are found in all living organisms and 

viruses. RNA helicases in SF1 are grouped into the Upf1-like family. A structure of 

UPF1∆CH (PDB ID: 2XZO) is shown. RNA helicases in SF2 can be divided into five 

different groups, including DEAD-box protein, DEAH/RHA protein, viral DExH protein, 

Ski2-like protein, and RIG-I-like protein. Structures of the DEAD-box protein 

Mss116∆C-terminal tail (PDB ID: 3I62), the DExH/RHA protein DHX9-DEIH domain 

(PDB ID: 3LLM), the viral DExH protein NS3 (PDB ID: 3O8D), the Ski2-like protein 

Ski2∆N (PDB ID: 4A4Z), and the RIG-I-like protein RIG-I∆CARD (PDB ID: 4AY2) are 

shown. SF3 – SF5 consist of mainly viral RNA helicases that generally form a 

hexameric-ring structure. A structure of P4 (PDB ID: 1W4C) from SF4 is shown (Figure 

is modified from Leitão et al. 2015).  
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Table 1.1. Summary of the biological functions and biochemical properties of RNA helicases 

Superfamily 

Class/e.g. in 

the 

superfamily 

Biological functions 
Nucleic acid 

preference 
NTP specificity 

Unwinding 

polarity/ 

Translocation 

SF1 Upf1-like 
NMD

a
, splicing

b
, translation 

termination
c
, miRNA processing

d
, 

 RNA, DNA A 5’ to 3’ 

 

 

SF2 

DEAD-box 

Transcription
e
, splicing

f
, RNA 

export
g
, translation

h
, RNA decay

i
, 

ribosome biogenesis
j
, 

mitochondrial RNA processing
k
 

RNA, DNA/RNA A 
Non-directional, 

Do not translocate 

DEAH/RHA 

Transcription
e
, splicing

f
, 

translation
l
, RNA decay

m
, 

ribosome biogenesis
j
 

RNA, DNA* A, U, G, C 3’ to 5’ 

Viral DExH 
Transcription termination

n
, RNA 

transport
o
, viral replication

p
 

RNA, DNA A, U, G, C 3’ to 5’ 

Ski2-like 
RNA processing

q
, mitochondrial 

translation
r
, RNA decay

s
 

RNA, DNA** A 
3’ to 5’ 

5’ to 3’** 

RIG-I-like 
Innate immune system

t
, miRNA 

and siRNA processing
u
 

RNA A 3’ to 5’ 

SF3 TAg Viral replication
v
 DNA, RNA 

A for DNA 

U, G, C for RNA 
3’ to 5’ 

SF4 P4 Genome packaging
v
  RNA A 5’ to 3’ 

SF5 Rho Transcription termination
w
 RNA, DNA/RNA A, U, G, C 5’ to 3’ 

References: 
a
Fiorini et al. 2012, 

b
Molnar et al. 1997, 

c
Czaplinski et al. 1999, 

d
Chendrimada et al. 2007, 

e
Fuller-Pace 2006, 

f
Liu and 

Cheng 2015, 
g
Luo et al. 2001, 

h
Sen et al. 2015, 

i
Swisher and Parker 2010, 

j
Strunk and Karbstein 2009, 

k
Huang et al. 2005, 

l
Hartman et al. 2006, 

m
Tran et al. 2004, 

n
Gross and Shuman 1996, 

o
Shuman 1993, 

p
Speroni et al. 2008, 

q
Small et al. 2006, 

r
Dziembowski et al. 1998, 

s
Wang et al. 2005, 

t
Yoneyama et al. 2005, 

u
Meister and Tuschl 2004, 

v
Uhlmann-Schiffler et al. 2002, 

w
Rabhi et al. 2011 

*   DNA can stimulate RHA, but not DEAH, proteins 

** Suv3 has been demonstrated to unwind both RNA and DNA duplexes from both polarities (Shu et al. 2004) 
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Another viral RNA helicase is P4 from dsRNA bacteriophages in the Cystoviridae 

family (Φ6 – Φ14) (Poranen and Tuma 2004). P4 is a 35 kDa packaging motor protein 

that assembles into hexamers in the presence of adenosine di/triphosphate and 

magnesium ions (Juuti et al. 1998). The hexameric P4 functions as a structural protein to 

promote capsid assembly for virus to enclose genetic material (Kainov et al. 2003). 

Unlike TAg, the NTPase activity of P4 can only be stimulated by RNA, but not DNA 

(Kainov et al. 2003, 2004). In addition, P4 translocates from the 5’ end to the 3’ end of 

RNA to unwind duplex regions (Kainov et al. 2003). These activities are crucial for the 

dsRNA bacteriophage to package their replicated genomic RNA into the capsid of virus 

(Poranen et al. 2008).  

Besides viral RNA helicases, hexameric RNA helicases can also be found in 

bacteria. Rho is a bacterial transcription termination factor that is responsible for 

disrupting the transcription elongation complex at the termini of specific loci within the 

bacterial genome (Rabhi et al. 2010). Rho is an active NTPase that can hydrolyze all four 

NTPs in an RNA-dependent manner (Lowery-Goldhammer and Richardson 1974). 

However, ATP appears to be the most efficient nucleotide co-factor for the helicase 

activity of Rho (Brennan et al. 1990). Rho translocates towards the 3’ end of the RNA, 

where the RNA polymerase is bound, at the expense of ATP, to trigger the release of the 

RNA polymerase (Rabhi et al. 2010). Consistent with this, Rho is also able to displace 

proteins from RNA (Schwartz et al. 2007). Moreover, Rho also shows ATP-dependent 

RNA duplex and DNA/RNA hybrid unwinding activities in vitro (Brennan et al. 1987, 

1990). The latter is proposed to resolve toxic R-loops, which are usually formed upon 
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hybridization of the newly synthesized transcript with the complementary template 

stranded behind elongating RNA polymerases.  

1.2.2 SF1 RNA helicases 

Like other helicase families, SF1 contains both RNA and DNA helicases 

(Gilhooly et al. 2013). All SF1 helicases have a structurally conserved helicase core that 

consists of two highly similar domains, arranged in tandem. These domains fold 

independently and are termed RecA-like domains, due to their resemblance to the 

bacterial Recombinase A (RecA) protein (Fig 1.1; (Caruthers and McKay 2002)). There 

are at least 12 characteristic sequence motifs throughout these two domains (Fairman-

Williams et al. 2010). Within these 12 motifs, the motif III sequence (GDxxQ) is the 

hallmark of an SF1 helicase (Gilhooly et al. 2013). Another major characteristic of SF1 

RNA helicases is that they contain large inserts within the RecA-like domains (Gilhooly 

et al. 2013). These inserts are up to hundreds of amino acids long and adopt independent 

folds that are often essential for enzyme functions (Saikrishnan et al. 2008; Brendza et al. 

2005). SF1 helicases are divided into three families, Uvrd/Rep-like helicase, Pif1-like 

enzymes and the Upf1-like family (Fairman-Williams et al. 2010). While all three 

families consists of DNA helicases, RNA helicases can only be found in the Upf1-like 

family (Jankowsky et al. 2011). SF1 DNA helicases have been identified in all three 

kingdoms of life and viruses. They are involved in DNA repair, replication, and 

recombination (Iyer et al. 2006; Bruand and Ehrlich 2000; Baharoglu et al. 2010; Cromie 

2009; Mendonca et al. 1995).  
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In contrast, SF1 RNA helicases have only been identified in eukaryotes and 

viruses, but not in bacteria (Jankowsky et al. 2011). SF1 RNA helicases have been 

implicated in nonsense-mediated mRNA decay (NMD), pre-mRNA splicing, translation 

termination and miRNA processing (Table 1.1; (Fiorini et al. 2012; Molnar et al. 1997; 

Czaplinski et al. 1999; Chendrimada et al. 2007)). Among the SF1 RNA helicases, Upf1, 

Sen1, and IGHMBP2 (immunoglobulin μ-binding protein 2) are the most well 

characterized enzymes and they all share similar biochemical characteristics. Upf1 is an 

RNA-dependent ATPase with low basal ATPase activity in the absence of RNA 

(Bhattacharya et al. 2000). Though the ATPase activity of Upf1 is dependent on RNA, 

ATP binding decreases the affinity of Upf1 with RNA (Czaplinski et al. 1995; Weng et 

al. 1998). Nonetheless, ATP is required for Upf1 to unwind RNA duplexes from the 5’ – 

3’ end. The latter activity is essential for NMD, a mRNA surveillance pathway that 

degrades aberrant mRNAs containing premature termination codons (Bhattacharya et al. 

2000; Czaplinski et al. 1995; Weng et al. 1996; Lejeune and Maquat 2005). However, the 

precise role of the RNA unwinding activity of Upf1 in NMD remains unknown.  

Unlike Upf1, the low basal ATPase activity of Sen1 can be stimulated by both 

ssRNA and ssDNA (Porrua and Libri 2013; Kim et al. 1999). Besides the ATPase 

activity, Sen1 has also been shown to unwind RNA and DNA duplexes from 5’ – 3’ end 

in an ATP-dependent fashion (Kim et al. 1999). Studies have demonstrated that Sen1 in 

yeast is implicated in transcription termination of snRNAs, mRNAs and snoRNAs 

(Rasmussen and Culbertson 1998; Steinmetz et al. 2001). The helicase activity of Sen1 is 

suggested to facilitate the removal of RNA Pol II from the transcript during transcription 

termination (Kim et al. 2006; Rasmussen and Culbertson 1998; Steinmetz et al. 2001). 
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Similar to other SF1 RNA helicases, IGHMBP2 in humans also has low basal 

ATPase activity (Guenther et al. 2009). The ATPase activity can either be stimulated by 

RNA or DNA (Guenther et al. 2009). Furthermore, IGHMBP2 also displays ATP-

dependent, 5’ – 3’ RNA and DNA unwinding activity (Guenther et al. 2009). It has been 

proposed that IGHMBP2 plays role in transcription activation and pre-mRNA splicing 

(Molnar et al. 1997; Shieh et al. 1995). However, how the biochemical activities of 

IGHMBP2 contribute to its biological role remains to be explored.  

1.2.3 SF2 RNA helicases 

SF2 is the largest superfamily (Fairman-Williams et al. 2010). SF2 can be 

subdivided into 10 families, 5 of which are families of DNA helicases including RecG-

like proteins, RecQ-like proteins, Rad3/XPD family, Type 1 restriction enzymes, and the 

Swi/Snf family. The other 5 families contain RNA helicases, which are often referred as 

DExH/D RNA helicases, including the DEAH/RHA family, viral DExH proteins, Ski2-

like proteins, Rig-I-like proteins, and the DEAD-box proteins (Linder and Jankowsky 

2011). SF2 DNA helicases are implicated in DNA related processes such as DNA repair, 

chromatin rearrangement, telomere maintenance, and replication (Lucic et al. 2011; 

Gaymes et al. 2002; Kasten et al. 2011; Opresko et al. 2005; Eller et al. 2006; McGlynn 

et al. 1997). SF2 RNA helicases are involved in every aspect of RNA maturation (Fuller-

Pace 2006; Liu and Cheng 2015;Cordin et al. 2006; Jarmoskaite and Russell 2014; Strunk 

and Karbstein 2009). Similar to SF1 helicases, SF2 helicases also contain one helicase 

core that consists of at least 12 characteristics motifs throughout the two RecA-like 

domains. There is high sequence conservation in the characteristic motifs within the 
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family, but not across different families. Furthermore, not all motifs are shared between 

these two superfamilies (Fairman-Williams et al. 2010). The only motifs that share high 

sequence conservation across both superfamilies are motif I (Walker A) and motif II 

(Walker B), which are involved in binding and hydrolysis of the nucleotide triphosphate 

(Fairman-Williams et al. 2010). Despite sequence differences in the characteristic motifs 

between superfamilies, the position and the molecular function of the characteristic 

motifs in SF1 and SF2 are very similar. For example, motifs Ic and V in both 

superfamilies are involved in nucleic acid binding and are located at similar positions in 

the helicase core (Fairman-Williams et al. 2010). In addition, both superfamilies, except 

some SF2 RNA helicases, contain the Q-motif, which provides nucleotide specificity 

towards adenosine triphosphates (Tanner et al. 2003).  

1.2.3.1 DEAH/RHA family 

The DEAH/RHA family is the second largest family in the SF2 helicase group 

with 15 members in humans, 7 in yeast and 2 in bacteria (Jankowsky et al. 2011). This 

family is subdivided into two groups. DEAH proteins are named after the single letter 

amino acid code (D-E-A-H) that is found in their conserved motif II. The other group is 

referred to as RHA-like proteins because they display high similarity to RNA helicase A 

(RHA), and their motif II does not always contain alanine in the D-E-A-H. RNA 

helicases from DEAH/RHA family do not contain the Q-motif that is found in some other 

RNA helicases. Thus, they do not show specificity towards adenine and are able to 

hydrolyze all NTPs (Tanner et al. 2003; Wang et al. 1998; Tanaka and Schwer 2005, 

2006). The basal NTPase activity of most DEAH/RHA family members in the absence of 
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any nucleic acid is relatively high compare to other RNA helicases (Wang et al. 1998; 

Tanaka and Schwer 2005, 2006). Both RNA and DNA can stimulate the NTPase activity 

of RHA, but only RNA is able to stimulate the NTPase activity of DEAH proteins (Wang 

et al. 1998; Tanaka and Schwer 2005, 2006). The DEAH/RHA family helicases are 

further differentiated from the rest of the SF2 RNA helicases in that they share two 

highly conserved stretches of amino acids located C-terminal to the helicase core of 

DEAH/RHA proteins (Sanjuán and Marín 2001). Although this C-terminal region is 

essential for viability for some organisms, the exact function of this region is not fully 

characterized (Edwalds-Gilbert et al. 2004; Wang and Guthrie 1998; Martin et al. 2002).  

DEAH/RHA proteins are implicated in many different RNA biology steps 

including transcription, pre-mRNA splicing, translation, RNA decay and ribosome 

biogenesis (Table 1.1; (Fuller-Pace 2006; Liu and Cheng 2015; Hartman et al. 2006; 

Strunk and Karbstein 2009)). The majority of members in this family are involved in pre-

mRNA splicing and ribosome biogenesis (Liu and Cheng 2015; Strunk and Karbstein 

2009). Four out of the seven members in yeast (e.g. Prp2, Prp16, Prp22 and Prp43) are 

involved in pre-mRNA splicing and three out of the seven members (Dhr1, Dhr2 and 

Prp43) are involved in ribosome biogenesis. The NTPase activity of all yeast 

spliceosomal DEAH helicases are stimulated by RNA (Wagner et al. 1998; Schwer and 

Guthrie 1991; O’Day et al. 1996b; Kim et al. 1992; Xu et al. 1996). In addition, all 

splcieosomal DEAH helicases, but not Prp2, display RNA unwinding activity in the 

presence of NTP (Kim et al. 1992; Wang et al. 1998; Tanaka and Schwer 2005, 2006). It 

is plausible that other factors from cells are required to activate the unwinding activity of 

Prp2. Prp16 and Prp22 prefer unwinding from 3’ – 5’, whereas Prp43 can unwind from 
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both polarities (Wang et al. 1998; Tanaka and Schwer 2005, 2006). The helicase 

activities of these spliceosomal DEAH helicases are critical for efficient pre-mRNA 

splicing (Cordin and Beggs 2013; Koodathingal and Staley 2014).  

We have known for a while that both the DEAH/RHA proteins, Dhr1 and Dhr2, 

are implicated in rRNA maturation (Colley et al. 2000). Nevertheless, the precise role of 

these two enzymes was not clear. A recent study has now demonstrated that Dhr1 is an 

active RNA-dependent ATPase that exhibits ATP-dependent RNA unwinding activity 

(Sardana et al. 2015). The latter activity is required for the removal of the U3 snoRNA 

from the 18S rRNA to promote rRNA folding and processing (Sardana et al. 2015). 

Given that other members of DEAH/RHA family can hydrolyze all NTPs and unwind in 

a 3’ – 5’ direction, it would be interesting to determine if Dhr1 can hydrolyze other NTPs 

and unwind RNA duplexes with a polarity.  

Without a doubt, the most well-studied RNA helicase from the RHA-like group is 

RHA. RHA in humans plays a role in transcription, translation and miRNA biogenesis 

(Nakajima et al. 1997; Hartman et al. 2006; Robb and Rana 2007). RHA unwinds RNA 

duplexes, DNA duplexes and DNA/RNA hybrid from 3’ – 5’ in vitro (Lee and Hurwitz 

1992). However, how the unwinding activity relates to the biological roles remains to be 

determined.  

1.2.3.2 Viral DExH RNA helicases 

Viral DExH RNA helicases are closely related to DEAH/RHA proteins, but they 

are not the same. Two highly conserved stretches of amino acids are found in the C-

terminal of DEAH/RHA proteins, but not the DExH helicases (Walbott et al. 2010; 
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Sanjuán and Marín 2001). Like DEAH/RHA family, viral DExH helicases do not contain 

the Q-motif. Therefore, DExH helicases can hydrolyze all NTPs (Table 1.1; (Jankowsky 

et al. 2010)). In addition, all DExH helicases show high basal NTPase activity that is 

stimulated by both RNA and DNA (Laín et al. 1991; Shuman 1992, 1993). DExH 

helicases are named because of the single amino acid code in the conserved helicase 

motif II that reads D-E-x-H, where x stands for a variable amino acid (Jankowsky and 

Jankowsky 2000). The two most prominent members of DExH helicases are the 

nucleoside triphosphate phosphohydrolase II (NPH-II) from vaccinia virus and the 

nonstructural protein 3 (NS3) from flaviviridae. Therefore, DExH helicases are sometime 

referred as the NS3/NPH-II family. NPH-II displays NTP-dependent unidirectional 

unwinding (3’ – 5’) in vitro on both RNA and DNA (Bayliss and Smith 1996; Kawaoka 

and Pyle 2005). Unlike most other RNA helicases, NPH-II is able to unwind long 

duplexes (~ 90 bp) (Gross and Shuman 1996). In addition to the helicase activity, NPH-II 

was the first helicase shown to displace proteins from RNA duplexes and unstructured 

RNA in vitro (Jankowsky et al. 2001; Fairman et al. 2004). The latter suggests that NPH-

II is able to displace RNA-binding proteins from RNA without unwinding RNA 

duplexes. It has been proposed that NPH-II is involved in transcription termination 

during viral gene expression and transport of viral transcripts out of the virion (Gross and 

Shuman 1996; Shuman 1993). Nevertheless, the exact RNA targets of NPH-II remain to 

be identified.  

Flaciciridae viruses encode a single poly-protein that is cleaved into 3 structural 

and 7 nonstructural proteins (Harris et al. 2006). Among the nonstructural proteins, the 

DExH protein NS3 is the largest and is essential for viral replication (Matusan et al. 
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2001; Gu et al. 2000; Kolykhalov et al. 2000). In vitro studies have demonstrated that 

NS3 unwinds RNA and DNA that contains a 3’ overhang in a NTP-dependent fashion 

(Gwack et al. 1997). ATP binding weakens the affinity of NS3 for single-stranded 

nucleic acid (Levin et al. 2005). This regulation is proposed to be critical for NS3 to 

translocate along DNA or RNA. Several studies have demonstrated that the NTPase and 

helicase activities of NS3 are essential for replication of many viruses, but it is not clear 

which stage in the viral life cycle requires duplexes unwinding during viral replication 

(Wengler et al. 1991; Speroni et al. 2008; Suzich et al. 1993; Gwack et al. 1999).  

1.2.3.3 Ski2-like proteins 

Comparing to the rest of the DExH/D RNA helicases, there are relatively fewer 

RNA helicases in the Ski2-like protein family, which is comprised of 8 members in 

humans and 6 members in yeast (Jankowsky et al. 2011). Unlike other DExH/D RNA 

helicases, the Ski-2 like protein family also consists of DNA helicases that participate in 

the repair of dsDNA breaks and meiotic recombination (McCaffrey et al. 2006; 

Nakagawa et al. 2001). Ski2-like proteins contain a helicase core with highly conserved 

sequence motifs. One of these motifs is the Q-motif that provides specificity towards 

ATP as an energy source (Tanner et al. 2003). One distinct feature of the Ski2-like 

proteins is their large size (Johnson and Jackson 2013). Members of this family contain 

multiple accessory domains that flank the helicase core (Johnson and Jackson 2013). The 

molecular weight of all members in the Ski2-like proteins is at least 100 kDa. RNA 

helicases in this family function in different RNA maturation steps including RNA 
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processing, mitochondrial translation and RNA degradation (Table 1.1; (Small et al. 

2006; Dziembowski et al. 1998; Wang et al. 2005)).  

Ski2-like proteins are named after the founding member Ski2 in yeast. Ski2 

associates with Ski3 and Ski8 to form the Ski complex (Anderson and Parker 1998; 

Brown et al. 2000). The Ski complex functions with the cytoplasmic exosome, a 

multisubunit complex that contains 3’ – 5’ exonuclease activity, to promote RNA 

turnover (Anderson and Parker 1998; Araki et al. 2001; van Hoof et al. 2000). Although 

all components in the Ski complex are necessary for exosome-dependent RNA turnover 

(Anderson and Parker 1998), only Ski2 exhibits enzymatic activities. Ski2 is a RNA-

dependent ATPase and unwinds 3’ overhang RNA duplexes (Halbach et al. 2013). These 

enzymatic activities are necessary for the Ski complex to transfer the unwound RNA to 

exosome for RNA degradation in the cytoplasm (Wang et al. 2005; Halbach et al. 2013). 

In the nucleus, the TRAMP complex adds the short poly(A) tails to nuclear RNAs 

that are subjected to degradation by the nuclear exosome (Kong et al. 2014; Vanacova 

and Stefl 2007; Houseley and Tollervey 2009). The Ski2-like RNA helicase Mtr4, the 

poly (A) polymerase (Trf4/5p) and the putative RNA-binding protein (Air1/2p) are the 

components of the TRAMP complex (Lebreton and Séraphin 2008). Mtr4 displays RNA-

dependent ATPase activity and unwinds RNA duplexes through translocation from 3’ – 

5’ end in the presence of ATP (Bernstein et al. 2008). The helicase activity of Mtr4 is 

suggested to displace RNA-binding proteins and resolve the RNA secondary structures to 

promote delivery of ssRNA to exosome (Houseley and Tollervey 2009; Lykke-Andersen 

et al. 2009). Consistent with this, Mtr4 displays unwinding preference for substrates with 

a 3’ overhang containing a poly(A) tail (Jia et al. 2012). Ski2-like proteins are multi-
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domains proteins (Johnson and Jackson 2013). The ratchet helix domain of Mtr4 is 

responsible for providing the selectivity towards poly(A) substrates (Taylor et al. 2014). 

The Ski2-like protein Brr2 is a component of the U5 snRNP and also contains the 

ratchet helix domain (Laggerbauer et al. 1998). A point mutation within the ratchet helix 

domain abolishes its unwinding activity and confers a slow growth phenotype (Zhang et 

al. 2009). Studies have shown that Brr2 unwinds 3’ overhang RNA duplexes and 

implicated in pre-mRNA splicing (Pena et al. 2009; Mozaffari-Jovin et al. 2012; Small et 

al. 2006). This helicase activity allows Brr2 to unwind the U4/U6 duplex in the U4/U6-

U5 tri-snRNP complex to promote spliceosomal assembly (Kim and Rossi 1999; 

Raghunathan and Guthrie 1998). In addition to U4/U6 unwinding, Brr2 also functions in 

spliceosomal disassembly after spliced mRNA is released (Small et al. 2006). RNA 

binding and/or unwinding activities of Brr2 are crucial for this function. Other 

components of the U5 snRNP, Prp8 and Snu114, have been shown to regulate the 

enzymatic activities of Brr2 to ensure the appropriate timing for the activation and 

disassembly of the spliceosome (Brow 2002; Small et al. 2006; Grainger and Beggs 

2005; Brenner and Guthrie 2005; Mozaffari-Jovin et al. 2013).  

In addition to cytoplasmic and nuclear RNA decay, RNA degradation also occurs 

in the mitochondria (Rorbach and Minczuk 2012). The Ski2-like protein Suv3p is one of 

the components of the yeast mitochondrial degradosome (Malecki et al. 2007). The 

degradosome have been implicated in RNA degradation and translation of mitochondrial 

RNAs (Dziembowski et al. 1998, 2003). Consistent with this, depletion of the Drosophila 

ortholog DmSUB3 severely reduced mitochondrial mRNAs and tRNAs levels (Clemente 

et al. 2015). Biochemical studies have revealed that Suv3p alone shows RNA-stimulated 
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ATPase activity, but low RNA unwinding activity in vitro (Min et al. 1993; Malecki et al. 

2007). However, RNA unwinding activity of Suv3p is needed for RNA degradation, 

which suggests that the unwinding activity of Suv3 needs to be stimulated in cells. This is 

accomplished by another component of the mitochondrial degradosome Dss1, who 

increases the unwinding activity of Suv3p (Malecki et al. 2007).  

The human ortholog of Suv3p (Suv3) is also implicated in mitochondrial RNA 

degradation (Szczesny et al. 2010; Borowski et al. 2013). Consistent with this, Suv3 is 

predominately localized in the mitochondria, but a small fraction is also found in the 

nucleus (Pereira et al. 2001). Furthermore, Suv3 associates with WRN and BLM 

helicases, which are proteins that function in recombination and DNA repair and are 

required for genomic stability (Pereira et al. 2001), suggesting that Suv3 in human may 

also play a role in recombination or replication. Supporting this idea, down-regulation of 

Suv3 enhances homologous recombination (Pereira et al. 2001). In addition, Suv3 is able 

to unwind both RNA and DNA duplexes from both polarities (Shu et al. 2004).  

1.2.3.4 RIG-I-like proteins 

RIG-I-like proteins have the least members in SF2. There are six members in this 

family, five of which are found in humans and one in fungi (Jankowsky et al. 2011). 

RIG-I-like proteins contain all twelve characteristic motifs of SF2, with the Q-motif 

providing nucleotide specificity towards adenosine triphosphate (Tanner et al. 2003). One 

unique characteristic of RIG-I-like proteins is the large, well-conserved, independently 

folded insert that forms between the two RecA-like domains. Most members including 

RIG-I, MDA5 and LGP2, function in the innate immune system in response to pathogens 
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(Table 1.1; (Yoneyama et al. 2005)). This response requires highly specific receptors to 

sense foreign molecules and pathogen-associated molecular patterns (PAMPs) to trigger 

the host response to pathogens. One of the major challenges for these sensors is to 

distinguish self from non-self-components. RIG-I and MDA5 can act as a sensor to detect 

different PAMPs from different viruses (Kato et al. 2006; Gitlin et al. 2006; McCartney 

et al. 2008; Loo et al. 2008). RIG-I and MDA5 are able to distinguish viral RNAs from 

cellular RNAs by the fact that cellular RNAs are usually processed and capped at the 5’ 

end (Banerjee 1980). RNA that contains a 5’ triphosphate, which is usually generated by 

viral RNA polymerases, activates RIG-I to trigger an interferon-α response (Hornung et 

al. 2006). In contrast, 5’ mono or diphosphate RNAs show no stimulation (Hornung et al. 

2006; Pichlmair et al. 2006; Plumet et al. 2007). Moreover, transcriptional modifications 

that are usually found in cellular RNAs, including 7-methylguanosine caps, 

pseudouridine, or 2-thiouridine abolish activation (Hornung et al. 2006). This suggests 

that the 5’ end and modified bases of cellular RNAs are critical for RIG-I to sense self 

from non-self.  

Unlike RIG-I, 5’ triphosphates do not activate MDA5. Instead a long 

nonphysiological double-stranded RNA mimic stimulates MDA5 (Kato et al. 2006; Gitlin 

et al. 2006). This suggests that RIG-I and MDA5 use different mechanisms for detecting 

viral RNAs. Several biochemical studies have demonstrated that both RIG-I and MDA5 

are RNA-dependent ATPases, but RNA unwinding activity has only been showed in 

RIG-I (Takahasi et al. 2008; Cui et al. 2008).  

Unlike other RIG-I-like RNA helicases, Dicer is the only member that does not 

primarily function in anti-pathogen innate immunity. Dicer plays a major role in 
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microRNAs (miRNAs) and small-interfering RNAs (siRNAs) processing (Meister and 

Tuschl 2004). Dicer is a dsRNA-stimulated ATPase, whose activity is necessary for 

processing long dsRNA to siRNA and primary miRNAs (pri-miRNAs) to miRNAs 

(Cenik et al. 2011; Flores-Jasso et al. 2009; Feng et al. 2012). However, there is currently 

no evidence showing that Dicer possesses unwinding activity. Whether Dicer functions as 

an unwinder or not remains to be elucidated.  

1.2.3.5 DEAD-box proteins 

DEAD-box proteins are the largest class of enzymes in the RNA helicase family. 

This class consists of 36 members in humans, 25 in yeast and 9 in bacteria. Similar to 

other SF2 RNA helicases, DEAD-box proteins contain twelve highly conserved motifs 

throughout the signature RecA-like domains in the helicase core that are responsible for 

recognizing RNA and binding and/or hydrolyzing ATP (Putnam and Jankowsky 2013b). 

The name DEAD-box proteins originates from the single letter amino acid codes Asp 

(D)-Glu (E)-Ala (A)-Asp (D) that are present at the highly conserved motif II in the 

helicase core. DEAD-box proteins are RNA-dependent ATPases and cannot recognize 

other NTPs due to the presence of the Q-motif (Linder and Fuller-Pace 2013; Tanner et 

al. 2003). In addition to ATPase activity, numerous studies have also demonstrated that 

DEAD-box proteins can function as RNA clamps, biosensors to detect nucleotide 

metabolites and RNP chaperones (Ballut et al. 2005; Young et al. 2013; Putnam and 

Jankowsky 2013b; Jarmoskaite and Russell 2014).  

The term “RNA clamp” refers to a RNA-binding protein that is stably locked on 

the RNA for an extended period of time and functions as a scaffold for proteins to 
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assemble on RNA. It is well established that the DEAD-box protein eIF4A-III is a clamp 

that can act as a protein assembly platform for assembly of the multicomponent exon 

junction complex (EJC) upstream of exon-exon junctions on mRNA (Ballut et al. 2005). 

EJC components Y14 and Magoh prevent eIF4A-III from releasing inorganic phosphate 

(Pi) and ADP after hydrolyzing ATP (Nielsen et al. 2009). This ADP-Pi-bound state of 

eIF4A-III can stably bind to RNA because of its conformation (Nielsen et al. 2009) (For 

further detail, please see section 1.2.3.5.3).  

The vast majority of DEAD-box proteins exhibit a cooperative binding with RNA 

and ATP (Banroques et al. 2008; Lorsch and Herschlag 1998; Polach and Uhlenbeck 

2002; Theissen et al. 2008; Samatanga and Klostermeier 2014). Moreover, several reports 

have shown that the ATPase cycle of DEAD-box proteins is highly associated with their 

RNA binding affinity (Tran et al. 2007; Cao et al. 2011; Henn et al. 2008, 2010). In the 

ATPase cycle of DEAD-box proteins, ADP-Pi-bound DEAD-box proteins exhitit the 

highest RNA binding affinity followed by ATP-bound. ADP-bound DEAD-box proteins 

tend to have the lowest RNA-binding affinity (Cao et al. 2011; Henn et al. 2008, 2010). 

Though AMP is not part of the ATPase cycle, DEAD-box proteins can also bind to AMP 

(Rudolph et al. 2006; Putnam and Jankowsky 2013a; Hogbom et al. 2007). Interestingly, 

binding of AMP inhibits the RNA binding and unwinding activities of certain DEAD-box 

proteins (Putnam and Jankowsky 2013a). The concentration of AMP in vivo is increased 

upon metabolic stress (Wilson et al. 1996; Dudley et al. 1987). The AMP-dependent 

regulation of the enzymatic properties of DEAD-box proteins in RNA metabolism is 

intriguing, as it suggests that DEAD-box proteins can function as biosensors of cellular 

stress (Putnam and Jankowsky 2013a). Along with this idea, the DEAD-box protein 
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DDX41 is able to sense bacterial secondary messengers cyclic di-GMP and cyclic di-

AMP to activate the innate immune response (Parvatiyar et al. 2012).  

One of the major functions of DEAD-box proteins is to act as RNP chaperones to 

promote structural rearrangement and remodel RNPs (Jarmoskaite and Russell 2014). 

This includes displacing RNA-binding proteins from RNA, assembling RNA-binding 

proteins on RNA, and facilitating the folding of RNA. Numerous studies have shown that 

DEAD-box proteins are involved in displacing RNA-binding proteins from RNA to 

facilitate RNA maturation (Chen et al. 2001; Kistler and Guthrie 2001; Tran et al. 2007; 

Perriman et al. 2003). In addition, there is direct biochemical evidence demonstrating that 

DEAD-box proteins utilize a different mechanism from the viral DExH RNA helicase 

NPH-II to remove proteins from RNA in an ATP-dependent manner (Fairman et al. 2004; 

Bowers et al. 2006). In addition to protein displacement, DEAD-box helicases also 

promote loading of RNA-binding proteins onto RNA (Kar et al. 2011; Laurent et al. 

2012; Ma et al. 2013). This is presumably accomplished by remodeling RNA structure to 

expose binding sites for RNA-binding proteins. To promote structural rearrangement of 

RNA, RNA annealers and RNA unwinders are needed. An RNA annealer is a protein that 

speeds up the annealing process of two strands of RNA that are complementary with each 

other. Several DEAD-box proteins display annealing activity independent of ATP 

(Rössler et al. 2001; Yang and Jankowsky 2005; Halls et al. 2007; Ma et al. 2013; Young 

et al. 2013; Uhlmann-Schiffler et al. 2006). The DEAD-box protein Rok1 appears to 

function solely as an annealer to facilitate the formation of a duplex during early 

ribosome biogenesis steps (Young et al. 2013). However, the mechanism of annealing is 

not fully understood.  
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Similar to other RNA helicases, DEAD-box proteins can also unwind RNA 

duplexes. However, DEAD-box proteins utilize a different unwinding mechanism from 

canonical RNA helicases (Rudolph and Klostermeier 2015). Most other RNA helicases 

use a translocation-based duplex unwinding mechanism, where the helicase first binds to 

a single-stranded region next to the duplex and then translocates in a unidirectional 

manner (Jankowsky et al. 2000; Fiorini et al. 2015). This separates the helicase-bound 

strand from the complementary strand. The two RecA-like domains in the helicase core 

are bound on the single-stranded region of the RNA duplex. Translocation happens when 

ATP is bound to the helicase core to shorten the distance between the two RecA-like 

domains on the bound RNA. Then, ATP hydrolysis and product release increase the 

distance between the two RecA-like domains, and one of the domains is now released 

from the RNA while the other domain remains stably bound (Myong et al. 2007; Dumont 

et al. 2006). The released domain then seeks binding to a new position that is one 

nucleotide away from the previous binding site, which generates the forward movement 

by one nucleotide. Once a new ATP binds to the helicase core, a new cycle begins (Fig 

1.2; (Myong and Ha 2010; Pyle 2008; Patel and Donmez 2006)). This allows the two 

domains to translocate across the ssRNA one nucleotide at a time in an inchworm-like 

fashion (Jankowsky 2011). Thus, a series of ATP hydrolysis cycles and a single-stranded 

region are both necessary for canonical RNA helicases to unwind in a translocation-based 

manner.  

DEAD-box proteins do not unwind in a translocation-based fashion, but rather 

load directly onto the duplex region and separate the two strands in an ATP-dependent 

manner (Yang and Jankowsky 2006; Yang et al. 2007). This is possible because DEAD-
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box proteins can disrupt RNA duplexes locally by bending one of the RNA strands 

(Rudolph and Klostermeier 2015). Although some DEAD-box proteins show more 

efficient unwinding with an overhang region next to the duplex, DEAD-box proteins can 

still unwind blunt end duplexes (Yang et al. 2007; Ma et al. 2013; Halls et al. 2007). 

Moreover, a single cycle of ATP binding and hydrolysis is sufficient to completely 

unwind a short RNA helix (~6 base pairs)(Chen et al. 2008). This suggests that ATP-

binding is sufficient for DEAD-box proteins to unwind RNA duplexes. Consistent with 

this finding, a non-hydrolysable ATP analog, ADP-BeF3, is able to promote duplex 

unwinding (Liu et al. 2008).  

Multiple X-ray crystallographic studies of DEAD-box helicases have 

demonstrated that DEAD-box proteins contain a structurally conserved helicase core that 

consists of two globular RecA-like domains (RecA_N, RecA_C). The two domains are 

connected by a flexible linker to form a characteristic “dumbbell-like” core (Fig 1.1). The 

RecA_N alone is sufficient to interact with ATP, but both RecA domains are required for 

ATP hydrolysis (Mallam et al. 2012; Samatanga and Klostermeier 2014). During RNA 

unwinding, the helicase core binds to the dsRNA. Closing of the two domains upon 

binding of the dsRNA and ATP bends one strand of the RNA so that it is incompatible 

with the geometry of an A-form RNA duplex (Sengoku et al. 2006; Andersen et al. 2006; 

Del Campo and Lambowitz 2009; von Moeller et al. 2009). The bending is achieved by 

an α-helix in the RecA_N domain that hinders a straight path of the RNA backbone. This 

allows DEAD-box proteins to destabilize RNA duplexes locally and release the unbent 

RNA strand when the base pairs in the duplex are disrupted (Rudolph and Klostermeier 

2015). Upon ATP hydrolysis, the inorganic phosphate is released, which is the rate-
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limiting step in the ATPase cycle (Henn et al. 2008). The resulting ADP-bound helicase 

has a weaker affinity for RNA and thus dissociates from single-stranded RNA, 

terminating a single round of the unwinding cycle. The DEAD-box helicase then can 

either recycle back on the same RNA substrate or find a new target (Fig 1.3; (Rudolph 

and Klostermeier 2015)). Since each ATP hydrolysis cycle can only unwind ~ 6 base 

pairs of the RNA duplex (Chen et al. 2008), multiple cycles of unwinding are required to 

completely separate longer duplexes. A recent study has revealed that the DEAD-box 

protein Ded1 oligomerizes into a trimer to promote duplex unwinding (Putnam et al. 

2015). Similar to Ded1, another DEAD-box helicase Mss116 also shows cooperativity 

during unwinding (Yang et al. 2007). This suggests that oligomerization maybe a 

common theme for DEAD-box proteins during duplex unwinding. Consistent with this 

idea, oligomerization has been observed in several DEAD-box proteins (Rudolph et al. 

2006; Ogilvie et al. 2003; Minshall and Standart 2004).  
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Figure 1.2. Canonical RNA helicases unwind duplexes by translocation. Lines 

represent RNA strands and the two ovals represent the two RecA-like domains. First, a 

RNA helicase binds to the single-stranded region adjacent to the duplex in the presence 

of ATP. The RNA helicase then translocates along the bound strand towards the duplex 

region to unwind the duplex 1 nt at a time upon each ATP hydrolysis cycle.  (Figure is 

modified from Myong and Ha 2010).  
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Figure 1.3. DEAD-box proteins unwind duplexes non-processively via local strand 

separation. Lines represent RNA strands and the two ovals represent the two RecA-like 

domains that are connected by a flexible linker. In the absence of any nucleotide and 

RNA, the two RecA-like domains are farther apart and exhibit a flexible “opened 

uproductive” conformation. During unwinding, the two RecA-like domains come closer 

together to form a “closed productive” conformation upon binding to the double-stranded 

RNA (dsRNA) and ATP (step 1). Closing of the two domains bends one strand of the 

dsRNA and results in local duplex destabilization (~ 6 bp). Duplexes longer than 6 bp 

require multiple cycles of unwinding. ATP hydrolysis and inorganic phosphate release 

convert the two RecA-like domains back to the “opened” conformation (step 2). This 

causes dissociation of the helicase core from the partially opened dsRNA. The partially 

opened dsRNA can potentially snap back to produce a non-productive unwinding cycle 

(dotted arrow) or is subjected to another round of local duplex destabilization (step 3). 

Another round of local duplex destabilization happens after the ADP is exchanged to 

ATP in the DEAD-box protein or a new ATP-bound DEAD-box protein recognizes the 

partially opened dsRNA. This allows the DEAD-box protein to fully disrupt the partially 

opened duplex. Upon ATP hydrolysis, the ADP-Pi bound DEAD-box protein still 

associates with the bent strand whereas the non-bent strand is released (step 4). The bent 

strand is eventually dissociated from the DEAD-box protein once the inorganic 

phosphate is released (step 5) (Figure is modified from Rudolph and Klostermeier 2015). 
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DEAD-box proteins recognize the phosphate backbone of RNA instead of the 

nucleotide bases (Sengoku et al. 2006; Andersen et al. 2006; Del Campo and Lambowitz 

2009; von Moeller et al. 2009), suggesting that DEAD-box proteins bind to RNA 

substrates in a sequence non-specific manner. Consistent with this, numerous 

biochemical studies have shown that DEAD-box proteins are able to unwind RNA 

duplexes with random sequences (Putnam and Jankowsky 2013a; Halls et al. 2007; Ma et 

al. 2013). This could potentially be an advantage for DEAD-box proteins to act as general 

RNA chaperones to target many different misfolded RNAs (Jarmoskaite and Russell 

2014). However, accessory domains of some DEAD-box proteins do confer substrate 

specificity (for further detail, please see section 1.2.3.5.2) 

1.2.3.5.1 Biological functions of DEAD-box proteins 

DEAD-box proteins are involved in every aspect of RNA biology ranging from 

transcription to RNA decay (Table 1.2; Cordin et al. 2006; Jarmoskaite and Russell 

2014). Transcription regulation in eukaryotes is highly associated with chromatin 

structure and transcription factors (Venkatesh and Workman 2015; Lee and Young 2013). 

Numerous studies have demonstrated that long non-coding RNAs (lncRNAs), transcripts 

that are longer than 200 nucleotides and do not exhibit protein-coding potential, regulate 

transcription through modulating chromatin structure (Cloutier et al. 2013; Martianov et 

al. 2007; Rinn and Chang 2012; Tsai et al. 2010; Spitale et al. 2011; Geisler and Coller 

2013). Furthermore, recent studies have also suggested that RNA alters transcription 

factor occupancy (Sigova et al. 2015; Vance and Ponting 2014). These studies indicate 
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that RNAs play a role in transcription. Thus, DEAD-box RNA helicases can potentially 

involve in transcription through RNA.  

1.2.3.5.1.1 Transcription 

Several DEAD-box proteins have been implicated in transcription. DDX20 

functions as a repressor to suppress the transcriptional activity of the orphan nuclear 

receptor steroidogenic factor 1 (SF-1) and the transcription factor early growth response 2 

(Egr2/Krox-20) (Yan et al. 2003; Gillian and Svaren 2004). The DEAD-box protein 

DDX3 activates the promoter of interferon β (IFN β) and p21
WAF1/CIP1

 and represses the 

E-cadherin promoter (Soulat et al. 2008; Chao et al. 2006; Botlagunta et al. 2008).  

Numerous lines of evidence indicate that the DEAD-box protein DDX5 (p68) acts 

as a co-activator of several transcription factors and nuclear receptors, including the 

estrogen receptor alpha (ERα), the androgen receptor (AR), the tumor suppressor p53, 

and a transcription factor for osteoblast development Runx2 (Endoh et al. 1999; Clark et 

al. 2008; Bates et al. 2005; Jensen et al. 2008). Interestingly, these studies demonstrated 

that the DDX5 ATPase deficient mutants (D248N and K114R) that presumably abolish 

its helicase activity is still able to activate transcription (Endoh et al. 1999; Clark et al. 

2008; Bates et al. 2005; Jensen et al. 2008). Nonetheless, no biochemical study has 

verified if the DDX5 mutant exhibits any RNA-binding activity. Reports have also 

revealed that DDX5 and the noncoding RNA SRA together act as a co-activator in 

skeletal muscule differentiation and the Notch signaling pathway (Caretti et al. 2006; 

Jung et al. 2013). This suggests that DDX5 might not function as an unwinder to remodel 

RNA structures, but may act as a protein scaffold on RNA for other factors similar to 
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eIF4A-III and the EJC. Thus, it will be important to determine whether the ATPase 

deficient mutants also retain RNA binding activity. This would elucidate if there were an 

RNA-dependent role for previous observations. In addition to its function as a co-

activator, DDX5 also acts as a co-repressor with histone deacetylase 1 (HDAC1) at 

certain promoters (Wilson et al. 2004).  

1.2.3.5.1.2 Pre-mRNA splicing 

Pre-mRNA splicing requires proper spliceosome formation on structurally 

resolved pre-mRNA. Spliceosome formation is accomplished by the assembly of 5 

snRNPs (U1, U2, U4, U5 and U6) onto pre-mRNA in an orderly fashion (Liu and Cheng 

2015; Ding et al. 2014; Wan et al. 2014). Each snRNP contains a snRNA that can fold 

and form base pairs with pre-mRNA. Once the spliceosome is properly assembled, 

structural rearrangements occur to activate the spliceosome and catalyze two consecutive 

transesterification steps. After the reaction is completed, the spliced mRNA is released 

and the spliceosome is disassembled (Fig 1.4; (Liu and Cheng 2015)). These processes 

require eight RNA helicases including three DEAD-box proteins (Sub2, Prp5 and Prp28), 

four DEAH/RHA helicases (Prp2, Prp16, Prp22 and Prp43) and one Ski2-like protein 

(Brr2) (Kistler and Guthrie 2001; Wang et al. 2008; Perriman and Ares 2007; Staley and 

Guthrie 1999; Chen and Lin 1990; Burgess et al. 1990; Schwer and Guthrie 1991; 

Company et al. 1991; Tanaka et al. 2007; Arenas and Abelson 1997; Raghunathan and 

Guthrie 1998; Small et al. 2006). The three DEAD-box proteins are particularly 

important for spliceosome assembly and activation. During spliceosome assembly, U1 

snRNA recognizes the 5’ splice site by RNA base pairing. The branch point binding 
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protein BBP initially binds to the branch site and interacts with U1 snRNP proteins Prp40 

and Mud2 to join the 5’ splice site and the 3’ splice site together (Abovich et al. 1994; 

Berglund et al. 1997). Sub2 removes Mud2 from the branch site, which opens up the site 

for U2 snRNP to bind (Kistler and Guthrie 2001; Wang et al. 2008). In order for U2 

snRNA to form base pairs with the branch site, Prp5 is required to convert U2 snRNP 

into its functional form by removing Cus2 from U2 snRNP in an ATP-dependent manner 

(Perriman et al. 2003; Perriman and Ares 2007). When U1 and U2 snRNPs are bound to 

the pre-mRNA, the pre-formed U4/U6.U5 tri-snRNP is recruited to form a properly 

assembled spliceosome (Huang et al. 2014; Cheng and Abelson 1987; Roscigno and 

Garcia-Blanco 1995). The spliceosome then undergoes structural rearrangements. This 

promotes the dissociation of U1 and U4 so U6 can form new base pairs with the 5’ splice 

site and U2 can form a new interaction with U6 (Brow 2002). Prp28 resolves the six base 

pair helix between U1 and the 5’ splice site to release U1 from the spliceosome (Staley 

and Guthrie 1999). Meanwhile, Brr2 destabilizes the U4/U6 base pairs to promote the 

dissociation of U4 (Raghunathan and Guthrie 1998). The rearranged spliceosome is now 

active to perform transesterification catalysis for splicing to occur.  

1.2.3.5.1.3 Mitochrondrial RNA processing 

Mitochondria contain their own genome, the mitochondrial DNA (mtDNA), that 

is separated from the genome in the nucleus (Taanman 1999). The mtDNA encodes 

tRNAs, mRNAs and rRNAs (Falkenberg et al. 2007). Several studies have shown that 

DEAD-box proteins are also involved in mitochondrial RNA processing (Huang et al. 

2005; Del Campo et al. 2007; Valgardsdottir et al. 2001). For instance, the DEAD-box 
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protein Mss116 facilitates folding of all mitochondrial group I and group II introns 

(Huang et al. 2005). Moreover, Mss116 is required for splicing of the mitochondrial 

introns (Solem et al. 2006; Del Campo et al. 2007; Mohr et al. 2008). In addition to 

Mss116, another DEAD-box RNA helicase DDX28 has shown to be localized in 

mitochondria, suggesting that it is also involved in mitochondrial functions 

(Valgardsdottir et al. 2001).  

1.2.3.5.1.4 mRNA export 

Unlike prokaryotes, eukaryotes have a nucleus where mRNA is synthesized and 

processed. The processed mRNA is then exported to the cytoplasm through the nuclear 

pore complex (Okamura et al. 2015). mRNA export requires proper mRNP assembly 

prior to the mRNA being transported from the nucleus to the cytoplasm. Multiple DEAD-

box proteins, such as DDX19/Dbp5, UAP56/Sub2, and DDX5 have been shown to play 

roles in this process (Zhao et al. 2002; Luo et al. 2001; Strässer and Hurt 2001; Zonta et 

al. 2013). The DEAD-box protein DDX19/Dbp5 is localized at the cytoplasmic face of 

the nuclear pore complex through interacting with NUP214/ Nup159 (Zhao et al. 2002; 

Weirich et al. 2004). This allows DDX19/Dbp5 to release export factors from mRNA by 

mRNP remodeling to promote mRNA export through the nuclear pore complex (Lund 

and Guthrie 2005; Tran et al. 2007). DDX3 and DDX1 have been implicated in viral 

RNA export in mammalian cells (Fullam and Schröder 2013). 

1.2.3.5.1.5 Ribosome biogenesis 

Ribosome biogenesis also involves many structural rearrangements (Martin et al. 

2013). It is well established that ribosome biogenesis is a highly complicated process that 
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involves many RNA helicases and other factors. There are 19 RNA helicases, ~ 200 

ribosome assembly factors, and 75 small nucleolar RNAs (snoRNAs) involved in 

ribosome biogenesis in S. cerevisiae (Watkins and Bohnsack 2012; Martin et al. 2013; 

Thomson et al. 2013). During transcription of the ribosomal DNA repeat in the nucleolus, 

the nascent pre-ribosomal RNA (pre-rRNA) associates with ribosomal proteins and RNA 

helicases. This promotes the pre-rRNA to undergo different processing and modification 

steps to form the 40S and 60S subunits prior to cytoplasmic export (Mougey et al. 1993; 

Miller and Beatty 1969; Henras et al. 2014). Each mature ribosome consists of a large 

subunit (LSU) and a small subunit (SSU). In S. cerevisiae, the LSU contains three rRNAs 

(25S, 5.8S and 5S) and the SSU has only one rRNA (18S). All of these rRNAs, except 

the 5S rRNA, are originated from one long transcript (35S) that is generated by 

polymerase I and processed at specific sites (Goetze et al. 2010). RNA polymerase III is 

responsible for synthesizing the 5S rRNA (Costanzo et al. 2001). 

DEAD-box proteins Dbp3, Dbp7, Dbp2, Dbp6, Dbp9, Mak5, Drs1, Dbp10 and 

Sbp4 are required for LSU biogenesis (Weaver et al. 1997; Daugeron and Linder 1998; 

Ripmaster et al. 1993; de la Cruz et al. 1998; Kressler et al. 1998; Burger et al. 2000; 

Bond et al. 2001; Bernstein et al. 2006) while Dbp8, Rok1, Fal1, Rrp3 and Dbp4 are 

necessary for SSU biogenesis (O’Day et al. 1996a; Liang et al. 1997; Venema et al. 1997; 

Daugeron and Linder 2001; Granneman et al. 2006; Kressler et al. 1997). In addition, 

Has1 is involved in both LSU and SSU biogenesis (Liang and Fournier 2006; Bernstein 

et al. 2006; Emery et al. 2004). These DEAD-box proteins are usually involved in 

structural changes on pre-rRNAs for proper processing (Weaver et al. 1997; Young et al. 

2013; Lamanna and Karbstein 2011).  
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Table 1.2. List of DEAD-box proteins involved in different RNA biology processes 

Biological function 
DEAD-box protein 

Mammalian Yeast 

Transcription 

DDX20(Gemin3)
a, b

, 

DDX3
c, d, e

, DDX5
f, g, h, i, j, 

k, l
 

 

Dbp2
ddd, eee ,ffff

 

Splicing 
UAP56

ggg, hhh
, DDX5

q, r
, 

DDX3
s
 

Sub2
m, n

, Prp5
o
, Prp28

p
 

RNA export 
UAP56

 v
, DDX5

x
, 

DDX3
y
 

Dbp5
t, u

, Sub2
w
 

Translation 
eIF4A

 z
, 

DDX4(VASA)
bb, cc

 
Tif1

aa
, Ded1

aa
, Dbp5

dd
 

RNA decay eIF4A-III
hh

 Dhh1
ee, ff, gg

 

Ribosome biogenesis 
DDX5

iii
, DDX50

uu
, 

DDX21
vv

,
 

Dbp3
ii
, Dbp7

jj
, Dbp2

kk
, Dbp6

ll
, 

Spb4
mm

, Dbp10
nn

, Has1
oo, pp

, 

Rok1
qq

, Rrp3
rr

, Dbp8
ss

, Drs1
tt
, 

Dbp4
ww

, Fal1
xx

, Dbp9
yy

, Mak5
zz

 

Mitochondrial RNA 

processing 
DDX28

bbb
 Mss116

aaa
, Mrh4

ccc
 

References: 
a
Yan et al. 2003, 

b
Gillian and Svaren 2004, 

c
Soulat et al. 2008, 

d
Chao et al. 

2006, 
e
Botlagunta et al. 2008, 

f
Endoh et al. 1999, 

g
Clark et al. 2008, 

h
Bates et al. 2005, 

i
Jensen et al. 2008, 

j
Caretti et al. 2006, 

k
Jung et al. 2013, 

l
Wilson et al. 2004, 

m
Kistler and 

Guthrie 2001, 
n
Wang et al. 2008, 

o
Perriman and Ares 2007, 

p
Staley and Guthrie 1999, 

q
Kar et al. 2011, 

r
Dardenne et al. 2014, 

s
Schröder 2010, 

t
Zhao et al. 2002, 

u
Weirich et al. 

2004, 
v
Luo et al. 2001, 

w
Strässer and Hurt 2001, 

x
Zonta et al. 2013, 

y
Fullam and Schröder 

2013, 
z
Svitkin et al. 2001, 

aa
Sen et al. 2015, 

bb
Carrera et al. 2000, 

cc
Lasko 2013, 

dd
Gross 

et al. 2007, 
ee

Fischer and Weis 2002, 
ff
Coller et al. 2001, 

gg
Sheth and Parker 2003, 

hh
Ferraiuolo et al. 2004, 

ii
Weaver et al. 1997, 

jj
Daugeron and Linder 1998, 

kk
Bond et al. 

2001, 
ll
Kressler et al. 1998, 

mm
de la Cruz et al. 1998, 

nn
Burger et al. 2000, 

oo
Bernstein et 

al. 2006, 
pp

Liang and Fournier 2006, 
qq

Venema et al. 1997, 
rr

O’Day et al. 1996, 
ss

Daugeron and Linder 2001, 
tt
Ripmaster et al. 1993, 

uu
Henning et al. 2003, 

vv
Calo et al. 

2015, 
ww

Liang et al. 1997, 
xx

Kressler et al. 1997, 
yy

Daugeron et al. 2001, 
zz

Zagulski et al. 

2003, 
aaa

Huang et al. 2005, 
bbb

Valgardsdottir et al. 2001, 
ccc

Schmidt et al. 2002, 
ddd

Cloutier et al. 2012, 
eee

Cloutier et al. 2013, 
fff

Beck et al. 2014, 
ggg

Shen et al. 2008, 
hhh

Fleckner et al. 1997, 
iii

Jalal et al. 2007  
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Figure 1.4. DEAD-box proteins are heavily involved in spliceosome assembly and 

activation. During spliceosome assembly, Sub2 removes Mud2 from the branch site 

while Prp5 dissociates Cus2 from U2 and switches U2 to a functional conformation. This 

allows U2 snRNP to bind to the branch site and interact with U1 snRNP. The pre-formed 

U4/U6.U5 complex is then recruited and forms a properly assembled spliceosome. To 

activate the spliceosome, Prp28 removes U1 snRNP from the spliceosome while the 

Ski2-like protein Brr2 promotes the release of U4 from U6. The spliceosome undergoes 

drastic structural rearrangements and is ready for a splicing reaction (Figure is modified 

from Liu and Cheng 2015). 
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1.2.3.5.1.6 Translation 

Translation initiation requires the preinitiation complex (PIC) to load and scan 

from 5’ to 3’ along the 5’ UTR seeking the start codon. Both of these processes require 

disruption of RNA structures within the 5’ UTR, which is facilitated by the DEAD-box 

helicases eIF4A and Ded1 (Svitkin et al. 2001; Sen et al. 2015). The initiation factor 

eIF4A is part of the eIF4F complex that promotes the recruitment of the PIC to the 5’ cap 

(Svitkin et al. 2001). Once the PIC is loaded, Ded1 helps the PIC to scan for the start 

codon through secondary structures within the 5’ UTR (Sen et al. 2015). Several reports 

have also revealed that the human DEAD-box protein DDX4 (Vasa in Drosophila) 

facilitates eIF5B loading to the PIC and promotes translation of mRNAs encoding 

proteins that play roles in embryogenesis and germline development (Carrera et al. 2000; 

Lasko 2013; Johnstone and Lasko 2004).  

1.2.3.5.1.7 RNA decay 

RNA degradation plays a huge role in maintaining the cellular RNA homeostasis 

(Parker 2012; Houseley and Tollervey 2009). Cytoplasmic mRNA degradation in yeast 

occurs by two general pathways, both of which are initiated by deadenylation (Decker 

and Parker 1993). After deadenylation, the mRNA is either subjected to 3’ to 5’ 

degradation by the cytoplasmic exosome or decapped by the decapping enzyme followed 

by 5’ to 3’ degradation by Xrn1 (Anderson and Parker 1998; Steiger et al. 2003; Van 

Dijk et al. 2002; Hsu and Stevens 1993; Muhlrad et al. 1994). In yeast, the DEAD-box 

protein Dhh1 associates with mRNA deadenylation factors Pop2/Caf1 and Ccr4, the 

mRNA degradation factor Pat1 and the exonuclease Xrn1 (Hata et al. 1998). 
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Furthermore, Dhh1 induces mRNA decapping activity and is associated with 3’ to 5’ 

degradation in the cytoplasm (Fischer and Weis 2002; Coller et al. 2001; Sheth and 

Parker 2003). This suggests that Dhh1 plays a role in mRNA decay. The surveillance 

mechanism NMD degrades mRNAs that carry a premature termination codon (PTC). 

Genomomic mutation or errors occur during RNA processing could result a PTC in a 

transcript (Brogna and Wen 2009; Christiano et al. 1997). In yeast, pre-mRNAs that 

contain a stop codon in the intron or mRNAs with an atypically long 3’ UTR are 

considered transcripts with PTC (Kebaara and Atkin 2009). In mammals, a stop codon is 

considered premature when it is located upstream of an EJC on a mRNA (Mendell et al. 

2004; Isken and Maquat 2008). The EJC contains the DEAD-box protein eIF4A-III, 

which has been shown to play a role in NMD (Ferraiuolo et al. 2004; Palacios et al. 2004; 

Shibuya et al. 2004). 

1.2.3.5.2 Specificity of DEAD-box proteins 

Given that DEAD-box proteins specifically function in different biological 

processes and the helicase core of DEAD-box proteins recognize RNA in a non-specific 

manner, the cellular specificity needs to arise from outside the helicase core. This 

specificity is provided by accessory domains flanking the helicase core and/or protein co-

factors. Numerous studies have revealed that the C-terminal domain of DbpA and YxiN 

provide specificity towards the hairpin 92 in 23S rRNA (Kossen et al. 2002; Karginov et 

al. 2005; Diges and Uhlenbeck 2001; Tsu et al. 2001). Similarly, the C-terminal domain 

of Hera promotes recognition of RNAs with a single-stranded GGXY stretch adjacent to 

a duplex region (Morlang et al. 1999; Linden et al. 2008). Moreover, the C-terminal 
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domain of DDX20 is required to interact with survival of motor neurons (SMN) to 

facilitate assembly of snRNP particles (Charroux et al. 1999). Besides substrate 

specificity, accessory domains can also modulate the enzymatic activities of DEAD-box 

proteins. This has been observed with the N-terminal helix of DDX19/Dbp5 that folds 

between the two RecA-like domains. This helix inhibits the intrinsic ATPase activity of 

DDX19/Dbp5 in the absence of RNA (Collins et al. 2009). The C-terminus of CYT-19 

has also been shown to enhance the unwinding activity via tethering of the helicase to 

structured RNA (Grohman et al. 2007). Further evidence has also demonstrated that the 

C-terminus of Ded1 contains an RGG-rich motif that is important for its annealing 

activity (Yang and Jankowsky 2005).  

1.2.3.5.3 Protein co-factors and DEAD-box proteins 

Protein co-factors have also been shown to regulate the enzymatic activities of 

DEAD-box proteins (Table 1.3). The DEAD-box protein eIF4A is one of the most well-

studied examples of regulation by protein co-factors. The initiation factor eIF4G interacts 

with eIF4A and guides the conformational change on the helicase core. This stimulates 

the ATPase activity and decreases the RNA, ATP and ADP binding affinity of eIF4A 

(Montpetit et al. 2011; Schutz et al. 2008; Hilbert et al. 2011). Another initiation factor, 

eIF4B, has also been shown to stimulate both the ATPase and unwinding activities of 

eIF4A by increasing its affinity towards RNA and ATP (Abramson et al. 1988; 

Rogers  Jr. et al. 2001; Rozen et al. 1990; Bi et al. 2000). These translation factors work 

together to regulate the enzymatic activity of eIF4A and promote efficient translation 

initiation. In contrast, the tumor suppressor Pdcd4 inhibits the unwinding and ATPase 
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activities of eIF4A by occluding the RNA-binding site to decrease its RNA-binding 

affinity (Chang et al. 2009; Loh et al. 2009). This inhibition reduces translation initiation 

efficiency. 

Another well-known example is observed when the mRNA export protein Gle1, 

together with chemical compound inositol hexaphosphate (IP6), promote ATP binding of 

the DEAD-box protein DDX19/Dbp5 to potentiate its ATPase activity (Alcazar-Roman 

et al. 2006; Weirich et al. 2006; Noble et al. 2011). In contrast, the cytoplasmic 

nucleoporin Nup159/NUP214 inhibits the ATPase and RNA binding activities of 

DDX19/Dbp5 by occupying the RNA binding site and sterically preventing the helicase 

core from folding into its active state (von Moeller et al. 2009; Montpetit et al. 2011). 

These protein co-factors together regulate DDX19/Dbp5 at the cytoplasmic side of the 

nuclear pore complex to maintain unidirectional movement of the mRNP during nuclear 

export (Tran et al. 2007). 
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Table 1.3. Effects of protein co-factors on DEAD-box proteins 

DEAD-box 

protein 
Protein co-factor 

Protein co-factor effects 

Substrate binding ATPase activity 
Unwinding 

activity 

Annealing 

activity 

Rok1 Rrp5 RNA: Increase
a 

N/D No effect
a 

Increase
a
 

eIF4A-III MLN51 
RNA: Increase

b 

ATP: Increase
c Increase

b, c 
Increase

c 
N/D 

eIF4A-III MAGOH-Y14 

RNA: No effect
b
, but increase 

when associate with MLN51)
d
 

Pi release: Decrease
d
 

Abolish MLN51-

dependent stimulation
b, c 

Increase (when 

associate with 

MLN51)
c
  

N/D 

eIF4A-III CWC22 RNA: Decrease
e
 Decrease

e
 N/D N/D 

DDX6 CNOT1 N/D Increase
f 

N/D N/D 

Dbp5 Gle1:IP6 
RNA: Decrease

k 

ATP:Increase
i
 

Increase
g, h

 N/D N/D 

DDX19/Dbp5 NUP214/Nup159 
ADP: Decrease

i 

RNA:Decrease
j
,
, k Decrease

j
 N/D N/D 

Dbp8 Esf2 N/D Increase
l
 N/D N/D 

eIF4A PDCD4 RNA: Decrease
m
 Decrease

n
 Decrease

m, n
 N/D 

eIF4A eIF4G 

RNA: Decrease
k 

ATP: Decrease
o
 

ADP: Decrease
o 

Pi release: Increase
o
 

Increase
o, p

 N/D N/D 

eIF4A eIF4B 

RNA: Increase
q
 

ATP: Increase
r 

Pi release: Increase
r
 

Increase
q, s, t

 Increase
u
 N/D 

Dhh1 Pat1 and Edc3 RNA: Decrease
v
 N/D N/D N/D 

Ded1 Gle1 N/D Decrease
w
 N/D N/D 

Ded1 eIF4G RNA: Increase
x
 N/D Decrease

x
 N/D 

Dbp2 Yra1 RNA: Decrease* Increaese
y 

Decrease
y 

N/D 
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References: 
a
Young et al. 2013, 

b
Ballut et al. 2005, 

c
Noble and Song 2007, 

d
Nielsen et al. 2009, 

e
Barbosa et al. 2012, 

f
Mathys et al. 

2014, 
g
Weirich et al. 2006, 

h
Alcazar-Roman et al. 2006, 

i
Noble et al. 2011, 

j
von Moeller et al. 2009, 

k
Montpetit et al. 2011, 

l
Granneman et al. 2006, 

m
Chang et al. 2009,

 n
Loh et al. 2009, 

o
Hilbert et al. 2011, 

p
Schutz et al. 2008, 

q
Abramson et al. 1988, 

r
Bi et 

al. 2000, 
s
Grifo et al. 1984, 

t
Rogers  Jr. et al. 2001, 

u
Rozen et al. 1990, 

v
Sharif et al. 2013, 

w
Bolger and Wente 2011, 

x
Putnam et al. 

2015, 
y
Ma et al. 2013 

N/D indicates not determine 

*indicates unpublished data from the Tran lab 
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The DEAD-box protein eIF4A-III is stably locked onto RNA to act as a RNA 

clamp by interacting with the other components of the EJC, including MLN51, MAGOH 

and Y14 (Ballut et al. 2005). Though MLN51 stimulates the ATPase and unwinding 

activities of eIF4A-III, addition of MAGOH and Y14 to the complex inhibits the 

stimulation and further reduces phosphate release of eIF4A-III. This increases the affinity 

of eIF4A-III towards RNA (Noble and Song 2007; Ballut et al. 2005; Nielsen et al. 

2009). It has also been demonstrated that the ribosomal protein Rrp5 provides substrate 

specificity for the DEAD-box protein Rok1 and increases its annealing activity (Young et 

al. 2013). This regulation is critical to promote efficient ribosome biogenesis. In contrast, 

some protein cofactors do not modulate the activity of DEAD-box proteins. For example, 

the stem loop binding protein (SLBP)-binding protein 1 (SLIP1), which activates the 

translational activity of SLBP bound histone mRNAs, interacts with the DEAD-box 

protein DDX19/Dbp5. However, this interaction does not appear to modulate the 

enzymatic activity of this helicase (von Moeller et al. 2009). Similarly, another DEAD-

box protein, UAP56, interacts directly with the mRNA export factor ALY (Luo et al. 

2001). ALY also does not affect the catalytic activity of UAP56 (Shen et al. 2007).  

1.2.3.5.4 DEAD-box proteins and diseases 

Regulation of DEAD-box proteins is critical for cells to perform their 

physiological functions. Mis-regulation of DEAD-box RNA helicases has been 

implicated in numerous diseases (Steimer and Klostermeier 2012). For instance, 

upregulation of UAP56 has been reported in Alzheimer’s patients and reduction of DDX5 

is found in skeletal muscle biopsies of myotonic dystrophy type 1 and type 2 patients 
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(Wong et al. 2003; Jones et al. 2015). Studies have also revealed that many DEAD-box 

proteins are aberrantly expressed in cancer (Fuller-Pace 2013; Hashimoto et al. 2001; 

Miyaji et al. 2003; Botlagunta et al. 2008). This includes DDX1, which is upregulated in 

neuroblastoma and retinoblastoma (Godbout et al. 1998; Godbout and Squire 1993; 

George et al. 1996). Overexpression of DDX39 is found in lung squamous cell cancer 

and pancreatic cancer (Sugiura et al. 2007; Kuramitsu et al. 2013). Furthermore, DDX5 is 

uprregulated in a range of cancers including colorectal, colon, prostate, breast, and 

glioma (Causevic et al. 2001; Shin et al. 2007; Clark et al. 2008; Wortham et al. 2009; 

Wang et al. 2012). Several reports have also indicated that eIF4A is downregulated in 

glioma, lung, colon and breast cancer (Wen et al. 2007; Chen et al. 2003; Gao et al. 2007; 

Mudduluru et al. 2007). To alleviate or even cure these diseases, it is important to 

understand how DEAD-box proteins are being regulated.  

1.3 Summary 

 RNA helicases are a class of enzymes that function in all steps of RNA biology. 

