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ABSTRACT 

Jang, Yumi. Ph.D., Purdue University, December 2015. Anticancer Effects of Vitamin E 
Forms and Their Long-chain Metabolites via Modulation of Sphingolipid Metabolism. 
Major Professor: Qing Jiang. 
 

Cancer is one of the leading causes of death. Studies have shown that vitamin E 

forms including gamma-tocopherol (γT), delta-tocopherol (δT), and gamma-tocotrienol 

(γTE) exhibited potent anticancer activities in various types of cancer cells. But 

molecular mechanisms underlying anticancer actions of γTE are not completely 

understood. 13’-carboxychromanols (13’-COOHs), major fecal excreted long-chain 

metabolites of vitamin E, have recently been shown to induce apoptosis in liver cancer 

cells. However, it is not clear whether 13’-COOHs have anticancer effects on other types 

of cancer. In the current study, we investigated the anticancer effects and mechanisms of 

γTE and 13’-COOHs; δT-13’-COOH and δTE-13’-COOH, which are metabolites of δT 

or delta-tocotrienol (δTE), respectively. Like γTE, 13’-COOHs inhibited the growth and 

induced apoptosis and autophagy in human colon, breast, and pancreatic cancer cells in a 

time- and dose-dependent manner. In these activities, 13’-COOHs were similar or more 

potent than γTE, both of which were much stronger than γT and δT. Since we have 

previously shown that γTE and γT induce prostate cancer cell death by modulation of 

sphingolipid metabolism, we investigated whether γTE and 13’-COOHs have effects on  
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the levels of sphingolipids in cancer cells using liquid chromatography tandem mass 

spectrometry. Treatment of human colon cancer HCT-116 cells with γTE or δT-13’-

COOH significantly increased in intracellular dihydroceramides (dhCers) and 

dihydrosphingosine (dhSph), sphingoid bases in de novo synthesis pathway of 

sphingolipids, but decreased in C16:0-ceramide (Cer) during shorter treatment. During 

longer treatment, γTE or δT-13’-COOH increased in C16:0- and C18:0-Cers while 

decreased in SMs. To investigate potential effects on de novo synthesis of sphingolipids, 

we used 13C3, 15N-labeled L-serine, which condensed with palmitoyl-CoA to form the 

first sphingolipid intermediate in the de novo synthesis pathway. We found that compared 

with controls, γTE or δT-13’-COOH treatment increased labeled dhCers and dhSph, but 

led to decrease in labeled Cers. These results strongly suggest that γTE or δT-13’-COOH 

inhibit dihydroceramide desaturase (DEGS)-catalyzed reactions and may activate 

sphingomyelin hydrolysis to enhance Cer levels. Consistently, we found that γTE or δT-

13’-COOH inhibited the DEGS activity, while they did not affect DEGS expression. The 

importance of sphingolipid modulation was further supported by blocking the increase of 

these sphingolipids, which resulted in a partial counteraction of γTE or 13’-COOHs-

induced cell death. In agreement with these cell-based studies, δTE-13’-COOH showed 

anticancer activities in a preclinical model in mice. In addition, we found that various 

phytochemicals including curcumin, resveratrol, and epigallocatechin gallate, etc. also 

modulated sphingolipid metabolism in cancer cells. Overall, our studies demonstrate that 

γTE and 13’-COOHs have potent anticancer effects by modulating enzyme activities in 

sphingolipid metabolism. 
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CHAPTER 1. LITERATURE REVIEW 

1.1 Vitamin E 

 

1.1.1 Vitamin E Forms and Food Sources 

 

Vitamin E is an important nutrient and is a well-known lipophilic chain-breaking 

antioxidant. In 1922, Evans and Bishop first discovered vitamin E as an essential dietary 

factor for reproduction in rats (Evans and Bishop, 1922). Since the discovery, many 

researchers have focused on the potential health benefits of vitamin E for various 

diseases. Natural forms of vitamin E consist of eight structurally related molecules that 

can be further divided into two major groups, which are tocopherols and tocotrienols. 

Tocopherols and tocotrienols are composed of the same basic chemical structure 

characterized by a 16-carbon phytyl chain which is attached at the 2-position of a 

chromane ring. However, the difference between tocopherols and tocotrienols is that 

tocopherols have a saturated phytyl chain whereas tocotrienols have an unsaturated 

phytyl chain with three double bonds. Individual tocopherols and tocotrienols, which are 

α-, β-, γ- and δ-tocopherol (αT, βT, γT and δT) and α-, β-, γ- and δ-tocotrienol (αTE, 

βTE, γTE and δTE), are differ from each other based on the number and position of 
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methyl groups in the chromane ring. The structures of tocopherols and tocotrienols are 

illustrated in Figure 1.1. 

 

 

 

Figure 1.1 Structures of natural forms of vitamin E. (A) Tocopherols and (B) tocotrienols. 
All vitamin E forms contain a 16-carbon phytyl chain which is attached at the 2-position 
of a chromane ring. The difference between tocopherol and tocotrienol is that tocotrienol 
has an unsaturated phytyl chain with three double bonds. 
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Furthermore, vitamin E is found in both natural and synthetic forms. Natural 

forms of tocopherol have the RRR configuration at the 2, 4’, and 8’-positions of the 

phytyl tail, and natural forms of tocotrienol have the R configuration at the 2-position of 

the phytyl tail. Both natural single stereoisomeric form of α-tocopherol (RRR, formerly 

d-α-tocopherol) and synthetic form of α-tocopherol are available commercially for the 

use as a dietary supplement. When α-tocopherol is synthesized chemically, this synthetic 

form consists of an approximately equimolar mixture of all eight possible stereoisomers 

(all-racemic α-tocopherol, formerly dl-α-tocopherol): RRR, RRS, RSS, RSR, SRR, SSR, 

SRS, and SSS (Brigelius-Flohe and Traber, 1999; Burton et al., 1998). Although they 

have similar structures, the different stereoisomers of vitamin E have different 

bioavailability and bioacitivity, which will be discussed in the next section. In addition, 

as the free forms of vitamin E are easy to be oxidized, more stable forms of vitamin E as 

a dietary supplement have been produced. Since ester forms are very stable, α-tocopherol 

is usually sold either as acetate esters (RRR α-tocopheryl acetate or all-rac α-tocopheryl 

acetate) or as succinate esters (RRR α-tocopheryl succinate or all-rac α-tocopheryl 

succinate). Among them, the acetate ester of all-rac α-tocopherol is the most common 

form of vitamin E supplementation due to the cost and the stability (Vagni et al., 2011). 

Since humans and animals do not make vitamin E, they acquire natural forms of 

vitamin E from plants. Vitamin E is found in various types of foods such as some fruits, 

vegetable oils, green leafy vegetables, plant seeds, corn, barley, oats, and wheat germ. 

Natural sources of tocopherols include vegetable oils, plant seeds and nuts. For instance, 

peanuts, almonds, and sunflower seeds are major sources of αT, whereas γT is rich in 

walnuts, pecans, corn oil, soybean oil and sesame oil. δT is found in soybean oil and rice 
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germ. As the corn and soybean oils are widely used, γT accounts for about 70% of the 

vitamin E in the US diet. On the other hand, tocotrienols are mainly found in palm oil, 

barley, oats and some cereal grains, but in much smaller amounts than tocopherols (Jiang 

et al., 2001; McLaughlin and Weihrauch, 1979; Slover, 1971). 

 

1.1.2 Bioavailability and Metabolites  

 

Vitamin E is a lipophilic (fat-soluble) vitamin, and similar to other lipids, all 

vitamin E forms are absorbed equally into the intestine along with dietary fat, and 

incorporated into chylomicrons. The chylomicron-bound vitamin E is transported through 

lymphatic system to peripheral tissues such as skin, adipose, muscle or brain with the 

help of lipoprotein lipase. The chylomicron remnants are taken up by the liver for 

metabolism or further distribution. In the liver, αT is preferentially incorporated into 

very-low-density lipoproteins due to the high affinity of α-tocopherol transfer protein (α-

TTP) together with ATP-binding cassette transporter A1 (ABCA1), and re-distributed 

throughout the body. Therefore, αT is the predominant form in most human and animal 

tissues and plasma as it is protected by α-TTP from being metabolized (Brigelius-Flohe 

and Traber, 1999; Jiang, 2014; Jiang et al., 2001; Manor and Morley, 2007; Traber, 

2007). 

In contrast, α-TTP has much lower affinity toward other forms of vitamin E. 

Thus, non-αT forms of vitamin E such as β-, γ-, δ-T and α-, β-, γ-, δ-TE are relatively low 

in tissues as they are preferentially catabolized in the liver via cytochrome P450 

(CYP4F2)-mediated ω-hydroxylation to 13’-hydroxychromanol (13’-OH). 13’-OH is 
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then further oxidized to 13’-carboxychromanol (13’-COOH), followed by β-oxidation of 

the phytyl chain to generate various shorter chain length of carboxychromanols including 

11’- and 9’-COOHs, and the terminal product 3’-COOH or (2’-carboxyethyl)-6-

hydroxychromans (CEHCs), which is the water-soluble metabolite of vitamin E, and then 

primarily excreted out of the body by the urine (Fig. 1.2) (Jiang, 2014; Sontag and 

Parker, 2002; Swanson et al., 1999). In parallel with β-oxidation, conjugation such as 

sulfation and glucuronidation of the phenolic on the chromane ring in the intermediate 

metabolites takes place when the intake of vitamin E forms is high (Jiang et al., 2007). 

Therefore, despite γT is the major form of vitamin E in the US diet, αT is the 

predominant form of vitamin E in the body. The plasma concentrations of αT are about 

20~30 μM, but γT is 5-10 times lower than αT in the plasma (Behrens and Madere, 1986; 

Jiang et al., 2001). Also, the bioavailability of γT is suppressed by increased intake of αT 

(Handelman et al., 1985), but γT supplementation increased the levels of both 

tocopherols (Clement and Bourre, 1997).   

 In addition to the different bioavailability of each natural vitamin E form, the 

different stereoisomers of vitamin E have different bioavailability as well as biopotencies. 

Both natural form of vitamin E and synthetic vitamin E are absorbed in the body. 

However, after absorption, RRR-αT, a natural form of vitamin E has a greater 

bioavailability and activities than the all-rac forms due to the higher affinity of RRR-αT 

toward the liver protein named α-TTP over the synthetic forms. Thus, synthetic forms of 

vitamin E are preferentially excreted. The bioavailability of natural vitamin E is about 

twice as high compared with synthetic forms, thus intake of twice more amount of 
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synthetic forms of vitamin E are required to match the bioavailability of the natural forms 

(Brigelius-Flohe and Traber, 1999; Burton et al., 1998; Vagni et al., 2011). 

 

 

 

 

Figure 1.2 Metabolism of vitamin E forms and their metabolites. Vitamin E forms are 
metabolized via ω-hydroxylation and β-oxidation 
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1.1.3 Bioactivities of Vitamin E 

 

The biological activity of vitamin E compounds has historically been assessed by 

the rat fetal resorption assay. In this assay, the biological activity of vitamin E is 

measured based on its ability to prevent or reverse the symptoms of vitamin E deficiency 

such as fetal resorption, encephalomalacia and muscular dystrophy, followed by embryo 

death. Among natural forms of vitamin E, αT has been shown to have the highest 

biological acitivity measured by this assay. Studies have also demonstrated that α-TTP is 

present in pregnant rodent uterus, and αT is important during pregnancy (Bieri and 

Evarts, 1974). However, this difference in activity between vitamin E forms appears to be 

caused by the lower concentrations of non-αT forms of vitamin E in tissues and plasma 

due to its shorter retention time, not because of their actual differences in biological 

activity. 

 

Antioxidant function 

Free radicals generated by oxidative stress exert an important role in the 

development of numerous diseases including cancer, atherosclerosis, and 

neurodegenerative diseases. All vitamin E forms have been well recognized as one of the 

most important antioxidants. It has been known to be a potent, lipophilic peroxyl radical 

scavenger that protects biological molecules from oxygen toxicity. In vitamin E studies, 

most researches have primarily focused on αT until recently, because αT is the 

predominant form of vitamin E in tissues and plasma, and due to its highest biological 

activities as well as the relationship between its low intake and the higher incidence of 
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vitamin E deficiency-associated ataxia. Moreover, among tocopherols, αT has been 

shown to have the highest antioxidant activities against peroxyl radical (LOO⋅) and delta-

tocopherol is the least active (alpha > beta = gamma > delta). αT terminates the chain 

reaction of free radical mediated lipid peroxidation by donating hydrogens from the 

phenolic group on the chromane ring to lipid radicals. Therefore, αT protects lipid 

membrane from lipid radical damage (Kamal-Eldin and Appelqvist, 1996). After αT 

becomes a free radical itself, it can be recycled back to antioxidant form by vitamin C 

(ascorbic acid) (Traber and Stevens, 2011). In contrast, γT has its unique ability to 

change highly reactive nitrogen back into safe NO, thereby protection against oxidation 

damage by reactive nitrogen species. αT lacks this ability (Cooney et al., 1993; Jiang et 

al., 2001).  

On the other hand, tocotrienols also show antioxidant effects by scavenging the 

chain-propagating peroxyl radical. It has been demonstrated that αTE has a more potent 

antioxidant activity than αT for the scavenging peroxyl radicals in liposomes as it is 

distributed more evenly in the phospholipid bilayer of the plasma membrane, and it 

shows more efficient collision with radicals (Packer et al., 2001; Wong and 

Radhakrishnan, 2012). 

In addition to tocopherols and tocotrienols, 13’-carboxychromanols from δT and 

δTE, which are long-chain metabolites of vitamin E, have been shown to exert stronger 

antioxidative activities compared with dl-αT (Jiang, 2014; Terashima et al., 2002). 
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Non-antioxidant functions 

Besides antioxidant activities of vitamin E, vitamin E isoforms have other 

biological functions independent of their antioxidant properties such as anti-

inflammatory, anticancer, cardioprotective, and antidiabetic effects. Chronic 

inflammation has been recognized to contribute to the development of other chronic 

diseases including cardiovascular diseases and cancer (Balkwill and Mantovani, 2001; 

Libby et al., 2002). Eicosanoids derived from arachidonic acid via cyclooxygenases 

(COX) and 5-lipoxygenase (LOX)-catalyzed reaction play important roles in regulation 

of inflammation and cancer (Vane, 1976; Wang and Dubois, 2010). Mechanistic studies 

have shown that vitamin E forms such as γT, δT, and γTE exert anti-inflammatory 

activities by inhibiting COXs and 5-LOX activities and suppressing nuclear factor κB 

(NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) 

6 or JAK-STAT3 signaling pathways in various types of cells (Jiang, 2014; Jiang et al., 

2000; Wang and Jiang, 2013; Wong and Radhakrishnan, 2012). In particular, recent 

studies in our group found novel mechanisms of anti-inflammatory effects of γTE in 

which γTE inhibited TNFα-stimulated NF-κB, TAK1 and JNK activation by modulation 

of sphingolipids, induction of ER stress followed by up-regulation of A20 (Wang et al., 

2015). In addition, our group have also demonstrated that δT-13’-COOH, a long-chain 

carboxychromanol from δT, competitively inhibited COX-1 and -2 activities, and it was 

much stronger than short-chain carboxychromanols and unmetabolized vitamin E forms 

in these effects (Jiang et al., 2008). δT-13’-COOH also inhibited 5-LOX activity (Jiang et 

al., 2011), indicating that δT-13’-COOH is a unique dual inhibitor of COX-1/COX-2 and 

5-LOX.  
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In addition to the anti-inflammatory activities of vitamin E forms, αT, γT, and δT 

have been demonstrated to prevent the development of atherosclerosis by inhibiting 

protein kinase C activity and proliferation of smooth muscle cell (Chatelain et al., 1993; 

Tasinato et al., 1995). Several studies have been shown that the plasma concentrations 

and the intake of γT are inversely associated with increased risk of cardiovascular disease 

(CVD), suggesting that γT is important in the defense against CVD (Ohrvall et al., 1996). 

Moreover, tocotrienols have been shown to have cardioprotective effects, which may be 

stem from their blood-pressure-lowering, cholesterol-lowering, and antiatherogenic 

effects of tocotrienols (Wong and Radhakrishnan, 2012). In the cholesterol-lowering 

activities of tocotrienols, tocotrienols affected on the mevalonate pathway by post-

transcriptionally suppressing the 3-hydroxyl-3-methyl-glutaryl CoA reductase (Parker et 

al., 1993). 

Vitamin E forms also showed antidiabetic effects. For example, γT, but not αT, 

partially protected insulin-secreting cells from the nitric oxide-induced functional 

inhibition (Sjoholm et al., 2000) and palm vitamin E (tocotrienol-rich diet; TRF) 

decreased advanced glycosylation end-points in non-diabetic rats and improved glycemic 

control in streptozotocin-induced diabetic rats (Wan Nazaimoon and Khalid, 2002).  

Independent of its antioxidant activity, vitamin E forms also have shown to 

prevent cancer by inhibition of cell-cycle, suppression of DNA synthesis and by inducing 

apoptosis (Wong and Radhakrishnan, 2012). The anticancer activities of each vitamin E 

form will be more discussed in the following section. 
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1.2 Vitamin E Forms in Cancer Prevention 

 

1.2.1 Cancer 

 

Cancer, also known as a malignant tumor and a complex disease caused by 

abnormal and uncontrolled cell proliferation, is one of the leading causes of death 

worldwide. Over the past 60 years, death rates from heart diseases and stroke have 

dropped significantly, but the death from cancer has changed little since the 1950s. 

According to World Health Organization (WHO), cancer now accounts for more than 14 

million new cases and 8.2 million deaths per year worldwide (World Cancer Report 

2014). Cumulative cancer risk is estimated to be 30% and 22% in men and women, 

respectively, by age 75 in developed area worldwide (Jemal et al., 2011). Therefore, 

cancer is a growing health problem around the world. Among various cancer types, lung, 

colon, breast, and pancreatic cancers are the major leading causes of cancer-related death 

in the United States (Siegel et al., 2015). However, there is still no effective therapy for 

late-stage cancer as many cancer therapeutic agents have side effects or due to high rates 

of cancer recurrence. Since cancer is a result of a multistep process, which takes years or 

decades to develop, chemoprevention that prevents or delays the onset of late-stage 

cancer can be an attractive strategy for reducing cancer-related death.  

In this regard, natural forms of vitamin E are potentially good chemoprevention 

agents as they are known to be safe and specific forms of vitamin E have been shown to 

have cancer prevention effects. Among them, αT, which is the predominant vitamin E 

form in tissues and the primary form in vitamin E supplements, and shows ataxia, muscle 
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degeneration, and infertility when it has deficiency, is the most extensively studied 

vitamin E form in relation to prevention of chronic diseases such as cardiovascular 

diseases and cancer. However, the human clinical studies as well as numerous animal 

studies of αT in cancer prevention resulted in inconsistent and disappointing outcomes 

(Moya-Camarena and Jiang, 2012). In this section, we review the several studies of 

vitamin E forms including αT and non-αT forms of vitamin E in cancer prevention so far. 

In addition, potential mechanisms of the actions by vitamin E metabolites are briefly 

discussed. 

 

1.2.2 α-Tocopherol 

 

Despite eight different forms of vitamin E, most studies have focused on αT for 

the last couple of decades due to its abundance in the body and antioxidant properties. 

Especially, all the human intervention studies for the vitamin E in cancer prevention have 

exclusively focused on αT. Since 1993, eight large randomized clinical trials (RCTs) to 

examine the effect of αT or combinations of αT with other nutrients on cancer incidence 

and cancer mortality have been reported; Linxian study (Blot et al., 1993), the α-

Tocopherol, β-Carotene Cancer Prevention Study (ATBC) (Heinonen et al., 1998), Heart 

Protection Study (HPS) (Heart, 2002), Supple’ mentation en Vitamines et Miéraux 

Antioxydants (SUVIMAX) (Hercberg et al., 2004), Women’s Health Study (WHS) (Lee 

et al., 2005), The Heart Outcomes Prevention Evaluation and The HOPE-The Ongoing 

Outcomes (HOPE and HOPE-TOO) (Lonn et al., 2005), Selenium and vitamin E Cancer 

Prevention Tiral (SELECT) (Lippman et al., 2009), Physician’s Health Study II (PHSII) 
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(Gaziano et al., 2009). However, results from eight large intervention studies that tested 

the anticancer effects of αT have been inconsistent and disappointing. Only three studies 

including the Linxian study, the ATBC study, and the SUVIMAX study have found that 

αT or its combination with other antioxidants reduced total cancer incidence and 

mortality or a risk of prostate cancer. Importantly, these three studies have something in 

common with their population characteristics that they were not general healthy 

populations. Specifically, the Linxian study in China had population with moderate 

micronutrients deficiency, and the ATBC study was conducted in male heavy smokers, 

and the subjects of the SUVIMAX study included men who have low plasma levels of 

antioxidant levels. 