Research in the past 30 years has demonstrated a wide range of biochemical properties of 

RNA helicases. One of the long-standing questions in the RNA helicase field is how 

these properties dictate cellular functions. For example, many biochemical studies have 

demonstrated that some RNA helicases exhibit unwinding activity in vitro. However, 

whether these RNA helicases unwind RNA substrates in vivo remains to be addressed. If 

they do unwind RNA targets in cells, when and where do they unwind? In addition, how 

is this activity regulated so the RNA helicase can perform this function at the correct time 

and location? These questions also apply to biochemical activities other than unwinding. 
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Progress in answering these questions has been hindered in the past mainly due to lack of 

information on the cellular RNA targets of the RNA helicases. With recent rapid 

advancements in sequencing technology, it has become easier to identify the RNA targets 

and binding sites of RNA helicases. It is expected that more and more cellular RNA 

targets of RNA helicases will be identified in the near future. This allows biochemical 

analysis to be conducted using the endogenous RNA targets to study the precise role of 

the RNA helicase.  

Given the importance of RNA helicases in almost all RNA related cellular 

processes, mis-regulation of RNA helicases have been implicated in numerous human 

diseases and pathogen infections (Steimer and Klostermeier 2012). Protein co-factors and 

accessory domains have been demonstrated to regulate the enzymatic properties of RNA 

helicases. However, it is not well understood that how these factors modulate the 

enzymatic activities of most RNA helicases on a molecular level. Understanding the 

precise mechanism of regulation on RNA helicases might shed light on targets for drug 

design for diseases that involve mis-regulated DEAD-box proteins. In the following 

years, it will be exciting to learn more about the precise role and the regulation 

mechanism of RNA helicases.  
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CHAPTER 2. The DEAD-BOX RNA HELICASE DBP2 CONNECTS RNA QUALITY 

CONTROL WITH REPRESSION OF ABERRANT TRANSCRIPTION 

2.1 Introduction 

Essential cellular processes, such as growth, organ development and 

differentiation, require precise spatial and temporal control of gene expression. 

Eukaryotic gene expression involves highly complex and coordinated events including 

transcription, pre-messenger RNA (pre-mRNA) processing, mRNA transport to the 

cytoplasm, translation and decay. During synthesis, RNA-binding proteins and 

complexes dynamically associate with the RNA to form a mature, translationally 

competent mRNP complex (mRNP) (Moore and Proudfoot 2009). These factors promote 

proper pre-mRNA processing and transport as well as couple upstream and downstream 

steps in the gene expression network. In addition to protein coding mRNAs, the 

eukaryotic genome also encodes numerous non-coding RNAs (Neil et al. 2009; van Dijk 

et al. 2011; Cabili et al. 2011). These include well known members such as transfer 

RNAs, ribosomal RNAs and spliceosomal RNAs, as well as a more recently recognized 

class of heterogeneous long non-coding RNAs (lncRNAs) (Berretta and Morillon 2009). 

The latter class has recently gained importance due to the conserved nature of this 

widespread transcription and connections between specific members and epigenetic gene 

regulatory mechanisms (Wang and Chang 2011). 
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In the budding yeast Saccharomyces cerevisiae, lncRNAs are very low in 

abundance and have been classically defined based on the inhibited RNA-decay 

mechanism used for detection. This has resulted in numerous names as cryptic unstable 

transcripts (CUTs), stable untranslated transcripts (SUTs) and Xrn1-dependent transcripts 

(XUTs) (Berretta and Morillon 2009). Whereas the precise function of these molecules is 

still hotly debated, it is clear that regulation is accomplished through the same 

mechanisms as those utilized for protein-coding mRNAs. In fact, lncRNAs are substrates 

for the nuclear exosome, a multiprotein complex responsible for maturation and 

degradation of numerous non-coding RNAs and aberrantly processed mRNAs (Schmid 

and Jensen 2010).  This suggests that the signature of a non-coding or aberrant mRNA 

lies within the targeted RNA molecule itself. Consistent with this, numerous studies have 

underscored the importance of RNP composition as failure to properly assemble mRNPs 

results in selective retention and subsequent nuclear degradation (Schmid and Jensen 

2010; Libri et al. 2002; Rougemaille et al. 2007; Galy et al. 2004). However, the 

molecular basis for discrimination of aberrant versus mature mRNPs is not fully 

understood. 

 One class of enzymes that function as critical regulators of RNP assembly are the 

DEAD-box RNA helicases. DEAD-box proteins are RNA-dependent ATPases that 

function in all aspects of RNA biology including transcription, mRNA export, and 

ribosome biogenesis. DEAD-box proteins are the largest group within the RNA helicase 

superfamily with ~25 members in the budding yeast Saccharomyces cerevisiae and ~40 

in humans (Linder and Jankowsky 2011). Numerous studies have shown that DEAD-box 

proteins display a wide variety of biochemical activities in vitro, which includes RNA 
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duplex unwinding, RNA folding and RNP remodeling (Fairman et al. 2004; Del Campo 

et al. 2009; Bhaskaran and Russell 2007). In contrast to in vitro analyses, however, little 

is known regarding the precise biological function of individual DEAD-box protein 

family members.  

 One largely uncharacterized DEAD-box protein in S. cerevisiae is Dbp2. In 

mammalian cells, the ortholog of Dbp2, termed DDX5, functions in ribosome biogenesis 

as well as numerous transcriptional and co-transcriptional processes with RNA 

polymerase II (RNA Pol II) (Janknecht 2010). Dbp2, on the other hand, has only been 

linked to ribosome biogenesis and nonsense mediated decay in S. cerevisiae despite the 

fact that human DDX5 functionally complements loss of DBP2 (Bond et al. 2001; Nissan 

et al. 2002; Barta and Iggo 1995). This suggests that a role in transcriptional processes is 

either not conserved or that Dbp2 plays an as-of-yet uncharacterized function in budding 

yeast. 

 In this study, we undertook a directed approach to define the role of Dbp2 in 

budding yeast. Our studies now provide documentation that Dbp2 functions at the 

interface of chromatin and RNA structure to represses expression of aberrant transcripts. 

We suggest that Dbp2 is a missing link in the gene expression network that functions as a 

cotranscriptional RNA chaperone. This would provide a model RNA modulation during 

transcription with broad implications to other aspects of RNA biology. 
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2.2 Materials and methods 

Strains, plasmids and oligos are detailed in Tables 2.1-2.6 .    

 

Plasmids and Cloning 

All plasmids were constructed by standard molecular biology techniques and are listed in 

Table 2.1. DBP2 was expressed in yeast using the intronless pDBP2-PL-ADH-p415 

(Banroques et al. 2008) to avoid splicing-dependent changes in expression level. ATPase-

deficient variants were constructed by site-directed mutagenesis using Pfu polymerase. 

The pET28a-DBP2 was generated by subcloning techniques from pDBP2-PL-ADH-

p415. 

 

Yeast Manipulations - Yeast strains were constructed using classical yeast genetic 

techniques and are listed in Table 2.2. DBP2-deletion strains (dbp2∆) were constructed 

by PCR-based gene replacement using pUG6 as a template. DBP2-3XFLAG strains were 

constructed similarly using the p3X-FLAG plasmid. 6AU studies were conducted with 

yeast strains grown in synthetic media -uracil (-URA) + 2% glucose and spotted onto -

URA plates with or without 100 µg/mL 6-azauracil (Sigma). For all RNA analyses, yeast 

strains were grown in rich YPD media (YP+2% glucose) at either 35 or 30˚C as indicated 

to an OD of 0.4-0.5 prior to cell harvesting and RNA isolation. Transcriptional induction 

was performed by shifting yeast cells from YPD to YP+1% raffinose for 1 hour, to 

induce a derepressed state, and then to YP-Gal (YP+2% galactose) for 5 hours prior to 

cell harvesting. 
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Recombinant Protein Purification 

Expression of pET28a 6xHIS-DBP2 in Rosetta E. coli (DE3) cells (Novagen) was 

induced by 0.2mM IPTG overnight at 16 °C. Cells were lysed in 20mM Tris at pH 7.9, 

100mM NaCl, 5mM imidazole. Recombinant proteins were purified from the soluble 

fraction using nickel affinity chromatography according to the manufacturer's instructions 

(Ni-NTA, Qiagen).  

 

In vitro ATPase Assays 

In vitro ATP hydrolysis assays were performed using a PK/LDH enzyme-coupled 

absorbance assay as described previously (Noble et al. 2011) but with 440 nM Dbp2 and 

total yeast RNA (Sigma) or purchased DNA or RNA oligonucleotides (IDT). kobs were 

calculated using the following formula: V0 = (OD340/min x 2.5)/(6.22 x 10
-3 

μM), 

kobs(min
-1

) = V0/protein concentration and the EC50 was determined using GraphPad 

Prism software.  Vo was normalized to background NADH loss in buffer alone for each 

condition. Presented data is the average of three independent experiments. 

 

Cellular Microscopy 

Wild type (BY4741) or DBP2-GFP strains were grown at 30˚C in YPD and were 

subsequently fixed with 10% formaldehyde, washed with PBS and stained with 2µg/mL 

DAPI (Sigma) for visualization of DNA. Images were collected using an Olympus BX51 

fluorescent microscope and Metamorph TL software (Olympus America).   

Chromatin Immunoprecipitation - Chromatin immunoprecipitation experiments were 

conducted as previously described with the following changes (Johnson et al. 2009). 
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Input represents 2.5% of lysate. Anti-FLAG antibodies (M2, Sigma) were pre-incubated 

with protein G Dynabeads (Invitrogen) prior to incubation with crosslinked, sheared 

lysate. Immunoprecipitated DNA was eluted 400µL elution buffer (1% SDS, 0.1M 

NaHCO3) followed by reversal of crosslinks by addition 16uL of 5M NaCl and 65˚C 

overnight incubation. Resulting DNA was incubated with RNAse A and proteinase K, 

phenol extracted and ethanol precipitated. Samples were resuspended in 50µL of TE and 

1/50 was used for qPCR using Primetime assay probes listed in Table 2.5 (IDT) and 

Taqman qPCR mix (Life Technologies). All ChIP experiments were conducted with 3 

biological replicates with 4 technical repeats and are shown as the fold increase above 

wild type signal relative to input. 

 

RT-qPCR and 5'RACE 

RNA was isolated from cells standard acid phenol purification. Complementary DNA 

(cDNA) was prepared using the Quantitect Reverse Transcriptase kit (Qiagen) according 

to manufacturer’s instructions using random hexamer primers provided. Primer pairs for 

qPCR were designed using default parameters in Primer Express 3.0 (Life Technologies) 

and are listed in Table 2.3. PCR reactions were performed in the BioRad CFX96 system. 

Fold changes were calculated using the Pfaffl method (Pfaffl 2001), and are reported as 

three biological replicates with three technical repeats each with standard error of the 

mean (SEM). 5' RACE of GAL7 mRNA was conducted according to manufacturer's 

protocol (Life Technologies). GAL7 gene-specific primers (GSP primers) are listed in 

Table 2.5. Resulting 5'RACE products were cloned using a UA cloning kit (Qiagen) and 

precise 5' ends were determined by DNA sequencing. 
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Northern Blotting 

20 to 50µg of total RNA was resolved on a 1.2% formaldehyde agarose gel followed by 

transfer to a nylon membrane (Brightstar Hybond N+, Life Technologies). Northern 

blotting was conducted using standard methods. Radiolabeled double-stranded DNA 

probes were generated using PCR products from a plasmid template (see Table 2.6) and 

the Decaprime II kit according to manufacturer’s instructions (Life Technologies). 

Transcripts were visualized using a PhosphorImager (Molecular Dynamics) and 

quantified by densitometry (ImageQuant, Molecular Dynamics) 

2.3 Results 

2.3.1 Dbp2 is an RNA-dependent ATPase in vitro 

Dbp2 is a member of the DEAD-box family of RNA-dependent ATPases in S. 

cerevisiae based on the presence of 10 conserved sequence motifs organized into two, 

distinct structural domains ((Linder and Jankowsky 2011), Fig. 2.1A). Dbp2 also contains 

a C-terminal RGG motif and a unique N-terminus implicated in high affinity RNA and 

protein binding in vivo, respectively (Barta and Iggo 1995; Banroques et al. 2011).  

 Whereas studies from other laboratories have utilized genetic manipulations to 

assess the enzymatic function of Dbp2 in vivo (Bond et al. 2001; Barta and Iggo 1995; 

Banroques et al. 2011), Dbp2 has not been biochemically characterized to date. To 

determine if Dbp2 is a functional RNA-dependent ATPase, we established in vitro 

ATPase assays with recombinant, purified Dbp2 and increasing amounts of total RNA as 

previously described (Noble et al. 2011). Consistent with other DEAD-box enzymes, our 

results demonstrate that Dbp2 is an active ATPase in vitro with a 50% effective 
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concentration (EC50) of 26 µg/ml for RNA (Fig. 2.1B). Next, we used site directed 

mutagenesis to incorporate amino acid substitutions in Motif I or II and assayed ATP 

hydrolysis of the resulting purified proteins to verify the origin of wild type Dbp2 activity 

(Fig. 2.1A). This revealed that both the K136N (Motif I) and E268Q (Motif II) 

substitutions abolish enzymatic activity at RNA concentrations one and three-fold above 

the EC50, consistent with mutations of other DEAD-box enzymes (Fig. 2.1C). Thus, 

Dbp2 is a functional RNA-dependent ATPase in vitro.  

 To determine if the enzymatic activity of Dbp2 is required for normal cell growth, 

we utilized a plasmid complementation assay (Fig. 2.1D). To this end, we generated a 

dbp2∆ strain and analyzed the ability of wild type or ATPase-deficient dbp2 alleles, 

pdbp2-K136N and pdbp2-E268Q to confer cell growth as compared to vector alone. 

Consistent with previous reports, loss of DBP2 results in slow growth and cold sensitivity 

with an optimal growing temperature of 35˚C (Barta and Iggo 1995; Banroques et al. 

2008, 2011). Importantly, neither point mutant restored wild type growth, paralleling the 

growth of the dbp2∆ strain with vector alone (Fig. 2.1D). This is in contrast to ectopic 

expression of the wild-type DBP2 (pDBP2), which enabled growth at all temperatures. 

Immunoblotting analysis verified that the inability of the mutant plasmids to rescue the 

dbp2∆ strain is not due to expression differences between the wild type (pDBP2) and 

mutant dbp2 vectors (data not shown). Thus, substitutions that impair enzymatic activity 

also impair cell growth, underscoring a requirement for enzymatically active Dbp2 in 

budding yeast. 
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2.3.2 Dbp2 is a dsRNA-directed ATPase 

Given that the ATPase activity of Dbp2 is required for growth, we next asked if 

Dbp2 preferred specific RNAs for stimulation of ATP hydrolysis. This would indicate a 

preference for specific RNAs in vivo. To test this, we conducted in vitro ATPase assays 

as above in the presence of single-stranded RNA molecules (ssRNA) of different lengths 

(16 or 37mer) or dsRNA with a GNRA tetraloop (∆G=-34 kcal/mol; Fig. 2.2A). 

Strikingly, this revealed that Dbp2 strongly prefers dsRNA for activation of ATP 

hydrolysis with a resulting EC50 of 10
-6.5

 or ~0.3µM (Fig. 2.2B). This is near the 

concentration of Dbp2 (0.2µM), suggesting that the affinity is likely higher with the EC50 

representing the upper limit of the dissociation constant.  Strikingly, a longer, 37mer 

ssRNA is also able to stimulate RNA-dependent ATPase activity but to a significantly 

lower extent that impairs affinity measurement. This was in contrast to the shorter, 16 

nucleotide ssRNA, which was unable to activate Dbp2 at any concentration. Importantly, 

Dbp2 displayed no DNA-directed ATPase activity (Fig. 2.2C). This suggests that Dbp2 

displays dsRNA-dependent ATPase activity, an enzymatic parameter that parallels 

human DDX5 but is not common among other DEAD-box family members (Huang and 

Liu 2002; Cordin et al. 2006). Furthermore, preliminary studies show that Dbp2 is a 

functional RNA helicase (Ma et al. 2013).  This suggests that Dbp2 is a dsRNA-directed 

ATPase, which targets structured RNA elements in vivo. 

2.3.3 Dbp2 is a predominantly nuclear protein whose loss is suppressed by 6-Azauracil 

Studies of Dbp2 in budding yeast have provided conflicting evidence regarding 

the precise localization of Dbp2 ranging from nuclear/nucleolar to predominantly 
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cytoplasmic (Bond et al. 2001; Huh et al. 2003). To understand the cellular function(s) of 

Dbp2, we asked where Dbp2 is localized at steady state by conducting fluorescent 

microscopy of a fluorescently tagged DBP2-GFP strain harboring a GFP fusion at the 

endogenous locus. This revealed that Dbp2-GFP is a predominantly nucleoplasmic 

protein, colocalizing with DAPI-stained DNA, with accumulation in the nucleolus (Fig. 

2.3A). This is consistent with the role of Dbp2 in ribosome biogenesis and suggestive of 

an additional nuclear function. 

 To pinpoint a role for Dbp2 in the nucleoplasm, we subsequently asked if loss of 

DBP2 renders cells sensitive to transcriptional stress by conducting growth assays of wild 

type and dbp2∆ cells with or without 100 µg/ml 6-azauracil (6AU) (Fig. 2.3B). 6AU is a 

transcriptional inhibitor that has been widely utilized to identify genes whose products 

positively regulate transcription elongation (Riles et al. 2004). Surprisingly, 6AU 

partially rescues the slow growth defects of the dbp2∆ strain at semi-permissive 

temperatures of 30˚C and 32˚C, suggesting that reduction of transcription improves the 

growth of DBP2-deficient strains.  

2.3.4 DBP2 represses cryptic initiation within the FLO8 locus 

Interestingly, 6AU resistance or suppression phenotypes have been noted in only 

a few published reports and correlate with loss of gene products that negatively regulate 

transcription. This includes the transcriptional regulator/mRNA processing factor, 

SSU72, as well as chromatin modifying enzymes like the histone methyltransferase SET2 

(Keogh et al. 2005; Dichtl et al. 2002; Du and Briggs 2010). To further characterize the 

biological role of Dbp2, we asked if dbp2∆ strains exhibit transcriptional defects similar 
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to those associated with impaired repression. One type of transcriptional defect is cryptic 

initiation whereby failure to properly assemble chromatin results in initiation at non-

cognate sites either within (intragenic) or outside of (intergenic) transcribed genomic loci 

(Cheung et al. 2008; Kaplan et al. 2003; Quan and Hartzog 2010). To determine if DBP2 

is required for repression of intragenic cryptic initiation, we utilized a previously 

characterized pGAL-FLO8:HIS3 reporter construct for identification of initiation defects 

through a simple growth assay (Cheung et al. 2008; Kaplan et al. 2003). We constructed 

dbp2∆ pGAL-FLO8:HIS3 strains and subsequently analyzed growth of two, independent 

isolates with respect to wild type and spt6-1004 strains as negative and positive controls, 

respectively. SPT6 encodes a transcriptional elongation factor whose mutation results in 

characterized cryptic initiation defects (Cheung et al. 2008; Kaplan et al. 2003). 

Strikingly, loss of DBP2 also results in cryptic, intragenic initiation (Fig. 2.3D). Unlike 

spt6-1004 strains, however, dbp2∆ strains require transcriptional induction for detection 

of cryptic initiation. This suggests that Dbp2 is needed only in the context of active 

transcriptional activity.  Next, we conducted Northern blotting of FLO8 transcripts from 

wild type, dbp2∆ and spt6-1004 strains to determine if dbp2∆ strains also display cryptic 

initiation at the endogenous FLO8 gene (Fig. 2.3E). This revealed a small, ~4-fold 

increase in short FLO8 products in the dbp2∆ strain as compared to wild type (4% to 

16%). Thus, DBP2 is required for repression of cryptic, intragenic initiation in the FLO8 

reporter and within the endogenous locus. 
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2.3.5 GAL7 transcripts are overabundant in the absence of DBP2 

Given that DBP2-deficient cells display defects associated with active transcription, we 

asked if DBP2 is required for normal expression levels of endogenous genes (Fig. 2.3F). 

To this end, we selected a panel of genes and assessed transcript abundance in wild type 

and dbp2∆ cells using quantitative PCR of reverse transcribed RNA (RT-qPCR). These 

genes were chosen based on the characterized role of the mammalian Dbp2 ortholog, 

DDX5, in cell cycle progression, cell differentiation and response to extracellular cues 

(Janknecht 2010). This revealed that GAL7 transcripts are specifically overabundant in 

dbp2∆ cells as compared to wild type, in contrast to other gene products (Fig. 2.3F). 

Notably, this increase occurs under typically transcriptionally repressive conditions, 

suggesting that the GAL7 gene is aberrantly derepressed in dbp2∆ cells. Furthermore, 

there was no detectible difference in GAL7 transcript levels under induced conditions 

(+galactose) between wild type and dbp2∆ cells. This suggests that Dbp2 is required for 

both repression of cryptic, intragenic initiation and of normal promoter elements of 

protein-coding genes. 

2.3.6 Dbp2 associates directly with chromatin, correlating with transcriptional activity 

The GAL cluster is a well-established model for dissection of gene regulatory 

mechanisms in S. cerevisiae. Briefly, the GAL genes are considered to have three 

transcriptional states: active (+galactose), derepressed (+raffinose), and repressed 

(+glucose) (Sellick et al. 2008). In the presence of galactose, transcriptional activation 

proceeds via the transcription factor Gal4. In the repressed state, transcriptional 
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repressors Nrg1, and Mig1/Mig2 are responsible for promoting glucose-dependent 

repression (Sellick et al. 2008; Zhou and Winston 2001). 

 Our results suggest that DBP2 is required for proper repression of GAL7 under 

transcriptionally repressive conditions, drawing parallels between Dbp2 and glucose-

dependent repressors. If this is the case, this would suggest that Dbp2 functions at the 

GAL7 and FLO8 loci through distinctly different mechanisms. To test this, we utilized 

chromatin immunoprecipitation (ChIP) to determine if a 3X-FLAG-tagged Dbp2 is 

directly bound to GAL7 under transcriptionally repressive conditions. Strikingly, this 

resulted in detection of Dbp2 at the GAL7 locus under transcriptionally active conditions, 

in contrast to our predictions (Fig. 2.4A). Dbp2-3XFLAG associates with similar levels 

~5-fold above background across the GAL7 open reading frame with slightly lower 

association at the promoter region, suggesting recruitment throughout the transcriptional 

unit (Fig. 2.4A). We were not able to detect appreciable accumulation of Dbp2 at any 

tested region under repressive conditions (Fig. 2.4B, glucose). Thus, Dbp2 is associated 

with chromatin in a transcriptionally dependent manner, suggestive of association with 

the transcriptional machinery and/or nascent RNAs. This also indicates the GAL7 

derepression defect in dbp2∆ cells may be due to either an indirect effect or to 

transcriptional activity, which is below the ChIP detection limit for Dbp2. 

2.3.7 DBP2-deficient cells display expression defects across GAL10-GAL7 

The GAL7 gene is a member of the GAL1-GAL10-GAL7 gene cluster (Fig. 2.5A). 

In addition to proteinaceous transcription factors, the GAL cluster is also associated with 

overlapping long non-coding RNAs (lncRNAs) with estimated levels as low as one 
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molecule in 14 cells (Houseley et al. 2008). These include the well-characterized GAL10 

lncRNA (Houseley et al. 2008; Geisler et al. 2012; Pinskaya et al. 2009) and a recently 

identified, sense oriented GAL10s lncRNA (termed XUT 109-2m in (van Dijk et al. 

2011)). 

 To determine the origin of the GAL7 transcriptional product in dbp2∆ cells under 

repressive conditions, we conducted a high resolution RT-qPCR analysis by positioning 

qPCR primer pairs at the 5' end of GAL1, 5', middle, and 3' end of GAL10, intragenic 

region between GAL10-GAL7 and the 5', middle and 3' region of GAL7 (Fig. 2.5A, #1-8). 

Consistent with our original RT-qPCR analysis above, we detected a 2.5-fold increase at 

the 5' end of GAL7 in dbp2∆ (Fig. 2.5B, #6) and similar increases across the GAL7 open 

reading frame indicative of low level expression of the GAL7 protein-coding gene. 

Unexpectedly, we also detected a two-fold increase in transcript abundance upstream of 

GAL7. This is in contrast to the 5' ends of GAL1 and GAL10, which were not 

significantly different in wild type versus dbp2∆ (Fig. 2.5B, #1). Next, we conducted RT-

qPCR analysis at the dbp2∆ semi-permissive temperature of 30˚C with the idea that 

growth at lower temperatures would thermodynamically 'trap' Dbp2-dependent substrates 

(Fig. 2.5C). Strikingly, this revealed a sharp increase in transcript abundance to ~5-fold 

above wild type across the same genomic region. This pattern is consistent with aberrant 

expression across the GAL7 and GAL10s lncRNA coding regions, the latter of which is 

indicative of a defect in RNA quality control (van Dijk et al. 2011). 
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2.3.8 DBP2-deficient cells accumulate aberrant GAL7 RNAs 

To further characterize the role of Dbp2 at the GAL7 locus, we conducted 

Northern blotting to visualize GAL7 transcripts under repressive conditions in wild type 

and dbp2∆ cells at 30˚C (Fig. 2.6A). This revealed a weak but detectible accumulation of 

transcripts corresponding to both the GAL7 protein-coding gene and a weak ~2.5kb 

product in the dbp2∆ strain (Fig.2.6A, lanes 4-6).   The latter product most likely 

corresponds to a 3' extended GAL10s lncRNA that terminates at the end of the GAL7 

gene. This is suggestive of aberrant expression of two GAL cluster gene products in 

dbp2∆ cells under normally repressive conditions.  

 Next, we analyzed the GAL7 transcripts produced during transcriptional activation 

in dbp2∆ cells at 30˚C (Fig. 2.6B). Strikingly, in addition to abundant expression of 

GAL7 mRNA transcripts, which accumulated to similar levels between wild type and 

dbp2∆, we also detected an ~4kb product in DBP2-deficient cells (Fig. 2.6B, lanes 4-6). 

The 4kb transcript is consistent with expression of a GAL10-GAL7 bicistronic mRNA 

that results from aberrant pre-mRNA processing in other mutant yeast strains (Greger and 

Proudfoot 1998; Rondón et al. 2009; Kaplan et al. 2005). Interestingly, we did not detect 

defects in dbp2∆ cells grown at 35˚C, suggesting that higher temperatures partially 

bypasses the requirement for Dbp2 (Fig. 2.2F and data not shown). This is consistent 

with a general role for Dbp2 in cotranscriptional RNA folding and/or assembly.  

2.3.9 GAL7 transcripts are a result of cryptic initiation in DBP2-deficient cells 

Given that GAL7 transcription is induced by the action of a galactose-dependent 

transcription factor, Gal4 (Sellick et al. 2008), we were surprised at our detection of 
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GAL7 mRNAs in repressive conditions when Gal4 is inactive. To determine if the GAL7 

transcripts originate from the normal +1 transcriptional start site, we utilized 5'RACE to 

map the 5' ends of GAL7 sense transcripts in DBP2-deficient cells. Strikingly, this 

revealed that the GAL7 transcripts are aberrant with respect to the wild type initiation site 

(Fig. 2.6C). Whereas transcriptional induction in wild type cells by addition of galactose 

results in a single PCR product of ~500bp, transcripts in the dbp2∆ cells are distinct from 

normal GAL7 mRNAs (Fig. 2.6C, lanes 1 and 2). Sequencing of the resulting PCR 

products revealed three distinct transcriptional start sites in the dbp2∆ strain: one 

intergenic site at -50bp upstream of the +1 start site, corresponding to two PCR products 

due to 5'RACE efficiency and two, intragenic sites within the open reading frame of 

GAL7 (Fig. 2.6D). In contrast, 5'RACE analysis of GAL7 mRNAs under activated 

conditions revealed identical transcriptional start sites between wild type and dbp2∆ cells 

(data not shown). Thus, the GAL7 transcripts in dbp2∆ cells under repressive conditions 

are a result of cryptic intragenic initiation with respect to the GAL10s lncRNA, consistent 

with the requirement for DBP2 at the FLO8 locus. We speculate that the cryptic initiation 

defects in DBP2-deficient cells are an indirect result of failure to 'clear' aberrant RNAs 

rather than a direct role in chromatin assembly, given the recent connections between 

RNA quality control and chromatin architecture (see Discussion). 

2.3.10 simultaneous loss of DBP2 and RRP6 results in a lethal growth phenotype 

Major factors in RNA quality control are the nuclear exosome component, RRP6 

and the cytoplasmic exonuclease, XRN1 (Neil et al. 2009; van Dijk et al. 2011). To gain 

further insight into the biochemical pathway for DBP2 function, we conducted synthetic 
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genetic analysis of dbp2∆ and xrn1∆ or rrp6∆ alleles using a plasmid shuffle assay (Fig. 

2.7). Briefly, this assay exploits the toxic effects of 5-fluoroorotic acid (5-FOA) in strains 

that cannot grow in the absence of a plasmid encoding the uracil biosynthesis gene 

(URA3) and wild type DBP2 (pDBP2). Strikingly, this revealed that rrp6∆ and dbp2∆ are 

synthetic lethal at all growth temperatures (Fig. 2.7). This genetic interaction is specific, 

as a dbp2∆ xrn1∆ strain grows well in the absence of the pDBP2. This supports a role for 

Dbp2 in RNA quality control steps in the nucleus. More importantly, this shows that 

Dbp2 is a major factor in RNA quality control that likely plays roles at multiple genes 

outside of the GAL7 and FLO8. Taken together, we provide a model whereby the DEAD-

box protein Dbp2 functions at the interface of chromatin and RNA quality control to 

modulate RNA structure in a manner that promotes both downstream processing steps 

and reassembly of chromatin in the wake of active transcription (Fig. 2.8). This suggests 

that Dbp2 is a co-transcriptional RNA chaperone, central to fidelity of the gene 

expression network. 

2.4 Discussion 

A major challenge to the RNA biology field is understanding how RNA and RNP 

structure contributes to cellular processes. The DEAD-box RNA helicases are central 

players in RNP dynamics, functioning in all aspects of RNA metabolism through ATP-

dependent modulation of RNA structures (Linder and Jankowsky 2011). These include 

the DEAD-box proteins Sub2 and Dbp5, which are required for mRNP packing and 

nuclear export, respectively (Tran et al. 2007; Strasser et al. 2002; Fasken and Corbett 

2009). Our studies now elucidate Dbp2 as a central player in transcriptional fidelity, 
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adding to the complement of DEAD-box proteins associated with maintenance of the 

transcriptome. Furthermore, our studies provide provocative evidence that Dbp2 

functions as a cotranscriptional RNA chaperone.  This would be consistent with current 

models for DEAD-box proteins as ATP-dependent chaperones and with elegant in vitro 

studies which support this mechanism (Bhaskaran and Russell 2007; Jarmoskaite and 

Russell 2011; Sinan et al. 2011). 

 With elucidation of Dbp2 as a key player in this process, several tantalizing 

questions now emerge regarding the precise biochemical mechanism in gene regulation. 

Our results suggest that Dbp2 is a dsRNA-dependent ATPase recruited to chromatin 

during transcription. Furthermore, our studies show that DBP2 is genetically linked to the 

nuclear exosome component, RRP6. It is well established that Rrp6-dependent decay of 

numerous non-coding RNAs is dependent on transcription termination mechanisms 

(Rougemaille and Libri 2011). The primary mechanism for termination of short, non-

coding transcripts is through the Nrd1-Sen1 pathway whereby RNA-binding proteins, 

Nrd1 and Nab3, recognize specific RNA sequences in nascent RNA transcripts (Kuehner 

et al. 2011; Steinmetz et al. 2006, 2001). Thus, it is tempting to speculate that Dbp2 

promotes loading of RNA binding proteins, such as Nrd1 and Nab3, by resolving 

inhibitory RNA structures. This is consistent with accumulation of a putative GAL10-

GAL7 read-through transcript in dbp2∆ cells and with identification of a Nrd1-dependent 

termination mechanism at the GAL10 gene (Rondón et al. 2009). However, given the 

pattern of Dbp2 gene association and the requirement for repression of initiation, the role 

of Dbp2 is not likely limited to recruitment these two factors. Interestingly, studies have 

also shown that the genes within the GAL cluster are associated with gene looping events 
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between promoters and terminators (O’Sullivan et al. 2004; Lainé et al. 2009; Ansari and 

Hampsey 2005). These gene loops have been shown to influence the rate of 

transcriptional reactivation in a process termed 'transcriptional memory' (Brickner 2009). 

It will be interesting to determine if Dbp2 and/or RNA folding influence higher order 

chromatin architecture. 

 Because loss of DBP2 results in cryptic transcription indicative of aberrant 

chromatin architecture, we suggest that the activity of DBP2 is necessary to promote 

clearance of nascent RNAs from genomic loci. Furthermore, we speculate that this 

requirement is due to the presence of RNA structures within nascent transcripts, which 

would be predicted to impair RNA processing and RNP complex assembly. In line with 

this model, strains deficient in cotranscriptional mRNP processing and packaging 

accumulate RNA:DNA hybrids in structures termed R-loops, which induce multiple 

defects associated with aberrant chromatin architecture (Kim et al. 1999; Mischo et al. 

2011; Skourti-Stathaki et al. 2011; Aguilera and García-Muse 2012; Gómez-González et 

al. 2011). For example, simultaneous loss of the TRAMP component Trf4 and histone 

deacetylase Sir2 results in severe ribosomal DNA instability, underscoring an intimate 

connection between maintenance of the genome and transcriptome (Houseley et al. 

2007).  

 It is well understood that the activity of RNA polymerases is dependent on the 

chromatin environment. Moreover, loss of chromatin remodeling or histone modification 

machinery results in aberrant transcription including cryptic transcriptional initiation both 

between and within gene loci (Cheung et al. 2008; Kaplan et al. 2003; Yadon et al. 2010). 

To the best of our knowledge, however, no RNA decay or processing factors have been 
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linked specifically to repression of cryptic initiation. Instead, genes encode histones, 

histone-modifying enzymes, and chromatin remodeling factors as well as transcription 

factors have been linked to this activity, supporting the fact that aberrant transcriptional 

initiation is a result of altered chromatin structure (Cheung et al. 2008). This suggests that 

either Dbp2 plays a distinct role as a bridging factor between nascent RNAs and 

chromatin, or that roles in repressing cryptic initiation have not been defined thus far for 

other RNA processing factors.  

 In mammals, DDX5 has been linked to numerous cotranscriptional processing 

steps and has been suggested to associate with dsRNA both in vitro and in vivo, 

consistent with the idea that Dbp2 cotranscriptionally modulates RNA structures (Huang 

and Liu 2002; Kar et al. 2011; Suzuki et al. 2009). Thus, the role of Dbp2 is likely 

evolutionarily conserved with future studies providing key insights into the biochemical 

mechanisms in eukaryotic gene regulation. More importantly, however, numerous studies 

have shown that DDX5 is a potent oncogene whose overexpression results in 

chemotherapeutic resistance (Cohen et al. 2008; Fuller-Pace and Moore 2011). In 

summary, our studies uncover a role for Dbp2 at the interface of RNA surveillance and 

chromatin architecture as a missing link in quality control of the transcriptome. 
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(Data from figure 2.1D were provided by Sara Cloutier.) 

Figure 2.1. Dbp2 is an RNA-dependent ATPase in vitro whose activity is required 

for normal cell growth. (A) Schematic representation of Dbp2 primary sequence and 

conserved DEAD-box protein motifs. Core domains and the 10 sequence motifs are 

indicated (Linder and Jankowsky 2011). Dbp2 also contains a C-terminal RGG accessory 

domain predicted to enhance RNA binding activity (Banroques et al. 2011). Arrows 

denote amino acid substitutions in Motif I or Motif II. (B) Dbp2 is an enzymatically 

active, RNA-dependent ATPase in vitro. The ability of Dbp2 to hydrolyze ATP was 

assessed using an absorbance-based in vitro ATPase assay as previously described which 

measures ATP hydrolysis indirectly through a linear depletion of NADH (Noble et al. 

2011). Assays were conducted with 400nM of recombinant, purified 6XHIS-tagged Dbp2 

and increasing amounts of total yeast RNA. ATP turnover numbers (kobs) were calculated 

from initial velocities of each assay conducted in triplicate. The EC50 for RNA was 

determined through non-linear regression analysis and is reflective of the concentration 

of RNA needed to activate ATP hydrolysis to a half-maximal rate.  All data is normalized 

to background signal that results from very low levels of NADH depletion in buffer alone 

(V0 = 1.01 ± 0.5 min
-1

).  The observed ATPase rate of Dbp2 in the absence of RNA is 

0.98 ± 0.4 min
-1

, which is equivalent to buffer alone. (C) Mutation of residues within 

motif I and II impair enzymatic activity.  Recombinant, purified 6XHIS-tagged variants 

Dbp2-K136N or Dbp2-E268Q were assayed for ATP hydrolysis as above using RNA 

concentrations equal to or 3-fold above the wild type EC50 concentration. Enzymatic 

activities are reported as a percentage of the initial velocity of ATP hydrolysis of wild 

type Dbp2 with 75 µg/mL RNA. (D) DBP2-deficient strains display a slow growth and 

cold sensitive phenotype. Yeast growth was analyzed using serial dilution analysis of 

dbp2∆ strains transformed with either empty vector alone or CEN plasmids encoding 

wild type (pDBP2) or ATPase-deficient mutants (pdbp2-K136N or pdbp2-E268Q) as 

indicated. Strains were subsequently spotted in 5 fold serial dilutions onto selective 

media and grown for 3-5 days at the indicated temperatures. 
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Figure 2.2. Dbp2 is a dsRNA-directed ATPase in vitro. (A) Sequence and schematic 

representation of RNA and DNA molecules used below. ∆G parameters were calculated 

using the MFOLD web server (http://mfold.rna.albany.edu/?q=mfold, (Zuker 2003)). (B) 

Dbp2 displays a preference for dsRNA in stimulation of ATP hydrolysis. ATPase assays 

were conducted as above using purchased, single strand or double stranded RNA 

molecules in (A) at varying concentrations from 1nM to 4µM and purified Dbp2 

(0.2µM). ATP hydrolysis activity was determined in triplicate for each nucleic acid 

concentration and is plotted on a semi-logarithmic graph as kobs versus log[M] 

concentration of RNA. The resulting EC50 from the dsRNA hairpin was determined 

through non-linear regression analysis. EC50 values could not be determined for the 

single stranded RNA molecules due to low levels of ATPase stimulation. (C) The ATPase 

activity of Dbp2 is not stimulated by DNA. In vitro ATPase assays were conducted as 

above with the DNA molecules indicated in (A) using purchased DNA molecules.  
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(Data from figure 2.3A and E were provided by Dr. Elizabeth Tran and data from 

figure 2.3B, D, and F were provided by Sara Cloutier.) 

Figure 2.3. Dbp2 is a predominantly nuclear protein required for repression of 

cryptic, intragenic initiation within FLO8 and expression of GAL7. (A) Live cell 

imaging reveals whole cell distribution of Dbp2 with a predominantly nuclear 

localization at steady state. Fluorescent microscopy was conducted with exponentially 

growing DBP2-GFP strains grown at 30˚C. Cells were fixed for 1 hour with 

formaldehyde in rich growth media, washed extensively, and stained with DAPI for 

visualization of DNA. Differential contrast (DIC) images are presented in the right-most 

panel. (B) The transcriptional elongation inhibitor, 6-azauracil (6AU), partially rescues 

dbp2∆ growth defects. Wild type (BY4741) or dbp2∆ strains were analyzed for 6AU 

sensitivity using serial dilution analysis of strains onto -URA+ 2%glucose plates with or 

without 100 µg/mL 6AU at the indicated temperatures. (C) Schematic diagram of the 

FLO8:HIS3 cryptic initiation reporter (adapted from (Cheung et al. 2008). TATA (*) 

indicates the approximate position of the cryptic, internal start site within the FLO8 open 

reading frame. Following induction with galactose (+Gal), transcription in wild type cells 
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proceeds through the internal TATA, resulting in out of frame HIS3 mRNA, and failure 

to grow on media lacking histidine (-His+Gal). Defects in chromatin structure or 

assembly are correlated with aberrant initiation at the internal TATA site, which results in 

grown on -His media due to production of an in frame HIS3 mRNA. (D) DBP2 is 

required for repression of cryptic, intragenic initiation within the FLO8:HIS3 reporter 

gene. Cryptic initiation defects were assessed following construction of dbp2∆ strains 

encoding a chromosomally integrated pGAL-FLO8:HIS3 reporter. Two, independent 

dbp2∆ strain isolates are shown compared to DBP2 wild type and an spt6-1004 mutant 

strain as negative and positive controls, respectively (Prather et al. 2005; Cheung et al. 

2008). (E) Loss of DBP2 results in an ~4-fold increase in aberrant FLO8 transcripts 

from the endogenous FLO8 locus. Briefly, total RNA was isolated from wild type, 

dbp2∆, and spt6-1004 strains and subjected to Northern blotting. 30µg of total RNA was 

resolved on a 1.2% formaldehyde/agarose gel, transferred to a nylon membrane and 

probed with a double stranded, radiolabeled DNA probe corresponding to both the full-

length and short 3' transcript product. SCR1 transcripts are shown as a loading control. 

(F) DBP2 is required to maintain endogenous levels of GAL7 under transcriptionally 

repressive conditions (+glucose). The transcript abundance of individual gene products 

was determined by RT-qPCR analysis of RNA isolated from wild type or dbp2∆ strains 

grown at 35˚C. Transcript levels were determined by quantitative PCR using the BioRad 

CFX system and SYBR green with the indicated primer sets (Table 2.2). Gene product 

annotations are as follows: POL1 (DNA Primase 1), CLB2 (cyclin B2), RAD14 (DNA 

repair), ADE3 (nucleotide biosynthesis) and GAL7 (carbon source metabolism). GAL7 

primers correspond to set #6 in subsequent figures. Differences were calculated using the 

Pfaffl method (Pfaffl 2001) and are normalized to the level of ACT1. Error bars represent 

the standard error of the mean (SEM). 
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(Data from figure 2.4 were provded by Luyen Nguyen.) 

Figure 2.4. Dbp2-3XFLAG is recruited to the GAL7 open reading frame in a 

transcriptionally dependent manner. (A) Dbp2 associates with the GAL7 locus, 

predominantly within the coding region and 3'UTR. Chromatin immunoprecipitation 

(ChIP) experiments were conducted with strains expressing untagged or C-terminally 

3XFLAG-tagged Dbp2 from the endogenous locus grown in rich media after a 5-hour 

transcriptional induction (+galactose). Bound DNA was detected by quantitative PCR 

(qPCR) using primer sets corresponding to the indicated genomic locations (see Table 

2.5). Resulting signals are reported as the relative signal above an untagged, wild type 

strain with respect to input and are the result of 3 independent, biological replicates with 

3 technical repeats. Numbers above each bar represent the average difference above 

background (untagged strain). Error bars indicate SEM as above. (B) Dbp2-3XFLAG is 

not detectibly associated with GAL7 under transcriptionally repressive conditions. ChIP-

qPCR analysis was conducted as in A with yeast strains grown in glucose (repressive) 

conditions. 
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(Data from figure 2.5 were provided by Sara Cloutier.) 

Figure 2.5. GAL7 Expression is a result of transcriptional defects across the GAL10-

GAL7 genomic region in DBP2-deficient cells. (A) Schematic representation of the 

GAL operon in S. cerevisiae denoting the three galactose-dependent genes (GAL1, 

GAL10 and GAL7) and previously identified non-coding RNAs (van Dijk et al. 2011; 

Houseley et al. 2008). Short solid-line arrows denote the direction of protein-coding 

(sense) transcription whereas lncRNA transcription is represented by a dotted line. 

Triangles below the genes denote approximate positions of promoter elements whereas 

short horizontal lines demonstrate positions of primer sets utilized in qPCR (Table 2.2). 

Set #6 is the same set used for detection of GAL7 in Fig. 2.2. (B) High resolution RT-

qPCR reveals accumulation of the GAL10s lncRNA and transcription through the GAL7 

ORF. RT-qPCR was conducted as in Fig. 2.2 using higher resolution qPCR primer pairs 

(Table 2.2) with strains grown at 35˚C. (C) Growth at the dbp2∆ semi-permissive 

temperature of 30˚C exacerbates GAL7 expression defects. High resolution RT-qPCR 

was conducted as above using wild type or dbp2∆ strains grown at 30˚C. 
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(Data from figure 2.6 were provided by Sara Cloutier.) 

Figure 2.6. Loss of DBP2 results in cryptic initiation at GAL7 and termination 

defects within the GAL10-GAL7 region under repressed and activated conditions, 

respectively. (A) Northern blotting of total RNA from wild type and dbp2∆ cells reveals 

expression of GAL7 and a 3' extended GAL10s lncRNA under typically repressive 

conditions. Northern blotting was conducted with increasing amounts of total RNA (20-

50µg) from indicated strains grown at the semi-permissive dbp2∆ temperature of 30˚C in 

glucose (repressive) conditions (lanes 1-6). Accumulation of GAL7 mRNA and a 2.5kb 

transcript, likely corresponding to a 3' extended GAL10s lncRNA, is evident in lanes 4-6. 

Other products at ~ 2kb and 3.5kb are background detection of 18S and 25S rRNA.  

Quantification is provided below each lane and corresponds to the quantity of the 

indicated transcript versus wild type normalized to levels of SCR1 for each lane.  In lanes 

with no detectible product, quantities were normalized to background. (B) 

Transcriptional induction of the GAL genes results in expression of GAL7 and 

appearance of a GAL10-GAL7 transcript. Northern blotting was conducted as above 

following a 5-hour shift to galactose-containing media. Under transcriptionally induced 

conditions, GAL7 mRNA is induced along with an ~4kb product which most likely 

corresponds to a GAL10-GAL7 bicistronic mRNA (lanes 10-12). (C) GAL7 mRNA 

transcripts in dbp2∆ strains are aberrant with respect to wild type GAL7 products. 

Resulting 5' RACE products of aberrant dbp2∆ transcripts (lane 2) are shown with 

respect to the induced, wild type GAL7 transcript (lane 1) and basal transcriptional 
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products (lane 3) shown following resolution on a 1.3% agarose gel and visualization by 

ethidium bromide staining. The three most prominent 5' RACE products in the dbp2∆ 

cells are denoted A, B, C to the right of the gel. The two 'A' bands correspond to the same 

transcription initiation site (as determined by sequencing) and are likely due to 

differences in the cDNA 'tailing' efficiency in the 5'RACE. Note that these experiments 

are not quantitative and do not reflect relative transcript abundance between strains or 

conditions. (D) GAL7 transcripts are the result of cryptic initiation events in the 

dbp2∆ strain under typically repressive conditions. Schematic representation of GAL7 

transcriptional start sites in DBP2-deficient cells as determined following cloning and 

sequencing of resulting 5'RACE products. Dotted lines denote cryptic transcriptional 

elements between (inter) or within (intra) an open reading frame with respect to the 

normal +1 start site in transcriptionally induced, wild type cells ((Tajima et al. 1986); 

solid line). 
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(Data from figure 2.7 were provided by Sara Cloutier.) 

Figure 2.7. Simultaneous loss of DBP2 and the nuclear RNA decay factor, RRP6, 

results in synthetic lethality. Synthetic growth defects were measured using a plasmid 

shuffle assay, which exploits the ability of yeast to grow in the absence of a URA3-

encoding plasmid (vector or pDBP2). Indicated strains were constructed using standard 

yeast manipulations and resulting transformants were streaked on either -URA or 5-FOA 

media to demonstrate growth in the presence or absence of plasmid-encoded DBP2, 

respectively. 
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Figure 2.8. Dbp2 is a dsRNA-directed DEAD-box enzyme that functions in 

cotranscriptional RNA quality control. Our results document a previously 

unrecognized role for Dbp2 in transcriptional quality control. We suggest that Dbp2 is 

recruited during transcription to promote clearance of newly transcribed RNA from 

genomic loci, whose presence interferes with both chromatin and mRNP assembly. This 

activity may involve direct modulation of RNA or RNP structures to promote association 

of RNA-binding proteins (RBPs) such as factors required for RNA processing and/or 

decay. This activity would also be predicted to inhibit further synthesis of aberrant 

cryptic transcripts through reformation of chromatin architecture, consistent with recent 

studies of other cotranscriptional RNA processing/assembly factors (Mischo et al. 2011; 

Aguilera and García-Muse 2012). 
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Table 2.1:  Yeast and Bacterial Plasmids 

Name Description Source/Reference 

pUG6 KanMx disruption cassette plasmid (Güldener et al. 1996) 

BTP13 pET28a-DBP2 This study 

BTP18 pET28a-dbp2-E268Q This study 

BTP21 pet28a-dbp2-K136N This study 

pDBP2 DBP2-PL-ADH-P415 (Banroques et al. 2008) 

BTP24 pdbp2-K136N/CEN/LEU2 This study 

BTP25 pdbp2-E268Q/CEN/LEU2 This study 

pCEN/URA3 pRS316 (Sikorski and Hieter 1989) 

pCEN/LEU2 pRS315 (Sikorski and Hieter 1989) 

p3XFLAG p3XFLAG:KanMx (Gelbart et al. 2001) 

pGAL1-GAL10-

GAL7 
pYGPM11l14 

Open Biosystems (Genomic 

Tiling) 

pFLO8 pGAL-YER109C 
Open Biosystems (Yeast 

ORF Collection) 

pSCR1 YGPM29b01 
Open Biosystems (Genomic 

Tiling) 
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Table 2.2:  Yeast Strains 

Strain Genotype Source 

Wild Type 

(BY4741) 

MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Open 

Biosystems 

DBP2-GFP MATa DBP2-GFP:HIS3 his3D1 leu2D0 

met15D0 ura3D0 

Invitrogen 

xrn1∆ MATa xrn1::KanMx his3D1 leu2D0 met15D0 

ura3D0 

Open 

Biosystems 

dbp2∆ 

(BTY115) 

MATa dbp2::KanMx ura3∆0 leu2∆0 his3∆0 

TRP1 met- lys? 

This study 

dbp2-K136N 

(BTY166) 

MATa dbp2::KanMx ura3∆0 leu2∆0 his3∆0 

TRP1 met- lys? + pdbp2-K136N/CEN/LEU2 

This study 

dbp2-E268Q 

(BTY180) 

MATa dbp2::KanMx ura3∆0 leu2∆0 his3∆0 

TRP1 met- lys? pdbp2-E268Q/CEN/LEU2 

This study 

Wild type 

(FY120) 

MATa his4-912∂ lys2-128∂ leu2∆1 ura3-52 (Hartzog et al. 

1998) 

prGAL-

FLO8:HIS3 

(FY2393) 

MATa lys2-128∂ his3∆200 ura3-52 leu2∆1 

trp1∆63 prGAL1-FLO8-HIS3:KanR 

(Prather et al. 

2005) 

spt6-1004 

(FY2139) 

MATα FLAG-spt6-1004 ura3-52 leu2∆1 lys2-

128∂ 

(Prather et al. 

2005) 

spt6-1004 

prGAL-

FLO8:HIS3 

(BTY217) 

MATα spt6-1004-FLAG prGAL-FLO8-

HIS3::KanMx ura3-52 leu2∆1 lys2-128∂ his4-

912∂ trp? 

Reconstructed 

from (Cheung 

et al. 2008) 

dbp2∆ prGAL-

FLO8:HIS3 

(BTY124) 

MAT dbp2::KanR prGAL1-FLO8-

HIS3::KanMx ura3 leu2 his3 trp? lys? met?  

This study 

rrp6∆ MATa rrp6::KanMx his3D1 leu2D0 met15D0 

ura3D0 

Open 

Biosystems 

DBP2-3XFLAG 

(BTY200) 

MATa DBP2-3XFLAG:KanMx his3∆1 leu2∆0 

met15∆0 ura3∆0 

This study 

Wild type FT4 

(JOU538) 

MATa ura3-52 trp1-Δ63 his3-Δ200 leu2::PET56 (Houseley et 

al. 2008) 

FT4 + Reb1BS∆ 

(JOU811) 

MATa ura3-52 trp1-Δ63 his3-Δ200 leu2::PET56 

gal10::URA3::pMV12 (EcoRI/XhoI-Reb1 BS∆ 

with BS2 silent) 

(Houseley et 

al. 2008) 

dbp2∆ FT4 

(BTY219) 

MATa ura3-52 trp1-Δ63 his3-Δ200 leu2::PET56 

dbp2::KanMx 

This study 

dbp2∆ 

FT4+Reb1BS∆ 

(BTY220) 

MATa ura3-52 trp1-Δ63 his3-Δ200 leu2::PET56 

gal10::URA3::pMV12 (EcoRI/XhoI-Reb1 BS∆ 

with BS2 silent) dbp2::KanMx 

This study 
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Table 2.3:  RT-qPCR Oligos 

1 F TGAGTTCAATTCTAGCGCAAAGG 

1 R TTCTTAATTATGCTCGGGCACTT 

2 F GAGGTCTTGACCAAGCATCACA 

2 R TTCCAGACCTTTTCGGTCACA 

3 F AAATGAAGGTTTGTGTCGTGA 

3 R AAGCTTTGCAGAATGCATGA 

4 F TGAACAAGCCATATGGAGACA 

4 R CGACGATATTACCCGTAGGAA 

5 F CAAAAAGCGCTCGGACAACT 

5 R GCTTGGCTATTTTGTGAACACTGT 

6 F (or GAL7 F) CAA AAA GCG CTC GGA CAA CT 

6R (or GAL7 R) GCT TGG CTA TTT TGT GAA CAC TGT 

7 F TCAACAGGAGGCTGCTTACAAG 

7 R CCAGGACATAGATAGCATTTTGGA 

8 F CCATTCCACAAATGAAACAATC 

8 R ACAACCCATGGCTGTACCTT 

CLB2 F GCGAATAATCCAGCCCTAAC 

CLB2 R CGGCTGTTGATCTTGATACG 

POL1 F CAGAAAGCGCCAGGAATTG 

POL1 R CGTAGCCTACACCATCGTCATC 

RAD 14 F CCGGCCTCTCGCAGTTACTA 

RAD14 R GCGGCTGCTGCATTATCAT 

ACT1 F TGGATTCCGGTGATGGTGTT 

ACT1 R TCAAAATGGCGTGAGGTAGAGA 

ADE 3 F CCCGTGATATCGCATCATACTTAC 

ADE3 R GGCCGATGGCAACGACTA 
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Table 2.4:  5'RACE Primers 

GAL7-GSP1 GTCCTCCTTCACCATTTGG 

GAL7-GSP2 GGCCCAGTATGGAACAACAAC 

GAL7-GSP3 CGTCAGTCAATGCTTGCCAAG 
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Table 2.5: Oligos for Chromatin Immunoprecipitation 

Name Forward Reverse Probe 

Relative 

to +1 

Start 

 +1 Start  

References 

GAL7 P 

GCGCTCGG

ACAACTGT

TG 

TTTCCGAC

CTGCTTTTA

TATCTTTG 

CCGTGATC

CGAAGGAC

TGGCTATA

CA -66 

(Greger and 

Proudfoot 

1998) 

GAL7 

5' 

ATCATACA

ATGGAGCT

GTGGG 

CTAGCCAT

TCCCATAG

ACGTTAC 

AAGCAGCC

TCCTGTTG

ACCTAACC +190  

(Greger and 

Proudfoot 

1998) 

GAL7 

middle 

TGCGAAAC

TTCACTAG

GGATG 

CCAGAGAA

GCAAAGAA

AATCATAA

G 

CAACCCAT

GGCTGTAC

CTTTGTTTT

CA +587 

(Greger and 

Proudfoot 

1998) 

GAL7 

3' 

GCATTTCT

ACCCACCT

TTACTGAG 

CAGCTTGT

TCCGAAGT

TAAATCTC 

AGGCTCAC

CTAACAAT

TCAAAACC

AACC +1079  

(Greger and 

Proudfoot 

1998) 

GAL7 

3' UTR 

GGACCACT

CTTACATA

ACTAGAAT

AGC 

TTTTCTATT

AACTGCCT

GGTTTCTTT 

TGTCACTC

CGTTCAAG

TCGACAAC

C +1259 

(Greger and 

Proudfoot 

1998; 

Nagalakshmi 

et al. 2008) 

POL1 5' 

AGAATACA

GGGCCAGA

AAGC 

GTAGCCTA

CACCATCG

TCATC 

ACAACAAA

TCGTCATG

CAGCAATT

CCT +125 

(Nagalakshmi 

et al. 2008) 

RAD14 

5' 

TGTGTTTG

TATTTTAA

CCGTGGG 

GATTCAAT

TGGTCGCT

ACTCAG 

TGTTAGCC

TCCTGCAC

AGCTCATC +211 

(Nagalakshmi 

et al. 2008) 

CLB2 5' 

TCCAGCCC

TAACAAAT

TTCAAATC 

GCTGTTGA

TCTTGATA

CGCTTTC 

TCCGACTT

CCCTCCTTC

TTTACTGA

GTT +1634 

(Yassour et al. 

2009) 

ADE3 

5' 

TGGCTGGT

CAAGTGTT

GG 

TGGTCTGT

TGCCTACT

TGAATG 

TCAAAAGC

ATTCAAGG

TCACGTGC

C +100 

(Nagalakshmi 

et al. 2008) 
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Table 2.6:  Oligos for Northern Blotting (dsDNA probes) 

FLO8 F CTGTATCCAGTCCATTATCTTCAG 

FLO8 R TCAGCCTTCCCAATTAATAAAATTG 

SCR1 F GGATACGTTGAGAATTCTGGCCGAGG 

SCR1 R AATGTGCGAGTAAATCCTGATGGCACC 

GAL7 F CCTTGGTTAGGTCAACAGGAG 

GAL7 R AGTCGCATTCAAAGGAGCC 
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CHAPTER 3. THE DEAD-BOX PROTEIN DBP2 FUNCTIONS WITH THE RNA-

BINDING PROTEIN YRA1 TO PROMOTE mRNP ASSEMBLY 

3.1 Introduction 

Over the last several decades, major advances have been made in our 

understanding of RNA structures and the parameters for RNA folding in vivo and in vitro 

(Zemora and Waldsich 2010; Wan et al. 2012). Unlike DNA, cellular RNAs have a high 

propensity to form intramolecular helices and tertiary contacts that are central to the 

functionality of the given RNA molecule (Zemora and Waldsich 2010; Woodson 2010; 

Treiber and Williamson 1999; Wilson et al. 2005). Proper folding is not only critical for 

small ribozymes to form active sites but also to enable highly efficient catalysis (Zemora 

and Waldsich 2010; Woodson 2010; Wilson et al. 2005). This is also the case for more 

complex RNAs, such as the 18 and 28S ribosomal (r)RNAs, which also assemble with 

RNA-binding proteins to form a fully functional translational apparatus (Woodson 2008; 

Stern et al. 1989). 

 Strikingly, while it is now common knowledge that cellular RNAs such as 

rRNAs, transfer RNAs (t)RNAs and spliceosomal (sn)RNAs are all highly structured and 

intrinsically dynamic, our knowledge regarding messenger RNA (mRNA) structure has 

lagged behind (Rajkowitsch et al. 2007). One possible explanation for this discrepancy is 
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that, unlike other RNAs, mRNAs are highly heterogeneous in sequence, length and 

assembly with RNA-binding proteins. Moreover, both the structure and composition of a 

given messenger ribonucleoprotein complex (mRNP) changes at different steps during 

synthesis, maturation and translation (Moore 2005; Schmid and Jensen 2010). 

Computational predictions and genome-wide in vivo analyses demonstrate that mRNAs 

have significant secondary structure and this characteristic is likely a critical aspect of 

gene regulation (Wan et al. 2012; Gaspar et al. 2013; Kertesz et al. 2010). However, key 

mechanistic questions regarding the factors that are required for proper folding of 

mRNAs and subsequent assembly of the mRNA into an mRNP have not been fully 

addressed. 

 One class of enzymes that controls cellular RNA structures is the DEAD-box 

RNA helicase family. DEAD-box helicases are the largest class of enzymes within the 

RNA helicase superfamily, functioning in all aspects of RNA metabolism from 

transcription to translation (Putnam and Jankowsky 2013; Linder and Jankowsky 2011). 

DEAD-box RNA helicases are unique among other helicase enzyme families in that they 

are non-directional and non-processive, with maximal unwinding on duplexes that are 

one to one and a half turns of an A-form RNA helix. This activity makes DEAD-box 

proteins well suited for cellular RNAs, which rarely contain helices longer than 12 base 

pairs in length (Linder and Jankowsky 2011). Furthermore, DEAD-box proteins exhibit a 

wide array of biochemical activities including duplex unwinding, RNA-binding protein 

displacement from single stranded RNA, and RNA strand annealing (Putnam and 

Jankowsky 2013; Linder and Jankowsky 2011). Thus, although classically defined as 
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helicases, these enzymes are more likely to function as cellular RNA chaperones that 

conduct a variety of biochemically distinct steps to properly assemble RNPs in vivo. 

 Three DEAD-box proteins, namely Sub2, Dbp5 and Dbp2, have been implicated 

in nuclear gene expression steps in the budding yeast Saccharomyces cerevisiae (Linder 

and Jankowsky 2011). The least well understood DEAD-box protein, however, is Dbp2. 

In multicellular eukaryotes, the Dbp2 ortholog DDX5 functions in multiple gene 

expression steps including pre-mRNA splicing, microRNA processing, and regulation of 

transcription initiation (Janknecht 2010; Fukuda et al. 2007; Caretti et al. 2006). This 

factor has also recently been linked to nuclear mRNA export and RNA quality control in 

yeast and metazoan cells (Cloutier et al. 2012; Zonta et al. 2013; Buszczak and Spradling 

2006). Moreover, recent studies from our laboratory determined that Dbp2 is directly 

associated with transcriptionally active chromatin (Cloutier et al. 2012). This suggests 

that Dbp2 may function as a co-transcriptional mRNA chaperone by facilitating proper 

mRNA folding, and likely messenger ribonucleoprotein (mRNP) formation, in the 

nucleus.   

 To shed light on the mechanisms governing mRNP structure and assembly, we 

focused on the biological and biochemical mechanism of Dbp2.  Our results now show 

that Dbp2 is an efficient RNA helicase that promotes assembly of the RNA-binding 

proteins Yra1, Nab2 and the export receptor Mex67 onto newly synthesized mRNA. We 

also demonstrate that Dbp2 interacts directly with Yra1 and that Yra1 inhibits the duplex 

unwinding activity of Dbp2. We speculate that this may be a common mode of regulation 

for other DEAD-box RNA helicases and provide a model whereby Dbp2 duplex 
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unwinding and subsequent enzymatic inhibition is necessary to properly assemble 

mRNPs. 

3.2 Materials and methods 

Yeast strains, yeast plasmids and bacterial plasmids 

Listed in Table 1 and Table 2.  

 

Recombinant Protein Expression and Purification 

Expression of pMAL MBP-TEV-DBP2 in BL21 E. coli (DE3) cells (New England Bio 

Labs) was induced with 1 mM isopropyl 1-thio-β-D-galactopyranoside (IPTG) at 37 °C 

for 3 hours and was subsequently purified from the soluble fraction using amylose resin 

according to the manufacturer’s instructions (New England Bio Labs). The MBP tag was 

then cleaved with 50 U of TEV protease (Invitrogen) overnight at 16 °C. The cleaved 

Dbp2 was then subjected to cation exchange chromatography with SP sepharose (Sigma). 

Dbp2 was eluted in 50 mM Tris-HCl at pH 8 with 600 mM NaCl, and 20% glycerol and 

stored at -80 °C until usage.  Expression of pET28a His6-DBP2 in Rosetta E. coli (DE3) 

cells (Novagen) was induced by 0.2 mM IPTG at 16 °C and purified as previously 

described (Cloutier et al. 2012). Two consecutive TEV sites were inserted between the 

GST-tag and the coding sequence of Yra1 by PCR using pFS1853 GST-Yra1 as a 

template, a set of primer pairs that contain the TEV sites coding sequence flanked next to 

the GST-tag and Yra1 coding sequence. Forward primer: 5’-

GAAAACCTGTACTTCCAGGGAATGTCTGCTAACTTAGATAAATCCTTAGAC-3’  
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and a reverse primer: 5’-

TCCCTGGAAGTACAGGTTTTCCTCGAGATGGTCGCCACCACCAAACGTGGC-

3’. Expression of the GST-TEV-YRA1 in Rosetta E. coli (DE3) cells (Novagen) was 

induced by 0.2 mM IPTG overnight at 16 °C and was subsequently purified from the 

soluble fraction using glutathione sepharose according to the manufacturer’s instructions 

(GE healthcare). The GST tag was then cleaved with 50 U of TEV protease (Invitrogen) 

overnight at 16 °C. The cleaved purified recombinant proteins were subsequently 

subjected to SP sepharose (Sigma). Yra1 were eluted in 50 mM Tris-HCl at pH 8 with 

600 mM NaCl, and 20% glycerol and stored at -80 °C until usage. Expression of the 

pET21 GST-Yra1C and pET21 GST-Yra1 RRM+C in Rosetta E. coli (DE3) cells 

(Novagen) was induced by 0.2 mM IPTG overnight at 16 °C and was subsequently 

purified from the soluble fraction using glutathione sepharose according to the 

manufacturer’s instructions (GE healthcare). The purified proteins were eluted with 

20mM glutathione, 150 mM NaCl, 20% glycerol and 20 mM HEPES at pH 7.5 and 

stored at -80 °C until usage.  

  

Unwinding Assays 

RNA oligonucleotides were purchased from Integrated DNA Technologies (IDT), and 

duplex substrates were prepared as previously described (Yang and Jankowsky 2005; 

Jankowsky and Putnam 2010). The blunt end RNA duplex sequences are: (top strand) 5’-

AGCACCGUAAAGACGC-3’ + (bottom strand) 5’-GCGUCUUUACGGUGCU-3’. The 

overhang RNA duplex sequences are: (top strand) 5’-AGCACCGUAAAGACGC-3’ + 

(bottom strand) 5’-GCGUCUUUACGGUGCUUAAAACAAAACAAAACAAAAC-3’. 



 
 

 

128 

The blunt end RNA/DNA duplex sequences are: (top strand) 5’-

GGCACGGUGGGGACCG-3’ + (bottom strand) 5’-CGGTCCCCACCGTGCC-3’. The 

top strand of the RNA duplex was 5’ end-labeled with [γ
32

P]-ATP using T4 

polynucleotide kinase according to standard methods.  In vitro unwinding assays were 

conducted as previously described (Yang and Jankowsky 2005) except for using 0.1 nM 

32
P labeled duplex in a 30 μl reaction mixture containing 40 mM TrisHCl (pH 8), 50 mM 

NaCl, 2.5 mM MgCl2, 2 mM DTT, 60 U Superase-in (Life Technologies) and 600 nM 

Dbp2 and 600 nM or 1200 nM of Yra1 where indicated. The reaction mixture was 

incubated in a 19 °C water bath for 10 min prior to the reaction. All reactions were 

performed at 19 °C. Unwinding reactions were initiated by adding ATP (2 mM or 0.1 

mM as indicated). At the times indicated, 3 μl aliquots were removed and the reaction 

was stopped with a buffer containing 1% SDS, 50 mM EDTA, 0.1% xylene cyanol, 0.1% 

bromophenol blue and 20% glycerol. Aliquots were subsequently resolved on a 10% 

nondenaturing PAGE. The gels were dried and radiolabeled RNAs were quantified using 

ImageQuant software. The data from each time point was calculated using the formula: 

fraction of single stranded = (single stranded RNA / total RNA). The integrated form of a 

homogenous first order rate law equation was used to fit the data to determine the 

kobs
(unw)

.  

The rate constants for unwinding kunw and kann were determined using Frac ss 

=kunw(kunw + kann)-1(1 – exp(-(kunw + kann)t)) as described in 
26

. 

 

Annealing assays  

In vitro annealing assays were performed in the presence of 2 mM or 0.1 mM ATP with 
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the same reaction mixture as unwinding assays without the 10 min pre-incubation. The 

RNA duplex was denatured at 95 °C for 2 min to generate single-stranded RNAs. All the 

reactions were conducted in a 19 °C water bath and were initiated by addition of 0.1 nM 

of the denatured substrate strands. Aliquots of the reactions were treated as described in 

the unwinding assays. The data from each time point was calculated as described in the 

unwinding assays. The integrated rate law for the bimolecular annealing reaction 

equation was used to fit the data to determine the kobs
(ann)

.  

 

Cellular Microscopy 

In situ hybridization was performed on cells that were grown to mid-log phase at the 

permissive temperature (25 °C) with -URA+2% glucose and then shifted to -URA+2% 

galactose for a 1-hour induction of DBP2 overexpression.  Cells were subsequently 

harvested, fixed with formaldehyde and mounted on glass slides.  Poly(A)+ RNA was 

then visualized by microscopy following hybridization with digoxygenin-conjugated 

oligodT50 and detection with FITC-conjugated anti-digoxygenin secondary antibody 

(Roche) as previously described (Tran et al. 2007). DAPI staining was utilized to 

visualize DNA (Tran et al. 2007).  Images were collected using an Olympus BX51 

microscope using Metamorph software. 

 

TAP-tag immunoprecipitation 

Cells expressing genomically encoded Dbp2-TAP or untagged Dbp2 (BY4741) were 

grown in YPD at 30 °C to an OD600 of 0.6. Harvested cells were pelleted and injected 

into liquid nitrogen. The frozen cells were then lysed in the solid phase by milling, using 



 
 

 

130 

a planetary ball mill. The lysed cells were subsequently resuspended in 15ml of 

extraction buffer (20mM HEPES at pH7.4, 110 mM KoAc, 0.5% Triton X-100, 0.1% 

Tween-20 and 70 mM NaCl) in the presence of 1X protease inhibitor cocktail tablets 

(Roche) followed by centrifugation at 4700 RPM at 4 °C for 15 min as previously 

described (Carmody et al. 2010). The soluble fraction of the lysate was incubated with 

IgG-conjugated dynabeads at 4 °C for 30 min. The unbound protein was washed away 

with extraction buffer. The bound protein was eluted with 10 U of AcTEV protease (Life 

Technologies) followed by TCA precipitation. The proteins were then resolved by SDS-

PAGE and detected by Western blotting analysis. Western blotting analysis was 

conducted with standard molecular biology techniques rabbit anti-Yra1 (Johnson et al. 

2009), rabbit anti-Protein A and horseradish peroxidase conjugated goat anti-rabbit 

antibody (Sigma). 

 

In vitro binding (pull down) assays 

20 μg of recombinant, purified GST-Yra1, GST-Yra1 RRM+C, GST- Yra1 C, GST-

Dbp5, His-Dbp2, Dbp5 or Dbp2 were incubated with the glutathione sepharose in 20 mM 

HEPES pH 7.5, 150 mM NaCl and 20% glycerol at room temperature for 10min as 

indicated following removal of 20% of the protein mixture for input.  Bound proteins 

were eluted with 50 mM reduced glutathione in 20 mM HEPES pH 7.5, 150 mM NaCl 

and 20% glycerol and were resolved by SDS-PAGE followed by Coomassie staining. 
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In vitro ATPase assays 

In vitro ATP hydrolysis assays were performed using a PK/lactate dehydrogenase 

enzyme-coupled absorbance assay as previously described (Cloutier et al. 2012), but with 

200 nM Dbp2 and increasing amounts of recombinant purified Yra1, total yeast RNA 

(Sigma) or ATP as indicated.  Presented data is the average of three independent 

experiments and the error bars represent the standard deviation.  

In vivo UV cross-linking assays 

Wild type and dbp2Δ yeast cells were grown in YPD at 30 °C. Mid-log phase cells were 

harvested and resuspended into 50 ml of 10 mM Tris-HCl at pH 7.5, 500 mM NaCl and 1 

mM EDTA. The resuspended cells were then subjected to UV light with 180,000 μJ/cm
2
 

on ice for 2.5 minutes using UV Stratalinker 1800. The UV treatment was conducted 

twice with 45-second pause in between each treatment. The cells were then centrifuged at 

4000 rpm for 10 minutes at 4 °C. The pelleted cells were resuspended into 10 ml of 10 

mM Tris-HCl at pH 7.5, 500 mM NaCl, 1 mM EDTA, 500 U of Superase-in (Life 

Technologies), 1 mM PMSF and 0.5 X of protease inhibitor cocktail tablets (Roche). The 

cells were then lysed by bead beating, cleared by centrifugation and then subjected to 

poly(A)+ RNA pull down using oligo dT cellulose (Life Technologies). The RNA 

concentration from the eluted fraction was determined by measuring the absorbance at 

260 nm. RNase treatment and TCA precipitation were then performed to recover bound 

proteins. Fractions were then resolved by SDS-PAGE and proteins were detected by 

western blotting with rabbit anti-Nab2 (Tran et al. 2007), rabbit anti-Mex67 (Gwizdek et 

al. 2006), rabbit anti-Yra1 (Johnson et al. 2009) and horseradish peroxidase conjugated 

goat anti-rabbit antibodies (Promega).  
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RT-qPCR analysis  

RNA was isolated from oligo dT-purified RNPs (see UV crosslinking) by standard acid 

phenol purification. Equal fractions from the elution were then reverse transcribed into 

complementary DNA (cDNA) (Qiagen) and the quantity of ACT1 RNA was measured by 

quantitative PCR using BioRad CFX96 system. The sequences for ACT1 primers were: 

(Forward primer) 5’-TGGATTCCGGTGATGGTGTT3’ and (Reverse primer) 5’-

TCAAAATGGCGTGAGGTAGAGA-3’. The fold change of ACT1 transcript abundance 

was calculated by normalizing the signal from each sample to the signal obtained from 

wild type without UV treatment and are reported as the average of three technical repeats 

with standard error from the mean (S.E.).   

 

Serial dilution growth assay 

Indicated strains were grown in -URA+2% glucose or YPD liquid cultures and then 

harvested at mid-log phase. Cells were then spotted in 5-fold serial dilutions onto -

URA+2% glucose, -URA+2% galactose, or YPD plates and incubated at temperatures 

ranging from 16°C-37°C as indicated.  

3.3 Results 

3.3.1 Dbp2 catalyzes RNA duplex unwinding on blunt end and single-strand overhang 

substrates 

 Previous studies from our laboratory established that Dbp2 is an enzymatically 

active ATPase associated with transcribing genes (Cloutier et al. 2012).  Moreover, we 

found that loss of DBP2 in budding yeast results in RNA quality control and termination 
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defects, suggesting that Dbp2 may function in proper assembly of mRNPs in the nucleus. 

To shed light on the role of Dbp2 in gene expression, we first asked if Dbp2 is a bona 

fide RNA helicase in vitro and if this enzyme shows any preference for specific RNA 

duplex substrates.  It is well established that DEAD-box proteins, with the exception of 

DbpA, show no sequence-specific association with RNA (Putnam and Jankowsky 2013).  

However, individual members display preferences for pure RNA duplexes and/or RNA-

binding ‘platforms’ for duplex unwinding (Yang et al. 2007; Halls et al. 2007; Tijerina et 

al. 2006; Turner et al. 2007). To this end, we conducted an analysis of in vitro strand 

unwinding under pre-steady state conditions with three different nucleic acid substrates 

and 2 mM ATP:Mg
2+

 in the presence of recombinant, purified Dbp2 (Fig. 3.1 and Fig. 

3.2). These substrates include a 16 base pair (bp) blunt ended RNA duplex, a 16-bp 

duplex of identical sequence with a 21 nucleotide (nt) single-stranded overhang and a 16-

bp RNA-DNA duplex with a different sequence but similar stability (Fig. 3.1A).  The 

latter was chosen to account for the fact that RNA-DNA duplexes are less stable than 

their RNA-RNA counterparts and that the ability of DEAD-box RNA helicases to unwind 

a given substrate is inversely proportional to duplex stability (Stampfl et al. 2013). The 

unwinding assays were then conducted with 600 nM of Dbp2 and preformed duplexes 

over a 30 min time frame (Fig. 3.1 and Fig. 3.3).  

Consistent with other DEAD-box proteins, Dbp2 is able to unwind all three 

nucleic acid substrates with a preference for an RNA-RNA duplex (Fig. 3.1B-D).   

Importantly, we observed no ATP-independent unwinding activity, as evidenced from a 

lack of duplex destabilization after a 30 min incubation (Fig. 3.3A-C, lane 10). Unlike 

Ded1, which exhibits unwinding rate constants of ~0.1 min
-1

 or ~3.8 min
-1

 on blunt end 
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or single strand overhang duplexes, respectively (Yang et al. 2007), Dbp2 shows no 

preferential unwinding of a duplexed RNA with a single stranded region.  This is 

evidenced by observed unwinding rates that are dependent upon the presence of Dbp2 

and ATP (Fig. 3.1B-D, bottom; Fig. 3.3).   

DEAD-box proteins also exhibit RNA-strand annealing activity in vitro (Putnam 

and Jankowsky 2013)
13

. To measure annealing activity, we conducted the same assay as 

above but with the single strand components for each substrate. This showed that the 

substrates have no spontaneous annealing activity whereas Dbp2 exhibits some annealing 

activity on all three substrates at 2 mM ATP (Fig. 3.1B-D, Fig. 3.3D-F). To determine the 

precise biochemical mechanism of Dbp2, we subsequently calculated rate constants for 

both unwinding an annealing because the observed unwinding rate does not distinguish 

between these two parameters.  Initial attempts to measure observed annealing rates at 

2mM ATP were complicated due to substantial unwinding activity.  This results in a poor 

curve fit for annealing (open circles, Fig. 3.1B-D, Fig. 3.3), However, when this RNA-

strand annealing activity is taken into account according to the steady-state equation in 

(Yang and Jankowsky 2005), both the unwinding and annealing rate constants were 

accurately determined (Fig. 3.1E). The similar unwinding rate constants of ~0.2 min
-1

 for 

both blunt end and overhang substrates further demonstrate that Dbp2 does not require a 

single stranded overhang for duplex destabilization (Fig. 3.1E). This is consistent with 

our previous studies demonstrating dsRNA-directed ATPase activity (Cloutier et al. 

2012), and is similar to another DEAD-box protein, Mss116, whose activity is not 

enhanced by the presence of a single-stranded region within the RNA substrate (Halls et 

al. 2007). This suggests that Dbp2 recognizes duplexed RNAs directly. 
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3.3.2 Dbp2 preferentially anneals RNA duplexes with single-stranded regions at low ATP 

concentrations 

 Studies of the human ortholog of Dbp2, termed DDX5, have shown that this 

enzyme promotes efficient annealing under ATP-limiting conditions (Rössler et al. 2001). 

As mentioned above, DEAD-box proteins also facilitate strand annealing and, in some 

cases, this activity is biologically relevant (Halls et al. 2007; Yang and Jankowsky 2005; 

Zingler et al. 2010; Fedorova et al. 2010; Liebeg et al. 2010). To determine if the 

annealing activity of Dbp2 is enhanced by reduced ATP concentrations, we conducted 

our unwinding and annealing assays again but with 20-fold less ATP (0.1 mM ATP). 

Consistent with previous studies of Ded1 and Mss116 (Halls et al. 2007; Yang and 

Jankowsky 2005), Dbp2 efficiently annealed all three nucleic acid substrates at low ATP 

concentrations with little to no detectible unwinding activity (Fig. 3.4A-C and Fig. 3.5).  

Moreover, Dbp2 can anneal overhang and blunt end RNA substrates in the absence of 

ATP (data not shown). In contrast to other DEAD-box proteins, however, Dbp2 exhibits 

a strong annealing preference for RNA substrates with a single stranded overhang, 

resulting in a kobs
(ann)

 of 3.60 ± 0.50 min
-1

 (Fig. 3.4D). This is approximately four-fold 

higher than the 0.8 min
-1

 rate observed for the blunt end RNA-RNA and RNA-DNA 

duplexes. To the best of our knowledge, this preference has not been observed for any 

other DEAD-box protein to date, suggesting that Dbp2 has a unique ability to 

preferentially anneal structured RNAs with single stranded regions.  In general, this is the 

type of secondary structure we expect to find in mRNAs, sporadic regions of duplex 

RNA flanked by single stranded regions. We would therefore speculate that this activity 
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might make Dbp2 a more effective chaperone for secondary structure formation of 

cellular mRNAs under specific growth conditions with limited ATP (see Discussion). 

3.3.3 DBP2 genetically interacts with mRNA export factors YRA1 and MEX67 

Given the biochemical activity of Dbp2, we would speculate that Dbp2 functions 

as an RNA chaperone for newly synthesized mRNA.  Previous studies from our 

laboratory have provided evidence that Dbp2 is required for early gene expression steps 

including termination and RNA quality control (Cloutier et al. 2012), two processes 

intimately connected to mRNP assembly and export (Schmid and Jensen 2010; Moore 

and Proudfoot 2009; Fasken and Corbett 2009; Qu et al. 2009). To pinpoint the precise 

biological role of Dbp2, we first conducted a series of genetic studies with a plasmid that 

overexpresses DBP2 via a galactose-inducible promoter (pGAL-DBP2), and strains 

harboring mutations in genes linked to 3' end formation and/or mRNA export.  To this 

end, we selected yeast strains with mutations in the polyadenylation/cleavage factor 

PCF11 (Birse et al. 1998; Amrani et al. 1997), the pre-mRNA splicing and export factor 

SUB2 (Strässer and Hurt 2001; Kistler and Guthrie 2001), the RNA-binding protein gene 

YRA1 (Stutz et al. 2000), and the mRNA export receptor MEX67 (Segref et al. 1997), 

with the idea that overexpression of DBP2 might either rescue or enhance the growth 

defects of specific mutant strains. Yeast strains were transformed with either vector alone 

or with a pGAL-DBP2 high copy, overexpression vector and then plated as five-fold 

serial dilutions onto either transcriptionally-repressive (GLU) or inducing (GAL) media 

at multiple temperatures.  Strikingly, whereas wild type, pcf11-2, sub2-85 and yra1∆N 
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mutant strains displayed no obvious growth differences, overexpression of DBP2 was 

lethal in mex67-5 cells at all temperatures (Fig.3.6A, bottom).  

Because Mex67 is required for mRNA exit from the nucleus, we then asked if 

DBP2 overexpression results in a perturbation of mRNA transport. This was addressed 

by conducting in situ hybridization assays to visualize the cellular localization of 

poly(A)+ RNAs by indirect immunofluorescence in wild type or mex67-5 cells with 

vector only or overexpressed DBP2. Importantly, these experiments were conducted at 

the permissive temperature for mex67-5, which does not typically result in accumulation 

of poly(A)+ RNAs in nucleus (Segref et al. 1997).  Whereas both wild type and mex67-5 

cells showed diffuse, whole cell staining in the presence of vector alone, mex67-5 cells 

with overexpressed DBP2 exhibited a striking accumulation of poly(A)+ RNA in the 

nucleus (Fig. 3.6B). We also observed a detectible accumulation of mRNA in the nucleus 

of wild type cells upon overexpression of DBP2 (Fig. 3.6B), even though we did not 

previously observe any growth defects in wild type cells (Fig. 3.6A). It is of note that this 

nuclear poly(A)+ RNA accumulation is not as great as when the mex67-5 cells are grown 

at the non-permissive temperature of 37˚C ((Segref et al. 1997) and data not shown) 

suggesting that the export block is modest or is a result of a secondary effect. Consistent 

with the latter, we observed no mRNA transport defects in a dbp2∆ strain (data not 

shown). Thus, DBP2 overexpression induces a slight mRNA export defect in mex67-5 

cells, suggesting a role for this enzyme during or immediately prior to mRNA transport.  

Mex67 is recruited to nascent mRNPs during transcription through protein-protein 

interactions with RNA-binding proteins Npl3, Yra1 and Nab2 (Strasser and Hurt 2000; 

Iglesias et al. 2010; Gilbert and Guthrie 2004). Interestingly, recent studies have 
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documented an interaction between DDX5 and Aly, the human ortholog of Yra1 (Zonta 

et al. 2013).  This suggests that Dbp2 may be functionally connected to Mex67 

recruitment through Yra1. To test this, we asked if loss of DBP2 results in synthetic 

genetic interactions with mex67-5 or yra1∆N alleles by constructing double mutant 

strains and analyzing growth defects as above.  Both the mex67-5 and yra1∆N strains 

failed to grow at 37˚C whereas the dbp2∆ exhibits a previously documented cold 

sensitive growth at 25˚C and below (Cloutier et al. 2012; Segref et al. 1997; Zenklusen et 

al. 2001).  However, the yra1∆N dbp2∆ strain displayed severely retarded growth at the 

permissive temperature for both single mutants alone (30˚C), suggesting that DBP2 and 

YRA1 are functionally linked (Fig. 3.6C). Loss of DBP2 also results in a synthetic growth 

defect with mex67-5, albeit much weaker than with yra1∆N (Fig. 3.6C).  This suggests 

that Dbp2 and Yra1 function in a similar pathway and that Dbp2 is not directly required 

for mRNA export.  

3.3.4 DBP2 is required for efficient association of Yra1, Nab2 and Mex67 with poly(A)+ 

RNA 

 Messenger RNA is assembled with 12-30 different RNA-binding proteins to form 

co-transcriptionally assembled mRNPs (Hogan et al. 2008). Given the genetic 

interactions between DBP2, YRA1 and MEX67 above, we asked if DBP2 is required for 

efficient association of these RNA-binding proteins with mRNA.  To test this, we 

conducted in vivo UV crosslinking and subsequently isolated poly(A)+RNA from wild 

type or dbp2∆ cells. We then analyzed the association of Yra1 and Mex67 by western 

blotting the isolated fractions.  We also analyzed Nab2, a nuclear poly(A)-RNA-binding 
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protein that interacts directly with both Yra1 and Mex67 (Iglesias et al. 2010; Anderson 

et al. 1993).  Strikingly, this analysis revealed that all three proteins, Yra1, Nab2 and 

Mex67, exhibit reduced association with poly(A)+ RNA in dbp2∆ cells (Fig. 3.7A-C). 

This decrease is not due to differences in UV-independent, nonspecific binding, as 

evidenced by a representative western blot (Fig. 3.7D).  Furthermore, analysis of ACT1 

transcript abundance by reverse transcription-quantitative PCR (RT-qPCR) revealed that 

this reduction in dbp2∆ cells is not due to mRNA isolation efficiency (Fig. 3.7E). Thus, 

Dbp2 is required for efficient association of Yra1, Nab2 and Mex67 with poly(A)+ RNA, 

consistent with a role in nuclear mRNP assembly.  

3.3.5 Dbp2 physically interacts with Yra1 in vivo and in vitro 

 Many DEAD-box proteins associate with protein co-factors that either regulate 

the enzymatic activity or direct the biological role of a given DEAD-box enzyme 

(Jankowsky 2011). Two independent studies have identified Dbp2 as a component of 

Yra1-bound protein complexes, suggesting that Dbp2 may interact directly with Yra1 

(Oeffinger et al. 2007; Kashyap et al. 2005). To test this, we first confirmed the previous 

interaction by asking if Yra1 copurifies with a genomically-encoded, TAP-tagged Dbp2 

in yeast cells, which consists of two IgG-binding units of Protein A, a TEV cleavage site 

and the calmodulin-binding peptide that is fused to Dbp2 (Fig. 3.8A). An untagged wild 

type strain was utilized as a negative control for background association of Yra1 with the 

IgG-bound magnetic beads.  Consistent with the previous studies, selection of Dbp2-TAP 

results in co-purification of Yra1 (Fig. 3.8A). No Yra1 was detected in our background 

control, indicating that the interaction is Dbp2-dependent. Next, we asked if the 
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association between Dbp2 and Yra1 is direct by conducting protein pull downs with 

recombinant, purified proteins expressed in E. coli. Dbp2 and Yra1 were expressed as N-

terminal HIS-tag or GST-tag fusion proteins, respectively, and then purified to 

homogeneity by standard affinity chromatography methods.  The proteins were then 

incubated together, selected on glutathione resin selection, resolved by SDS-PAGE 

electrophoresis and visualized by Coomassie staining (Fig. 3.8B). Dbp5 is another 

DEAD-box protein was used as negative control for non-specific interactions.  Whereas 

Dbp2 does not interact beads alone or with Dbp5 (Fig. 3.8B, lanes 2 and 8), Dbp2 was 

co-purified with GST-tagged Yra1 (Fig. 3.8B, lane 4). Dbp5, on the other hand, did not 

co-purify with GST-Yra1 (Fig. 3.8B, lane 6), further demonstrating the specificity of the 

interaction with Dbp2. Thus, Dbp2 interacts directly with Yra1. 

Yra1 is an evolutionarily conserved RNA-binding protein and export factor 

(REF) (Stutz et al. 2000). Like other members of the REF protein family, Yra1 contains a 

central RNA recognition motif (RRM), two variable spacer regions, and highly conserved 

N- and C-termini (REF-N and REF-C, respectively)((Stutz et al. 2000), Fig. 3.8C). 

Previous studies have shown that Mex67 interacts with the N-terminus (a.a. 1-77) and C-

variable spacer region (a.a. 167-210) of Yra1, whereas the N-variable spacer region (a.a. 

14-77) and C-variable spacer region (a.a. 167-210) of this protein are each sufficient to 

interact with RNA (Zenklusen et al. 2001). To determine what region of Yra1 is 

necessary for Dbp2 binding, we obtained bacterial expression plasmids for expression of 

two GST-tagged Yra1 truncation mutations that express either the RRM and C-terminal 

region (RRM+C) or the C-terminal region alone (yra1C) (Fig. 3.8C, (Johnson et al. 

2009)). We then purified the truncation mutants and conducted pull down assays as 
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above.  Interestingly, Dbp2 interacted with all three proteins, full length Yra1, Yra1 

RRM+C and the C-terminus alone (Fig. 3.8D, lanes 6 and 8), suggesting that the C-

terminus constitutes the Dbp2-binding domain. We then attempted to determine if the C-

terminus is necessary for this interaction, however, we were unable to express the GST-

yra1∆C mutant in bacteria. Regardless, these studies suggest that Dbp2 interacts with the 

C-terminus of Yra1.  

3.3.6 Yra1 inhibits the helicase activity of Dbp2 

Many DEAD-box protein factors also regulate the enzymatic activity of their 

respective RNA helicase. This includes the translation initiation factor eIF4A, whose 

helicase activity is activated by eIF4B, 4H and 4F, and eIF4AIII, whose ATPase activity 

is inhibited by Y14 and MAGOH (Oberer et al. 2005; Rogers  Jr. et al. 2001; Ballut et al. 

2005; Nielsen et al. 2009). Thus, we asked if Yra1 modulates the helicase activity of 

Dbp2.  To test this, we first conducted in vitro unwinding assays with Dbp2 in the 

presence of full length Yra1. However, we were unable to accurately measure the 

unwinding activity of Dbp2 due to the previously documented strand annealing activity 

of Yra1 ((Portman et al. 1997) and data not shown). To resolve this problem, we then 

analyzed the annealing activity of the minimal Dbp2-interacting domain, yra1C, which 

has previously been shown to have severely impaired RNA-binding activity in vitro 

(Zenklusen et al. 2001).  Importantly, this revealed that the yra1C protein has no intrinsic 

annealing activity in vitro at the tested concentrations (Fig. 3.9E-F). To test the effect of 

yra1C on the unwinding activity of Dbp2, we conducted unwinding assays as above with 

the blunt end RNA duplex either with Dbp2 alone or with equimolar or two-fold excess 
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of Yra1 (Fig. 3.10). Strikingly, we found that yra1C decreased both the unwinding rate 

(kobs
(unw)

 ) and the amplitude of duplex unwinding by Dbp2 (Fig. 3.10A-B; Fig. 3.9A-C).  

In fact, the decreased unwinding rate is almost a full order of magnitude lower with 

yra1C (Fig. 3.10B). We also tested the unwinding activity of Dbp2 in the presence of 

two-fold molar excess of BSA to show that the unwinding inhibition effect is specific to 

Yra1.  Interestingly, this revealed a slight increase in the kobs for unwinding most likely 

due to molecular crowding (Fig. 3.10A-B; Fig. 3.9D). This suggests that the inhibition of 

Dbp2 is specific to Yra1. 

To elucidate the mechanism of inhibition, we then asked if Yra1 alters the 

ATPase activity of Dbp2 by conducting in vitro ATP hydrolysis assays with increasing 

concentrations of full length Yra1 or BSA (Fig. 3.10C). Consistent with our previous 

studies, Dbp2 exhibited an observed ATP hydrolysis rate (kobs) of 21 min
-1 

with saturating 

BSA resulted in a slight enhancement of the kobs from 21 to 25 min
-1

, Yra1 gave a greater 

stimulation at each tested concentration. Thus, Yra1 slightly enhances the ATPase 

activity of Dbp2. 

To determine if Yra1 enhances the ATPase rate by increasing the ATP-binding 

affinity of Dbp2, we measured the KM for ATP with or without a two-fold excess of Yra1 

or BSA (Fig. 3.10D). This revealed that Yra1 reduces the KM for ATP by ~30%, from 2.3 

to 1.6 mM.  This modest effect is similar to the observed increase in ATPase rate.  

Although moderate, this increase is specific for Yra1 as addition of BSA resulted in an 

ATPase curve that was superimposable with Dbp2 alone.  This suggests that Yra1 

stimulates the ATPase activity of Dbp2 through increasing the affinity for ATP. We 
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suggest that this decrease in the KM is biologically relevant because it occurs within the 

physiological range of cellular ATP concentrations.  

Finally, we asked if Yra1 alters the effective RNA-binding activity of Dbp2.  

Thus, we measured the ATPase activity of Dbp2 as above but with a range of RNA 

concentrations from 1 ng/ml to 1 mg/ml (Fig. 3.10E).  It is of note that the EC50 of Dbp2 

alone is lower than our previous studies (Cloutier et al. 2012), due to a more refined 

purification method for enzymatically-active Dbp2 that increases its specific activity. 

Interestingly, inclusion of Yra1 increased the amount of RNA necessary for ATP 

hydrolysis by Dbp2 by ~50% (Fig. 3.10E). This suggests that Yra1 slightly reduces the 

RNA-binding affinity of Dbp2, while increasing the ATP binding and hydrolysis rate.  

We suggest that these subtle changes on the enzymatic parameters of Dbp2 result in 

release of Dbp2 from RNA, thereby inhibiting helicase activity in vitro. It is also possible 

that inhibition could also be due to Yra1 blocking initial association of Dbp2 with RNA. 

However, if this were the case, we would expect that Yra1 would reduce the RNA-

dependent ATPase activity (Fig. 3.10C). Because we do not observe a decrease in RNA-

dependent ATPase activity, this suggests that Yra1 inhibits duplex unwinding of Dbp2 

through an as-of-yet uncharacterized mode distinct from other DEAD-box RNA helicase-

interacting proteins.  

Taken together, we provide a model whereby Yra1 controls the enzymatic activity 

of Dbp2 to promote proper mRNP formation in gene expression (Fig. 3.11). During 

transcription, Dbp2 unwinds aberrant structures on the nascent transcript that are 

refractory to RNA-binding protein assembly.  This facilitates the loading of Yra1, Mex67 

and Nab2 and likely other RNA-binding proteins onto the mRNA. The interaction of 
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Yra1 with Dbp2 then inhibits duplex unwinding and possibly also promotes Dbp2 

release.  Alternatively, Dbp2 may remain bound to the mRNA as part of a Yra1-Dbp2 

complex. If this were the case, Dbp2 would function similarly to eIF4AIII, which acts as 

an RNA clamp for an ribonucleoprotein complex (Ballut et al. 2005). With either 

scenario, we predict that inhibition of Dbp2 helicase activity by Yra1 prevents further 

remodeling of the properly assembled mRNP, as DEAD-box proteins can also efficiently 

remodel ribonucleoprotein complexes (Tran et al. 2007; Jankowsky et al. 2001; Fairman 

et al. 2004). This constitutes a previously unknown mechanism for regulation of RNA 

helicases as well as the first biochemical mechanism for co-transcriptional assembly of a 

mRNP complex. 

3.4 Discussion 

Proper nuclear mRNP assembly is crucial for co-transcriptional and post-

transcriptional processing steps including removal of introns by splicing, 3’ end cleavage 

and polyadenylation, as well as formation of a translationally competent mRNA (Schmid 

and Jensen 2010; Kallehauge et al. 2012).  During each of these steps, the evolving 

mRNP must assemble with a complement of RNA-binding proteins to direct the next step 

in the gene expression process. Our studies now provide evidence that the DEAD-box 

RNA helicase, Dbp2, plays a critical role in mRNP assembly in the nucleus. The human 

ortholog of Dbp2, termed DDX5, has been implicated in numerous transcriptional and 

post-transcriptional events, including transcriptional regulation, alternative splicing and 

microRNA processing (Janknecht 2010; Caretti et al. 2006; Kar et al. 2011; Salzman et 

al. 2007). The fact that ectopic expression of human DDX5 in yeast fully complements 
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the growth defects of dbp2∆ cells suggests that these roles are evolutionarily conserved 

(Barta and Iggo 1995). Given the multifaceted role, it is likely that DDX5 and Dbp2 are 

major players in the structural assembly of the transcriptome in all eukaryotes.  

Our studies establish that Dbp2 is a bona fide RNA helicase, with efficient duplex 

unwinding activity on blunt ended duplexes.  This suggests that Dbp2 recognizes 

secondary structure directly, without the need for a single stranded region for initial 

“loading” of the enzyme.  This activity is consistent with a subset of DEAD-box family 

members with highly efficient duplex unwinding, such as CYT-19 and Mss116 (Halls et 

al. 2007; Chen et al. 2008; Del Campo et al. 2009; Yang and Jankowsky 2006).  

Moreover, it is consistent with our previous observation that Dbp2 displays dsRNA-

directed ATPase activity (Cloutier et al. 2012).  Interestingly, whereas the core sequence 

is conserved among all DEAD-box protein family members, these three enzymes also 

contain a C-terminal RGG extension. In fact, a recent biochemical and structural analysis 

of CYT-19 demonstrated that the RGG motif of this enzyme functions as a ‘tether” to 

enable multiple rounds of duplex unwinding (Mallam et al. 2011).  

Several DEAD-box proteins have been shown to utilize protein cofactors to 

trigger duplex unwinding by increasing the ATP binding or RNA-binding affinities of an 

inefficient DEAD-box enzyme (Rogers  Jr. et al. 2001; Granneman et al. 2006; Alcazar-

Roman et al. 2006; Weirich et al. 2006). Given the high duplex unwinding activity of 

Dbp2, however, inhibition may be the more important mode of regulation. In support of 

this, we find that Yra1 inhibits the helicase activity of Dbp2. The human ortholog of 

Dbp2, DDX5, was recently shown to interact with Aly, the human counterpart to Yra1 

(Zonta et al. 2013), suggesting that this regulation is conserved in higher eukaryotes. We 
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speculate that in vivo the modulation of Dbp2 helicase activity by Yra1 is utilized to 

prevent further remodeling of the assembled mRNP. If this is the case, this would 

constitute a previously unrecognized mechanism for temporal regulation of DEAD-box 

enzymes in vivo. Although we do not know the mechanism for inhibition of duplex 

unwinding by Yra1, a recent study of Mss116 revealed that DEAD-box proteins are 

modular enzymes (Mallam et al. 2012). In fact, the C-terminal domain provides direct 

recognition of double-stranded RNA duplexes whereas the N-terminal domain interacts 

with ATP (Mallam et al. 2012).  The ability to couple ATP hydrolysis with duplex 

unwinding lies in the formation of a closed helicase with juxtaposed N and C-terminal 

domains (Mallam et al. 2012).  Because our studies suggest that Yra1 uncouples ATP 

hydrolysis from duplex unwinding, it will be interesting to determine the precise 

mechanism for Yra1-dependent inhibition of Dbp2 given this insight. 

Our studies show that Dbp2 is required for assembly of Yra1, Nab2 and Mex67 

onto Poly(A)+ RNA. It is well established that proper termination and 3’ end formation is 

required for mRNA export, as defects in these processes result in impaired recruitment of 

Mex67 to newly synthesized mRNAs and RNA decay (Qu et al. 2009; Schmid et al. 

2012; Saguez et al. 2008). The fact that loss of DBP2 results in reduced association of 

Mex67 as well as the poly(A)+ RNA-binding protein Nab2, suggests that Dbp2 functions 

concert with termination and 3’ end formation.  In support of this, loss of DBP2 results in 

transcription of a bicistronic GAL10-GAL7 mRNA, a characteristic phenotype of 

termination defects (Cloutier et al. 2012).  This idea is also consistent with our genetic 

analysis and the fact that DBP2 overexpression resulted in lethality of mex67-5 strains 

but not sub2-85 or pcf11-2 strains. This suggests that Dbp2 functions upstream of Mex67 
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but downstream or independent of Sub2 and Pcf11. Interestingly, Yra1 also interacts 

directly with all three of these proteins (Strässer and Hurt 2001; Strasser and Hurt 2000; 

Johnson et al. 2009), indicating that this small protein acts as a coupling factor for 

multiple co-transcriptional processing and assembly steps. Furthermore, recent studies 

from the Bentley laboratory have demonstrated that Pcf11 is required for recruitment of 

Yra1 to chromatin, which then functions to modulate poly(A) site selection (Johnson et 

al. 2009, 2011).  Thus, the order of events for this process and role of Dbp2 in 

termination is an intriguing question for future studies. 

In addition to canonical duplex unwinding, our studies also show that Dbp2 

displays strong RNA strand-annealing activity.  This is not unprecedented as the DEAD-

box protein Mss116 utilizes both annealing and duplex unwinding activities to promote 

(Zingler et al. 2010; Fedorova et al. 

2010; Liebeg et al. 2010). This would suggest that Dbp2 could function similarly, 

however, in contrast to Mss116, Dbp2 only displays significant annealing under ATP-

limiting conditions. Interestingly, recent work from the Parker laboratory revealed that, 

under conditions of glucose starvation, the sub-cellular localization of numerous RNA-

binding proteins is drastically altered (Mitchell et al. 2013).  This suggests that cellular 

ribonucleoprotein complexes undergo dynamic alterations in nutrient-limited conditions 

when cellular ATP concentrations are low. Thus, it will be interesting to determine the 

function of Dbp2 under specific physiological growth conditions, which may promote 

strand annealing. 

Our studies now add Dbp2 to the complement of DEAD-box proteins that 

function in nuclear mRNP assembly in S. cerevisiae.  This includes Sub2, which 
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functions in both splicing and formation of an export competent mRNP, and Dbp5, which 

promotes nuclear release of exporting transcripts (Linder and Jankowsky 2011). When 

considering that rRNA biogenesis requires 21 of the 25 DEAD-box proteins in budding 

yeast (Linder and Jankowsky 2011; Cordin et al. 2006), one might ask why there aren’t 

more DEAD-box RNA helicases associated with mRNP biogenesis.  Unlike other cellular 

RNAs such as snRNAs, tRNAs and rRNAs, mRNAs stand out as distinct as tertiary 

structure does not appear to play a large role in the functionality of these RNAs in 

eukaryotes. Given the propensity for RNAs to fold and misfold in solution (Zemora and 

Waldsich 2010), the prevailing model is that co-transcriptional association of RNA-

binding proteins maintains primarily linear structure of a nascent transcript (Schmid and 

Jensen 2010).  Although the average length of an mRNA is 1kb, pre-mRNA transcripts 

can range from a 3 Kb to ~2.5 Mb, making it likely that DEAD-box helicases function as 

key structural modulators of the transcriptome.  The challenge then will be defining the 

precise molecular rearrangements that require DDX5/Dbp2 or other members of the 

DEAD-box protein family given the highly coupled nature of nuclear gene expression 

steps.  With the advancement in RNA sequence and target identification coupled with 

structural studies of mRNAs (Wan et al. 2011), these questions can be addressed in the 

very near future.    
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Figure 3.1. Dbp2 displays ATP-dependent duplex unwinding on multiple RNA 

substrates at 2 mM ATP:Mg2+. (A) Schematic representation and thermodynamic 

stability of RNA duplex substrates. All RNA substrates were designed with similar 

stability, which was calculated using the Nearest-Neighbor Database and converting to 

ΔG°19 using ΔG°= ΔH°-T ΔS° (Sugimoto et al. 1995; Turner and Mathews 2009). Black 

or gray coloring denotes RNA or DNA strands, respectively, whereas asterisks mark the 

position of the 32P-radiolabeled 5’ end. (B) Graphical representations of unwinding and 

annealing assays using radiolabeled 16-bp blunt end RNA duplexes, (C) 21-nt overhang 

that is 3’ to the 16-bp RNA duplexes and (D) 16-bp blunt end DNA/RNA hybrids. 

Reactions were performed at 19 °C with 2 mM ATP:Mg2+, 0.1 nM radiolabeled duplex, 

and 600 nM recombinant, purified Dbp2. The fraction of the single stranded substrate at 

each time point is plotted as the average of three independent reactions with standard 

deviations from the mean. The integrated form of a homogenous first order rate law 

equation was used to fit the data to determine the kobs(unw). kobs(ann) was determined 

using the integrated rate law for the bimolecular annealing reaction as previously 

described (Yang and Jankowsky 2005).  N.D. = not determined. Representative non-

denaturing gels are shown in Fig 3.3. (E) Kinetic parameters for Dbp2 unwinding and 

annealing at 2 mM ATP.  The rate constants for Dbp2 unwinding and annealing were 
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calculated as previously described (Yang and Jankowsky 2005). This reveals that Dbp2 

preferentially unwinds RNA-RNA duplexes irrespective of the presence of a single-

stranded overhang region.  Dbp2 exhibits RNA-DNA duplex unwinding but with a lower 

activity than RNA-RNA substrates of similar overall stability. 
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Figure 3.2. Coomassie gel of recombinant, purified Dbp2 used in in vitro assays. A 

coomassie stained SDS-PAGE gel of purified Dbp2. Increasing amounts of Dbp2 (5 μg, 

10 μg, 15 μg, and 20 μg) is loaded in lane 1 to lane 4, respectively.  This purification 

shows that Dbp2 is >95% pure as estimated by staining. 
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Figure 3.3. Dbp2 displays both unwinding and annealing activities at 2 mM ATP. 
(A) Representative non-denaturing gels of RNA unwinding reaction in Fig 3.1 using the 

blunt end RNA duplexes, (B) the overhang RNA duplexes and (C) the DNA/RNA hybrids. 

The corresponding single stranded substrates from the denatured duplex were used in the 

annealing reaction (D-F, respectively). Double stranded RNA (ds) and denatured duplex 

at 95°C (95) were used as double stranded and singled stranded RNA positional markers, 

respectively. For the unwinding reactions (A-C), the 0 time point (lane 3) represents 

reactions before addition of 2 mM ATP and no unwinding activity was observed in the 
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absence of ATP in 30 min (lane 10). Time points from 0.5 min to 30 min were collected 

and shown that the duplex substrate was unwound to single stranded substrate (lane 4-9). 

For annealing reactions (D-F), the 0 time point (lane 1) represents the single stranded 

substrate before the reaction begins. In addition, no spontaneous annealing of the RNA 

substrate was observed as shown in the spontaneous annealing reaction (without Dbp2). 

During the annealing reaction in the presence of Dbp2, aliquots were removed from time 

0.5 min to 30 min and shown that single stranded substrate was annealed to double 

stranded substrate (lane 4-9). 
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Figure 3.4. Dbp2 exhibits a preference for strand annealing with single stranded 

overhang RNA substrates at low ATP concentration. (A-C) Graphical representation 

of unwinding and annealing assays with 0.1 mM ATP using (A) the blunt end RNA 

duplex, (B) the RNA duplex with 3’ single strand overhang or (C) the blunt end RNA-

DNA hybrid.  Unwinding and annealing assays were conducted as above but with 0.1 mM 

ATP and 2 mM MgCl2.  Data from the unwinding and annealing assays were fitted as 

above.  Representative non-denaturing gels are shown in Fig 3.5. (D) Kinetic parameters 

for Dbp2 unwinding at 0.1 mM ATP.  Since there is little or no observable unwinding, the 

unwinding data cannot be fitted with the steady state equation as mentioned above and 

are listed as ND (not determined). Therefore, we assumed the kobs 
(ann) 

is the same as 

kanneal and converted the reported kobs 
(ann) 

 to the first-order rate constant as described 

(Yang and Jankowsky 2005). This reveals that Dbp2 exhibits higher annealing on RNA 

duplexes with single stranded overhangs at low ATP.  
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Figure 3.5. Dbp2 prefers annealing over unwinding at 0.1 mM ATP. (A-F) 

Representative non-denaturing gels are shown as in Fig. 3.3 but with 0.1 mM ATP and 

saturating MgCl2 (2 mM). This reveals that Dbp2 has little or no observable unwinding 

activity at 0.1 mM ATP and displays stronger annealing activity with substrate that has 

single stranded region. Note that the increased signal in the absence of ATP in all three 

gels (lane 10) is due to loading 10% more substrate per lane as compared to time course 

fractions (lanes 3-9). 
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(Data from figure 3.6A and figure 3.6B were provided by Sara Cloutier and Dr. 

Elizabeth Tran, respectively.) 

Figure 3.6. DBP2 displays genetic interactions with mRNA export factor mutants 

mex67-5 and yra1∆N. (A) Overexpression of DBP2 is lethal in mex67-5 strains. 

Indicated strains were transformed with empty vector or galactose-inducible pGAL-

DBP2. Resulting transformants were then spotted in 5-fold serial dilutions onto 

transcriptionally repressive (glucose) or inducing (galactose) media and subsequently 

grown at the indicated temperatures from 25-35 °C. (B) Overexpression of DBP2 in the 

mex67-5 strain induces a mRNA export defect at the mex67-5 permissive temperature. 

Briefly, yeast strains were grown at 25 ˚C to mid log phase in selective media and then 

shifted to galactose-containing media for 1 hour to induce DBP2 overexpression. Cells 

were then harvested and in situ hybridization was conducted with oligodT30 to visualize 

accumulation of total poly(A)+ RNA. DAPI staining of DNA shows the position of the 

nucleus. (C) Loss of DBP2 in yra1ΔN strain results in a synthetic sick growth defect. The 

indicated double mutant strains were constructed using standard methods and were 

analyzed for growth defects as above by serial dilution analysis onto rich media. The 

dbp2∆ displays a cold sensitive phenotype as previously described (Cloutier et al. 2012). 
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(Data from figure 3.7 were collected by Sara Cloutier and myself.) 

Figure 3.7. Loss of DBP2 results in reduced association of Yra1, Nab2 and Mex67 

with poly(A)
+
 RNA. In vivo UV crosslinking reveals reduced association of (A) Yra1, 

(B) Nab2 and (C) Mex67 with poly(A)
+
 RNA in dbp2Δ cells. Wild type and dbp2Δ cells 

were subjected to UV crosslinking followed by poly(A)+ RNA isolation as previously 

described (Tran et al. 2007). The eluted fraction of wild type and dbp2Δ cells were 

normalized to equal RNA concentration using equivalent A260nm absorbance units. 

Proteins from the eluted fractions were detected by Western blotting.  The relative 

quantity of poly(A)+ RNA-bound proteins was determined following quantification of 

the resulting isolated proteins from three independent biological replicates and is reported 

as the amount of isolated protein relative to total (input). (D) Representative western blot 

of in vivo UV crosslinking. The total protein abundance (input) is shown along with the 

amount of isolated proteins with and without UV crosslinking.  The latter serves as a 

background control to show that proteins isolated following UV crosslinking are not due 

to non-specific interactions. (E) Reverse-transcriptase, quantitative PCR (RT-qPCR) 

shows efficient isolation of ACT1 mRNA from both wild type and dbp2∆ cells following 

oligo-dT selection. Equal fractions of eluted RNA were reverse transcribed and subjected 

to qPCR with ACT1-specific primers as previously described (Cloutier et al. 2012). 

Transcript levels were normalized by setting the wild type elution without UV 

crosslinking to 1 and are a result of three technical replicates from one biological sample 

per strain. 
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(Data from figure 3.8A and B were provided by Dr. Elizabeth Tran.) 

Figure 3.8. Dbp2 physically interacts with Yra1 in vivo and in vitro. (A) Yra1 co-

immunoprecipitates with Dbp2. Immunoprecipitation assays were performed from wild 

type (DBP2 no tag) and DBP2-TAP strains using IgG-conjugated dynabeads. 10% lysate 

was used as input. Proteins from the input and immunoprecipitated fractions were 

resolved by SDS-PAGE and detected by Western blotting analysis. (B) Dbp2 interacts 

directly with Yra1. In vitro pull down assays were performed with recombinant, purified 

6XHIS-tagged Dbp2 and GST-tagged Yra1. Briefly, recombinant, purified proteins were 

incubated together, 20% of the protein mix was removed as input (‘I’) and interacting 

proteins were selected on glutathione sepharose resin (bound ‘B’ proteins).  Proteins were 

resolved by SDS-PAGE electrophoresis and visualized by Coomassie staining.  Neither 

GST-Yra1 nor Dbp2 co-elute with an unrelated DEAD-box protein Dbp5 (lane 6 and 8), 

demonstrating that this interaction is specific. (C) Schematic representation of the 

primary sequence of Yra1, functional motifs and truncation mutants.  Yra1 is composed 

of evolutionarily conserved RNA Export Factor (REF) domains at the N and C terminus 

separated by variable regions (Stutz et al. 2000; Strasser and Hurt 2000; Zenklusen et al. 

2001; Johnson et al. 2009). Yra1 also contains a central RNA recognition motif (RRM) 

that does not appear to harbor RNA binding activity (Zenklusen et al. 2001).
 
(D) The C-

terminal half of Yra1 (aa 124-226) is sufficient to interact with Dbp2. GST-tagged Yra1 

and truncation mutants were purified as recombinant proteins from E. coli and subjected 

to in vitro pull downs as above. 
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Figure 3.9. The C-terminus of Yra1, yra1C, inhibits the unwinding activity of Dbp2. 
(A) Representative non-denaturing gels of RNA unwinding in Fig 3.10A using 600 nM 

Dbp2 alone, (B) 600 nM yra1C with 600 nM Dbp2, and (C) 1200 nM yra1C with 600 nM 

Dbp2. This indicates that yra1C reduces the unwinding activity of Dbp2. (D-E) 

Representative non-denaturing gels of RNA annealing using 600 nM yra1C or 1200 nM 

yra1C, respectively. Importantly, no spontaneous annealing was observed with the single-

stranded RNAs in the absence of protein. This reveals that yra1C does not display RNA 

annealing activity, demonstrating that the inhibition of the unwinding activity of Dbp2 is 

direct. 
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Figure 3.10. Yra1 modulates the enzymatic activity of Dbp2. (A) Graphical 

representation of Dbp2 duplex unwinding with yra1C. Unwinding assays were conducted 

with the blunt end RNA duplex and either Dbp2 alone (600 nM) or with yra1C (600 nM, 

1200 nM) or BSA (1200 nM). Representative non-denaturing gels are shown in Fig 3.9 

and demonstrate that yra1C and BSA do not have intrinsic annealing activity. (B) The 

kobs
(unw)

 and the amplitude of the unwinding reaction. The kobs
(unw) 

and the amplitude are 

determined using the integrated rate law for a homogeneous first-order reaction as 

previously described (Yang and Jankowsky 2005). (C) Full length Yra1 moderately 

enhances ATP hydrolysis activity of Dbp2. In vitro ATPase assays were conducted with 

200 nM of recombinant, purified Dbp2 and 250 μg/ml of total yeast RNA using a 

PK/lactate dehydrogenase enzyme-coupled absorbance based detection method as 

previously described (Cloutier et al. 2012). Recombinant, purified Yra1 was included 

where indicated at final concentrations from 100-600 nM.  Equal concentrations of BSA 

were also tested to account for non-specific interactions.  The ATPase activity of Dbp2 

alone is similar to previous publications and has already been characterized (Cloutier et 

al. 2012). (D) Yra1 moderately enhances the ATP binding affinity of Dbp2. In vitro 

ATPase assays were conducted as above with constant amounts of Dbp2, Yra1, total 

RNA (10 μg/mL), increasing amounts of ATP and constant MgCl2 (2 mM).  Assays were 

also conducted with BSA in place of Yra1 to account for non-specific effects.  The KM is 

the indicative of the ATP binding affinity of Dbp2. (E) Yra1 slightly increases the 

amount of RNA necessary for activation of ATP hydrolysis. In vitro ATPase assays were 
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conducted as above with 200 nM Dbp2, 400 nM Yra1 and increasing amounts of total 

yeast RNA.  The amount of RNA necessary for 50% stimulation of maximum ATPase 

activity (EC50) is reflective of the RNA binding affinity of Dbp2. 
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Figure 3.11. Model for Dbp2-dependent loading of RNA-binding proteins onto 

mRNA. Yra1 is recruited to the actively transcribing loci through interacting with Sub2 

or Pcf11 on the C-terminal domain of the RNA polymerase II (Johnson et al. 2009; 

Strasser et al. 2002). However, structures of the nascent mRNA prevent association with 

Yra1. Dbp2 unwinds these structures co-transcriptionally in an ATP-dependent manner.  

This promotes mRNP assembly by facilitating loading of Yra1, Nab2, and Mex67 onto 

nascent mRNA. Mex67 is shown interacting with its heterodimerization partner, Mtr2 

(Katahira et al. 1999). Yra1 then inhibits the helicase activity of Dbp2 to prevent further 

remodeling of the assembled mRNP and may also promote release of Dbp2 from the 

RNA. This constitutes a biochemical mechanism of RNA helicase unwinding and 

subsequent inhibition during co-transcriptional assembly of mRNAs in the nucleus. 
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Table 3.1. Yeast and bacterial plasmids 

Name Description Source/Reference 

BTP13 pET28a-DBP2 Cloutier et al. 2012 

pCEN/URA3 pRS316 Sikorski and Hieter 1989 

pGAL1-GAL10-GAL7 pYGPM11714 Open biosystems (Genomic 

Tiling) 

BTP22 pMAL-TEV-Dbp2 This study 

BTP27 GST-TEV-Yra1 This study 

pSW3319 GST-Dbp5 Alcazar-Roman et al. 2006 

pRS426 pURA3/2μ Christianson et al. 1992 

pGAL-DBP2  pGAL-DBP2/2μ/URA3 Open Biosystems 

GST-Yra1 C pET21GST-Yra1 C Johnson et al., 2009 

GST-Yra1 RRM+C pET21GST-Yra1 RRM+C Johnson et al., 2009 

psub2-85 psub2-85/CEN/TRP1 Strasser and Hurt 2001 
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Table 3.2. Yeast strains 

Strain Genotype Source 

Wild type (BY4741) MATa his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0 

Open Biosystems 

dbp2Δ (BTY115) 

 

MATa dbp2::KanMx 

ura3Δ0 leu2Δ0 his3Δ0 

TRP1 met- lys? 

Cloutier et al. 2012 

DBP2-TAP MATa DBP2-TAP:HIS3 

his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0 

Open Biosystems 

mex67-5  MATa mex67::HIS3 ura3 

ade2 his3 leu2 trp1 

pTRP/CEN/mex67-5  

Stutz et al. 2000 

Wild type (W303)  MATa ura3-1 ade2-1 his3-

11, 15 leu2-1 trp1-1 can1-

100  

R. Rothstein 

yra1ΔN + Yra1 MATα yra1::HIS3 ura3 

ade2 ade3 leu2-1 trp1 

pRS314-yra1ΔN 

+pHT4467∆-YRA1 (with 

intron) 

Strasser and Hurt 2001 

pcf11-2 MATa ura3-1 trp∆ ade2-1 

leu2-3, 112 his3-11, 15 

pcf11-2 

Amrani et al. 1997 

SUB2 shuffle  MATa sub2::HIS3 ade2 

leu, ura3, trp1 pCG788 

Kistler and Guthrie 2001 
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CHAPTER 4. MEASURING HELICASE INHIBITION OF THE DEAD-BOX 

PROTEIN DBP2 BY YRA1 

4.1 Introduction 

DEAD-box RNA helicases are the largest class of enzymes within the helicase 

family and can be found in all domains of life (Linder and Fuller-Pace 2013). All DEAD-

box proteins share at least 12 conserved motifs in the helicase core spread throughout two 

RecA-like domains, including the eponymic Asp-Glu-Ala-Asp (D-E-A-D) sequence in 

the Walker B motif (Putnam and Jankowsky 2013). 

Several studies have revealed that individual DEAD-box proteins display diverse 

biochemical activities in vitro, including RNA-protein complex (RNP) remodeling, 

RNA-dependent ATP hydrolysis and ATP-dependent unwinding of RNA duplexes 

(Jankowsky 2011; Jarmoskaite and Russell 2011). A major question in the field is how 

this diversity of function is achieved among the ~25 different DEAD-box proteins in 

yeast (40 in humans), given the high degree of sequence and structural identity in the 

helicase core. Studies have shown that unique N- and/or C-terminus extensions can 

provide substrate specificity to individual family members (Klostermeier and Rudolph 

2009; Tsu et al., 2001). For example, the C-terminus of DbpA provides specificity to 

target 23S rRNA (Fuller-Pace et al., 1993; Nicol and Fuller-Pace 1995; Hardin et al.,
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2010). Moreover, the flanking regions can also provide non-specific RNA tethers. This 

has been described for Mss116 and CYT-19 (Mohr et al., 2008; Mallam et al., 2011).  

In addition to unique flanking regions, specificity can also be conferred by protein 

cofactors that regulate the enzymatic activity of individual DEAD-box proteins (Bolger 

and Wente 2011; Granneman et al., 2006). For instance, the translation initiation factor 

eIF4G stimulates the weak ATPase activity of eIF4A (Hilbert et al., 2011). This is 

believed to allow eIF4A to unwind secondary structures in 5’UTR and facilitate the small 

ribosomal subunit to scan for the start codon during translation. Recently, our laboratory 

showed that the S. cerevisiae DEAD-box protein Dbp2 interacts directly with the mRNA 

binding protein Yra1 (Ma et al., 2013). Furthermore, we found that Yra1 inhibits the 

unwinding activity of Dbp2 without significantly altering the ATPase activity, suggesting 

specific regulation of duplex unwinding (Ma et al., 2013). Here, we describe a method to 

evaluate the effect of Yra1 on the unwinding activity of Dbp2. This method is widely 

applicable to the analysis of other protein binding cofactors for RNA helicases.  
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4.2 Materials 

4.2.1 Expression and purification of recombinant Dbp2 and Yra1 (C-terminus domain) in 

E. coli 

1. LB Broth: 10 g bacto tryptone, 5 g yeast extract and 10 g NaCl. Adjust the pH to ~ 

7.0. Bring up to a final volume of 1 L with water. Autoclave the media.  

2. LB agar: 10 g bacto tryptone, 5 g yeast extract, 10 g NaCl, and 20 g agar. Adjust the 

pH to ~ 7.0. Bring up to a final volume of 1 L with water. Autoclave the media and 

pour the plate after adding appropriate antibiotic.  

3. LB Broth + 1% glucose: 10 g bacto tryptone, 5 g yeast extract, 10 g NaCl and 10 g 

glucose. Adjust the pH to ~ 7.0. Bring up to a final volume of 1 L with water. 

Autoclave the media.  

4. Ampicillin: Dissolve ampicillin sodium salt in water to a final concentration of 75 

mg/mL. Filter sterilize with a 0.2 μm syringe filter and store at -20°C in 1 mL 

aliquots.  

5. Chloramphenicol: Dissolve chloramphenicol in 100% ethanol to a final 

concentration of 34 mg/mL and store at -20°C in 1 mL aliquots.  

6. 20% glycerol stock of Escherichia coli Rosetta (DE3). Store at -80°C.  

7. 20% glycerol stock of Escherichia coli BL21 (DE3). Store at -80°C.  

8. pMAL-TEV-Dbp2 plasmid (Ma et al., 2013)  

9. pET21GST-yra1C plasmid (Johnson et al., 2009)  

10. IPTG solution: Dissolve Isopropyl β-d-thiogalactopyranoside (Amresco) in water to 

a final concentration of 1 M and store at -20°C.  
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11. Protease inhibitors that inhibits serine and cysteine proteases in bacterial extracts. Ad 

hoc protease inhibitors can be obtained from various commercial sources. 

12. 7000 units/mL of RNase A 

13. 100 U/μL of RNase I (Note 1) 

14. Empty 0.7 X 15 cm and 1.5 X 10 cm chromatography columns for gravity flow 

separations. 

15. Lysis buffer (Dbp2): 50 mM CHES, 100 mM NaCl, pH 9.0 

16. Wash buffer (Dbp2): 50 mM CHES, 500 mM NaCl, pH 9.0 

17. Elution buffer (Dbp2): 50 mM Tris-HCl, 10 mM maltose, 0.5 mM EDTA, 1 mM 

DTT, pH 8.0 

18. Lysis buffer (yra1C): 20 mM HEPES, 1 mM EDTA, 20% (v/v) glycerol, pH 7.5 

19. Wash buffer I (yra1C): 20 mM HEPES, 150 mM NaCl, 20% (v/v) glycerol, pH 7.5 

20. Wash buffer II (yra1C): 20 mM HEPES, 500 mM NaCl, 20% (v/v) glycerol, pH 7.5 

21. Elution buffer (yra1C): 20 mM HEPES, 20 mM glutathione, 150 mM NaCl, 20% 

(v/v) glycerol, pH 7.5 (Note 2) 

22. 10 U/μL of TEV protease 

23. Amylose resin 

24. Glutathione sepharose resin (GE Healthcare)  

25. SP sepharose resin 

26. SP equilibration buffer: 50 mM Tris-HCl, pH 8.0  

27. SP wash buffer: 50 mM Tris-HCl, 200 mM NaCl, pH 8.0  

28. SP elution buffer: 50 mM Tris-HCl, 600 mM NaCl, 20% (v/v) glycerol, pH 8.0 
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4.2.2 Preparation of RNA duplexes 

1. Adjustable height electrophoresis sequencer, 20 cm wide 

2. RNA oligo: Top strand (5’- AGCACCGUAAAGACGC-3’), Bottom strand (5’-

GCGUCUUUACGGUGCU-3’) (Yang et al., 2007)  

3. 3000 Ci/mmol, 10 mCi/mL of γ
32

P-ATP 

4. 10,000 untis/mL of T4 Polynucleotide Kinase (PNK) 

5. 10X T4 Polynucleotide Kinase buffer 

6. 10X TBE: 890 mM Tris base, 890 mM boric acid, 20 mM EDTA 

7. Denaturing polyacrylamide gel: 20% acrylamide:bis 19:1, 7 M urea, 1X TBE  

8. Non-denaturing polyacrylamide gel: 15% acrylamide:bis 19:1, 0.5X TBE 

9. 5X Denaturing gel loading dye: 80% formamide, 0.1% bromophenol blue (BPB), 

0.1% xylene cyanol (XC) 

10. 5X Non-denaturing gel loading dye: 50% glycerol, 0.1% BPB, 0.1% XC 

11. X-ray films for autoradiography (e.g., Kodak X-OMAT LS, Fuji RX, etc.)  

12. 20 mg/mL glycogen 

13. Gel elution buffer: 1 mM EDTA, 0.5% SDS, 300 mM NaOAc, pH 5.2 

14. 10X duplex annealing buffer: 100 mM MOPS, 10 mM EDTA, 0.5 M KCl, pH 6.5 

15. RNA substrate storage buffer: 50 mM MOPS, 50 mM KCl, pH 6.0 

4.2.3 Unwinding and annealing assays 

1. 10X Helicase reaction buffer (10X HRB): 400 mM Tris-HCl, 5 mM MgCl2, 0.1% 

NP-40, 20 mM DTT, pH 8.0  

2. 20 U/μL of Superase-in (Ambion) 
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3. 20 mM equimolar ATP/MgCl2 (prepare from 100mM ATP) 

4. Purified DEAD-box proteins and protein binding cofactors (see 4.3.1) 

5. 1 nM radiolabeled RNA duplex  

6. 12% Non-denaturing polyacrylamide gel: 12% acrylamide:bis 19:1, 0.5X TBE, 3% 

glycerol  

7. 2X Helicase reaction stop buffer (2X HRSB): 50 mM EDTA, 1% SDS, 0.1% BPB, 

0.1% XC, 20% glycerol  

8. Whatman chromatography paper 

9. Gel dryer 

10. PhosphorImager screen/PhoshorImager 

4.3 Methods 

4.3.1 Preparation of active purified Dbp2 and yra1C 

 Dbp2 can bind E. coli RNA during expression of recombinant protein, resulting in 

copurification of contaminating RNA. To solve this problem, a high salt wash step and 

two RNase treatments are utilized during purification. Ion-exchange chromatography is 

needed to remove the RNAses and the affinity tags after TEV cleavage. The resulting 

protein preparations should be tested for RNAse contamination by incubating the proteins 

with a radioactively labeled single stranded RNA (ssRNA) and then resolving the RNA 

onto a non-denaturing polyacrylamide gel. A non-incubated, labeled RNA should be run 

in an adjacent well for comparison. The presence of RNA in the purified protein 

preparation can be determined by the ratio of A260nm:A280nm (Note 3).  
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4.3.1.1 Expression of Dbp2 and production of cell paste 

1. Transform the pMAL-TEV-Dbp2 plasmid into BL21 (DE3) and plate onto LB agar 

+ Ampicillin (75 μg/mL). Incubate the plate at 37°C overnight.  

2. Inoculate a single colony into a 4 mL LB + Ampicillin (75 μg/mL) culture and 

incubate at 37°C with shaking at 200 RPM overnight. 

3. Inoculate a 1 L LB + 1% glucose + Ampicillin (75 μg/mL) with all of the 4 mL 

culture and grow the bacteria at 37°C with shaking at 200 RPM to an OD600nm of 0.4-

0.5 (Note 4).  

4. Induce MBP-TEV-Dbp2 expression by adding a final concentration of 1 mM IPTG 

to the culture. Express for 3 hours at 37°C with 200 RPM shaking. 

5. Pellet cells at 11,100xg for 15 min at 4°C in pre-weighed bottles and then weigh the 

cell pellet by subtracting the empty bottle weight.  

6. Store cell pellet at -20°C or proceed to purification.  

4.3.1.2 Purification of Dbp2 

1. Resuspend the cell pellet with 6 mL of ice-cold Lysis buffer (Dbp2) per gram of cell 

pellet and put on ice during preparation. 

2. Add protease inhibitor, RNase A and RNase I to a final concentration of 1X, 7 U/mL 

and 10 U/mL, respectively.  

3. Lyse cells with a probe sonicator (Branson digital sonifier) on an ice bath three times 

for 30 seconds using 30% amplitude with 1 min cooling in between rounds. 

Utilization of a distinct sonifier may require re-optimization of these parameters. 
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4. Clear the lysate by centrifugation at 13,300xg for 30 min at 4°C. Step 5-13 are all 

performed at 4°C. 

5. Equilibrate 4 mL of 50% slurry amylose resin (2 mL final packed volume) in a 1.5 X 

10 cm chromatography column with 20 mL of Lysis buffer (Dbp2). 

6. Incubate the cleared lysate with the equilibrated resin in a capped chromatography 

column for 1 hour at 4°C with gentle rocking. 

7. Wash the column with 25 mL of Lysis buffer (Dbp2) followed by washing with 25 

mL of Wash buffer (Dbp2). 

8. Shut off the column when wash buffer has flowed through but column is still wet. 

9. Add 5 mL of Wash buffer (Dbp2) to the column along with 35 U RNase A and 50 U 

RNase I. 

10. Mix the resin by pipetting and incubate for at least 10 min at 4°C. 

11. Let the remaining buffer flow through and wash the column with 25 mL of Lysis 

buffer (Dbp2). 

12. Elute MBP-TEV-Dbp2 with Elution buffer (Dbp2) in a 15 mL RNase-free conical 

tube until the A280nm ~ 0.3 O.D. (Note 5). 

13. Add 50 U of TEV protease per 1 mL of MBP-TEV-Dbp2 elution to the eluted 

fraction and mix it by inverting the conical tube gently for several times.  

14. Incubate at 16°C for 12 hours (Note 6). 

15. Equilibrate 400 μL of 50% slurry SP sepharose (200 μL packed) with 5 mL SP 

equilibration buffer in a 0.7 X 15 cm chromatography column. The following 

purification steps (Step 17-19) are all performed at 4°C. 
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16. Apply the cleaved sample to the column at 4°C. Let the unbound sample flow 

through. 

17. Wash the column with 10 mL of SP equilibration buffer and then 10 mL of SP wash 

buffer. 

18. Elute with 3-5 column volumes of SP elution buffer. Store the purified Dbp2 protein 

at -80°C in small aliquots as Dbp2 is not compatible with multiple freeze-thaw 

cycles. The purified protein can be stored at -80°C up to four months.  

4.3.1.3 Expression of yra1C and purification of yra1C 

1. Expression and preparation of the cell pellet is as in Section 3.1.1 with the following 

exceptions: Transform the pET21GST-yra1C plasmid into Rosetta (DE3) cells, 

select with Ampicillin (75 μg/mL) + Chloramphenicol (34 μg/mL), and induce 

yra1C expression at 16°C overnight (Note 7). 

2. GST-yra1C lysate is prepared as in step 1-4 from section 3.1.2. except using lysis 

buffer (yra1C). Step 5-13 are all performed at 4°C. 

3. Equilibrate 6 mL of 50% slurry glutathione sepharose (3 mL final packed volume) in 

a 1.5 X 10 cm chromatography column with 20 mL of Lysis buffer (yra1C). 

4. Incubate the cleared lysate with the equilibrated resin in a capped chromatography 

column for 1.5 hours at 4°C with gentle rocking (Note 8).  

5. Wash the column with 25 mL of Wash buffer I (yra1C) and then 25 mL of Wash 

buffer II (yra1C).  

6. Shut off the column when vast majority of the wash buffer has flowed through but 

the column is still wet.  
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7. Add 5 mL of Wash buffer II (yra1C) along with 35 U RNase A and 50 U RNase I. 

8. Mix the resin with pipet and incubate for at least 10 min at 4°C. 

9. Let the remaining buffer flow through and wash the column with 50 mL of Wash 

buffer I (yra1C). 

10. Elute the GST-yra1C protein with 9 mL Elution buffer (yra1C). Store the protein at -

80°C in small aliquots to avoid freeze-thaw cycles. The purified protein is stable for 

up to four months at -80°C.  

4.3.2. Preparation of RNA duplexes for unwinding and annealing assays 

 DEAD-box proteins can only unwind one to one-and-a-half turns of an RNA 

duplex (Yang et al., 2007; Chen et al., 2008), therefore, the RNA duplexes that are used 

in the assays are relatively short. Here, the 5’ end of the top strand of the RNA duplex is 

labeled with γ
32

P-ATP using T4 polynucleotide kinase. Alternatively, the substrate can 

also be labeled with a fluorophore, either internally or at the 5’ or 3’ end. Because some 

fluorophore dyes affect duplex stability, it is critical to define differences between 

radiolabeled and fluorescently labeled duplexes prior to analysis (Moreira et al., 2005).  

4.3.2.1 Labeling and isolation of RNA duplexes 

1. Mix 1 μL of 100 μM top strand RNA, 1 μL of 10X T4 PNK buffer, 1.5 μL of T4 

PNK, 6 μL of 10 mCi/mL γ
32

P-ATP and 1.5 μL of water. 

2. Incubate the mixture at 37°C for 1 hour. 

3. Inactivate the kinase by adding 2 μL of denaturing gel loading dye and heating at 

95°C for 2 min (Note 9).  

4. Pre-run a 20% denaturing gel for 30 min at 30 V/cm in 1X TBE running buffer. 
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5. Load the labeled, top strand RNA and run at 30 V/cm for 2 hours at room 

temperature. 

6. Expose the gel to film or a phosphorimager screen to localize the labeled RNA (Note 

10).  

7. Cut out the labeled strand with a razor blade and crush the gel slice into smaller 

pieces by passing through a 3 mL syringe into a 1.5 mL eppendorf tube.  

8. Add 600 μL of gel elution buffer to the gel pieces and incubate the sample overnight 

at 4°C with gentle shaking.  

9. Spin down the gel debris for 1 min at room temperature at 3,000xg. 

10. Transfer the aqueous fraction into two 1.5 mL tubes and add 3X volume of 100% 

ethanol and 1 μL of 20 mg/mL glycogen to each tube (Note 11). 

11. Precipitate the labeled RNA for 1 hour at -20°C and centrifuge at 14,000xg for 30 

min at 4°C. 

12. Remove the supernatant and dry the pellet on the bench or in a speed vacuum.  

13. Resuspend the two RNA pellets into a combined volume of 16 μL of water.  

14. Add 2 μL of 100 μM unlabeled bottom strand RNA and 2 μL of 10X duplex 

annealing buffer to the 16 μL of labeled top strand RNA.  

15. Heat the mixture at 95°C for 2 min and cool the substrate at room temperature for 30 

min. 

16. Pre-run a 15% non-denaturing gel for 30 min at 20 V/cm in 0.5X TBE running 

buffer. 

17. Add 5 μL of non-denaturing gel loading dye to the labeled duplex mixture and load 

the labeled duplex on a 15% non-denaturing gel.  
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18. Run the gel at 20 V/cm for 1 hour with a cold water, cooling system or in a cold 

room to prevent duplex from denaturing.  

19. Repeat steps 6-12 to extract the labeled duplex RNA from the gel.  

20. Dissolve the pellet in 30 μL of RNA substrate storage buffer. 

21. Measure the cpm of the labeled duplex by scintillation counting. It should be around 

150,000 cpm/μL. 

22. Use the cpm measured from scintillation counting and calculate the RNA duplex 

using an equation as described (Young and Karbstein 2012) : 

     

    
 
     

     
 

     

           
 
          

     
 
      

    
 
           

   
      

Where Z = the specific activity of γ
32

P-ATP 

23. Aliquot the isolated, labeled RNA duplex into 10 μL aliquots and store at -20°C for 

up to a month (Note 12). 

4.3.3 Unwinding and annealing assays 

 To study the effect of a protein cofactor on the unwinding activity of a DEAD-

box protein, proper experimental controls are required. For instance, any unwinding and 

annealing activities of the cofactor in the absence of the helicase must be determined. If 

the protein cofactor can unwind and/or anneal an RNA substrate in vitro, these activities 

would need to be taken into account when assaying in the presence of an RNA helicase. 

Yra1 exhibits annealing activity in vitro (Portman et al., 1997), complicating analysis of 

Dbp2 helicase inhibition. However, deletion of the N-terminus abolishes annealing 

activity but preserves interaction with Dbp2 (Fig 4.1D-E, (Ma et al., 2013)). Thus, we 

measured the inhibition of Dbp2 in the presence of the C-terminal Yra1 domain (yra1C) 
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(Fig 4.1A-C). Bovine serum albumin (BSA) is used as a control to show specificity (Fig 

4.2). A step-by-step schematic diagram for analysis of protein cofactors on a helicase is 

provided (Fig 4.3).  