Beside these human clinical studies, several animal studies to test the beneficial 

effects of αT on cancer have also yielded inconsistent and disappointing outcomes. On 

the other hand, recent mechanistic studies and studies using preclinical animal models 

have demonstrated that other forms of vitamin E appear to have different and stronger 

biological properties compared with αT for the prevention and therapy against cancer. 

 

1.2.3 Non-αT Forms of Vitamin E 

 

Despite most studies in the cancer prevention focused exclusively on the αT form 

of vitamin E in the past, recent studies by others and us have shown that other forms of 

vitamin E appear to have unique and stronger anticancer activities.  

γT, the major form of vitamin E in many plant seeds and in the US diet, and the 

second most common tocopherol in human serum, has unique and important properties 
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for cancer prevention and therapy that are not shared by αT. First of all, as we already 

mentioned in section 1.1.3, γT exerts anti-inflammatory activities, which are known to 

play important roles in cancer prevention. Specifically, our previous studies have shown 

that γT and γ-CEHC, but not αT, exert anti-inflammatory activities by inhibition of 

prostaglandin E2 (PGE2) synthesis, which occurred through COX-catalyzed reaction, in 

activated macrophages and epithelial cells and by inhibition of 5-LOX-catalyzed 

synthesis of leukotriene B4 (LTB4) in carrageenan-induced inflammation in rats (Jiang 

and Ames, 2003; Jiang et al., 2000). We also showed that γT, but not αT, inhibited 

proliferation and induced apoptosis in human prostate cancer cells, but not in normal 

prostate epithelial cells by interrupting sphingolipid metabolism, specifically by 

accumulating dihydrosphingosine and dihydroceramides (Jiang et al., 2004). Follow-up 

studies also reported that γT induced apoptosis in human breast cancer cells by the 

induction of increases in cellular ceramides and dihydroceramides levels and activating c-

Jun N-terminal kinase (JNK)/CCAAT/enhancer-binding protein homologous protein 

(CHOP)/death receptor-5 (DR5) proapoptotic signaling (Gopalan et al., 2012; Yu et al., 

2008b). Moreover, RRR-γT, but not RRR-αT induced apoptosis in multiple colon cancer 

cell lines, but not in normal colon cells (Campbell et al., 2006). In addition to a number 

of cancer cell studies, several animal studies were conducted to investigate whether these 

anticancer effects of γT are also translated into in vivo animal models. Yu et al. reported 

that γT supplementation, but not αT, significantly reduced breast tumor growth compared 

with control diet group in xenograft mouse models (Yu et al., 2009; Yu et al., 2008a). γT, 

but not αT, also suppressed tumor progression, along with activation of caspase-3 and -7 

in the ventral lobe in a transgenic prostate cancer rat model (Takahashi et al., 2009). Our 
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group recently demonstrated that γT significantly attenuated moderate colitis and 

suppressed inflammation-promoted colon tumorigenesis (Jiang et al., 2013). Furthermore, 

several studies investigated the anticancer effects of γT in vivo using γT-rich mixed 

tocopherols (γ-TmT). γ-TmT supplementation as well as γT or δT produced a significant 

inhibition of azoxymethane (AOM)-induced aberrant crypt foci (ACF; a precancer lesion) 

in the colon of rats (Guan et al., 2012; Newmark et al., 2006). Another study was 

conducted to test the effects of γ-TmT against colon cancer, and in this study, γ-TmT 

suppressed AOM/DSS-induced tumorigenesis in CF-1 mice (Ju et al., 2009). Besides 

colon cancer, γ-TmT was also effective in suppression of breast tumorigenesis in 

preclinical rat models (Lee et al., 2009; Smolarek et al., 2012; Suh et al., 2007). 

Moreover, in a human study, Helzlsouer et al. conducted a nested case-control study to 

investigate the associations of αT, γT, and selenium with incidence of prostate cancer. 

They observed that higher plasma γT concentrations were associated with a statistically 

significant lower risk of developing prostate cancer. Interestingly, this protective 

association against prostate cancer was found with only γT, not with αT or selenium 

(Helzlsouer et al., 2000). 

Besides tocopherols, recent studies suggested that tocotrienols, especially γTE 

and δTE, appear to have potent anticancer effects in various cancer cells. γTE, which is 

an abundant vitamin E form in palm oil, has been shown to have strong anti-

inflammatory activities by inhibition of TNFα-stimulated NF-κB, TAK1 and JNK 

activation via sphingolipid modulation, ER stress induction, and A20 upregulation (Wang 

et al., 2015). γTE inhibited cell proliferation and induced apoptosis in human colon 

cancer cells, by the mechanisms of cell cycle arrest, an increase of Bax/Bcl-2 ratio, and 
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activation of caspase-3 (Xu et al., 2009). Our group also showed that γTE induced 

apoptosis and autophagy by interrupting sphingolipid modulation in prostate and breast 

cancer cells (Gopalan et al., 2012; Jiang et al., 2012). Several studies have shown that 

γTE and δTE significantly inhibited cell proliferation and induced apoptosis in both 

estrogen receptor-negative MDA-MB-435 and estrogen receptor-positive MCF-7 human 

breast cancer cells (Guthrie et al., 1997; Loganathan et al., 2013; Park et al., 2010; Yu et 

al., 1999b). Consistent with the results in cancer cell culture studies, γTE and δTE 

showed effective anticancer properties in several in vivo animal studies. For instance, 

several studies have shown that γTE supplementation significantly inhibited prostate 

tumor growth in xenograft models (Jiang et al., 2012; Kumar et al., 2006; Yap et al., 

2010). γTE also showed these anticancer properties against pancreatic cancer, which 

generally shows resistance to chemotherapy, by inhibition of tumor growth and 

sensitization it to gemcitabine (Kunnumakkara et al., 2010). Interestingly, Hiura et al. 

reported that both γTE and δTE supplementation significantly delayed liver tumor 

growth, by particularly being accumulated in tumors, not in normal tissues (Hiura et al., 

2009). In addition, δTE was observed to show potent tumor antiangiogenic potential 

compared with αT (Shibata et al., 2009). 

 

1.2.4 13’-Carboxychromanol, a Long-chain Vitamin E Metabolite 

 

13’-carboxychromanol (13’-COOH) is a long-chain metabolite of vitamin E (Fig. 

1.2). Sontag and Parker first discovered cytochrome P450 ω-hydroxylase pathway of 

tocopherol catabolism and identified all key intermediates including long- and short-
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chain carboxychromanols and final metabolite, 3’-carboxychromanol in human 

hepatocyte (Sontag and Parker, 2002). Consistently, our group identified these 

intermediates after treatment with γT and δT in human A549 cells, and first discovered 

that in parallel with β-oxidation, sulfation of intermediate metabolites takes place. 

Importantly, these sulfated or non-sulfated long-chain carboxychromanols were found in 

rat plasma and liver upon vitamin E supplementation (Jiang et al., 2007). We also 

observed the similar metabolism of γTE in human A549 cells and in rats (Freiser and 

Jiang, 2009). Bardowell et al. revealed the presence of all six carboxychromanol 

metabolites and 13’-OH in fecal samples from mice fed with 800 mg/kg body weight γT 

and δT for 12 weeks. They also found similar findings in fecal material from an adult 

male supplemented with 400 mg/kg/day γT for 14 days (Bardowell et al., 2012a).  

Recently, our group began to investigate the biological activities of these vitamin 

E metabolites and demonstrated that long-chain carboxychromanols have stronger anti-

inflammatory activities than their unmetabolized vitamin E forms. Particularly, δT-13’-

COOH, a long-chain carboxychromanol from δT, has been shown to exert anti-

inflammatory effects by showing much more potent inhibiting actions on COX-1/COX-2 

and 5-LOX activities than short-chain carboxychromanols and unmetabolized vitamin E 

precursors (Jiang et al., 2008; Jiang et al., 2011). Moreover, Birringer et al. investigated 

the biological activities of long-chain carboxychromanols synthesized from garcinoid 

acid, a δTE derivative extracted from the African bitter nut Garcinia kola, in human 

HepG2 hepatocellular liver carcinoma cells. 13’-COOHs from αT and δT have shown to 

induce mitochondria-mediated apoptosis with increased mitochondrial ROS formation 

and reduced mitochondrial membrane potential (Birringer et al., 2010). Although, the 
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results of these studies show that vitamin E metabolites, especially 13’-COOHs exert 

potential anticancer properties, thus may contribute to beneficial effects of vitamin E 

forms in vivo, the effects and the underlying mechanisms by which 13’-COOHs exert 

these beneficial effects are not completely understood yet, thus warranting further 

investigation. 

 

1.3 Phytochemicals in Cancer Prevention 

 

1.3.1 Overview of Phytochemicals 

 

Cancer is the second leading cause of death worldwide, and now many 

researchers have been focusing on the prevention as well as the treatment to overcome 

cancer. The World Health Organization (WHO) indicates that at least one-third of all 

cancer deaths are preventable and that the diet is closely associated with this cancer 

prevention (Bode and Dong, 2009). Epidemiological studies have consistently shown that 

populations consuming high levels of fruits and vegetables have low incidence rates of 

various cancers (Block et al., 1992; Steinmetz and Potter, 1996). Therefore, numerous 

cell culture and animal model studies have been conducted to find biologically active 

compounds from edible plants and evaluate their protective effects against various 

diseases including cancer. This group of plant bioactive compounds now called as 

phytochemicals. Phytochemicals are non-nutritive plant chemicals expressed as 

secondary metabolites (‘phyto’ means ‘plant’ in the Greek word), which have protective 

or disease-preventing properties in humans and animals. The National Cancer Institute 
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(NCI) has identified that to date, greater than 1,000 different phytochemicals from plant 

sources have cancer preventive activities. Since phytochemicals are natural products, they 

have been used for the prevention and treatment of cancer for a long time due to their 

safety and general availability, and became important research targets for cancer research 

(Surh, 2003). Phytochemicals are generally classified as phenolics, carotenoids, alkaloids, 

nitrogen-containing compounds, and organosulfur compounds (Liu, 2004). They are 

typically divided into two distinct classes depending on their chemical structure, 

solubility, and physiological absorption properties; water-soluble dietary phytochemicals: 

phenolics and polyphenols, lipid-soluble dietary phytochemicals: carotenoids, 

tocochromanols (vitamin E derivatives), and curcuminoids. Among them, the most 

studied phytochemicals are the phenolics and carotenoids. This review will briefly 

introduce a general classification of phytochemicals and their key phytochemicals from 

each group with their dietary sources and health beneficial properties. Figure 1.3 

illustrates the chemical structures of representative dietary phytochemicals that have been 

known to possess chemopreventive potential. 
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Figure 1.3 Chemical structures of representative dietary phytochemicals. Structures of 
curcumin, quercetin, epigallocatechin gallate (EGCG), resveratrol, and sulforaphane. 
 

Phenolics 

Phenolics (also known as polyphenols) are compounds that contain one or more 

hydroxyl groups attached to one or more aromatic rings in their chemical structure. They 

are generally categorized as flavonoids, phenolic acids, stilbenes, curcuminoids, 

coumarins, and tannins, and numerous epidemiological studies have been demonstrated 

that phenolics showed beneficial properties against cancer, CVD, neurodegenerative 

diseases, diabetes, and osteoporosis (Gonzalez-Vallinas et al., 2013). 

Flavonoids represent the 60% of dietary phenolics with more than 4,000 varieties. 

Their chemical structure consists of two benzene rings linked by three carbons that are 

usually in an oxygenated heterocycle ring. Based on the differences in the heterocycle 

ring, they are classified into six groups: flavonols (quercetin and kaempferol), flavanols 

(catechin, epicatechin, epigallocatechin, and epigallocatechin gallate), flavones (luteolin 
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and apigenin), flavanones (naringenin), anthocyanidins, and isoflavonoids (genistain) 

(Liu, 2004). 

Quercetin. Quercetin is the most abundant flavonoids in fruits and vegetables. It is a 

flavonol and the major sources are onion, apple, and broccoli. Quercetin has shown a free 

radical-scavenging activity and health benefits against many diseases including CVD, 

cancer, and neurodegenerative diseases. Quercetin exerts its anticancer effects by its 

antioxidant and antiproliferative activities and by regulating various cell-signaling 

pathways, cell cycle, and apoptosis (Murakami et al., 2008; Okamoto, 2005). 

(-)-Epigallocatechin-3-gallate (EGCG). EGCG is the major catechin and an antioxidant 

polyphenol flavonoid found mostly in green tea. It has been shown to exert health 

beneficial properties for cancer, atherosclerosis, and neurodegenerative diseases (Khan et 

al., 2006). 

Stilbenes are a family of plant secondary metabolites produced in a small number 

of plant species including grapevine in response to environmental stresses which are 

biotic and abiotic stresses. The bioactive stilbenes such as resveratrol and pterostilbene 

possess several health benefits such as antioxidant, cardioprotective, and cancer 

preventive properties (Rimando and Suh, 2008). 

Resveratrol. Among stilbenes, in particular, resveratrol, which is mainly present in grapes 

and red wine, has received much attention because of its anticancer, antioxidant, 

cardioprotective, and lifespan extending properties (Agarwal and Baur, 2011; Bishayee, 

2009). 

 Curcuminoids are components of the cherished Indian spice known as rhizome of 

turmeric, and produce a pronounced yellow color and flavor, which allow it to be used as 
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spice blends, such as curry. Curcumin is the primary curcuminoid and several studies in 

recent years have shown that it has several biological activities, including antioxidant, 

anti-inflammatory, anti-microbial, anti-mutagen and anticancer properties (Shehzad et al., 

2010). 

 

Carotenoids 

Carotenoids are naturally occurring fat-soluble pigments, and about 600 different 

carotenoids have been identified and they are particularly plentiful in the red, orange, and 

yellow colored fruits and vegetables, and dark leafy green vegetables. There are two 

categories of carotenoids, which are provitamin A carotenoids that the body can turn into 

vitamin A such as β-carotene and β-cryptoxanthin, and non-provitamin A carotenoids 

such as lutein, lycopene, and zeaxanthin. Carotenoids are powerful antioxidant and have 

been implicated in many beneficial effects on human health with anticancer, 

cardioprotective, and immune system enhancing properties (Britton, 1995; Maiani et al., 

2009; Tan et al., 2010) 

 

Organosulfur compounds 

Organosulfur compounds are naturally occrurring organic compounds that contain 

sulfur in their structure. Dietary organosulfur compounds are commonly found in garlic 

and cruciferous vegetables such as broccoli, cabbage, and cauliflower. These compounds 

have been demonstrated that they possess a number of biological activities such as 

antioxidant, antimicrobial, and anticancer effects. Moreover, several epidemiological 
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studies have suggested that comsumption of organosulfur compounds can decrease the 

incidence of different types of cancer (Moriarty et al., 2007). 

Sulforaphane. Sulforaphane is a compound in the isothiocyanate group of organosulfur 

compounds. It is obtained from cruciferous vegetables such as broccoli and cabbage. 

For example, when fresh broccoli is chopped or chewed, it releases enzyme myrosinase, 

and myrosinase-catalyzed hydrolysis of glucosinolate glucoraphanin occurs to produce 

sulforaphane. It has shown antioxidant and anticancer activities against various types of 

cancer (Clarke et al., 2008). 

 

1.3.2 Molecular and Cellular Targets of Phytochemicals for Cancer Prevention 

 

Carcinogenesis is a multistep process and it consists of three closely linked stages 

that are tumor initiation, promotion and progression. Moreover, as cancer is a multifactor 

disease, it may require treatment with compounds that can alter this multiple process and 

target multiple intracellular components with greater effectiveness and less toxicity. In 

this regard, a large variety of phytochemicals are potential chemopreventive reagents due 

to its safety and numerous recent studies have demonstrated that several phytochemicals 

have anticancer properties by targeting various cellular signaling molecules. These 

chemopreventive phytochemicals can block, reverse or retard the development and 

progression of the cells in premalignant stage into malignant ones. The cellular 

mechanisms that phytochemicals elicit anticancer effects are multi-faceted, thus various 

cellular molecules and signalings could be potential targets of chemopreventive 

phytochemicals including regulation of cell signaling cascades by affecting several 



24 

 

 

kinases and transcription factors that decide the expression of genes involved in cell 

survival or death (Surh, 2003). During the past decades, there has been remarkable 

advances in identifying the molecular and cellular targets that mediate chemopreventive 

effects of specific phytochemicals, but despite this progress, the identification of clear 

mechanisms and targets of these phytochemicals are still incomplete. This section will 

review several identified key cellular signaling pathways and molecular targets by which 

representative phytochemicals exert their chemopreventive effects. Representative 

cellular signaling molecules and pathways targeted by various phytochemicals include 

the NRF/KEAP1 complex, NF-κB and AP1 with MAPK pathways, oncogenic 

AKT/protein kinase B (PKB) signaling pathway, β-catenin, and proteins involved in 

apoptosis induction. 

 

1.3.2.1 NRF-KEAP1 Complex and Activation of NRF 

 

One of the important ways to prevent cancer development is to block the initiation 

stage of carcinogenesis. The exposure to toxic environmental insults which cause DNA 

damage can be blocked and detoxified by phase II enzymes such as glutathione S-

transferase (GST), NAD(P)H:quinone oxidoreductase (NQO) and heme oxygenase-1 

(HO-1), resulting in the removal of toxicants from the cells before they are able to 

damage the DNA (Hayes and McMahon, 2001). The nuclear factor-erythroid 2p45 (NF-

E2)-related factor 2 (NRF2) is a transcription factor that regulates expression of phase II 

enzymes. A cytosolic actin-binding protein called Kelch-like ECH-associated protein 1 
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(KEAP1) is a negative regulator of NRF2 which inhibits its translocation to the nucleus 

(Itoh et al., 1999). These two proteins interact with each other, but phase II enzyme 

inducers or prooxidants break the link, resulting in the releasement of NRF2 from 

KEAP1. In addition, phosphorylation of NRF2 by several kinases such as 

phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), c-Jun NH2-terminal 

kinase (JNK) and extracellular-signal-regulated kinase (ERK) are known to facilitate the 

dissociation of NRF2 and KEAP1 (Huang et al., 2002). The released and translocated 

NRF2 in nucleus binds to the antioxidant-responsive element (ARE) to express genes that 

encode phase II detoxification or antioxidant enzymes.  

Several phytochemicals have been demonstrated to activate NRF. For instance, 

Chen et al. found that EGCG, a major green tea polyphenol, showed potent activation of 

ARE, MAPKs including ERK, JNK and p38, and caspase-3-mediated cell death (Chen et 

al., 2000). Sulforaphane from cruciferous vegetables also activated MAPKs and 

upregulated ARE-dependent phase II detoxifying enzymes (Yu et al., 1999a). 

 

1.3.2.2 Suppressing NF-κB and AP1 Activation 

 

Several chemopreventive agents elicit anticancer effects by modulating cell-

signaling pathways that regulate cell proliferation and differentiation. One of the 

components that play important roles in these pathways is the mitogen-activated protein 

kinases (MAPKs). Abnormal regulation of this MAPK pathway and its downstream 

transcription factor can cause uncontrolled cell proliferation and growth, leading to 
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conversion to malignancy (Zhang and Liu, 2002). These MAPKs and other kinases such 

as PKC and PI3K activate several transcription factors, including nuclear factor κB (NF-

κB) and activator protein 1 (AP1) (Li and Verma, 2002). NF-κB and AP1 are ubiquitous 

eukaryotic transcription factors that regulate various target gene expression and mediate 

pleiotropic effects, thus they are targets of several chemopreventive phytochemicals. 

Overexpression or aberrant activation of NF-κB has been associated with over-

proliferation and malignant transformation. Inactive NF-κB resides in the cytoplasm as a 

complex with the regulatory protein IκB. The activation of NF-κB pathway starts from 

the phosphorylation of IκB by IκB kinase (IKK), leading to IκB phosphorylation, 

ubiquitination and degradation by the 26S proteasome. The released NF-κB from IκB is 

then translocated to the nucleus, and it binds to specific promoter regions of genes, which 

are involved in the regulation of cell proliferation, differentiation, apoptosis and 

inflammation (Li and Verma, 2002). Recent studies have shown that activation of NF-κB 

is also regulated by AKT signaling pathway. PI3K activates AKT via phosphorylation, 

and this leads to NF-κB activation by stimulating IKK activity (Das et al., 2003; Li and 

Sarkar, 2002). AP1 is another transcription factor that is also regulated by the MAPK 

signaling cascade and regulates gene expressions that are involved in cell proliferation 

and differentiation, leading to tumor promotion and malignant transformation (Li and 

Verma, 2002). 

A number of chemopreventive phytochemicals have been shown to suppress NF-

κB and AP1 activation, leading to prevent abnormal cell proliferation and growth. 

Curcumin inhibits TNF-α-induced COX-2 gene transcription and NF-κB activation 

(Plummer et al., 1999). Genistein inhibits AKT activation and NF-κB activation (Gong et 
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al., 2003; Li and Sarkar, 2002). EGCG inhibits the activities of PI3K and AKT (Pianetti 

et al., 2002). In addition, IKK has shown to be inhibited by several chemopreventive 

phytochemicals, including curcumin (Bharti et al., 2003; Plummer et al., 1999), 

resveratrol (Holmes-McNary and Baldwin, 2000) and EGCG (Yang et al., 2001). 

 

1.3.2.3 Downregulation of β-Catenin-mediated Signaling Pathway 

 

β-Catenin is one of the important targets of numerous chemopreventive 

phytochemicals. It functions as a transcription factor and involves in the regulation of cell 

proliferation and tumorigenesis. Growth factors and WNT proteins stimulate β-catenin-

mediated signaling pathway. The interaction of a WNT protein with its transmembrane 

receptor inactivates glycogen synthase kinase-3β (GSK-3β) by phosphorylation. The 

interaction of a growth factor with receptor kinase (RTK) activates PI3K, leading to AKT 

phosphorylation. Phosphorylated AKT also inactivates GSK-3β by phosphorylation. 

GSK-3β forms a multiprotein complex with adenomatous polyposis coli (APC), axin and 

conductin, and this complex regulates the fate of β-catenein. In the presence of a growth 

factor or WNT signal, the phosphorylated and inactivated GSK-3β stabilizes β-catenin in 

the cytoplasm. The β-catenin translocates to the nucleus and acts as a transcription factor, 

resulting in the activation of gene transcription involved in the cellular proliferation and 

growth. On the other hand, in the absence of stimuli, GSK-3β phosphorylates cytosolic β-

catenin, which is in turn targeted for ubiquitylation followed by proteasomal degradation 

(MacDonald et al., 2009). 
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Some chemopreventive phytochemicals have been shown to target and 

downregulate the β-catenin-mediated signaling pathway and exert subsequent anticancer 

activities. For instance, curcumin reduced the cellular levels of β-catenin through 

caspase-mediated degradation of the protein (Mahmoud et al., 2000). Resveratrol has also 

shown to attenuate the expression of β-catenin in human colon cancer cells (Joe et al., 

2002). Inhibition of β-catenin activity and reduction of its protein expression has been 

shown by EGCG treatment (Dashwood et al., 2002). 

 

1.3.2.4 Induction of Apoptosis 

 

Despite the regulation of abnormal cell proliferation and growth may retard or 

block tumor development, the induction of programmed cell death via apoptosis can 

completely remove abnormal cells from a tissue. In contrast to necrosis, apoptosis is a 

tightly regulated mechanism of cell death that can be induced by a variety of signals and 

stimuli. 

Several dietary phytochemicals have been shown to induce apoptosis in cancer 

cells. Sulforaphane, a molecule in the isothiocyanate group of organosulfur compounds, 

induces apoptosis and inhibition of proliferation of human bladder cancer cells (Tang et 

al., 2006). EGCG treatment also inhibits cell growth and induces apoptosis in human 

epidermoid carcinoma cells, but not in normal human epidermal keratinocytes (Ahmad et 

al., 1997). Curcumin was also reported to induce apoptosis by up-regulating pro-
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apoptotic proteins such as Bim, Bax, and Bak, and down-regulating the anti-apoptotic 

proteins such as Bcl-2 and Bcl-xL (Shankar and Srivastava, 2007).  

 

1.4 Sphingolipids Metabolism and Their Biological Activities 

 

1.4.1 Overview of Sphingolipids 

 

Over the past twenty years, several groups of lipids and their metabolites have 

started to receive more attention, as they serve as biologically active molecules exerting a 

wide range of biological functions and providing health benefits through modification of 

tissue composition or induction of several cell-signaling pathways. Among a broad 

variety of bioactive lipids, evidences suggested that the polyunsaturated fatty acids 

(PUFAs) and eicosanoids are the most important bioactive lipids. Another well-known 

group of bioactive lipids is the sphingolipids. Sphingolipids were first identified in brain 

extracts at the end of the 19th century and were named after the Greek mythological 

creature, the Sphinx, on the basis of the nature of their enigmatic molecular structure 

(Thudichum, 1884).  

Sphingolipids are a class of natural lipids that primarily have sphingosine as their 

structural backbone, amide-linked long-chain fatty acids, and one of various polar head 

groups. Thus, they are the most structurally diverse class of membrane lipids depending 

on their head groups. Among them, since sphingomyelin (SM) is an essential component 

in the outer leaflet of the plasma membrane and provides a barrier to the extracellular 

environment, sphingolipids were thought to act only as structural roles. However, current 
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evidence also suggests that they are pleiotropic molecules playing important roles in the 

regulation of numerous functions including cell survival, apoptosis, senescence, and 

differentiation. Indeed, sphingolipid metabolism has proved to be a dynamic process, and 

several sphingolipid metabolites are now recognized as second messengers playing 

essential roles in various cell functions (Hannun et al., 1986; Hannun and Obeid, 2008; 

Spiegel and Merrill, 1996). 

The levels of endogenous sphingolipid metabolites are controlled by de novo 

synthesis and dynamic metabolisms involving synthesis of complex sphingolipids and 

catabolic pathways of complex sphingolipids or ceramides (Fig. 1.4) (Gault et al., 2010; 

Hannun and Obeid, 2008). Therefore, this review section will focus on the dynamic 

sphingolipid metabolism and enzymes involved in this pathway. 

 

1.4.1.1 De novo Sphingolipids Biosynthesis 

 

The de novo sphingolipid biosynthesis starts in the endoplasmic reticulum from 

condensation of palmitoyl-CoA and serine into 3-keto-dihydrosphingosine by serine 

palmitoyltransferase (SPT). The intermediate 3-ketosphinganine is rapidly reduced to 

dihydrosphingosine (dhSph) by a NADPH dependent 3-ketosphinganine reductase. An 

acylation by a family of (dihydro)ceramide synthases (CerSs) using fatty acyl-CoAs 

generates dihydroceramide (dhCer) subspecies. Dihydroceramide desaturase (DEGS) 

introduces a 4,5-trans double bond in dhCers to make the final product, Ceramide (Cer) 

(Merrill, 2002).  
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Figure 1.4 Sphingolipid metabolism. De novo biosynthesis pathway of sphingolipids, the 
production of complex sphingolipids from ceramide, the degradation of ceramide to 
sphingosine, the formation of sphingosine-1-phosphate (S1P), and the clearance of S1P 
by S1P lyase. SMS, sphingomyelin synthase; SMase, sphingomyelinase; CERK, 
ceramide kinase; GCS, glucosylceramide synthase; GBA, acid glucocerebrosidase; SK, 
sphingosine kinase; SPP, S1P phosphatase 
 

 

Serine Palmitoyltransferase (SPT) 

The first step in the sphingolipid biosynthesis is the condensation of cytosolic 

serine and palmitoyl-CoA, a reaction catalyzed by SPT to produce 3-keto-

dihydrosphingosine. SPT is encoded by the genes SPTLC1, SPTLC2, and SPTLC3. 
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However, SPTLC3 has been identified in yeast, but not in mammals (Gable et al., 2000). 

SPT is a member of a pyridoxal 5′-phosphate-dependent α-oxoamine synthases family. 

Mammalian SPT has LCB1 and LCB2 subunits, and each SPT subunit contains several 

transmembrane domains and displays type I topology. Although little is known about 

SPT regulation, many factors have been reported to regulate SPT activity and its activity 

is regulated transcriptionally and post-transcriptionally. The most widely known factor 

that affects SPT activity is the availability of serine and palmitoyl-CoA pool. SPT is 

inhibited by several synthetic and natural products. The selective inhibitors of this 

enzyme are L-cycloserine and beta-chloroalanine. More potent and selective natural 

inhibitors of SPT have been isolated from microorganisms which include sphingofungins, 

lipoxamycin and ISP-1/myriocin. The myriocin is a potent inhibitor of SPT and is widely 

used to block and identify the role of de novo sphingolipid biosynthesis (Hanada, 2003; 

Wadsworth et al., 2013).  

 

(Dihydro)ceramide Synthase (CerS) 

Dihydrosphingosine is further acylated by the action of CerS. Recently, human 

CerS 1-6 have been discovered as yeast homologues of the longevity assurance gene 1-6 

(LASS1-6), and are encoded by six distinct genes, resulting in the generation of huge 

dhCer and Cer profiles (Pewzner-Jung et al., 2006). Each CerS has substrate preference 

for different lengths of fatty acyl-CoAs, thus producing distinct dhCers with different 

acyl-chain lengths. For example, whereas CerS1 prefer stearoyl-CoA as a substrate and 

mainly generate C18-Cer species (Venkataraman et al., 2002), CerS5 and CerS6 both 

prefer palmitoyl-CoA as substrates and produce predominantly C16-Cer species 
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(Riebeling et al., 2003). On the other hand, CerS2 prefer C20-C26 acyl-CoA species and 

form long chain Cer species (Laviad et al., 2008). CerS3 utilizes middle and long chain 

acyl-CoA and makes the corresponding Cer species (Mizutani et al., 2006) (Fig. 1.5). 

These CerS proteins are localized mainly to the ER and its activity is inhibited by a 

number of fungal inhibitors such as fumonisin B1 (FB1), a mycotoxin produced by 

Fusarium verticillioides. The nature of the inhibition of CerS by FB1, which contains an 

aminoeicosapentol backbone, is that CerS recognizes the aminopentol moiety of this 

compound, which competes with the binding sites for dhSph and fatty acyl-CoA (Merrill 

et al., 2001). 

 

Dihydroceramide Desaturase (DEGS) 

The last step of the de novo biosynthesis of Cer is the insertion of a 4,5-trans-

double bond into dhCer by dihydroceramide Δ4-desaturase (DEGS) to generate Cer. 

Michel et al. first reported the biochemical characterization of the DEGS reaction in 1997 

using rat liver microsomes (Michel et al., 1997). They have shown that the DEGS uses 

molecular oxygen as electron acceptor to have a hydroxyl group in the C4-position of the 

dhSph, and then with NADP or NADPH as an electron donor, a dehydration reaction 

occurs to produce a double bond in the C4-C5 position of dhCer. Therefore, they 

confirmed that the conversion of dhCer to Cer was occurred by a desaturase and not by a 

dehydrogenase. Two different DEGSs, DEGS1 and DEGS2, have been so far reported. In 

bioinformatics approach, Ternes et al. identified a family of sphingolipid Δ4-desaturases 

(homologs of the Drosophila melanogaster degenerative spermatocyte gene 1 (des-1)) 

(Ternes et al., 2002). DEGS-1, the human homolog of des-1, exhibits high dhCer Δ4-
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desaturase and very low C-4 hydroxylase activities, whereas DEGS2, another ortholog 

identified in mouse and human, is similarly active as both sphinglipid C-4 hydroxylase 

and Δ4-desaturase activities, resulting in the production of either phytoceramide or 

ceramide. Like the previous two enzymes in the de novo sphingolipid biosynthesis 

pathway, DEGS is localized in the ER membrane where it can access to dhCer species. 

DEGS1 activity is largely influenced by a number of factors including the length of the 

alkyl chain of the sphingoid base (C18 > C12 > C8) and fatty acid (C8 > C18), the 

stereochemistry of the dhSph moiety of the substrate (D-erythro-isomer > L- or D-threo-

isomers), and the nature of the headgroup (dhCer: the highest activity, dhSM: some 

(~20%) activity). The activity of DEGS is inhibited by several compounds, including 

cyclopropene-containing ceramide, GT-11 (C8-cyclopropenylceramide; C8-CPPC) 

(Triola et al., 2003; Triola et al., 2004) which is a competitive inhibitor of DEGS, and 

XM462. 
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Figure 1.5 De novo biosynthesis of sphingolipids highlighting the synthesis of many 
ceramides with different fatty acid chain length. Biosynthesis of sphinganine, which can 
be acylated by the CerS/Lass gene products with their specific fatty acyl-CoA preference. 
Each dhCer can be desaturased to the corresponding Cer species, followed by the 
production of more complex sphingolipids. Cer, ceramide; CerS, ceramide synthase; 
dhCer, dihydroceramide; DEGS, dihydroceramide desaturase; SM, sphingomyelin 
 

 

1.4.1.2 Synthesis of Complex Sphingolipids 

 

Cer formed via the de novo sphingolipid biosynthesis pathway in the ER is 

transported to the Golgi to generate more complex sphingolipids (Hannun and Obeid, 
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2008). Since Cer is a lipophilic molecule, it needs to be transported either by vesicular 

transport for the delivery of Cer to synthesize glucosyl-Cer (Watson and Stephens, 2005) 

or by the protein Cer transfer protein (CERT), which is a cytosolic protein and 

specifically delivers Cer for SM synthesis (Hanada et al., 2003). In addition, transfer of 

glucosyl-Cer for complex glycosphingolipids synthesis requires FAPP2 transfer protein 

(D'Angelo et al., 2007). Therefore, in the Golgi apparatus, more complex sphingolipids 

such as glucosyl-, or galactosyl-Cers and sphingomyelin (SM) are generated from Cers. 

Glucosyl-Cer and galactosyl-Cer are synthesized by the actions of enzymes glucosyl-Cer 

synthase and Cer galactosyltransferase, respectively. Meanwhile, SM, which is the most 

abundant sphingolipids in mammalian cells, is produced by the action of SM synthases 

(SMS). There are at least two members of the SMS family and SMS1 and 2 are localized 

to the trans-Golgi, but SMS2 is also present in the plasma membrane. The synthesis of 

SM is catalyzed by the SMS enzyme, which transfers the phosphocholine headgroup 

from phosphatidylcholine to Cer yielding the products SM and diacylglycerol (DAG). 

The activity of SMS enzyme is inhibited by tricyclodecan-9-xanthogenate (D609) 

(Amtmann, 1996). The produced SM and complex glycosphingolipids are delivered to 

the plasma membrane by vesicular transport. A majority of the total SM resides at the 

plasma membrane, where it plays important roles structurally and functionally (Huitema 

et al., 2004). 

Moreover, although Cer is mainly converted into complex sphingolipids in the 

Golgi, it can also be Cer-1-phosphate through phosphorylation by Cer kinase (Gault et 

al., 2010). 
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1.4.1.3 Catabolism of Complex Sphingolipids and Ceramides 

 

SM is the most abundant complex sphingolipid in mammalian cells, and it can be 

broken down to maintain cellular homeostasis, which occurs by the action of 

sphingomyelinase (SMase) family. The SMase family hydrolyzes phosphocholine 

headgroups in the SM to produce Cer and phosphocholine. The SMase family has two 

major categories based upon their pH optimum, which are the acid and neutral SMases. 

Acid SMases that are present in lysosomes and the outer membrane leaflet or neutral 

SMases in the inner leaflet of the bilayer can metabolize SMs to Cers and other bioactive 

lipids (Marchesini and Hannun, 2004). Although the functions and regulatory 

mechanisms of SMases are not well characterized, some studies have been investigated 

the factors and mechanisms that control the SMases activation. Acid SMases has been 

shown to be activated by the TNF receptor, oxidants, and UV radiation (Henry et al., 

2013; Zhang et al., 2001). Neutral SMases activation has also been investigated that 

serum starvation (Jayadev et al., 1995), oxidative stress (Marchesini and Hannun, 2004), 

treatment of vitamin D (Okazaki et al., 1994), and curcumin (Abdel Shakor et al., 2014) 

activate the enzyme. Neutral SMase activation was also a necessary signaling event for 

the TNF-induced human MCF-7 breast cancer cell death (Luberto et al., 2002). A number 

of compounds that inhibit SMases were also found. Desipramine, which is a member of 

the tricyclic antidepressant family, has been used as a selective acid SMase inhibitor by 

acting on the proteolytic degradation of acid SMase. SR33557 is also a specific acid 

SMase inhibitor, and NB6 is another inhibitor of the SMase gene transcription. GW4869 

is a noncompetitive inhibitor of neutral SMase. 
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Catabolism of Cer occurs by the action of ceramidases (CDases) to form 

sphingosine. There are two major CDases, which are acid CDase localized in the 

lysosomes and neutral CDase localized in the ER and the mitochondria. After Cer is 

deacylated into sphingosine, sphingosine-1-phosphate (S1P) is synthesized from 

sphingosine and ATP by the action of one of the sphingosine kinases (SphK); SphK1 or 

SphK2. Meanwhile, the sphingosine produced from Cer hydrolysis by acid CDase in 

lysosome may exit the lysosome and salvaged into Cer and sphingolipid pathways. The 

last step of the sphingolipid catabolic pathway is the degradation of S1P by S1P lyase, a 

microsomal enzyme to produce 2-hexadecenal and phosphoethanolamine (Gault et al., 

2010). 

 

1.4.2 Bioactive Sphingoid Bases and Their Roles in Cell Growth, Survival, and Death  

 

Sphingolipids are diverse groups of lipids that play a variety of essential roles as 

components of cell membrane structure and cell signaling molecules, thus affecting on 

the mammalian development and physiology. Moreover, dysregulated sphingolipids 

metabolism is known to occur in some diseases such as cancer, diabetes, atherosclerosis, 

and neurodegenerative diseases. Over the past two decades, several sphingolipids 

metabolites, such as sphingosine, Cer, and S1P were defined as bioactive lipid 

messengers and regulatory molecules, and many researchers have begun to investigate 

their various roles and functions. These metabolites are now clearly known to play 

critical roles in regulating various cellular events including differentiation, proliferation, 

apoptosis, and autophagy (Ryland et al., 2011; Zheng et al., 2006). However, as the 
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sphingolipid metabolism is complex and dynamic processes, and the produced 

metabolites have different or opposite functions, their relative levels and balance between 

each other are important for the regulation of survival and death within the cells. For 

instance, while Cer has antiproliferative and proapoptotic properties, S1P involves in 

cellular proliferation and survival. Thus, a model has been previously proposed in which 

the equilibrium between these two molecules, the ‘Cer/S1P rheostat’, could determine 

cell fate (Cuvillier, 2002). Besides this model, recent studies have suggested that 

sphingolipid metabolites are interconvertible and each metabolite has its distinct 

functions. For example, Cer can be further metabolized to sphingosine by ceramidase, 

which has been shown to induce apoptosis in many cell types. This sphingosine can be 

further phosphorylated to form S1P by sphingosine kinase. In addition, Cer can be 

generated from SM via SMases. Therefore, now it is important to understand this 

complexity of sphingolipid metabolism and specific enzymes that are involved in the 

pathway, and define the roles and regulation of each metabolite by the application of the 

comprehensive ‘sphingodynamic’ model. This present review will focus on the roles of 

several bioactive sphingolipid metabolites and their regulation. 

 

1.4.2.1 Sphingosine 

 

The first sphingolipid identified that exerts pleiotropic effects on protein kinase C 

and other targets was sphingosine (Hannun et al., 1986; Merrill et al., 1986; Wilson et al., 

1986). Sphingosine is generated from Cer by CDase, and it, in turn, can be 
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phosphorylated by sphingosine kinase to form S1P. Sphingosine has been shown to be 

produced during the early stages of apoptosis, and the exogenously added sphingosine 

itself also induced apoptosis in many cell types (Ahn and Schroeder, 2002; Cuvillier, 

2002). Although the role of sphingosine in apoptosis was not extensively studied 

compared with that of Cer, there are several defined mechanisms that could account for 

sphingosine to mediate apoptosis. Treatment of sphingosine has been shown to inhibit 

MAPKs, Erk-1 and Erk-2 activities, and activate JNK and p38, which are stress-activated 

protein kinases. Moreover, several studies have revealed that caspases, cysteine 

proteases, are activated during sphingosine-induced apoptosis. In addition, sphingosine 

induces apoptosis by the mitochondrial pathway, particularly by down-regulating the 

PI3K-Akt pathway (Cuvillier, 2002). 

 

1.4.2.2 Ceramide 

 

After sphingosine was recognized as a second messenger, Cer also became 

another candidate for the sphingolipid metabolite, which may act as bioactive cellular 

signaling molecule (Goldkorn et al., 1991). Cer has a variable length of fatty acid chain 

attached at the carbon 2 position of long-chain sphingosine by an amide bond. It is either 

synthesized via de novo synthesis by condensation of serine and palmitoyl-CoA or 

generated by sphingomyelin catabolism by the action of sphingomyelinases. Now, due to 

its diverse roles including the regulation of cell death and senescence, even more 

emphasis has been placed on the Cer. Although there are many signaling pathways that 
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are influenced by Cer, interest has focused on defining the direct targets of Cer. Several 

proteins such as Cer-activated protein phosphatases (CAPPs), various protein kinases and 

cathepsin D, have been identified that interact directly with Cer. The CAPPs which are 

serine/threonine phosphatase, such as PP1 and PP2A, are bound and activated by Cer and 

induce growth arrest or apoptosis. Targets of these CAPPs for dephosphorylation include 

the retinoblastoma gene product (Rb), PKCα, protein kinase B (PKB or AKT) and Bcl-2 

(Hannun and Obeid, 2008; Kolesnick, 2002; Ohanian and Ohanian, 2001). Moreover, 

kinase suppressor of ras (KSR), which is a Cer-activated protein kinase (CAPK), has also 

been identified. KSR is a serine/threonine kinase that phosphorylates and activate Raf to 

initiate MAPK signaling cascade. In addition, PKCζ and the protease cathepsin D have 

been shown to be direct targets for Cer. Activation of PKCζ by Cer has been linked 

cytokines to NFκB signaling (Ohanian and Ohanian, 2001) and implicated in 

proapoptotic functions. Cathepsin D has been proposed as a specific target for acid 

SMase-generated Cer in lysosome and implicated in subsequent induction of 

mitochondrial apoptosis.  