4.3.3.1 Unwinding assays 

1. Mix 3.3 μL of 10X Helicase reaction buffer (HRB), 3.3 μL of 20 U/μL Superase-in, 

helicase and/or protein binding cofactor (dilute with protein storage buffer) to 

desired protein concentration (600 nM for Dbp2 and 1200 nM for yra1C), labeled 

RNA duplex to final concentration of 0.1 nM, and water to a final volume of 33 μL 

(Note 13).  

2. Incubate the mixture at 19°C for 5 min to facilitate Dbp2 binding to the RNA duplex 

(Note 14). 

3. Aliquot 3 μL of the reaction mixture into 3 μL 2X Helicase reaction stop buffer 

(HRSB) for the zero time point (Fig 4.1A-C, lane 3) and place the sample on ice.  

4. Aliquot another 3 μL of the reaction mixture to an empty tube and incubate at 19°C 

for 30 min. After 30 min, add 3 μL 2X HRSB to the reaction. This is the reaction 

without ATP (Fig. 4.1A-C, lane 10).  

5. Add 3 μL of 20 mM ATP/MgCl2 to initiate the unwinding reaction. 

6. Aliquot 3 μL of the reaction mixture into 3 μL 2X HRSB at the desired time points 

and place on ice. 

7. Mix 3 μL of 0.1 nM labeled RNA duplex with 3 μL 2X HRSB as a dsRNA loading 

marker (Fig. 4.1A-C, lane 1). 
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8. Prepare the ssRNA loading marker (Fig 4.1A-C, lane 2) by mixing 3 μL of 0.1 nM 

labeled RNA duplex with 3 μL 2X HRSB and heating the mixture at 95°C for 2 min. 

9. Pre-run a 12% non-denaturing polyacrylamide gel for 30 min at 10 V/cm in 0.5X 

TBE running buffer and rinse the wells with the running buffer. 

10. Load fractions on the gel and run for 1 hour at 10 V/cm as in step 18 from section 

3.2.1.  

11. Remove the glass plates, put the gel on Whatman chromatography paper and dry gel 

on a gel dryer. 

12. Expose gel to a PhosphorImager screen or film.  

13. Quantify the intensity of radioactivity in dsRNA (I
ds

) and intensity of radioactivity in 

ssRNA (I
ss

) of each time point using a PhosphorImager and ImageQuant software. 

14. The fraction of ssRNA at each time point is calculated using: Fraction of ssRNA = 

I
ss

/( I
ss

 + I
ds

). The representative gels are shown in (Fig 4.1A-C).  

15. Plot the fraction of ssRNA as a function of time and fit the integrated form of a 

homogenous first-order rate law equation to the data as described (Fig 4.2 and Yang 

et al., 2005): Fraction of ssRNA = Amplitude × (1-e
-kobs×time

), where kobs is the 

observed rate for the unwinding reaction.  

4.3.3.2 Annealing assays 

1. Mix 3 μL of 10X HRB, 3 μL of 20 U/μL Superase-in, 3 μL of ATP/MgCl2, helicase 

and/or protein binding cofactor (dilute with protein storage buffer) to desired protein 

concentration (600 nM for Dbp2 and 1200 nM for yra1C) and water to a final 

volume of 28.5 μL. 
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2. At the same time, prepare another mixture as in step 1 except in the absence of any 

protein.  

3. Incubate the two individual mixtures at 19°C for 5 min. 

4. Denature 10 μL of 2 nM labeled RNA duplex at 95°C for 2 min to generate 

substrates for the annealing assays (Note 15). 

5. Add 1.5 μL of the denatured, labeled RNA into a 28.5 μL mixture prepared in step 2.  

6. Aliquot 3 μL of the mixture from step 5 into 3 μL 2X HRSB for a zero time point 

(Fig 4.1D-E, lane 1). Place on ice. 

7. Initiate the annealing reaction by adding 1.5 μL of the denatured RNA into the 

mixture prepared in step 1.  

8. Aliquot 3 μL of the reaction mixture into 3 μL 2X HRSB at desired time points and 

place on ice. 

9. Mix 3 μL of 0.1 nM labeled RNA duplex with 3 μL 2X HRSB for dsRNA loading 

marker (Fig 4.1D-E, lane 8) as in step 7 from Section 3.3.1. 

10. Follow steps 9-15 in section 3.3.1 to visualize and quantify the fraction of ssRNA in 

the annealing assay. The representative gels are shown in (Fig 4.1D-E). 

11. Plot the fraction of ssRNA over time and fit the integrated form of a bimolecular 

annealing reaction equation to the data (Yang and Jankowsky 2005): Fraction of 

ssRNA = 1/(1+RNA concentration at time 0 × kobs
(ann)

 × Time).  
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4.4 Notes 

1. RNase I cleaves after all four bases of ssRNA efficiently, whereas, RNase A only 

cleaves after C and U bases (Spahr and Hollingworth 1961; Grossman et al., 1998).  

2. Adding glutathione decreases the pH of the buffer. Check the pH of the buffer again 

after the glutathione is fully dissolved and adjust the pH with a solution of 10M 

NaOH.  

3. An A260nm:A280nm ratio of less than 0.5 suggests that there is no significant RNA 

contamination. This can be further verified by conducting ATPase assays in the 

absence of RNA.  

4. Addition of glucose to the media can reduce basal expression level in the pET 

system. This is important if the protein is toxic in E. coli (Grossman et al., 1998).  

5. Elute the MBP-TEV-Dbp2 protein until A280nm reaches 0.3 O.D. Do not exceed this 

O.D. because Dbp2 will precipitate during TEV cleavage if the concentration 

exceeds 30 μM. 

6. Vigorous rocking during the incubation with TEV protease will cause Dbp2 to 

precipitate.  

7. yra1C expression is induced at 16°C overnight to promote soluble protein 

production.  

8. Since the binding kinetics between GST and glutathione are relatively slow, it is 

necessary to allow sufficient time to obtain maximum binding capacity.  

9. Denaturing gel-loading dye contains EDTA, which chelates magnesium ions and 

prevents heat-induced degradation of RNA.  
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10. Spotting radioactive ink (or sticking phosphorescent label) onto the gel for film 

orientation prior to gel slicing is highly recommended.  

11. Glycogen acts as a carrier to increase the efficiency of nucleic acids precipitation.  

12. 32
P has a half-life of around 14 days. Furthermore, RNA is subjected to radiolysis 

over time.  

13. The protein concentration should be empirically determined using a Bradford assay 

for protein stocks. 

14. Reaction temperatures may vary for different helicases and need to be determined 

experimentally.  

15. Experimentally verify that the denatured substrate does not spontaneously anneal 

during the reaction (bottom panel, Fig 4.1D-E).  
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Figure 4.1. The C-terminus of Yra1, yra1C, inhibits the unwinding activity of Dbp2. 
(A-C) Representative non-denaturing polyacrylamide gels of RNA unwinding assays 

using 600 nM Dbp2 alone (A) or with equimolar (B) or two fold excess of yra1C (C). (D-

E) Representative non-denaturing polyacrylamide gels of RNA annealing assays using 

600 nM (D) or 1200 nM yra1C alone (E). This figure is reproduced from (Ma et al., 

2013), with permission from Elsevier. 
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Figure 4.2. Yra1 inhibits the unwinding activity of Dbp2. (A) A graphical 

representation of Dbp2 unwinding time course in the presence or absence of the C-

terminus of Yra1 (yra1C). The unwinding assays were performed with 0.1 nM blunt end 

RNA duplex and either Dbp2 alone (600 nM) or in the presence of a 1:1 or 1:2 ratio of 

yra1C (600nM, 1200 nM) or in the presence of BSA (1200 nM) at 19°C. (B) The kinetic 

parameters of the unwinding reaction. The kobs
(unw)

 and the amplitude of the unwinding 

reaction were determined using the integrated rate law for a homogenous first-order 

reaction as described (Yang and Jankowsky 2005).  This figure is reproduced from (Ma 

et al., 2013), with permission from Elsevier. 
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Figure 4.3. Schematic flowchart of the unwinding and annealing assays. (A) For 

unwinding assays, Step 1: incubate the helicase and the protein cofactor at room 

temperature for 5 min. Step 2: add the radiolabeled dsRNA and incubate at the 

appropriate reaction temperature for 5 min. Step 3: start the reaction with equimolar 

concentration of ATP and MgCl2. Step 4: remove aliquots at different time points and 

mix with SDS and EDTA to stop the reaction. Step 5: resolve the labeled RNA on a non-

denaturing gel and visualize the products by autoradiography. (B) For annealing assays, 

Step 1: incubate the helicase and the protein cofactor at room temperature for 5 min. Step 

2: add an equimolar concentration of ATP and MgCl2 and incubate at reaction 

temperature for at least 5 min. Step 3: denature the labeled dsRNA at 95°C before adding 

to the reaction mixture to start the reaction. Step 4-5: remove aliquots over time, resolve 

and visualize product as above. 
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CHAPTER 5. RECRUITMENT, DUPLEX UNWINDING AND PROTEIN-MEDIATED 

INHIBITION OF THE DEAD-BOX RNA HELICASE DBP2 AT ACTIVELY 

TRANSCRIBED CHROMATIN 

5.1 Introduction 

Gene expression is an extremely complex process that involves numerous, highly 

choreographed steps (Zorio and Bentley 2004). During transcription in eukaryotes, the 

newly synthesized messenger RNA (mRNA) undergoes a variety of intimately linked 

processing events, including 5’ capping, splicing, and 3’ end formation, prior to nuclear 

export and translation (Rouskin et al. 2014; Cramer et al. 2001; Zorio and Bentley 2004). 

Throughout each of these steps, the mRNA is bound by RNA-binding proteins to form 

messenger ribonucleoprotein complexes (mRNP), the composition of which is constantly 

changing at each maturation stage (Chen and Shyu 2014). Proper mRNP formation is 

critical for gene expression and requires correctly structured mRNA at the appropriate 

biological time point (Rouskin et al. 2014; Laurent et al. 2012). Given the physical 

properties of RNA, this molecule tends to form stable secondary structures that are long-

lived and require large amounts of energy to unfold and refold to alternative 

conformations (Herschlag 1995; Pan and Russell 2010). This results in a need for 

proteins to accelerate RNA structural conversions inside the cell. MRNA in the budding 
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yeast S. cerevisiae appears to be largely unstructured in vivo, in contrast to 

thermodynamic predictions (Rouskin et al. 2014), suggesting the involvement of active 

mechanisms to prevent formation of aberrant structures. Consistently, ATP-depletion in 

budding yeast results in increased formation of secondary structure in mRNA (Rouskin et 

al. 2014). Moreover, recent genome wide analyses of mRNA secondary structure have 

found a striking correlation between single nucleotide polymorphisms and altered RNA 

structure within regulatory regions (i.e. miRNA-binding sites), indicating that structural 

abberations alters gene regulation (Wan et al. 2014; Ramos and Laederach 2014).  

Likely candidates for structural rearrangement of cellular mRNAs are ATP-

dependent RNA helicases, which act as RNA unwinding or RNA-protein (RNP) 

remodeling enzymes (Jarmoskaite and Russell 2014; Putnam and Jankowsky 2013b). 

DEAD-box proteins make up the largest class of enzymes in the RNA helicase family 

with around 40 members in human cells (25 in yeast). Members of this class are 

ubiquitously present in all domains of life from bacteria to mammals and are involved in 

every aspect of RNA metabolism, including pre-mRNP assembly (Linder and Fuller-Pace 

2013). For example, alternative splicing of the pre-mRNA that encodes the human Tau 

protein is regulated by a stem-loop structure downstream of the 5’ splice site of exon 10 

(Kar et al. 2011). In order for U1 snRNP to access the 5’ splice site of tau exon 10, this 

stem-loop needs to be resolved by the DEAD-protein DDX5 (Kar et al. 2011). Mis-

regulation of splicing in the tau gene is highly associated with dementia, underscoring the 

importance of remodeling for proper gene expression (Hutton et al. 1998; Hasegawa et al. 

1999). However, our understanding of the biochemical mechanism(s) of pre-

mRNA/mRNA remodeling has been hampered due to the complex and highly 
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interdependent nature of co-transcriptional processes.  Moreover, individual DEAD-box 

protein family members exhibit a wide variety of biochemically distinct activities 

including RNA annealing, nucleotide sensing, and RNP remodeling, with further 

diversification of biological functions conferred by regulatory accessory proteins (Yang 

and Jankowsky 2005; Ma et al. 2013; Putnam and Jankowsky 2013b; Tran et al. 2007) 

The S. cerevisiae ortholog of DDX5 is Dbp2 (Barta and Iggo 1995).  Our 

laboratory previously established that Dbp2 is an active ATPase and RNA helicase that 

associates with transcribing chromatin (Ma et al. 2013; Cloutier et al. 2012). Moreover, 

Dbp2 is required for assembly of the mRNA binding proteins Yra1 and Nab2, as well as 

the mRNA export receptor Mex67, onto mRNA (Ma et al. 2013). Interestingly, Yra1 

interacts directly with Dbp2 and this interaction inhibits Dbp2 unwinding in multiple 

cycle, bulk assays, demonstrating that Yra1 restricts unwinding by Dbp2 (Ma et al. 

2013). Nevertheless, the mechanism and the biological role of Yra1-dependent inhibition 

were not understood.  

By utilizing a combination of biochemical, molecular biology and biophysical 

methods, we now provide compelling evidence that Yra1 constrains the activity of Dbp2 

to co-transcriptional mRNP assembly steps. This inhibition is important for maintenance 

of transcript levels in vivo.  Single molecule (sm) FRET and fluorescent anisotropy 

studies show that Yra1 inhibits Dbp2 unwinding by preventing association of Dbp2 with 

RNA without altering the kinetics of duplex unwinding.  Consistently, loss of the Yra1-

Dbp2 interaction in yeast cells causes post-transcriptional accumulation of Dbp2 on 

mRNA.  Taken together, this suggests that Yra1 terminates a cycle of Dbp2-dependent 

mRNP assembly in vivo.  
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5.2 Materials and methods 

Plasmids and Yeast Strains 

Please see Table 5.1 and Table 5.2 for all the plasmids and yeast strains that were used in 

this study. 

 

Chromatin Immunoprecipitation Assays (ChIP) 

ChIP analysis was performed as described previously (Cloutier et al. 2012), with the 

following modifications. Sheared chromatin with or without RNase treatment was used in 

ChIP. Isolated DNA was then subjected to qPCR using primers listed (Table 5.3). All 

ChIP experiments were conducted with at least three biological replicates and three 

technical repeats. Error bars indicate the SEM of the biological replicates. 

 

Protein Immunoprecipitation Assays 

Cells were harvested at mid-log phase and lysed with glass beads using a mini-bead 

beater (BioSpec Products) in cold lysis buffer containing 20 mM Tris pH 6.5, 5 mM 

MgCl2, 0.5% Triton X-100, 70 mM NaCl, 1Xprotease inhibitor (Complete, EDTA-free 

protease inhibitor cocktail tablet) (Roche), and 1 mM PMSF. Lysate was subjected to 

immunoprecipitation. Proteins were resolved by SDS-PAGE and detected by western 

blotting.  

 

RNA Immunoprecipitation (RIP) Assays 

RNA-IP was performed as described (Gilbert and Svejstrup 2006) with the following 

modifications and the isolated RNA was detected by RT-qPCR (for primers, see Table 
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5.4). All RNA-IP experiments were performed with three biological and three technical 

repeats. Error bars indicate the SEM of the biological replicates.   

 

Glycerol Gradient Centrifugation 

Cells were harvested at mid log phase and lysed. Lysate in the presence or absence of 70 

U of RNase A and 1000 U of RNase I was subjected to 10-30% glycerol gradients in 20 

mM HEPES pH 7.4, 110 mM KOAc, 0.5% Triton X-100 and 0.1% Tween. After 

centrifugation in an SW41 rotor using Beckman Coulter Optima L-90K Ultracentifuge at 

35, 000 rpm for 18 hours at 4°C, 600 μl fractions were collected from the top of the 

gradient and analyzed for the presence of the proteins by SDS-PAGE followed by 

western blotting analysis. 0.6% of the lysate was used to serve as an input (T). Molecular 

weights from each fraction in the glycerol gradients were determined using a standard 

curve that was generated by resolving the molecular weight standards comprising 

catalase (250 kDa), apoferritin (480 kDa), and thyroglobulin (670 kDa).  

 

TAP tag Immunoprecipitation  

Immunoprecipitation was conducted as described previously (Ma et al. 2013) in the 

presence or absence of 70 U of RNase A and 1000 U of RNase I. Protein were resolved 

by SDS-PAGE and detected by Western blotting analysis using indicated antibodies.   
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Recombinant Protein Expression and Purification  

Expression and purification of pMAL MBP-TEV-DBP2, GST-TEV-YRA1, and 

pET21GST-YRA1C in E. coli cells was conducted as previously described (Ma et al. 

2013).  

 

Single Molecule FRET 

dsRNA hairpin was purchased from Integrated DNA technologies (IDT) and labeled as 

described (Wood et al. 2012). Single molecule experiments were carried out as 

previously described (Mundigala et al. 2014). Hexokinase treatment was conducted by 

incubating 10 nM Dbp2 with 100 μM hexokinase and 1 mM glucose in the imaging 

buffer for 10 minutes before imaging. 

 

Gel Shift Assays 

10 μL reactions containing 2 mM ADP-BeFX/MgCl2, 20 U of Superase-in (Ambion), 0.5 

mM MgCl2, 0.01% NP-40, 2 mM DTT, 40 mM Tris-HCl, pH 8, 10 nM labeled ssRNA 

(16 nt, 5’-AGC ACC GUA AAG ACG C-3’), and 400 nM of recombinant, purified Dbp2 

in the presence or absence of varying amounts of recombinant, purified yra1C. Varying 

amounts of BSA with 400 nM of recombinant, purified Dbp2 was used to serve as 

specificity control. Components were added in the order as indicated and incubated at 

4°C for indicated time. Reaction mixtures were resolved on a non-denaturing gel and 

signal was detected by densitometry.  
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Fluorescence Anisotropy Assays 

40 μL reactions containing 40 mM Tris-HCl (pH 8), 30 mM NaCl, 2.5 mM MgCl2, 2 mM 

ADP-BeFx, 2 mM DTT, 40 U Superase-in (Ambion), and varying amounts of Dbp2 in 

the presence or absence of 150 nM yra1C. Dbp2 and yra1C were first incubated in the 

reaction buffer at 25°C for 15 min, then 10 nM fluorescently labeled ssRNA (5’-6-FAM-

AGC ACC GUA AAG ACG C-3’) was added and incubated at 25°C for another 100 min 

to reach equilibrium binding. Fluorescence anisotropy signals of 6-FAM (λex = 495 nm 

and λem = 520 nm) was measured using the BioTek Synergy 4 plate reader. The data were 

fitted to the following equation: Y=Bmax*X
h
/(Kd

h
+X

h
) in Prism. 

 

Transcriptional Shut Off Assays 

Transcriptional shut off assays were conducted as described (Coller 2008). Cells were 

grown at 25°C in glucose to log phase then shift to galactose for 10 hours to induce the 

GAL genes expression followed by a shift to glucose to repress transcription. RNA was 

isolated at indicated time points, subjected to Northern Blotting analysis, and detected by 

densitometry. RNA half-lives were determined by measuring the amount of GAL10 or 

GAL7 transcript over time with respect to the stable scR1 transcript. All experiments 

were performed with three biological replicates.  

5.3 Results 

5.3.1 Dbp2 is recruited to chromatin via nascent RNA 

The DEAD-box RNA helicase Dbp2 is predominately localized in the nucleus in 

association with actively transcribed genes (Cloutier et al. 2012; Johnson et al. 2011; 
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Zenklusen et al. 2001; Beck et al. 2014).  To determine if Dbp2 is recruited to chromatin 

via nascent RNA, we conducted chromatin immunoprecipitation (ChIP) assays with or 

without RNase treatment (Abruzzi et al. 2004). Briefly, yeast cells harboring a 3XFLAG 

epitope tag fused to the 3’ end of the endogenous DBP2 coding region were grown in the 

presence of galactose to induce transcription of the GAL genes, known gene targets for 

Dbp2 association (Ma et al. 2013). DBP2 untagged strains were used to serve as a 

background control. Chromatin was then isolated and incubated with a mixture of RNase 

A and RNase I or buffer alone prior to ChIP with the anti-FLAG antibody. The eluted 

fractions were then subjected to quantitative (q)PCR with probes across the GAL10 and 

GAL7 genes (Fig. 5.1A). Consistent with previous studies, this revealed that Dbp2 is 

evenly distributed across the coding regions of both GAL10 and GAL7 with little to no 

association with promoters (Fig. 5.1B). Interestingly, RNase treatment drastically 

reduced Dbp2 occupancy across the entire locus for both the GAL10 and GAL7 genes to 

levels that were not statistically different (p-value >0.05) from background (Fig. 5.1B). 

This suggests that Dbp2 is recruited to chromatin by interacting with newly transcribed 

RNA. The low level of RNase-resistant Dbp2 could be due to trace amounts of RNA still 

present after enzymatic digestion or an alternative recruitment mechanism, such as 

interaction with RNA Polymerase II (RNA Pol II).   

Dbp2 is required for efficient assembly of mRNA-binding proteins and export 

factors, including Nab2, Mex67 and Yra1, and interacts directly with the C-terminal half 

of Yra1 (Ma et al. 2013). Yra1 is co-transcriptionally recruited to chromatin through 

interaction with Pcf11, an essential component of the cleavage and polyadenylation factor 

IA complex involved in 3’-end formation (Johnson et al. 2009). To determine if the 
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Dbp2-Yra1 interaction modulates recruitment of Dbp2 to chromatin, we conducted ChIP 

as above in either wild type or yra1∆C strains, the latter of which lacks the ability to 

associate with Dbp2 in vivo (Fig. 5.1C – 5.1D). This revealed no difference in the 

recruitment pattern of level of Dbp2 to the GAL10 and GAL7 genes (Fig. 5.1E).  Thus, 

Yra1 does not mediate recruitment of Dbp2 to chromatin. 

5.3.2 Yra1 prevents accumulation of Dbp2 on RNA Pol II transcripts 

To determine if the Dbp2-Yra1 interaction modulates the association of Dbp2 

with RNA, we conducted RNA immunoprecipitation (RIP) of a DBP2-3xFLAG strain. 

Since Dbp2 associates with the GAL10, GAL7, ACT1, and ADE3 genes shown by ChIP 

(Cloutier et al. 2012), we selected these four gene transcripts as candidates whereas 18S 

rRNA serves as a negative control. Analysis of the levels of immunoprecipitated 

transcripts by RT-qPCR revealed that Dbp2 associates with all four, candidate mRNAs at 

levels ~7-fold above an untagged background control strain. Furthermore, loss of the 

Dbp2-Yra1 interaction in the yra1∆C strain increased the association of Dbp2 with RNA 

Pol II transcripts by ~3 to 5 – fold (Fig. 5.2A), suggesting that Yra1 prevents 

accumulation of Dbp2 on mRNA. Interestingly, the Dbp2-Yra1 interaction also affects 

the abundance of Dbp2 protein, with the yra1∆C strain exhibiting two-fold more Dbp2 

than wild type (Fig. 5.3A). To determine if the accumulation of Dbp2 on RNA in the 

yra1∆C strain is due to overexpression of DBP2, we transformed wild type cells with a 2 

micron plasmid encoding DBP2 under the control of the highly active GAL1/10 promoter 

or with empty vector and conducted RIP as above. Under this condition, Dbp2 protein 

level is at least two-fold more abundant in pGAL-DBP2 than the wild type cells with 
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empty vector (Fig. 5.3B). Furthermore, this revealed co-precipitation of similar amounts 

of the GAL10, GAL7, ACT1 and ADE3 transcripts regardless of the levels of Dbp2 

protein (Fig. 5.3C). This suggests that the accumulation of Dbp2 on mRNA is not simply 

due to overexpression but is specific to the yra1∆C strain. Furthermore, the fact that 

Dbp2 accumulates on RNA not chromatin (Fig. 5.1E) suggests this accumulation occurs 

after the transcript is released from the site of synthesis in yra1∆C strains. 

Prior studies have shown that loss of the C-terminal half of Yra1 in yra1∆C 

results in a mild but detectible mRNA export defect (Zenklusen et al. 2001). To 

determine if the accumulation of Dbp2 on RNA is caused by a block to mRNA export, 

we conducted RIP in rat7-1 strains, which harbor a mutation in the NUP159 gene 

required for mRNA export and has been shown to induce export defects at the non-

permissive temperature (37°C) (Krebber et al. 1999; Gorsch et al. 1995; Del Priore et al. 

1996). Interestingly, this revealed slightly lower levels of Dbp2 on mRNA at the non-

permissive temperature (37°C) in rat7-1 strain as compared to wild type (Fig. 5.2B), 

indicating that the accumulation of Dbp2 on mRNA is not due to a block in mRNA 

export. 

5.3.3 Dbp2 is found in a large RNA-dependent complex in vivo 

 To determine if Dbp2 is found in a large complex in vivo, we subjected wild type 

whole cell lysate to gradient fractionation followed by western blotting for detection of 

Dbp2, mRNA binding protein Yra1, Mex67, and Nab2, and the DEAD-box helicase 

Dbp5. Approximate molecular weights were then determined from the fractionation 

pattern relative to a molecular weight standard for each protein. Interestingly, Dbp2, Yra1 
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and Mex67 co-migrated in a large ~1.2 MDa complex, with no detectible free Dbp2 (Fig. 

5.4A, fractions 14 – 17). This corresponds to approximately 70% of the Dbp2 and Yra1 

across all fractions and 40% of Mex67.  The presence of Dbp2 in a large complex is not 

an inherent property of DEAD-box proteins in general as the mRNA export factor and 

DEAD-box RNA helicase Dbp5 migrated at a significantly smaller size (Fig. 5.4A, 

fraction 2 – 4). The remaining fraction of Mex67 migrated at a smaller position 

corresponding to fractions 5-10, partially overlapping the migration pattern of Nab2 (Fig. 

5.4A fractions 4 – 6). Approximately 3% of the total Yra1 co-migrated with Nab2 and 

Mex67, suggesting that the vast majority of Yra1 is also found in a large complex.  This 

suggests that there is little to no free Dbp2 in the cell and that Dbp2 may be in a large 

complex in association with Yra1 and Mex67 in vivo.  

To determine if the migration pattern of Dbp2 is dependent on RNA, we subjected 

yeast cell lysate to RNase treatment prior to gradient fractionation. Interestingly, RNase 

treatment shifted the migration pattern of Dbp2, Yra1 and Mex67 to lower gradient 

fractions in the absence of RNA (Fig. 5.4B, fractions 6 – 8). Whereas the migration 

pattern of Nab2 was not significantly changed, Dbp2, Yra1 and Mex67 were detected 

across multiple smaller fractions with a larger portion of Mex67 (75%) co-fractionating 

with Nab2 than above (Fig. 5.4B, Lanes 3-6). This suggests that Dbp2, Yra1 and a 

fraction of Mex67 all form large RNA-dependent complexes in vivo.   

To determine if Dbp2, Yra1 and Mex67 form a complex, we performed 

immunoprecipitation assays with DBP2-TAP strains with and without RNase treatment. 

DBP2 untagged strains were used to serve as a background control. Though a faint band 

was observed at the size that equivalents to Dbp2 in the elution fraction of DBP2 
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untagged strains (Fig. 5.4C, lane 2), the signal of Dbp2 from DBP2-TAP strains was 

much stronger in either the presence or absence of RNase treatment (Fig. 5.4C, lanes 4 

and 5). This suggests that Dbp2 was successfully precipitated. Consistent with in vitro 

studies, Yra1 was efficiently co-purified with Dbp2 regardless of RNase treatment (Fig. 

5.4C, lanes 4 and 5). In addition, Mex67 was also co-purified with Dbp2 independent 

RNA (Fig. 5.4C, lanes 4 and 5). This suggests that the large 1.2 MDa complex contains 

all three proteins and that formation of the Dbp2-Yra1-Mex67 complex is not dependent 

on RNA. Consistent with gradient fractionation, Nab2 did not co-purify with Dbp2 

regardless of RNase treatment (Fig. 5.4C, lanes 4 and 5). Together with the glycerol 

gradient assays, this suggests that Yra1 does not maintain a free pool of Dbp2 but rather 

may restrict the location of Dbp2 association with mRNA in vivo. As loss of Yra1-Dbp2 

interaction accumulates Dbp2 on RNA, but not chromatin, and Nab2 does not associate 

with Dbp2 (Fig. 5.1E and 5.4C), suggesting that the Yra1-dependent restriction happens 

at a point after mRNA is released from chromatin but before association of Nab2 and 

subsequent mRNA export.   

5.3.4 Yra1 does not alter the kinetics of Dbp2-dependent unwinding by smFRET 

Our prior studies used bulk, multiple cycle assays to show that Yra1 inhibits 

Dbp2-dependent unwinding in vitro (Ma et al. 2013). A limitation of these assays was the 

inability to distinguish between kinetic effects of Yra1 on duplex unwinding rates or 

thermodynamic effects on association of Dbp2 with RNA targets.  To determine if Yra1 

inhibits Dbp2 by decreasing the duplex unwinding rate, we first established single 

molecule fluorescence resonance energy transfer (smFRET) assays for Dbp2-dependent 
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unwinding using a fluorescently labeled dsRNA stem-loop molecule.  Although the 

precise substrates for Dbp2-dependent unwinding are unknown, a stem-loop is the most 

common secondary structure identified in cellular mRNAs to date (Svoboda and Di Cara 

2006; Rouskin et al. 2014; Ding et al. 2014; Wan et al. 2014), and, thus, represents a 

likely physiological target for Dbp2 in vivo.  

Briefly, a 39 nt hairpin dsRNA labeled with FRET pair fluorophores Cy3 and Cy5 

was surface-immobilized onto a pegylated microscopic quartz slide through biotin-

neutravidin linkage (Fig. 5.5A). The FRET pair fluorophores are close together and 

exhibit a high FRET state (0.9) when the dsRNA forms a closed hairpin whereas the 

FRET pair fluorophores are farther apart when the dsRNA is unwound with a low FRET 

state (0.1) (Fig. 5.5A). A threshold of 0.6 FRET was used to distinguish between the open 

(0.1 FRET) and closed (0.9 FRET) states of the hairpin. To study Dbp2-dependent 

unwinding at the single molecule level, we initially established smFRET assays in the 

presence of low salt (30 mM NaCl) to parallel previous bulk in vitro assay experiments 

(Ma et al. 2013). Under these conditions, 98% of the hairpin RNA molecules exhibit a 

high FRET state (0.9) in the absence of any protein or nucleotide (Fig. 5.6A and Fig. 

5.6B), indicative of a stable dsRNA hairpin. In the presence of 10 nM Dbp2, we found 

that 27% showed a single transition from a closed to open state within the course of the 

experiment (Fig. 5.6A and Fig. 5.6B). This indicates that Dbp2 can unwind a dsRNA 

substrate in the absence of ATP, an unexpected observation not seen in our previous in 

vitro bulk unwinding assays (Ma et al. 2013). Addition of 100 μM ATP and equimolar 

magnesium increased the percentage of these molecules molecules to 61%, suggesting 

that more molecules are acted upon by Dbp2 in the presence of ATP.  This is consistent 



 
 

 

207 

with the thermodynamic coupling of ATP and RNA-binding in DEAD-box family 

members (Samatanga and Klostermeier 2014; Banroques et al. 2008; Theissen et al. 

2008). However, we were unable to monitor the kinetics of duplex unwinding in these 

conditions because only ~15% of the RNA molecules exhibited dynamic cycles of 

opening and closing (Fig. 5.6B).  

To remedy this and to make our analyses more physiologically relevant, we 

conducted smFRET in the presence of 150mM NaCl. The representative FRET time 

trajectory of RNA alone shows that the hairpin dsRNA is stable at 150 mM NaCl (Fig. 

5.5B). This resulted in 45% of the molecules exhibiting dynamic behavior in the presence 

of Dbp2 and ATP (Fig. 5.5B – 5.5C). This increased dynamics was not due to a less 

stable RNA substrate as the smFRET molecule remained stable throughout the 

timecourse (Fig. 5.5B).  Interestingly, and consistent with our low salt studies, the 

addition of Dbp2 alone also resulted in dynamic cycles of opening and closing, albeit 

with less RNA molecules showing dynamic behavior in the absence of ATP (Fig. 5.5B-

5.5C). ATP-independent unwinding was not due to contaminating ATP in the Dbp2 

purification as dsRNA hairpins still exhibited dynamic opening and closing cycles in the 

presence of hexokinase and glucose (Fig. 5.5C).  Interestingly, smFRET studies of the 

mitochondrial group II intron also demonstrated an ATP-independent role for the DEAD-

box protein Mss116 in RNA folding, a process that requires both folding and unwinding 

steps ((Karunatilaka et al. 2010) and see Discussion).  

To determine if ATP alters the opening and closing rates of the RNA molecules, 

numerous (~100) trajectories were used to build dwell time histograms. Measurement of 

the dwell time distribution in the presence of Dbp2 alone (no ATP) revealed opening and 
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closing rate constants of 4.1 s
-1

 and 3.3 s
-1

, respectively (Table 5.5). Interestingly, 

addition of ATP and equimolar magnesium did not appreciably increase either the 

opening (6.3 s
-1

) or closing (5.9 s
-1

) rates of the RNA duplex (Table 5.5). Together, this 

indicates that ATP does not affect the unwinding rate but rather increases the population 

of dsRNA molecules acted upon by Dbp2. 

Having established the unwinding behavior of Dbp2 at the single molecule level, 

we then asked if Yra1 affects the rate of duplex unwinding by incorporating a GST-

tagged C-terminal half of Yra1 (yra1C) into our smFRET assays.  Yra1C is the minimal 

Dbp2-interacting region in Yra1, which is sufficient for inhibition of helicase activity and 

also lacks intrinsic RNA-binding activity that would complicate experimental 

interpretation (Ma et al. 2013). Interestingly, addition of a two-fold molar excess of 

yra1C, consistent with the ratio of Dbp2 and Yra1 proteins in yeast cells (Chong et al. 

2015), did not appreciably reduce the opening (4.8 s
-1

) and closing (5.5 s
-1

) rate of the 

hairpin (Table 5.5). However, yra1C did decrease the percentage of unwound molecules 

(both dynamic and closed to opened) across the population in a dose-dependent manner, 

to levels similar to Dbp2 without ATP (Fig. 5.5C). This suggests that Yra1 does not alter 

the kinetics of Dbp2-dependent unwinding of the RNA duplex. 

5.3.5 Yra1 prevents Dbp2 from associating with ssRNA in vitro 

ATP promotes high affinity RNA-binding by DEAD-box proteins (Rudolph and 

Klostermeier 2015). The population effects seen in our smFRET studies suggest that 

Yra1 decreases the affinity of Dbp2 for RNA, similar to the absence of ATP.  To test this, 

we performed fluorescence anisotropy assays with Dbp2, 6-FAM-labeled ssRNA and the 
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pre-hydrolysis ATP analog ADP-BeFx (Fig. 5.7A). We also utilized low salt conditions 

(30 mM NaCl) as the increased dynamics would be predicted to reduce RNA-binding and 

the ability to form a stable complex. ADP-BeFx was utilized to promote stable binding of 

Dbp2 RNA (Liu et al. 2014). To ensure that our assays were performed under equilibrium 

conditions, we first conducted a time course and monitored the change in anisotropy over 

time.  This revealed that equilibrium is established within 100 min (Fig. 5.8).  Next, we 

conducted fluorescence anisotropy with Dbp2 in the presence or absence of ADP-BeFx.  

This revealed that ADP-BeFx decreased the dissociation constant (Kd ) of Dbp2 for 

ssRNA from 237 to 38 nM (Fig. 5.7A), similar to other DEAD-box proteins (Cao et al. 

2011; Henn et al. 2008). Interestingly, inclusion of 150nM yra1C increased the Kd by 7-

fold to 271 nM (Fig. 5.7A). This suggests that Yra1 inhibits Dbp2 by reducing the 

affinity for RNA. 

To determine if Yra1 prevents initial RNA-binding by Dbp2, we exploited the 

slow on rate of the ADP-BeFx-bound Dbp2 to RNA (Fig. 8; (Liu et al. 2014)) and asked 

if Yra1 reduces the RNA-binding affinity of Dbp2 by performing an order of addition 

experiment under pre-equilibrium conditions for the Dbp2-ADP-BeFx-RNA complex. 

Briefly, Dbp2 and yra1C or BSA were pre-incubated for 15 min in the presence of ADP-

BeFx followed by addition of a radiolabeled, 16 nucleotide ssRNA for an additional 15 

min prior to resolution of RNA-bound complexes on a native gel (Fig. 5.7B). Consistent 

with the reduced RNA-binding affinity above (Fig. 5.7A), pre-incubation of Dbp2 with 

yra1C resulted in a concentration-dependent reduction of Dbp2 binding to ssRNA, from 

100% bound to 58% (Fig. 5.7B, lanes 6-10). The reduction is specific to yra1C, as BSA 

had no effect on the RNA-binding by Dbp2 (Fig. 5.7B, lanes 12-16). Moreover, this is 
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not due to competition between Yra1 and Dbp2 for RNA as yra1C does not exhibit 

appreciable RNA binding activity ((Ma et al. 2013) and Fig. 5.7B, lanes 2-5). Yra1 also 

reduced ssRNA binding by Dbp2 at physiological (150 mM) salt concentrations (Fig. 

5.9).  This indicates that Yra1 inhibits the unwinding activity of Dbp2 by reducing the 

affinity for RNA.  Because Yra1 and Dbp2 exist in a 2:1 ratio in yeast cells (Chong et al. 

2015) and Yra1 prevents overaccumulation of Dbp2 on cellular mRNAs (Fig. 5.2A), this 

suggests that Yra1 functions similarly to regulate Dbp2 in vivo. 

5.3.6 Loss of the Dbp2-Yra1 interaction increases the half-life of GAL7 mRNA 

 To determine if Yra1-dependent inhibition of Dbp2 is necessary for proper gene 

expression, we analyzed Dbp2-bound targets for expression defects in wild type and 

yra1∆C strains. We also analyzed the DBP2 transcript itself since the yra1∆C strain 

shows higher Dbp2 protein levels than wild type cells (Fig. 5.3A). Interestingly, this 

revealed that both the DBP2 and GAL7 transcripts and resulting proteins are significantly 

upregulated in yra1∆C strains (Fig. 5.10A-B). In contrast, none of the other Dbp2-

associated transcripts exhibited altered abundance (Fig. 5.10A). We were also unable to 

detect a change in protein level for GAL10 (Fig. 5.10B). This suggests that the 

accumulation of Dbp2 results in a transcript-specific effect on gene expression.   

 To determine the mechanism for increased GAL7 mRNA abundance in yra1∆C 

strains, we asked if the increase occurred at transcription or decay. To this end, we 

conducted ChIP of RNA Pol II and transcriptional shut off assays to compare the 

transcription and mRNA decay efficiencies, respectively. ChIP using anti-Rpb3 revealed 

similar levels and patterns of RNA Pol II occupancy in both wild type and yra1∆C strains 
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across both GAL7 and GAL10, suggesting that Dbp2 accumulation does not alter 

transcription efficiency (Fig. 5.10C). In contrast, however, transcriptional shut off assays 

using glucose addition to the media and subsequent northern blotting revealed that the 

half-life of the GAL7 mRNA is approximately two times longer in yra1∆C strains as 

compared to wild type (Fig. 5.10D).  This was not the case for the GAL10 mRNA, whose 

half-life was unchanged.  This suggests that Dbp2 accumulation prevents efficient 

degradation of a subset of transcripts. Although it is currently unclear what renders GAL7 

mRNAs sensitive to Dbp2 accumulation, it is likely that this specificity is dictated by the 

mRNA sequence and/or structure itself. Regardless, this demonstrates that Yra1-

dependent inhibition of Dbp2 alters mRNA metabolism in vivo. Taken together, and in 

conjunction with our prior work and the current state of the mRNP assembly field (Ma et 

al. 2013; Oeffinger and Montpetit 2015; Babour et al. 2012) we propose a model whereby 

Dbp2 promotes efficient assembly of mRNA binding proteins including Yra1 onto 

mRNA during transcription which, in turn, prevent recycling of Dbp2 onto the properly 

formed mRNP (Fig. 5.11 and Discussion). 

5.4 Discussion 

The human genome encodes approximately 100 helicases, of which ~60% are 

RNA-dependent (Umate et al. 2011). DEAD-box proteins are the largest class in the 

RNA helicase family and have been implicated in all aspects of RNA biology. However, 

there is a large gap in our knowledge regarding the precise biochemical role(s) of 

individual DEAD-box protein family members in the cell. Our studies provide evidence 

that Dbp2 associates with transcribed chromatin via RNA, facilitates loading of RNA 



 
 

 

212 

binding proteins most likely by resolving RNA secondary structure, and is then released 

by one of the assembled proteins, Yra1. Yra1 is recruited to chromatin through direct 

interactions with the mRNA 3’ end processing factor Pcf11, which associates with the 

CTD of RNA Pol II (Abruzzi et al. 2004; Johnson et al. 2009). Since Dbp2 is required for 

efficient assembly of Yra1 onto mRNA (Ma et al. 2013), this suggests that Yra1 is 

brought to the chromatin through interactions with the transcriptional apparatus and is 

subsequently transferred to mRNA by Dbp2. A recent study on the distribution of RNA-

protein interactions and secondary structure in Arabidopsis has revealed an anti-

correlative relationship (Gosai et al. 2015). Given that Dbp2 unwinds RNA duplexes 

efficiently in vitro (Ma et al. 2013) and that Yra1 is presumably a single-stranded RNA-

binding protein, we envision that this transfer occurs because Dbp2 has remodeled 

secondary structures that are refractory to mRNP assembly. With the new advances in 

mRNA structural analysis in living cells (Ding et al. 2014; Rouskin et al. 2014; Wan et 

al. 2014), it may be possible to determine specific RNA sequences that depend on Dbp2 

or other DEAD-box proteins in living cells.  

The enzymatic activities of many DEAD-box proteins are regulated by protein co-

factors (Hilbert et al. 2011; Ma et al. 2013; Schutz et al. 2008; Granneman et al. 2006; 

Alcazar-Roman et al. 2006). For example, the human tumor suppressor Pdcd4 inhibits 

both the unwinding and the ATPase activities of the human DEAD-box protein eIF4A 

(Chang et al. 2009; Loh et al. 2009). This allows Pdcd4 to inhibit translation resulting in 

suppression of neoplastic transformation and tumorigenesis in a mouse model (Yang et 

al. 2003; Cmarik et al. 1999; Jansen et al. 2005). In contrast, the translation initiation 

factor eIF4B stimulates both the unwinding and ATPase activities of rabbit eIF4A to 
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promote efficient translation (Rozen et al. 1990; Rogers  Jr. et al. 2001, 1999). This 

suggests that individual DEAD-box proteins may have both activators and inhibitors in 

vivo, resulting in fine tuned control of enzymatic activity. This phenomenon has been 

seen in the Ski2-like RNA helicase Brr2 during spliceosome maturation whereby the 

spliceosomal protein Prp8 both stimulates and inhibits the unwinding activity of Brr2 

(Pena et al. 2009; Maeder et al. 2009; Mozaffari-Jovin et al. 2012, 2013).  

Prior studies from our laboratory showed that Yra1 interacts directly with Dbp2 

and inhibits duplex unwinding activity without affecting the efficiency of ATP hydrolysis 

(Ma et al. 2013).  Using smFRET, we now show that Yra1 reduces the number of 

dynamic molecules across a population and decreases the rate of unwinding of single 

dsRNAs.  Moreover, Yra1 decreases the ssRNA-binding affinity of Dbp2, an activity that 

is essential for duplex unwinding (Rudolph and Klostermeier 2015). DEAD-box RNA 

helicases exhibit structurally distinct conformations based on association with ATP and 

RNA (Sengoku et al. 2006b; Andersen et al. 2006; Aregger and Klostermeier 2009).  In 

the absence of either, these enzymes exist in a largely open confirmation, whereas 

binding of ATP and RNA induces formation of a closed state with the RecA domains 

coming together and bending the RNA into a structure that is incompatible with an A-

form helix (Sengoku et al. 2006b; Andersen et al. 2006).  The DEAD-box protein 

remains bound to the bent ssRNA until ATP hydrolysis promotes release.  

Our data suggests that Yra1 does not inhibit Dbp2 from hydrolyzing ATP but 

prevents stable association of Dbp2 with ssRNA (Ma et al. 2013). This likely occurs 

through an Yra1-dependent structural rearrangement of Dbp2 which causes reduced 

RNA-binding affinity. To the best of our knowledge, eIF4A and Ded1 are the only two 
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DEAD-box proteins whose inhibition mechanisms have been determined (Chang et al. 

2009; Loh et al. 2009; Putnam et al. 2015). Pdcd4 inhibits both the ATPase and 

unwinding activity of eIF4A through blocking RNA binding, whereas eIF4G inhibits the 

unwinding activity of Ded1 via interfering oligomerization of Ded1, and increases the 

affinity towards RNA. Since Yra1 inhibits Dbp2 helicase activity by reducing ssRNA-

binding activity without abolishing ATP hydrolysis, this suggests that Yra1 utilizes a 

distinct inhibition mechanism from Pdcd4 and eIF4G. Although it is not known how this 

occurs, the fact that Yra1 prevents accumulation of Dbp2 on mRNA transcripts suggests 

that Yra1 functions similarly in vivo as in vitro.  

By using gradient fractionation, we found that Yra1 and Dbp2 co-migrate at a 

position that corresponds to a large, RNA-dependent macromolecular complex. We 

speculate that this migration reflects association with assembled mRNPs in the cell, 

consistent with the biological roles of these two proteins. Although we cannot conclude 

that Yra1 and Dbp2 are present on the same mRNA molecule simultaneously, the fact 

that these two proteins interact directly regardless of the presence of RNA indicates that 

this is the case ((Ma et al. 2013)and Fig. 5.3).  The question then is how Yra1 can both 

interact with Dbp2 and promote release from RNA simultaneously.  One possible 

scenario is that Yra1 and/or Dbp2 is post-translationally modified to control protein-

protein interactions between these two molecules. In line with this, ubiquitination of 

Yra1, Nab2 and Mex67 has been shown to modulate the interactions between these three 

RNA-binding proteins and mRNA export factors in a manner that controls the timing of 

pre-mRNP assembly in the nucleus (Iglesias et al. 2010). The fact that yra1∆C does not 

exhibit increased Dbp2 accumulation on chromatin suggests that inhibition occurs post-
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transcriptionally following release of the mRNA from the site of synthesis.  Consistent 

with this, accumulation of Dbp2 causes stabilization of a subset of transcripts, a process 

that is predominantly post-transcriptional (Bevilacqua et al. 2003; Anderson and 

Kedersha 2009). Furthermore, both over-expression of DBP2 and yra1∆C lead to mild 

mRNA export defects (Zenklusen et al. 2001; Ma et al. 2013), suggesting that Yra1 acts 

immediately prior to mRNA transport from the nucleus.   

 Our results show that Dbp2 loads Yra1 onto poly(A)+ RNA (Ma et al. 2013), a 

role previously assigned to the DECD-box protein Sub2 (Taniguchi and Ohno 2008; Luo 

et al. 2001). Although this may seem redundant at first glance, the precise sites for Dbp2 

and Sub2-dependent assembly are not yet known.  Moreover, Dbp2 and Sub2 exhibit 

vastly different duplex unwinding activities in vitro with Sub2 exhibiting very weak 

activity (Ma et al. 2013; Putnam and Jankowsky 2013a).  Thus, Dbp2 may be specifically 

recruited to RNA structures for mRNP assembly whereas Sub2 may function as an ATP-

dependent binding protein more similar to eIF4AIII within the exon junction complex 

(EJC) (Ballut et al. 2005; Barbosa et al. 2012). This suggests that Dbp2 and Sub2 perform 

distinct biochemical activities in gene expression which both influence co-transcriptional 

loading of Yra1. Consistent with this, Sub2 has been proposed to disassemble Yra1-Pcf11 

complexes by promoting assembly of a Sub2-Yra1 complex on RNA (Johnson et al. 

2011). Thus, is possible that Dbp2 functions at the interface of this process to ensure that 

the structure of the nascent RNA is amenable to assembly.  

The mammalian ortholog of Dbp2, termed DDX5, is a well known oncogene 

whose product is involved in numerous processes requiring modulation of RNA structure 

including pre-mRNA splicing (Kar et al. 2011; Liu 2002; Guil et al. 2003) and rRNA 
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processing (Jalal et al. 2007). Interestingly, the mammalian counterpart of Yra1, Aly, also 

interacts with DDX5 (Zonta et al. 2013). This suggests that the inhibition mechanism for 

Dbp2 may be conserved in multicellular eukaryotes. Several drugs have been 

successfully developed to target the DEAD-box RNA helicase eIF4A, which alter the 

enzymatic activity of this enzyme by manipulating RNA-binding activity and/or ATP 

hydrolysis activity (Eberle et al. 1997; Shuda et al. 2000; Gao et al. 2007; Wen et al. 

2007; Bordeleau et al. 2006, 2008, 2005; Low et al. 2005). Thus far, the eIF4A inhibitors 

Silvestrol and Paetamine A have proven useful therapeutic tools for uncontrolled cell 

growth (Bordeleau et al. 2005, 2008), suggesting that inhibition of individual DEAD-box 

enzymes is a successful strategy for cancer intervention. Thus, understanding the 

mechanisms for enzymatic modulation of helicases in vivo is crucial for designing novel 

drug therapies.  
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Figure 5.1. Dbp2 is recruited to chromatin via RNA. (A) Schematic diagram of the 

GAL10 and GAL7 genes and the positions of qPCR amplicons. (B) Dbp2 is recruited to 

chromatin in an RNA-dependent manner. Transcription of the GAL genes was induced by 

growing yeast cells in rich media plus glucose initially and subsequently shifting to 

media with galactose for 5 hours. Chromatin was then isolated, sheared by sonication, 

and incubated with 7.5 U RNase A and 300 U RNase I or buffer alone before being 

subjected to ChIP using anti-FLAG antibodies. Results are presented as the percent of 

precipitated DNA over input averaged across four biological replicates with SEM. 

Student t-test was performed between RNase untreated and treated samples or RNase 

treated samples and DBP2 untagged strains in all primer sets. * indicate the difference 

between samples is statistically significant with a p-value < 0.05. (C) Schematic diagram 

of the primary sequence and functional motifs of Yra1(Zenklusen et al. 2001; Stutz et al. 

2000; Strasser and Hurt 2000; Johnson et al. 2009). The C-terminal half of Yra1 is 

sufficient to interact with Dbp2 in vitro (Ma et al. 2013). (D) Dbp2 interacts with the C-
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terminal half of Yra1 in vivo. Immunoprecipitation assays were conducted using anti-

FLAG antibodies to isolate Dbp2-3xFLAG and associated proteins from wild type or 

yra1∆C lysate. 10% of the lysate was used as input. Dbp2 and Yra1 were detected by 

Western blotting with protein-specific antibodies. Dbp2, Yra1 and yra1∆C from elution 

were quantified by densitometry with respect to input. (E) Loss of the C-terminal half of 

Yra1 does not affect the association of Dbp2 with the actively transcribing GAL10 (left) 

or GAL7 (right) gene. WT and yra1ΔC strains were used for ChIP with anti-FLAG 

antibody against Dbp2-3xFLAG. Student t-test was performed between full-length YRA1 

and yra1∆C strains in all primer sets. All the p-values > 0.05. 
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Figure 5.2. Yra1 prevents over-accumulation of Dbp2 on RNA Pol II transcripts. (A) 

Dbp2 accumulates on the RNA Pol II transcripts in a yra1∆C strain. RNA 

immunoprecipitation (RIP) assays were performed to determine the level of RNA 

associated with Dbp2 in wild type and isogenic yra1∆C cells. Cells were grown with 

galactose to promote expression of GAL10 and GAL7 genes as in Fig. 5.1 and 

subsequently cross-linked with formaldehyde. RNPs were isolated with anti-FLAG 

antibodies and transcripts were detected by RT-qPCR with primers specific to the 5’ end 

of each mRNA (see Table 5.4). Dbp2-3xFLAG occupancy on specific transcripts is 

shown as the average percent of isolated RNA over input for three biological replicates. 

Error bars indicate the SEM. (B) The association of Dbp2 with RNA Pol II transcripts is 

not altered in the mRNA export mutant strain, rat7-1. RIP assays were performed as 

above with wild type cells, isogenic rat7-1 cells (Brykailo et al. 2007), or isogenic, wild 

type untagged cells at both the permissive temperature (25°C, left) and the non-

permissive temperature (37°C, right) for rat7-1 (Krebber et al. 1999; Gorsch et al. 1995; 

Del Priore et al. 1996). 
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Figure 5.3. Overexpression of DBP2 does not cause over-accumulation Dbp2 on 

RNA Pol II transcripts. (A) Loss of the C-terminal half of Yra1 upregulates the protein 

level of DBP2-3xFLAG. Western blotting was conducted with the indicated antibodies. 

Dbp2 was quantified by densitometry with respect to Pgk1. (B) Western blotting shows 

that pGAL-DBP2 is expressed. Western blotting was conducted with the indicated 

antibodies from strains expressing vector alone or pGAL-DBP2 as indicated. Signals 

from Dbp2 and Protein A-Dbp2 were combined and quantified by densitometry with 

respect to Pgk1. (C) Overexpression of DBP2 does not affect the association of Dbp2 

with transcripts. RIP was performed as Fig. 5.2 with wild type strain with empty vector 

or with a plasmid encoding DBP2 under the control of the galactose-inducible pGAL 

promoter.  Strains were grown in selective media (-URA) + glucose followed by a 5 hour 

shift to galactose to induce overexpression of Dbp2. (D) Anti-Dbp2 and anti-Pgk1 

antibodies can semi-quantitatively determine the levels of Dbp2 and Pgk1, respectively, 

using Western blotting analysis. The amount of whole cell extract (2 mg) that was used in 

the assays is within the linear range of detection for both Dbp2 and Pgk1 antibodies. 
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Figure 5.4. Dbp2 forms a large RNA-dependent complex with Yra1 and Mex67 in 

vivo. (A) Dbp2, Yra1 and Mex67 co-migrate as a large complex by glycerol gradient 

fractionation. Glycerol gradient (10 – 30%) were performed with yeast lysate and the 

isolated fractions were resolved by SDS-PAGE and proteins were detected by western 

blotting. Molecular weights were determined using a standard curve that was generated 

by resolving the molecular weight standards comprising catalase (250 kDa), apoferritin 

(480 kDa), and thyroglobulin (670 kDa). (B) RNase treatment of yeast lysate prior to 

gradient fractionation disrupts formation of the large Dbp2-Yra1-Mex67 complex. 

Glycerol gradient (10 – 30%) were performed as above but with 70 U of RNase A and 

1000 U of RNase I. (C) RNase treatment does not alter the Dbp2-Yra1-Mex67 
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interaction. TAP-tag immunoprecipitation assays of Dbp2 were conducted in the 

presence or absence of 70 U of RNase A and 1000 U of RNase I. Input (1%) and elutions 

were resolved by SDS-PAGE and proteins were detected by western blotting. * indicative 

of heavy chains from antibody. ** indicative of light chains from antibody. *** 

indicative of a non-specific band. 
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Figure 5.5. Yra1 decreases the unwinding rate and specific activity of Dbp2 in 

smFRET studies. (A) Schematic representation of smFRET with a dual labeled hairpin 

RNA. Dual labeled RNA (Cy3 and Cy5) was purchased from IDT and subsequently 

surface-immobilized on a pegylated microscope quartz slide via biotin-neutravidin bridge 

(Lamichhane et al. 2010). The oval represents Dbp2. The red star represents Cy5 and the 

green star represents Cy3. (B) Representative FRET trajectory in the smFRET 

experiments. Representative trajectories of a closed RNA hairpin alone (top left), in the 

presence of 10 nM Dbp2 (top right),10 nM Dbp2 and 100 μM ATP (bottom left), or in 

the presence of 10 nM Dbp2, 20 nM yra1C, and 100 μM ATP (bottom right) are shown. 

Numerous (~100) trajectories were used to build the dwell time histograms to determine 

the opening and closing rate constant. (C) Yra1 decreases the number of hairpin dsRNAs 

unwound by Dbp2. The distribution of closed, closed to opened (single opening events), 

or dynamic (multiple cycles of opening and closing) hairpin dsRNAs with 10 nM Dbp2 

with or without 100 μM hexokinase and 1 mM glucose in the absence of ATP or 10 nM 

Dbp2 with increasing concentrations of GST-yra1C in the presence of ATP are shown. 

Trajectories exhibiting more than one excursion into 0.2 – 0.8 FRET are considered 

dynamic molecules. Trajectories exhibiting constant 0.9 or 0.1 FRET throughout the 

experimental time window are classified as statically closed or opened molecules, 

respectively. 
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Figure 5.6. smFRET in 30 mM NaCl. (A) Representative FRET trajectory of the 

smFRET experiment in 30 mM NaCl. FRET trajectory of a closed RNA hairpin in the 

absence of any protein and ATP (top), in the presence of 10 nM Dbp2 (middle), or in the 

presence of 10 nM Dbp2 100 μM ATP (bottom). (B) The hairpin dsRNAs show low 

dynamic in low salt (30 mM NaCl). The distribution of closed, closed to opened (single 

opening events), or dynamic (multiple cycles of opening and closing) hairpin dsRNAs 

populations obtained from smFRET studies in 30 mM NaCl are shown. The molecules 

show very low dynamic behavior (multiple cycles). 
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Figure 5.7. Yra1 reduces binding of Dbp2 onto ssRNA in vitro. (A) Yra1 decreases the 

ssRNA-binding affinity of Dbp2. Fluorescence anisotropy assays were conducted with 

varying amounts of Dbp2 and 10 nM of fluorescently labeled ssRNA in the presence or 

absence of 2 mM ADP-BeFx under equilibrium condition. In the presence of 2 mM ADP-

BeFx, increasing amounts of Dbp2 and 10 nM labeled ssRNA were incubated with or 

without 150 nM of yra1C. Three technical replicated were conducted in this experiment. 

Error bars indicate the SEM. (B) Yra1 decreases the association of Dbp2 with ssRNA. Gel 

shift assays were conducted in the presence of 2 mM ADP-BeFX/MgCl2, 10 nM of 5’-

radioactively labeled ssRNA (16 nt), with or without the Dbp2 (400 nM) and varying 

amounts of GST-yra1C or BSA (0 nM, 300 nM, 600 nM, 1200 nM, and 1800 nM). 

Complexes were assembled at 4°C as indicated in the schematic diagram followed by 

resolution on a 4% native PAGE and subsequent autoradiography. ND indicates the 

protein-bound signal was not detected. 
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Figure 5.8. Dbp2 reaches equilibrium binding with ssRNA within 100 min. 
Fluorescence anisotropy assays were conducted by incubating 20 nM of Dbp2 with 10 

nM of fluorescently labeled ssRNA in the presence of 2 mM ADP-BeFx. A time course 

was performed to determine the time that requires for Dbp2 to reach equilibrium binding 

with ssRNA. 



 
 

 

235 

 

Figure 5.9. Yra1 reduces the affinity of Dbp2 for ssRNA at 150 mM NaCl. RNA-

protein complexes were assembled as in Fig. 5.7B but in the presence of 150 mM NaCl. 
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Figure 5.10. Inhibition of Dbp2 by Yra1 prevents overexpression of specific of gene 

products in vivo. (A) Loss of the Dbp2-Yra1 interaction results in upregulation of the 

GAL7 and DBP2 transcript. RT-qPCR was performed with transcripts that were 

extracted from wild type cells and isogenic yra1∆C cells. Transcription of the GAL genes 

was induced by growing cells with galactose. Transcript levels were normalized to 18S 

rRNA and wild type cells. Error bars indicate the SEM from three biological replicates 

and * indicates a p-value <0.05 from a two tailed student t-test. (B) Loss of the Dbp2-

Yra1 interaction increases the protein levels of Gal7 and Dbp2. C-terminally 3X-FLAG-

tagged GAL10 and GAL7 strains were constructed in the yra1∆C strain by standard yeast 

methods to provide an epitope for western blotting.  Protein detection by western blotting 

was conducted using anti-Dbp2 (Beck et al. 2014) or anti-FLAG as indicated. 

Quantification of the protein signal is done by ImageQuant. Error indicates the SEM from 

three biological replicates. (C) RNA Pol II exhibits a similar pattern of gene occupancy in 

both wild type and yra1∆C strains. ChIP was performed as above, but with anti-Rpb3 

antibodies, a subunit of RNA Pol II. (D) The GAL7 mRNA has a longer half-life in 

yra1∆C strains than wild type cells. Transcriptional shut off assays were performed by 

shifting indicated strains to glucose to repress transcription of GAL genes after a 10 hours 

induction with galactose. RNA was extracted at the indicated time points and transcripts 

were detected by Northern blotting. Transcripts were quantified by densitometry and 

normalized to scR1. Half-lives were calculated from three, independent biological 

replicates by fitting the data to an exponential decay equation. 
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Figure 5.11. Enzymatic inhibition of Dbp2 by Yra1 restricts cycles of Dbp2-

dependent mRNP remodeling in vivo. Dbp2 is co-transcriptionally recruited to 

chromatin through RNA to resolve RNA duplexes.  This resolution allows co-

transcriptional loading of RNA-binding proteins Yra1 and Mex67 onto the nascent RNA. 

Dbp2 then guides Yra1 and Mex67 to assemble onto the RNA at site where it is structure-

free . After nucleotide exchange, Yra1 prevents post-transcriptional re-association by 

reducing the single-stranded RNA binding affinity of Dbp2. This activity likely prevents 

Dbp2 from accumulating on mRNA, which results in aberrant transcript stabilization and 

overexpression of specific gene products. 
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Table 5.1. Yeast and bacterial plasmids 

Name Description Source/Reference 

BTP22 pMAL-TEV-Dbp2 (Ma et al. 2013)  

BTP27 GST-TEV-Yra1 (Ma et al. 2013)  

GST-Yra1C pET21GST-Yra1C (124-226) (Johnson et al. 2009)  

BTP2 pET28a-Sub2 (HIS-Sub2) This study 

HA-Yra1 YCpLac22-HA-Yra1 (pTRP-

HA-Yra1) 

(Zenklusen et al. 2001)  

HA-Yra1 1-167 YCpLac22-HA-Yra1 1-167 

(pTRP-HA-Yra1 1-167) 

(Zenklusen et al. 2001)  

pTRP pRS314 (Sikorski and Hieter 1989)  

pURA3 pRS316 (Sikorski and Hieter 1989)  

pGAL-DBP2 pGAL-DBP2/2μ/URA3 Open Biosystems 
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Table 5.2. Yeast strains 

Strain Genotype Source/Reference 

yra1∆ pHA-YRA1  MATa ade2 his3 leu2 trp1 ura3 

yra1::HIS3 <pTRP-HA-Yra1> 

(Zenklusen et al. 

2001)  

yra1∆ pHA-yra1∆C MATa ade2 his3 leu2 trp1 ura3 

yra1::HIS3 <pTRP-HA-Yra1 1-

167> 

(Zenklusen et al. 

2001) 

DBP2-3xFLAG (BTY247)  MATα ade2-1 his3-11,15 ura3-1 

leu2-1 trp1-1 can1-100 DBP2-

3xFLAG:KanR 

This study 

DBP2-3xFLAG yra1∆ pHA-

YRA1 (BTY351) 

MATa ade2 his3 leu2 trp1 ura3 

yra1::HIS3 <pTRP-HA-Yra1> 

DBP2-3xFLAG:KanR  

This study 

DBP2-3xFLAG yra1∆ pHA-

yra1∆C (BTY339) 

MATa ade2 his3 leu2 trp1 ura3 

yra1::HIS3 <pTRP-HA-yra1 1-

167> DBP2-3xFLAG:KanR 

This study 

Wild type (BY4742) MATα his∆1 leu2∆0 ura3∆0 lys2∆0 Open biosystems 

DBP2-3xFLAG BY4742 

(BTY376) 

MATα his∆1 leu2∆0 ura3∆0 lys2∆0 

DBP2-3xFLAG:KanR 

This study 

DBP2-3xFLAG rat7-1 

(BTY377) 

MATα his3 ura3 leu2 rat7-1 DBP2-

3xFLAG:KanR 

This study 

GAL10-3xFLAG yra1∆ MATa ade2 his3 leu2 trp1 ura3 This study 
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pHA-YRA1 (BTY412) yra1::HIS3 <pTRP-HA-Yra1> 

GAL10-3xFLAG:KanR 

GAL10-3xFLAG yra1∆ 

pHA-yra1∆C (BTY414) 

MATa ade2 his3 leu2 trp1 ura3 

yra1::HIS3 <pTRP-HA-Yra1 1-

167> GAL10-3xFLAG:KanR 

This study 

GAL7-3xFLAG yra1∆ pHA-

YRA1 (BTY413) 

MATa ade2 his3 leu2 trp1 ura3 

yra1::HIS3 <pTRP-HA-Yra1> 

GAL7-3xFLAG:KanR 

This study 

GAL7-3xFLAG yra1∆ pHA-

yra1∆C (BTY415) 

MATa ade2 his3 leu2 trp1 ura3 

yra1::HIS3 <pTRP-HA-Yra1 1-

167> GAL7-3xFLAG:KanR 

This study 

Wild type (BY4741) MATa his∆1 leu2∆0 met15∆0 

ura3∆0  

Open biosystems 

DBP2-TAP MATa DBP2::TAP:HIS3 his∆1 

leu2∆0 met15∆0 ura3∆0 

Open biosystems 
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Table 5.3. Primetime primers for ChIP 

Name  Forward Reverse Probe 

GAL10 – 1  CTTTATTGTTCGGAGCAGTGC GCTCATTGCTATATTGAAGTA

CGG 

CGGTGAAGACGAGGAC

GCACG 

GAL10 – 2 TGGTGCTGGATACATTGGTTC AGGGAATGTGATGCTTGGTC TGACTGTGTTGTTGCTG

ATAACCTGTCG 

GAL10 – 3 TGAAGGTTTGTGTCGTGAGTG TCTGCCCGTAACTTTGTATGG CTTGGGTTCCGGTAAAG

GTTCTACAGTT 

GAL10 – 4 ACTCTACAAAGCCAACGGTC GAATCGGGATGAAAAGCCTT

G 

TCCACCACAAAACAACA

ATCAAACTGGG 

GAL10 – 5 GGTTTTGCAATTGAGCCTGG GCTGGCAAATCAGGAAAATC

TG 

AAACGGTGAAACTTACG

GGTCCAAGA 

GAL7 – 1 GCGCTCGGACAACTGTTG TTTCCGACCTGCTTTTATATC

TTTG 

CCGTGATCCGAAGGACT

GGCTATACA 

GAL7 – 2 ATCATACAATGGAGCTGTGGG CTAGCCATTCCCATAGACGTT

AC 

AAGCAGCCTCCTGTTGA

CCTAACC 

GAL7 – 3 TGCGAAACTTCACTAGGGATG CCAGAGAAGCAAGAGAAAAT

CATAAG 

CAACCCATGGCTGTACC

TTTGTTTTCA 

GAL7 – 4 GCATTTCTACCCACCTTTACTGAG CAGCTTGTTCCGAAGTTAAAT

CTC 

AGGCTCACCTAACAATT

CAAAACCAACC 

GAL7 – 5 GGACCACTCTTACATAACTAGAATAGC TTTTCTATTAACTGCCTGGTT

TCTTT 

TGTCACTCCGTTCAAGT

CGACAACC 
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Table 5.4. RT-qPCR oligos 

Name  Forward  Reverse  

GAL10  GAGGTCTTGACCAAGCATCACA TTCCAGACCTTTTCGGTCACA 

GAL7 CCATTCCACAAATGAAACAATCA GGAGAGATCGTCAGTCAATGCTT 

ACT1 TGGATTCCGGTGATGGTGTT TCAAAATGGCGTGAGGTAGAGA 

ADE3 CCCGTGATATCGCATCATACTTAC GGCCGATGGCAACGACTA 

18S rRNA CGAATCGCATGGCCTTGT CGAAAGTTGATAGGGCAGAAATTT 

PGK1 GTTTTGGAACACCACCCAAGA TCACCGTTTGGTCTACCCAAGT 
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Table 5.5. The opening and closing rate constants of the RNA hairpin 

 
 kopening (s

-1
) kclosing (s

-1
) 

10 nM Dbp2  4.1 ± 0.2 3.3 ± 0.3 

10 nM Dbp2 and 100 μM ATP 6.3 ± 0.5 5.9 ± 0.4 

10 nM Dbp2,      20 nM GST-

yra1C and 100 µM ATP  
4.8 ± 0.4 5.5 ± 0.3 
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CHAPTER 6. SUMMARY AND PERSPECTIVE 

6.1 Summary of Dbp2 

DEAD-box proteins have been associated with different RNA processes in cells. 