While Cer has been proposed as an important cell-signaling messenger for the 

regulation of diverse events such as differentiation, proliferation and senescence, it has 

received much attention as a potential mediator of apoptosis. Intensive investigation in 

the past decade has firmly established that Cer could play a key role in apoptosis 

signaling in response to cytokines, anticancer drugs, or environmental stresses. Treatment 

of cells with Cer has been shown to induce apoptosis by the mitochondria-mediated 

pathway and down-regulation of the PI3K-Akt pathway (Ahn and Schroeder, 2002; 

Radin, 2001). In addition, Cer has shown to be accumulated in the mitochondrial 
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membranes after chemotherapeutic drugs or TNFα treatment and caused mitochondrial 

outer membrane permeabilization by making pore, resulting in the induction of 

mitochondrial apoptosis (Siskind, 2005). Recent studies have shown that addition of 

exogenous Cer also induced autophagy, and the autophagy was induced by compounds 

treatment such as tamoxifen, a chemotherapeutic drug, and 4-HPR in which endogenous 

Cer increase was involved (Scarlatti et al., 2004; Zheng et al., 2006). In addition to the 

proapoptotic and proautophagic effects of Cer, it has been implicated in the inhibitory 

properties of inflammation. Treatment of Cer has been found to inhibit phosphorylation 

of pro-inflammatory kinases and production of cytokines, and also decrease the 

inflammatory interleukin 6 (Kitatani et al., 2009; Sun et al., 2008).  

Recently, emerging results suggest that endogenous Cers with different fatty acyl-

chain lengths appear to have distinct bioactivities. Thus, many researchers have been 

investigating the role of CerS family that makes Cers as well as specific functions of 

individual Cer species. These researches were enabled by the development of mass 

spectrometry (MS)-based approaches for the direct quantitation of Cers over the past 15 

years, instead of using a variety of indirect assays, such as enzymatic assays or TLC 

separations. With the highly sensitive and specific MS-based method, each individual Cer 

species with different mass could be effectively quantified even in a mixture at low nM 

concentrations. Watts et al. applied this technique to investigate the changes of individual 

Cer levels during apoptosis in cells for the first time, and observed specific elevations of 

C16:0-Cer (Watts et al., 1999). One study found that B-cell receptor-triggered cell death 

was associated with an elevation in C16:0-Cer in Ramos B-cells. The increase of this Cer 

was inhibited by FB1, an inhibitor of CerS, which also inhibited several apoptotic 
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hallmarks such as activation of caspases, mitochondrial damage followed by induction of 

cell death, suggesting that de novo generated C16:0-Cer is involved in mitochondrial 

apoptosis (Kroesen et al., 2001). More recently, numerous studies have been revealed the 

changes of individual Cer levels in specific cancers, and reported the distinct functions of 

each individual Cer species in the regulation of tumor growth and therapy using the 

sphingolipidomic analysis. Koybasi et al. first found that only one specific Cer, C18:0-Cer 

was selectively down-regulated in human head and neck squamous cell carcinoma 

(HNSCC) tissues, and this Cer involved in the inhibition of cancer cell growth and may 

play an important role in the regulation of cell fate (Koybasi et al., 2004). Consistently, 

Karahatay et al. also found the significantly decreased levels of C18:0-Cer in HNSCC 

tumors. (Karahatay et al., 2007). In contrast, this group found an increase in the levels of 

C16:0-, C24:0- and C24:1-Cers in the same cancer patients. The increased levels of these Cer 

species were also observed in malignant breast cancer tissues compared with benign and 

normal tissues (Schiffmann et al., 2009a). One study has shown that SW620 colon cancer 

cells had lower expression levels of CerS6 and significantly decreased C16:0-Cer which 

resulted in the resistance to the tumor necrosis factor-related apoptosis-inducing ligand 

(TRAIL)-induced apoptosis. Moderate elevation in CerS6 expression reversed the 

apoptotic response to TRAIL in this cell line (White-Gilbertson et al., 2009). Schiffmann 

et al. also implicated an increase of C16:0-Cer by CerS6 activation from the salvage 

pathway in a selective COX-2 inhibitor, celecoxib-induced toxic effects in HCT-116 

colon cancer cells (Schiffmann et al., 2009b). Recent study has found that the 

accumulation of long-chain Cers by CerS5 and 6 through the salvage pathway play 

important role in ultraviolet light-C-induced programmed cell death of MCF-7 breast 
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cancer cells (Mullen et al., 2011). However, interestingly, another recent study by Senkal 

et al. revealed novel prosurvival role of C16:0-Cer against ER stress-induced apoptosis in 

HNSCCs. They found that whereas C18:0-Cer showed proapoptotic roles, C16:0-Cer 

showed antiapoptotic and prosurvival roles, suggesting that C16:0-Cer and C18:0-Cer 

generated by CerS1 or CerS5, respectively, play opposite roles in determining cancer cell 

survival or apoptosis (Senkal et al., 2010). In addition to the proapoptotic roles of C18:0-

Cer, it has been shown to mediate lethal autophagy induction, independent of apoptosis in 

HNSCC cell lines (Sentelle et al., 2012). Taken together, although there is still 

controversy in the roles of each individual Cer species, recent studies have demonstrated 

the distinct roles of individual Cer species, and Cers with different fatty acyl chain 

lengths may contribute to tumor growth and therapy. 

 

1.4.2.3 Dihydrosphingosine and Sphingosine-1-phosphate 

 

Although sphingosine and Cer have been recognized and studied as pivotal 

apoptosis-inducing molecules for a long time, emerging evidence suggests that other 

sphingolipid intermediates in the de novo synthesis of sphingolipid pathway also play 

important roles in cell survival and death.   

First, dihydrosphigosine (dhSph or sphinganine), an intermediate upstream of 

CerS an enzyme sensitive to fumunosin B1, has been shown to induce apoptosis in 

human colon cancer cells (Ahn and Schroeder, 2002), activation-induced T cells 

(Solomon et al., 2003), and undifferentiated HL-60 and U937 leukemic cells (Jarvis et al., 
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1996; Ohta et al., 1995). Moreover, our group found that the treatment of γT, the 

predominant form of vitamin E in US diet, or mixed vitamin E forms induced huge 

accumulation of dhSph, resulting in the induction of human prostate cancer cell death 

(Jiang et al., 2004). We also found that γTE enhanced the intracellular levels of dhSph 

and inhibited PI3K-mediated Akt phosphorylation followed by induction of apoptosis and 

autophagy in human prostate cancer cells (Jiang et al., 2012). In addition, safingol, the 

synthetic L-threo-stereoisomer of endogenous (D-erythro-) dhSph, has been shown to 

induce autophagy through inhibition of PKCs and PI3K in various cancer cells (Coward 

et al., 2009). Interestingly, fumonisin B1, an inhibitor of CerS, caused the accumulation 

of dhSph in tissues, serum, and urine, which appear to be responsible for the toxicity of 

this mycotoxin (Merrill et al., 2001). 

 Sphingosine and Cer are representative sphingolipid metabolites, which are 

typically associated with induction of cell death, while S1P is involved in opposite roles 

such as cell proliferative, mitogenic, survival, antiapoptotic and drug resistant actions. 

S1P is produced through the action of SphK from sphingosine, which is generated via 

deacylation of Cer. SphK activity is increased by a number of stimuli such as growth 

factors, cytokines and G protein-coupled receptors (GPCRs), but the mechanisms 

regulating the activity of SphK are not yet clearly understood. The increased S1P by the 

action of SphK interacts with GPCRs as extracellular signals. S1P signaling through 

these GPCRs has been implicated in various cellular responses including differentiation, 

migration, and mitogenesis. S1P has also been proposed to play as an intracellular second 

messenger, which activate calcium release, MAPKs, phospholipase D, and p125FAK 

phosphorylation, resulting in the regulation of differentiation and migration, and 
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increases in proliferation of cancer cells (Pyne and Pyne, 2000). Several studies suggest 

that the levels of S1P are closely linked to resistance to the cancer cell death induction, 

and the apoptosis-inducing action of Cer is antagonized by S1P. S1P also increased 

platelet-derived growth factor and vascular endothelial growth factor which are 

associated with angiogenesis and metastasis of tumor (Catarzi et al., 2007; Heo et al., 

2009). Interestingly, S1P has been shown to induce COX-2 expression, which activates 

inflammatory response and has been recognized to be linked to the cancer progression 

(Snider et al., 2010). 

 

1.4.2.4 Dihydroceramide 

 

Dihydroceramide (DhCer) is another sphingolipid metabolite which is converted 

to Cer via DEGS. The only structural difference between Cer and dhCer is the presence 

or absence of a 4, 5-trans-double bond, respectively. Whereas Cer is well known 

sphingolipid involved in cell death, dhCer was thought to be an inactive precursor of Cer 

and a non-signaling molecule. In the early 1990’s, a study demonstrated that dhCers were 

inactive in inhibition of cell growth and induction of apoptosis, in which Cers were active 

in HL-60 cells (Bielawska et al., 1993). Ahn et al. also have shown that sphingosine, 

dhSph, and C2-Cer inhibited growth, caused apoptosis and death of colon cancer cells, 

whereas dhCer had no effect on these (Ahn and Schroeder, 2002). Several other previous 

studies also have revealed and confirmed that dhCers have not been found to mimic the 

effects of Cer, and they are inert compounds as compared with their potent Cer. 
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However, these studies used unnatural C2 or C6 short-chain analogs instead of natural 

long-chain Cer and dhCer. Stiban et al. first investigated the effects of their long-chain 

analogs, and found that dhCer are not ineffective. In this study, dhCer hindered Cer 

channel formation in mitochondria, resulting in the inhibition of apoptotic cell death 

(Stiban et al., 2006). 

 On the other hand, technology used in the previous studies showing the important 

roles of Cer in the induction of cell death was limited in that it could not distinguish 

between Cer and dhCer. The potential effects of dhCer were recognized with the use of 

liquid chromatography tandem mass spectrometry (LC-MS/MS) technology, which can 

identify even different species of Cer and dhCer. For example, 4-hydroxy 

phenylretinamide (4-HPR or fenretinide), a synthetic retinoid, had been thought to cause 

large elevation of Cer to induce growth arrest and apoptosis in numerous cancer cells 

(Erdreich-Epstein et al., 2002; Wang et al., 2003; Wang et al., 2001). However, the LC-

MS/MS analysis revealed that 4-HPR did not increase in Cer, but rather accumulate 

dhCer by inhibiting DEGS.  

DhCers are now considered as one of the bioactive sphingolipid metabolites and 

have shown to be involved in important cellular responses such as cell cycle arrest 

(Kraveka et al., 2007), apoptosis (Gopalan et al., 2012; Jiang et al., 2012; Jiang et al., 

2004), autophagy (Jiang et al., 2012; Signorelli et al., 2009; Zheng et al., 2006), and 

oxidative stress (Idkowiak-Baldys et al., 2010). Recently, several compounds including 

natural bioactives such as vitamin E forms, resveratrol, and cancer chemotherapeutic 

agents have been shown to inhibit DEGS and induce subsequent increases in dhCer levels 

followed by the regulation of cellular responses. Among them, our group found that γT is 
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the first natural compound that has been shown to induce apoptotic cell death by 

increasing intracellular dhCer and dhSph in human prostate cancer cells (Jiang et al., 

2004). Since then, subsequent studies have reported several compounds that can 

modulate intracellular levels of dhCer. Fenretinide, a vitamin A analog with 

chemotherapeutic properties, also enhanced intracellular dhCer by inhibition of DEGS 

activity, leading to cell cycle arrest and inhibition of cell growth in human neuroblastoma 

cells (Kraveka et al., 2007). Following studies from this group found that fenretinide, 

which bears a structural resemblance to dhCer, directly and irreversibly inhibited DEGS 

activity (Rahmaniyan et al., 2011). Moreover, resveratrol treatment showed an increase in 

dhCers levels, which resulted in the induction of autophagy in gastric cancer cells. 

Importantly, XM462, an inhibitor of DEGS, caused the accumulation of dhCer and it was 

sufficient to have autophagy (Signorelli et al., 2009). Consistently, in the earlier studies, 

Zheng et al. also showed the induction of autophagy in C2-dhCer-treated prostate cancer 

cells (Zheng et al., 2006). Celecoxib, a selective COX-2 inhibitor, induced various cancer 

cell death by promoting dhCer and dhSph accumulation through the inhibition of DEGS 

and activation of sphingolipid biosynthesis, while depleting cells of Cers. DEGS activity 

was also found to be inhibited by oxidative stress (Idkowiak-Baldys et al., 2010) or 

hypoxic environment (Devlin et al., 2011), resulting in significant elevation in dhCer 

levels and inhibition of cell proliferation. Again, our group has recently shown that γTE, 

an analog of γT, also enhanced dhCer as well as dhSph, which lead to the induction of 

apoptosis and autophagy in human cancer cells (Gopalan et al., 2012; Jiang et al., 2012). 

On the other hand, γTE did not significantly affect Cer or sphingosine levels, and γTE 

was much more potent than γT in these activities. Our very recent studies implicated the 
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importance of dhCer increase in the γTE-mediated NFκB inhibition through increase of 

ER stress and up-regulation of A20 (Wang et al., 2015). 
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CHAPTER 2.  SPHINGOLIPID METABOLISM IS THE INITIAL PRIMARY 
TARGET OF GAMMA-TOCOTRIENOL AND PLAYS A ROLE IN CELL 

DEATH INDUCTION 

2.1 Abstract 

 

Our previous studies suggest that gamma-tocotrienol (γTE) has potent anticancer 

activities in cancer cells via modulation of sphingolipid metabolism. Here, by employing 

liquid chromatography tandem mass spectrometry, we investigated temporal changes in 

levels of sphingolipids by γTE treatment in human colon cancer HCT-116 cells. 

Incubation with γTE for 16 h resulted in accumulation of dihydrosphingosine (dhSph) 

and dihydroceramides (dhCer), and these changes intensified during prolonged treatment. 

In contrast, γTE treatment led to a significant decrease in C16:0-ceramide (Cer) levels at 8 

h, but showed no difference at 16 h or increase at 24 h, compared with controls. 

Meanwhile, γTE led to a decrease in C24:1-Cer and C24:0-Cer from 8 to 24 h, but an 

increase in C18:0-Cer from 16 h. Interestingly, sphingomyelins (SM) declined from 8 h but 

cells showed obvious apoptosis (PARP cleavage) or autophagy (LC3 increase) only at 16 

h or longer treatment with γTE. Using 13C3, 15N-labeled L-serine, we further evaluated the 

effect of γTE on de novo synthesis of sphingolipids. We observed that γTE had no effect 

on total de novo sphingolipid biosynthesis, but induced increases in labeled dhCers and 

dhSMs, but decreases in labeled Cers, between 2-6 h. These data indicate that γTE may
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inhibit dhCer desaturase (DEGS). Consistent with these results, γTE inhibited the DEGS 

activity as indicated in situ assay and in vitro assay with microsomes. The importance of 

sphingolipids modulation in γTE-induced cancer cell death such as the accumulation of 

dhCers and dhSph during the initial phase, and the increase of Cers and decrease of SMs 

during the prolonged treatment period was supported by blocking these enhancements 

using each individual enzyme inhibitors, myriocin and desipramine, respectively. Co-

treatment of cells with myriocin or desipramine partially but significantly reversed the 

γTE-induced cancer cell death. These results indicate that γTE exerts anticancer effects 

by modulating enzyme activities in sphingolipid metabolism, specifically, by inhibition 

of DEGS and activation of SM hydrolysis. 

 

2.2 Introduction 

 

Natural forms of vitamin E consist of α-, β-, γ- and δ-tocopherols (αT, βT, γT and 

δT) and α-, β-, γ- and δ-tocotrienols (αTE, βTE, γTE and δTE). Although these forms 

share the similar structures, different forms of vitamin E appear to have distinct activities 

and metabolism. Among them, αT, which is the predominant vitamin E form in tissues 

and plasma, and the form that is the least catabolized, is the most extensively studied. 

However, the human clinical studies as well as numerous animal studies of αT in cancer 

prevention resulted in inconsistent and disappointing outcomes. On the other hand, other 

forms of vitamin E, although they are low in tissues due to the extensive catabolism, 

appeared to have unique and strong anticancer activities. Especially, γTE has been shown 

to have potent anticancer effects in various types of cancer cells (Jiang, 2014; Moya-
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Camarena and Jiang, 2012). However, the molecular mechanism by which γTE exerts its 

anticancer effects are not understood yet. 

Recently, our group has shown that γT and γTE induced apoptosis and autophagy 

through mechanisms involving dhCer and dhSph accumulation in prostate and breast 

cancer cells, and this modulation of sphingolipid played an important role in γT and γTE-

induced cell death (Gopalan et al., 2012; Jiang et al., 2012; Jiang et al., 2004). 

Sphingolipids constitute an essential component of cell membrane and also are important 

signaling molecules that regulate cell growth, differentiation, senescence and apoptosis 

(Hannun and Obeid, 2008; Ryland et al., 2011; Zheng et al., 2006). The levels of 

endogenous sphingolpids are controlled by de novo synthesis pathway and dynamic 

metabolisms involving catabolic pathways and synthetic pathways of complex 

sphingolipids. Briefly, de novo sphingolipid synthesis begins in the endoplasmic 

reticulum from condensation of palmitoyl-CoA and serine into 3-keto-

dihydrosphingosine by serine palmitoyltransferase (SPT). The intermediate 3-

ketodihydrosphingosine is rapidly reduced to dihydrosphingosine (dhSph), followed by 

acylation by a family of (dihydro)ceramide synthases (CerSs) using fatty acyl-CoAs to 

generate the corresponding dihydroceramide (dhCer) subspecies. In mammals, there are 

six identified genes that encode CerS, and each CerS has substrate preference for 

different lengths of fatty acyl CoAs, thus producing distinct dhCers with different acyl-

chain lengths. Dihydroceramide desaturase (DEGS) inserts a 4,5-trans double bond in 

dhCers to make the final product, ceramide (Cer). In the Golgi apparatus, more complex 

sphingolipids such as glucosyl- or galactosyl-Cers and sphingomyelin (SM) by the 

actions of glucosyl-Cer synthase, Cer galactosyltransferase, and SM synthases (SMS), 
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repectively, can be generated from Cers (Fig. 2.3A). As for the degradation pathways, 

Cer is broken down by ceramidases into sphingosine (Sph), which may be salvaged into 

sphingolipid pathways or can be phosphorylated to form sphingosine-1-phosphate (S1P). 

Also, Cer can be generated by breakdown of SM through the action of acid or neutral 

SMases, which operate at different pH optima (Hannun and Obeid, 2008; Hannun and 

Obeid, 2011; Kitatani et al., 2008; Marchesini and Hannun, 2004).  

Among different species of sphingolipids, only Cers and S1P have been focused 

to be bioactive molecules. On the other hand, dhCers were thought to be an inactive 

precursor of Cer, which is a well-known sphingolipid metabolite involved in cell death 

(Zheng et al., 2006). However, technology used in the previous studies showing the 

important roles of Cer in the induction of cell death was limited in that it could not 

distinguish between Cer and dhCer. Recent studies, using liquid chromatography tandem 

mass spectrometry (LC-MS/MS) technology which can identify even different species of 

Cer and dhCer, have shown dhCers to be involved in important cellular responses such as 

cell cycle arrest (Kraveka et al., 2007), apoptosis (Gopalan et al., 2012; Jiang et al., 2012; 

Stiban et al., 2006), autophagy (Jiang et al., 2012; Signorelli et al., 2009; Zheng et al., 

2006), and oxidative stress (Idkowiak-Baldys et al., 2010).  

Therefore, we hypothesize that the sphingolipid pathway may be also an important 

target for the anti-proliferative effects of γTE in other cancer cells. In this study, we 

investigated the anticancer effects and mechanisms of γTE in human cancer cells and our 

study revealed that modulation of sphingolipid was the primary target of γTE in the 

induction of cancer cell death. 
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2.3 Materials and Methods 

 

2.3.1 Materials and reagents 

γTE (97-99%), a gift from BASF (Ludwigshafen, Germany), was dissolved in 

DMSO at 100 mM and then diluted to 5 mM in fatty acid-free BSA (10 mg/ml). 

Sphingolipid standards were obtained from Avanti Polar Lipids (Alabaster, AL). CHAPS 

was purchased from Thermo Fisher Scientific. C8-cyclopropenylceramide (C8-CPPC) 

was purchased from Matreya LLC (Pleasant Gap, PA). Myriocin from Mycelia Sterilia, 

desipramine, GW4869, 13C3, 15N-labeled L-serine, N-acetyl cysteine (NAC), dimethyl 

sulfoxide (DMSO), [3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide] 

(MTT), and all other chemicals were from Sigma (St Louis, MO). 

 

2.3.2 Cell culture and treatment 

Human colon cancer HCT-116 and breast cancer MCF-7 cells were obtained from 

American Type Culture Collection (Manassas, VA). Cells were routinely cultured in 

growth media containing 10% fetal bovine serum (FBS) at 37 °C in 5% CO2. HCT-116 

cells were cultured in McCoy’s 5A modified medium. MCF-7 cells were incubated in 

Dulbecco’s modified eagle medium (DMEM) supplemented with 0.1% insulin. At the 

time of experiments, cells were seeded in each medium with 10% FBS either at a density 

of 4 x 104 cells/well in 24-well plates or at a density of 7-8 x 105 cells in 10-cm dishes. 

Unless otherwise indicated, for experiment, cells were seeded in 10-cm dishes except 

MTT assay. After overnight attachment, media were replaced with fresh DMEM 
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containing 1% FBS and γTE or other compounds. All the treatment solutions were 

freshly prepared for each experiment. 

 

2.3.3 MTT assay 

Cell viability was examined by MTT assay to estimate mitochondrial 

dehydrogenase activity. In living cells, the enzyme reduces MTT to form formazan which 

was dissolved in DMSO and measured the absorbance at 570 nm by using a microplate 

reader (SpectraMax 190, Molecular Devices, Sunnyvale, CA). 

 

2.3.4 Lipid extraction 

Total lipids were extracted as previously described (Merrill et al., 2005). Briefly, 

cell pellets were resuspended in methanol/chloroform/water (10:5:1 [v/v/v]) after the 

addition of internal standard mixture containing 0.5 nmol C12:0/C25:0-Cers, C12:0-SM, and 

C17-Sph/dhSph (Avanti Polar Lipids, Alabaster, AL). The suspension was dispersed 

fully by tip sonication for 20 sec and then incubated overnight at 48 °C. 100 µL of 

solvent was used to determine the amount of total choline-containing phospholipids by an 

enzymatic colorimetric assay (Wako chemicals, Osaka, Japan) (Jiang et al., 2004). 75 µL 

of 1 M KOH in methanol was added to the rest of the solvent and sonicated for 30 min. 

After sonication, samples were incubated at 37 °C for 2 h and dried in a nitrogen 

evaporator. 
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2.3.5 Measurement of sphingolipids using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) 

Samples for sphingolipids analysis were resolved again in methanol and sonicated 

to disperse, then centrifuged to clarify before transferring to test vials for quantification. 

The LC-MS/MS method was slightly modified based on the method of Merrill et al. 

(Merrill et al., 2005). Analyses were performed using the Agilent 6460 triple quadrupole 

mass spectrometer coupled with the Agilent 1200 Rapid Resolution HPLC (Agilent 

Technologies, Santa Clara, CA) with detection of sphingolipids in positive mode by 

multiple reaction monitoring (MRM) technique. The HPLC mobile phases consisted of 

methanol-H2O-formic acid (74:25:1, v/v/v; RA) and methanol-formic acid (99:1, v/v; 

RB); both RA and RB contain 5 mM ammonium formate. For measurement of ceramides 

and sphingoid bases, Agilent column XDB-C18 (4.6 x 50 mm) with particle size of 1.8 

μm, was used with isocratic run (100% B) or gradient (0-1 min, 20% B, 10-13 min, 100% 

B and 15-20 min at 20% B), respectively. For measurement of sphingomyelins, Agilent 

Zorbax XDB-C8 (2.1 x 50 mm) with particle size of 3.4 μm, was used with gradient (0-1 

min, 20% B, 10-20 min, 100% B, 22-30 min, 20% B). The MS/MS parameters were as 

follows: gas temperature, 325-350 °C; gas flow rate, 7-10 L/min; nebulizer pressure, 45-

50 psi; capillary voltage, 3500 V; The fragmentor voltage was 100 V and collision energy 

was 12-20 V. Precursor-to-product ion transitions for each sphingolipid were used 

according to the method of Merrill et al. (Merrill et al., 2005). 
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2.3.6 De novo sphingolipids analysis 

HCT-116 cells were treated with either 400 μM 13C3, 15N-labeled L-serine alone 

or with a combination of 400 μM 13C3, 15N-labeled L-serine and 20 μM of γTE for 30 

min, 2 h, 3 h and 6 h. Lipids were extracted and de novo synthesized sphingolipids were 

measured using LC-MS/MS. 

 

2.3.7 In Situ dihydroceramide desaturase assay 

C8:0-dihydroceramide (C8:0-dhCer) was used as the substrate for the DEGS. HCT-

116 cells were pretreated with either γTE or C8-CPPC as a positive control, followed by 

10 μM of C8:0-dhCer incubation for 1 h. The cells were collected and lipids were 

extracted. The levels of products (C8:0-ceramide and C8:0-sphingomyelin) were detected 

by LC-MS/MS. 

 

2.3.8 In Vitro dihydroceramide desaturase assay 

Microsomes were prepared and used as the DEGS enzyme source for this assay 

(Rahmaniyan et al., 2011). Livers from male Wistar rats were rinsed in ice-cold PBS and 

homogenized in buffer (0.25 M sucrose, 10 mM HEPES, 1 mM EDTA, pH 7.4) with a 

homogenizer in ice. The homogenate was centrifuged at 800 x g for 10min first and the 

supernatant was re-centrifuged at 10,000 x g for 15 min followed by ultracentrifugation 

of the resulting supernatant at 104,000 x g for 1 h. The microsomal pellet was 

resuspended in potassium phosphate buffer (50 mM, pH 7.4) and aliquots were stored at -

80 °C until use. Protein amount was quantified by using a bicinchoninic acid (BCA) 

protein assay kit (Pierce, Rockford, IL). For the assay, substrate (C8:0-dhCer) and tested 
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compounds were dried under a stream of nitrogen, followed by resuspension in CHAPS 

(1.1 mg/10 μl of water). 500 μg of microsomal protein was mixed with reaction buffer 

(20 mM bicine, pH 8.5, 50 mM NaCl, and 50 mM sucrose) and then the tested 

compounds were added, followed by 30 min pre-incubation at room temperature. 2 mM 

of NADH and 10 μM of C8:0-dhCer were added and the mixture was incubated for 20 min 

at 37 °C with shaking. Lipid extraction was conducted directly after reaction and the 

product (C8:0-ceramide) was quantified by LC-MS/MS. 

 

2.3.9 Transmission Electron Microscopy (TEM) 

After treatment, cells were fixed with 2% glutaldehyde in 0.1 M cacodylate buffer 

(pH 7.4) for 1 h at room temperature. After primary fixation, the attached cells were 

scraped and pooled together with the floating cells. All the cells were then centrifuged 

and washed twice with cacodylate buffer and once with water. A secondary fixation in 

reduced osmium containing 1% OsO4 and 1.5% agarose and then diced and dehydrated in 

ethanol with a concentration gradient. The ultrathin sections were stained with 2% 

uranylacetate in 70% methanol for 5 min and lead citrate for 3 min. Finally, the cell 

images were taken by a FEI/Philips CM-10 bio-twin transmission electron microscope 

(FEI Company, Hillsboro, OR) using an acceleration voltage of 80 kV. Cells and the 

inner ultrastructure were observed in different magnification. 

 

2.3.10 Western Blotting 

Cells were lysed in lysis buffer containing Tris-EDTA, 1% SDS, 2 mM Na3VO4 

and protease inhibitor cocktails (Sigma). Total proteins which were quantified by BCA 
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protein assay kit were denatured by boiling in Laemmli buffer for 5 min at 95 °C. Equal 

amount of proteins (15-30 µg) were separated on acrylamide gels by SDS-electrophoresis 

and then transferred onto a polyvinylidene fluoride (PVDF) membrane (Millipore, 

Bilerica, MA, USA), and probed by antibodies. Membranes were exposed to 

chemiluminescent reagent (PerkinElmer) and visualized on Kodak film with an M35A X-

Omat processor (Kodak). The antibodies used in the study were as follows: DEGS1 

(Novus Biologicals, Littleton, CO), membrane bound microtubule-associated protein 

light chain 3 (LC3; MBL international, Woburn, MA), poly (ADP-ribose) polymerase-1 

(PARP-1) and Actin (Santa Cruz Biotechnology, Santa Cruz, CA), phosphorylated JNK 

at Thr-183 and Tyr-185 (p-JNK), and total JNK (Cell Signaling Technology, Danvers, 

MA). 

 

2.3.11 Statistics 

Statistical significance was determined using a Student’s t-test. p-values of < 0.05 

were considered to be statistically significant. 

 

2.4 Results 

 

2.4.1 Temporal changes of sphingolipids induced by γTE 

We investigated the effects of γTE on sphingolipid metabolism using LC-MS/MS 

in human colon HCT-116 cancer cells. During the initial 8 h treatment, γTE caused 

significant decreases of C16:0-Cer, C18:0-Cer, C24:1-Cer and C24:0-Cer, resulting in the 

significant decreases in total Cers. However, individual Cer, which have been shown to 
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have distinct bioactivities (Hannun and Obeid, 2011; Senkal et al., 2010; Sentelle et al., 

2012), appeared to respond differently to γTE in the longer time treatment. For example, 

C16:0-Cer in γTE-treated cells returned to the control levels at 16 h but exceeded the 

control at 24 h. Compared with controls, C18:0-Cer was enhanced in γTE-treated cells at 

16 h, whereas C24-Cers remained lower than controls during the prolonged treatment 

period (Fig. 2.1A). Meanwhile, γTE induced significant increases of dhCers and dhSph 

starting at 16 h, thus cells accumulated high levels of dhCers and dhSph at 16 h and 24 h 

treatment with γTE (Figs. 2.1B and C). As to SM, while dhSMs increased during 16-24 h 

incubation, SMs declined at 8 h compared with controls (Figs. 2.1D and E; Table 2.1). 

Furthermore, we observed similar sphingolipid modulatory effects of γTE on human 

breast MCF-7 cancer cells (Fig. 2.2; Table 2.2). 

These data suggest that the initial action of γTE is likely to inhibit DEGS, which 

is evident by the increase of dhSph and dhCers and decrease of Cers, similar phenomena 

reported with DEGS knockout model (Ruangsiriluk et al., 2012; Siddique et al., 2013). 

During prolonged treatment, γTE may induce C16:0-SM hydrolysis, which explains the 

subsequent increase of C16:0-Cer during prolonged incubation times. On the other hand, 

another possible explanation for increased C16:0-Cer and decreased SM is that the 

conversion of Cer to SM may be inhibited. 
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Figure 2.1 Effects of γTE on sphingolipid metabolism in HCT-116 cells. HCT-116 cells 
were treated with 20 μM of γTE for 8, 16, and 24 h. The sphingolipid levels including 
(A) total Cers, C16:0-Cer, C18:0-Cer, C24:1-Cer, and C24:0-Cer, (B) total dhCers, (C) dhSph, 
(D) total SMs, C16:0-SM, and C24:1-SM, and (E) total dhSMs were determined by LC-
MS/MS. Results are shown as mean ± SEM for at least three independent experiments. 
*p < 0.05 and **p < 0.01 indicate a significant difference between treated and control 
cells. 
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Figure 2.2 Effects of γTE on sphingolipid metabolism in MCF-7 cells. MCF-7 cells were 
treated with 20 μM γTE for 8 h or 16 h. The sphingolipid levels including (A) total 
dhCers, (B) C16:0-dhCer, (C) dhSph, (D) C16:0-Cer, C18:0-Cer, C24:1-Cer, and C24:0-Cer, (E) 
total dhSMs, and (F) total SMs were determined by LC-MS/MS. Results are shown as 
mean ± SEM for five independent experiments. *p < 0.05 and **p < 0.01 indicate a 
significant difference between treated and control cells. 
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2.4.2 De novo synthesis of sphingolipids with labeled serine 

To evaluate whether γTE has impact on de novo sphingolipid biosynthesis (Fig. 

2.3A), 13C3, 15N- L-serine was added to culture media to trace only newly synthesized 

sphingolipids. Similar to those observed effects of γTE on sphingolipid metabolism 

above, γTE led to an increase of de novo synthesized dhCers and decrease in de novo 

Cers after 2 h, supporting the notion that DEGS is inhibited (Figs. 2.3B and C). 

Interestingly, compared with control cells, labeled dhSM and SM, which represented 

newly synthesized dhSM and SM, also significantly increased at 2 h in γTE-treated cells, 

while SMs returned to the control levels at 3 h (Figs. 2.3D and E). These results indicate 

that the conversion of C16:0-Cer to C16:0-SM was stimulated at the initial stage of 

treatment, despite the decrease of C16:0-Cer in cells. As a result, the decrease of Cers due 

to inhibition of DEGS was intensified by increased SM synthesis. The continuous 

increase of de novo dhSM was probably a result of enhanced de novo dhCer, which led to 

limited accumulation of dhCer during the first few hours (Figs. 2.1B and E). On the other 

hand, we did not see significant difference between control and γTE-treated cells in total 

labeled sphingolipids (Fig. 2.1F), suggesting that the overall sphingolipid synthesis was 

not enhanced (Table 2.3).     

Since labeled C16:0-Cer is decreased, the increase of overall C16:0-Cer in the 

subsequent time (24 h) and decrease of SM is likely due to hydrolysis of C16:0-SM, which 

is obvious at 8 h incubation.  
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Figure 2.3 Effects of γTE on de novo sphingolipid biosynthesis in HCT-116 cells. (A) 
The de novo biosynthesis pathway of sphingolipids (SMS, sphingomyelin synthase; 
SMase, sphingomyelinase). HCT-116 cells were treated with either 400 μM 13C3, 15N-
labeled L-serine alone as control or with a combination of 400 μM 13C3, 15N-labeled L-
serine and 20 µM γTE for 0.5, 2, 3, and 6 h. The amount of each labeled de novo 
sphingolipid including (B) total and C16:0-dhCers, (C) total, C16:0-, C24:1- and C24:0-Cers, 
and (D) total, C16:0- and C24:1-SMs, and (E) total and C16:0-dhSMs were determined by 
LC-MS/MS. (F) Total amounts of all the de novo synthesized sphingolipids were 
calculated. Results are shown as mean ± SEM for three independent experiments. *p < 
0.05 and **p < 0.01 indicate a significant difference between treated and control cells.  
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2.4.3 Direct evidence that γTE inhibits DEGS 

We found that γTE treatment increased de novo synthesized dhCers, but led to 

decrease in de novo Cers, suggesting that γTE decreases DEGS protein expression or 

inhibits DEGS-catalyzed enzyme reactions. γTE treatment did not affect the DEGS 

protein expression on HCT-116 cells as determined by western blotting (Fig. 2.4A). Next, 

to determine whether the observed sphingolipid change results from inhibition of DEGS 

enzyme activity, both in situ and in vitro assays were conducted. In the assays, the non-

physiological C8:0-dhCer was used as a substrate for the DEGS, and measured the C8:0-

sphingolipid products by LC-MS/MS; specifically C8:0-Cer with C8:0-SM or C8:0-Cer for 

in situ and in vitro DEGS assays, respectively. In situ DEGS activity was evaluated in 

intact HCT-116 cells. C8-CPPC, a known competitive inhibitor of DEGS (Triola et al., 

2003), inhibited DEGS activity, and showed ~75% reduction of the C8:0-sphingolipids 

production. The relative inhibition of DEGS activity by 20 µM of γTE for 6 h and 8 h 

was ~40% and ~45%, respectively (Fig. 2.4B). In addition, the direct effect of γTE on 

DEGS activity was determined using rat liver microsomes. In this direct in vitro DEGS 

assay, γTE showed a modest DEGS activity inhibition by only ~10% at a concentration 

of 20 μM, and ~25% at 100 μM (Fig. 2.4C). The requirement of higher concentration of 

γTE for the DEGS inhibitory effects in in vitro assay could be due to limitation in 

permeability through the cell membrane of γTE. These results indicated that γTE inhibits 

DEGS activity, but not expression. 
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Figure 2.4 Effects of γTE on DEGS expression and activity. (A) HCT-116 cells were 
treated with 20 μM γTE for 8, 16, and 24 h and the protein levels of DEGS-1 were 
detected by western blotting. (B) In situ DEGS assay: HCT-116 cells were pretreated 
with either 20 μM γTE or 1 μM C8-CPPC as a positive control, followed by 10 μM C8:0-
dhCer incubation as a substrate for the enzyme for 1 h. The cells were collected and 
lipids were extracted. The levels of C8:0-sphingolipid products were detected by LC-
MS/MS. (B) In vitro DEGS assay using rat liver microsomes: Microsomes were used as 
the enzyme source for this assay. The microsomal proteins in reaction buffer were pre-
mixed with either 20 or 100 μM γTE or 10 μM C8-CPPC for 30 min, followed by 
addition of 2 mM NADH and 10 μM C8:0-dhCer and incubation for 20 min at 37 °C. 
Total lipids were extracted immediately after reaction, and the product was quantified by 
LC-MS/MS. The data are mean ± SD of three independent experiments. *p < 0.05 and 
**p < 0.01 indicate a significant difference between treated and control cells.  
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2.4.4 Temporal changes of cell death markers 

γTE treatment caused PARP cleavage, as indicated by the appearance of the 89 

kDa cleavage product from 16 h in HCT-116 cells. γTE treatment also increased levels of 

p-JNK, which is a stress marker, in HCT-116 cells, as consistent with the p-JNK 

upregulation by γTE in MCF-7 cells (Gopalan et al., 2012). The induction of autophagy 

in γTE-treated HCT-116 cells was first investigated by using LC3-II, a marker of 

autophagy. Interestingly, γTE treatment also led to an increase of LC3-II expression from 

16 h (Fig 2.5A). It is important to note that the initial autophagy or apoptosis (at 16 h but 

not 8 h) is not due to decrease of C16:0-Cer or C24-Cers, but might be facilitated by 

increased dhSph, dhCer and increased C18:0-Cer.  

We further examined the morphological analysis using TEM. As shown in Fig. 

2.5B, control HCT-116 cells appeared normal, displaying abundant microvilli at the cell 

surface, abundant organelles in the cytoplasm, and well-organized nuclei with clear 

nuclear membrane. However, cells treated with γTE for 21 h showed evidence of 

apoptosis characterized by cell shrinkage, loss of microvilli, loss of nuclear membrane 

and chromatin condensation. These data suggest that γTE treatment induced apoptosis 

and autophagy. 
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Figure 2.5 Induction of apoptosis and autophagy by γTE in HCT-116 cells. (A) HCT-116 
cells were treated with 20 μM of γTE for 6, 8, and 16 h. Expression levels of full-length 
and cleaved PARP, LC3-II, Actin as a loading control, and levels of p-JNK and JNK 
were examined by western blotting. (B) HCT-116 cells were treated with 20 μM of γTE 
for 21 h. The morphology of HCT-116 cells was imaged by TEM. Representative TEM 
images of control group and γTE-treated group are shown in this figure. 
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2.4.5 The role of sphingolipid modulation in γTE-induced cell death 

To evalulate the involvement and importance of de novo sphingolipid modulation 

in γTE-induced cancer cell death, we used two inhibitors of enzymes in sphingolipid 

biosynthesis pathway to block the specific effects of γTE on sphingolipid metabolism. 

Since the above results (Figs. 2.1B and C) have shown that γTE treatment induced 

accumulation of intracellular dhCers and dhSph, which are known to be toxic to cancer 

cells (Ahn and Schroeder, 2002; Jiang et al., 2004), we used myriocin, a specific inhibitor 

of serine palmitoyltransferase to inhibit the increase of these sphingoid bases. 

Interestingly, co-treatment of cells with myriocin showed partial but significant 

protection from the γTE-caused cancer cell death, as assayed by MTT assay. The 

importance of sphingolipid modulation in γTE-induced cell death was further confirmed 

by western blot experiments. Co-incubation of myriocin with γTE slightly but clearly 

prevented the γTE-induced PARP cleavage and LC3-II induction (Fig. 2.6A). These data 

suggest that the accumulation of dhSph and dhCers plays an important role in γTE-

induced apoptosis, autophagy and subsequent cancer cell death. 

 During the prolonged treatment time, γTE led to an increase of Cers, but induced 

a significant decrease in SMs (Fig. 2.1) with the still lower de novo synthesized Cers 

compared with control (Fig. 2.2B), suggesting that γTE may induce SM hydrolysis by 

activating SMases. As Cers have been known to induce apoptosis, autophagy and cell 

death, we investigated the role of the increased Cers from SMs via SMases in γTE-

induced cancer cell death by using desipramine and GW4869 to inhibit acid or neutral 

SMases, respectively. Co-treatment of cells with desipramine but not GW4869 (data not 
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shown) with γTE partially but significantly reversed γTE-induced cancer cell death (Fig. 