However, the exact role of most DEAD-box proteins is not clear. Prior to the studies 

from our laboratory, the DEAD-box protein Dbp2 in Saccharomyces cerevisiae had only 

been demonstrated to function in ribosome biogenesis and NMD (Bond et al. 2001). In 

addition, ectopically expressed DDX5 rescues the slow growth defect of DBP2 deleted 

cells (Barta and Iggo 1995). Over the past years, our laboratory has made a significant 

contribution in elucidating the function of Dbp2 and its regulation. We showed that Dbp2 

is predominantly localized in the nucleus and nucleolus, which is consistent with 

functioning in ribosome biogenesis (Cloutier et al. 2012). However, we also 

demonstrated that loss of DBP2 results in multiple transcriptional defects including 

accumulation of noncoding transcripts, cryptic transcription, termination defects, loss of 

lncRNA-dependent gene regulation and aberrant expression of glucose-dependent genes 

(Cloutier et al. 2012, 2013; Beck et al. 2014). Interestingly, Dbp2 changes its localization 

from the nucleus to the cytoplasm upon glucose depletion (Beck et al. 2014). This change 

in localization partially mimicks DBP2 deleted strains (Beck et al. 2014). These 

observations suggest that Dbp2 is involved in metabolic gene regulation.
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To characterize the precise role of Dbp2, we found that Dbp2 is recruited to 

actively transcribing chromatin in an RNA-dependent manner ((Cloutier et al. 2012); 

unpublished data). Furthermore, Dbp2 is an active RNA-dependent ATPase and RNA 

helicase that unwinds RNA duplexes and anneals RNA substrates in vitro (Cloutier et al. 

2012; Ma et al. 2013). This suggests that Dbp2 acts as a RNA chaperone to remodel RNA 

structures co-transcriptionally. Given that DEAD-box proteins facilitates RNA structural 

rearrangement to promote RNP assembly (Gosai et al. 2015; Linder and Jankowsky 

2011; Liu and Cheng 2015), Dbp2 could function as a RNA chaperone to facilitate RNP 

assembly. Consistent with this idea, Dbp2 is required to promote efficient mRNP 

assembly of the mRNA export proteins, Mex67, Nab2, and Yra1 onto poly(A) mRNA 

(Ma et al. 2013).  

Yra1 is an evolutionarily conserved mRNA-binding protein that is recruited to 

chromatin co-transcriptionally through RNA and the 3’ end processing/termination factor 

Pcf11 (Stutz et al. 2000; Lei et al. 2001; Abruzzi et al. 2004; Lei and Silver 2002; 

Johnson et al. 2009). Furthermore, Yra1 is a multifunctional protein that is involved in 

mRNA export, poly(A) site choice, and DNA replication (Zenklusen et al. 2001; Iglesias 

et al. 2010; Johnson et al. 2011; Swaminathan et al. 2007). Consistent with the role of 

Yra1 in poly(A) site choice, loss of DBP2 decreases the assembly of Yra1 on RNA and 

results in transcription termination defects ((Ma et al. 2013; Cloutier et al. 2012); 

unpublished data). Thus, Dbp2 might function in transcription termination by facilitating 

assembly of Yra1 on RNA. Several studies have shown that Yra1 forms a complex with 

Dbp2 in vivo (Oeffinger et al. 2007; Kashyap et al. 2005). In addition, we showed that 

Yra1 physically interacts with Dbp2 and inhibits its unwinding activity (Ma et al. 2013). 
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To determine the inhibition mechanism, we showed that Yra1 decreases the RNA binding 

affinity of Dbp2 (unpublished data). Interestingly, the inhibition does not decrease the 

ATPase activity of Dbp2 (Ma et al. 2013), suggesting that Yra1 utilizes a distinct 

inhibition mechanism from the Pdcd4-dependent inhibition of eIF4A (Chang et al. 2009; 

Loh et al. 2009). Future studies are needed to reveal the precise molecular mechanism of 

Yra1-dependent inhibition of Dbp2.  

To elucidate the biological significance of the Yra1-dependent inhibition of Dbp2, 

our laboratory found that loss of the C-terminal half of Yra1 abolishes the interaction 

with Dbp2 and accumulates Dbp2 on Pol II transcripts (unpublished data). This is 

consistent with the fact that Yra1 inhibits the RNA binding affinity of Dbp2. 

Furthermore, the over-accumulation of Dbp2 leads to aberrant stabilization of certain 

transcripts (unpublished data). Taken together, our results suggest that Dbp2 is an active 

RNA helicase that associates nascent RNA to promote RNA structural rearrangements 

and assembly of RNA-binding proteins, including Yra1, Nab2, and Mex67, during 

transcription. Yra1 then inhibits Dbp2 to associate with ssRNA to prevent further cycles 

of unwinding. This regulation is critical for efficient mRNP assembly and proper gene 

expression. These findings shed lights on how DEAD-box proteins are regulated and 

provide insights on the role of the human ortholog of Dbp2, DDX5, which is often 

overexpressed in cancer cells 
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6.2 Unpublished results and future directions 

6.2.1 Determine if Dbp2 is required for transcription termination 

Over the past several years, we have started to gain some insights on the precise 

role of Dbp2 in gene expression. There are many more questions to be addressed in the 

future. Previously, we demonstrated that Dbp2 is required to promote efficient assembly 

of Yra1 onto mRNA and loss of DBP2 results in transcription read through defects 

(Cloutier et al. 2012; Ma et al. 2013). Furthermore, Yra1 plays a role in mRNA 3’ end 

processing (Johnson et al. 2011). These observations suggest that Dbp2 facilitates Yra1 to 

assemble onto RNA to promote proper transcription termination. To test if Dbp2 is 

required for proper transcription termination, we utilized a termination reporter assay. 

The termination reporter is composed of an intron-containing ACT1 gene fused with 

CUP1 gene and the poly(A)+ termination site of either the protein-coding CYC1 gene or 

the non-coding SNR13 gene were inserted into the intron (Fig. 6.1A). If the strain exhibits 

a termination defect, CUP1 gene will be expressed. In contrast, CUP1 gene will not be 

transcribed if the strain exhibits normal termination. CUP1 is a gene that encodes 

metallothionein that binds copper and provides resistance for cells to grow in high 

concentration of copper (Winge et al. 1985). To conduct this assay, the two termination 

reporters show in figure 6.1A were transformed into cup1Δ or cup1Δdbp2Δ cells and 

grow on synthetic complete plates that have different concentration of copper. In parallel, 

cup1Δsen1-E1597K strains with the reporter plasmid were used as a positive control with 

the idea that sen1-E1597K exhibits a termination defect (Steinmetz et al. 2006). 

Interestingly, cup1Δdbp2Δ in the presence of CYC1 termination site in the reporter 



 
 

 

248 

plasmid shows resistance to high copper concentration (0.5 mM) at 35°C while cup1Δ in 

the presence of CYC1 termination does not (Fig 6.1B). Furthermore, there is no 

significant growth difference with the cup1Δdbp2Δ and cup1Δ strains in the presence of 

SNR13 termination. This suggests that loss of DBP2 results in transcription termination 

defects of protein-coding genes, but not the non-coding gene. Since loss of DBP2 also 

results in cryptic transcription (Cloutier et al. 2012), Further experiments are needed to 

distinguish whether the copper resistance is due to a termination or cryptic initiation 

defect.  



 
 

 

249 

 
Figure 6.1. ACT1/CUP1 termination reporter assay. (a) A schematic diagram of 

ACT1/CUP1 termination reporter plasmid. A plasimid containing a reporter gene that has 

TDH3 promoter followed by intron-containing ACT1 fused with CUP1 and the PGK1 

termination site. Within the intron of ACT1, either the CYC1 or SNR13 termination site 

was inserted. If the cells display termination defect, CUP1 will be expressed and provide 

resistance for the cells to grow in the presence of high concentration of copper. In 

contrast, if the cells do not exhibit termination defect, CUP1 will not be expressed and 

the cells will not be able to grow in the presence of high concentration of copper. (b) Loss 

of DBP2 exhibits termination defects. Indicated strains were spotted in 5-fold serial 

dilutions onto synthetic complete plates with varying concentration of copper 

concentration and are grown at 30°C and 35°C because dbp2Δ cells are cold sensitive and 

sen1-E1597K strains are temperature sensitive. 
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6.2.2 Define the region of Dbp2 that is required to interact with Yra1 

Yra1 inhibits the unwinding activity of Dbp2 through reducing the ssRNA-binding 

activity of Dbp2 (Fig 5.7). To gain some insights on how Yra1 decreases the ssRNA-

binding activity, we decided to identify the region of Dbp2 that is necessary for the 

Dbp2-Yra1 interaction using different truncation mutants of Dbp2 (Fig 6.2A). Consistent 

with our previous study, full length Dbp2 is able to interact with GST-yra1C (Fig 6.2C, 

(Ma et al. 2013)). Strikingly, the loss of domain 1 or domain 2 of Dbp2 does not affect 

the interaction with GST-yra1C (Fig 6.2C). However, loss of the C-terminus of Dbp2 

abolishes the interaction with GST-yra1C (Fig 6.2C). This reveals that the C-terminus of 

Dbp2 is necessary to interact with Yra1 and suggests that Yra1 might inhibit the ssRNA-

binding activity through the C-terminus of Dbp2. However, this does not exclude the 

possibly that Yra1 also interacts and confers inhibition via other regions in addition to the 

C-terminus of Dbp2. Further studies are required to elucidate the molecular mechanism 

of how Yra1 inhibits the ssRNA-binding activity of Dbp2.  

Next, we assayed the biochemical importance of the C-terminus of Dbp2. The C-

terminus of Dbp2 consists of an RG-rich sequence, which makes up an RG-rich motif 

(Fig 6.2B). RG-rich motifs generally act as RNA-binding domains and/or oligomerization 

domains (Thandapani et al. 2013). To analyze the function of the C-terminus of Dbp2, we 

tested if the C-terminus plays any role in the enzymatic activity of Dbp2 using in vitro 

ATPase assays and helicase assays. Consistent with previous studies, Dbp2 exhibits 

ATPase activity in the presence of RNA but the activity is reduced in the absence of the 

C-terminus (Ma et al. 2013; Cloutier et al. 2012) (Fig 6.3A). Notably, the reduced 

activity is above background, which indicates that dbp2∆C is a functional enzyme (Fig 
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6.3A). This suggests that the C-terminus is critical for Dbp2 to function as an ATPase. In 

the helicase assays, Dbp2 shows both unwinding and annealing activities with an 

unwinding rate (kobs) of 0.28 min
-1

 on blunt end RNA duplexes (Fig 6.3B, top). 

Strikingly, loss of the C-terminus of Dbp2 reduces both the unwinding and annealing 

activities (Fig 6.3B, bottom). The decreases in the unwinding and annealing activities are 

also observed in overhang RNA duplexes and blunt end DNA/RNA hybrids  

 

 
Figure 6.2. The C-terminus of Dbp2 is necessary and sufficient to interact with 

Yra1. (a) A schematic representation of the primary sequence of Dbp2 and truncation 

mutants. (b) The amino acid sequence of the C-terminus of Dbp2 contains high RG-rich 

sequence. The arginine and glycine are highlighted in grey. (c) In vitro binding assays of 

recombinant, purified GST-yra1C with recombinant, purified full length Dbp2 and 

different Dbp2 truncation mutants. 20% of the protein mix was removed as input (“I”) 

and the bound fraction is indicated as “B”. 

  



 
 

 

252 

(Fig 6.3C and 6.3D, respectively). This suggests that the C-terminus is important for the 

RNA remodeling activity of Dbp2.  

6.2.3 Characterize the oligomeric state of Dbp2 during unwinding 

It is well established that DEAD-box RNA helicases unwind RNA duplexes in a 

local strand separation manner that is distinct from canonical helicases. However, it is not 

yet clear whether all DEAD-box proteins utilize the same mechanism for unwinding. 

Recent studies have revealed that Mss116, Hera and YixN use different mechanisms to 

recognize RNA duplexes, which suggests that they have slight differences in their 

unwinding mechanism (Mallam et al. 2012; Samatanga and Klostermeier 2014). If 

different DEAD-box proteins use distinct mechanisms for unwinding, what factors 

determine which mechanism to use remains unclear. A previous study has shown that the 

DEAD-box protein Ded1 needs to oligomerize to form a trimer to promote efficient RNA 

unwinding (Putnam et al. 2015). Given that the human ortholog of Dbp2, termed DDX5, 

has been suggested to oligomerize (Ogilvie et al. 2003), we postulated that Dbp2 might 

also be able to oligomerize and unwind in a cooperative manner. To test this, we 

performed unwinding assays with varying concentrations of Dbp2. This shows that Dbp2 

unwinds with a Hill coefficient of 3.9, suggesting that Dbp2 unwinds in a cooperative 

manner (Fig 6.4A).  

As yra1C inhibits the unwinding activity of Dbp2 and yra1C reduces the 

association of Dbp2 with ssRNA (Ma et al. 2013), it is possible that yra1C might affect 

the cooperativity of Dbp2 during unwinding. To test this idea, we performed unwinding  
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Figure 6.3. The C-terminus of Dbp2 is important for the ATPase, unwinding, and 

annealing activity of Dbp2. (a) Loss of the C-terminus of Dbp2 reduces the ATPase 

activity of Dbp2. In vitro ATPase assays were conducted using 200 nM of Dbp2 or 

dbp2ΔC in different total yeast RNA concentration as indicated. (b-d) Loss of the C-

terminus of Dbp2 reduces both the unwinding and annealing activity of Dbp2 on blunt 

end RNA duplexes, overhang RNA duplexes, and blunt end DNA/RNA duplexes. 

Representative non-denaturing PAGE gels are shown and the kobs is determined as 

described in (Linder 2006). 
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assays as mentioned above but in the presence of 200 nM yra1C, which is the IC50 of 

yra1C that inhibits Dbp2 unwinding (Fig 6.4B). Consistent with previous study, yra1C 

inhibits the unwinding activity of Dbp2 ((Ma et al. 2013); Fig 6.4A). To our surprise, 

yra1C does not significantly change the Hill coefficient. This indicates that yra1C inhibits 

the unwinding activity of Dbp2 without altering the cooperativity of Dbp2 (Fig 6.4A). 

6.2.4 Analyze whether Dbp2 oligomerizes 

Since Dbp2 unwinds in a cooperative manner and DDX5 self-associates in vivo 

(Ogilvie et al. 2003), this led us to test if Dbp2 interacts with itself. To analyze this, we 

performed in vitro binding assays. Lysate of bacterial cells that express recombinant 

MBP-Dbp2 and recombinant, purified Dbp2 were incubated in the presence or absence of 

RNase treatment with amylose resins. Recombinant, purified Dbp2 alone was incubated 

with amylose resins to serve as non-specific binding control. This reveals that Dbp2 

interacts with itself independent on the presence of RNA (Fig 6.5A), suggesting that 

Dbp2 oligomerizes.  

Given that the RG-rich motif has been implicated to facilitate oligomerization 

(Thandapani et al. 2013), we predicted that the RG-rich motif of Dbp2 is critical for 

Dbp2 oligomerization. To test this idea, we performed in vitro binding assays as above 

but with dbp2∆C, which lost the RG-rich motif. This demonstrates that dbp2∆C abolishes 

self-interaction (Fig 6.5B), suggesting that the C-terminus of Dbp2 is critical for Dbp2 

oligomerization. Nonetheless, the oligomeric state of Dbp2 and whether oligomerization 

of Dbp2 happens in vivo remain to be determined.  
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6.2.5 Perspective/Remaining Questions 

Similar to most RNA helicases, there is limited information on the cellular RNA 

substrates and the precise binding site of Dbp2. Identifying the RNA targets and binding 

site are crucial to further understand the precise role of Dbp2 in cells. Although Dbp2 is a 

well-characterized RNA helicase that unwinds RNA duplexes and anneal RNA substrates 

in vitro, it is not known whether Dbp2 is able to remodel RNA structures in vivo. This is 

an intriguing question because not all DEAD-box proteins function to remodel RNA 

structures (Putnam and Jankowsky 2013). In particular, several studies have suggested 

that the helicase activity of DDX5 is dispensable for its function in transcription (Endoh 

et al. 1999; Clark et al. 2008; Bates et al. 2005; Jensen et al. 2008). Knowing if Dbp2 

unwinds in cells will provide insights on the precise role of Dbp2 in its physiological 

functions. Interestingly, ATPase deficient mutants of Dbp2 show slow growth defect 

similar to DBP2 deleted cells (Cloutier et al. 2012). This suggests that ATP binding 

and/or hydrolysis is critical for the function of Dbp2. However, it is not known whether 

the ATP binding and/or hydrolysis activity is required for Dbp2 to remodel RNA 

secondary structures and promote mRNP assembly in cells. It is also not understood how 

over-accumulation of Dbp2 contributes to transcript stabilization. One potential 

hypothesis is that the over-accumulated Dbp2 actively removes factors or elements that 

are required for transcript destabilization. Finally, it is important to determine if the Yra1-

dependent inhibition of Dbp2 is conserved in humans. The human orthologs of Yra1 and 

Dbp2, termed ALY and DDX5, also interact with each other (Zonta et al. 2013), 

suggesting that this inhibition is conserved. More studies are needed to determine the role 

of Dbp2 in gene expression.   
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Figure 6.4. Yra1 reduces the unwinding activity, but does not alter the cooperativity 

of Dbp2. (a) Yra1 inhibits the unwinding activity of Dbp2. Helicase assays were 

performed at 19 °C water bath with varying concentrations of Dbp2, 2 mM ATP, and 0.1 

nM of 16-bp blunt end dsRNA in the presence or absence of 200 nM yra1C. The kunw was 

determined as (Yang and Jankowsky 2005). All assays were done in triplicate. The 

results are presented as the mean with S.E.M. of triplicates. The Hill coefficients were 

determined by fitting the allosteric sigmoidal equation (Y=Vmax*X
h
/(Kprime+X

h
)) in Prism 

to the data. (b) The IC50 of yra1C that inhibits Dbp2 unwinding activity is determined. 

Helicase assays were performed as above with varying concentrations of yra1C and 800 

nM of Dbp2. The log (inhibitor) VS. response – Variable slope equation 

(Y=Bottom+(Top-Bottom)/(1+10
((LogIC50-X)*HillSlope)

) in prism was used to fit the data. 
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Figure 6.5. Dbp2 interacts with itself in vitro. (a) Full length Dbp2 associates with 

itself. In vitro binding assays were performed using lysate of bacterial cells that express 

recombinant MBP-Dbp2 and recombinant, purified full length Dbp2. 5% of the protein 

mix was removed as input “I” and the bound fraction is indicated as “B”. Proteins were 

resolved using SDS-PAGE followed by Western blotting analysis. Anti-Dbp2 antibodies 

were used to specifically target Dbp2. (b) Loss of the C-terminus of Dbp2 abolishes self-

association. In vitro binding assays were conducted as above with recombinant, purified 

dbp2∆C, instead of full length Dbp2. 
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The DEAD-box RNA Helicase Dbp2 Connects RNA Quality
Control with Repression of Aberrant Transcription*�
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Sara C. Cloutier, Wai Kit Ma, Luyen T. Nguyen, and Elizabeth J. Tran1
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Background: Dbp2 is a member of the DEAD-box family of RNA helicases.
Results: Dbp2 is a double-stranded RNA-specific ATPase required for repression of cryptic initiation and downstream RNA
quality control.
Conclusion: Dbp2 functions in transcriptional fidelity as a cotranscriptional RNA chaperone.
Significance: Elucidation of key RNA enzymes is central to defining the mechanisms for eukaryotic gene regulation.

DEAD-box proteins are a class of RNA-dependent ATP
hydrolysis enzymes that rearrangeRNAandRNA-protein (ribo-
nucleoprotein) complexes. In an effort to characterize the cellu-
lar function of individual DEAD-box proteins, our laboratory
has uncovered a previously unrecognized link between the
DEAD-box protein Dbp2 and the regulation of transcription in
Saccharomyces cerevisiae. Here, we report that Dbp2 is a dou-
ble-stranded RNA-specific ATPase that associates directly with
chromatin and is required for transcriptional fidelity. In fact,
loss ofDBP2 results inmultiple gene expression defects, includ-
ing accumulation of noncoding transcripts, inefficient 3� end
formation, and appearance of aberrant transcriptional initia-
tion products.We also show that loss ofDBP2 is synthetic lethal
withdeletionof thenuclearRNAdecay factor,RRP6,pointing to
a global role for Dbp2 in prevention of aberrant transcriptional
products. Taken together, we present a model whereby Dbp2
functions to cotranscriptionally modulate RNA structure, a
process that facilitates ribonucleoprotein assembly and clear-
anceof transcripts fromgenomic loci. These studies suggest that
Dbp2 is a missing link in RNA quality control that functions to
maintain the fidelity of transcriptional processes.

Essential cellular processes, such as growth, organ develop-
ment, and differentiation, require precise spatial and temporal
control of gene expression. Eukaryotic gene expression involves
highly complex and coordinated events, including transcrip-
tion, pre-messenger RNA (pre-mRNA) processing, mRNA
transport to the cytoplasm, translation, and decay. During syn-
thesis, RNA-binding proteins and complexes dynamically asso-
ciate with the RNA to form amature, translationally competent
mRNP2 complex (1). These factors promote proper pre-mRNA
processing and transport as well as couple upstream and down-

stream steps in the gene expression network. In addition to
protein-coding mRNAs, the eukaryotic genome also encodes
numerous noncoding RNAs (2–4). These include well known
members such as transfer RNAs, ribosomal RNAs, and spliceo-
somal RNAs, as well as a more recently recognized class of
heterogeneous long noncoding RNAs (lncRNAs) (5). The latter
class has recently gained importance due to the conserved
nature of this widespread transcription and connections
between specific members and epigenetic gene regulatory
mechanisms (6).
In the budding yeast Saccharomyces cerevisiae, lncRNAs are

very low in abundance and have been classically defined based
on the inhibited RNA-decay mechanism used for detection.
This has resulted in numerous names such as cryptic unstable
transcripts, stable untranslated transcripts, and Xrn1-depen-
dent transcripts (5).Whereas the precise function of thesemol-
ecules is still hotly debated, it is clear that regulation is accom-
plished through the same mechanisms as those utilized for
protein-coding mRNAs. In fact, lncRNAs are substrates for the
nuclear exosome, a multiprotein complex responsible for mat-
uration and degradation of numerous noncoding RNAs and
aberrantly processed mRNAs (7). This suggests that the signa-
ture of a noncoding or aberrant mRNA lies within the targeted
RNA molecule itself. Consistent with this, numerous studies
have underscored the importance of RNP composition as fail-
ure to properly assemble mRNPs results in selective retention
and subsequent nuclear degradation (7–10). However, the
molecular basis for discrimination of aberrant versus mature
mRNPs is not fully understood.
One class of enzymes that functions as critical regulators of

RNP assembly are the DEAD-box RNA helicases. DEAD-box
proteins are RNA-dependent ATPases that function in all
aspects of RNAbiology, including transcription,mRNAexport,
and ribosome biogenesis. DEAD-box proteins are the largest
group within the RNA helicase superfamily with�25members
in the budding yeast S. cerevisiae and �40 in humans (11).
Numerous studies have shown thatDEAD-box proteins display
a wide variety of biochemical activities in vitro, which includes
RNA duplex unwinding, RNA folding, and RNP remodeling
(12–14). In contrast to in vitro analyses, however, little is known
regarding the precise biological function of individual DEAD-
box protein family members.
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One largely uncharacterized DEAD-box protein in S. cerevi-
siae is Dbp2. Inmammalian cells, the ortholog of Dbp2, termed
p68, functions in ribosomebiogenesis aswell as numerous tran-
scriptional and cotranscriptional processes with RNA poly-
merase II (15). Dbp2, however, has only been linked to ribo-
some biogenesis and non-sense-mediated decay in S. cerevisiae
despite the fact that human p68 functionally complements loss
of DBP2 (16–18). This suggests that a role in transcriptional
processes is either not conserved or that Dbp2 plays an as-of-
yet uncharacterized function in budding yeast.
In this study, we undertook a directed approach to define the

role of Dbp2 in budding yeast. Our studies now provide docu-
mentation that Dbp2 functions at the interface of chromatin
and RNA structure to represses expression of aberrant tran-
scripts. We suggest that Dbp2 is a missing link in the gene
expression network that functions as a cotranscriptional RNA
chaperone. This would provide a model RNAmodulation dur-
ing transcription with broad implications to other aspects of
RNA biology.

EXPERIMENTAL PROCEDURES

Plasmids and Cloning—All plasmids were constructed by
standard molecular biology techniques and are listed in
Table 1. DBP2 was expressed in yeast using the intronless
pDBP2-PL-ADH-p415 (19) to avoid splicing-dependent
changes in expression levels. ATPase-deficient variants were
constructed by site-directed mutagenesis using Pfu poly-

merase. The pET28a-DBP2 was generated by subcloning
techniques from pDBP2-PL-ADH-p415.
Yeast Manipulations—Yeast strains were constructed using

classical yeast genetic techniques and are listed in Table 2.
DBP2-deletion strains (dbp2�) were constructed by PCR-based
gene replacement using pUG6 as a template. DBP2–3�FLAG
strains were constructed similarly using the p3�FLAG plasmid.
6AU studies were conductedwith yeast strains grown in synthetic
media �uracil (�URA) � 2% glucose and spotted onto �URA
plateswith orwithout 100�g/ml 6-azauracil (Sigma). For all RNA
analyses, yeast strains were grown in rich YPD media (YP � 2%
glucose) at either 35 or 30 °C as indicated to an OD of 0.4–0.5
prior to cell harvesting and RNA isolation. Transcriptional induc-
tion was performed by shifting yeast cells from YPD to YP � 1%
raffinose for 1 h, to induce a derepressed state, and then toYP-Gal
(YP � 2% galactose) for 5 h prior to cell harvesting.
Recombinant Protein Purification—Expression of pET28a

HIS6-DBP2 in Rosetta Escherichia coli (DE3) cells (Novagen)
was induced by 0.2mM isopropyl 1-thio-�-D-galactopyranoside
overnight at 16 °C. Cells were lysed in 20mMTris at pH 7.9, 100
mMNaCl, 5mM imidazole. Recombinant proteinswere purified
from the soluble fraction using nickel affinity chromatography
according to the manufacturer’s instructions (Qiagen).
In Vitro ATPase Assays—In vitroATP hydrolysis assays were

performed using a PK/lactate dehydrogenase enzyme-coupled
absorbance assay as described previously (20) but with 440 nM

TABLE 1
Yeast and bacterial plasmids

Name Description Source/Ref.

pUG6 KanMx disruption cassette plasmid 23
BTP13 pET28a-DBP2 This study
BTP18 pET28a-dbp2-E268Q This study
BTP21 pET28a-dbp2-K136N This study
pDBP2 DBP2-PL-ADH-P415 19
BTP24 pdbp2-K136N/CEN/LEU2 This study
BTP25 pdbp2-E268Q/CEN/LEU2 This study
pCEN/URA3 pRS316 24
pCEN/LEU2 pRS315 24
p3�FLAG p3 � FLAG:KanMx 25
pGAL1-GAL10-GAL7 pYGPM11l14 Open Biosystems (Genomic Tiling)
pFLO8 pGAL-YER109C Open Biosystems (Yeast ORF Collection)
pSCR1 YGPM29b01 Open Biosystems (Genomic Tiling)

TABLE 2
Yeast strains

Strain Genotype Source

Wild type (BY4741) MATa his3�1 leu2�0 met15�0 ura3�0 Open Biosystems
DBP2-GFP MATa DBP2-GFP:HIS3 his3D1 leu2D0 met15D0 ura3D0 Invitrogen
xrn1� MATa xrn1::KanMx his3D1 leu2D0 met15D0 ura3D0 Open Biosystems
dbp2� (BTY115) MATa dbp2::KanMx ura3�0 leu2�0 his3�0 TRP1 met- lys? This study
dbp2-K136N (BTY166) MATa dbp2::KanMx ura3�0 leu2�0 his3�0 TRP1 met- lys? � pdbp2-K136N/CEN/LEU2 This study
dbp2-E268Q (BTY180) MATa dbp2::KanMx ura3�0 leu2�0 his3�0 TRP1 met- lys? pdbp2-E268Q/CEN/LEU2 This study
Wild type (FY120) MATa his4-912∂ lys2-128∂ leu2�1 ura3-52 26
prGAL-FLO8:HIS3 (FY2393) MATa lys2-128∂ his3�200 ura3-52 leu2�1 trp1�63 prGAL1-FLO8-HIS3:KanR 27
spt6-1004 (FY2139) MAT� FLAG-spt6-1004 ura3-52 leu2�1 lys2-128∂ 27
spt6-1004 prGAL-FLO8:HIS3 (BTY217) MAT� spt6-1004-FLAG prGAL-FLO8-HIS3::KanMx ura3-52 leu2�1 lys2-128∂ his4-912∂ trp? Reconstructed from

Ref. 28
dbp2� prGAL-FLO8:HIS3 (BTY124) MAT� dbp2::KanR prGAL1-FLO8-HIS3::KanMx ura3 leu2 his3 trp? lys? met? This study
rrp6� MATa rrp6::KanMx his3D1 leu2D0 met15D0 ura3D0 Open Biosystems
DBP2-3�FLAG (BTY200) MATa DBP2-3�FLAG:KanMx his3�1 leu2�0 met15�0 ura3�0 This study
Wild type FT4 (JOU538) MATa ura3-52 trp1-�63 his3-�200 leu2::PET56 29
FT4 � Reb1BS� (JOU811) MATa ura3-52 trp1-�63 his3-�200 leu2::PET56 gal10::URA3::pMV12 (EcoRI/XhoI-Reb1 BS�

with BS2 silent)
29

dbp2� FT4 (BTY219) MATa ura3-52 trp1-�63 his3-�200 leu2::PET56 dbp2::KanMx This study
dbp2� FT4�Reb1BS� (BTY220) MATa ura3-52 trp1-�63 his3-�200 leu2::PET56 gal10::URA3::pMV12 (EcoRI/XhoI-Reb1 BS�

with BS2 silent) dbp2::KanMx
This study
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Dbp2 and total yeast RNA (Sigma) or purchased DNA or RNA
oligonucleotides (IDT). kobs values were calculated using the
following formula: V0 � (A340/min � 2.5)/(6.22 � 10�3 �M),
where kobs(min�1) � V0/protein concentration, and the EC50
was determined using GraphPad Prism software. V0 was nor-
malized to background NADH loss in buffer alone for each
condition. Presented data are the average of three independent
experiments.
Cellular Microscopy—Wild type (BY4741) or DBP2-GFP

strainswere grown at 30 °C inYPDandwere subsequently fixed
with 10% formaldehyde, washed with PBS, and stained with 2
�g/ml DAPI (Sigma) for visualization of DNA. Images were
collected using an Olympus BX51 fluorescent microscope and
Metamorph TL software (Olympus America).
RT-qPCR and 5�RACE—RNA was isolated from cells by

standard acid phenol purification. Complementary DNA
(cDNA) was prepared using the Quantitect reverse transcrip-
tase kit (Qiagen) according to manufacturer’s instructions
using random hexamer primers provided. Primer pairs for
qPCR were designed using default parameters in Primer

Express 3.0 (Invitrogen) and are listed in Table 3. PCRs were
performed in the Bio-Rad CFX96 system. Fold changes were
calculated using the Pfaffl method (22) and are reported as three
biological replicates with three technical repeats each with
mean�S.E. 5�RACEofGAL7mRNAwasconductedaccording to
the manufacturer’s protocol (Invitrogen). GAL7 gene-specific
primers (GSP primers) are listed in Table 4. Resulting 5�RACE
productswere clonedusing aUAcloning kit (Qiagen), andprecise
5� ends were determined by DNA sequencing.
Chromatin Immunoprecipitation—Chromatin immunopre-

cipitation experiments were conducted as described previously
(21) with the following changes. Input represents 2.5% of lysate.
Anti-FLAG antibodies (M2, Sigma) were preincubated with
protein G Dynabeads (Invitrogen) prior to incubation with
cross-linked sheared lysate. Immunoprecipitated DNA was
eluted with 400 �l of elution buffer (1% SDS, 0.1 M NaHCO3)
followed by reversal of cross-links by addition 16�l of 5 MNaCl
and a 65 °C overnight incubation. Resulting DNA was incu-
bated with RNase A and proteinase K, phenol-extracted, and
ethanol-precipitated. Samples were resuspended in 50�l of TE,
and 1:50 was used for qPCR using PrimeTime assay probes
listed in Table 5 (IDT) and TaqMan qPCRmix (Invitrogen). All
ChIP experiments were conducted with three biological repli-
cates with four technical repeats and are shown as the fold
increase above wild type signal relative to input.
Northern Blotting—20–50�g of total RNAwas resolved on a

1.2% formaldehyde-agarose gel followed by transfer to a nylon
membrane (BrightstarHybondN�, Invitrogen).Northern blot-
tingwas conducted using standardmethods. Radiolabeled dou-
ble-stranded DNA probes were generated using PCR products
from a plasmid template (see Table 6) and the Decaprime II kit
according to manufacturer’s instructions (Invitrogen). Tran-
scripts were visualized using a PhosphorImager (GE Health-
care) and quantified by densitometry (ImageQuant, GE
Healthcare).

RESULTS

DBP2 Is an RNA-dependent ATPase in Vitro—Dbp2 is a
member of the DEAD-box family of RNA-dependent ATPases
in S. cerevisiae based on the presence of 10 conserved sequence
motifs organized into two distinct structural domains (Fig. 1A)
(11). Dbp2 also contains a C-terminal RGGmotif and a unique
N terminus implicated in high affinity RNAandprotein binding
in vivo, respectively (18, 33).
Although studies from other laboratories have utilized

geneticmanipulations to assess the enzymatic function ofDbp2
in vivo (16, 18, 33), Dbp2 has not been biochemically character-

TABLE 3
RT-qPCR oligonucleotides
F is forward and R is reverse.

1 F TGAGTTCAATTCTAGCGCAAAGG
1 R TTCTTAATTATGCTCGGGCACTT
2 F GAGGTCTTGACCAAGCATCACA
2 R TTCCAGACCTTTTCGGTCACA
3 F AAATGAAGGTTTGTGTCGTGA
3 R AAGCTTTGCAGAATGCATGA
4 F TGAACAAGCCATATGGAGACA
4 R CGACGATATTACCCGTAGGAA
5 F CAAAAAGCGCTCGGACAACT
5 R GCTTGGCTATTTTGTGAACACTGT
6 F (or GAL7 F) CAAAAAGCGCTCGGACAACT
6R (or GAL7 R) GCTTGGCTATTTTGTGAACACTGT
7 F TCAACAGGAGGCTGCTTACAAG
7 R CCAGGACATAGATAGCATTTTGGA
8 F CCATTCCACAAATGAAACAATC
8 R ACAACCCATGGCTGTACCTT
CLB2 F GCGAATAATCCAGCCCTAAC
CLB2 R CGGCTGTTGATCTTGATACG
POL1 F CAGAAAGCGCCAGGAATTG
POL1 R CGTAGCCTACACCATCGTCATC
RAD 14 F CCGGCCTCTCGCAGTTACTA
RAD14 R GCGGCTGCTGCATTATCAT
ACT1 F TGGATTCCGGTGATGGTGTT
ACT1 R TCAAAATGGCGTGAGGTAGAGA
ADE3 F CCCGTGATATCGCATCATACTTAC
ADE3 R GGCCGATGGCAACGACTA

TABLE 4
5�RACE primers

GAL7-GSP1 GTCCTCCTTCACCATTTGG
GAL7-GSP2 GGCCCAGTATGGAACAACAAC
GAL7-GSP3 CGTCAGTCAATGCTTGCCAAG

TABLE 5
Oligonucleotides for chromatin immunoprecipitation

Name Forward Reverse Probe
Relative to
�1 Start

�1 Start
Refs.

GAL7 P GCGCTCGGACAACTGTTG TTTCCGACCTGCTTTTATATCTTTG CCGTGATCCGAAGGACTGGCTATACA �66 30
GAL7 5� ATCATACAATGGAGCTGTGGG CTAGCCATTCCCATAGACGTTAC AAGCAGCCTCCTGTTGACCTAACC �190 30
GAL7 middle TGCGAAACTTCACTAGGGATG CCAGAGAAGCAAAGAAAATCATAAG CAACCCATGGCTGTACCTTTGTTTTCA �587 30
GAL7 3� GCATTTCTACCCACCTTTACTGAG CAGCTTGTTCCGAAGTTAAATCTC AGGCTCACCTAACAATTCAAAACCAACC �1079 30
GAL7 3� UTR GGACCACTCTTACATAACTAGAATAGC TTTTCTATTAACTGCCTGGTTTCTTT TGTCACTCCGTTCAAGTCGACAACC �1259 30, 31
POL1 5� AGAATACAGGGCCAGAAAGC GTAGCCTACACCATCGTCATC ACAACAAATCGTCATGCAGCAATTCCT �125 31
RAD14 5� TGTGTTTGTATTTTAACCGTGGG GATTCAATTGGTCGCTACTCAG TGTTAGCCTCCTGCACAGCTCATC �211 31
CLB2 5� TCCAGCCCTAACAAATTTCAAATC GCTGTTGATCTTGATACGCTTTC TCCGACTTCCCTCCTTCTTTACTGAGTT �1634 32
ADE3 5� TGGCTGGTCAAGTGTTGG TGGTCTGTTGCCTACTTGAATG TCAAAAGCATTCAAGGTCACGTGCC �100 31
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ized to date. To determine whether Dbp2 is a functional RNA-
dependent ATPase, we established in vitro ATPase assays with
recombinant purified Dbp2 and increasing amounts of total
RNA as described previously (20). Consistent with other
DEAD-box enzymes, our results demonstrate that Dbp2 is an
activeATPase in vitrowith a 50%effective concentration (EC50)
of 27 �g/ml for RNA (Fig. 1B). Next, we used site-directed
mutagenesis to incorporate amino acid substitutions in motif I
or II and assayed ATP hydrolysis of the resulting purified pro-
teins to verify the origin of wild type Dbp2 activity (Fig. 1A).
This revealed that both the K136N (motif I) and E268Q (motif
II) substitutions abolish enzymatic activity at RNA concentra-
tions 1- and 3-fold above the EC50, consistent withmutations of
other DEAD-box enzymes (Fig. 1C). Thus, Dbp2 is a functional
RNA-dependent ATPase in vitro.

To determine whether the enzymatic activity of Dbp2 is
required for normal cell growth, we utilized a plasmid comple-
mentation assay (Fig. 1D). To this end, we generated a dbp2�
strain and analyzed the ability of wild type or ATPase-deficient
dbp2 alleles, pdbp2-K136N and pdbp2-E268Q, to confer cell
growth as compared with vector alone. Consistent with previ-
ous reports, loss of DBP2 results in slow growth and cold sen-
sitivity with an optimal growing temperature of 35 °C (18, 19,
33). Importantly, neither point mutant restored wild type
growth, paralleling the growth of the dbp2� strain with vector
alone (Fig. 1D). This is in contrast to ectopic expression of the
wild type DBP2 (pDBP2), which enabled growth at all temper-
atures. Immunoblotting analysis verified that the inability of
the mutant plasmids to rescue the dbp2� strain is not due to
expression differences between the wild type (pDBP2) and
mutant dbp2 vectors (data not shown). Thus, substitutions that
impair enzymatic activity also impair cell growth, underscoring
a requirement for enzymatically active Dbp2 in budding yeast.
Dbp2 Is a dsRNA-directed ATPase—Given that the ATPase

activity of Dbp2 is required for growth, we next asked if Dbp2
preferred specific RNAs for stimulation ofATPhydrolysis. This
would indicate a preference for specific RNAs in vivo. To test
this, we conducted in vitro ATPase assays as above in the pres-
ence of single-strandedRNAmolecules of different lengths (16-
or 37-mer) or dsRNAwith a GNRA tetraloop (�G � �25 kcal/
mol; Fig. 2A). Strikingly, this revealed that Dbp2 strongly pre-
fers dsRNA for activation of ATP hydrolysis with a resulting
EC50 of 10�6.5 or �0.3 �M (Fig. 2B). This is near the concentra-
tion ofDbp2 (0.2�M), suggesting that the affinity is likely higher
with the EC50 representing the upper limit of the dissociation
constant. Strikingly, a longer 37-mer single-stranded RNA is
also able to stimulate RNA-dependent ATPase activity but to a
significantly lower extent that impairs affinity measurement.
This was in contrast to the shorter 16-nucleotide single-

stranded RNA, which was unable to activate Dbp2 at any con-
centration. Importantly, Dbp2 displayed no DNA-directed
ATPase activity (Fig. 2C). This suggests that Dbp2 displays
dsRNA-dependent ATPase activity, an enzymatic parameter
that parallels human p68 but is not common among other
DEAD-box family members (34, 35). Furthermore, preliminary
studies show that Dbp2 is a functional RNA helicase.3 This
suggests that Dbp2 is a dsRNA-directed ATPase, which targets
structured RNA elements in vivo.
Dbp2 Is a Predominantly Nuclear ProteinWhose Loss Is Sup-

pressed by 6-Azauracil—Studies of Dbp2 in budding yeast have
provided conflicting evidence regarding the precise localization
of Dbp2 ranging from nuclear/nucleolar to predominantly
cytoplasmic (16, 36). To understand the cellular function(s) of
Dbp2, we asked where Dbp2 is localized at steady state by con-

3 W. K. Ma, unpublished data.

TABLE 6
Oligonucleotides for Northern blotting (dsDNA probes)
F is forward, and R is reverse.

FLO8 F CTGTATCCAGTCCATTATCTTCAG
FLO8 R TCAGCCTTCCCAATTAATAAAATTG
SCR1 F GGATACGTTGAGAATTCTGGCCGAGG
SCR1 R AATGTGCGAGTAAATCCTGATGGCACC
GAL7 F CCTTGGTTAGGTCAACAGGAG
GAL7 R AGTCGCATTCAAAGGAGCC

FIGURE 1. Dbp2 is an RNA-dependent ATPase in vitro whose activity is
required for normal cell growth. A, schematic representation of Dbp2 pri-
mary sequence and conserved DEAD-box protein motifs. Core domains and
the 10 sequence motifs are indicated (11). Dbp2 also contains a C-terminal
RGG accessory domain predicted to enhance RNA binding activity (33).
Arrows denote amino acid substitutions in motif I or motif II. B, Dbp2 is an
enzymatically active, RNA-dependent ATPase in vitro. The ability of Dbp2 to
hydrolyze ATP was assessed using an absorbance-based in vitro ATPase assay
as described previously, which measures ATP hydrolysis indirectly through a
linear depletion of NADH (20). Assays were conducted with 400 nM of recom-
binant purified His6-tagged Dbp2 and increasing amounts of total yeast RNA.
ATP turnover numbers (kobs) were calculated from initial velocities of each
assay conducted in triplicate. The EC50 value for RNA was determined through
nonlinear regression analysis and is reflective of the concentration of RNA
needed to activate ATP hydrolysis to a half-maximal rate. All data are normal-
ized to background signals that result from very low levels of NADH depletion
in buffer alone (V0 � 1.01 � 0.5 min�1). The observed ATPase rate of Dbp2 in
the absence of RNA is 0.98 � 0.4 min�1, which is equivalent to buffer alone.
C, mutation of residues within motif I and II impair enzymatic activity. Recom-
binant purified His6-tagged variants Dbp2-K136N or Dbp2-E268Q were
assayed for ATP hydrolysis as above using RNA concentrations equal to or
3-fold above the wild type EC50 concentration. Enzymatic activities are
reported as a percentage of the initial velocity of ATP hydrolysis of wild type
Dbp2 with 75 �g/ml RNA. D, DBP2-deficient strains display a slow growth and
cold-sensitive phenotype. Yeast growth was analyzed using serial dilution
analysis of dbp2� strains transformed with either empty vector alone or CEN
plasmids encoding wild type (pDBP2) or ATPase-deficient mutants (pdbp2-
K136N or pdbp2-E268Q) as indicated. Strains were subsequently spotted in
5-fold serial dilutions onto selective media and grown for 3–5 days at the
indicated temperatures.
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ducting fluorescent microscopy of a fluorescently tagged
DBP2-GFP strain harboring a GFP fusion at the endogenous
locus. This revealed that Dbp2-GFP is a predominantly nucle-
oplasmic protein, colocalizing with DAPI-stained DNA, with
accumulation in the nucleolus (Fig. 3A). This is consistent with
the role of Dbp2 in ribosome biogenesis and is suggestive of an
additional nuclear function.
To pinpoint a role for Dbp2 in the nucleoplasm, we subse-

quently asked if loss of DBP2 renders cells sensitive to tran-
scriptional stress by conducting growth assays of wild type
and dbp2� cells with or without 100 �g/ml 6AU (Fig. 3B).
6AU is a transcriptional inhibitor that has been widely uti-
lized to identify genes whose products positively regulate
transcription elongation (37). Surprisingly, 6AU partially
rescues the slow growth defects of the dbp2� strain at semi-
permissive temperatures of 30 and 32 °C, suggesting that
reduction of transcription improves the growth of DBP2-
deficient strains.
DBP2 Represses Cryptic Initiation within the FLO8 Locus—

Interestingly, 6AU resistance or suppression phenotypes have
been noted in only a few published reports and correlate with
loss of gene products that negatively regulate transcription.
This includes the transcriptional regulator/mRNA processing
factor, SSU72, as well as chromatin-modifying enzymes like the
histonemethyltransferase SET2 (38–40). To further character-
ize the biological role of Dbp2, we asked if dbp2� strains exhibit
transcriptional defects similar to those associated with
impaired repression. One type of transcriptional defect is cryp-
tic initiation whereby failure to properly assemble chromatin
results in initiation at noncognate sites either within (intra-
genic) or outside of (intergenic) transcribed genomic loci (28,
41, 42). To determine whether DBP2 is required for repression
of intragenic cryptic initiation, we utilized a previously charac-
terized pGAL-FLO8:HIS3 reporter construct for identification

of initiation defects through a simple growth assay (28, 41).We
constructed dbp2� pGAL-FLO8:HIS3 strains and subsequently
analyzed growth of two independent isolates with respect to
wild type and spt6-1004 strains as negative and positive con-
trols, respectively. SPT6 encodes a transcriptional elongation
factor whose mutation results in characterized cryptic initia-
tion defects (28, 41). Strikingly, loss of DBP2 also results in
cryptic intragenic initiation (Fig. 3D). Unlike spt6-1004 strains,
however, dbp2� strains require transcriptional induction for
detection of cryptic initiation. This suggests that Dbp2 is
needed only in the context of active transcriptional activity.
Next, we conducted Northern blotting of FLO8 transcripts
from wild type, dbp2�, and spt6-1004 strains to determine
whether dbp2� strains also display cryptic initiation at the
endogenous FLO8 gene (Fig. 3E). This revealed a small �4-fold
increase in short FLO8 products in the dbp2� strain as com-
pared with wild type (4–16%). Thus, DBP2 is required for
repression of cryptic intragenic initiation in the FLO8 reporter
and within the endogenous locus.
GAL7Transcripts Are Overabundant in the Absence of DBP2—

Given that DBP2-deficient cells display defects associated with
active transcription, we asked if DBP2 is required for normal
expression levels of endogenous genes (Fig. 3F). To this end, we
selected a panel of genes and assessed transcript abundance in
wild type and dbp2� cells using RT-qPCR. These genes were
chosen based on the characterized role of themammalianDbp2
ortholog, p68, in cell cycle progression, cell differentiation, and
response to extracellular cues (15). This revealed that GAL7
transcripts are specifically overabundant in dbp2� cells as com-
pared with wild type, in contrast to other gene products (Fig.
3F). Notably, this increase occurs under typical transcription-
ally repressive conditions, suggesting that the GAL7 gene is
aberrantly derepressed in dbp2� cells. Furthermore, there was
no detectable difference in GAL7 transcript levels under

FIGURE 2. Dbp2 is a dsRNA-directed ATPase in vitro. A, sequence and schematic representation of RNA and DNA molecules used below. �G parameters were
calculated using the MFOLD web server. B, Dbp2 displays a preference for dsRNA in stimulation of ATP hydrolysis. ATPase assays were conducted as above
using purchased single- stranded or double-stranded RNA molecules in A at varying concentrations from 1 nM to 4 �M and purified Dbp2 (0.2 �M). ATP
hydrolysis activity was determined in triplicate for each nucleic acid concentration and is plotted on a semi-logarithmic graph as kobs versus log[M] concen-
tration of RNA. The resulting EC50 from the dsRNA hairpin was determined through nonlinear regression analysis. EC50 values could not be determined for the
single-stranded RNA molecules due to low levels of ATPase stimulation. C, ATPase activity of Dbp2 is not stimulated by DNA. In vitro ATPase assays were
conducted as above with the DNA molecules indicated in A using purchased DNA molecules. nt, nucleotide.
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induced conditions (�galactose) between wild type and dbp2�
cells. This suggests that Dbp2 is required for both repression of
cryptic intragenic initiation and of normal promoter elements
of protein-coding genes.
Dbp2 Associates Directly with Chromatin, Correlating with

Transcriptional Activity—TheGAL cluster is a well established
model for dissection of gene regulatory mechanisms in S.

cerevisiae. Briefly, the GAL genes are considered to have three
transcriptional states as follows: active (�galactose), dere-
pressed (�raffinose), and repressed (�glucose) (43). In the
presence of galactose, transcriptional activation proceeds via
the transcription factor Gal4. In the repressed state, transcrip-
tional repressors Nrg1 andMig1/Mig2 are responsible for pro-
moting glucose-dependent repression (43, 44).

FIGURE 3. Dbp2 is a predominantly nuclear protein required for repression of cryptic, intragenic initiation within FLO8 and expression of GAL7. A, live
cell imaging reveals whole cell distribution of Dbp2 with a predominantly nuclear localization at steady state. Fluorescent microscopy was conducted with
exponentially growing DBP2-GFP strains grown at 30 °C. Cells were fixed for 1 h with formaldehyde in rich growth media, washed extensively, and stained with
DAPI for visualization of DNA. Differential contrast (DIC) images are presented in the right-most panel. B, transcriptional elongation inhibitor, 6AU, partially
rescues dbp2� growth defects. Wild type (BY4741) or dbp2� strains were analyzed for 6AU sensitivity using serial dilution analysis of strains onto �URA � 2%
glucose plates with or without 100 �g/ml 6AU at the indicated temperatures. C, schematic diagram of the FLO8:HIS3 cryptic initiation reporter (adapted from
Ref. 28). TATA (*) indicates the approximate position of the cryptic internal start site within the FLO8 open reading frame. Following induction with galactose
(�Gal), transcription in wild type cells proceeds through the internal TATA, resulting in out of frame HIS3 mRNA, and failure to grow on media lacking histidine
(�His � Gal). Defects in chromatin structure or assembly are correlated with aberrant initiation at the internal TATA site, which results in grown on �His media
due to production of an in-frame HIS3 mRNA. D, DBP2 is required for repression of cryptic intragenic initiation within the FLO8:HIS3 reporter gene. Cryptic
initiation defects were assessed following construction of dbp2� strains encoding a chromosomally integrated pGAL-FLO8:HIS3 reporter. Two independent
dbp2� strain isolates are shown compared with DBP2 wild type and an spt6 –1004 mutant strain as negative and positive controls, respectively (27, 28). E, loss
of DBP2 results in an �4-fold increase in aberrant FLO8 transcripts from the endogenous FLO8 locus. Briefly, total RNA was isolated from wild type, dbp2�, and
spt6--1004 strains and subjected to Northern blotting. 30 �g of total RNA was resolved on a 1.2% formaldehyde/agarose gel, transferred to a nylon membrane,
and probed with a double-stranded, radiolabeled DNA probe corresponding to both the full-length and short 3� transcript product. SCR1 transcripts are shown as a
loading control. F, DBP2 is required to maintain endogenous levels of GAL7 under transcriptionally repressive conditions (�glucose). The transcript abundance of
individual gene products was determined by RT-qPCR analysis of RNA isolated from wild type or dbp2� strains grown at 35 °C. Transcript levels were determined by
quantitative PCR using the Bio-Rad CFX system and SYBR Green with the indicated primer sets (Table 2). Gene product annotations are as follows: POL1 (DNA primase
1), CLB2 (cyclin B2), RAD14 (DNA repair), ADE3 (nucleotide biosynthesis), and GAL7 (carbon source metabolism). GAL7 primers correspond to set 6 in subsequent figures.
Differences were calculated using the Pfaffl method (22) and are normalized to the level of ACT1. Error bars represent the mean � S.E.
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Our results suggest that DBP2 is required for proper repres-
sion of GAL7 under transcriptionally repressive conditions,
drawing parallels between Dbp2 and glucose-dependent
repressors. If this is the case, this would suggest thatDbp2 func-
tions at the GAL7 and FLO8 loci through distinctly different
mechanisms. To test this, we utilized chromatin immunopre-
cipitation (ChIP) to determine whether a 3�FLAG-tagged
Dbp2 is directly bound toGAL7 under transcriptionally repres-
sive conditions. Strikingly, this resulted in detection of Dbp2 at
the GAL7 locus under transcriptionally active conditions, in
contrast to our predictions (Fig. 4A). Dbp2–3�FLAG associ-
ates with similar levels �5-fold above background across the
GAL7 open reading frame with slightly lower association at the
promoter region, suggesting recruitment throughout the tran-
scriptional unit (Fig. 4A). We were not able to detect apprecia-
ble accumulation of Dbp2 at any tested region under repressive
conditions (Fig. 4B, �glucose). Thus, Dbp2 is associated with
chromatin in a transcriptionally dependent manner, suggestive
of association with the transcriptional machinery and/or nas-
cent RNAs. This also indicates theGAL7 derepression defect in
dbp2� cells may be due to either an indirect effect or to tran-
scriptional activity, which is below the ChIP detection limit for
Dbp2.
DBP2-deficient Cells Display Expression Defects across

GAL10-GAL7—The GAL7 gene is a member of the GAL1-
GAL10-GAL7 gene cluster (Fig. 5A). In addition to proteina-
ceous transcription factors, the GAL cluster is also associated
with overlapping lncRNAs with estimated levels as low as one
molecule in 14 cells (29). These include the well characterized
GAL10 lncRNA (29, 45, 46) and a recently identified, sense-
oriented GAL10s lncRNA (termed XUT 109-2m in Ref. 3).
To determine the origin of theGAL7 transcriptional product

in dbp2� cells under repressive conditions, we conducted a
high resolution RT-qPCR analysis by positioning qPCR primer
pairs at the 5� end of GAL1, 5�, middle, and 3� end of GAL10,
intragenic region between GAL10 and GAL7, and the 5�, mid-
dle, and 3� region of GAL7 (Fig. 5A, 1–8). Consistent with our
original RT-qPCR analysis above, we detected a 2.5-fold
increase at the 5� end ofGAL7 in dbp2� (Fig. 5B, 6) and similar
increases across theGAL7 open reading frame indicative of low
level expression of the GAL7 protein-coding gene. Unexpect-

edly, we also detected a 2-fold increase in transcript abundance
upstream of GAL7. This is in contrast to the 5� ends of GAL1
and GAL10, which were not significantly different in wild type
versus dbp2� (Fig. 5B, 1). Next, we conducted RT-qPCR analy-
sis at the dbp2� semi-permissive temperature of 30 °C with the
idea that growth at lower temperatures would thermodynami-
cally “trap” Dbp2-dependent substrates (Fig. 5C). Strikingly,
this revealed a sharp increase in transcript abundance to
�5-fold above wild type across the same genomic region. This
pattern is consistent with aberrant expression across theGAL7
and GAL10s lncRNA coding regions, the latter of which is
indicative of a defect in RNA quality control (3).
DBP2-deficient Cells Accumulate Aberrant GAL7 RNAs—To

further characterize the role of Dbp2 at the GAL7 locus, we
conducted Northern blotting to visualize GAL7 transcripts
under repressive conditions in wild type and dbp2� cells at
30 °C (Fig. 6A). This revealed a weak but detectable accumula-
tion of transcripts corresponding to both the GAL7 protein-
coding gene and a weak �2.5-kb product in the dbp2� strain
(Fig. 6A, lanes 4–6). The latter productmost likely corresponds
to a 3�-extended GAL10s lncRNA that terminates at the end of
theGAL7 gene. This is suggestive of aberrant expression of two
GAL cluster gene products in dbp2� cells under normally
repressive conditions.
Next, we analyzed the GAL7 transcripts produced during

transcriptional activation in dbp2� cells at 30 °C (Fig. 6B).
Strikingly, in addition to abundant expression of GAL7mRNA
transcripts, which accumulated to similar levels between wild
type and dbp2�, we also detected an �4-kb product in DBP2-
deficient cells (Fig. 6B, lanes 4–6). The 4-kb transcript is con-
sistent with expression of a GAL10-GAL7 bicistronic mRNA
that results from aberrant pre-mRNA processing in other
mutant yeast strains (30, 47, 48). Interestingly, we did not detect
defects in dbp2� cells grown at 35 °C, suggesting that higher
temperatures partially bypass the requirement for Dbp2 (Fig.
3F and data not shown). This is consistent with a general role
for Dbp2 in cotranscriptional RNA folding and/or assembly.
GAL7 Transcripts Are a Result of Cryptic Initiation in DBP2-

deficient Cells—Given that GAL7 transcription is induced by
the action of a galactose-dependent transcription factor, Gal4
(43), we were surprised at our detection of GAL7 mRNAs in

FIGURE 4. Dbp2–3�FLAG is recruited to the GAL7 open reading frame in a transcriptionally dependent manner. A, Dbp2 associates with the GAL7 locus,
predominantly within the coding region and 3�UTR. Chromatin immunoprecipitation (ChIP) experiments were conducted with strains expressing untagged or
C-terminally 3�FLAG-tagged Dbp2 from the endogenous locus grown in rich media after a 5-h transcriptional induction (�galactose). Bound DNA was
detected by qPCR using primer sets corresponding to the indicated genomic locations (see Table 5). Resulting signals are reported as the relative signal above
an untagged wild type strain with respect to input and are the result of three independent biological replicates with three technical repeats. Numbers above
each bar represent the average difference above background (untagged strain). Error bars indicate S.E. as above. B, Dbp2–3�FLAG is not detectibly associated
with GAL7 under transcriptionally repressive conditions. ChIP-qPCR analysis was conducted as in A with yeast strains grown in glucose (repressive) conditions.
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repressive conditions when Gal4 is inactive. To determine
whether the GAL7 transcripts originate from the normal �1
transcriptional start site, we utilized 5�RACE tomap the 5� ends
of GAL7 sense transcripts in DBP2-deficient cells. Strikingly,
this revealed that the GAL7 transcripts are aberrant with
respect to the wild type initiation site (Fig. 6C). Whereas tran-
scriptional induction in wild type cells by addition of galactose
results in a single PCR product of �500 bp, transcripts in the
dbp2� cells are distinct from normal GAL7 mRNAs (Fig. 6C,
lanes 1 and 2). Sequencing of the resulting PCR products
revealed the following three distinct transcriptional start sites
in the dbp2� strain: one intergenic site at �50 bp upstream of
the �1 start site, corresponding to two PCR products due to
5�RACE efficiency; and two intragenic sites within the open
reading frame of GAL7 (Fig. 6D). In contrast, 5�RACE analysis
of GAL7mRNAs under activated conditions revealed identical
transcriptional start sites between wild type and dbp2� cells
(data not shown). Thus, the GAL7 transcripts in dbp2� cells
under repressive conditions are a result of cryptic intragenic
initiation with respect to the GAL10s lncRNA, consistent with
the requirement forDBP2 at the FLO8 locus.We speculate that
the cryptic initiation defects inDBP2-deficient cells are an indi-
rect result of failure to “clear” aberrant RNAs rather than a
direct role in chromatin assembly, given the recent connections
between RNA quality control and chromatin architecture (see
“Discussion”).
Simultaneous Loss of DBP2 and RRP6 Results in a Lethal

Growth Phenotype—Major factors in RNA quality control are
the nuclear exosome component, RRP6, and the cytoplasmic
exonuclease, XRN1 (2, 3). To gain further insight into the bio-
chemical pathway for DBP2 function, we conducted synthetic
genetic analysis of dbp2� and xrn1� or rrp6� alleles using a
plasmid shuffle assay (Fig. 7). This assay exploits the toxic
effects of 5-fluoroorotic acid in strains that cannot grow in the
absence of a plasmid encoding the uracil biosynthesis gene
(URA3) and wild type DBP2 (pDBP2). Strikingly, this revealed
that rrp6� and dbp2� are synthetic lethal at all growth temper-

atures (Fig. 7). This genetic interaction is specific, as a dbp2�
xrn1� strain grows well in the absence of the pDBP2. This sup-
ports a role for Dbp2 in RNA quality control steps in the
nucleus. More importantly, this shows that Dbp2 is a major
factor in RNA quality control that likely plays roles at multiple
genes outside of the GAL7 and FLO8. Taken together, we pro-
vide amodelwhereby theDEAD-box proteinDbp2 functions at
the interface of chromatin and RNA quality control to modu-
late RNA structure in a manner that promotes both down-
stream processing steps and reassembly of chromatin in the
wake of active transcription (Fig. 8). This suggests that Dbp2 is
a cotranscriptional RNA chaperone, central to fidelity of the
gene expression network.

DISCUSSION

Amajor challenge to the RNA biology field is understanding
how the RNA and RNP structure contributes to cellular pro-
cesses. The DEAD-box RNA helicases are central players in
RNP dynamics, functioning in all aspects of RNA metabolism
through ATP-dependent modulation of RNA structures (11).
These include the DEAD-box proteins Sub2 and Dbp5, which
are required for mRNP packing and nuclear export, respec-
tively (49–51). Our studies now elucidate Dbp2 as a critical
factor in transcriptional fidelity, adding to the complement of
DEAD-box proteins associated with maintenance of the tran-
scriptome. Furthermore, our studies provide provocative
evidence that Dbp2 functions as a cotranscriptional RNA chap-
erone. This would be consistent with current models for
DEAD-box proteins as ATP-dependent chaperones and with
elegant in vitro studies that support thismechanism (14, 52, 53).
With elucidation of Dbp2 as a key player in this process,

several tantalizing questions now emerge regarding the precise
biochemicalmechanism in gene regulation. Our results suggest
that Dbp2 is a dsRNA-dependent ATPase recruited to chroma-
tin during transcription. Furthermore, our studies show that
DBP2 is genetically linked to the nuclear exosome component,
RRP6. It is well established that Rrp6-dependent decay of

FIGURE 5. GAL7 expression is a result of transcriptional defects across the GAL10-GAL7 genomic region in DBP2-deficient cells. A, schematic represen-
tation of the GAL operon in S. cerevisiae denoting the three galactose-dependent genes (GAL1, GAL10, and GAL7) and previously identified noncoding RNAs (3,
29). Short solid-line arrows denote the direction of protein-coding (sense) transcription, and lncRNA transcription is represented by a dotted line. Triangles below
the genes denote approximate positions of promoter elements, and short horizontal lines demonstrate positions of primer sets utilized in qPCR (Table 2). Set 6
is the same set used for detection of GAL7 in Fig. 2. B, high resolution RT-qPCR reveals accumulation of the GAL10s lncRNA and transcription through the GAL7
ORF. RT-qPCR was conducted as in Fig. 2 using higher resolution qPCR primer pairs (Table 2) with strains grown at 35 °C. C, growth at the dbp2� semi-permissive
temperature of 30 °C exacerbates GAL7 expression defects. High resolution RT-qPCR was conducted as above using wild type or dbp2� strains grown at 30 °C.
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numerous noncoding RNAs is dependent on transcription ter-
minationmechanisms (54). The primarymechanism for termi-
nation of short noncoding transcripts is through theNrd1-Sen1
pathway whereby RNA-binding proteins, Nrd1 and Nab3, rec-
ognize specific RNA sequences in nascent RNA transcripts
(55–57). Thus, it is tempting to speculate that Dbp2 promotes
loading of RNA-binding proteins, such as Nrd1 and Nab3, by
resolving inhibitory RNA structures. This is consistent with
accumulation of a putative GAL10-GAL7 read-through tran-
script in dbp2� cells and with identification of an Nrd1-depen-
dent terminationmechanismat theGAL10 gene (47).However,
given the pattern ofDbp2 gene association and the requirement
for repression of initiation, the role of Dbp2 is not likely limited
to recruitment of these two factors. Interestingly, studies have
also shown that the genes within theGAL cluster are associated
with gene looping events between promoters and terminators

FIGURE 6. Loss of DBP2 results in cryptic initiation at GAL7 and termination defects within the GAL10-GAL7 region under repressed and activated
conditions, respectively. A, Northern blotting of total RNA from wild type and dbp2� cells reveals expression of GAL7 and a 3�-extended GAL10s lncRNA under
typically repressive conditions. Northern blotting was conducted with increasing amounts of total RNA (20 –50 �g) from indicated strains grown at the
semi-permissive dbp2� temperature of 30 °C in glucose (repressive) conditions (lanes 1– 6). Accumulation of GAL7 mRNA and a 2.5-kb transcript, likely
corresponding to a 3� extended GAL10s lncRNA, is evident in lanes 4 – 6. Other products at �2 and 3.5 kb are background detection of 18 S and 25 S rRNA.
Quantification is provided below each lane and corresponds to the quantity of the indicated transcript versus wild type normalized to levels of SCR1 for each
lane. In lanes with no detectable product, quantities were normalized to background. B, transcriptional induction of the GAL genes results in expression of GAL7
and appearance of a GAL10 –GAL7 transcript. Northern blotting was conducted as above following a 5-h shift to galactose-containing media. Under transcrip-
tionally induced conditions, GAL7 mRNA is induced along with an �4-kb product, which most likely corresponds to a GAL10-GAL7 bicistronic mRNA (lanes
10 –12). C, GAL7 mRNA transcripts in dbp2� strains are aberrant with respect to wild type GAL7 products. Resulting 5�RACE products of aberrant dbp2�
transcripts (lane 2) are shown with respect to the induced wild type GAL7 transcript (lane 1) and basal transcriptional products (lane 3) shown following
resolution on a 1.3% agarose gel and visualization by ethidium bromide staining. The three most prominent 5�RACE products in the dbp2� cells are denoted
A–C to the right of the gel. The two A bands correspond to the same transcription initiation site (as determined by sequencing) and are likely due to differences
in the cDNA “tailing” efficiency in the 5�RACE. Note that these experiments are not quantitative and do not reflect relative transcript abundance between
strains or conditions. D, GAL7 transcripts are the result of cryptic initiation events in the dbp2� strain under typically repressive conditions. Schematic
representation of GAL7 transcriptional start sites in DBP2-deficient cells as determined following cloning and sequencing of resulting 5�RACE products. Dotted
lines denote cryptic transcriptional elements between (inter) or within (intra) an open reading frame with respect to the normal �1 start site in transcriptionally
induced wild type cells (solid line) (74).

FIGURE 7. Simultaneous loss of DBP2 and the nuclear RNA decay factor,
RRP6, results in synthetic lethality. Synthetic growth defects were meas-
ured using a plasmid shuffle assay, which exploits the ability of yeast to grow
in the absence of a URA3-encoding plasmid (vector or pDBP2). Indicated
strains were constructed using standard yeast manipulations, and resulting
transformants were streaked on either �URA or 5-fluoroorotic acid media to
demonstrate growth in the presence or absence of plasmid-encoded DBP2,
respectively.
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(58–60). These gene loops have been shown to influence the
rate of transcriptional reactivation in a process termed “tran-
scriptional memory” (61). It will be interesting to determine
whether Dbp2 and/or RNA folding influence higher order
chromatin architecture.
Because loss of DBP2 results in cryptic transcription indica-

tive of aberrant chromatin architecture, we suggest that the
activity of Dbp2 is necessary to promote clearance of nascent
RNAs from genomic loci. Furthermore, we speculate that this
requirement is due to the presence of RNA structures within
nascent transcripts, which would be predicted to impair RNA
processing and RNP complex assembly. In line with this model,
strains deficient in cotranscriptional mRNP processing and
packaging accumulate RNA:DNA hybrids in structures termed
R-loops, which induce multiple defects associated with aber-
rant chromatin architecture (62–66). For example, simultane-
ous loss of the TRAMP component Trf4 and histone deacety-
lase Sir2 results in severe ribosomal DNA instability,
underscoring an intimate connection between maintenance of
the genome and transcriptome (67).
It is well understood that the activity of RNA polymerases is

dependent on the chromatin environment. Moreover, loss of
chromatin remodeling or histone modification machinery
results in aberrant transcription, including cryptic transcrip-
tional initiation both between and within the gene loci (28, 41,
68). To the best of our knowledge, however, no RNA decay or
processing factors have been linked specifically to repression of
cryptic initiation. Instead, genes encoding histones, histone-
modifying enzymes, and chromatin remodeling factors as well
as transcription factors have been linked to this activity, sup-
porting the fact that aberrant transcriptional initiation is a
result of altered chromatin structure (28). This suggests that
either Dbp2 plays a distinct role as a bridging factor between
nascent RNAs and chromatin or that roles in repressing cryptic
initiation have not been defined thus far for other RNA pro-
cessing factors.
In mammals, p68 has been linked to numerous cotranscrip-

tional processing steps and has been suggested to associatewith
dsRNA both in vitro and in vivo, consistent with the idea that
Dbp2 cotranscriptionally modulates RNA structures (34, 69,
70). Thus, the role of Dbp2 is likely evolutionarily conserved
with future studies providing key insights into the biochemical
mechanisms in eukaryotic gene regulation. More importantly,

however, numerous studies have shown that p68 is a potent
oncogene whose overexpression results in chemotherapeutic
resistance (71, 72). In summary, our studies uncover a role for
Dbp2 at the interface of RNA surveillance and chromatin archi-
tecture as amissing link in quality control of the transcriptome.
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Abstract

Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and
ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles
in formation of RNA and RNP structure in every aspect of RNAmetabolism. In an effort to explore the diversity
of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein
Dbp2 associates with actively transcribing genes and is required for normal gene expression in
Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with
the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding
proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA
helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a
model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once
the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are
conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for
stepwise assembly of mature mRNPs in the nucleus.