2.6B), suggesting that the increase of Cers from SMs through the acid SMase activation 

may in part contribute to γTE-induced colon cancer cell death. 
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Figure 2.6 Protective effects of inhibitors of enzymes in sphingolipid metabolism on 
γTE-induced cancer cell death. (A) HCT-116 cells were treated with 10 or 20 μM of γTE 
with or without 3-6 μM of myriocin, a specific inhibitor of serine palmitoyltransferase to 
block the de novo sphingolipid pathway. After 48 h of treatment, relative cell viability 
was measured by MTT assay compared with control. In addition, after 16 h of treatment, 
the cells were collected and analyzed for detection of PARP cleavage and LC3-II 
expression. Western blots in this figure are representative of three or more independent 
experiments. (B) HCT-116 cells were treated with 15 μM of γTE with or without 10 μM 
of desipramine, an inhibitor of acid SMase for 24 h. Relative cell viability was measured 
by MTT assay compared with control. The data are mean ± SEM of at least three 
independent experiments. *p < 0.05 indicates a significant difference. 
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Figure 2.7 NAC, an antioxidant, did not reverse γTE-induced modulation of 
sphinoglipids in HCT-116 cells. HCT-116 cells were treated with either 20 μM γTE or 1 
mM NAC alone or with a combination of γTE and NAC for 8 h. The sphingolipid levels 
including (A) C16:0-dhCer, C24:1-dhCer, C24:0-dhCer, and dhSph, (B) C16:0-Cer, C24:1-Cer, 
and C24:0-Cer, (C) C16:0-dhSM, C24:1-dhSM, C16:0-SM, and C24:1-SM were determined by 
LC-MS/MS. Results are shown as mean ± SD for two independent experiments. 
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Table 2.1 Effect of γTE on sphingolipid metabolism in HCT-116 cells. HCT-116 cells 
were treated with 20 µM γTE for 8, 16, and 24 h. The amount of each sphingolipid was 
determined by LC-MS/MS. Data are mean ± SEM of 5 independent experiments. *p < 
0.05, **p < 0.01, significant difference between control and γTE-treated cells. Cer, 
ceramide; dhCer, dihydroceramide; Sph, sphingosine; dhSph, dihydrosphingosine; S1P, 
sphingosine-1-phosphate; SM, sphingomyelin; dhSM, dihydrosphingomyelin 
 

Ceramides (pmol/µg PC) 
C16:0-Cer     

Hours Control γTE 20 µM 
8 2.19 ± 0.23 0.95 ± 0.22** 
16 2.41 ± 0.22 2.17 ± 0.24 
24 2.09 ± 0.17 3.96 ± 0.76** 

C18:0-Cer     
Hours Control γTE 20 µM 

8 0.038 ± 0.006 0.033 ± 0.006* 
16 0.028 ± 0.003 0.082 ± 0.013** 
24 0.025 ± 0.003 0.14 ± 0.027** 

C20:0-Cer     
Hours Control γTE 20 µM 

8 0.023 ± 0.004 0.017 ± 0.005* 
16 0.020 ± 0.003 0.042 ± 0.009** 
24 0.018 ± 0.003 0.065 ± 0.014** 

C22:0-Cer     
Hours Control γTE 20 µM 

8 0.20 ± 0.031 0.068 ± 0.010** 
16 0.26 ± 0.086 0.095 ± 0.018** 
24 0.21 ± 0.056 0.15 ± 0.030 

C24:1-Cer     
Hours Control γTE 20 µM 

8 1.02 ± 0.26 0.47 ± 0.16** 
16 1.79 ± 0.22 0.66 ± 0.082** 
24 1.47 ± 0.18 0.94 ± 0.20** 

C24:0-Cer     
Hours Control γTE 20 µM 

8 1.22 ± 0.22 0.30 ± 0.10** 
16 2.56 ± 0.29 0.35 ± 0.057** 
24 2.10 ± 0.24 0.44 ± 0.10** 
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C26:1-Cer     
Hours Control γTE 20 µM 

8 0.096 ± 0.008 0.067 ± 0.013* 
16 0.23 ± 0.036 0.11 ± 0.021** 
24 0.18 ± 0.027 0.15 ± 0.040 

C26:0-Cer     
Hours Control γTE 20 µM 

8 0.090 ± 0.006 0.031 ± 0.015* 
16 0.15 ± 0.046 0.043 ± 0.014** 
24 0.13 ± 0.037 0.049 ± 0.018** 

Total Cers     
Hours Control γTE 20 µM 

8 4.88 ± 0.25 1.93 ± 0.18** 
16 7.44 ± 0.75 3.54 ± 0.29** 
24 6.22 ± 0.56 5.88 ± 1.04 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control γTE 20 µM 
8 0.091 ± 0.030 0.31 ± 0.036 
16 0.18 ± 0.027 2.22 ± 0.18** 
24 0.21 ± 0.031 4.09 ± 0.78** 

C18:0-dhCer     
Hours Control γTE 20 µM 

8 0.0018 ± 0.0003 0.011 ± 0.003* 
16 0.0010 ± 0.0001 0.1 ± 0.025** 
24 0.0013 ± 0.0002 0.17 ± 0.034** 

C20:0-dhCer     
Hours Control γTE 20 µM 

8 0.00029 ± 0.0002 0.0066 ± 0.0026 
16 0.00092 ± 0.0003 0.042 ± 0.013** 
24 0.0011 ± 0.0003 0.06 ± 0.013** 

C22:0-dhCer     
Hours Control γTE 20 µM 

8 0.0038 ± 0.0014 0.018 ± 0.0046* 
16 0.0074 ± 0.0037 0.033 ± 0.0077** 
24 0.0090 ± 0.0034 0.042 ± 0.0082** 

C24:1-dhCer     
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Hours Control γTE 20 µM 
8 0.010 ± 0.004 0.060 ± 0.010* 
16 0.021 ± 0.006 0.14 ± 0.016** 
24 0.031 ± 0.003 0.17 ± 0.026** 

C24:0-dhCer     
Hours Control γTE 20 µM 

8 0.010 ± 0.004 0.035 ± 0.007* 
16 0.046 ± 0.011 0.075 ± 0.004* 
24 0.059 ± 0.014 0.084 ± 0.015 

C26:1-dhCer     
Hours Control γTE 20 µM 

8 0.00063 ± 0.0004 0.0093 ± 0.002 
16 0.0025 ± 0.001 0.037 ± 0.010** 
24 0.0027 ± 0.001 0.034 ± 0.011* 

C26:0-dhCer     
Hours Control γTE 20 µM 

8 0.00069 ± 0.0007 0.0022 ± 0.0011 
16 0.00092 ± 0.0007 0.011 ± 0.0060 
24 0.0013 ± 0.0008 0.0063 ± 0.0054 

Total dhCers     
Hours Control γTE 20 µM 

8 0.12 ± 0.035 0.45 ± 0.045 
16 0.26 ± 0.029 2.66 ± 0.16** 
24 0.32 ± 0.035 4.65 ± 0.82** 

 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control γTE 20 µM 
8 0.42 ± 0.18 0.40 ± 0.11 
16 0.30 ± 0.080 0.40 ± 0.053 
24 0.30 ± 0.067 0.48 ± 0.048* 

dhSph     
Hours Control γTE 20 µM 

8 0.046 ± 0.013 0.12 ± 0.015 
16 0.043 ± 0.007 2.46 ± 0.39* 
24 0.051 ± 0.007 5.89 ± 0.98** 

S1P     
Hours Control γTE 20 µM 
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8 0.021 ± 0.002 0.019 ± 0.004 
16 0.0087 ± 0.001 0.012 ± 0.002 
24 0.013 ± 0.005 0.016 ± 0.002 

 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     

Hours Control γTE 20 µM 
8 39.09 ± 8.17 26.99 ± 4.48** 
16 56.18 ± 6.99 37.93 ± 4.40** 
24 52.58 ± 7.07 37.78 ± 5.14** 

C18:0-SM     
Hours Control γTE 20 µM 

8 0.47 ± 0.19 0.44 ± 0.14 
16 0.63 ± 0.15 1.12 ± 0.20** 
24 0.53 ± 0.12 1.55 ± 0.32** 

C20:0-SM     
Hours Control γTE 20 µM 

8 0.43 ± 0.18 0.40 ± 0.17* 
16 0.53 ± 0.12 0.81 ± 0.22* 
24 0.51 ± 0.13 0.95 ± 0.25* 

C22:0-SM     
Hours Control γTE 20 µM 

8 1.62 ± 0.69 1.57 ± 0.66 
16 2.17 ± 0.45 2.65 ± 0.72 
24 2.64 ± 1.03 3.20 ± 1.29 

C24:1-SM     
Hours Control γTE 20 µM 

8 6.23 ± 2.44 6.32 ± 2.22 
16 8.72 ± 1.66 9.65 ± 2.07 
24 10.37 ± 3.44 10.50 ± 3.77 

C26:1-SM     
Hours Control γTE 20 µM 

8 0.29 ± 0.13 0.36 ± 0.16** 
16 0.40 ± 0.094 0.76 ± 0.18** 
24 0.60 ± 0.27 1.00 ± 0.44* 

Total SMs     
Hours Control γTE 20 µM 

8 48.13 ± 11.76 36.09 ± 7.71** 
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16 68.62 ± 9.02 52.91 ± 7.62** 
24 67.23 ± 11.73 54.99 ± 10.54* 

 

Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control γTE 20 µM 
8 5.25 ± 1.88 6.48 ± 2.13 

16 7.32 ± 1.58 18.73 ± 3.42** 
24 7.72 ± 1.62 26.29 ± 4.98** 

C18:0-dhSM     
Hours Control γTE 20 µM 

8 0.13 ± 0.074 0.19 ± 0.093 
16 0.11 ± 0.032 1.13 ± 0.25** 
24 0.12 ± 0.030 1.54 ± 0.37** 

C20:0-dhSM     
Hours Control γTE 20 µM 

8 0.24 ± 0.20 0.15 ± 0.092 
16 0.10 ± 0.035 0.56 ± 0.14** 
24 0.12 ± 0.038 0.74 ± 0.23** 

C22:0-dhSM     
Hours Control γTE 20 µM 

8 0.30 ± 0.20 0.35 ± 0.24 
16 0.26 ± 0.11 0.82 ± 0.27** 
24 0.34 ± 0.12 0.96 ± 0.38** 

C24:0-dhSM     
Hours Control γTE 20 µM 

8 0.41 ± 0.33 0.41 ± 0.32 
16 0.37 ± 0.22 0.73 ± 0.27** 
24 0.51 ± 0.21 0.94 ± 0.36* 

C26:0-dhSM     
Hours Control γTE 20 µM 

8 0.031 ± 0.027 0.032 ± 0.025 
16 0.025 ± 0.013 0.15 ± 0.052** 
24 0.034 ± 0.015 0.24 ± 0.094* 

Total dhSMs     
Hours Control γTE 20 µM 

8 6.37 ± 2.72 7.61 ± 2.89 
16 8.19 ± 1.92 22.13 ± 4.32** 
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24 8.84 ± 1.98 30.71 ± 6.19** 
 
 
Table 2.2 Effect of γTE on sphingolipid metabolism in MCF-7 cells. MCF-7 cells were 
treated with 20 µM γTE for 8, and 16 h. The amount of each sphingolipid was determined 
by LC-MS/MS. Data are mean ± SEM of 5 independent experiments. *p < 0.05, **p < 
0.01, significant difference between control and γTE-treated cells.  
 

Ceramides (pmol/µg PC) 
C16:0-Cer     

Hours Control γTE 20 µM 
8 1.68 ± 0.28 1.32 ± 0.29* 
16 1.90 ± 0.30 3.61 ± 0.89** 

C18:0-Cer     
Hours Control γTE 20 µM 

8 0.15 ± 0.030 0.12 ± 0.023 
16 0.16 ± 0.029 0.39 ± 0.13** 

C20:0-Cer     
Hours Control γTE 20 µM 

8 0.039 ± 0.009 0.035 ± 0.009 
16 0.039 ± 0.008 0.10 ± 0.031** 

C22:0-Cer     
Hours Control γTE 20 µM 

8 0.20 ± 0.040 0.16 ± 0.042 
16 0.22 ± 0.057 0.34 ± 0.12* 

C24:1-Cer     
Hours Control γTE 20 µM 

8 6.08 ± 1.91 4.44 ± 1.11 
16 6.98 ± 2.22 7.66 ± 2.29 

C24:0-Cer     
Hours Control γTE 20 µM 

8 1.32 ± 0.41 0.75 ± 0.18** 
16 1.44 ± 0.42 0.99 ± 0.31** 

C26:1-Cer     
Hours Control γTE 20 µM 

8 0.12 ± 0.037 0.092 ± 0.022 
16 0.18 ± 0.043 0.11 ± 0.036** 

C26:0-Cer     
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Hours Control γTE 20 µM 
8 0.019 ± 0.011 0.018 ± 0.009 
16 0.028 ± 0.015 0.017 ± 0.009 

Total Cers     
Hours Control γTE 20 µM 

8 9.61 ± 2.41 6.93 ± 1.38 
16 10.96 ± 2.70 13.21 ± 3.26 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control γTE 20 µM 
8 0.11 ± 0.030 0.22 ± 0.047 
16 0.15 ± 0.036 1.76 ± 0.43** 

C18:0-dhCer     
Hours Control γTE 20 µM 

8 0.0036 ± 0.001 0.0056 ± 0.001 
16 0.0033 ± 0.0005 0.10 ± 0.036* 

C20:0-dhCer     
Hours Control γTE 20 µM 

8 0.00058 ± 0.0001 0.0016 ± 0.0003* 
16 0.00090 ± 0.0002 0.022 ± 0.0080** 

C22:0-dhCer     
Hours Control γTE 20 µM 

8 0.0017 ± 0.0003 0.0041 ± 0.001 
16 0.0029 ± 0.0005 0.030 ± 0.009* 

C24:1-dhCer     
Hours Control γTE 20 µM 

8 0.025 ± 0.010 0.098 ± 0.026* 
16 0.036 ± 0.016 0.33 ± 0.095* 

C24:0-dhCer     
Hours Control γTE 20 µM 

1 0.00093 ± 0.0009 0.0061 ± 0.0053 
2 0.0019 ± 0.0012 0.028 ± 0.016 

Total dhCers     
Hours Control γTE 20 µM 

8 0.14 ± 0.036 0.34 ± 0.064* 
16 0.20 ± 0.042 2.28 ± 0.52** 
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Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control γTE 20 µM 
8 0.72 ± 0.14 0.40 ± 0.10* 

16 0.80 ± 0.17 0.58 ± 0.11** 

dhSph     
Hours Control γTE 20 µM 

8 0.047 ± 0.014 0.054 ± 0.019 
16 0.059 ± 0.016 0.21 ± 0.058** 

S1P     
Hours Control γTE 20 µM 

8 0.019 ± 0.004 0.021 ± 0.003 
16 0.019 ± 0.005 0.017 ± 0.005 

 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     

Hours Control γTE 20 µM 
8 20.72 ± 7.15 19.42 ± 4.81 
16 25.80 ± 7.59 20.93 ± 5.51** 

C18:0-SM     
Hours Control γTE 20 µM 

8 1.46 ± 0.34 1.51 ± 0.19 
16 1.79 ± 0.21 1.70 ± 0.22 

C20:0-SM     
Hours Control γTE 20 µM 

8 1.02 ± 0.13 1.16 ± 0.030 
16 1.37 ± 0.073 1.50 ± 0.088 

C22:0-SM     
Hours Control γTE 20 µM 

8 1.44 ± 0.67 1.54 ± 0.57 
16 1.86 ± 0.67 2.05 ± 0.85 

C24:1-SM     
Hours Control γTE 20 µM 

8 10.15 ± 3.43 10.40 ± 2.67 
16 12.38 ± 3.41 11.44 ± 2.94 

C26:1-SM     
Hours Control γTE 20 µM 



85 

 

 

8 3.32 ± 0.53 3.84 ± 0.42 
16 4.29 ± 0.89 5.23 ± 0.48 

Total SMs     
Hours Control γTE 20 µM 

8 38.11 ± 12.10 37.86 ± 8.36 
16 47.50 ± 12.38 42.85 ± 9.89 

 

Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control γTE 20 µM 
8 3.69 ± 1.00 5.66 ± 0.95** 

16 4.81 ± 0.94 10.91 ± 1.51** 

C18:0-dhSM     
Hours Control γTE 20 µM 

8 0.29 ± 0.078 0.50 ± 0.067 
16 0.36 ± 0.045 1.10 ± 0.037** 

C20:0-dhSM     
Hours Control γTE 20 µM 

8 0.29 ± 0.044 0.48 ± 0.078** 
16 0.41 ± 0.064 1.09 ± 0.092** 

C22:0-dhSM     
Hours Control γTE 20 µM 

8 0.17 ± 0.048 0.23 ± 0.048 
16 0.21 ± 0.042 0.43 ± 0.11* 

C24:0-dhSM     
Hours Control γTE 20 µM 

8 0.13 ± 0.031 0.21 ± 0.023 
16 0.17 ± 0.011 0.41 ± 0.031** 

C26:0-dhSM     
Hours Control γTE 20 µM 

8 0.056 ± 0.014 0.069 ± 0.025 
16 0.11 ± 0.057 0.17 ± 0.043 

Total dhSMs     
Hours Control γTE 20 µM 

8 4.62 ± 1.16 7.14 ± 1.03* 
16 6.07 ± 0.97 14.11 ± 1.52** 
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Table 2.3 Effect of γTE on de novo sphingolipid biosynthesis in HCT-116 cells. HCT-
116 cells were treated with either 400 µM 13C3, 15N-labeled L-serine alone as control or 
with a combination of 400 µM 13C3, 15N-labeled L-serine and 20 µM γTE for 0.5, 2, 3, 
and 6 h. The amount of each labeled de novo sphingolipid was determined by LC-
MS/MS. Data are mean ± SEM of 3 independent experiments. *p < 0.05, **p < 0.01, 
significant difference between control and γTE-treated cells. 
 

Ceramides (pmol/µg PC) 
De novo C16:0-Cer   

Hours Control γTE 20 µM 
0.5 0.10 ± 0.018 0.090 ± 0.015 
2 0.54 ± 0.025 0.44 ± 0.023** 
3 0.65 ± 0.045 0.35 ± 0.033** 
6 0.64 ± 0.004 0.19 ± 0.008** 

De novo C24:1-Cer   
Hours Control γTE 20 µM 

0.5 0.16 ± 0.024 0.15 ± 0.008 
2 0.69 ± 0.087 0.78 ± 0.15 
3 0.85 ± 0.096 0.80 ± 0.029 
6 0.89 ± 0.029 0.55 ± 0.029** 

De novo C24:0-Cer   
Hours Control γTE 20 µM 

0.5 0.13 ± 0.020 0.12 ± 0.003 
2 0.52 ± 0.069 0.55 ± 0.10 
3 0.68 ± 0.087 0.57 ± 0.049* 
6 0.88 ± 0.086 0.43 ± 0.027** 

De novo total Cers   
Hours Control γTE 20 µM 

0.5 0.38 ± 0.058 0.36 ± 0.023 
2 1.75 ± 0.18 1.77 ± 0.27 
3 2.18 ± 0.20 1.71 ± 0.060* 
6 2.41 ± 0.12 1.18 ± 0.050** 

 

Dihydroceramides (pmol/µg PC) 
De novo C16:0-dhCer   

Hours Control γTE 20 µM 
0.5 0.011 ± 0.002 0.010 ± 0.002 
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2 0.026 ± 0.005 0.039 ± 0.011* 
3 0.030 ± 0.006 0.052 ± 0.012** 
6 0.042 ± 0.007 0.11 ± 0.022** 

De novo C24:1-dhCer   
Hours Control γTE 20 µM 

0.5 0.00094 ± 0.0003 0.0015 ± 0.0006 
2 0.0025 ± 0.001 0.0062 ± 0.003 
3 0.0025 ± 0.0009 0.0074 ± 0.002 
6 0.0038 ± 0.0009 0.021 ± 0.004* 

De novo C24:0-dhCer   
Hours Control γTE 20 µM 

0.5 0.0010 ± 0.001 0.0018 ± 0.001 
2 0.0031 ± 0.002 0.0033 ± 0.002 
3 0.0025 ± 0.001 0.0048 ± 0.003 
6 0.0051 ± 0.003 0.012 ± 0.006 

De novo total dhCers   
Hours Control γTE 20 µM 

0.5 0.013 ± 0.003 0.014 ± 0.003 
2 0.032 ± 0.007 0.049 ± 0.015* 
3 0.035 ± 0.008 0.064 ± 0.016** 
6 0.051 ± 0.010 0.15 ± 0.032** 

 

Sphingoid bases (pmol/µg PC) 
De novo Sph     

Hours Control γTE 20 µM 
0.5 0.038 ± 0.024 0.022 ± 0.011 
2 0.072 ± 0.021 0.062 ± 0.005 
3 0.065 ± 0.008 0.054 ± 0.021 
6 0.078 ± 0.008 0.034 ± 0.012** 

 

Sphingomyelins (pmol/µg PC) 
De novo C16:0-SM   

Hours Control γTE 20 µM 
0.5 0.35 ± 0.10 0.31 ± 0.071 
2 0.77 ± 0.21 0.97 ± 0.29* 
3 1.18 ± 0.40 1.43 ± 0.32 
6 2.74 ± 0.64 2.61 ± 0.50 

De novo C18:0-SM   
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Hours Control γTE 20 µM 
0.5 0.011 ± 0.003 0.011 ± 0.002 
2 0.013 ± 0.002 0.012 ± 0.004 
3 0.012 ± 0.004 0.016 ± 0.005 
6 0.024 ± 0.004 0.045 ± 0.014* 

De novo C24:1-SM   
Hours Control γTE 20 µM 

0.5 0.11 ± 0.031 0.14 ± 0.029 
2 0.18 ± 0.051 0.24 ± 0.077** 
3 0.27 ± 0.090 0.38 ± 0.16 
6 0.54 ± 0.12 1.47 ± 0.73 

De novo total SMs   
Hours Control γTE 20 µM 

0.5 0.47 ± 0.13 0.45 ± 0.10 
2 0.96 ± 0.27 1.22 ± 0.37** 
3 1.46 ± 0.50 1.83 ± 0.48 
6 3.31 ± 0.76 4.13 ± 1.22 

 

Dihydrosphingomyelins (pmol/µg PC) 
De novo C16:0-dhSM   

Hours Control γTE 20 µM 
0.5 0.10 ± 0.020 0.10 ± 0.012 
2 0.18 ± 0.029 0.27 ± 0.055* 
3 0.24 ± 0.039 0.39 ± 0.084** 
6 0.52 ± 0.045 1.51 ± 0.17** 
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2.5 Discussion 

 

Our current study demonstrates that γTE induced apoptosis and autophagy in 

human colon cancer cells by modulating sphingolipids metabolism. γTE treatment caused 

huge accumulation of intracellular dhSph and dhCers, important sphingolipid 

intermediates in de novo biosynthesis pathway, which appear to mediate cell death (Ahn 

and Schroeder, 2002; Jiang et al., 2004). In particular, γTE led to increase in de novo 

dhCers and decrease in de novo Cers as early as after 2 h incubation and these changes 

intensified during prolonged treatment, supporting the notion that DEGS is inhibited by 

γTE. Consistently, γTE inhibited DEGS activity without affecting its protein expression. 

Importantly, the modulation of these sphingolipids by γTE occurred prior to any signs of 

cell death. Moreover, individual Cers, which appear to have distinct bioactivities 

(Hannun and Obeid, 2011; Senkal et al., 2010; Sentelle et al., 2012), showed different 

responses by γTE treatment. γTE treatment led to significant decrease in C16:0-Cer at 8 h, 

but showed no difference at 16 h or increase at 24 h, compared with controls. On the 

other hand, while C24-Cers decreased from 8 to 24 h, C18:0-Cer increased from 16 h by 

γTE. Interestingly, SM decreased from 8 h but cells showed obvious apoptosis or 

autophagy only at 16 h or longer treatment with γTE. In addition, chemically blocking the 

increase of dhSph and dhCers, or the increase of Cers via SM hydrolysis by myriocin or 

desipramine, repectively, partially counteracted γTE-caused cell death, indicating that 

modulation of sphingolipids plays an important role in γTE-induced cancer cell death. 

 We showed that γTE led to marked accumulation of dhSph and dhCers in human 

colon and breast cancer cells. On the other hand, we did not observe a significant increase 
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of total Cers until the prolonged treatment with γTE. Although sphingosine and Cer have 

long been recognized and studied as pivotal apoptosis-inducing molecules (Woodcock, 

2006), emerging evidence suggests that other sphingolipid intermediates in the de novo 

biosynthesis pathway also play important roles in determining cell fate (Ahn and 

Schroeder, 2002; Jarvis et al., 1996; Kraveka et al., 2007; Ohta et al., 1995; Signorelli et 

al., 2009; Solomon et al., 2003; Zheng et al., 2006). For instance, previous studies in our 

group found that γT, the predominant form of vitamin E in US diet, as well as γTE 

enhanced the intracellular levels of dhSph and dhCers which played significant roles in 

the induction of apoptosis and autophagy in human prostate and breast cancer cells 

(Gopalan et al., 2012; Jiang et al., 2012; Jiang et al., 2004). Consistent with these studies, 

co-treatment of cells with myriocin, a specific inhibitor of the first reaction in the de novo 

sphingolipid synthesis pathway to block the increase of these two sphingoid bases, 

partially but significantly reversed γTE-induced colon cancer cell death, indicating that 

the accumulation of dhSph and dhCers plays important roles in γTE-induced colon cancer 

cell death. 

We identified that DEGS, an enzyme for the conversion of dhCer to Cers, is the 

initial target of γTE in its modulation of sphingolipid metabolism followed by cancer cell 

death. Specifically, in the serine-labeled study with γTE to only trace the effect of γTE on 

de novo biosynthesis pathway of sphingolipids, γTE caused rapid increase of de novo 

dhCers, but significant decrease of de novo Cers as early as after 2 h incubation, 

suggesting that DEGS-catalyzed reaction is likely to be inhibited as a result of γTE 

treatment (Fig. 2.3). Consistently, γTE inhibited DEGS activity in both in situ and in vitro 

assays, having no impact on its protein expression (Fig. 2.4). However, it is worth noting 
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that higher concentration of γTE was needed to have its inhibitory effect on DEGS 

activity when we used rat liver microsomes as an enzyme source. It may be due to 

limitation in permeability through the microsomal membrane of γTE under the cell-free 

environment.  

DEGS is a key enzyme regulating the balance of dhCer and Cer as it catalyzes the 

insertion of a 4,5-trans-double bond into dhCer to generate Cer. Michel et al. first 

reported the biochemical characterization of the DEGS reaction in 1997 using rat liver 

microsomes (Michel et al., 1997). They have shown that the DEGS uses molecular 

oxygen as electron acceptor to have a hydroxyl group into the C4-position of the dhSph, 

and then with NADH or NADPH as electron donor, a dehydration reaction occurs to 

produce a double bond in the C4-C5 position of dhCer. Therefore, they confirmed that 

the conversion of dhCer to Cer was occurred by a desaturase, not by a dehydrogenase. 

Two different DEGSs, DEGS1 and DEGS2, have been so far reported. In bioinformatics 

approach, Ternes et al. identified a family of sphingolipid Δ4-desaturases (homologs of 

the Drosophila melanogaster degenerative spermatocyte gene 1 (des-1)). DEGS-1, the 

human homolog of des-1, exhibits high dhCer Δ4-desaturase and very low C-4 

hydroxylase activities, whereas DEGS2, another ortholog identified in mouse and human, 

is similarly active as both sphinglipid C-4 hydroxylase and Δ4-desaturase activities, 

resulting in the production of either phyto-Cer or Cer. Recently, DEGS activity was also 

found to be inhibited by resveratrol (Signorelli et al., 2009), celecoxib (Schiffmann et al., 

2009b), fenretinide (Rahmaniyan et al., 2011), hydrogen peroxide (Idkowiak-Baldys et 

al., 2010) or hypoxic environment (Devlin et al., 2011). Furthermore, as several 

phytochemicals are shown to induce oxidative stress as prooxidants (Babich et al., 2011; 
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Fujisawa et al., 2004; Galati et al., 2002) and oxidative stress can inhibit DEGS activity 

followed by dhCer accumulation (Idkowiak-Baldys et al., 2010), we investigated whether 

γTE also inhibits DEGS activity by acting as prooxidant. However, we found that N-

acetylcysteine (NAC), an antioxidant, did not reverse γTE-induced modulation of 

sphingolipid metabolism (Fig. 2.7), suggesting that the inhibition of DEGS by γTE is not 

affected by NAC and these sphingolipid modulation did not caused by prooxidant effects 

of γTE. 

 In addition to the accumulation of dhSph and dhCers, γTE treatment had an 

impact on Cer species. Interestingly, the effects of γTE on specific Cer species were 

different. For instance, γTE treatment led to significant decrease in C16:0-Cer during the 

initial phase, but increase in the longer time treatment. While γTE caused increase in 

C18:0-Cer, it led to continuous decreases in C24:1- and C24:0-Cers. Interestingly, recent 

emerging results suggest that endogenous Cers with different fatty acyl-chain lengths 

appear to have distinct bioactivities. C18:0-Cer generated by CerS1 has been found to 

induce apoptosis and lethal autophagy (Senkal et al., 2010; Sentelle et al., 2012). In 

contrast, C16:0-Cer generated by CerS5/6 have been proposed to have opposed roles of 

anti-apoptosis to C18:0-Cer (Senkal et al., 2010). However, several other studies found 

that this Cer also plays important roles in apoptotic cell death (Mullen et al., 2011; 

Schiffmann et al., 2009b; White-Gilbertson et al., 2009). Therefore, further investigation 

should be conducted to determine the role of individual Cer species and to characterize 

the effects of γTE on individual CerSs and Cers. 

 During prolonged treatment, γTE led to increase in Cers, especially C16:0- and 

C18:0-Cers, but decrease in SMs. Two main enzymes may contribute to the levels of Cers 
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and SMs, which are SMSs in the de novo synthesis pathway and SMases in the SM 

hydrolysis. In our de novo sphingolipids studies using 13C3, 15N- L-serine, we found that 

since labeled C16:0-Cer is still decreased and the conversion of C16:0-Cer to C16:0-SM is 

stimulated at the initial stage of γTE treatment, we reason that the increase of Cers in the 

longer time treatment is likely caused by SM hydrolysis via the action of SMases. Co-

treatment of cells with desipramine but not GW4869 partially but significantly 

counteracted γTE-induced cancer cell death, indicating that the increase of Cers from 

SMs through acid SMase-catalyzed SM hydrolysis may in part involved in γTE-induced 

colon cancer cell death. 

In summary, our data strongly suggest that γTE-induced apoptosis, autophagy and 

cell death are mediated by modulation of sphingolipid metabolism as its primary target. 

The lipidomic analysis using LC-MS/MS reveals that γTE-exerted anticancer effects are 

caused by initial inhibition of DEGS activity and subsequent activation of SM hydrolysis 

via acid SMase.  
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CHAPTER 3. 13’-CARBOXYCHROMANOLS, LONG-CHAIN VITAMIN E 
METABOLITES, INDUCE APOPTOSIS AND AUTOPHAGY BY 

MODULATING SPHINGOLIPID METABOLISM IN DIFFERENT TYPES OF 
CANCER CELLS 

3.1 Abstract 

 

13’-Carboxychromanol (13’-COOH) is a major vitamin E metabolite excreted in 

feces. Here we investigated anticancer activities of δT-13’-COOH and δTE-13’-COOH, 

which are metabolites of delta-tocopherol (δT) or delta-tocotrienol (δTE), respectively. 

Both 13’-COOHs inhibited the growth and induced apoptosis and autophagy in human 

colon (HCT-116, HT-29), breast (MCF-7), and pancreatic (PANC-1, MiaPaca-2) cancer 

cells with the IC50 of 8-20 µM. In these activities, 13’-COOHs were much stronger than 

tocopherols. Using liquid chromatography tandem mass spectrometry, we found that δT-

13’-COOH increased intracellular dihydrosphingosin and dihydroceramides but 

decreased C16:0-ceramide within 2 h treatment. During longer treatment, δT-13’-COOH 

enhanced all sphingoid bases including ceramides while decreased sphingomyelins. 

Modulation of sphingolipids by 13’-COOHs was observed prior to or coinciding with 

appearance of cell death markers including PARP cleavage and LC3-II increase. The 

importance of sphingolipid modulation was supported by the observation that 

pharmaceutically blocking the increase of these sphingolipids partially counteracted 13’-
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COOH-induced cell death. Further mechanistic studies indicated that 13’-COOH 

inhibited dihydroceramide desaturase without affecting its protein expression and may 

activate sphingomyelin hydrolysis to enhance ceramides. In agreement with these cell-

based studies, δTE-13’-COOH significantly decreased colon tumor multiplicity induced 

by AOM with two cycles of 1.5% DSS without any apparent toxicity even when the 

dietary supplementation was started after AOM injection. Moreover, δTE-13’-COOH 

attenuated 1.8% DSS-induced colon inflammation, indicating that δTE-13’-COOH is 

able to attenuate colitis and its promoted tumorigenesis in vivo. Our mechanistic study 

demonstrates that 13’-COOHs have potent anticancer effects by modulating enzyme 

activities in sphingolipid metabolism in cancer cells. 

 

3.2 Introduction 

 

Cumulative cancer risk is estimated to be 30% and 22% in men and women, 

respectively, by age 75 in developed area worldwide (Jemal et al., 2011). Natural forms 

of vitamin E that consist of α-, β-, γ- and δ-tocopherol (αT, βT, γT and δT) and α-, β-, γ- 

and δ-tocotrienol (αTE, βTE, γTE and δTE), are potentially good cancer 

chemoprevention agents as they are known to be safe and specific forms of vitamin E 

have been shown to have cancer prevention effects. Specifically, γT, mixed tocopherols 

and tocotrienols have been demonstrated to inhibit the development of colon, prostate 

and breast cancer in various preclinical models (Jiang, 2014; Moya-Camarena and Jiang, 

2012). Despite these exciting findings, the anticancer effects may not directly be rooted 
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in vitamin E alone because many forms of vitamin E are not highly bioavailable as a 

result of their extensive metabolism in vivo.   

Tocopherols and tocotrienols, with exception for αT, are readily metabolized by 

cytochrome P450-catalyzed ω-hydroxylation and oxidation to 13’-carboxychromanols 

(13’-COOH), which are then further catabolized via β-oxidation to generate various 

shorter chain carboxychromanols or sulfation to form sulfated carboxychromanols (Jiang, 

2014; Jiang et al., 2007; Sontag and Parker, 2002). Importantly, carboxychromanols and 

their sulfated counterparts have been detected in rodent plasma and liver upon 

supplementation of γT and γTE (Freiser and Jiang, 2009; Jiang et al., 2007). Recently, 

long-chain carboxychromanols are found at high levels in feces from mice fed diet 

supplemented with γT or δT, and 13’-COOHs appear to be major fecal excreted 

carboxychromanols (Bardowell et al., 2012a; Bardowell et al., 2012b; Jiang et al., 2013). 

Considering significant quantities of carboxychromanols in vivo, it is of importance to 

examine potential bioactivities of these metabolites. 

Emerging studies have demonstrated that long-chain carboxychromanols have 

interesting bioactivities that are relevant to disease prevention and therapy (Jiang, 2014). 

In particular, we have demonstrated that δT-13’-COOH, a long-chain carboxychromanol 

from δT, competitively inhibits cyclooxygenase (COX-1 and COX-2) (Jiang et al., 2008) 

and is much stronger than short-chain carboxychromanols and unmetabolized vitamin E 

forms in these effects. δT-13’-COOH also inhibits 5-lipoxygenase (5-LOX) activity, 

whereas vitamin E forms do not inhibit the enzyme directly (Jiang et al., 2011). These 

results indicate that δT-13’-COOH is a unique dual inhibitor of COX-1/COX-2 and 5-

LOX (Jiang, 2014; Jiang et al., 2008; Jiang et al., 2011), and is therefore useful as anti-
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inflammatory and anticancer agents as both COXs and 5-LOX have been recognized to 

play significant roles in inflammation and cancer (Wang and Dubois, 2010). In addition, 

Birringer et al. (Birringer et al., 2010) demonstrated that 13’-COOHs metabolized from 

αT or δT induced apoptosis in human HepG2 cells. However, the anticancer study of 

13’-COOHs was limited to this liver cell line and the underlying mechanism was not 

completely understood. In the present study, we investigated the effect of δT-13’-COOH 

and δTE-13’-COOH (a metabolite from δTE) (Fig. 3.1) on the proliferation of various 

types of cancer cells including colon, pancreas, and breast. Since vitamin E forms have 

been shown to exert anticancer effects via modulating sphingolipids (Jiang et al., 2012; 

Jiang et al., 2004), we further investigated whether 13’-COOHs are capable of altering 

sphingolipid metabolism and the role of modulation of sphingolipids in 13’-COOH-

exerted anticancer activities. We also examined the anti-inflammatory effects and 

anticancer efficacy of δTE-13’-COOH supplementation against DSS-caused colon 

inflammation and AOM-induced and DSS-promoted colon tumorigenesis in male Balb/c 

mice, respectively. 
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Figure 3.1 The structures of (A) natural forms of vitamin E and (B) 13’-COOHs, vitamin 
E metabolites of δT and δTE. 
 

 

 

 



99 

 

 

3.3 Materials and Methods 

 

3.3.1 Materials and reagents 

δT-13’-COOH and δTE-13’-COOH (>95% pure) were synthesized as previously 

described (Maloney and Hecht, 2005). γT (≥96%) and δT (93-97%) were purchased from 

Sigma (St Louis, MO) and Suppleco (Bellefonte, PA), and γTE (97-99%) was a gift from 

BASF (Ludwigshafen, Germany). C8-cyclopropenylceramide (C8-CPPC) was purchased 

from Matreya LLC (Pleasant Gap, PA). All sphingolipid standards were obtained from 

Avanti Polar Lipids (Alabaster, AL). CHAPS (3-((3-cholamidopropyl) 

dimethylammonio)-1-propanesulfonate) was purchased from Thermo Fisher Scientific. 

Myriocin from Mycelia Sterilia, 13C3, 15N-labeled L-serine, dimethyl sulfoxide (DMSO), 

[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide] (MTT), and all other 

chemicals were from Sigma.  

 

3.3.2 Cell culture and treatment 

Human colon (HCT-116 and HT-29), breast (MCF-7), and pancreatic (PANC-1 

and MiaPaCa-2) cancer cells, and human normal colonic epithelial CCD841CoN cells 

were obtained from American Type Culture Collection (Manassas, VA). Cells were 

routinely cultured in growth media containing 10% fetal bovine serum (FBS) at 37 °C in 

5% CO2. HT-29 and PANC-1 cells were cultured in Dulbecco’s modified eagle medium 

(DMEM), and HCT-116 cells were cultured in McCoy’s 5A modified medium. MCF-7 

and MiaPaCa-2 cells were incubated in DMEM supplemented with 2.5% horse serum or 

0.1% insulin, respectively. CCD841CoN cells were cultured in Eagle’s minimum 
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essential medium (EMEM). For experiments, cells were seeded in the corresponding 

medium with 10% FBS either at a density of 4 x 104 cells/well in 24-well plates or at a 

density of 7-8 x 105 cells in 10-cm dishes. After overnight attachment, media were 

replaced with fresh DMEM containing 1% FBS and 13’-COOHs or other compounds. All 

the treatment solutions were freshly prepared for each experiment. Vitamin E forms were 

dissolved in DMSO at 100 mM and then diluted to fatty acid-free BSA (10 mg/ml). 

 

3.3.3 MTT assay 

Cell viability was examined by MTT assay to estimate mitochondrial 

dehydrogenase activity as previously described (Jiang et al., 2004).  

 

3.3.4 Flow cytometry with Annexin V and Propidium Iodide staining 

Both floating and attached cells were collected by trypsinization after treatment. 

Cells were stained with Annexin-V-Flous staining kit (Roche Applied Science, 

Indianapolis, IN), and apoptosis (Annexin V: Ex = 488 nm; Em = 518 nm) and necrosis 

(Propidium Iodide: Ex = 488-540 nm; Em = 617 nm) were evaluated by Beckman 

Coulter FC500 (Beckman Coulter, Miami, FL) and BD FACS Aria III cell sorter (BD 

Biosciences, San Jose, CA) with FlowJo software system.   

 

3.3.5 Western Blotting 

Cells were lysed in lysis buffer containing Tris-EDTA, 1% SDS, 2 mM Na3VO4 

and protease inhibitor cocktails (Sigma). Total proteins were quantified by bicinchoninic 

acid (BCA) protein assay kit (Pierce, Rockford, IL) and were denatured by boiling in 
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Laemmli buffer (Bio-rad, Hercules, CA) for 5 min at 95 °C. Equal amount of proteins 

(15-30 µg) were separated on acrylamide gels by SDS-electrophoresis and then 

transferred onto a polyvinylidene fluoride (PVDF) membrane (Millipore, Bilerica, MA), 

and probed by antibodies. Membranes were exposed to chemiluminescent reagent 

(PerkinElmer, Waltham, MA) and visualized on Kodak film with an M35A X-Omat 

processor (Kodak, Rochester, NY). The antibodies used in the study were as follows: 

membrane bound microtubule-associated protein light chain 3 (LC3; MBL international, 

Woburn, MA), Caspase-9, poly (ADP-ribose) polymerase-1 (PARP-1) and Actin (Santa 

Cruz Biotechnology, Santa Cruz, CA), and DEGS1 (Novus Biologicals, Littleton, CO). 