© 2013 Elsevier Ltd. All rights reserved.

Introduction

Over the last several decades, major advances
have been made in our understanding of RNA
structures and the parameters for RNA folding in
vivo and in vitro.1,2 Unlike DNA, cellular RNAs have
a high propensity to form intramolecular helices and
tertiary contacts that are central to the functionality of
the given RNA molecule.1,3–5 Proper folding is
critical for small ribozymes not only to form active
sites but also to enable highly efficient catalysis.1,3,5

This is also the case for more complex RNAs, such
as the 18 and 28S ribosomal (r)RNAs, which also
assemble with RNA-binding proteins to form a fully
functional translational apparatus.6,7

Strikingly, while it is now common knowledge that
cellular RNAs such as rRNAs, transfer RNAs
(tRNAs), and spliceosomal (sn)RNAs are all highly
structured and intrinsically dynamic, our knowledge

regarding messenger RNA (mRNA) structure has
lagged behind.8 One possible explanation for this
discrepancy is that, unlike other RNAs, mRNAs are
highly heterogeneous in sequence, length, and
assembly with RNA-binding proteins. Moreover,
both the structure and composition of a given
messenger ribonucleoprotein (mRNP) complex
change at different steps during synthesis, matura-
tion, and translation.9,10 Computational predictions
and genome-wide in vivo analyses demonstrate that
mRNAs have significant secondary structure and
this characteristic is likely a critical aspect of gene
regulation.2,11,12 However, key mechanistic ques-
tions regarding the factors that are required for
proper folding of mRNAs and subsequent assembly
of the mRNA into an mRNP have not been fully
addressed.
One class of enzymes that controls cellular RNA

structure is the DEAD-box RNA helicase family.

0022-2836/$ - see front matter © 2013 Elsevier Ltd. All rights reserved. J. Mol. Biol. (2013) 425, 3824–3838

Article
283

http://dx.doi.org/
mailto:ejtran@purdue.edu


DEAD-box helicases are the largest class of
enzymes within the RNA helicase superfamily,
functioning in all aspects of RNA metabolism from
transcription to translation.13,14 DEAD-box RNA
helicases are unique among other helicase enzyme
families in that they are non-directional and non-
processive, with maximal unwinding on duplexes
that are one to one and a half turns of an A-form RNA
helix. This activity makes DEAD-box proteins well
suited for cellular RNAs, which rarely contain helices
longer than 12 bp in length.14 Furthermore, DEAD-
box proteins exhibit a wide array of biochemical
activities including duplex unwinding, RNA-binding
protein displacement from single-stranded RNA, and
RNA strand annealing.13,14 Thus, although classi-
cally defined as helicases, these enzymes are more
likely to function as cellular RNA chaperones that
conduct a variety of biochemically distinct steps to
properly assemble RNPs in vivo.
Three DEAD-box proteins, namely, Sub2, Dbp5,

and Dbp2, have been implicated in nuclear gene
expression steps in the budding yeast Saccharomy-
ces cerevisiae.14 The least well understood DEAD-
box protein, however, is Dbp2. In multicellular

eukaryotes, the Dbp2 ortholog p68 functions in
multiple gene expression steps including precursor
messenger RNA (pre-mRNA) splicing, microRNA
processing, and regulation of transcription
initiation.15–17 This factor has also recently been
linked to nuclear mRNA export and RNA quality
control in yeast and metazoan cells.18–20 Moreover,
recent studies from our laboratory determined that
Dbp2 is directly associated with transcriptionally
active chromatin.18 This suggests that Dbp2 may
function as a co-transcriptional mRNA chaperone by
facilitating proper mRNA folding, and likely mRNP
formation, in the nucleus.
To shed light on the mechanisms governing

mRNP structure and assembly, we focused on the
biological and biochemical mechanism of Dbp2. Our
results now show that Dbp2 is an efficient RNA
helicase that promotes assembly of the RNA-binding
proteins Yra1 and Nab2 and the export receptor
Mex67 onto newly synthesized mRNA. We also
demonstrate that Dbp2 interacts directly with Yra1
and that Yra1 inhibits the duplex unwinding activity of
Dbp2. We speculate that this may be a common
mode of regulation for other DEAD-box RNA

Fig. 1. Dbp2 displays ATP-de-
pendent duplex unwinding on mul-
tiple RNA substrates at 2 mM ATP:
Mg2+. (a) Schematic representation
and thermodynamic stability of RNA
duplex substrates. All RNA sub-
strates were designed with similar
stability, which was calculated using
the Nearest-Neighbor Database
and converting to ΔG°19 using
ΔG° = ΔH° − TΔS°.25,26 Black or
gray coloring denotes RNA or DNA
strands, respectively, whereas as-
terisks mark the position of the
32P-radiolabeled 5′ end. (b) Graph-
ical representations of unwinding
and annealing assays using radi-
olabeled 16-bp blunt end RNA
duplexes, (c) 21-nt overhang that
is 3′ to the 16-bp RNA duplexes,
and (d) 16-bp blunt end RNA-DNA
hybrids. Reactions were performed
at 19 °C with 2 mM ATP:Mg2+,
0.1 nM radiolabeled duplex, and
600 nM recombinant, purif ied
Dbp2. The fraction of the single-
stranded substrate at each time
point is plotted as the average of
three independent reactions with

standard deviations from the mean. The data were fitted to the integrated form of a homogenous first-order rate law to
determine the kobs

(unw). kobs
(ann) was determined using the integrated rate law for the bimolecular annealing reaction as

previously described.27 ND, not determined. Representative non-denaturing gels are shown in Fig. S2. (e) Kinetic
parameters for Dbp2 unwinding and annealing at 2 mM ATP. The rate constants for Dbp2 unwinding and annealing were
calculated as previously described.27
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helicases. We provide a model whereby Dbp2
duplex unwinding and subsequent enzymatic inhibi-
tion are necessary to properly assemble mRNPs.

Results

Dbp2 catalyzes RNA duplex unwinding on blunt
end and single-strand overhang substrates

Previous studies from our laboratory established
that Dbp2 is an enzymatically active ATPase
associated with transcribing genes.18 Moreover,
we found that loss of DBP2 in budding yeast results
in RNA quality control and termination defects,
suggesting that Dbp2 may function in proper
assembly of mRNPs in the nucleus. To shed light
on the role of Dbp2 in gene expression, we first
asked if Dbp2 is a bona fide RNA helicase in vitro
and if this enzyme shows any preference for specific
RNA duplex substrates. It is well established that
DEAD-box proteins, with the exception of DbpA,
show no sequence-specific association with RNA.13

However, individual members display preferences
for pure RNA duplexes and/or RNA-binding “plat-
forms” for duplex unwinding.21–24 To this end, we
conducted an analysis of in vitro strand unwinding
under pre-steady-state conditions with three differ-
ent nucleic acid substrates and 2 mM ATP:Mg2+ in
the presence of recombinant, purified Dbp2 (Fig. 1
and Fig. S1). These substrates include a 16-bp
blunt-ended RNA duplex, a 16-bp duplex of identical
sequence with a 21-nt single-stranded overhang,

and a 16-bp RNA–DNA duplex with a different
sequence but similar stability (Fig. 1a). The latter
was chosen to account for the fact that RNA–DNA
duplexes are less stable than their RNA–RNA
counterparts and that the ability of DEAD-box RNA
helicases to unwind a given substrate is inversely
proportional to duplex stability.28 The unwinding
assays were then conducted with 600 nM of Dbp2
and preformed duplexes over a 30-min time frame
(Fig. 1 and Fig. S2).
Consistent with other DEAD-box proteins, Dbp2

was able to unwind all three nucleic acid substrates
with a preference for an RNA–RNA duplex (Fig. 1b–
d). Importantly, we observed no ATP-independent
unwinding activity, as evidenced from a lack of duplex
destabilization after a 30-min incubation (Fig. S2a–c,
lane 10). Unlike Ded1, which exhibits unwinding rate
constants of ~0.1 min−1 or ~3.8 min−1 on blunt end
or single-strand overhang duplexes, respectively,21

Dbp2 showed no preferential unwinding of a duplexed
RNA with a single-stranded region. This is evidenced
by observed unwinding rates that are dependent
upon the presence of Dbp2 and ATP (Fig. 1b–d,
bottom; Fig. S2).
DEAD-box proteins also exhibit RNA strand

annealing activity in vitro.13 To measure annealing
activity, we conducted the same assay as above but
with the single-strand components for each substrate.
This showed that the substrates have no spontane-
ous annealing activity whereas Dbp2 exhibits some
annealing activity on all three substrates at 2 mMATP
(Fig. 1b–d; Fig. S2d–f). To determine the precise
biochemical mechanism of Dbp2, we subsequently
calculated rate constants for both unwinding and

Fig. 2. Dbp2 exhibits a prefer-
ence for strand annealing with
single-stranded overhang RNA sub-
strates at low ATP concentration.
(a–c) Graphical representation of
unwinding and annealing assays
with 0.1 mM ATP using (a) the
blunt end RNA duplex, (b) the
RNA duplex with 3′ single-strand
overhang, or (c) the blunt end RNA–
DNA hybrid. Unwinding and anneal-
ing assays were conducted as
above but with 0.1 mM ATP and
2 mMMgCl2. Data from the unwind-
ing and annealing assays were
fitted as above. Representative
non-denaturing gels are shown in
Fig S3. (d) Kinetic parameters for
Dbp2 unwinding at 0.1 mM ATP.
Since there is little or no observable
unwinding, the unwinding data can-

not be fitted with the steady-state equation as mentioned above and are listed as ND (not determined). Therefore, we
assumed that the kobs

(ann) is the same as kanneal and converted the reported kobs
(ann) to the first-order rate constant as

previously described.27
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annealing because the observed unwinding rate does
not distinguish between these two parameters. Initial
attempts to measure observed annealing rates at
2 mM ATP were complicated due to substantial
unwinding activity. This resulted in a poor curve fit
for annealing (open circles, Fig. 1b–d; Fig. S2).
However, when this RNA strand annealing activity
was taken into account according to the steady-state
equation in Ref. 27, both the unwinding and annealing
rate constants were accurately determined (Fig. 1e).
The similar unwinding rate constants of ~0.2 min−1

for both blunt end and overhang substrates further
demonstrated that Dbp2 does not require a single-
stranded overhang for duplex destabilization
(Fig. 1e). This is consistent with our previous studies
demonstrating double-stranded RNA (dsRNA)-dir-
ected ATPase activity18 and is similar to another
DEAD-box protein, Mss116, whose activity is not

enhanced by the presence of a single-stranded
region within the RNA substrate.22 This suggests
that Dbp2 recognizes duplexed RNAs directly.

Dbp2 preferentially anneals RNA duplexes
with single-stranded regions at low ATP
concentrations

Studies of the human ortholog of Dbp2, termed
p68, have shown that this enzyme promotes efficient
annealing under ATP-limiting conditions.29 As men-
tioned above, DEAD-box proteins also facilitate
strand annealing and, in some cases, this activity
is biologically relevant.22,27,30–32 To determine if the
annealing activity of Dbp2 is enhanced by reduced
ATP concentrations, we conducted our unwinding
and annealing assays again but with 20-fold less
ATP (0.1 mMATP). Consistent with previous studies

Fig. 3. DBP2 displays genetic interactions with mRNA export factor mutants mex67-5 and yra1ΔN. (a) Overexpression
of DBP2 is lethal in mex67-5 strains. Indicated strains were transformed with empty vector or galactose-inducible
pGAL-DBP2. Resulting transformants were then spotted in 5-fold serial dilutions onto transcriptionally repressive (glucose)
or inducing (galactose) media and subsequently grown at the indicated temperatures from 16 to 35 °C. (b) Overexpression
of DBP2 in the mex67-5 strain induces an mRNA export defect at the mex67-5 permissive temperature. Briefly, yeast
strains were grown at 25 °C to mid-log phase in selective media and then shifted to galactose-containing media for 1 h to
induce DBP2 overexpression. Cells were then harvested and in situ hybridization was conducted with oligodT30 to
visualize accumulation of total poly(A)+ RNA. DAPI (4′,6-diamidino-2-phenylindole) staining of DNA shows the position of
the nucleus. (c) Loss of DBP2 in yra1ΔN strain results in a synthetic sick growth defect. The indicated double mutant
strains were constructed using standard methods and were analyzed for growth defects as above by serial dilution
analysis onto rich media. The dbp2Δ displays a cold-sensitive phenotype as previously described.18
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of Ded1 and Mss116,22,27 Dbp2 efficiently annealed
all three nucleic acid substrates at low ATP
concentrations with little to no detectable unwinding
activity (Fig. 2a–c and Fig. S3). Moreover, Dbp2 also
annealed overhang and blunt end RNA substrates in
the absence of ATP (data not shown). In contrast to
other DEAD-box proteins, however, Dbp2 exhibited
a strong annealing preference for RNA substrates
with a single-stranded overhang, resulting in a kanneal
of 3.60 ± 0.50 min−1 (Fig. 2d). This is approximately
fourfold higher than the 0.8 min−1 rate observed for
the blunt end RNA–RNA and RNA–DNA duplexes.
To the best of our knowledge, this preference has
not been observed for any other DEAD-box protein
to date, suggesting that Dbp2 has a unique ability to
preferentially anneal structured RNAs with single-
stranded regions. In general, this is the type of
secondary structure we expect to find in mRNAs,
sporadic regions of duplex RNA flanked by single-
stranded regions. We would therefore speculate that
this activity might make Dbp2 a more effective
chaperone for secondary-structure formation of
cellular mRNAs under specific growth conditions
with limited ATP (see Discussion).

DBP2 genetically interacts with mRNA export
factors YRA1 and MEX67

Given the biochemical activity of Dbp2, we
speculated that Dbp2 functions as an RNA chaper-
one for newly synthesized mRNA. Previous studies
from our laboratory have provided evidence that
Dbp2 is required for early gene expression steps
including termination and RNA quality control,18 two
processes intimately connected to mRNP assembly
and export.10,33–35 To pinpoint the precise biological
role of Dbp2, we first conducted a series of genetic
studies with a plasmid that overexpresses DBP2 via
a galactose-inducible promoter (pGAL-DBP2) and
strains harboring mutations in genes linked to 3′ end
formation and/or mRNA export. To this end, we
selected yeast strains with mutations in the poly-
adenylation/cleavage factor PCF11,36,37 the pre-
mRNA splicing and export factor SUB2,38,39 the
RNA-binding protein gene YRA1,40 and the mRNA
export receptor MEX67,41 with the idea that over-
expression of DBP2 might either rescue or enhance
the growth defects of specific mutant strains. Yeast
strains were transformed either with vector alone or
with a pGAL-DBP2 high-copy overexpression vector
and then plated as fivefold serial dilutions onto either
transcriptionally repressive (GLU) or inducing (GAL)
media at multiple temperatures. Strikingly, whereas
wild-type, pcf11-2, sub2-85, and yra1ΔN mutant
strains displayed no obvious growth differences,
overexpression of DBP2 was lethal in mex67-5 cells
at all temperatures (Fig. 3a, bottom).
Because Mex67 is required for mRNA exit from the

nucleus, we then asked if DBP2 overexpression

results in a perturbation of mRNA transport. This was
addressed by conducting in situ hybridization assays
to visualize the cellular localization of poly(A)+ RNAs
by indirect immunofluorescence in wild-type or
mex67-5 cells with vector only or overexpressed
DBP2. Importantly, these experiments were con-
ducted at the permissive temperature for mex67-5,
which does not typically result in accumulation of
poly(A)+ RNAs in nucleus.41 Whereas both wild-
type and mex67-5 cells showed diffuse, whole-cell
staining in the presence of vector alone, mex67-5
cells with overexpressed DBP2 exhibited an accu-
mulation of poly(A)+ RNA in the nucleus (Fig. 3b).
We also observed a detectable accumulation of
mRNA in the nucleus of wild-type cells upon over-
expression of DBP2 (Fig. 3b), even though we did
not previously observe any growth defects in wild-
type cells (Fig. 3a). It is of note that this nuclear
poly(A)+ RNA accumulation is not as great as when
the mex67-5 cells are grown at the non-permissive
temperature of 37 °C (Ref. 41 and data not shown),
suggesting that the export block is modest or is a
result of a secondary effect. Consistent with the
latter, we observed no mRNA transport defects in a
dbp2Δ strain (data not shown). Thus, DBP2 over-
expression induces a slight mRNA export defect in
mex67-5 cells, suggesting a role for this enzyme
during or immediately prior to mRNA transport.
Mex67 is recruited to nascent mRNPs during

transcription through protein–protein interactions
with RNA-binding proteins Npl3, Yra1, and
Nab2.42–44 Interestingly, recent studies have docu-
mented an interaction between p68 and Aly, the
human ortholog of Yra1.19 This suggests that Dbp2
may be functionally connected to Mex67 recruitment
through Yra1. To test this, we asked if loss of DBP2
results in synthetic genetic interactions withmex67-5
or yra1ΔN alleles by constructing double mutant
strains and analyzing growth defects as above. Both
the mex67-5 and yra1ΔN strains failed to grow at
37 °C, whereas the dbp2Δ exhibits a previously
documented cold-sensitive growth at 25 °C and
below.18,41,45 However, the yra1ΔN dbp2Δ strain
displayed severely retarded growth at the permissive
temperature for both single mutants alone (30 °C),
suggesting that DBP2 and YRA1 are functionally
linked (Fig. 3c). Loss of DBP2 also results in a
synthetic growth defect with mex67-5, albeit much
weaker than with yra1ΔN (Fig. 3c). This suggests
that Dbp2 and Yra1 function in a similar pathway and
that Dbp2 is not directly required for mRNA export.

DBP2 is required for efficient association of
Yra1, Nab2, and Mex67 with poly(A)+ RNA

mRNA is assembled with 12–30 different RNA-
binding proteins to form co-transcriptionally assem-
bled mRNPs.46 Given the genetic interactions
between DBP2, YRA1, and MEX67 above, we
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asked if DBP2 is required for efficient association of
these RNA-binding proteins with mRNA. To test this,
we conducted in vivo UV cross-linking and subse-
quently isolated poly(A)+ RNA from wild-type or
dbp2Δ cells. We then analyzed the association of
Yra1 and Mex67 by Western blotting the isolated
fractions. We also analyzed Nab2, a nuclear poly(-
A)-RNA-binding protein that interacts directly with
both Yra1 and Mex67.43,47 Strikingly, this analysis
revealed that all three proteins, Yra1, Nab2, and
Mex67, exhibit reduced association with poly(A)+
RNA in dbp2Δ cells (Fig. 4a–c). This decrease is not
due to differences in UV-independent, nonspecific
binding, as evidenced by a representative Western
blot (Fig. 4d). Furthermore, analysis of ACT1
transcript abundance by reverse transcription-quan-
titative PCR (RT-qPCR) revealed that this reduction
in dbp2Δ cells is not due to mRNA isolation efficiency
(Fig. 4e). Thus, Dbp2 is required for efficient
association of Yra1, Nab2, and Mex67 with
poly(A)+ RNA, consistent with a role in nuclear
mRNP assembly.

Dbp2 physically interacts with Yra1 in vivo and
in vitro

Many DEAD-box proteins associate with protein
cofactors that either regulate the enzymatic activity
or direct the biological role of a given DEAD-box
enzyme.49 Two independent studies have identified
Dbp2 as a component of Yra1-bound protein

complexes, suggesting that Dbp2 may interact
directly with Yra1.50,51 To test this, we first confirmed
the previous interaction by asking if Yra1 copurifies
with a genomically encoded, tandem affinity purifi-
cation (TAP)-tagged Dbp2 in yeast cells, which
consists of two IgG-binding units of Protein A, a
tobacco etch virus (TEV) cleavage site and the
calmodulin-binding peptide that is fused to Dbp2
(Fig. 5a). An untagged wild-type strain was utilized
as a negative control for background association of
Yra1 with the IgG-bound magnetic beads. Consis-
tent with the previous studies, selection of Dbp2-
TAP resulted in copurification of Yra1 (Fig. 5a). No
Yra1 was detected in our background control,
indicating that the interaction is Dbp2 dependent.
Next, we asked if the association between Dbp2 and
Yra1 is direct by conducting protein pull downs with
recombinant, purified proteins expressed in Escher-
ichia coli. Dbp2 and Yra1 were expressed as N-
terminal His-tag or glutathione S-transferase (GST)-
tag fusion proteins, respectively, and then purified to
homogeneity by standard affinity chromatography
methods. The proteins were then incubated togeth-
er, selected on glutathione resin selection, resolved
by SDS-PAGE electrophoresis, and visualized by
Coomassie staining (Fig. 5b). Dbp5 is another
DEAD-box protein that was used as negative control
for nonspecific interactions. Whereas Dbp2 did not
interact with beads alone or with Dbp5 (Fig. 5b, lanes
2 and 8), Dbp2 was copurified with GST-tagged Yra1
(Fig. 5b, lane 4). Dbp5, on the other hand, did not

Fig. 4. Loss of DBP2 results in
reduced association of Yra1, Nab2,
and Mex67 with poly(A)+ RNA. In
vivo UV cross-linking reveals re-
duced association of (a) Yra1, (b)
Nab2, and (c) Mex67 with poly(A)+

RNA in dbp2Δ cells. Wild-type and
dbp2Δ cells were subjected to UV
cross-linking followed by poly(A)+
RNA isolat ion as previously
described.48 The eluted fraction of
wild-type and dbp2Δ cells was
normalized to equal RNA concen-
tration using equivalent A260nm ab-
sorbance units. Proteins from the
eluted fractions were detected by
Western blotting. The relative quan-
tity of poly(A)+ RNA-bound proteins
was determined following quantifi-
cation of the resulting isolated pro-

teins from three independent biological replicates and is reported as the amount of isolated protein relative to total (input).
(d) Representative Western blot of in vivo UV cross-linking. The total protein abundance (input) is shown along with the
amount of isolated proteins with and without UV cross-linking. The latter serves as a background control to show that
proteins isolated following UV cross-linking are not due to nonspecific interactions. (e) RT-qPCR shows efficient isolation
of ACT1 mRNA from both wild-type and dbp2Δ cells following oligo-dT selection. Equal fractions of eluted RNA were
reverse transcribed and subjected to qPCR with ACT1-specific primers as previously described.18 Transcript levels were
normalized by setting the wild-type elution without UV cross-linking to 1 and are a result of three technical replicates from
one biological sample per strain.
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copurify with GST-Yra1 (Fig. 5b, lane 6), further
demonstrating the specificity of the interaction with
Dbp2. Thus, Dbp2 interacts directly with Yra1.
Yra1 is an evolutionarily conserved RNA-binding

protein and RNA export factor (REF).40 Like other
members of the REF protein family, Yra1 contains a
central RNA recognition motif (RRM), two variable
spacer regions, and highly conserved N- and
C-termini (REF-N and REF-C, respectively) (Ref.
40 and Fig. 5c). Previous studies have shown that
Mex67 interacts with the N-terminus (amino acids 1–
77) and C-variable spacer region (amino acids 167–
210) of Yra1, whereas the N-variable spacer region
(amino acids 14–77) and C-variable spacer region
(amino acids 167–210) of this protein are each
sufficient to interact with RNA.45 To determine what
region of Yra1 is necessary for Dbp2 binding, we
obtained bacterial expression plasmids for expres-
sion of two GST-tagged Yra1 truncation mutations
that express either the RRM and C-terminal region
(RRM + C) or the C-terminal region alone (yra1C)
(Fig. 5c and Ref. 52). We then purified the truncation
mutants and conducted pull-down assays as above.
Interestingly, Dbp2 interacted with all three proteins,
full-length Yra1, Yra1 RRM + C, and the C-terminus

alone (Fig. 5d, lanes 6 and 8), suggesting that the
C-terminus constitutes the Dbp2-binding domain.
We then attempted to determine if the C-terminus is
necessary for this interaction; however, we were
unable to express the GST-yra1ΔC mutant in
bacteria. Regardless, these studies suggest that
Dbp2 interacts with the C-terminus of Yra1.

Yra1 inhibits the helicase activity of Dbp2

Many DEAD-box protein-binding factors also
regulate the enzymatic activity of their respective
RNA helicase. This includes the translation initiation
factor eIF4A, whose helicase activity is activated by
eIF4B, 4H and 4F, and eIF4AIII, whose ATPase
activity is regulated by Y14 and MAGOH.53–56 Thus,
we asked if Yra1 modulates the helicase activity of
Dbp2. To test this, we first conducted in vitro
unwinding assays with Dbp2 in the presence of
full-length Yra1. However, we were unable to
accurately measure the unwinding activity of Dbp2
due to the previously documented strand annealing
activity of Yra1 (Ref. 57 and data not shown). To
resolve this problem, we then analyzed the anneal-
ing activity of the minimal Dbp2-interacting domain,

Fig. 5. Dbp2 physically interacts with Yra1 in vivo and in vitro. (a) Yra1 co-immunoprecipitates with Dbp2.
Immunoprecipitation assays were performed from wild-type (DBP2 no tag) and DBP2-TAP strains using IgG-conjugated
dynabeads. Ten percent of the lysate was used as input. Proteins from the input and immunoprecipitated fractions were
resolved by SDS-PAGE and detected by Western blotting analysis. (b) Dbp2 interacts directly with Yra1. In vitro pull-down
assays were performed with recombinant, purified 6×His-tagged Dbp2 and GST-tagged Yra1. Briefly, recombinant,
purified proteins were incubated together, 20% of the protein mix was removed as input (“I”), and interacting proteins were
selected on glutathione Sepharose resin (bound “B” proteins). Proteins were resolved by SDS-PAGE electrophoresis and
visualized by Coomassie staining. Neither GST-Yra1 nor Dbp2 co-elute with an unrelated DEAD-box protein Dbp5 (lanes
6 and 8), demonstrating that this interaction is specific. (c) Schematic representation of the primary sequence of Yra1,
functional motifs, and truncation mutants. Yra1 is composed of evolutionarily conserved REF domains at the N- and
C-terminus separated by variable regions.40,42,45,52 Yra1 also contains a central RRM that does not appear to harbor RNA
binding activity.45 (d) The C-terminal half of Yra1 (amino acids 124–226) is sufficient to interact with Dbp2. GST-tagged
Yra1 and truncation mutants were purified as recombinant proteins from E. coli and subjected to in vitro pull downs as
above.
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yra1C, which has previously been shown to have
severely impaired RNA-binding activity in vitro.45

Importantly, this revealed that the yra1C protein has
no intrinsic annealing activity in vitro at the tested
concentrations (Fig. S4e and f). To test the effect of
yra1C on the unwinding activity of Dbp2, we
conducted unwinding assays as above with the
blunt end RNA duplex either with Dbp2 alone or with
equimolar or twofold excess of Yra1 (Fig. 6).
Strikingly, we found that yra1C decreased both the
unwinding rate [kobs

(unw)] and the amplitude of duplex
unwinding by Dbp2 (Fig. 6a and b; Fig. S4a–c). In
fact, the decreased unwinding rate is almost a full
order of magnitude lower with yra1C (Fig. 6b). We
also tested the unwinding activity of Dbp2 in the
presence of twofold molar excess of bovine serum
albumin (BSA) to show that the unwinding inhibition
effect is specific to Yra1. Interestingly, this revealed
a slight increase in the kobs for unwinding most likely
due to molecular crowding (Fig. 6a and b; Fig. S4d).
This suggests that the inhibition of Dbp2 is specific to
Yra1.

To elucidate the mechanism of inhibition, we then
asked if Yra1 alters the ATPase activity of Dbp2 by
conducting in vitro ATP hydrolysis assays with
increasing concentrations of full-length Yra1 or
BSA (Fig. 6c). Consistent with our previous studies,
Dbp2 exhibited an observed ATP hydrolysis rate
(kobs) of 21 min−1 with saturating RNA (250 μg/ml of
total yeast RNA) and 1 mM ATP (Fig. 6c). Whereas
addition of BSA resulted in a slight enhancement of
the kobs from 21 to 25 min−1, Yra1 gave a greater
stimulation at each tested concentration. Thus, Yra1
slightly enhances the ATPase activity of Dbp2.
To determine if Yra1 enhances the ATPase rate by

increasing the ATP-binding affinity of Dbp2, we
measured the Km for ATP with or without a twofold
excess of Yra1 or BSA (Fig. 6d). This revealed that
Yra1 reduces the Km for ATP by ~30%, from 2.3 to
1.6 mM. This modest effect is similar to the observed
increase in ATPase rate. Although moderate, this
increase is specific for Yra1 as addition of BSA
resulted in an ATPase curve that was superimpos-
able with Dbp2 alone. This suggests that Yra1

Fig. 6. Yra1 modulates the enzy-
matic activity of Dbp2. (a) Graphical
representation of Dbp2 duplex un-
winding with yra1C. Unwinding as-
says were conducted with the blunt
end RNA duplex and either Dbp2
alone (600 nM) or yra1C (600 nM,
1200 nM) or BSA (1200 nM). Rep-
resentative non-denaturing gels are
shown in Fig. S4 and demonstrate
that yra1C and BSA do not have
intrinsic annealing activity. (b) The
kobs
(unw) and the amplitude of the

unwinding reaction. The kobs
(unw) and

the amplitude are determined using
the integrated rate law for a homo-
geneous first-order reaction as pre-
viously described.27 (c) Full-length
Yra1 moderately enhances ATP
hydrolysis activity of Dbp2. In vitro
ATPase assays were conducted
with 200 nM of recombinant, puri-
fied Dbp2 and 250 μg/ml of total
yeast RNA using a PK/lactate de-
hydrogenase enzyme-coupled
absorbance-based detection meth-
od as previously described.18 Re-
combinant, purified Yra1 was
included where indicated at final

concentrations from 100 to 600 nM. Equal concentrations of BSA were also tested to account for nonspecific interactions.
The ATPase activity of Dbp2 alone is similar to previous publications and has already been characterized.18 (d) Yra1
moderately enhances the ATP binding affinity of Dbp2. In vitro ATPase assays were conducted as above with constant
amounts of Dbp2, Yra1, and total RNA (10 μg/ml); increasing amounts of ATP; and constant MgCl2 (2 mM). Assays were
also conducted with BSA in place of Yra1 to account for nonspecific effects. The Km is indicative of the ATP binding affinity
of Dbp2. (e) Yra1 slightly increases the amount of RNA necessary for activation of ATP hydrolysis. In vitro ATPase assays
were conducted as above with 200 nM Dbp2, 400 nM Yra1, and increasing amounts of total yeast RNA. The amount of
RNA necessary for 50% stimulation of maximum ATPase activity (EC50) is reflective of the RNA binding affinity of Dbp2.
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stimulates the ATPase activity of Dbp2 through
increasing the affinity for ATP. We suggest that this
decrease in the Km is biologically relevant because it
occurs within the physiological range of cellular ATP
concentrations.
Finally, we asked if Yra1 alters the effective RNA-

binding activity of Dbp2. To this end, we measured
the ATPase activity of Dbp2 as above but with a
range of RNA concentrations from 1 ng/ml to 1 mg/
ml (Fig. 6e). It is of note that the EC50 of Dbp2 alone
is lower than our previous studies,18 due to a more
refined purification method for enzymatically active
Dbp2 that increases its specific activity. Interestingly,
inclusion of Yra1 increased the amount of RNA
necessary for ATP hydrolysis by Dbp2 by ~50%
(Fig. 6e). This suggests that Yra1 slightly reduces
the RNA-binding affinity of Dbp2, while increasing

the ATP binding and hydrolysis rate. We suggest
that these subtle changes on the enzymatic param-
eters of Dbp2 result in release of Dbp2 from RNA,
thereby inhibiting helicase activity in vitro. It is also
possible that inhibition could also be due to Yra1
blocking initial association of Dbp2 with RNA.
However, if this were the case, we would expect
that Yra1 would reduce the RNA-dependent ATPase
activity (Fig. 6c). Because we do not observe a
decrease in RNA-dependent ATPase activity, this
suggests that Yra1 inhibits duplex unwinding of
Dbp2 through an as-of-yet uncharacterized mode
distinct from other DEAD-box RNA helicase-
interacting proteins.
Taken together, we provide a model whereby Yra1

controls the enzymatic activity of Dbp2 to promote
proper mRNP formation in the nucleus (Fig. 7).
During transcription, Dbp2 unwinds aberrant struc-
tures on the nascent transcript that are refractory to
RNA-binding protein assembly. This facilitates the
loading of Yra1, Mex67, and Nab2 and likely other
RNA-binding proteins onto the mRNA. The interac-
tion of Yra1 with Dbp2 then inhibits duplex unwinding
and possibly also promotes Dbp2 release. Alterna-
tively, Dbp2 may remain bound to the mRNA as part
of a Yra1–Dbp2 complex. If this were the case, Dbp2
would function similarly to eIF4AIII, which acts as an
RNA clamp for a ribonucleoprotein complex.55 With
either scenario, we predict that inhibition of Dbp2
helicase activity by Yra1 prevents further remodeling
of the properly assembled mRNP, as DEAD-box
proteins can also efficiently remodel ribonucleopro-
tein complexes.48,60,61 This constitutes a previously
unknown mechanism for regulation of Dbp2 as well
as the first biochemical mechanism for co-transcrip-
tional assembly of an mRNP complex by this RNA
helicase.

Discussion

Proper nuclear mRNP assembly is crucial for co-
transcriptional and post-transcriptional processing
steps including removal of introns by splicing, 3′ end
cleavage and polyadenylation, as well as formation
of a translationally competent mRNA.10,62 During
each of these steps, the evolving mRNP must
assemble with a complement of RNA-binding pro-
teins to direct the next step in the gene expression
process. Our studies now provide evidence that the
DEAD-box RNA helicase, Dbp2, plays a critical role
in mRNP assembly in the nucleus. The human
ortholog of Dbp2, termed p68, has been implicated in
numerous transcriptional and post-transcriptional
events, including transcriptional regulation, alterna-
tive splicing, and microRNA processing.15,17,63,64

The fact that ectopic expression of human p68 in
yeast fully complements the growth defects of dbp2Δ
cells suggests that these roles are evolutionarily

Fig. 7. Model for Dbp2-dependent loading of RNA-bind-
ing proteins onto mRNA. Yra1 is recruited to the actively
transcribing loci through interacting with Sub2 or Pcf11 on
the C-terminal domain of the RNA polymerase II.52,58

However, structures of the nascent mRNA prevent
association with Yra1. Dbp2 unwinds these structures
co-transcriptionally in an ATP-dependent manner. This
promotes mRNP assembly by facilitating loading of Yra1,
Nab2, and Mex67 onto nascent mRNA. Mex67 is shown
interacting with its heterodimerization partner, Mtr2.59 Yra1
then inhibits the helicase activity of Dbp2 to prevent further
remodeling of the assembled mRNP and may also
promote release of Dbp2 from the RNA. This constitutes
a biochemical mechanism of RNA helicase unwinding and
subsequent inhibition during co-transcriptional assembly
of mRNAs in the nucleus.
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conserved.65 Given the multifaceted role, it is likely
that p68 and Dbp2 are major players in the structural
assembly of the transcriptome in all eukaryotes.
Our studies establish that Dbp2 is a bona fide RNA

helicase, with efficient duplex unwinding activity on
blunt-ended duplexes. This suggests that Dbp2
recognizes secondary structure directly, without the
need for a single-stranded region for initial “loading”
of the enzyme. This activity is consistent with a
subset of DEAD-box family members with highly
efficient duplex unwinding, such as CYT-19 and
Mss116.22,66–68 Moreover, it is consistent with our
previous observation that Dbp2 displays dsRNA-dir-
ected ATPase activity.18 Interestingly, whereas the
core sequence is conserved among all DEAD-box
protein family members, these three enzymes also
contain C-terminal extensions. In fact, a recent
biochemical and structural analysis of CYT-19
demonstrated that the C-terminal RGG motif of this
enzyme functions as a “tether” to enable multiple
rounds of duplex unwinding.69

Several DEAD-box proteins have been shown to
utilize protein cofactors to trigger duplex unwinding
by increasing the ATP binding or RNA-binding
affinities of an inefficient DEAD-box enzyme.54,70–72

Given the high duplex unwinding activity of Dbp2,
however, inhibition may be the more important mode
of regulation. In support of this, we find that Yra1
inhibits the helicase activity of Dbp2. The human
ortholog of Dbp2, p68, was recently shown to
interact with Aly, the human counterpart to Yra1,19

suggesting that this regulation is conserved in higher
eukaryotes. We speculate that in vivo the modulation
of Dbp2 helicase activity by Yra1 is utilized to
prevent further remodeling of the assembled mRNP.
If this is the case, this would constitute a previously
unrecognized mechanism for temporal regulation of
DEAD-box enzymes in vivo. Although we do not
know the mechanism for inhibition of duplex unwind-
ing by Yra1, a recent study of Mss116 revealed that
DEAD-box proteins are modular enzymes.73 In fact,
the C-terminal domain provides direct recognition of
dsRNA duplexes whereas the N-terminal domain
interacts with ATP.73 The ability to couple ATP
hydrolysis with duplex unwinding lies in the formation
of a closed helicasewith juxtaposedN- andC-terminal
domains.73 Because our studies suggest that Yra1
uncouples ATP hydrolysis from duplex unwinding, it
will be interesting to determine the precisemechanism
for Yra1-dependent inhibition of Dbp2.
Our studies show that Dbp2 is required for

assembly of Yra1, Nab2, and Mex67 onto poly(A)+
RNA. It is well established that proper termination
and 3′ end formation is required for mRNA export, as
defects in these processes result in impaired
recruitment of Mex67 to newly synthesized mRNAs
and RNA decay.35,74,75 The fact that loss of DBP2
results in reduced association of Mex67, as well as
the poly(A)+ RNA-binding protein Nab2, suggests

that Dbp2 functions concert with termination and 3′
end formation. In support of this, loss of DBP2
results in transcription of a bicistronic GAL10–GAL7
mRNA, a characteristic phenotype of termination
defects.18 This idea is also consistent with our
genetic analysis and the fact that DBP2 overexpres-
sion resulted in lethality of mex67-5 strains but not
sub2-85 or pcf11-2 strains. This suggests that Dbp2
functions upstream of Mex67 but downstream or
independent of Sub2 and Pcf11. Interestingly, Yra1
also interacts directly with all three of these
proteins,38,42,52 indicating that this small protein
acts as a coupling factor for multiple co-transcrip-
tional processing and assembly steps. Furthermore,
recent studies from the Bentley laboratory have
demonstrated that Pcf11 is required for recruitment of
Yra1 to chromatin, which then functions to modulate
poly(A) site selection.52,76 Thus, the order of events
for this process and role of Dbp2 in termination is an
intriguing question for future studies.
In addition to canonical duplex unwinding, our

studies also show that Dbp2 displays strong RNA
strand annealing activity. This is not unprecedented
as the DEAD-box protein Mss116 utilizes both
annealing and duplex unwinding activities to pro-
mote folding of the ai5γ group II intron in
mitochondria.30–32 This would suggest that Dbp2
could function similarly; however, in contrast to
Mss116, Dbp2 only displays significant annealing
under ATP-limiting conditions. Interestingly, recent
work from the Parker laboratory revealed that, under
conditions of glucose starvation, the sub-cellular
localization of numerous RNA-binding proteins is
drastically altered.77 This suggests that cellular
ribonucleoprotein complexes undergo dynamic al-
terations in nutrient-limited conditions when cellular
ATP concentrations are low. Thus, it will be
interesting to determine the function of Dbp2 under
specific physiological growth conditions, which may
promote strand annealing.
Our studies now add Dbp2 to the complement of

DEAD-box proteins that function in nuclear mRNP
assembly in S. cerevisiae. This includes Sub2, which
functions in both splicing and formation of an
export-competent mRNP, and Dbp5, which pro-
motes nuclear release of exporting transcripts.14

When considering that rRNA biogenesis requires 21
of the 25 DEAD-box proteins in budding yeast,14,78

one might ask why there aren't more DEAD-box
RNA helicases associated with mRNP biogenesis.
Unlike other cellular RNAs such as snRNAs, tRNAs,
and rRNAs, mRNAs stand out as distinct as tertiary
structure does not appear to play a large role in the
functionality of these RNAs in eukaryotes. Given the
propensity for RNAs to fold and misfold in solution,1

the prevailing model is that co-transcriptional associ-
ation of RNA-binding proteins maintains primarily
linear structure of a nascent transcript.10 Although
the average length of an mRNA is 1 kb, pre-mRNA
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transcripts can range from 3 kb to ~2.5 Mb, making it
likely that DEAD-box helicases function as key
structural modulators of the transcriptome. The
challenge then will be defining the precise molecular
rearrangements that require p68/Dbp2 or other
members of the DEAD-box protein family given the
highly coupled nature of nuclear gene expression
steps. With the advancement in RNA sequence and
target identification coupled with structural studies of
mRNAs,79 these questions can be addressed in the
very near future.

Materials and Methods

Yeast strains, yeast plasmids, and bacterial plasmids

Corresponding data are listed in Tables 1 and 2.

Recombinant protein expression and purification

Expression of pMAL MBP-TEV-DBP2 in BL21 E. coli
(DE3) cells (NewEnglandBio Labs) was inducedwith 1 mM
IPTG at 37 °C for 3 h and was subsequently purified from
the soluble fraction using amylose resin according to the
manufacturer's instructions (New England Bio Labs). The
MBP tag was then cleaved with 50 U of TEV protease
(Invitrogen) overnight at 16 °C. The cleaved Dbp2 was then
subjected to cation-exchange chromatography with SP
Sepharose (Sigma). Dbp2 was eluted in 50 mM Tris–HCl
at pH 8with 600 mMNaCl and 20%glycerol and stored at −
80 °C until usage. Expression of pET28a His6-DBP2 in
Rosetta E. coli (DE3) cells (Novagen) was induced by
0.2 mM IPTG at 16 °C and purified as previously
described.18 Two consecutive TEV sites were inserted
between the GST-tag and the coding sequence of Yra1 by
PCR using pFS1853 GST-Yra1 as a template, a set of
primer pairs that contain the TEV sites coding sequence
flanked next to the GST-tag and Yra1 coding sequence.
Forward primer: 5 ′-GAAAACCTGTACTTCCAGG-
GAATGTCTGCTAACTTAGATAAATCCTTAGAC-3′; reverse
primer: 5′-TCCCTGGAAGTACAGGTTTTCCTCGA-
GATGGTCGCCACCACCAAACGTGGC-3′. Expression of
the GST-TEV-YRA1 in Rosetta E. coli (DE3) cells (Nova-
gen) was induced by 0.2 mM IPTG overnight at 16 °C and

was subsequently purified from the soluble fraction using
glutathione Sepharose according to the manufacturer's
instructions (GE Healthcare). The GST tag was then
cleaved with 50 U of TEV protease (Invitrogen) overnight
at 16 °C. The cleaved purified recombinant proteins were
subsequently subjected to SP Sepharose (Sigma). Yra1
were eluted in 50 mM Tris–HCl at pH 8 with 600 mM NaCl
and 20% glycerol and stored at −80 °C until usage.
Expression of the pET21 GST-Yra1C and pET21
GST-Yra1 RRM + C in Rosetta E. coli (DE3) cells
(Novagen) was induced by 0.2 mM IPTG overnight at
16 °C and was subsequently purified from the soluble
fraction using glutathione Sepharose according to the
manufacturer's instructions (GE Healthcare). The purified
proteins were eluted with 20 mM glutathione, 150 mM
NaCl, 20% glycerol, and 20 mM Hepes at pH 7.5 and
stored at −80 °C until usage.

Unwinding assays

RNA oligonucleotides were purchased from Integrated
DNA Technologies, and duplex substrates were prepared
as previously described.27,80 The blunt end RNA duplex
sequences are as follows: (top strand) 5′-AGCACC-
GUAAAGACGC-3 ′ + (bot tom strand) 5 ′ -GCGU-
CUUUACGGUGCU-3′. The overhang RNA duplex
sequences are as follows: (top strand) 5′-AGCACC-
GUAAAGACGC-3 ′ + (bot tom strand) 5 ′ -GCGU-
CUUUACGGUGCUUAAAACAAAACAAAACAAAAC-3′.
The blunt end RNA/DNA duplex sequences are as follows:
(top strand) 5′-GGCACGGUGGGGACCG-3′ + (bottom
strand) 5′-CGGTCCCCACCGTGCC-3′. The top strand of
the RNA duplex was 5′-end-labeled with [γ32P]ATP using
T4 polynucleotide kinase according to standard methods.
In vitro unwinding assays were conducted as previously
described27 except for using 0.1 nM 32P-labeled duplex in
a 30-μl reactionmixture containing 40 mMTris–HCl (pH 8),
50 mM NaCl, 2.5 mM MgCl2, 2 mM DTT, 60 U Super-
ase-in (Life Technologies), and 600 nM Dbp2 and 600 nM
or 1200 nM of Yra1 where indicated. The reaction mixture
was incubated in a 19 °C water bath for 10 min prior to the
reaction. All reactions were performed at 19 °C. Unwinding
reactionswere initiated by adding ATP (2 mMor 0.1 mMas

Table 1. Yeast and bacterial plasmids

Name Description Source/Reference

BTP13 pET28a-DBP2 31
pCEN/URA3 pRS316 40
pGAL1-GAL10-

GAL7
pYGPM11714 Open Biosystems

BTP22 pMAL-TEV-Dbp2 This study
BTP27 GST-TEV-Yra1 This study
pSW3319 GST-Dbp5 41
pRS426 pURA3/2μ 40
pGAL-DBP2 pGAL-DBP2/2μ/URA3 Open Biosystems
GST-Yra1 C pET21GST-Yra1 C 38
GST-Yra1

RRM+C
pET21GST-Yra1 RRM+C 38

psub2-85 psub2-85/CEN/TRP1 42

Table 2. Yeast strains

Strain Genotype Source

Wild type
(BY4741)

MATa his3Δ1 leu2Δ0
met15Δ0 ura3Δ0

Open
Biosystems

dbp2Δ
(BTY115)

MATa dpb2::KanMx ura3Δ0
leu2Δ0 his3Δ0 TRP1 met-lys?

31

DBP2-TAP Mata DPB2::TAP:HIS3 his3Δ1
leu2Δ0 met15Δ0 ura3Δ0

Open
Biosystems

mex67-5 MATa mex67::HIS3 ura3 ade2 his3
leu2 trp1 pTRP/CEN/mex67-5

43

Wild type
(W303)

MATa ura3-1 ade2-1 his3-11, 15
leu2-1 trp1-1 can1-100

R.
Rothstein

yra1ΔN +
Yra1

MATα yra1::HIS3 ura3 ade2 ade3
leu2-1 trp1 pRS314-yra1ΔN

+pHT4467Δ-YRA1 (with intron)

42

pcf11-2 MATa ura3-1 trpΔ ade2-1 leu2-3,
112 his3-11, 15 pcf11-2

44

SUB2
shuffle

MATa sub2:: HIS3 ade2 leu2, ura3,
trp1 pCG788

45
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indicated). At the times indicated, 3-μl aliquots were
removed and the reaction was stopped with a buffer
containing 1% SDS, 50 mM ethylenediaminetetraacetic
acid (EDTA), 0.1% xylene cyanol, 0.1% bromophenol blue,
and 20% glycerol. Aliquots were subsequently resolved on
a 10% nondenaturing PAGE. The gels were dried and
radiolabeled RNAs were quantified using ImageQuant
software. The data from each time point were calculated
using the following formula: fraction of single stranded =
(single-stranded RNA/total RNA). The data were then fitted
to the integrated form of a homogenous first-order rate law
to determine the kobs

(unw).
The rate constants for unwinding kunw and kann were

determined using Frac ss = kunw(kunw + kann)−1(1 −
exp(− (kunw + kann)t)) as described in Ref. 27.

Annealing assays

In vitro annealing assays were performed in the presence
of 2 mM or 0.1 mM ATP with the same reaction mixture as
unwinding assays without the 10-min pre-incubation. The
RNA duplex was denatured at 95 °C for 2 min to generate
single-strandedRNAs. All the reactionswere conducted in a
19 °C water bath and were initiated by addition of 0.1 nM of
the denatured substrate strands. Aliquots of the reactions
were treated asdescribed in the unwinding assays. Thedata
from each time point were calculated as described in the
unwinding assays. The data were then fitted to the
integrated rate law for the bimolecular annealing reaction
to determine the kobs

(ann).

Cellular microscopy

In situ hybridization was performed on cells that were
grown to mid-log phase at the permissive temperature
(25 °C) with −URA + 2% glucose and then shifted to −
URA + 2% galactose for a 1-h induction of DBP2 over-
expression. Cells were subsequently harvested, fixed with
formaldehyde, and mounted on glass slides. Poly(A)+
RNA was then visualized by microscopy following hybrid-
ization with digoxigenin-conjugated oligodT50 and detec-
tion with fluorescein isothiocyanate-conjugated
anti-digoxigenin secondary antibody (Roche) as previous-
ly described.48 DAPI staining was utilized to visualize
DNA.48 Images were collected using an Olympus BX51
microscope using Metamorph software.

TAP-tag immunoprecipitation

Cells expressing genomically encoded Dbp2-TAP or
untagged Dbp2 (BY4741) were grown in YPD at 30 °C to
an OD600 of 0.6. Harvested cells were pelleted and injected
into liquid nitrogen. The frozen cells were then lysed in the
solid phase by milling, using a planetary ball mill. The lysed
cells were subsequently resuspended in 15 ml of extrac-
tion buffer (20 mM Hepes at pH 7.4, 110 mM KoAc, 0.5%
Triton X-100, 0.1% Tween-20, and 70 mM NaCl) in the
presence of 1× protease inhibitor cocktail tablets (Roche)
followed by centrifugation at 4700 rpmat 4 °C for 15 min as
previously described.81 The soluble fraction of the lysate
was incubated with IgG-conjugated dynabeads at 4 °C for
30 min. The unbound protein was washed away with
extraction buffer. The bound protein was eluted with 10 U

of AcTEV protease (Life Technologies) followed by
trichloroacetic acid precipitation. The proteins were then
resolved by SDS-PAGE and detected by Western blotting
analysis. Western blotting analysis was conducted with
standard molecular biology techniques rabbit anti-Yra1,52

rabbit anti-Protein A, and horseradish-peroxidase-conju-
gated goat anti-rabbit antibody (Sigma).

In vitro binding (pull down) assays

Twenty micrograms of recombinant, purified GST-Yra1,
GST-Yra1 RRM + C, GST-Yra1 C, GST-Dbp5, His-Dbp2,
Dbp5, or Dbp2 were incubated with the glutathione
Sepharose in 20 mM Hepes, pH 7.5, 150 mM NaCl, and
20% glycerol at room temperature for 10 min as indicated
following removal of 20% of the protein mixture for input.
Bound proteins were eluted with 50 mM reduced glutathi-
one in 20 mM Hepes, pH 7.5, 150 mM NaCl, and 20%
glycerol and were resolved by SDS-PAGE followed by
Coomassie staining.

In vitro ATPase assays

In vitro ATP hydrolysis assays were performed using a
PK/lactate dehydrogenase enzyme-coupled absorbance
assay as previously described,18 but with 200 nM Dbp2
and increasing amounts of recombinant purified Yra1, total
yeast RNA (Sigma), or ATP as indicated. Presented data
are the average of three independent experiments and the
error bars represent the standard deviation.

In vivo UV cross-linking assays

Wild-type and dbp2Δ yeast cells were grown in YPD at
30 °C. Mid-log phase cells were harvested and resus-
pended into 50 ml of 10 mM Tris–HCl at pH 7.5, 500 mM
NaCl, and 1 mM EDTA. The resuspended cells were then
subjected to UV light with 180,000 μJ/cm2 on ice for
2.5 min using UV Stratalinker 1800. The UV treatment was
conducted twice with 45-s pause in between each
treatment. The cells were then centrifuged at 4000 rpm
for 10 min at 4 °C. The pelleted cells were resuspended
into 10 ml of 10 mM Tris–HCl at pH 7.5, 500 mM NaCl,
1 mM EDTA, 500 U of Superase-in (Life Technologies),
1 mMPMSF, and 0.5× of protease inhibitor cocktail tablets
(Roche). The cells were then lysed by bead beating,
cleared by centrifugation, and then subjected to poly(A)+
RNA pull down using oligo dT cellulose (Life Technolo-
gies). The RNA concentration from the eluted fraction was
determined by measuring the absorbance at 260 nm.
RNase treatment and trichloroacetic acid precipitation
were then performed to recover bound proteins. Fractions
were then resolved by SDS-PAGE and proteins were
detected byWestern blotting with rabbit anti-Nab2,48 rabbit
anti-Mex67,82 rabbit anti-Yra1,52 and horseradish-perox-
idase-conjugated goat anti-rabbit antibodies (Promega).

RT-qPCR analysis

RNA was isolated from oligo dT-purified RNPs (see UV
cross-linking) by standard acid phenol purification. Equal
fractions from the elution were then reverse transcribed
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into cDNA (Qiagen) and the quantity of ACT1 RNA was
measured by quantitative PCR using the BioRad CFX96
system. The sequences for ACT1 primers were as follows:
forward primer, 5′-TGGATTCCGGTGATGGTGTT3′; re-
verse primer, 5′-TCAAAATGGCGTGAGGTAGAGA-3′.
The fold change of ACT1 transcript abundance was
calculated by normalizing the signal from each sample to
the signal obtained from wild type without UV treatment
and is reported as the average of three technical repeats
with standard error from the mean.

Serial dilution growth assay

Indicated strains were grown in −URA + 2% glucose or
YPD liquid cultures and then harvested at mid-log phase.
Cells were then spotted in 5-fold serial dilutions onto −
URA + 2% glucose, −URA + 2% galactose, or YPD plates
and incubated at temperatures ranging from 16 to 37 °C as
indicated.
Supplementary data to this article can be found online at

http://dx.doi.org/10.1016/j.jmb.2013.05.016
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Abstract

Long noncoding RNAs (lncRNAs) are a class of molecules that impinge on the expression of protein-coding genes. Previous
studies have suggested that the GAL cluster-associated lncRNAs of Saccharomyces cerevisiae repress expression of the
protein-coding GAL genes. Herein, we demonstrate a previously unrecognized role for the GAL lncRNAs in activating gene
expression. In yeast strains lacking the RNA helicase, DBP2, or the RNA decay enzyme, XRN1, we find that the GAL lncRNAs
specifically accelerate gene expression from a prior repressive state. Furthermore, we provide evidence that the previously
suggested repressive role is a result of specific mutant phenotypes, rather than a reflection of the normal, wild-type function
of these noncoding RNAs. To shed light on the mechanism for lncRNA-dependent gene activation, we show that rapid
induction of the protein-coding GAL genes is associated with faster recruitment of RNA polymerase II and reduced
association of transcriptional repressors with GAL gene promoters. This suggests that the GAL lncRNAs enhance expression
by derepressing the GAL genes. Consistently, the GAL lncRNAs enhance the kinetics of transcriptional induction, promoting
faster expression of the protein-coding GAL genes upon the switch in carbon source. We suggest that the GAL lncRNAs
poise inducible genes for rapid activation, enabling cells to more effectively trigger new transcriptional programs in
response to cellular cues.
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Introduction

Essential cellular processes, such as growth, organ development,

and differentiation, require precise spatial and temporal control of

gene expression. Eukaryotes have developed intricate pathways for

regulating gene expression at the transcriptional level in both

global and gene-specific manners [1,2]. Recent studies have

provided evidence that lncRNA molecules facilitate transcriptional

control of protein-coding genes [3,4]. Thus far, the most well-

characterized lncRNA is Xist, which facilitates X chromosome

inactivation in mammalian cells [5,6]. Similar to a transcription

factor, Xist functions by directing corepressor complexes to the

targeted DNA loci [7]. Other examples of repressive lncRNAs

include HOTAIR, a 2.1 kilobase transcript that directs repression

of developmental gene loci, and PANDA, which regulates cell-

cycle–dependent gene expression [8,9]. Recruitment of transcrip-

tion factors may also be a primary mechanism for lncRNAs

associated with transcriptional activation [10–13], suggesting that

these molecules may recruit both activators and repressors. Other

lncRNAs, however, appear to function solely through their

synthesis, whereby the act of transcription alters the chromatin

structure of a targeted gene promoter [14–16]. This diversity of

action may account for the fact that individual lncRNAs are more

conserved in their position than in their nucleotide sequence

[17]. Interestingly, many mammalian lncRNAs are associated with

genes that require precise temporal control of initiation to facilitate

proper cell growth and differentiation [9,13,18–23]. This suggests

that these molecules may control the timing of gene expression in

response to specific signals.

The GAL10 lncRNA in the S. cerevisiae budding yeast model

system is encoded within the GAL gene cluster, which is composed

of the GAL1, GAL10, and GAL7 metabolic genes required for

utilization of galactose as a carbon source [24–26]. Budding yeast

are able to utilize glucose and this catabolite is the preferential

carbon source for energy production. However, yeast also has the

capacity to utilize galactose when it is the sole carbon source in the

media [27,28]. The transition from glucose to galactose metab-

olism requires an intricate switch in transcriptional programs,

whereby genes repressed in the presence of glucose must be

activated for production of galactose metabolizing enzymes [29–

31]. The highly orchestrated series of events required to facilitate

this GAL gene metabolic switch is well understood and involves

modulation of carbon source-dependent transcriptional activators

and repressors [1,29,32–34]. Interestingly, the GAL10 lncRNA

has been proposed to act additively with transcriptional repressors,

to provide tighter control of this gene expression network
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[24,25,35,36]. The repressive role of the GAL10 lncRNA is

supported by correlative changes in histone acetylation patterns

and the observation that impaired lncRNA degradation in RNA

decay-deficient mutants results in defective expression of the GAL1

and GAL10 genes [24,25]. However, the mechanism for repression

has not been established, and unlike Xist, there is no evidence for

a direct interaction between the GAL10 lncRNA and a transcrip-

tional repressor.

Our laboratory recently found that loss of the RNA helicase

DBP2 results in up-regulation of another lncRNA within the GAL

cluster, termed GAL10s [37,38]. To determine the role of Dbp2

in this process, we initially set out to test the hypothesis that the

GAL10s lncRNA also functions in transcriptional repression,

similar to the GAL10 lncRNA. Surprisingly, this revealed an

unexpected and uncharacterized role for both of the GAL

lncRNAs in promoting gene activation. We suggest that these

findings identify a novel role for the GAL lncRNAs in poising

protein-coding genes for rapid induction in response to cellular

and environmental cues.

Results

The GAL7 and GAL10 Genes Are Rapidly Induced from
Repressed Conditions in dbp2D Cells as Compared to
Wild Type

The GAL cluster is a group of gene loci that have been

extensively utilized to define the mechanism and order of events in

transcriptional regulation [1,27–29,39]. The cluster encodes three

genes, GAL1, GAL7, and GAL10, which exist in three distinct

transcriptional states in response to carbon sources: repressed

(+glucose), derepressed (+raffinose), and activated (+galactose)

(Figure 1A). This cluster also encodes the GAL10 lncRNA, which is

a 4.0 kb antisense transcript that overlaps GAL10 and GAL1, and

the GAL10s lncRNA, a 0.5 kb sense-oriented transcript upstream

of GAL7 (Figure 1A) [24,26,38]. The protein-coding GAL genes

are regulated by carbon source-responsive repressors and activa-

tors (Figure 1A) [27,29,32]. In contrast, the GAL lncRNAs are

expressed when the protein-coding GAL genes are transcriptionally

inactive (+glucose or raffinose) [24–26] and are dependent on the

transcription factor, Reb1 (Figure 1D) [24,26].

Previous studies from our laboratory demonstrated that loss of

the RNA helicase DBP2 results in accumulation of a 39 extended

GAL10s lncRNA under conditions when the protein-coding GAL

genes are transcriptionally repressed (+glucose) [37]. Based on

previous evidence that up-regulation of the GAL10 lncRNA

impairs transcriptional activation of the GAL1 and GAL10 genes

[25], we anticipated that loss of DBP2 would similarly delay

transcriptional activation of GAL7. To this end, we analyzed

the transcriptional induction profile of GAL7 in wild-type and

dbp2D cells following a media shift from repressed to activated

conditions (glucose to galactose) by isolating RNA fractions over

time at 30 min intervals from three, independent biological

replicates per strain. We then conducted northern blotting of

isolated RNAs and then obtained a semiquantitative estimate of

the degree of repression by calculating the average lag time or time

to the first appearance of GAL7 transcripts after normalization to

the SCR1 loading control (Figure 1B). In contrast to wild-type cells,

which exhibited a normal, ,2-h lag time to induction [40,41],

dbp2D cells displayed detectible GAL7 transcripts within an average

of 40 min (Figure 1B). This was unexpected and suggested that

loss of DBP2 results in a rapid induction of GAL7 expression from

repressive conditions. To determine if the requirement for DBP2 is

specific to GAL7, we then assayed GAL10 induction (Figure 1B,

bottom). This revealed that GAL10 is also rapidly induced in dbp2D
cells (Figure 1C). In addition to full-length GAL10 transcripts, we

also observed the appearance of shorter GAL10 products, which

are likely the result of previously noted cryptic initiation defects in

dbp2D cells (Figure 1C, bottom) [37]. Regardless, this reveals that

the loss of DBP2 results in rapid induction of both the GAL7 and

GAL10 genes from repressed (+glucose) conditions.

Loss of the GAL lncRNAs Restores Repression in dbp2D
Cells

The results above suggest that DBP2 is required to maintain

glucose-dependent repression of the protein-coding GAL genes. To

determine if this requirement is dependent on the presence of the

GAL lncRNAs, we constructed a dbp2D lncRNAD strain that lacks

expression of both of the GAL10 and GAL10s lncRNA molecules.

Expression of the GAL10 lncRNA is dependent on the Reb1

transcription factor, which has four putative binding sites within

the 39 end of the GAL10 coding region [24,26]. Although it is not

known which Reb1 site(s) is necessary for expression of the GAL10

lncRNA, previous studies have shown that the lncRNAD strain,

which harbors silent mutations of all four sites, abolishes synthesis

of this lncRNA (Figure 1D) [24]. Because the GAL10 and GAL10s

lncRNAs arise from juxtaposed sites within the protein-coding

GAL10 gene, we speculated that the lncRNAD mutation would also

abolish synthesis of the GAL10s lncRNA. To test this, we

conducted reverse transcription-quantitative PCR (RT-qPCR)

analysis to measure lncRNA abundance in isogenic wild-type,

dbp2D, lncRNAD, and dbp2D lncRNAD cells grown in the presence

of glucose, using primers positioned within the 59 ends of the

respective lncRNAs (nc10 and nc10s in Figure 1D). This revealed

a slight increase in the GAL10 lncRNA and greater overabundance

of the GAL10s lncRNA in the dbp2D strain similar to previous

studies [37]. More importantly, neither the GAL10 nor the GAL10s

lncRNA were detectible in strains harboring the lncRNAD
(Figure 1D). This suggests that the lncRNAD mutation abolishes

expression of both lncRNAs, consistent with our prediction.

Next, we conducted transcriptional induction analysis as above

using isogenic dbp2D and dbp2D lncRNAD cells to determine if the

rapid induction phenotype is linked to the presence of the GAL

lncRNAs. Strikingly, incorporation of the lncRNAD mutation in the

DBP2-deficient strain restored the induction kinetics of both GAL7

Author Summary

Long noncoding RNAs (lncRNAs) are a recently identified
class of molecules that regulate the expression of protein-
coding genes through a number of mechanisms, some of
them poorly characterized. The GAL gene cluster of the
yeast Saccharomyces cerevisiae encodes a series of three
inducible genes that are turned on or off by the presence
or absence of specific carbon sources in the environment.
Previous studies have documented the presence of two
lncRNAs—GAL10 and GAL10s—encoded by genes that
overlap the GAL cluster. We have now uncovered a role for
both these lncRNAs in promoting the activation of the GAL
genes when they are released from repressive conditions.
This activation occurs at the kinetic level, through more
rapid recruitment of RNA polymerase II and decreased
association of the co-repressor, Cyc8. Under normal
conditions, but also especially when they are stabilized
and their levels are up-regulated, these GAL lncRNAs
promote faster GAL gene activation. We suggest that these
lncRNA molecules poise inducible genes for quick
response to extracellular cues, triggering a faster switch
in transcriptional programs.

Kinetic Activation of Inducible Genes by lncRNAs
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and GAL10 to near wild-type profiles (Figure 1E–F). This suggests

that the rapid induction of GAL7 and GAL10 from repressive

conditions in dbp2D cells is lncRNA-dependent, indicating that the

GAL lncRNAs play an as-of-yet uncharacterized role in gene

activation. Alternatively, the delayed activation in dbp2D lncRNAD
cells may be due to a role for Reb1 and/or the Reb1-binding sites

in efficient expression of GAL7 and GAL10.

Defects in RNA Decay and Decapping Cause Rapid Induc-
tion of the GAL Cluster Genes from Repressive Conditions

Previous studies have utilized mutant strains with impaired RNA

decay pathways to demonstrate the roles of lncRNAs at targeted

gene loci [25,38]. The 59-39 exonuclease, Xrn1, is required for

degradation of both the GAL10 and GAL10s lncRNAs [26,38,42,43].

DCP2-deficient cells also accumulate lncRNAs but through a defect

in RNA decapping [25]. Interestingly, up-regulation of the GAL

lncRNAs, via loss of DCP2, has been linked to delayed transcriptional

activation of the GAL genes from derepressed conditions (+raffinose)

[25]. This was also observed for xrn1D cells, but to a lesser extent

[25]. Recent studies have shown that both Dcp2 and Xrn1 are

present in the nucleus and associate with transcribed chromatin,

indicative of a direct link between decay and gene expression [44,45].

However, contribution of RNA decay pathways to induction from

repressed conditions (+glucose) has not been addressed.

Figure 1. Loss of DBP2 results in rapid, lncRNA-dependent induction of GAL10 and GAL7 from repressed conditions. (A) Simplified
model for carbon-source-dependent regulation of GAL1, GAL7, and GAL10 genes within the GAL cluster. Glucose-dependent repression is mediated
by transcription factors (not shown), which then recruit other proteins such as the Tup1–Cyc8 co-repressor complex to promote repression
[28,32,40,46,47,51]. Derepression occurs under nonrepressing, noninducing conditions when the repressors are no longer present and the GAL genes
are not transcriptionally active [29]. Activation only occurs in the presence of galactose [1,29]. Synthesis of the GAL10 lncRNA, and likely the GAL10s
lncRNA, is mutually exclusive with activated expression of the GAL genes [24,25]. (B–C) GAL7 (B) and GAL10 (C) genes are rapidly induced in dbp2D
cells following a switch from repressed to activated conditions. Transcriptional induction of wild-type (BY4741) and dbp2D strains was conducted by
isolating RNA from cells at 30 min intervals prior to and immediately following a nutritional shift from repressive (+glucose) to activated (+galactose)
conditions. Transcripts were detected by northern blotting using 32P-labeled, double-stranded (ds)DNA probes corresponding to GAL7, GAL10, or
SCR1 RNA as indicated. Each time course was conducted in triplicate. Average lag times to induction are shown with the standard deviation (s.d.) for
three, independent biological replicates and correspond to the first time point in a series of time points with increasing GAL transcript levels after
normalization to SCR1. An s.d. of zero indicates no variation between biological samples with 30 min time points, whereas an s.d. of 17 indicates a
variance of 30 min between replicates. (D, Top) Schematic diagram of the lncRNAD strain with GAL10 and GAL10s lncRNAs and primer sets for RT-
qPCR. The four previously identified binding sites for the Reb1 transcription factor are present within the 39 end of the GAL10 coding region [24]. The
lncRNAD harbors silent mutations that disrupt all binding sites for the Reb1 transcription factor [24]. (D, Bottom) The lncRNAD mutation abolishes
expression of both the GAL10 and GAL10s lncRNA in wild-type and dbp2D cells. GAL10 and GAL10s lncRNAs were detected in the indicated strains
following growth in glucose using RT-qPCR as previously described with primers nc10 and nc10s [37]. Transcript levels were normalized to ACT1,
which does not vary between these strains, and is the average of three biological replicates with respect to wild type and standard error from the
mean (SEM). (E–F) Loss of GAL10 and GAL10s lncRNAs restores repression at GAL7 (E) and GAL10 (F) loci in DBP2-deficient cells. Transcriptional
induction assays from repressive conditions were conducted with isogenic dbp2D and dbp2D lncRNAD strains as in Figure 1B–C.
doi:10.1371/journal.pbio.1001715.g001
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To determine if the up-regulation of lncRNAs, via loss of RNA

decay and/or decapping pathways, impacts the expression of the

GAL genes from repressed conditions, we analyzed the transcrip-

tional induction of GAL7 and GAL10 in xrn1D and dcp2D strains

(Figure 2A–B). We also included dbp2D cells in this analysis for

comparison to studies above. Surprisingly, and in contrast to

defective expression, this revealed that GAL7 and GAL10 are

rapidly induced in both xrn1D and dcp2D strains with overabun-

dant lncRNAs. In fact, detectible transcripts appear 2- to 3-fold

faster in these strains than in wild type, similar to the rapid

induction kinetics of dbp2D cells (Figure 2A–B). Note that the

GAL10 lncRNA is also readily detectable in these RNA decay-

deficient strains due to the use of a double-stranded DNA probe

and consistent with the role of Xrn1 and Dcp2 in lncRNA decay

(Figure 2B, asterisks) [25,26,38]. Thus, loss of genes encoding

either the RNA helicase DBP2 or the RNA decay factors XRN1 or

DCP2 results in faster activation of the protein-coding GAL genes

from repressive conditions. This suggests that the GAL lncRNAs

may actually promote gene expression.

GAL1 Is Also Rapidly Activated from Repressed
Conditions

In contrast to our results above, prior studies have proposed a

repressive role for the GAL10 lncRNA [24–26]. However, a major

difference between our studies and past reports is that prior

experiments were primarily focused on GAL1 induction from

derepressive conditions (+raffinose), rather than GAL10 and GAL7

from a repressive state (+glucose) [24–26]. To determine if GAL1

exhibits a different induction profile than GAL7 and GAL10, we

analyzed the induction of this gene as above (Figure 2C). Northern

blotting analysis of RNAs from wild-type, dbp2D, xrn1D, and dcp2D
strains revealed that GAL1 is also rapidly induced from repressive

conditions in all three mutant strains with lag times of ,50 min

(Figure 2C). This suggests a common mechanism for the GAL

lncRNAs at all three GAL cluster genes.

Induction of the GAL Cluster Genes from Derepressive
Conditions Occurs with Wild-Type Kinetics for dbp2D,
xrn1D, and dcp2D Strains

In the presence of glucose, the GAL genes are repressed through

several mechanisms, including the action of glucose-dependent

transcriptional repressors (Figure 1A) [28,31,46–48]. However,

when cells use raffinose as a carbon source, the GAL genes become

derepressed due to environmentally induced loss of repressors

(Figure 1A). To determine if the rapid induction of the GAL genes

is specific for activation from repressive conditions (+glucose), we

conducted induction analysis from the derepressed state (+raffi-

nose). Interestingly, wild-type, dbp2D, xrn1D, and dcp2D strains all

Figure 2. All three GAL cluster genes are rapidly induced from repressed conditions upon loss of DBP2 or the RNA decay factors
XRN1 and DCP2. (A–C) GAL7 (A), GAL10 (B), and GAL1 (C) are rapidly induced from repressed conditions in dbp2D, xrn1D, and dcp2D strains. Induction
assays were conducted as in Figure 1 with isogenic xrn1D, dbp2D, dcp2D, and wild-type strains. Asterisks mark the GAL10 lncRNA transcripts, which
are visible in the xrn1D and dcp2D strains due to high abundance and the use of dsDNA probes (most visible from 0–90 min). Lag times represent the
average of three biological replicates and the s.d. as in Figure 1. (D–F) Induction of GAL7 (D), GAL10 (E), and GAL1 (F) from derepressed (+raffinose)
conditions in dbp2D, xrn1D, and dcp2D cells occurs with wild-type kinetics. Transcriptional induction was measured as above following a nutritional
shift from derepressed (+raffinose) to activated (+galactose) conditions.
doi:10.1371/journal.pbio.1001715.g002
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exhibited similar induction kinetics from derepressed to activated

conditions with the appearance of transcripts within ,30 min for

all three GAL cluster genes (Figure 2D–F). This is consistent with a

recent study showing that xrn1D cells accumulate GAL7 and

GAL10 transcripts at the same rate as wild-type cells when induced

from raffinose [45]. DCP2-deficient cells also displayed detectible

transcripts at 30 min postinduction for all three GAL genes, albeit

with an apparent reduction of transcript levels for GAL1 as

compared to wild type (Figure 2D–F, bottom). This demonstrates

that the rapid induction of GAL7, GAL10, and GAL1 is specific for

the environmental switch from repressive (+glucose) to activating

(+galactose) conditions. Moreover, it suggests that the loss of the

RNA decay machinery does not necessarily result in lncRNA-

dependent repression [25,36].

RNA Decapping Deficiencies Impair GAL1 Transcript
Accumulation

Prior studies suggested that GAL lncRNAs are repressive based

on defective induction of the GAL genes in RNA decapping and

decay-deficient strains [25]. However, our results suggest that this

is not the case for xrn1D cells with defective RNA decay. To

determine if the apparent reduction in mRNA levels in dcp2D cells

above indicates a specific requirement for decapping in GAL gene

induction, we conducted longer induction analyses from derepres-

sive conditions for three, independent biological replicates. We

then graphed the resulting transcript levels over time as the

fraction of a fully induced wild-type RNA sample (‘‘Control’’)

following normalization to the SCR1 loading control (Figure 3A–

C). Consistent with previous studies, dcp2D cells displayed severe

GAL1 expression defects, with levels reaching only 20% of wild

type after 5 h of induction (Figure 3C) [25]. GAL10, on the other

hand, showed more moderate defects more in line with defective

transcript accumulation than impaired initiation, whereas the

GAL7 induction profile was similar between wild-type and dcp2D
cells (Figure 3A–B). This suggests that the decapping requirement

for robust expression of lncRNA-targeted, inducible genes may be

specific to GAL1 [25,36]. Furthermore, the fact that dcp2D cells

show enhanced induction from repressed conditions (Figure 2A–

C) argues against a generally repressive role for the GAL lncRNAs.

Thus, the previously described lncRNA-dependent repression at

the GAL cluster in RNA decay-deficient strains may reflect a

requirement for decapping in the accumulation of GAL1

transcripts, and especially GAL1, rather than a repressive role for

the GAL lncRNAs.

DBP2- and XRN1-Deficient Cells Display Faster
Recruitment of RNA Polymerase II to GAL7 and GAL10
Genes

Our results above provide evidence that the GAL lncRNAs may

act in a positive manner by stimulating induction of the protein-

coding GAL genes from repressed conditions. However, it is also

possible that the increase in transcript abundance over time is due

to a decrease in mRNA decay rather than an increase in

transcriptional activity. To determine if the rapid induction

correlates with an increased rate of transcriptional induction in

dbp2D and xrn1D cells as compared to wild type, we asked if RNA

polymerase II (RNAPII) is recruited faster to the GAL7 and GAL10

gene promoters [39,49]. RNAPII recruitment was measured by

conducting chromatin immunoprecipitation (ChIP) over a 300-

min time course following induction from repressed conditions

with an antibody to a RNAPII core subunit (anti-Rpb3)

(Figure 4A). Suggestive of a transcriptional effect, this revealed

that RNAPII is recruited to the GAL7 and GAL10 promoters more

rapidly in both dbp2D and xrn1D cells (Figure 4A). This faster

recruitment was most evident at 120 min postinduction, with ,4-

fold and ,6- to 9-fold higher levels of RNAPII at GAL7 and

GAL10, respectively (Figure 4A). This suggests that loss of DBP2 or

XRN1, and the resulting accumulation of the GAL lncRNAs,

results in a direct effect on transcription initiation. In contrast,

analysis of the galactose-inducible GAL6 gene revealed similar

RNAPII recruitment rates for all three strains with a slightly lower

RNAPII signal for xrn1D and dbp2D cells at the 300 min time point

(Figure 4B) [50]. The latter is consistent with recent studies

showing that xrn1D cells have reduced steady-state transcription

levels [45]. Furthermore, it demonstrates that the rapid recruit-

ment of RNAPII is specific for the GAL lncRNA-targeted genes

within the GAL cluster.

Figure 3. Loss of DCP2 impairs GAL1 transcript accumulation when induced from derepressive conditions. (A–C) Extended time course
for analysis of GAL7 (A), GAL10 (B), and GAL1 (C) induction from derepressed conditions in dcp2D cells. Wild-type and dcp2D cells were grown in
raffinose as above and were shifted to galactose to induce transcription of the GAL cluster genes. RNA fractions were isolated at 30 min intervals over
a 300 min time frame. Resulting transcript profiles from three biological replicates were normalized to scR1 and plotted over time as a percentage of
the average transcript levels with respect to a fully induced, wild-type ‘‘control’’ RNA for normalization between replicates. The ‘‘control’’ corresponds
to total RNA isolated from wild-type cells after 5 h in galactose media following initial growth in raffinose for maximal expression. Error bars indicate
the SEM. Statistical significance was calculated using a two-tailed t test. Time points with significantly different transcript levels (p,0.05) between
wild-type and dcp2D cells for each gene are as follows: GAL10, 60–120 min time points; GAL1, 90–150, 240, 300 min time points. The 210 and 270 min
time points for GAL7 correspond to p,0.10, whereas no other time points in the GAL7 analysis displayed significantly different transcript levels
between wild-type and dcp2D cells.
doi:10.1371/journal.pbio.1001715.g003
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Figure 4. Rapid induction of the GAL genes correlates with faster recruitment of RNAPII and reduced corepressor binding to
chromatin. (A) RNAPII is recruited faster to GAL7 (left) and GAL10 (right) promoters following a shift from repressive to activating conditions in XRN1-
and DBP2-deficient cells. Wild-type, dbp2D, and xrn1D cells were shifted from transcriptionally repressive conditions (+glucose) to transcriptionally
active conditions (+galactose). Cells were collected before (0 min) and at 30 min, 60 min, 120 min, and 300 min time points following a shift to
galactose media. ChIP was conducted using an anti-Rpb3 antibody followed by qPCR. Results are presented as the relative Rpb3 occupancy at the
GAL10 or GAL7 promoter with respect to the constitutively activated ACT1 gene. Numbers above each bar represent the fold above wild type at the
same time point postinduction for both dbp2D and xrn1D cells. (B) The galactose-dependent GAL6 gene does not show increased RNAPII recruitment
in dbp2D or xrn1D cells. ChIP was conducted as above followed by qPCR at GAL6 promoter. Results are represented as the relative Rpb3 occupancy at
the GAL6 promoter with respect to the ACT1 gene. (C) Both dbp2D and xrn1D cells display reduced association of the Cyc8 component of the Tup1–
Cyc8 co-repressor complex at GAL genes under repressive conditions. Briefly, wild-type, dbp2D, and xrn1D cells harboring a 36FLAG-tagged CYC8 at
the endogenous locus as well as a wild-type strain with untagged CYC8 were grown under transcriptionally repressive conditions (+glucose),
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Derepression of GAL7 and GAL10 Correlates with
Reduced Binding of the Cyc8 Corepressor

Glucose-dependent repression is accomplished by transcription

factors Mig1, Mig2, and Nrg1, which recognize specific DNA

sequences and subsequently recruit co-repressor complexes like the

Tup1–Cyc8 complex [28,40,46–48,51,52]. To determine why

dbp2D and xrn1D cells exhibit faster recruitment of RNAPII, we

asked if these strains display lower levels of bound co-repressors.

To test this, we conducted ChIP assays to measure the association

of Cyc8 at GAL7 and GAL10 at the 0 min time point when the

GAL genes are repressed. We tested both the promoter and 59 end

of GAL7 and GAL10 as Tup1 has been shown to associate with the

ORF and the promoter of specific gene loci [53]. Consistent with

the more rapid recruitment of RNAPII, both DBP2- and XRN1-

deficient cells exhibited severely reduced Cyc8 binding at both the

promoter and 59-end of the open reading frame (ORF), with levels

equivalent to background ChIP signal (Figure 4C). Western

blotting revealed that CYC8–36FLAG is expressed at similar levels

in all three strains, indicating that reduced binding is not due to

different protein levels (Figure 4D). Thus, the rapid induction of

GAL7 and GAL10 in xrn1D and dbp2D cells correlates with reduced

association of Cyc8 corepressor. This provides an explanation for

the rapid induction of GAL gene expression from the repressed

(+glucose) but not derepressed (+raffinose) conditions (Figures 1

and 2); the GAL genes are derepressed in the dbp2D and xrn1D
strains.

The GAL lncRNAs Do Not Alter the Transcriptional
Induction Profiles of GAL7 or GAL10 from Derepressed
Conditions in XRN1-Deficient Cells

If derepression is caused by the GAL lncRNAs, then deletion of

these noncoding RNA molecules should have no effect on the

induction or final levels of GAL7 and GAL10. To determine if this

is the case, we constructed xrn1D and xrn1D lncRNAD cells, as

xrn1D and dbp2D cells exhibit similar induction profiles. We then

conducted extended time courses of wild-type, xrn1D, lncRNAD,

and xrn1D lncRNAD strains to measure both the induction kinetics

and steady-state transcript levels of the GAL genes from the

derepressed (+raffinose) condition (Figure S1, representative

northern blot). Resulting induction profiles were then graphed

for each condition, lag times were determined as above, and the

velocity of transcript accumulation and final steady-state levels

were determined after normalization to SCR1 and with respect to a

fully induced, wild-type strain (‘‘control’’) (Figure 5).

Consistent with our shorter time course analysis (Figure 2),

both wild-type and xrn1D cells displayed similar lag times for

induction and final steady-state transcript levels for both GAL7 and

GAL10 when induced from derepressive conditions (+raffinose)

representing the 0 min time point for the induction time courses above, and were then subjected to ChIP with anti-FLAG antibodies. Cyc8–36FLAG
occupancy is presented as the percentage of isolated DNA over input. Numbers above each bar represent the fraction of bound DNA in each strain
versus that in the wild-type strain harboring the 36FLAG-tagged CYC8. (D) Cyc8–36FLAG is expressed at similar levels in wild-type, dbp2D, and xrn1D
strains. Western blotting was conducted with whole cell lysates from the indicated strains and Cyc8–36Flag was detected with polyclonal anti-FLAG
antibodies. Pgk1 serves as a loading control, whereas wild type with an untagged Cyc8 (lane 4) demonstrates antibody specificity.
doi:10.1371/journal.pbio.1001715.g004

Figure 5. The GAL lncRNAs do not alter the GAL7 or GAL10 transcription profile in xrn1D cells when induced from derepressed
conditions. (A–B) The xrn1D and xrn1D lncRNAD strains display superimposable transcriptional induction profiles of GAL7 (A) and GAL10 (B) from
derepressed conditions. Isogenic wild-type (closed black circle), lncRNAD (closed red square), xrn1D (open blue square), and xrn1D lncRNAD (open
green triangle) strains were analyzed for both rapid induction from derepressive conditions (+raffinose) and final, steady-state transcript levels by
conducting time courses as above up to 300 min. Resulting induction profiles were plotted as in Figure 3 following normalization to a fully induced
GAL ‘‘control’’ and to SCR1. Representative northern blots are shown in Figure S1. (C–D) GAL7 (C) and GAL10 (D) transcriptional induction kinetic
profiles are similar between xrn1D and xrn1D lncRNAD cells. The lag times were calculated as above for each individual biological replicate following
normalization to SCR1 and are reported as the average with s.d. The Tmax and T1/2 correspond to the time point when transcript levels plateau and the
half-time to Tmax, respectively. Initial velocities were calculated as the slope of the straight line from the lag time to Tmax, with increases most likely
reflecting greater transcript production in a given cell population over time. All kinetic parameters were calculated independently for each biological
replicate after graphical analysis, after normalization to SCR1 and the control RNA, and are the average of the three replicates with the s.d.
doi:10.1371/journal.pbio.1001715.g005
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(Figure 5A–B). This is in line with other studies demonstrating

identical induction profiles from derepressive conditions between

wild-type and xrn1D cells [26,45]. Moreover, this further illustrates

that GAL lncRNA-dependent repression is not a general pheno-

type of RNA decay-deficient strains. XRN1-deficient cells did,

however, show increased transcript levels at early time points

within the induction profile of both genes, as evidenced by the

higher ‘‘shoulder’’ in the graphical analysis (Figure 5A–B) and

increased initial velocities of transcript accumulation (Figure 5C–

D). These increases are not due to the GAL lncRNAs though, as

the induction profiles of GAL7 and GAL10 in the xrn1D strain are

superimposable with the xrn1D lncRNAD strain. This also

demonstrates that the lncRNAD mutation itself, and resulting loss

of Reb1 binding, does not impair the transcriptional activity of

GAL7 or GAL10. Consistently, both the xrn1D and xrn1D lncRNAD
strains have similar kinetic parameters for transcriptional

induction. This includes identical initial velocities as well as half

time (T1/2) and time to maximum transcript levels (Tmax) between

xrn1D strains regardless of the presence or absence of the GAL

lncRNAs (Figure 5C–D). Thus, the GAL lncRNAs do not alter the

transcriptional induction of the GAL genes in XRN1-deficient cells

from derepressive conditions.

The GAL lncRNAs Alter the Kinetics of Induction from
Repressed Conditions in xrn1D Cells

We then analyzed the transcriptional induction kinetics of xrn1D
cells from repressed (+glucose) to activated conditions to determine

the role of the GAL lncRNAs during this specific transcriptional

switch (Figure S2, representative northern blot). Resulting GAL7

and GAL10 profiles were plotted as above with respect to the same,

fully induced wild-type control. In contrast to induction from

derepressed conditions, this analysis revealed sharply different

Figure 6. The GAL lncRNAs enhance the kinetics of transcriptional induction from repressed conditions in xrn1D cells. (A–B) Rapid
induction of GAL7 (A) and GAL10 (B) transcripts in xrn1D cells is lncRNA-dependent. Transcriptional induction of isogenic wild-type (closed black
circle), lncRNAD (closed red square), xrn1D (open blue square), and xrn1D lncRNAD (open green triangle) strains induced from repressed conditions
(+glucose) was analyzed as above to determine lag times, initial velocities, and final levels. Note that the transcript abundance is reported as a
percentage of the fully induced ‘‘control’’ as in Figure 5, illustrating that wild-type cells are not fully induced at the end of this time course.
Representative northern blots are shown in Figure S2. (C–D) GAL7 (C) and GAL10 (D) transcriptional induction kinetic profiles illustrate lncRNA-
dependent kinetic enhancement from repressed conditions. Kinetic parameters were determined as in Figure 5. Strains that did not reach an
induction plateau within the 300 min time frame display Tmax values that are equal to or greater than 300 min. In these cases, half-times (T1/2) were
not determined (ND). (E–F) The lncRNA-dependent enhanced induction in xrn1D cells parallels wild-type induction from a derepressed state.
Transcriptional profile overlay of GAL7 (E) and GAL10 (F) induction in wild-type cells (closed black circle) from derepressed to activated conditions as
compared to xrn1D cells (opened blue square) from repressive conditions.
doi:10.1371/journal.pbio.1001715.g006
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transcriptional profiles between xrn1D and wild-type cells

(Figure 6). In fact, xrn1D cells showed shorter lag times as well

as ,3-fold higher levels of GAL7 and GAL10 transcripts as

compared to wild type (Figure 6A–B). Kinetic analysis revealed

that xrn1D cells have a more rapid approach to steady state than

wild-type cells when induced from repressive conditions, as

evidenced by the reduced lag time and 3- to 6-fold increase in

the initial rate (Vi) of transcript accumulation for both GAL7 and

GAL10 (Figure 6C–D). This is also illustrated by the fact that xrn1D
cells reach 100% of the fully induced ‘‘control’’ within the 300 min

time frame, while wild-type cells do not (Figure 6A–B). This rapid,

high-level induction in xrn1D cells during the switch from

repressed to activated conditions is consistent with the reduced

association of Cyc8 and faster recruitment of RNAPII (see

Figure 4).

Strikingly, removal of the GAL lncRNAs abolished both the

rapid induction and high transcript levels in the xrn1D strain,

resulting in profiles more similar to wild type (Figure 6A–B). In

fact, the GAL10 induction profile of xrn1D lncRNAD cells is

superimposable with that of wild-type cells, demonstrating that the

rapid induction of this gene in xrn1D cells is fully dependent on the

GAL lncRNAs (Figure 6B,D). The induction profile of GAL7 was

also restored by incorporation of the lncRNAD mutation into the

xrn1D strain, but to a lesser extent (Figure 6A,C). This partial

reduction may be due to the contribution of another lncRNA that

overlaps GAL7, as prior studies have indicated the presence of a

GAL7 antisense transcript that originates outside of the lncRNAD
mutation [24]. Interestingly, removal of the GAL lncRNAs resulted

in both a longer lag time as well as decreased initial velocity in

XRN1-deficient cells (Figure 6C–D). This suggests that the GAL

Figure 7. The GAL lncRNAs kinetically enhance GAL gene induction from repressed conditions in wild-type cells. (A–B) The GAL
lncRNAs increase the rate of GAL7 and GAL10 activation in wild-type cells. Graphical representation of transcriptional induction of GAL7 (A) and GAL10
(B) in wild-type (closed black circle) and lncRNAD (closed red square) strains from repressed to activated conditions. High-resolution transcriptional
analysis was conducted with wild-type or lncRNAD cells from repressed conditions from 0 to 300 min by including 10 additional 10-min time points
between 90 and 150 min. Transcript abundance is reported as a percentage of the control as previously described. The differences in final GAL7 or
GAL10 transcript levels at the 300 min time point are not statistically significant (p value.0.2). Representative northern blots are shown in Figure S3.
(C–D) The GAL lncRNAs increase the kinetics of transcriptional activation from repressive conditions. Transcription induction parameters for the wild-
type and lncRNAD strains were determined as above for three independent biological replicates. Calculated lag times were determined using curve-
fitting analysis (DM Fit v. 2.0) [54], which facilitates quantitative assessment of lag from the curve fit (Figure S4). Lag times assessed from the data
points as in prior figures are denoted as ‘‘estimated’’ lag times for differentiation from the curve fitting values. The estimated lag times result in p
values from a two-tailed t test of 0.12 and 0.09 for GAL7 and GAL10, respectively, whereas calculated lag times are significantly different between wild-
type and lncRNAD strains (GAL7 lag p value = 0.01; GAL10 lag p value = 0.07). The initial velocities of transcript accumulation are not significantly
different. (E–F) The presence of GAL lncRNAs does not alter the final levels of GAL7 and GAL10 transcripts at longer time points postactivation. GAL7
(E) and GAL10 (F) transcript levels were measured by RT-qPCR under repressed conditions (0 min time point) and after a 12-h shift to activated
conditions (12-h time point) from repressed to activating conditions. GAL7 and GAL10 transcripts were measured from three biological replicates and
normalized to ACT1. Normalized expression is presented as the average fold change from the first wild-type biological replicate with error bars
representing the SEM. Note that the GAL10 lncRNA, which is also recognized by the GAL10 primers, is not evident at the 0 min time point due to the
high expression levels of GAL7 and GAL10 after 12 h and necessary scaling of the bar graph.
doi:10.1371/journal.pbio.1001715.g007
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lncRNAs function at the kinetic level by enhancing the approach

to steady state. It also indicates that the GAL lncRNA molecules

have the largest impact at the point of induction of the protein-

coding GAL genes.

Next, we asked if the induction of xrn1D cells from repressed

conditions (+glucose) is similar to that of wild-type cells from

derepressed conditions (+raffinose), with the idea that lncRNA-

dependent derepression in XRN1-deficient cells should mimic the

derepressed transcriptional state in wild-type cells. Overlaying the

GAL7 and GAL10 induction profiles revealed that xrn1D cells

exhibit a similar induction trend from repressed conditions as wild-

type cells induced from derepressed conditions (Figure 6E–F). This

is consistent with the fact that xrn1D cells have reduced association

of Cyc8 (Figure 4) and the idea that the GAL lncRNAs promote

derepression of the protein-coding GAL genes in xrn1D cells. The

difference in shape of the two curves between wild type and xrn1D
may reflect the activity of other, glucose-dependent repression

mechanisms (see Discussion) or the presence of low levels of Cyc8

at the GAL gene promoters that are below our detection by ChIP.

Regardless, this is consistent with a model whereby the GAL

lncRNAs activate gene expression by promoting derepression.

The GAL LncRNAs Promote Induction of GAL7 and GAL10
Genes from Repressed Conditions in Wild-Type Cells

Our results above demonstrate a positive role for the GAL

lncRNAs in promoting gene expression. Furthermore, our studies

suggest that these noncoding RNAs impact the timing of

transcriptional activation by stimulating the kinetics of induction.

Given this knowledge, we then asked if the GAL lncRNAs have any

effect in wild-type cells, which were not initially evident due to the

analysis of induction with 30 min time points. To this end, we

conducted a higher time-resolved analysis of GAL7 and GAL10

induction from repressed conditions in wild-type and lncRNAD
cells by including additional 10 min time points at the induction

point, immediately prior to and following recruitment of RNAPII

(Figure 4A). Strikingly, this revealed distinct GAL7 and GAL10

induction profiles between wild-type and lncRNAD strains

(Figure 7A–B; Figure S3). More specifically, wild-type cells

expressing the GAL lncRNAs induced both GAL7 and GAL10

faster than the lncRNAD cells, resulting in a clear separation of the

transcriptional profiles between the two strains along the x-axis

(Figure 7A–B). Lag time calculation revealed that lncRNAD cells

lacking the GAL lncRNAs exhibit transcriptional lags of ,125–

137 min, and wild-type cells induced both GAL7 and GAL10

,30 min faster (Figure 7C–D, estimated lag time). This suggests

that the GAL lncRNAs promote induction in wild-type cells. To

more quantitatively assess lag times between wild-type and

lncRNAD strains, we then utilized a curve fitting method for

mathematical assignment of lag times (DM fit v2.0 Excel Macro)

[54], which was only possible with higher time-resolved analysis

(Figure S4). The calculated lag times, although similar in

magnitude to the estimates, resulted in more statistically significant

Figure 8. The GAL cluster lncRNAs poise the protein-coding GAL genes for rapid induction from repressive conditions. Transcriptional
repression of the protein-coding GAL genes occurs through binding of glucose-responsive transcriptional repressors (Rep) and subsequent
recruitment of co-repressors Tup1–Cyc8 to gene promoters (repression) [28,32,46–48,51]. Derepression is accomplished through lncRNA-dependent
displacement of these repressors from chromatin. Displacement may occur through transcriptional interference and/or formation of RNA–DNA
hybrids between the lncRNA and targeted, protein-coding gene. Derepression is transient, however, due to the action of Dbp2 and Xrn1, which
facilitate lncRNA release from chromatin and RNA decay, respectively. This equilibrium between repressed and derepressed states allows for faster
transcriptional activation in the presence of galactose. Activation then requires release of the Gal80 inhibitor protein from the Gal4 activator and
subsequent recruitment of coactivating complexes and RNAPII (not pictured) [29]. Thus, the GAL lncRNAs function at the temporal level of gene
regulation by enhancing the kinetics of GAL gene induction from transcriptionally repressive conditions.
doi:10.1371/journal.pbio.1001715.g008
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differences between wild-type and lncRNAD strains (Figure 7C–D;

p values,0.1 for both genes). This suggests that curve fitting may

be a more accurate assessment of lag times from biological data

sets. More importantly, however, this demonstrates that the GAL

lncRNAs promote a subtle but reproducible acceleration of

induction in wild-type cells. In contrast to the lncRNA-dependent

reduction of lag times, we did not observe a significant difference

in the initial velocity of transcript accumulation between strains,

however (Figure 7C–D). This indicates that either the GAL

lncRNAs do not alter transcript accumulation rates in wild-type

cells or that this effect is not evident by analysis across a cell

population when the lncRNA levels are low (est. 1 in 14 cells in

[24]). Regardless, the statistically significant shift in lag times

suggests that the GAL lncRNAs enhance the induction of the GAL7

and GAL10 genes in wild-type cells, consistent with an effect on

induction kinetics rather than steady-state levels. Moreover, the

final levels of GAL7 and GAL10 within the 5-h time course

(Figure 7A–B) or after 12 h postinduction were not significantly

different between wild-type and lncRNAD strains (Figure 7E–F).

This indicates that the GAL lncRNAs promote transcriptional

induction in wild-type cells without altering the final transcript

abundance of the targeted protein-coding genes. We propose that

the GAL lncRNAs poise the protein-coding GAL genes for rapid

induction, thereby enhancing the transcriptional switch from

repressed to activated conditions.

Taken together, our studies demonstrate that the GAL lncRNAs

enhance the activation kinetics of the inducible GAL genes from

repressed conditions. Based on these observations, we present a

model whereby the GAL lncRNAs displace glucose-dependent

repressors from the GAL gene promoters under typically repressive

conditions (Figure 8). Because this role does not result in full

derepression in wild-type cells, we suggest that this displacement is

transient due to the action of Dbp2 and Xrn1, which promote

lncRNA release and decay, respectively [37,38,43,55]. If this is the

case, this suggests that the GAL lncRNAs complement the roles of

proteinaceous factors to increase the efficiency of the GAL gene

transcriptional switch [29,39,56]. Moreover, these studies indicate

that the GAL lncRNAs promote formation of a dynamic chromatin

template. These dynamics facilitate faster activation by poising the

GAL genes for induction in response to galactose, which may

provide a selective advantage for cells responding to changing

environmental conditions. This indicates that the GAL lncRNAs

temporally regulate gene expression by influencing the rate of

transcriptional responses to extracellular stimuli.

Discussion

In an effort to define the role of the GAL10s lncRNA at the GAL

cluster, our studies uncovered an important new role for both this

lncRNA and the previously characterized GAL10 lncRNA in

activating gene expression from repressed conditions [24–26].

Glucose-dependent repression of the GAL genes is accomplished

through several, mechanistically distinct processes including

inhibition of the Gal4 activator, reduction of intracellular galactose

uptake, and transcriptional repression of GAL promoters

[28,31,34,40,46,48,51,56]. Our studies suggest that the GAL

lncRNAs act on the latter mechanism by transiently displacing

repressors from bound promoters, eliciting a dynamic equilibrium

between derepressed and repressed states (Figure 8). We predict

that this equilibrium poises the GAL genes for rapid induction,

enhancing the transcriptional switch in response to extracellular

signals.

The role of the GAL lncRNAs in enhancing induction is

distinctly different from a true role in transcriptional activation, as

has been documented for the roX RNAs in Drosophila or the

activating ncRNAs (ncRNA-a) in mammalian cells [10,57].

Instead, our studies are more consistent with an interference-

based model, whereby the GAL lncRNAs prevent the association

of transcription factors with targeted gene promoters. This is

supported by our observation that the GAL lncRNAs promote

derepression by reducing the association of Cyc8 with the GAL

genes. It is also in line with the fact that the GAL genes are not

activated by the GAL lncRNAs per se but that the rate of induction

is faster. It is also important to note that the kinetics reported here

reflect the average transcriptional profile across a cell population

and not the profile of individual cells. Because the abundance of

the GAL mRNAs varies widely across single cells during early

induction [58], it is possible that the lncRNA-dependent

derepression proposed here facilitates a more robust mRNA

accumulation in individual cells. Alternatively, the GAL lncRNAs

may allow a larger population of cells to rapidly ‘‘switch’’ from

repression to activation. Recent studies of the antisense PHO84

lncRNA have proposed such a model whereby synthesis of this

lncRNA results in cellular heterogeneity within a culture, with a

fraction of cells exhibiting lncRNA-dependent repression of sense

PHO84 expression [59].

One of the most surprising aspects of our findings is that the

GAL10 lncRNA was thought to be exclusively repressive [24,25].

Although our studies show that both the GAL10 and GAL10s

lncRNAs promote gene expression, this is not necessarily

mutually exclusive with a repressive role under specific condi-

tions. However, it should be noted that the mechanism by which

GAL lncRNAs induce transcriptional repression is still unknown.

Early analysis of the GAL10 lncRNA reported a delay of

induction in a mixed glucose/galactose carbon source, making

mechanistic insight difficult due to simultaneous presence of

repressors and activators [24]. Subsequent studies then suggested

that the GAL lncRNAs are repressive based on defective

induction of the GAL genes in RNA decapping and decay-

deficient strains [25]. While our studies corroborate the

requirement for decapping for normal expression of the GAL1,

and to a lesser extent GAL10, the fact that xrn1D cells do not show

expression deficiencies and that both xrn1D and dcp2D cells show

enhanced induction from repressed conditions argues against a

repressive model. Instead, it is more likely that both the apparent

expression defects in dcp2D cells and enhanced transcriptional

induction occur through a common mechanism, whereby the

GAL lncRNAs simply occlude transcription-factor binding sites at

the targeted promoters. These transcription factors include

glucose-dependent repressors when the GAL genes are induced

from repressive conditions. However, the high level of the GAL

lncRNAs in dcp2D cells may also cause interference with Gal4 or

transcriptional coactivators such as SAGA and/or Mediator. This

model would account for both the decreased transcriptional

activity and histone acetylation at targeted chromatin (Figure 3)

[25]. It is not clear, however, why GAL1 is more sensitive to loss

of decapping than other genes within the GAL cluster. Alterna-

tively, the decreased transcriptional activity in dcp2D cells may be

due to the recently proposed, and as-of-yet uncharacterized, role

for decapping and decay factors in transcription [45]. Neverthe-

less, the fact that ablation of the GAL10 lncRNA rescues GAL1

transcriptional delays indicates that at least some part of the

expression defect in dcp2D cells is dependent on the lncRNA [25].

Interestingly, the Set3C histone deactylase complex has also been

shown to influence the kinetics of inducible genes [60], suggesting

that lncRNA-dependent gene expression involves a complex

interplay between histone modifications, lncRNAs, and metabolic

genes.

Kinetic Activation of Inducible Genes by lncRNAs

PLOS Biology | www.plosbiology.org 11 November 2013 | Volume 11 | Issue 11 | e1001715

308



One mechanism for promoter occlusion by lncRNAs is the

formation of transient lncRNA–DNA hybrids at the GAL gene

promoters. RNA–DNA hybrids, or R loops, are found in all

organisms from yeast to humans and have been recently linked to

regulation of chromatin architecture [61–63]. These structures

form during transcription and have historically been associated

with defects in termination and/or mRNP assembly (for review,

see [63]). However, recent studies have found widespread

formation of RNA–DNA hybrids at multiple gene loci in normal

cells, with roles linked to transcriptional regulation, termination

replication, and recombination [63–65]. Interestingly, the mam-

malian DHFR lncRNA forms an RNA–DNA triplex at the DHFR

promoter [23]. This lncRNA represses transcription of the DHFR

gene by interfering with the association of the TFIIB basal

transcription factor, demonstrating that formation of this RNA–

DNA hybrid occludes the binding site for the transcriptional

apparatus. Although not an R loop, this study is consistent with the

idea that lncRNAs may act through base pairing with target DNA.

Recent studies implicating Dbp2 in both co-transcriptional mRNP

assembly and in termination of coding and noncoding RNAs

[37,55], two processes that prevent RNA–DNA hybrid formation,

is also suggestive of a role for these nucleic acid structures in GAL

gene induction. This model may even account for transcriptional

interference of GAL7, and reduced association of the Gal4

activator, in strains with defects in GAL10 transcriptional

termination [66,67]. Moreover, recent work from the Tollervey

lab has revealed striking differences in the termination/39-end

formation pathways and assembly of mRNA export factors

between the majority of lncRNAs as compared to mRNAs,

suggesting that the function of a transcript may be largely

determined at late maturation steps [68]. The fact that p68, the

human ortholog of Dbp2, also functions in lncRNA-dependent

gene regulation suggests that the role for Dbp2 in RNA-mediated

transcriptional control may be conserved between yeast and

multicellular eukaryotes [69,70].

Due to predominantly cytoplasmic localization [71–73], both

Xrn1 and Dcp2 were long thought to function solely in

cytoplasmic RNA decay. However, studies of noncoding RNAs

implicated both of these factors in nuclear RNA decay, as loss of

either gene product elicited transcriptional defects [25,38,74]. The

Choder laboratory has now provided evidence that both of these

RNA decay factors are present in the nucleus and associate with

chromatin [45]. Although it was suggested that these RNA decay

factors promote transcription through an as-of-yet uncharacterized

mechanism, it is possible that Xrn1 and Dcp2 function in co-

transcriptional RNA decay. If this is the case, RNA–DNA hybrids

may accumulate in xrn1D and dcp2D strains as a result of failure to

‘‘clear’’ aberrant transcriptional products. This would be consis-

tent with prior studies showing that the GAL10 lncRNA functions

in cis by suggesting that these decay enzymes also function at the

site of synthesis [24].

Given that the GAL lncRNAs promote induction, one might

ask why we do not observe a net increase in steady-state

transcript levels. This is consistent with studies of the Set3C

complex, whose loss results in altered GAL gene induction kinetics

with no effect on the final transcript levels [60]. Moreover, this is

a well-known phenomenon in pre–steady state enzyme kinetics,

which depends on different mechanisms than steady state [75]. In

the case of GAL7 and GAL10 expression, steady state is the period

when the rate of RNA synthesis and decay are matched. Pre–

steady state, however, is governed by release of transcriptional

repressors and recruitment of RNAPII. Our data strongly suggest

that it is these latter two processes that are likely accelerated by

the GAL lncRNAs.

The idea that lncRNAs play a kinetic role was initially put forth

by studies of the PHO5 lncRNA, which promotes transcriptional

activation of the PHO5 gene by altering the rate of chromatin

remodeling [15]. It is well established that the protein-coding

genes within the GAL cluster are highly regulated through carbon-

source-specific transcription factors [27,29,32,40]. Upon a switch

to galactose, glucose-dependent transcription factors are shunted

to the cytoplasm, and the transcriptional activator Gal4 is released

from the Gal80 inhibitor (Figure 7) [28,32,56,76]. Our studies now

show that the GAL lncRNAs add to this mechanism by promoting

this transcriptional switch. This suggests that lncRNAs promote

‘‘kinetic synergism,’’ which is a model stating that kinetic

alterations can have greater, combined effects on transcription

than thermodynamics alone [77]. Kinetic synergism describes how

the combination of multiple slow steps in transcriptional induction

results in a more rapid and effective transcriptional activation. The

GAL lncRNAs would function by promoting a more dynamic

chromatin template, which synergistically enhances the activity of

transcription factors by allowing transient access to DNA.

Our studies now complement the current knowledge regarding

the function of lncRNAs by demonstrating that lncRNAs can

influence the rate of transcriptional responses to extracellular cues.

This is an exciting possibility because it suggests that the presence

of lncRNAs may confer a selective advantage for a given organism

to rapidly adapt to changing conditions. For example, wild-type

cells could begin utilizing galactose as a carbon source at least

30 min earlier than cells without the GAL lncRNAs (Figure 7).

This ability to influence the timing of a transcriptional switch

would provide a rationale for the presence of lncRNAs in all

eukaryotes and the conservation of these molecules near develop-

mentally regulated genes in multicellular organisms

[13,17,18,21,22]. Moreover, the ability of lncRNAs to alter

chromatin dynamics may provide a more universal, functional

role for widespread transcription of these noncoding molecules.

Analysis of temporal effects of lncRNAs in multicellular organisms

represents a future challenge in deciphering the role of these

multifunctional regulators of the eukaryotic genome.

Materials and Methods

Plasmids and Strains
All plasmids were constructed by standard molecular biology

techniques and are listed in Table 1. Yeast strains were

constructed using classical yeast genetic techniques and are listed

in Table 2. Oligos for PCR-mediated homologous recombination

are listed in Table 3.

Table 1. Template plasmids for northern blot probes and
strain construction.

Name Description
Source/
Reference

pGAL1-GAL10-GAL7 pYGPM11l14 Open Biosystems

pSCR1 pYGPM29b01 Open Biosystems

pUG6 KanMx disruption cassette plasmid [78]

pAG32 HygB disruption cassette plasmid [79]

p36FLAG p36FLAG:KanMX [80]

doi:10.1371/journal.pbio.1001715.t001

Kinetic Activation of Inducible Genes by lncRNAs

PLOS Biology | www.plosbiology.org 12 November 2013 | Volume 11 | Issue 11 | e1001715

309



GAL Induction Analyses
Time courses were performed by growing strains at 30uC to an

OD600 of 0.4 in YP 2% glucose or raffinose when indicated and

shifting to 2% galactose media. 3OD units were harvested at

30 min time points from 0–180 min. Kinetic studies were

conducted over a 300 min induction with 30 min time points

with the inclusion of additional 10 min time points for higher

resolution analysis of wild-type cells where indicated. Lag times,

rates, and half times were calculated following autoradiography

and quantification of abundance with respect to the SCR1 loading

control and a GAL control RNA when indicated. The GAL control

RNA corresponds to RNA isolated from an isogenic wild-type

strain following a 300 min induction from raffinose and is utilized

as a control for full induction. Estimated lag times are independent

of final, steady-state levels and correspond to the first time point in

a series with increasing GAL mRNA signal above background after

normalization to SCR1. Lag time error between biological

replicates is reported as the standard deviation to illustrate the

range of variation. Transcript levels were determined as the

percentage of a wild-type control using the following equation:

(GAL Transcript Signal/SCR1 signal)4(GAL Control/SCR1

Control)6100%, whereby GAL positive corresponds to total

RNA from a wild-type culture following a 300-min induction

from derepressive (+raffinose) conditions. Transcriptional profiles

were fitted to a dose response curve with variable slope in

GraphPad Prism using the following equation: Y = lowest

level+(highest level2lowest level)4(1+10‘((T1/22X)6HillSlope)).

Tmax corresponds to the first time point in a series when the GAL

mRNA signal reaches a steady-state plateau, whereas initial

velocities were determined by calculating the slope of a straight

Table 2. Yeast strains.

Strain Genotype Source

Wild type (BY4741) MATa his3D1 leu2D0 met15D0 ura3D0 Open Biosystems

xrn1D MATa xrn1::KanR his3D1 leu2D0 met15D0 ura3D0 Open Biosystems

dbp2D (BTY115) MATa dbp2::KanR ura3D0 leu2D0 his3D0 met15D0 lys? [37]

dcp2D (BTY289) MATa dcp2::HygR his3D1 leu2D0 met15D0 ura3D0 This study

Wild type (FT4) MATa ura3–52 trp1-D63 his3-D200 leu2::PET56 [24]

FT4+Reb1BSD MATa ura3–52 trp1-D63 his3-D200 leu2::PET56 gal10::URA3::pMV12 (EcoRI/XhoI-Reb1
BSD with BS2 silent)

[24]

FT4 dbp2D (BTY219) MATa ura3–52 trp1-D63 his3-D200 leu2::PET56 dbp2::KanR This study

FT4+Reb1BSD dbp2D (BTY220) MATa ura3–52 trp1-D63 his3-D200 leu2::PET56 gal10::URA3::pMV12 (EcoRI/XhoI-Reb1
BSD with BS2 silent) dbp2::KanR

This study

FT4 xrn1D (BTY226) MATa, ura3–52, trp1-D63, his3-D200, leu2::PET56 xrn1::HygR This study

FT4+Reb1BSD xrn1D (BTY227) MATa, ura3-52, trp1-D63, his3-D200, leu2::PET56 gal10::URA3::pMV12 (EcoRI/XhoI-Reb1
BSD with BS2 silent) xrn1::HygR

This study

CYC8-36FLAG (BTY234) MATa his3D1 leu2D0 met15D0 ura3D0 CYC8–36FLAG (kanR) This study

dbp2D CYC8–36FLAG (BTY248) MATa dbp2::HygB his3D1 leu2D0 met15D0 ura3D0 CYC8–36FLAG (kanR) This study

xrn1D CYC8–36FLAG (BTY249) MATa xrn1::HygB his3D1 leu2D0 met15D0 ura3D0 CYC8–36FLAG (kanR) This study

All strains in the BY4741 background unless otherwise noted.
doi:10.1371/journal.pbio.1001715.t002

Table 3. Oligos for strain construction.

DBP2 KO F CAACAACCTGTAACAGAATTAAGCACTATTAAGGCAAATTTAGAGCAAA
TATGCAGCTGAAGCTTCGTACGC

DBP2 KO R GCAGTCAACTTATATAATTATTATTAATAGAGATGAATGAATTGAATCA
CTTTGGCATAGGCGACTAGTGGATCTG

XRN1 KO F ATGGGTATTCCAAAATTTTTCAGGTACATCTCAGAAAGATGGCCCATG
ATTTTACAGCTTTGCAGCTGAAGCTTCGTACGC

XRN1 KO R CTAAGTAGATTCGTCTTTTTTATTATCACGGTCAGCAGCATTGCTTTGT
GACTTTGGCGAGCATAGGCGACTAGTGGATCTG

DCP2 KO F ATAATATTGCTTTGAATCTGAAAAAAATAAAAGTACCTTCGCATT
AGACAATGCAGCTGAAGCTTCGTACGC

DCP2 KO R GGCTGCCTTCATTTACAGTGTGTCTATAAAACGTATAACACTTATT
CTTTGCATAGGCGACTAGTGGATCTG

CYC8-36FLAG F TGTAGTAAGGCAAGTGGAAGAAGATGAAAACTACGACGACAGGGA
ACAAAAGCTGGAG

CYC8-36FLAG R GATTATAAATTAGTAGATTAATTTTTTGAATGCAAACTTTCTATAGGGC
GAATTGGGT

doi:10.1371/journal.pbio.1001715.t003
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line from the lag time to the Tmax. T1/2 times correspond to the

average time to reach 50% maximum transcript levels within the

cell population. Calculated lag times in Figure 7 were determined

by fitting transcriptional induction data points for each biological

replicate to a multivariable, exponential growth curve (DM Fit v.

2.0) [54] and are reported as the average with the s.d. All

experiments were conducted with three biological replicates with

error between transcript levels as SEM.

RNA Isolation and Quantitation
RNA extraction, northern blotting, and RT-qPCR were

performed as in [37]. Probes were made from PCR products

using the DNA plasmid templates listed in Table 1. RT-qPCR

primers are listed in Table 4. Primers for Northern blotting probes

are listed in Table 5.

ChIP Analysis
ChIP was performed as described previously [37], with the

following modifications. After formaldehyde fixation, cells were

pelleted and washed twice with cold wash buffer (50 mM

HEPESNKOH, 140 mM NaCl, and 1 mM EDTA) and frozen in

liquid nitrogen. Cells were then lysed cryogenically using a Retsch

Oscillating Mill MM400. Cell lysates were then resuspended in

cold Lysis Buffer (50 mM HEPESNKOH, 140 mM NaCl, 1 mM

EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 1 mM

PMSF and 16protease inhibitor (complete, ETDA-free, Roche)),

and chromatin was sheared by sonication. For Cyc8–36flag ChIP,

chromatin from ,1.46108 cells was immunoprecipitated with

1 mL of FLAG M2 monoclonal antibody (F3165, Sigma) and

12 mL of Protein G Dynabeads (30 mg/mL, Invitrogen) at 4uC for

2 h. For PolII ChIP, chromatin from 2–36108 cells was

immunoprecipitated with 1 mL of Rpb3 monoclonal antibody

(WP012, Neoclone) and 12 mL of Protein G Dynabeads (30 mg/

mL, Invitrogen) at 4uC for 2 h. Immunoprecipitated DNA was

isolated as described previously [37]. Quantitative PCR was

performed using Bio-Rad CFX96 Real-time system using

PrimeTime Assay primers purchased from IDT (Table 6). All

ChIP experiments were performed with three biological replicates

and three technical repeats. Error bars represent the SEM of three

biological replicates.

Yeast Cell Lysate Preparation and Western Blotting
Yeast cells were grown in YP 2% glucose to an O.D. of 0.4–0.6.

We harvested 30 mg of yeast cells and lysed them with 1.85 M

NaOH and 7.4% b-mercaptoethanol on ice for 10 min. Proteins

were precipitated with 50% TCA on ice for 10 min and

resuspended into 300 ml 16SDS-PAGE loading dye. We then

resolved 1–1.5 mg proteins by SDS-PAGE and transferred them

to a nitrocellulose membrane. FLAG-tagged Cyc8 and Pgk1 were

detected by rabbit anti-36FLAG (F7425, Sigma) and monoclonal

mouse anti-yeast Pgk1 (459250, Invitrogen), respectively. Proteins

were visualized by alkaline phosphatase-based detection using AP-

conjugated anti-rabbit secondary antibody and AP-conjugated

anti-mouse secondary antibody, respectively, followed by a BCIP/

NBT chemistry (S3771, Promega).

Supporting Information

Figure S1 Representative northern blots for GAL7 and
GAL10 induction from derepressed conditions in XRN1-
deficient cells. (A–B) GAL7 (A) and GAL10 (B) induction profile

of one biological replicate for wild -type, lncRNAD, xrn1D, and

xrn1D lncRNAD strains from derepressed conditions. Transcrip-

tional induction assays were conducted from cells grown in

derepressive (+raffinose) to activated (+galactose) conditions. GAL7

and GAL10 transcripts were detected by northern blotting using a

Table 5. Oligos for northern blotting (dsDNA probes).

SCR1 F GGATACGTTGAGAATTCTGGCCGAGG

SCR1 R AATGTGCGAGTAAATCCTGATGGCACC

GAL7 F CCTTGGTTAGGTCAACAGGAG

GAL7 R AGTCGCATTCAAAGGAGCC

GAL10 F GCATCACATTCCCTTCTATGAG

GAL10 R ACGATTAGCATACCTGCCG

GAL1 F TTGGACGGTTCTTATGTCAC

GAL1 R GAGACTCGTTCATCAAGGC

doi:10.1371/journal.pbio.1001715.t005

Table 4. RT-qPCR oligos.

nc10 F GAGGTCTTGACCAAGCATCACA

nc10 R TTCCAGACCTTTTCGGTCACA

nc7 F TGAACAAGCCATATGGAGACA

nc7 R CGACGATATTACCCGTAGGAA

GAL10 59 F GAGGTCTTGACCAAGCATCACA

GAL10 59 R TTCCAGACCTTTTCGGTCACA

GAL7 59 F CAAAAAGCGCTCGGACAACT

GAL7 59 R GCTTGGCTATTTTGTGAACACTGT

ACT1 F TGGATTCCGGTGATGGTGTT

ACT1 R TCAAAATGGCGTGAGGTAGAGA

doi:10.1371/journal.pbio.1001715.t004

Table 6. Primetime assays for ChIP.

Name Forward Reverse Probe

GAL10 promoter CTTTATTGTTCGGAGCAGTGC GCTCATTGCTATATTGAAGTACGG CGGTGAAGACGAGGACGCACG

GAL10 59 TGGTGCTGGATACATTGGTTC AGGGAATGTGATGCTTGGTC TGACTGTGTTGTTGCTGATAACCTGTCG

GAL7 promoter GCGCTCGGACAACTGTTG TTTCCGACCTGCTTTTATATCTTTG CCGTGATCCGAAGGACTGGCTATACA

GAL7 59 ATCATACAATGGAGCTGTGGG CTAGCCATTCCCATAGACGTTAC AAGCAGCCTCCTGTTGACCTAACC

GAL6 promoter CCAGAAAGTCACCTGCTCTC GCATGTAACAAAAGAGCAAGGG CGCCGACGGGCACCCATAA

ACT1 middle ATTGAGAGTTGCCCCAGAAG ATGGAAACGTAGAAGGCTGG ACACCC TGTTCTTTTGACTGAAGCTCC

doi:10.1371/journal.pbio.1001715.t006
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32P-labeled double-stranded DNA probe as in Figure 1. SCR1 was

detected similarly and serves as a loading control. Lag times

correspond to the average time to detection of GAL transcripts for

the three independent biological replicates shown in Figure 5

following normalization to SCR1 and the control RNA (not

pictured). Note that bands are detectible in wild-type and lncRNAD
strains in (B) at the 30 min time point (yielding similar lag times for

all strains), but appear weaker than in xrn1D strains due to loading

differences between blots.

(TIF)

Figure S2 Representative northern blots for GAL7 and
GAL10 induction from repressed conditions in XRN1-
deficent cells. (A–B) GAL7 (A) and GAL10 (B) induction profile of

one biological replicate for wild-type, lncRNAD, xrn1D, and xrn1D
lncRNAD strains from repressed conditions. Transcriptional induc-

tion assays were conducted as above during the switch from

repressed (+glucose) to activated (+galactose) conditions. Lag times

correspond to the average time to detection of GAL transcripts for

the three, independent biological replicates shown in Figure 6 and

are calculated following normalization to SCR1 and the GAL control.

(TIF)

Figure S3 Transcriptional induction assays for wild-
type and lncRNAD strains from repressed to activated
conditions. (A–B) High-resolution analysis of transcriptional

induction in wild-type and lncRNAD cells. Transcription induction

was measured in wild-type or lncRNAD cells from repressed

conditions as above with the inclusion of additional 10 min time

points from 90–150 min immediately prior to recruitment of

RNAPII (see Figure 4). Lag times are not determined visually from

the blots but were calculated as the average across three biological

replicates after normalization to the SCR1 loading control.

(TIF)

Figure S4 Individual transcriptional induction profiles
following curve fitting analysis. Individual biological repli-

cates of induction profiles of wild-type and lncRNAD strains from

repressed to activated conditions. Transcript levels were normal-

ized to SCR1 and the GAL ‘‘control’’ RNA as above. Resulting

data points were then fit to a dynamic exponential growth curve

(DM fit v. 2.0) [54]. R2 values and lag times are shown for each

individual profile. Calculated lag times are reported in Figure 7 (C

and D) and correspond to the average lag time and s.d. for

induction of GAL7 and GAL10 after curve fitting for wild-type and

lncRNAD strains.

(TIF)
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ABSTRACT Cellular homeostasis requires a fine balance between energy uptake, utilization, and growth. Dbp2 is a member of the
DEAD-box protein family in Saccharomyces cerevisiae with characterized ATPase and helicase activity in vitro. DEAD-box RNA helicases are
a class of enzymes that utilize ATP hydrolysis to remodel RNA and/or RNA–protein (RNP) composition. Dbp2 has been proposed to utilize
its helicase activity in vivo to promote RNA–protein complex assembly of both messenger (m)RNAs and long noncoding (lnc)RNAs.
Previous work from our laboratory demonstrated that loss of DBP2 enhances the lncRNA-dependent transcriptional induction of the
GAL genes by abolishing glucose-dependent repression. Herein, we report that either a carbon source switch or glucose deprivation
results in rapid export of Dbp2 to the cytoplasm. Genome-wide RNA sequencing identified a new class of antisense hexose transporter
transcripts that are specifically upregulated upon loss of DBP2. Further investigation revealed that both sense and antisense hexose
transporter (HXT) transcripts are aberrantly expressed in DBP2-deficient cells and that this expression pathway can be partially mimicked in
wild-type cells by glucose depletion. We also find that Dbp2 promotes ribosome biogenesis and represses alternative ATP-producing
pathways, as loss of DBP2 alters the transcript levels of ribosome biosynthesis (snoRNAs and associated proteins) and respiration gene
products. This suggests that Dbp2 is a key integrator of nutritional status and gene expression programs required for energy homeostasis.

CELL growth and division is intimately coupled to cell
mass, with the nutrient availability and ribosome content

playing a key role in dictating growth rate (Lempiainen and
Shore 2009). This involves phosphorylation cascades such as
the TOR (target of rapamycin) and the Ras–cAMP–protein
kinase A signaling pathways to transmit information regarding
the availability of nutrients to essential processes for cell
growth (Powers and Walter 1999; Warner 1999; Lempiainen
and Shore 2009; Broach 2012).

Dbp2 is a member of the DEAD-box RNA helicase family
in the budding yeast Saccharomyces cerevisiae. DEAD-box
proteins are RNA-dependent ATPases that utilize ATP hydrolysis

to catalyze structural rearrangements to RNA and RNA–protein
(RNP) complexes (Bowers et al. 2006; Bhaskaran and Russell
2007; Del Campo et al. 2009; Jankowsky 2011; Putnam and
Jankowsky 2013b). The metazoan ortholog of Dbp2, hDDX5,
or p68 has been linked to ribosome biogenesis as well as
a variety of gene regulatory processes including transcriptional
regulation, alternative splicing, and mRNA export (Wilson
et al. 2004; Buszczak and Spradling 2006; Caretti et al. 2006;
Jalal et al. 2007; Salzman et al. 2007; Camats et al. 2008;
Clark et al. 2008; Fuller-Pace and Moore 2011). Budding
yeast Dbp2 is also required for ribosome biogenesis and
numerous processes linked to transcriptional fidelity (Barta
and Iggo 1995; Bond et al. 2001; Bohnsack et al. 2009; Cloutier
et al. 2012; Cloutier et al. 2013; Ma et al. 2013).

Biochemical characterization has established that Dbp2
is a bona fide helicase and ATPase in vitro, with robust duplex
unwinding in line with other DEAD-box proteins (Cloutier
et al. 2012; Kovalev et al. 2012; Ma et al. 2013). Dbp2 asso-
ciates directly with actively transcribed chromatin, suggestive
of a cotranscriptional role (Cloutier et al. 2012). Moreover,
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loss of DBP2 results in decreased association of mRNA-binding
proteins and nuclear export factors Yra1, Nab2, and Mex67 to
mRNA (Ma et al. 2013). This has led to the model that Dbp2
promotes mRNP assembly by modulating nascent RNA struc-
ture during transcription.

Recent work from our laboratory connected the RNA
helicase Dbp2 to long noncoding RNA (lncRNA)-dependent
gene regulation (Cloutier et al. 2013). Although the precise
molecular role(s) for the .30,000 eukaryotic lncRNAs iden-
tified thus far is not well defined, an emerging theme is that
lncRNAs fine tune transcriptional switches in gene expres-
sion (Fatica and Bozzoni 2014). The GAL cluster genes are
part of the galactose metabolic switch that allows budding
yeast to rapidly adapt to the availability of galactose as an
alternative to glucose as a carbon source (Lohr et al. 1995;
Sellick et al. 2008). This switch involves a number of carbon
source sensors, sugar transporters, signaling cascades, and
transcriptional effectors to globally alter the metabolic pro-
gram for energy production (Gancedo 1998; Johnston and
Kim 2005; Traven et al. 2006; Broach 2012). Interestingly,
our work revealed that the GAL lncRNAs function in this
switch by enhancing the transcriptional response rate to
the carbon source switch (Cloutier et al. 2013). Dbp2 antag-
onizes this role by maintaining glucose-dependent repression
of the GAL genes, with loss of DBP2 enhancing transcriptional
induction in an lncRNA-dependent manner (Cloutier et al.
2013). This suggests that Dbp2 may be fundamentally inte-
grated into gene regulatory programs that are responsive to
nutritional status of the cell.

Herein, we show that Dbp2 plays a global role in glucose-
dependent repression. Our results suggest that this RNA
helicase is both regulated by carbon source availability and
controls expression of energy-producing and -consuming gene
expression networks. We also document a class of lncRNAs
that are antisense to hexose transporter genes and show that
the levels of these lncRNAs are dependent on Dbp2. These
results are intriguing because glucose-dependent repression
is primarily maintained by transcription factors whose activity
is controlled by cellular signaling cascades. Our work now
establishes a role for an RNA helicase in this process, indicating
that gene expression networks may also be regulated by
modulation of RNA structure.

Materials and Methods

Yeast strains

The strains used in this study include: DBP2–GFP, MATa DBP2–
GFP:HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0; wild type, MATa
his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 dbp2Δ (BTY115), MATa
dbp2::KanMx6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0; msn5D
DBP2–GFP MATa msn5::KanMx6 DBP2–GFP:HIS3 his3Δ1
leu2Δ0 met15Δ0 ura3Δ0; snf1D DBP2–GFP MATa snf1::
KanMx6 DBP2–GFP:HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0;
hog1D DBP2–GFP, MATa hog1::KanMx6 DBP2–GFP:HIS3 his3Δ1
leu2Δ0 met15Δ0 ura3Δ0; DBP2–FLAG MATa his3Δ1 leu2Δ0

met15Δ0 ura3Δ0 DBP2–3xFLAG:KanMx6. All strains are in
the BY4741 strain background. DBP2–GFP is available from
Invitrogen whereas wild type is available from Open Biosys-
tems. The dbp2Δ strain was constructed by PCR-mediated
gene replacement as previously described (Cloutier et al.
2012).The msn5D DBP2–GFP and snf1D DBP2–GFP strains
were constructed by PCR-mediated integration of a GFP tag
into DBP2 genomic locus in the the msn5D, snf1D, and hog1D
strains available from Open Biosystems.

Preparation and purification of anti-Dbp2

Polyclonal rabbit anti-Dbp2 antibodies were generated by
Cocalico Biologicals, Inc., using full-length, recombinant puri-
fied Dbp2 expressed in bacteria (Cloutier et al. 2012). Resulting
immunosera was dialyzed against PBS and subjected to affinity
purification using Dbp2-conjugated CNBr–sepharose according
to manufacturer’s instructions (Sigma). The eluted, purified
anti-Dbp2 antibody was stored at 4� in the presence of 0.05%
sodium azide. Western blotting was conducted with a 1:5000
dilution of anti-Dbp2.

Fluorescent cell microscopy

Cells were initially grown to an OD600 nm of 0.1 at 30� in YP
+ 2% Glucose (YPD). Cells were washed twice with YP +
0% Glucose (YP) and then resuspended in YP + different
concentrations of glucose as indicated. Cells were harvested
by centrifugation at the indicated time points and were visu-
alized using an Olympus BX-51 fluorescent microscope. For
translational shut-off assays, cells grown in YPD were shifted
to YP and then back to YPD with or without 300 mg/ml
cycloheximide for 30 min before visualization. Where indi-
cated, 10 mg/ml rapamycin was included. Images were cap-
tured with a Hamamatsu Orca R2 camera and MetaMorph
software (Molecular Devices, Sunnyvale, CA).

Quantitative Western blotting

Protein stability was assayed following addition of cycloheximide
to the media as above, but with 20 mg/ml of cycloheximide.
Yeast cell lysates were prepared as described previously (Cloutier
et al. 2013). Dbp2, Upf1, and Pgk1 were detected using

Table 1 Oligonucleotides for qPCR

ACT1 forward TGGATTCCGGTGATGGTGTT
ACT1 reverse* TCAAAATGGCGTGAGGTAGAGA
HXT1 forward** GAATTGGAATCTGGTCGTTC
HXT1 reverse* TAGACACCTTTTCCGGTGTT
HXT4 forward** CCGCCTACGTTACAGTTTCC
HXT4 reverse* ACAAAACCACCGAAAGCAAC
HXT5 sense forward GCCGGTTACAACGATAATTTGG
HXT5 sense reverse* GGCCTTCATGGGAAATGTAACT
HXT5 antisense forward** TTTCTGCCCACTTCTCTCTTACAA
HXT5 antisense reverse CCGTCCTCACTGTTTTATTACCAA
HXT8 forward** TTTCCATTAAGGGTGAGATCCAA
HXT8 reverse CGATTAGGAACCCCCACAATAA

Oligonucleotides for quantitative PCR after reverse transcription (RT–qPCR). Oligo-
nucleotides for RT–qPCR are listed as forward and reverse pairs for each transcript
tested. Primers used for strand-specific cDNA preparation are indicated with one
asterisk corresponding to a primer for sense and two asterisks for antisense. QPCR
was conducted with both forward and reverse primer pairs.
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rabbit anti-Dbp2 (this study), rabbit anti-Upf1 (Bond et al.
2001), or mouse anti-Pgk1 (459250, Invitrogen) respectively.
Proteins were visualized using Luminata Crescendo Western
HRP Substrate (Millipore) according to manufacturer’s instruc-
tions. Bands were quantified using ImageQuant TL software
(GE Life Sciences).

RNA sequencing sample preparation

Wild-type and dbp2D cells were grown in YPD at 30� to an
OD600 nm of 0.4 before being harvested by centrifugation,
flash frozen in liquid nitrogen, and stored at 280�. Total
RNA isolation was performed using a standard acid phenol:
chloroform purification as previously described (Cloutier et al.
2012). DNase treatment was performed using 1 U TurboDNase
(Life Technologies) per 10mg of RNA for 30min at 37�. RNAwas
analyzed with a DU-730 Beckman-Coulter spectrophotometer.
RNA purity was considered suitable for qPCR if the A260/280

was �2.0 and the yield was �80% after DNase treatment.
Ribosomal RNA depletion was performed prior to library

generation (Ribominus Eukaryote kit, Life Technologies). A
strand-specific RNA sequencing library was generated using
paired-end reads and SOLiD sequencing on the 5500 XL
platform (Life Technologies) by the Northwestern University
Genomics Core Facility. Forward sequences were generated
using the F3 tag and were 75 bp in length; reverse sequences
were generated with the F5 tag and were 35 bp in length.

RNA sequencing data analysis

RNA sequencing generated �60 million and 40 million map-
pable reads in wild type and dbp2Δ, respectively, per replicate.
Raw data quality was evaluated by FastQC software with Ilu-
mina 1.9 encoding. Reads were aligned by position and orien-
tation to the reference S. cerevisiae genome sacCer3 (http://
www. http://genome.ucsc.edu) using LifeScope v. 2.5.1. Gene
expression (in RPKM), statistical analysis, and fold change be-
tween strains were determined using Cufflinks 2.0 software.
Those genes with a statistically significant increase in tran-
scripts in dbp2Δ were analyzed for GO-term enrichment for
similar processes using FuncAssociate 2.0 (http://llama.mshri.
on.ca/funcassociate/) (Berriz et al. 2009). RNA sequencing
data are deposited in the NCBI GEO database no. GSE58097.

Strand-specific RT-qPCR

Primers for RT–qPCR were designed using Primer Express
3.0 software. Strand-specific reverse transcription was performed

using the Quantitect reverse transcription kit (Qiagen) with
the following modifications: A total amount of 2 mg of RNA
was prepared for a 20ml reaction. Primers specific to one
strand of the target gene and the sense strand of a reference
gene, ACT1, were added to a final concentration of 5 mM.
Actinomycin D was included in the reverse transcription re-
action to a final concentration of 6 ng/ml to prevent second-
strand synthesis. Following heat inactivation, unincorporated
primers were removed using the QiaQuick PCR Purification
Kit (Qiagen) according to the manufacturer’s instructions.
Quantitative PCR was performed as previously described
(Cloutier et al. 2012). Fold changes were calculated using
the Pfaffl method (Pfaffl 2001), with results reported as the
mean 6SE of three biological replicates with three technical
repeats. See Table 1 for a listing of primers used for strand-
specific reverse transcription.

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was performed as
described previously (Cloutier et al. 2012). Primer-probe sets
were designed to amplify DNA corresponding to the genomic
regions to the 59 ends of the sense and antisense transcripts of
HXT1, HXT5, and HXT8 and the region corresponding to the
sense transcript of HXT4. Results represent three biological
replicates with three technical replicates shown as the mean
percentage signal above input and SEM. Primetime assay
primer-probe sets (IDT) are listed in Table 2.

Results

The cellular localization of Dbp2 is responsive to
extracellular glucose

Many glucose-dependent repressors are regulated at the
level of cellular localization, protein stability, and/or synthesis
in response to nutrient availability (Gancedo 1998). More-
over, recent global analyses of mRNP complexes in budding
yeast revealed that the subcellular distribution of a large pro-
portion of RNA-binding proteins is dictated by environmental
growth conditions (Mitchell et al. 2013). To determine if
Dbp2 is regulated similarly, we first examined the localization
of a C-terminally GFP-tagged Dbp2 in S. cerevisiae during the
shift from glucose to galactose (Figure 1A). Briefly, strains
expressing a genomically encoded DBP2–GFP were grown to
early log phase (OD600 nm of 0.1) in standard, rich media

Table 2 Oligonucleotides for Chromatin Immunoprecipitation (ChIP)

Name Forward primer Reverse primer Probe

HXT1 antisense TTCCAGGCTGTCGGTTTAAG AGCACCCCACATCAAACAG CCAAAACGGTCAACGGTGTAC
HXT1 sense GGCCATGAATACTCCAGAAGG CACCGAAAGCAACCATAACAC AGTGAAAGTCAAGTGCAACCCGC
HXT4 sense GTTGGTGTTACAAGATTGTGGC CAGGTAGTGGCAAAACAGAATAAG AACGGGTCTTCTAAGGGTGCTGG
HXT5 antisense TTACTCGAGGTTTCAACAGGG AGGTAGCGGAGTTTTCAGTTC AATCAAGAGCCCCGTTCTTTTACCGT
HXT5 sense CGGAACTTGAAAACGCTCATC TGAGACGGGTTTAGCTTGTG CCTTGGAAGGGTCTGCTACTGTGA
HXT8 antisense TCTGTTGATAAGTTGGGCCG GTAAATAACCATGCACGCCG TCTTTTACTTGGAGCAGCCACCATGA
HXT8 sense TTAGTGTTCTTGCCCCGATG CGAAAGTCACCATCAATTGCC ACTGCGCCAAAGCATATCAGAGGT

Oligonucleotides for ChIP are Primetime qPCR assays (IDT) and are listed as forward and reverse primers and probe for each gene tested.
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(YP) plus 2% glucose and then shifted to rich media plus 2%
galactose. The cellular localization of Dbp2–GFP was deter-
mined by epifluorescent microscopy of samples before (0 min)
or at different time points following readdition of galactose.

Consistent with previous studies, Dbp2–GFP displayed
a predominantly nuclear localization when cells were grown
in the presence of glucose (Figure 1A, 0 min, Cloutier et al.
2012). However, Dbp2–GFP redistributed to the cytosol after
the carbon source shift (Figure 1A, 30 and 60 min). Interest-
ingly, the nuclear localization was restored by 300 min, sug-
gesting that the cellular redistribution of Dbp2–GFP is due to
the removal of glucose, not the presence of galactose. To test
this, we asked if reduction of glucose concentrations in the
media would also render Dbp2 cytoplasmic. Interestingly,
Dbp2 exhibited cytosolic localization only upon full glucose
deprivation (0%), whereas Dbp2 is largely nuclear at all tested
concentrations (Figure 1, B and C). Next, we asked how
quickly cytoplasmic redistribution occurs by conducting a mi-
croscopy time course immediately prior to and following
removal of glucose from the media (Figure 1, D and E). This
revealed that Dbp2–GFP is redistributed to the cytosol within
2 min following glucose removal, indicating a rapid alteration

of cellular localization (Figure 1E). Moreover, the cytosolic lo-
calization persisted over a 1-hr time frame (Figure 1, D and E),
indicating that the redistribution is both rapid and stable.

The change in Dbp2 localization is due to nuclear
transport not protein turnover

The apparent cellular redistribution of Dbp2 could be due to
active nuclear export and/or protein turnover. To test this, we
measured Dbp2 protein stability by quantitative Western blot-
ting over time following addition of the translational inhibitor
cycloheximide. Dbp2 levels were then plotted with respect to
the loading control Pgk1 (Figure 2, A and B). Consistent with
prior data stating that Dbp2 is exceptionally stable with an
estimated half-life of �250 min (Laxman et al. 2010), we
did not observe an appreciable decrease within the 1-hr time
frame of our analysis. This was not due to an incomplete trans-
lational block, as the levels of another RNA helicase, Upf1, was
degraded with a half-life within the range of other studies
(Figure 2A, red; Ruiz-Echevarria et al. 1998). Furthermore,
the stability of Dbp2 did not change upon removal of glucose
within 1 hr (Figure 2B). This suggests that protein turnover is
not a major mechanism for the observed relocalization.

Figure 1 Dbp2 is redistributed to the
cytosol upon glucose deprivation. (A) The
nuclear Dbp2–GFP signal is rapidly lost
during a shift from glucose to galactose
media. Dbp2–GFP cells were grown in the
presence of 2% glucose (YPD) and shifted
to media with 2% galactose (YP + Gal).
Fluorescent images were collected by mi-
croscopy at the indicated time points fol-
lowing the shift. (B) Nuclear Dbp2–GFP
signal decreases with lower glucose con-
centrations. Yeast cells expressing a
C-terminally GFP-tagged Dbp2 encoded
within the endogenous DBP2 locus were
grown to early log phase (0.1 OD at 600
nm) at 30� in rich media + 2% glucose
(YPD) and then shifted to media with
the indicated glucose concentrations
for 30 min. The localization of Dbp2–GFP
was determined by fluorescent microscopy
(bottom) with corresponding DIC images
(top). All images were collected with the
same exposure time and are scaled equiv-
alently. (C) Graphical representation of
glucose-dependent nuclear localization of
Dbp2. Dbp2–GFP localization was deter-
mined as above over a range of glucose
concentrations. The fraction of cells with
a predominantly nuclear Dbp2–GFP signal
is reported for each glucose concentration
tested. Graphical points represent the av-
erage of three biological replicates with

.100 cells per replicate counted and scored. Error bars represent the SEM. (D) Dbp2 is rapidly lost from the nucleus after glucose removal. Fluorescence
microscopy images of Dbp2–GFP localization at the indicated time points following depletion of glucose (YP) are shown. DIC and fluorescent microscopy images
were collected as above following growth of Dbp2–GFP-expressing yeast cells in rich media with glucose to early log phase and subsequent removal by
centrifugation and resuspension in media lacking glucose. (E) Graphical analysis of the rate of nuclear Dbp2–GFP loss following removal of glucose. The time for
Dbp2–GFP relocalization following glucose depletion was determined by growing Dbp2–GFP-expressing cells in YP+2% glucose as above, rapidly shifting the
cells to YP lacking glucose and collecting images by fluorescence microscopy at the indicated time points before (0 min) and immediately following glucose
depletion. The fraction of cells with nuclear signal was determined as in C.
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We then asked if nuclear signal could be restored upon
readdition of glucose (Figure 2C). To this end, we subjected
cells to a 30-min glucose depletion followed by a 30-min
incubation in the presence of glucose (2%). Fluorescent mi-
croscopy revealed that the predominantly nuclear localization
of Dbp2 was fully restored by adding back glucose (Figure 2C).
Moreover, the addition of cyclohexamide had no effect on this
nuclear accumulation (Figure 2D). This is similar to the regu-
lated localization of the glucose-dependent repressor Mig1 (De
Vit et al. 1997) and suggests that relocalization of Dbp2 upon
glucose deprivation occurs through regulated nucleocytoplas-
mic transport.

Transport of Dbp2 is not dependent on the Snf1/Msn5,
Hog1, or TOR signaling pathways

Upon reduction in extracellular glucose, Mig1 is exported to
the cytoplasm through the activity of Snf1, the budding yeast
ortholog of the human AMP-activated protein kinase AMPK
(Woods et al. 1994; De Vit et al. 1997; Hardie et al. 2012),
and the export receptor Msn5 (DeVit and Johnston 1999). To
determine if the Snf1 signaling pathway is involved in Dbp2
relocalization, we constructed DBP2–GFP snf1Δ cells through
standard yeast genetic methods and conducted cellular mi-
croscopy following glucose deprivation as above. In contrast
to Mig1, Dbp2–GFP was still localized to the cytoplasm fol-
lowing glucose removal in SNF1-deficient strains (Figure 3A,
left and middle). Moreover, loss of MSN5 had no effect on
relocalization of Dbp2–GFP to the cytoplasm (Figure 3A, right).
This suggests that export of Dbp2 upon glucose deprivation
is not dependent on the Snf1 signaling pathway. We also

observed efficient cytoplasmic relocalization of Dbp2–GFP
in the absence of HOG1, a mitogen-activated protein kinase
involved in osmolaric stress responses that has recently been
linked to glucose deprivation (Westfall et al. 2004; Piao et al.
2012; Figure 3B).

We then asked if the glucose-dependent cellular locali-
zation of Dbp2 is an effect of inhibited reimport rather than
stimulated export. The TOR signaling pathway promotes
anabolic processes that promote cell growth (Wullschleger
et al. 2006). To determine if the localization of Dbp2–GFP
requires TOR signaling, we performed cellular microscopy
following glucose removal and readdition in the presence of
the TOR inhibitor, rapamycin. The translational inhibitor,
cycloheximide, was also included to ensure that perceived
changes in cellular localization were not due to new protein
synthesis. Dbp2–GFP, however, was efficiently reimported
upon addition of glucose regardless of the presence of rapa-
mycin (Figure 3C, compare to Figure 2, C and D). Thus, the
cytoplasmic relocalization of Dbp2 is not dependent upon
Snf1 or Hog1 signaling and neither import nor export of
Dbp2 requires TOR. This suggests that the cellular localiza-
tion of Dbp2 is dependent on another, as-of-yet unidentified
signaling pathway or that multiple pathways dictate the glucose-
dependent localization of Dbp2 (see Discussion).

DBP2 facilitates glucose-dependent regulation of
multiple gene expression networks

Dbp2 is a bona fide RNA helicase that associates directly
with transcribed chromatin (Cloutier et al. 2012; Ma et al.
2013). However, our data above suggest that this enzyme

Figure 2 The change in cellular localiza-
tion of Dbp2 is due to nuclear transport,
not protein turnover. (A and B) Dbp2
protein exhibits similar stability irrespec-
tive of the presence of glucose in the
media. The stability of Dbp2 protein in
the presence of glucose (A) or following
glucose deprivation (B) by adding cyclo-
heximide, as previously described to pre-
vent new protein synthesis (Castoralova
et al. 2012). Samples were removed at
5-, 10-, 20-, 30-, 40-, and 60-min incre-
ments and subjected to Western blot-
ting with rabbit polyclonal anti-Dbp2.
Dbp2 levels were quantified with re-
spect to Pgk1 and are presented graph-
ically. Upf1, another RNA helicase, has
a reported half-life of �16 min (Ruiz-
Echevarria et al. 1998) and is included
as a control for efficient translational
shutoff. Dbp2 half-lives could not be de-
termined for either growth conditions
because they do not decrease substan-
tially within a 1-hr time frame. (C) Read-

dition of glucose to glucose-deprived cells restores nuclear Dbp2 signal. Dbp2–GFP-expressing cells were subjected to a 30-min glucose deprivation, to
ensure complete cytosolic redistribution, and were then resuspended in fresh media with saturating glucose (2%). Dbp2–GFP was visualized before
glucose removal (0 min), following deprivation, and after 30 min incubation with fresh, glucose-containing media. Dbp2 localization was visualized by
fluorescent microscopy as above. Note that Dbp2–GFP-expressing strains show reduced signal in the absence of glucose (middle). However, this is not
due to a change in Dbp2 protein levels (see Figure 2A). (D) New protein synthesis is not necessary for restoration of nuclear signal upon glucose
readdition. Dbp2–GFP localization was determined as in C, but in the presence of cyclohexamide to block translation.
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may function more like a carbon-source-regulated transcrip-
tion factor. Consistent with this, Dbp2 is required for glu-
cose-dependent repression of the GAL cluster genes through
modulation of associated long noncoding RNAs (Cloutier
et al. 2013). To determine if Dbp2 plays a more widespread
role in nutrient-dependent gene expression, we conducted
RNA sequencing of wild-type and dbp2Δ cells using SOLiD
NextGen technology to reveal the entire complement of
transcripts whose levels depend on DBP2. This resulted in
�50 million mappable reads per strain per replicate, which
were then subjected to bioinformatics analysis and align-
ment to the S. cerevisiae genome (Supporting Information,
Table S1). Transcripts were separated by sense vs. antisense
orientation with respect to the protein-coding gene and fold
change from wild type was determined using Cufflinks 2.0
(Table S2 and Table S3, respectively).

RNA seq identified �3000 coding and noncoding (nonribo-
somal) transcripts that are either over- or underrepresented in
DBP2-deficient cells as compared to wild type. To determine if
these differentially expressed transcripts fall into common

functional categories, we then conducted GO term analysis
using FuncAssociate 2.0 (Berriz et al. 2009). Consistent with
the link between Dbp2 and carbon source availability, GO
classification revealed a robust overaccumulation of transcripts
encoding mitochondrial respiration components (Table 3).
S. cerevisiae preferentially utilize aerobic fermentation over ox-
idative respiration for energy production until fermentable car-
bon sources, such as glucose, become limiting (Broach 2012).
These genes are typically repressed in wild-type cells to pro-
mote fermentation over oxidation in the presence of glucose.
Conversely, transcripts encoding ribosome biogenesis factors,
whose expression is activated by glucose, were underrepre-
sented in dbp2Δ cells (Table 4). Ribosome biogenesis is also
dictated by nutrient availability, balancing energy production
with consumption (Warner 1999; Broach 2012). Taken to-
gether, this indicates that DBP2 links nutrient availability to
the energy status of the cell.

Unexpectedly, our analysis also revealed accumulation of
antisense transcripts overlapping hexose transporter genes
(Table 5). Hexose transport constitutes an essential and

Figure 3 The cellular redistribution of
Dbp2 upon glucose deprivation does
not depend on the Snf1 pathway, Hog1
pathway, or TOR signaling. (A) Dbp2–GFP
signal relocalization is not dependent
on the Snf1 kinase pathway. Wild-type,
snf1Δ, andmsn5Δ cells harboring genomi-
cally encoded DBP2–GFP constructs were
visualized for Dbp2 localization in the pres-
ence of glucose (YPD) or after a 30-min
deprivation (YP 30 min). Dbp2–GFP was
visualized by epifluorescent microscopy
and images are representative of three
biological replicates. (B) Dbp2–GFP sig-
nal is not redistributed to the cytoplasm
via the HOG1 osmolaric stress response
pathway. Dbp2–GFP localization in wild-
type and hog1Δ cells was visualized in
both the presence of glucose (YPD) and
following a 30-min glucose deprivation
(YP 30 min) as above. (C) Glucose-
dependent localization of Dbp2–GFP is
not dependent on the TOR pathway.
Dbp2–GFP cells were grown in the pres-
ence of glucose (YPD) and then shifted
to YPD supplemented with rapamycin
for 30 min to inhibit the TOR pathway
and cycloheximide to inhibit de novo
protein synthesis (Shift 1). Cells were
then subjected to a 30-min glucose dep-
rivation (YP 30 min) in the presence of
rapamycin and cycloheximide (Shift 2).
After glucose deprivation, cells were given
access to glucose (YPD) supplemented with
rapamycin and cycloheximide (Shift 3). Fluo-
rescent images were collected as above.
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rate-limiting step in sugar catabolism, with hexose transporters
providing the sole portal for cellular import of fructose,
mannose, and glucose (Johnston and Kim 2005; Horak 2013).
Although the function of the hexose transporter (HXT) antisense
transcripts is not known, this strong GO term enrichment
suggests that Dbp2 may regulate expression of the HXT genes
via lncRNAs. This would be consistent with prior studies of
Dbp2 and the GAL cluster lncRNAs (Cloutier et al. 2013). We
did not observe antisense transcripts at the ribosome biogenesis
snoRNA or mitochondrial respiratory genes, suggesting that
this is specific for the HXT antisense transcripts.

Loss of DBP2 affects both sense and antisense hexose
transporter transcript levels

The vast majority of antisense transcriptional events correlate
with decreased expression of overlapping, protein-coding
genes. To determine if there is a general trend between the
misregulated antisense transcripts and their corresponding
sense targets in dbp2Δ cells, we manually selected all transcript
pairs whose sense or antisense transcript was differentially
expressed with respect to wild type (log2-fold change greater
or less than 60.5). We then generated a scatter plot of the
change in abundance of antisense vs. the sense transcripts for
all misregulated genes in dbp2Δ cells (Figure 4, gray dots).
This revealed no correlation between the upregulated anti-
sense transcripts in dbp2Δ cells and the level of the corre-
sponding sense RNA, suggesting that the absence of DBP2
does not result in a general, genome-wide downregulation
of antisense-targeted genes.

Budding yeast encode 17 HXT genes whose expression
and function constitute the rate-limiting step for glycolysis
(Horak 2013). Given the striking enrichment in antisense
hexose transporter transcripts in dbp2Δ cells (Table 5), we then
asked if there was a correlation between sense and antisense
HXT transcript levels. This revealed a slight positive correlation

between the levels of sense and antisense transcripts corre-
sponding to the HXT protein-coding gene products (Figure
4, red dots). In fact, 50% of the HXT genes displayed higher
sense and antisense HXT transcript levels in dbp2Δ cells as
evidenced by localization in the top, rightmost quadrant.
This could occur by simultaneous expression of both, over-
lapping transcripts in a given cell or by mutually exclusive
expression of individual RNAs in different cells within a pop-
ulation. Regardless, this suggests that Dbp2 regulates the
levels of both sense and antisense HXT transcripts.

Strand-specific reverse transcriptase-quantitative PCR
provides independent validation of differentially
expressed HXT genes in dbp2Δ cells

To independently verify that both sense and antisense HXT
transcripts are overabundant in dbp2Δ cells, we first modi-
fied a standard reverse transcriptase-quantitative PCR (RT–
qPCR) method to quantify cellular RNAs transcribed from
overlapping gene products (Figure 5A). This was necessary
as analysis of overlapping transcriptional products is not al-
ways straightforward due to vastly different expression levels
and the second-strand synthesis activity of reverse transcrip-
tase (Perocchi et al. 2007). Strand-specific complementary (c)
DNAs were generated using reverse transcription with gene-
specific primers (GSPs) to the targeted sequence of interest,
and to actin mRNA (ACT1) as an internal control, in the
presence of actinomycin D (ActD) (Figure 5A). ActD effi-
ciently inhibits second-strand synthesis by reverse transcriptase
(data not shown), which has been noted to cause an over-
representation of antisense transcripts in genome-wide tran-
scriptional studies (Johnson et al. 2005; Perocchi et al.
2007). Unincorporated GSPs were then removed from the
cDNA preparation by standard column chromatography. We
selected the GAL10 sense and antisense RNAs for method
validation because the sense and antisense products can be

Table 3 Upregulated Sense Transcripts (895)

N LOD P P_adj attrib ID attrib name

9 1.278165325 4.12E-06 0.001 GO:0006122 Mitochondrial electron transport, ubiquinol to cytochrome c
8 1.229371024 2.03E-05 0.012 GO:0005750 Mitochondrial respiratory chain complex III
8 1.229371024 2.03E-05 0.012 GO:0045275 Respiratory chain complex III
8 1.083144865 6.35E-05 0.043 GO:0005991 Trehalose metabolic process

10 1.066652419 9.00E-06 0.006 GO:0005199 Structural constituent of cell wall
12 1.056106801 1.29E-06 ,0.001 GO:0070469 Respiratory chain
20 0.953976428 3.53E-09 ,0.001 GO:0022904 Respiratory electron transport chain
24 0.580122409 3.65E-06 0.001 GO:0015078 Hydrogen ion transmembrane transporter activity
25 0.571861779 2.95E-06 ,0.001 GO:0022900 Electron transport chain
24 0.483759772 5.38E-05 0.033 GO:0015077 Monovalent inorganic cation transmembrane transporter activity
49 0.4055929 6.90E-07 ,0.001 GO:0001071 Nucleic acid binding transcription factor activity
49 0.4055929 6.90E-07 ,0.001 GO:0003700 Sequence-specific DNA binding transcription factor activity
50 0.30780812 6.48E-05 0.043 GO:0006091 Generation of precursor metabolites and energy
60 0.27626111 7.13E-05 0.046 GO:0043565 Sequence-specific DNA binding

Transcripts encoding respiration and energy production factors are upregulated in dbp2Δ cells. RNA sequencing was conducted for wild-type and dbp2Δ cells grown at 30� in
YP + 2%D using a SOLiD platform and pairwise analysis. Sense and antisense reads were differentiated using Cufflinks 2.0. Resulting transcripts were analyzed as separate
data sets depending on over- or underrepresentation and sense vs. antisense orientation with respect to the gene. Genes with sense transcripts that were overrepresented in
dbp2Δ cells as compared to wild type were selected from the RNA sequencing data set. Gene ontology (GO) terms for functional processes were determined using
FuncAssociate 2.0 (http://llama.mshri.on.ca/funcassociate/) (Berriz et al. 2009). The columns are as follows: N, no. of entries in the category; LOD, Log10 of the odds ratio; P,
one-sided P-value of the association of attribute and query; P_adj, adjusted P-value as a fraction of 1000 null-hypothesis simulations; attrib ID, GO term identification number
for attribution category; attrib name, category name for functional processes. RNA sequencing data are deposited in GEO, no. GSE58097.

Dbp2 Modulates Metabolic Reprogramming 1007

320

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005056
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001855
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000223
http://llama.mshri.on.ca/funcassociate/


toggled by growth condition (Houseley et al. 2008; Pinskaya
et al. 2009; Geisler et al. 2012). Measurement of GAL10
transcripts revealed robust expression of sense mRNA above
antisense levels in galactose-grown cells and the converse
expression pattern in the presence of glucose, consistent with
prior studies (Houseley et al. 2008; Pinskaya et al. 2009;
Geisler et al. 2012; Figure 5B).

We then utilized strand-specific RT–qPCR to measure the
levels of sense and antisense transcripts from four candidate
HXT genes, HXT1, HXT4, HXT5, and HXT8. This revealed over-
accumulation of sense transcripts of all four HXT genes in
dbp2Δ cells, with levels ranging from 7- to 17-fold higher than
wild type (Figure 5C). HXT5 exhibits the largest increase, most
likely because this moderate affinity hexose transporter is also
induced by slow growth rate (Verwaal et al. 2002), which is
a phenotype of dbp2Δ cells (Cloutier et al. 2012). Antisense
HXT1, HXT5, and HXT8 transcripts also accumulate in dbp2Δ
cells but to a lesser extent than sense gene products (Figure
5D). In contrast, we were unable to detect HXT4 antisense
transcripts in dbp2Δ cells (Figure 5D, N.D.), suggesting that
some HXT antisense lncRNAs are downregulated in the ab-
sence of DBP2. These measurements by strand-specific RT–
qPCR are in line with RNA sequencing quantification, as evi-
denced by comparison to the RPKM values from wild-type and
dbp2Δ cells for each HXT transcript (Table S2 and Table S3).
The absolute fold change in expression between wild-type and
dbp2Δ cells, however, is different between the two techniques.
This is most likely due to normalization differences between
these methods; i.e., RT–qPCR is normalized to ACT1 levels
whereas RPKMs are normalized across the length of a tran-
scribed unit. Regardless, this shows that loss of DBP2 results in
simultaneous accumulation of both sense and antisense HXT
transcripts within a population of cells.

To determine if Dbp2 plays a direct role in regulation of
hexose transporter expression, we then utilized ChIP to ask
if Dbp2 is associated with the genomic regions corresponding
to sense and antisense HXT transcripts (Figure 5, E and F).
ChIP was conducted using a genomically encoded, 3X-FLAG-
tagged DBP2 strain and primer sets corresponding to 59 ends
of the HXT transcription units, based on the characterized
occupancy of Dbp2 at other genomic loci (Table 2 and Cloutier
et al. 2012). This revealed that Dbp2 is associated with
chromatin encoding the sense and antisense HXT1, HXT5,
and HXT8 transcripts (Figure 5, E and F, respectively). Dbp2
also associates with the 59 end of the HXT4 sense-coding
region (Figure 5E); however, we were unable to test the
59 side of the HXT4 antisense region due to the lack of unique
primer sets for qPCR (Figure 5F). Because each of these genes
exhibited aberrant transcript accumulation in DBP2-deficient
cells, this suggests that Dbp2 plays a direct role at the HXT
genes.

Misregulated HXT transcripts in DBP2-deficient cells are
products of normal gene expression

To determine if the expressed HXT sense and antisense tran-
scripts in DBP2-deficient cells map to the same genomic location
as wild-type cells, we utilized the University of California—Santa
Cruz (UCSC) genome browser (http://genome.ucsc.edu/)
to generate representative mapped reads of the HXT tran-
scriptional products for both strains (Figure 6, A and B).
Consistent with expression of the HXT genes, sense-oriented
reads fully mapped to the annotated protein coding genes
for HXT1, HXT4,and HXT5 (Figure 6A). In contrast, however,
HXT8 sequences aligned to an �1.5-kb region originating
within the 39 end of the HXT8 ORF in both wild-type and
dbp2Δ cells (Figure 6A, bottom). Interestingly, this transcript

Table 4 Downregulated Sense Transcripts (700)

N LOD P P_adj attrib ID attrib name

5 1.84052114 1.93E-06 0.026 GO:0004169 Dolichyl-phosphate-mannose-protein mannosyltransferase activity
18 0.711054338 1.45E-06 0.02 GO:0030561 RNA 2’-O-ribose methylation guide activity
18 0.711054338 1.45E-06 0.02 GO:0030562 rRNA 2’-O-ribose methylation guide activity
20 0.693317905 6.13E-07 0.006 GO:0031167 rRNA methylation
21 0.685997034 3.97E-07 0.005 GO:0031428 Box C/D snoRNP complex
29 0.673647597 4.46E-09 0 GO:0000944 Base pairing with rRNA
28 0.667960766 1.00E-08 0 GO:0030555 RNA modification guide activity
28 0.667960766 1.00E-08 0 GO:0030556 rRNA modification guide activity
31 0.606510897 2.03E-08 0 GO:0000154 rRNA modification
40 0.563435455 1.89E-09 0 GO:0000496 Base pairing
39 0.551890352 5.25E-09 0 GO:0000498 Base pairing with RNA
39 0.535516237 1.17E-08 0 GO:0019843 rRNA binding
34 0.530391432 1.18E-07 0.002 GO:0005732 Small nucleolar ribonucleoprotein complex
58 0.364279682 3.87E-07 0.005 GO:0006520 Cellular amino acid metabolic process
60 0.351442841 5.69E-07 0.006 GO:0044106 Cellular amine metabolic process
62 0.346800579 4.52E-07 0.006 GO:0006412 Translation
63 0.321570613 2.12E-06 0.028 GO:0009308 Amine metabolic process
77 0.313115978 3.93E-07 0.005 GO:0044283 Small molecule biosynthetic process

Transcripts linked to ribosome biosynthesis, primarily corresponding to small nucleolar RNAs, are downregulated in dbp2Δ cells. Genes with sense transcripts that were
significantly underrepresented in dbp2Δ cells as compared to wild type were selected from the RNA sequencing data set. GO term analysis was conducted using
FuncAssociate 2.0 as above. The columns are as follows: N, no. of entries in the category; LOD, Log10 of the odds ratio; P, one-sided P-value of the association of attribute
and query; P_adj, adjusted P-value as a fraction of 1000 null-hypothesis simulations; attrib ID, GO term 8 identification number for attribution category; attrib name, category
name for functional processes. There was no enrichment of GO terms for downregulated antisense transcripts in DBP2-deficient cells.
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was also identified in another genome-wide study, indicating
that budding yeast predominantly express this 1.5-kb inter-
genic product instead of HXT8 ORF mRNAs (Xu et al. 2009).
Because this study demonstrated accumulation of this tran-
script under a variety of conditions (varying carbon sources,
haploid, diploid), it is currently unknown what, or if any,
conditions result in accumulation of a full-length HXT8 gene
product.

Representative reads were also mapped for antisense
transcripts corresponding to HXT1, 5 and 8 genes in wild-type
and dbp2Δ cells (Figure 6B). Importantly, the antisense products
of HXT1 and HXT5 map to the same location as antisense
transcripts identified in prior genome-wide transcriptional
profiling of wild-type and RNA decay-deficient strains (Xu
et al. 2009; Van Dijk et al. 2011). This suggests that loss of
dbp2Δ results in upregulation of antisense HXT1 and HXT5
gene products that are normally expressed at lower levels in
wild-type cells. Antisense HXT8 transcripts are also present
in wild-type cells, albeit at very low levels. Antisense HXT8
transcription may arise from RNA synthesis within the HXT8
gene locus or from alternative, upstream initiation of the
YJL215C locus as noted in prior studies (Xu et al. 2009).
Regardless, this suggests that antisense transcription is prevalent
at HXT gene loci and that both sense and antisense transcripts
accumulate in dbp2Δ cells.

Sense and antisense HXT transcripts accumulate in
wild-type cells upon glucose deprivation

Given that Dbp2 is rapidly depleted from the nucleus upon
glucose deprivation and that loss of DBP2 correlates with
altered expression of metabolic genes, we asked if regulation
of Dbp2 localization could be an unrecognized mechanism to
control gene expression. If this is the case, we proposed that
wild-type cells would show a similar expression pattern of
HXT transcripts as dbp2Δ cells when depleted of glucose. To
test this, we grew wild-type cells in rich media with glucose
(2%) and then subjected the cells to glucose deprivation for
10 min to induce nuclear loss of Dbp2 (see Figure 1). We then
conducted strand-specific RT–qPCR to measure the levels of

sense and antisense HXT transcripts (Figure 7, A and B, re-
spectively). Interestingly, this revealed a robust accumula-
tion of HXT4 and HXT5 sense transcripts upon glucose
deprivation (Figure 7A), reaching levels much higher than
those seen in glucose-grown dbp2Δ cells (Figure 5, C and D).
This difference in expression levels is most likely due to the
activity of other nutrient responsive pathways, such as AMPK
and PKA/Ras, in addition to Dbp2-dependent regulation
(Broach 2012). HXT8 sense transcripts, however, accumu-
lated to similar levels upon glucose deprivation in wild-type
cells or deletion of DBP2, with a four- to sevenfold increase

Table 5 Upregulated Antisense Transcripts (382)

N LOD P P_adj attrib ID attrib name

9 1.570899749 7.66E-10 0 GO:0005353 Fructose transmembrane transporter activity
9 1.570899749 7.66E-10 0 GO:0015578 Mannose transmembrane transporter activity
9 1.508665946 1.69E-09 0 GO:0005355 Glucose transmembrane transporter activity
9 1.454222369 3.47E-09 0 GO:0015145 Monosaccharide transmembrane transporter activity
9 1.454222369 3.47E-09 0 GO:0015149 Hexose transmembrane transporter activity

11 1.340249894 4.22E-10 0 GO:0051119 Sugar transmembrane transporter activity
10 1.298536807 5.17E-09 0 GO:0008645 Hexose transport
10 1.298536807 5.17E-09 0 GO:0015749 Monosaccharide transport
11 1.180032699 7.49E-09 0 GO:0015144 Carbohydrate transmembrane transporter activity
13 1.031860845 9.38E-09 0 GO:0008643 Carbohydrate transport
36 0.41867088 3.33E-06 0.047 GO:0022891 Substrate-specific trans-membrane transporter activity

GO term enrichment reveals an overrepresentation of antisense hexose transporter transcripts in DBP2-deficient cells. Genes with overlapping, antisense transcripts that were
significantly overrepresented in dbp2Δ cells as compared to wild type were selected from the RNA sequencing data set. GO term analysis was conducted using FuncAssociate 2.0 as
above. The columns are as follows: N, no. of entries in the category; LOD, Log10 of the odds ratio; P, one-sided P-value of the association of attribute and query; P_adj, adjusted
P-value as a fraction of 1000 null-hypothesis simulations; attrib ID, GO term 8 identification number for attribution category; attrib name, category name for functional processes.

Figure 4 Loss of DBP2 results in enrichment of sense and antisense
hexose transporter gene transcripts. A scatter plot was generated to de-
termine the correlation of sense and antisense transcript pair enrichment
in DBP2-deficient cells over wild type. Log2-fold change of transcript
abundance is shown for sense transcripts vs. antisense transcripts with
substantially increased or decreased transcript levels. Genes that had
either sense or antisense transcript reads that were .Log2 0.5 or
,20.5 as compared to wild type were selected. Sense and antisense
hexose transporter transcript genes (HXTs) are shown in red.
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in transcript abundance as compared to the control strain (Fig-
ure 5 and 7). Antisense HXT8 transcripts also accumulated in
wild-type cells upon glucose depletion (Figure 7B), suggesting
that HXT8 gene expression may be most responsive to glucose-
dependent changes in Dbp2 localization. In contrast, we did
not observe induction of either sense or antisense HXT1 tran-
scripts under these conditions, suggesting that altered HXT1
expression in dbp2Δ cells is due to a different mechanism or
that Dbp2 may not be fully lost from the HXT1 locus upon
glucose deprivation (Figure 7, A and B). Regardless, loss of
DBP2, either by genomic mutation or by glucose deprivation,
alters the cellular abundance of transcripts corresponding to
HXT gene loci. Taken together, we suggest that cellular energy
homeostasis is dependent on regulation of the RNA helicase
Dbp2 and resulting changes in metabolic gene expression.

Discussion

Cellular life requires a fine balance between energy generation
and consumption to maximize the potential for growth. The

ability to drastically alter the metabolic state of the cell is
a hallmark feature of tumor cells called the Warburg effect,
as well as exercising muscle cells, red blood cells, and acti-
vated macrophages and stem cells (Ochocki and Simon
2013; Palsson-Mcdermott and O’Neill 2013). Thus, defining
the mechanism(s) governing metabolic control has wide-
spread implications in normal mammalian cell growth and
human disease states.

Our results demonstrate that the RNA helicase Dbp2 is
a key integrator of nutritional status and gene expression
programs required for energy homeostasis. Dbp2 is a canon-
ical member of the DEAD-box family of RNA helicases. Prior
work from our laboratory has established that Dbp2 is an
RNA-dependent ATPase in vitro capable of unwinding a va-
riety of RNA duplex substrates (Cloutier et al. 2012; Ma
et al. 2013). Dbp2 appears to function in multiple aspects
of RNA biology including ribosome biogenesis, mRNP as-
sembly, and transcription initiation (Barta and Iggo 1995;
Bond et al. 2001; Cloutier et al. 2012; Ma et al. 2013),
suggestive of a general role in RNA structure modulation.

Figure 5 Strand-specific RT-qPCR confirms aberrant HXT
transcript accumulation in dbp2Δ cells, correlating with
presence of Dbp2 at genomic HXT loci. (A) Stepwise dia-
gram of the strand-specific RT–qPCR method. Reverse
transcription is conducted with a gene-specific primer that
is complementary to either the sense or antisense strand.
Single-stranded cDNA is produced using reverse transcrip-
tase in the presence of actinomycin D (ActD), the latter of
which prevents second-strand synthesis (Perocchi et al.
2007). Half arrow denotes primer positioning on targeted
RNAs whereas complete arrow indicates reverse transcrip-
tase activity. Unincorporated primers are removed using
column chromatography and the resulting cDNA is
quantified using PCR and SYBR green detection. (B) Sin-
gle-stranded RT–qPCR measures expression of mutually
exclusive GAL10 sense and antisense transcripts. Total
RNA was isolated from wild-type cells grown in triplicate
in either glucose or galactose media (for expression of
antisense or sense GAL10 transcripts, respectively) and
subjected to transcript-specific cDNA preparation. Gene-
specific primers for ACT1 were also included in the reverse
transcription reaction as an internal control for down-
stream quantification. Fold change in expression was cal-
culated for each growth condition independently and is
shown relative to the minority transcript (i.e., transcripts
from cells grown in galactose are normalized to antisense
GAL10 and to sense GAL10 for glucose-cultured cells),
which is set to 1 for representation. Numbers above each
bar show the average fold change with error bars reflect-
ing the SE.M. (C and D) Independent validation of HXT
sense and antisense transcript abundance using strand-
specific RT–qPCR. The fold enrichment of representative
HXT sense and antisense transcripts in dbp2Δ cells over
wild type was determined using strand-specific RT–qPCR

as above. Transcript abundance was normalized with respect to ACT1 transcript levels, a transcript whose levels do not vary between wild-type and
dbp2Δ cells (Cloutier et al. 2012), and is the average of three independent biological replicates and the SEM. ND, not detectible. (E) Dbp2 interacts
directly with 59 region of HXT genes, with respect to the sense transcript. Chromatin immunoprecipitation of 3X-FLAG-tagged Dbp2 vs. and untagged
control strain. Primer-probe sets (Table 2) were designed for sites on genomic DNA corresponding to the 59 regions of the sense transcripts of HXT1,
HXT4, HXT5, HXT8. (F) Dbp2 interacts directly with the genomic region encoding HXT antisense transcripts. Chromatin immunoprecipitation of 3X-
FLAG-tagged Dbp2 vs. and untagged control strain. Primer-probe sets (Table 2) were designed for sites on genomic DNA corresponding to the 59
regions of the antisense transcripts of HXT1, HXT5, HXT8. Results are presented as percentage input and are the average of three biological replicates
with three technical replicates and the SEM.
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Dbp2 has also been shown to associate with chromatin ac-
tively transcribed by RNA polymerase II, indicative of a cotran-
scriptional role. This is supported by the fact that loss of DBP2
results in reduced association of mRNA binding proteins and
inefficient transcription termination (Cloutier et al. 2012;
Ma et al. 2013). Thus, our work suggests that RNA structure

and/or composition may be central to the metabolic state of
the cell.

The ability to match nutrient availability to cellular growth
is largely accomplished through the glucose-sensing Rgt1–
Snf3, the TOR, and the AMP-dependent protein kinase (Snf1
in budding yeast) pathways (Woods et al. 1994; Broach

Figure 6 Mapped RNA seq reads
across representative HXT genes.
Alignment of mapped RNA se-
quencing reads shows similar (A)
sense and (B) antisense expression
patterns in wild-type and dbp2Δ
cells. Reads were aligned to the
S. cerevisiae genome using the
UCSC genome browser. Images
were generated directly through
the UCSC website and show reads
that correspond to the annotated,
protein-coding gene. Reads on the
top correspond to Watson strand-
encoded transcript whereas reads
on the bottom of each graph align
to a gene encoded on the Crick
strand. Arrows within the gene
ORF rectangle indicate orientation
of the sense transcript within the
genome. Sense and antisense tran-
scripts are displayed on different
graphs due to differences in abun-
dance and resulting graphical scal-
ing. Note that the y-axis is different
between wild-type and dbp2Δ cells
due to expression level differences
between these two strains.
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2012; Hardie et al. 2012; Horak 2013). These signaling pro-
grams communicate the presence and concentration of glu-
cose to the energy producing metabolic gene networks and
energy-consuming ribosome biogenesis and translational
processes. Snf1 and TOR play opposing roles in cellular ho-
meostasis, with the former increasing energy availability
when nutrients are limiting and the latter promoting bio-
genesis when nutrients are abundant. Snf1-dependent reloc-
alization of Dbp2 to the cytoplasm would be reminiscent of
regulated transport of the glucose-dependent repressor
Mig1 whereas TOR signaling would be required to maintain
the nuclear pool of Dbp2 in the presence of glucose. The
latter would be similar to glucose-dependent regulation of
the transcription factor Sfp1, whose nuclear localization is
dependent on active TOR and Ras/PKA pathways (Jorgensen
et al. 2004). However, our results suggest that neither Snf1
nor TOR signaling play major roles in regulation of Dbp2
localization in response to glucose availability.

Another possibility is that Dbp2 directly senses AMP/ATP
ratios in the cell. Accumulation of AMP correlates with a
decrease in the cellular energy status and occurs upon de-
creased glucose availability (Boer et al. 2010). The AMP-
activated protein kinase AMPK is the major energy sensor
in eukaryotic cells and is directly regulated by increasing
AMP concentrations (Wilson et al. 1996; Hardie et al.
2012). Interestingly, recent work from the Jankowsky labora-
tory shows that several DEAD-box RNA helicases are enzy-
matically inhibited by AMP binding in vitro, even though AMP
is not a product of ATP hydrolysis (Putnam and Jankowsky
2013a). This included Mss116 and Ded1, which exhibit
similar RNA duplex unwinding activities to Dbp2 (Yang and
Jankowsky 2005; Yang et al. 2007; Ma et al. 2013). Thus, it is
tempting to speculate that cellular AMP may directly regulate
the helicase activity of Dbp2. This is an intriguing possibility,
as Snf1, the AMPK ortholog in budding yeast, does not di-
rectly sense AMP/ATP ratios but is, instead, activated by phos-
phorylation (Wilson et al. 1996; Hardie et al. 2012). Further
work is necessary to determine if Dbp2 can act as an AMP
sensor to maintain cellular energy homeostasis.

It is currently unknown how Dbp2 affects cellular RNA
levels. Interestingly, rapid changes in carbon sources cause
drastic changes in mRNP stability, with ribosomal protein mRNAs
undergoing rapid decay upon a glucose to galactose media
switch (Munchel et al. 2011). It is possible that loss of Dbp2
results in widespread changes in mRNP/lncRNP composition
that alter RNA stability. If this were the case, we would

speculate that these compositional changes occur in the nucleus
due to the direct association of Dbp2 with chromatin (Cloutier
et al. 2012). Moreover, the similarity between misregulated
antisense transcripts in dbp2Δ cells and glucose-deprived
wild-type cells, when Dbp2 is cytoplasmic, is consistent with
loss of a nuclear role.

In addition to well-known pathways that are glucose
dependent, loss of DBP2 also resulted in upregulation of both
sense and antisense HXT transcripts. Yeasts in nature encounter
a wide range of sugar concentrations that differ by 6 orders of
magnitude (frommicromolar to molar concentrations) (Johnston
and Kim 2005; Horak 2013). A major mechanism to pro-
mote growth under these vastly different nutritional conditions
is through tight regulation of hexose transporter activity. Al-
though the mechanism(s) that govern transcriptional control
of the HXT genes are largely established, a role for lncRNAs in
this process has not been explored. Previous studies from our
laboratory established a role for the GAL cluster-associated
lncRNAs in facilitating transcriptional switches, enhancing
the rate at which the transcriptional activation is stimulated
or repressed in response to extracellular cues (Cloutier et al.
2013). We would speculate that the antisense HXT lncRNAs
function similarly, maintaining the activation potential of the
HXT genes for future restoration of hexose availability. This
model is similar to a recently identified Ajar pathway for
HXT5 and recognition of the rapid response rate of yeast
upon restoration of nutrients after glucose depletion (Kresnowati
et al. 2006; Bermejo et al. 2010). In fact, upregulation of
HXT5 upon glucose deprivation is specifically required for
the rapid restoration of normal growth, suggesting that this
pathway allows this single-cell eukaryote to be “optimistic”
regarding the return of nutrients in the environment.

An alternative explanation is that the sense and antisense
HXT transcripts are expressed in different cells within the pop-
ulation, with the antisense transcripts promoting transcriptional
repression. If this were the case, the HXT lncRNAs may function
similarly to PHO84 lncRNA that functions as a “bimodal” switch
to promote different cell fates within a genetically identical pop-
ulation (Castelnuovo et al. 2013). A third possibility is that the
antisense HXT transcripts function in the cytoplasm, control-
ling translational efficiency to stability of the corresponding
sense mRNA (Carrieri et al. 2012; Pelechano and Steinmetz
2013; Wang et al. 2013). Additional experiments are neces-
sary to uncover potential mechanisms for these antisense
lncRNAs in cellular homeostasis. These and future endeavors
offer the exciting possibility that lncRNAs, RNA structure,

Figure 7 Glucose deprivation alters the levels of sense and
antisense hexose transporter transcripts in wild-type cells.
HXT sense and antisense transcript abundance using
strand-specific RT–qPCR in wild-type cells grown in glucose
or after glucose depletion. Wild-type cells were isolated
following growth in glucose (2%) or after a 10-min shift
to glucose-depleted media. The levels of (A) sense and (B)
antisense hexose transporter transcripts were determined
by strand-specific RT–qPCR as in Figure 4 and are reported
as the average of three biological replicates with the SEM.
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and/or RNA helicases play specific roles in cellular
metabolism.
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Chapter 12

Measuring Helicase Inhibition of the DEAD-Box  
Protein Dbp2 by Yra1

Wai Kit Ma and Elizabeth J. Tran

Abstract

Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA 
metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regula-
tion by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces 
cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of 
helicase regulation. The experiments described here can be adapted to other RNA helicases and their puri-
fied cofactor(s).

Key words DEAD-box, RNA, Helicase, Unwinding, Annealing, Duplex, Yeast

1 Introduction

DEAD-box RNA helicases are the largest class of enzymes within 
the helicase family and can be found in all domains of life [1]. All 
DEAD-box proteins share at least 12 conserved motifs in the heli-
case core spread throughout two RecA-like domains, including the 
eponymic Asp-Glu-Ala-Asp (D-E-A-D) sequence in the Walker B 
motif [2].

Several studies have revealed that individual DEAD-box pro-
teins display diverse biochemical activities in vitro, including RNA- 
protein complex (RNP) remodeling, RNA-dependent ATP 
hydrolysis, and ATP-dependent unwinding of RNA duplexes [3, 
4]. A major question in the field is how this diversity of function is 
achieved among the ~25 different DEAD-box proteins in yeast 
(40 in humans), given the high degree of sequence and structural 
identity in the helicase core. Studies have shown that unique N- 
and/or C-terminus extensions can provide substrate specificity to 
individual family members [5, 6]. For example, the C-terminus of 
DbpA provides specificity to target 23S rRNA [7–9]. Moreover, 
the flanking regions can also provide nonspecific RNA tethers. 
This has been described for Mss116 and CYT-19 [10, 11].

[AU1]

[AU2]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

331



In addition to unique flanking regions, specificity can also be 
conferred by protein cofactors that regulate the enzymatic activity 
of individual DEAD-box proteins [12, 13]. For instance, the trans-
lation initiation factor eIF4G stimulates the weak ATPase activity 
of eIF4A [14]. This is believed to allow eIF4A to unwind second-
ary structures in 5′UTR and facilitate the small ribosomal subunit 
to scan for the start codon during translation. Recently, our labora-
tory showed that the S. cerevisiae DEAD-box protein Dbp2 inter-
acts directly with the mRNA-binding protein Yra1 [15]. 
Furthermore, we found that Yra1 inhibits the unwinding activity 
of Dbp2 without significantly altering the ATPase activity, suggest-
ing specific regulation of duplex unwinding [15]. Here, we describe 
a method to evaluate the effect of Yra1 on the unwinding activity 
of Dbp2. This method is widely applicable to the analysis of other 
protein-binding cofactors for RNA helicases.

2 Materials

1. LB Broth: 10 g bacto tryptone, 5 g yeast extract, and 10 g
NaCl. Adjust the pH to ~7.0. Bring up to a final volume of 1 L
with water. Autoclave the media.

2. LB agar: 10 g bacto tryptone, 5 g yeast extract, 10 g NaCl, and
20 g agar. Adjust the pH to ~7.0. Bring up to a final volume of
1 L with water. Autoclave the media and pour the plate after
adding appropriate antibiotic.

3. LB Broth + 1 % glucose: 10 g bacto tryptone, 5 g yeast extract,
10 g NaCl, and 10 g glucose. Adjust the pH to ~7.0. Bring up
to a final volume of 1 L with water. Autoclave the media.

4. Ampicillin: Dissolve ampicillin sodium salt in water to a final
concentration of 75 mg/mL. Filter sterilize with a 0.2 μm
syringe filter and store at −20 °C in 1 mL aliquots.

5. Chloramphenicol: Dissolve chloramphenicol in 100 % ethanol
to a final concentration of 34 mg/mL and store at −20 °C in
1 mL aliquots.

6. 20 % Glycerol stock of Escherichia coli Rosetta (DE3): Store at
−80 °C.

7. 20 % Glycerol stock of Escherichia coli BL21 (DE3): Store at
−80 °C.

8. pMAL-TEV-Dbp2 plasmid [15].
9. pET21GST-yra1C plasmid [16].

10. IPTG solution: Dissolve isopropyl β-d-thiogalactopyranoside
(Amresco) in water to a final concentration of 1 M and store at
−20 °C.

2.1 Expression 
and Purification 
of Recombinant Dbp2 
and Yra1 (C-Terminus 
Domain) in E. coli

Wai Kit Ma and Elizabeth J. Tran
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11. Protease inhibitors that inhibit serine and cysteine proteases in
bacterial extracts. Ad hoc inhibitor cocktails can be obtained
from various commercial sources.

12. 7,000 units/mL of RNase A.
13. 100 U/μL of RNase I (see Note 1).
14. Empty 0.7 × 15 cm and 1.5 × 10 cm chromatography columns

for gravity flow separations.
15. Lysis buffer (Dbp2): 50 mM CHES, 100 mM NaCl, pH 9.0.
16. Wash buffer (Dbp2): 50 mM CHES, 500 mM NaCl, pH 9.0.
17. Elution buffer (Dbp2): 50 mM Tris–HCl, 10 mM maltose,

0.5 mM EDTA, 1 mM DTT, pH 8.0.
18. Lysis buffer (yra1C): 20 mM HEPES, 1 mM EDTA, 20 %

(v/v) glycerol, pH 7.5.
19. Wash buffer I (yra1C): 20 mM HEPES, 150 mM NaCl, 20 %

(v/v) glycerol, pH 7.5.
20. Wash buffer II (yra1C): 20 mM HEPES, 500 mM NaCl, 20 %

(v/v) glycerol, pH 7.5.
21. Elution buffer (yra1C): 20 mM HEPES, 20 mM glutathione,

150 mM NaCl, 20 % (v/v) glycerol, pH 7.5 (see Note 2).
22. 10 U/μL of TEV protease.
23. Amylose resin.
24. Glutathione sepharose resin (GE Healthcare).
25. SP sepharose resin.
26. SP equilibration buffer: 50 mM Tris–HCl, pH 8.0.
27. SP wash buffer: 50 mM Tris–HCl, 200 mM NaCl, pH 8.0.
28. SP elution buffer: 50 mM Tris–HCl, 600 mM NaCl, 20 %

(v/v) glycerol, pH 8.0.

1. Adjustable height electrophoresis sequencer, 20 cm wide.
2. RNA oligo: Top strand (5′-AGCACCGUAAAGACGC-3′),

bottom strand (5′-GCGUCUUUACGGUGCU-3′) [17].
3. 3,000 Ci/mmol, 10 mCi/mL of γ32P-ATP.
4. 10,000 units/mL of T4 Polynucleotide Kinase (PNK).
5. 10× T4 Polynucleotide Kinase buffer.
6. 10× TBE: 890 mM Tris base, 890 mM boric acid, 20 mM

EDTA.
7. Denaturing polyacrylamide gel: 20 % acrylamide:bisacrylamide

[19:1], 7 M urea, 1× TBE.
8. Non-denaturing polyacrylamide gel: 15 % acrylamide:

bisacrylamide [19:1], 0.5× TBE.

2.2 Preparation 
of RNA Duplexes
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9. 5× Denaturing gel loading dye: 80 % formamide, 0.1 % bro-
mophenol blue (BPB), 0.1 % xylene cyanol (XC).

10. 5× Non-denaturing gel loading dye: 50 % glycerol, 0.1 % BPB,
0.1 % XC.

 11. X-ray films for autoradiography (e.g., Kodak X-OMAT LS,
Fuji RX).

12. 20 mg/mL glycogen.
13. Gel elution buffer: 1 mM EDTA, 0.5 % SDS, 300 mM NaOAc,

pH 5.2.
14. 10× duplex annealing buffer: 100 mM MOPS, 10 mM EDTA,

0.5 M KCl, pH 6.5.
15. RNA substrate storage buffer: 50 mM MOPS, 50 mM KCl,

pH 6.0.

1. 10× Helicase reaction buffer (10× HRB): 400 mM Tris–HCl,
5 mM MgCl2, 0.1 % NP-40, 20 mM DTT, pH 8.0.

2. 20 U/μL of Superase-in (Ambion).
3. 20 mM equimolar ATP/MgCl2 (prepare from 100 mM ATP).
4. Purified DEAD-box proteins and protein-binding cofactors

(see Subheading 3.1).
5. 1 nM radiolabeled RNA duplex.
6. 12 % Non-denaturing polyacrylamide gel: 12 % acrylamide:

bisacrylamide [19:1], 0.5× TBE, 3 % glycerol.
7. 2× Helicase reaction stop buffer (2× HRSB): 50 mM EDTA,

1 % SDS, 0.1 % BPB, 0.1 % XC, 20 % glycerol.
8. Whatman chromatography paper.
9. Gel dryer.

10. PhosphorImager screen/PhosphorImager.

3 Methods

Dbp2 can bind E. coli RNA during expression of recombinant pro-
tein, resulting in copurification of contaminating RNA. To solve 
this problem, a high-salt wash step and two RNase treatments are 
utilized during purification. Ion-exchange chromatography is 
needed to remove the RNases and the affinity tags after TEV cleav-
age. The resulting protein preparations should be tested for RNase 
contamination by incubating the proteins with a radioactively 
labeled single-stranded RNA (ssRNA) and then resolving the RNA 
onto a non-denaturing polyacrylamide gel. A non-incubated, 
labeled RNA should be run in an adjacent well for comparison. 
The presence of RNA in the purified protein preparation can be 
determined by the ratio of A260nm:A280nm (see Note 3).

2.3 Unwinding 
and Annealing Assays

3.1 Preparation 
of Active Purified 
Dbp2 and yra1C
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1. Transform the pMAL-TEV-Dbp2 plasmid into BL21 (DE3)
and plate onto LB agar + ampicillin (75 μg/mL). Incubate the
plate at 37 °C overnight.

2. Inoculate a single colony into a 4 mL LB + ampicillin (75 μg/
mL) culture and incubate at 37 °C with shaking at 200 RPM
overnight.

3. Inoculate a 1 L LB + 1 % glucose + ampicillin (75 μg/mL) with
all of the 4 mL culture and grow the bacteria at 37 °C with
shaking at 200 RPM to an OD600nm of 0.4–0.5 (see Note 4).

4. Induce MBP-TEV-Dbp2 expression by adding a final concen-
tration of 1 mM IPTG to the culture. Express for 3 h at 37 °C
with 200 RPM shaking.

5. Pellet cells at 11,100 × g for 15 min at 4 °C in pre-weighed
bottles and then weigh the cell pellet by subtracting the empty
bottle weight.

6. Store cell pellet at −20 °C or proceed to purification.

1. Resuspend the cell pellet with 6 mL of ice-cold lysis buffer
(Dbp2) per gram of cell pellet and put on ice during
preparation.

2. Add protease inhibitor, RNase A, and RNase I to a final con-
centration of 1×, 7 U/mL, and 10 U/mL, respectively.

3. Lyse cells with a probe sonicator (Branson digital sonifier) on
an ice bath three times for 30 s using 30 % amplitude with
1-min cooling in between rounds. Utilization of a distinct son-
ifier may require re-optimization of these parameters.

4. Clear the lysate by centrifugation at 13,300 × g for 30 min at
4 °C. Steps 5–13 are all performed at 4 °C.

5. Equilibrate 4 mL of 50 % slurry amylose resin (2 mL final
packed volume) in a 1.5 × 10 cm chromatography column with
20 mL of lysis buffer (Dbp2).

6. Incubate the cleared lysate with the equilibrated resin in a
capped chromatography column for 1 h at 4 °C with gentle
rocking.

7. Wash the column with 25 mL of lysis buffer (Dbp2) followed
by washing with 25 mL of wash buffer (Dbp2).

8. Shut off the column when wash buffer has flowed through but
column is still wet.

9. Add 5 mL of wash buffer (Dbp2) to the column along with
35 U RNase A and 50 U RNase I.

 10. Mix the resin by pipetting and incubate for at least 10 min
at 4 °C.

11. Let the remaining buffer flow through and wash the column
with 25 mL of lysis buffer (Dbp2).

3.1.1 Expression of Dbp2 
and Production of Cell 
Paste

3.1.2 Purification 
of Dbp2
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 12. Elute MBP-TEV-Dbp2 with elution buffer (Dbp2) in a
15 mL RNase-free conical tube until the A280nm ~0.3 O.D (see
Note 5).

13. Add 50 U of TEV protease per 1 mL of MBP-TEV-Dbp2 elu-
tion to the eluted fraction and mix it by inverting the conical
tube gently several times.

14. Incubate at 16 °C for 12 h (see Note 6).
15. Equilibrate 400 μL of 50 % slurry SP sepharose (200 μL

packed) with 5 mL SP equilibration buffer in a 0.7 × 15 cm
chromatography column. The following purification steps
(steps 17–19) are all performed at 4 °C.

 16. Apply the cleaved sample to the column at 4 °C. Let the
unbound sample flow through.

17. Wash the column with 10 mL of SP equilibration buffer and
then 10 mL of SP wash buffer.

18. Elute with 3–5 column volumes of SP elution buffer. Store the
purified Dbp2 protein at −80 °C in small aliquots as Dbp2 is
not compatible with multiple freeze-thaw cycles. The purified
protein can be stored at −80 °C for up to 4 months.

1. Expression and preparation of the cell pellet are as in
Subheading 3.1.1 with the following exceptions: Transform
the pET21GST-yra1C plasmid into Rosetta (DE3) cells, select
with ampicillin (75 μg/mL) + chloramphenicol (34 μg/mL),
and induce yra1C expression at 16 °C overnight (see Note 7).

2. GST-yra1C lysate is prepared as in steps 1–4 from
Subheading 3.1.2 except using lysis buffer (yra1C). Steps
5–13 are all performed at 4 °C.

3. Equilibrate 6 mL of 50 % slurry glutathione sepharose (3 mL
final packed volume) in a 1.5 × 10 cm chromatography column
with 20 mL of lysis buffer (yra1C).

4. Incubate the cleared lysate with the equilibrated resin in a
capped chromatography column for 1.5 h at 4 °C with gentle
rocking (see Note 8).

5. Wash the column with 25 mL of wash buffer I (yra1C) and
then 25 mL of wash buffer II (yra1C).

6. Shut off the column when vast majority of the wash buffer has
flowed through but the column is still wet.

7. Add 5 mL of wash buffer II (yra1C) along with 35 U RNase A
and 50 U RNase I.

8. Mix the resin with pipet and incubate for at least 10 min at
4 °C.

9. Let the remaining buffer flow through and wash the column
with 50 mL of wash buffer I (yra1C).

3.1.3 Expression 
of yra1C and Purification 
of yra1C
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10. Elute the GST-yra1C protein with 9 mL elution buffer (yra1C).
Store the protein at −80 °C in small aliquots to avoid freeze-
thaw cycles. The purified protein is stable for up to 4 months
at −80 °C.

DEAD-box proteins can only unwind one to one-and-a-half turns 
of an RNA duplex [17, 18]; therefore, the RNA duplexes that are 
used in the assays are relatively short. Here, the 5′ end of the top 
strand of the RNA duplex is labeled with γ32P-ATP using T4 poly-
nucleotide kinase. Alternatively, the substrate can also be labeled 
with a fluorophore, either internally or at the 5′ or 3′ end. Because 
some fluorophore dyes affect duplex stability, it is critical to define 
differences between radiolabeled and fluorescently labeled duplexes 
prior to analysis [19].

1. Mix 1 μL of 100 μM top strand RNA, 1 μL of 10× T4 PNK
buffer, 1.5 μL of T4 PNK, 6 μL of 10 mCi/mL γ32P-ATP, and
1.5 μL of water.

2. Incubate the mixture at 37 °C for 1 h.
3. Inactivate the kinase by adding 2 μL of denaturing gel loading

dye and heating at 95 °C for 2 min (see Note 9).
4. Pre-run a denaturing 20 % polyacrylamide gel for 30 min at

30 V/cm in 1× TBE running buffer.
5. Load the labeled, top strand RNA and run at 30 V/cm for 2 h

at room temperature.
6. Expose the gel to film or a phosphorimager screen to localize

the labeled RNA (see Note 10).
7. Cut out the labeled strand with a razor blade and crush the gel

slice into smaller pieces by passing through a 3 mL syringe into
a 1.5 mL Eppendorf tube.

8. Add 600 μL of gel elution buffer to the gel pieces and incubate
the sample overnight at 4 °C with gentle shaking.

9. Spin down the gel debris for 1 min at room temperature at
3,000 × g.

10. Transfer the aqueous fraction into two 1.5 mL tubes and add
3× volume of 100 % ethanol and 1 μL of 20 mg/mL glycogen
to each tube (see Note 11).

11. Precipitate the labeled RNA for 1 h at −20 °C and centrifuge
at 14,000 × g for 30 min at 4 °C.

12. Remove the supernatant and dry the pellet on the bench or in
a speed vacuum.

13. Resuspend the two RNA pellets into a combined volume of
16 μL of water.

3.2 Preparation 
of RNA Duplexes 
for Unwinding 
and Annealing Assays

3.2.1 Labeling 
and Isolation of RNA 
Duplexes
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14. Add 2 μL of 100 μM unlabeled bottom strand RNA and 2 μL
of 10× duplex annealing buffer to the 16 μL of labeled top
strand RNA.

15. Heat the mixture at 95 °C for 2 min and cool the substrate at
room temperature for 30 min.

16. Pre-run a 15 % non-denaturing gel for 30 min at 20 V/cm in
0.5× TBE running buffer.

17. Add 5 μL of non-denaturing gel loading dye to the labeled
duplex mixture and load the labeled duplex on a 15 % non- 
denaturing gel.

18. Run the gel at 20 V/cm for 1 h with a cold water, cooling
system or in a cold room to prevent duplex from denaturing.

19. Repeat steps 6–12 to extract the labeled duplex RNA from the
gel.

20. Dissolve the pellet in 30 μL of RNA substrate storage buffer.
21. Measure the cpm of the labeled duplex by scintillation count-

ing. It should be around 150,000 cpm/μL.
22. Use the cpm measured from scintillation counting and calcu-

late the RNA duplex using an equation as described [20]:

X

Z

cpm

…L

dpm

cpm

Ci

dpm

Ci

Ci

mmol

Ci1

3

1

1

2220000

0 0000

1

1 100
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m m
m

. 000000

1

mL

L
mM= Y

where Z = the specific activity of γ32P-ATP.
23. Aliquot the isolated, labeled RNA duplex into 10 μL aliquots

and store at −20 °C for up to a month (see Note 12).

To study the effect of a protein cofactor on the unwinding activity 
of a DEAD-box protein, proper experimental controls are required. 
For instance, any unwinding and annealing activities of the cofac-
tor in the absence of the helicase must be determined. If the pro-
tein cofactor can unwind and/or anneal an RNA substrate in vitro, 
these activities would need to be taken into account when assaying 
in the presence of an RNA helicase. Yra1 exhibits annealing activity 
in vitro [21], complicating analysis of Dbp2 helicase inhibition. 
However, deletion of the N-terminus abolishes annealing activity 
but preserves interaction with Dbp2 (Fig. 1d–e, [15]).

Thus, we measured the inhibition of Dbp2 in the presence of 
the C-terminal Yra1 domain (yra1C) (Fig. 1a–c). Bovine serum 
albumin (BSA) is used as a control to show specificity (Fig. 2). A 
step-by-step schematic diagram for analysis of protein cofactors on 
a helicase is provided (Fig. 3).

1. Mix 3.3 μL of 10× helicase reaction buffer (HRB), 3.3 μL of
20 U/μL Superase-in, helicase and/or protein-binding cofactor

3.3 Unwinding 
and Annealing Assays

3.3.1 Unwinding Assays
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(dilute with protein storage buffer) to desired protein 
 concentration (600 nM for Dbp2 and 1,200 nM for yra1C), 
labeled RNA duplex to final concentration of 0.1 nM, and 
water to a final volume of 33 μL (see Note 13).

2. Incubate the mixture at 19 °C for 5 min to facilitate Dbp2
binding to the RNA duplex (see Note 14).

3. Aliquot 3 μL of the reaction mixture into 3 μL 2× helicase
reaction stop buffer (HRSB) for the zero time point (Fig. 1a–c,
lane 3) and place the sample on ice.

Fig. 1 The C-terminus of Yra1, yra1C, inhibits the unwinding activity of Dbp2. (a–c) Representative non- 
denaturing polyacrylamide gels of RNA unwinding assays using 600 nM Dbp2 alone (a) or with equimolar (b) 
or twofold excess of yra1C (c). (d–e) Representative non-denaturing polyacrylamide gels of RNA annealing 
assays using 600 nM (d) or 1,200 nM yra1C alone (e). This figure is reproduced from [15], with permission 
from Elsevier
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4. Aliquot another 3 μL of the reaction mixture to an empty tube
and incubate at 19 °C for 30 min. After 30 min, add 3 μL 2×
HRSB to the reaction. This is the reaction without ATP
(Fig. 1a–c, lane 10).

5. Add 3 μL of 20 mM ATP/MgCl2 to initiate the unwinding
reaction.

6. Aliquot 3 μL of the reaction mixture into 3 μL 2× HRSB at the
desired time points and place on ice.

7. Mix 3 μL of 0.1 nM labeled RNA duplex with 3 μL 2× HRSB
as a dsRNA loading marker (Fig. 1a–c, lane 1).

Fig. 2 Yra1 inhibits the unwinding activity of Dbp2. (a) A graphical representation 
of Dbp2 unwinding time course in the presence or absence of the C-terminus of 
Yra1 (yra1C). The unwinding assays were performed with 0.1 nM blunt end RNA 
duplex and either Dbp2 alone (600 nM) or in the presence of a 1:1 or 1:2 ratio of 
yra1C (600 nM, 1,200 nM) or in the presence of BSA (1,200 nM) at 19 °C. (b) The 
kinetic parameters of the unwinding reaction. The kobs

(unw) and the amplitude of 
the unwinding reaction were determined using the integrated rate law for a 
homogenous first-order reaction as described [25]. This figure is reproduced 
from [15], with permission from Elsevier
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8. Prepare the ssRNA loading marker (Fig. 1a–c, lane 2) by
mixing 3 μL of 0.1 nM labeled RNA duplex with 3 μL 2×
HRSB and heating the mixture at 95 °C for 2 min.

9. Pre-run a 12 % non-denaturing polyacrylamide gel for 30 min
at 10 V/cm in 0.5× TBE running buffer and rinse the wells
with the running buffer.

10. Load fractions on the gel and run for 1 h at 10 V/cm as in step
18 from Subheading 3.2.1.

Fig. 3 Schematic flowchart of the unwinding and annealing assays. (a) For unwinding assays, Step 1: incubate 
the helicase and the protein cofactor at room temperature for 5 min. Step 2: add the radiolabeled dsRNA and 
incubate at the appropriate reaction temperature for 5 min. Step 3: start the reaction with equimolar concen-
tration of ATP and MgCl2. Step 4: remove aliquots at different time points and mix with SDS and EDTA to stop 
the reaction. Step 5: resolve the labeled RNA on a non-denaturing gel and visualize the products by autoradi-
ography. (b) For annealing assays, Step 1: incubate the helicase and the protein cofactor at room temperature 
for 5 min. Step 2: add an equimolar concentration of ATP and MgCl2 and incubate at reaction temperature for 
at least 5 min. Step 3: denature the labeled dsRNA at 95 °C before adding to the reaction mixture to start the 
reaction. Steps 4 and 5: remove aliquots over time, resolve and visualize product as above
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11. Remove the glass plates, put the gel on Whatman chromatog-
raphy paper and dry gel on a gel dryer.

12. Expose gel to a PhosphorImager screen or film.
 13. Quantify the intensity of radioactivity in dsRNA (Ids) and

intensity of radioactivity in ssRNA (Iss) of each time point using
a PhosphorImager and ImageQuant software.

14. The fraction of ssRNA at each time point is calculated using:
Fraction of ssRNA = Iss/(Iss + Ids). The representative gels are
shown in (Fig. 1a–c).

15. Plot the fraction of ssRNA as a function of time and fit the data
with the integrated form of a homogenous first-order rate law
using the equation as described (Fig. 2 and Yang and Jankowsky 
[22]): Fraction of ssRNA Amplitude e obs time= ´ -( )- ´1 k , where 
kobs is the observed rate for the unwinding reaction.

1. Mix 3 μL of 10× HRB, 3 μL of 20 U/μL Superase-in, 3 μL of
ATP/MgCl2, helicase and/or protein binding cofactor (dilute
with protein storage buffer) to desired protein concentration
(600 nM for Dbp2 and 1,200 nM for yra1C), and water to a
final volume of 28.5 μL.

2. At the same time, prepare another mixture as in step 1 except
in the absence of any protein.

3. Incubate the two individual mixtures at 19 °C for 5 min.
4. Denature 10 μL of 2 nM labeled RNA duplex at 95 °C for

2 min to generate substrates for the annealing assays (see Note
15).

5. Add 1.5 μL of the denatured, labeled RNA into a 28.5 μL
mixture prepared in step 2.

6. Aliquot 3 μL of the mixture from step 5 into 3 μL 2× HRSB
for a zero time point (Fig. 1d–e, lane 1). Place on ice.

7. Initiate the annealing reaction by adding 1.5 μL of the dena-
tured RNA into the mixture prepared in step 1.

8. Aliquot 3 μL of the reaction mixture into 3 μL 2× HRSB at
desired time points and place on ice.

9. Mix 3 μL of 0.1 nM labeled RNA duplex with 3 μL 2× HRSB
for dsRNA loading marker (Fig. 1d–e, lane 8) as in step 7 from
Subheading 3.3.1.

10. Follow steps 9–15 in Subheading 3.3.1 to visualize and quan-
tify the fraction of ssRNA in the annealing assay. The represen-
tative gels are shown in (Fig. 1d–e).

11. Plot the fraction of ssRNA over time and fit the data with inte-
grated form of a bimolecular annealing reaction [22]: Fraction of
ssRNA = 1/(1 + RNA concentration at time 0 × kobs

(ann) × time).

3.3.2 Annealing Assays
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4 Notes

1. RNase I cleaves after all four bases of ssRNA efficiently,
whereas, RNase A only cleaves after C and U bases [23, 24].

2. Adding glutathione decreases the pH of the buffer. Check the
pH of the buffer again after the glutathione is fully dissolved
and adjust the pH with a solution of 10 M NaOH.

3. An A260nm:A280nm ratio of less than 0.5 suggests that there is no
significant RNA contamination. This can be further verified by
conducting ATPase assays in the absence of RNA.

4. Addition of glucose to the media can reduce basal expression
level in the pET system. This is important if the protein is toxic
in E. coli [24].

5. Elute the MBP-TEV-Dbp2 protein until A280nm reaches 0.3
O.D. Do not exceed this O.D. because Dbp2 will precipitate
during TEV cleavage if the concentration exceeds 30 μM.

6. Vigorous rocking during the incubation with TEV protease
will cause Dbp2 to precipitate.

7. yra1C expression is induced at 16 °C overnight to promote
soluble protein production.

8. Since the binding kinetics between GST and glutathione are
relatively slow, it is necessary to allow sufficient time to obtain
maximum binding capacity.

9. Denaturing gel-loading dye contains EDTA, which chelates
magnesium ions and prevents heat-induced degradation of
RNA.

 10. Spotting radioactive ink (or sticking phosphorescent label)
onto the gel for film orientation prior to gel slicing is highly
recommended.

11. Glycogen acts as a carrier to increase the efficiency of nucleic
acid precipitation.

12. 32P has a half-life of around 14 days. Furthermore, RNA is
subjected to radiolysis over time.

13. The protein concentration should be empirically determined
using a Bradford assay for protein stocks.

 14. Reaction temperatures may vary for different helicases and
need to be determined experimentally.

15. Experimentally verify that the denatured substrate does not
spontaneously anneal during the reaction (bottom panel,
Fig. 1d–e).
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