 

3.3.6 Lipid extraction 

Lipid was extracted as previously described (Merrill et al., 2005). Briefly, cell 

pellets were resuspended in 500 µL of methanol, 250 µL of chloroform and 50 µL of 

water after the addition of 20 µL of internal standard mixture containing 25 µM of C12:0-

ceramide, C25:0-ceramide, C17-sphingosine, C17-sphinganine, and C12:0-sphingomyelin 

(Avanti Polar Lipids, Alabaster, AL). The suspension was dispersed fully by tip 

sonication for 20 sec and then incubated overnight at 48 °C. 100 µL of solvent was used 

to determine the amount of total choline-containing phospholipids by an enzymatic 

colorimetric assay (Wako chemicals, Osaka, Japan) (Jiang et al., 2004). 75 µL of 1M 

potassium hydroxide in methanol was added to the rest of the solvent and sonicated for 

30 min. After sonication, samples were incubated at 37 °C for 2 h and evaporated under a 

stream of nitrogen. 
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3.3.7 Measurement of sphingolipids using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) 

Samples were resolved in methanol and sonicated to disperse, then centrifuged to 

clarify before transferring to test vials for quantification. The LC-MS/MS analyses were 

performed using the Agilent 6460 triple quadrupole mass spectrometer coupled with the 

Agilent 1200 Rapid Resolution HPLC (Agilent Technologies, Santa Clara, CA) with 

detection of sphingolipids in positive mode by multiple reaction monitoring (MRM) 

technique (Merrill et al., 2005). The HPLC mobile phases consisted of methanol-H2O-

formic acid (74:25:1, v/v/v; RA) and methanol-formic acid (99:1, v/v; RB); both RA and 

RB contain 5 mM ammonium formate. For measurement of Cers and sphingoid bases, 

Agilent column XDB-C18, particle size 1.8 µm, 4.6 x 50 mm was used with isocratic run 

(100% B) or gradient (0-1 min, 20% B, 10-13 min, 100% B and 15-20 min at  20% B), 

respectively. For measurement of SMs, Agilent Zorbax XDB-C8, particle size 3.5 µm, 

2.1 x 50 mm was used with gradient (0-1 min, 20% B, 10-20 min, 100% B, 22-30 min, 

20% B). The MS/MS parameters were as follows: gas temperature, 325-350 °C; gas flow 

rate, 7-10 L/min; nebulizer pressure, 45-50 psi; capillary voltage, 3500 V; The 

fragmentor voltage was 100 V and collision energy was 12-20 V. Precursor-to-product 

ion transitions for each sphingolipid were used according to the method of Merrill et al. 

(Merrill et al., 2005). 

 

3.3.8 De novo sphingolipids analysis 

HCT-116 cells were treated with either 400 µM 13C3, 15N-labeled L-serine alone 

or with a combination of 400 µM 13C3, 15N-labeled L-serine and 20 µM of δT-13’-COOH 
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for 0.5, 1, 1.5, 2 and 4 h. Lipid was extracted and de novo synthesized sphingolipids were 

measured using LC-MS/MS. 

 

3.3.9 Dihydroceramide desaturase (DEGS) assay 

For the in vitro assay of DEGS, HCT-116 cells were treated with either 20 µM 

δT-13’-COOH or 1 µM C8-CPPC for 1 or 2 h. Cells were collected and homogenized in 

a buffer (5 mM Hepes, pH 7.4, containing 50 mM sucrose) and kept on ice for 10 min. 

The cell homogenate was centrifuged at 250 x g for 5 min at 4 °C to remove unbroken 

cells. Reaction was started by addition of C8:0-dhCer as a non-physiological substrate for 

DEGS and NADH for an hour at 37 °C.   

In another in vitro assay, rat liver microsomes were prepared as described 

(Rahmaniyan et al., 2011).  Briefly, livers from male Wistar rats were rinsed in ice-cold 

PBS and homogenized in buffer (0.25 M sucrose, 10 mM HEPES, 1 mM EDTA, pH 7.4) 

in ice. The homogenate was centrifuged at 800 x g for 10 min and the supernatant was 

centrifuged at 10,000 x g for 15 min. The resulting supernatant was ultracentrifuged at 

104,000 x g for 1 h to obtain microsomal pellet, which was then resuspended in 

potassium phosphate buffer (50 mM, pH 7.4) and stored at -80 °C until use. In 

preparation for the assay, C8:0-dhCer and tested compounds were dried under a stream of 

nitrogen, followed by resuspension in CHAPS (1.1 mg/10 µl of water). Microsomal 

fraction (500 µg of protein) was mixed with reaction buffer (20 mM bicine, pH 8.5, 50 

mM NaCl, and 50 mM sucrose) and added with tested compounds, followed by 30 min 

pre-incubation at room temperature. 2 mM of NADH and 10 µM of C8:0-dhCer were 

added and the mixture was incubated for 20 min at 37 °C with shaking. Lipid extraction 
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was conducted directly after reaction and the products (C8:0-Cer and C8:0-SM) were 

quantified by LC-MS/MS. 

 

3.3.10 Animal studies 

The animal use protocol was approved by the Animal Care and Use Committee at 

Purdue University. δTE-13’-COOH was isolated from the African Garcinia kola bitter 

nut according to the method described by Terashima et al. (Terashima et al., 1997), and 

modified δTE-13’-COOH-enriched AIN-93G purified diet was prepared by adding 0.22 

g/kg δTE-13’-COOH.  

In animal study 1 (AOM-DSS study), colon tumorigenesis was initiated by 

injection of azoxymethane (AOM; Sigma) and promoted by two cycles of dextran sodium 

sulfate (DSS; molecular weight of 36,000-50,000, MP Biochemicals, Solon, OH) at 1.5% 

in drinking water. Male Balb/c mice at 5-6 weeks of age from Harlan (Indianapolis, IN) 

were injected a dose of AOM (9.5 mg/kg body weight, i.p.) or the vehicle (sterile saline) 

after a week of acclimatization. A week later, AOM-injected mice were randomized into 

control or δTE-13’-COOH-supplemented groups, and they were given 1.5% DSS in 

drinking water for 1 week. The mice were started to be supplemented with either AIN-

93G diet (for Non-AOM/DSS group; n=6, and AOM/DSS control diet group; n=17) or 

δTE-13’-COOH-enriched AIN-93G diet (for AOM/DSS δTE-13’-COOH 

supplementation group; n=15). Two weeks after first cycle of DSS administration, mice 

in AOM/DSS groups were again given the 2nd cycle of 1.5% DSS in drinking water for a 

week (Fig. 3.10A). Animals were observed and weighed daily and food intake was 

measured once a week. Fecal scoring as an indicator of colitis with combined scores of 
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rectal bleeding and stool consistency was evaluated daily and scored as follows (rectal 

bleeding: 0 = no blood, 0.5 = feces with tiny spots of bleeding, 1 = feces with blood less 

than 50% of area, 2 = feces with half-sized bleeding, and 3 = feces with blood more than 

50% of area; stool consistency: 0 = normal, 1 = a little bit soft, 2 = soft, and 3 = very soft 

and diarrhea). During tissue harvest, colons were removed, rinsed with cold saline, cut 

open longitudinally from rectum to cecum. Lengths and weights of each colon tissue 

were measured and tumors were examined. 

In animal study 2 (DSS study), to investigate the anti-inflammatory effects of 

δTE-13’-COOH against colitis, colon inflammation was induced by feeding mice with 

one cycle of 1.8% DSS in drinking water for 8 days in 5-6-week-old male Balb/c mice 

(Harlan). On the same day of DSS feeding started, the mice were supplemented with 

either AIN-93G diet (for Non-DSS group; n=8, and DSS control diet group; n=12) or 

δTE-13’-COOH-enriched AIN-93G diet (for DSS δTE-13’-COOH supplementation 

group; n=12; Fig 3.11A). During the study, animals were observed and weighed, and 

their fecal scorings were evaluated daily as described above, and food intake was 

measured once at the end of the study.  

 

3.3.11 Statistics 

Statistical significance was determined using a Student’s t-test.  P < 0.05 was 

considered statistically significant. 
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3.4 Results 

 

3.4.1 13’-COOHs inhibited proliferation of various human cancer cells 

We investigated the effect of δT- or δTE-13’-COOH on cell proliferation using 

MTT assays in various human cancer cell lines. We found that δT-13’-COOH inhibited 

the growth of human colon (HCT-116, HT-29), breast (MCF-7) and pancreatic (PANC-1, 

MiaPaCa-2) cancer cells in a time- and dose-dependent manner (Fig. 3.2A) with the IC50 

values (estimated after 24 h incubation) of 8.9 µM, 8.6 µM and 13.5 µM in HCT-116, 

HT-29, and MCF-7 cells, respectively. In addition, δTE-13’-COOH also showed 

antiproliferative effects with IC50 values (at 24 h) of 16 µM, 17 µM and 19.7 µM in 

HCT-116, HT-29, and MCF-7 cells, respectively (Fig. 3.2B). In these activities, δT-13’-

COOH was more potent than δTE-13’-COOH, and both 13’-COOHs were stronger than 

tocopherols (Fig. 3.2C). Interestingly, although human colon HT-29 cancer cells showed 

more resistance than HCT-116 cells to the treatment of γT and γTE (Fig. 3.2C), 13’-

COOHs showed similar anticancer effects in both cell lines (Figs. 3.2A and B). In 

addition, human normal colonic epithelial cells, CCD841CoN, were used as a control cell 

line. δT-13’-COOH and δTE-13’-COOH showed about 2-fold higher IC50 values (at 24 

h) in CCD841CoN cells compared with cancer cells (Fig. 3.2D). 
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Figure 3.2 Anti-proliferative effects of 13’-COOHs derived from δT or δTE on various 
cancer cells. (A) The effects of δT-13’-COOH on human colon (HCT-116, HT-29), 
breast (MCF-7) and pancreatic (PANC-1, MiaPaCa-2) cancer cells. (B) The effects of 
δTE-13’-COOH on human colon (HCT-116, HT-29) and breast (MCF-7) cancer cells. 
(C) The effects of natural forms of vitamin E on human colon (HCT-116, HT-29) and 
pancreatic (PANC-1) cancer cells. (D) The effects of δT-13’-COOH and δTE-13’-COOH 
on human normal colonic epithelial (CCD841CoN) cells. Relative cell viability was 
measured after treatment with 13’-COOHs or natural forms of vitamin E at the stated 
concentrations and time by MTT assay compared with control. IC50 of 24 h is shown. The 
data are mean ± SD for at least three independent experiments, each performed in 
duplicate. *p < 0.05 and **p < 0.01 indicate a significant difference between treated and 
control cells.  
 
 

3.4.2 13’-COOHs induced apoptosis and autophagy in various types of cancer cells 

Based on microscopic examination, 13’-COOHs appeared to induce cell death as 

indicated by detachment and shrinkage of cells during prolonged treatment. Consistently, 

both δT-13’-COOH and δTE-13’-COOH induced early and late-stage apoptosis in HCT-

116 cells compared with controls, as indicate by enhanced annexin V staining that is 

associated with externalization of phosphatidylserine to the cytoplasmic membrane (Fig. 

3.3A). Furthermore, 13’-COOHs caused PARP cleavage and caspase-9 activation (Fig. 

3.3B). Similar to the results from MTT assays, δT-13’-COOH appeared to be stronger 
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than δTE-13’-COOH in the induction of apoptosis. In addition to apoptosis, δT- and 

δTE-13’-COOHs treatment led to an increase of LC3-II, a marker of autophagy (Fig. 

3.3C). We also observed similar biochemical changes in MCF-7 cells (data not shown). 

These results demonstrated that δT- and δTE-13’-COOH induced apoptosis and 

autophagy in human cancer cells. 
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Figure 3.3 Induction of apoptosis and autophagy by 13’-COOHs in cancer cells. (A) 
HCT-116 cells were treated with 20 μM δT-13’-COOH or δTE-13’-COOH for 24 h. 
Induction of apoptosis and necrosis was quantified by annexin V and PI staining. 
Representative diagrams of FACS are shown here. Expression levels of (B) full-length 
and cleaved caspase-9 and PARP, and (C) LC3-II in HCT-116 cells after treatment with 
10 or 20 μM of δT-13’-COOH or δTE-13’-COOH were examined by western blotting. 
Western blots in this figure are representative of three or more independent experiments. 
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3.4.3 13’-COOHs modulated sphingolipids in HCT-116 and MCF-7 cells 

We have demonstrated that modulation of sphingolipid pathway plays a role in γT 

and γTE-induced death in human prostate and breast cancer cells (Gopalan et al., 2012; 

Jiang et al., 2012; Jiang et al., 2004). Here we investigated effects of 13’-COOHs on 

sphingolipid metabolism using LC-MS/MS. Compared with controls, δT-13’-COOH 

dose-dependently increased total dihydroceramides (dhCers) (Fig. 3.4A), individual 

dhCer including C16:0- (Fig. 3.4B), C18:0-, C24:1- and C24:0-dhCers (data not shown), and 

dihydrosphingosine (dhSph) (Fig. 3.4C). Interestingly, δT-13’-COOH (20 μM) enhanced 

C16:0-dhCer and dhSph at 1 h after incubation, which was prior to any signs of cell 

morphological changes. Consequently, cells accumulated high levels of dhCers and 

dhSph after incubation for 8-16 h.  In contrast to dhCer, the effect of 13’-COOHs on 

individual ceramides (Cer) varied with treatment time, concentrations, and specific 

ceramide species. Specifically, compared with controls, δT-13’-COOH induced a 

significant decrease of C16:0-Cer after 2 h incubation, but enhanced this sphingoid base 

during longer treatment (8 h or 16 h incubation). δT-13’-COOH at 20 μM increased C18:0-

Cer after 4 h treatment, while treatment of δT-13’-COOH at 10 and 20 μM caused 

opposite effects on C24-Cers (Fig. 3.4D). For sphingomyelin (SM), δT-13’-COOH led to 

persistent decrease in all types of SM species starting at 2 h (Fig. 3.4E; Table 3.1). 

Besides HCT-116 cells, we observed similar modulatory effects of δT-13’-COOH on 

MCF-7 cells (Fig. 3.5; Table 3.2). Furthermore, δTE-13’-COOH at 20 µM induced 

similar modulation of sphingolipids to that by δT-13’-COOH (Fig. 3.6; Table 3.3), 

although less potent than its δT analog.   
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Figure 3.4 Effects of δT-13’-COOH on sphingolipid metabolism in HCT-116 cells. HCT-
116 cells were treated with 10 or 20 μM δT-13’-COOH with increasing treatment times 
as indicated (1, 2, 4, 8, or 16 h). The sphingolipid levels including (A) total dhCers, (B) 
C16:0-dhCer, (C) dhSph, (D) total, C16:0-, C18:0-, C24:1-, and C24:0-Cers and (E) total SMs 
were determined by LC-MS/MS. Results are shown as mean ± SEM for at least three 
independent experiments. *p < 0.05 and **p < 0.01 indicate a significant difference 
between treated and control cells.  
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Figure 3.5 Effects of δT-13’-COOH on sphingolipid metabolism in MCF-7 cells. MCF-7 
cells were treated with 10 or 20 μM δT-13’-COOH for 4 h or 8 h. The sphingolipid levels 
including (A) total dhCers, (B) C16:0-dhCer, (C) C16:0-Cer, C18:0-Cer, C24:1-Cer, and C24:0-
Cer and (D) total SMs were determined by LC-MS/MS. Results are shown as mean ± SD 
for two independent experiments. 



116 

 

 

 

 

 



117 

 

 

 

 
Figure 3.6 Effects of δTE-13’-COOH on sphingolipid metabolism in HCT-116 cells. 
HCT-116 cells were treated with 10 or 20 μM δTE-13’-COOH for 8 h or 16 h. The 
sphingolipid levels including (A) total dhCers, (B) C16:0-dhCer, (C) dhSph, (D) C16:0-Cer, 
C18:0-Cer, C24:1-Cer, and C24:0-Cer and (E) total SMs were determined by LC-MS/MS. 
Results are shown as mean ± SD for two independent experiments. 
 

3.4.4 13’-COOHs modulated de novo biosynthesis of sphingolipids 

Since 13’-COOHs elevated dhCer and dhSph that are important sphingoid bases 

in de novo synthesis of sphingolipid pathway (Fig. 3.7A), we used 13C3, 15N-labeled L-

serine, a substrate for making sphingolipids with palmitoyl-CoA, to trace the effect on the 

newly synthesized sphingolipids. We observed that δT-13’-COOH treatment induced a 

significant increase in labeled dhCers in a time-dependent manner (Fig. 3.7B) but 

resulted in decrease of Cers including C16:0-, C24:1- and C24:0-Cers as early as 0.5 h to 2 h 

(Fig. 3.7C). δT-13’-COOH significantly suppressed de novo synthesis of C16:0- and C24:1-

SMs (Fig. 3.7D). Despite elevation of newly-made dhCer, δT-13’-COOH significantly 

reduced the total amount of newly synthesized sphingolipids (Fig. 3.7E; Table 3.4) as a 

result of diminished synthesis of SM and Cer that are much more abundant than dhCer. 

These results thus indicate that δT-13’-COOH inhibits overall de novo biosynthesis of 

sphingolipids. 
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Figure 3.7 Effects of δT-13’-COOH on de novo sphingolipid biosynthesis in HCT-116 
cells. (A) The de novo biosynthesis pathway of sphingolipids (SMS, sphingomyelin 
synthase; SMase, sphingomyelinase). HCT-116 cells were treated with either 400 μM 
13C3, 15N-labeled L-serine alone as control or with a combination of 400 μM 13C3, 15N-
labeled L-serine and 20 μM δT-13’-COOH for 0.5, 1, 1.5, 2, and 4 h. The amount of each 
labeled de novo sphingolipid including (B) total dhCers, (C) total, C16:0-, C24:1- and C24:0-
Cers, and (D) total, C16:0- and C24:1-SMs were determined by LC-MS/MS. (E) Total 
amounts of all the de novo synthesized sphingolipids were calculated. Results are shown 
as mean ± SEM for three independent experiments. *p < 0.05 and **p < 0.01 indicate a 
significant difference between treated and control cells.  



120 

 

 

3.4.5 13’-COOHs inhibited DEGS activity without affecting its protein expression 

Based on the observation that δT-13’-COOH increased newly synthesized dhCers 

but decreased Cers, we reason that δT-13’-COOH likely inhibits the enzyme reaction or 

protein expression of dihydroceramide desaturase (DEGS), which is responsible for 

addition of the 4,5-trans-double bond of dhCer (Fig. 3.7A). The western blot data 

revealed that δT-13’-COOH had no effect on DEGS-1 protein expression in HCT-116 

cells (Fig. 3.8A). We then examined potential effect of δT-13’-COOH on the DEGS 

enzyme activity. In the in vitro DEGS assay with cell homogenates, 1 or 2 h pre-

incubation of δT-13’-COOH inhibited DEGS activity by about 38% or 47%, respectively. 

C8-CPPC, a known competitive inhibitor of DEGS (Triola et al., 2003), inhibited the 

enzyme activity by about 95% (Fig. 3.8B). On the other hand, δT-13’-COOH did not 

show the inhibition of DEGS enzyme activity in another in vitro DEGS assay using rat 

liver microsome (data not shown). 
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Figure 3.8 Effects of δT-13’-COOH on DEGS expression and activity. (A) HCT-116 
cells were treated with 10 or 20 μM δT-13’-COOH for 8 or 16 h and the protein levels of 
DEGS-1 and actin as a loading control were detected by western blotting. (B) HCT-116 
cells were treated with either 20 μM δT-13’-COOH or 1 μM C8-CPPC as a positive 
control for indirect in vitro DEGS assay. After 1 h or 2 h of treatment, cells were 
collected and homogenized. Using the homogenates, reaction was started for an hour in 
37 °C followed by addition of C8:0-dhCer as a substrate for DEGS with NADH. The 
levels of products which are C8:0-sphingolipids were analyzed by using LC-MS/MS. The 
data are mean ± SD of three independent experiments. *p < 0.05 and **p < 0.01 indicate 
a significant difference between treated and control cells.  
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3.4.6 The role of sphingolipid modulation in 13’-COOH-induced cell death 

Since 13’-COOHs induced accumulation of intracellular dhCer and dhSph, which 

are known to induce cell stress and/or death (Ahn and Schroeder, 2002; Jiang et al., 2012; 

Jiang et al., 2004), we used myriocin, a specific inhibitor of serine palmitoyltransferase, 

to block the increase of these sphingoid bases. Interestingly, co-treatment of cells with 

myriocin showed partial reversion of 13’-COOH-induced LC3-II expression (Fig. 3.9A), 

but had no effect on PARP-1 cleavage (data not shown). These data suggest that 

elevation of dhCer and dhSph may play a role in 13’-COOHs-induced autophagy. 

Cers have been known to be potent inducer of apoptosis (Kolesnick, 2002; Radin, 

2001; Woodcock, 2006). Because 13’-COOHs decreased Cers synthesis in the de novo 

pathway (Fig. 3.7C), we reason that the increase of Cers (Fig. 3.4D) after longer 

treatment is likely caused by hydrolysis of SM via sphingomyelinase (SMase). To 

establish the role of Cers from SMs in 13’-COOH-induced cancer cell death, we used 

desipramine and GW4869 to inhibit acid or neutral SMases, respectively. Co-treatment of 

GW4869 but not desipramine (data not shown) with 13’-COOHs partially counteracted 

anti-proliferation by 13’-COOHs (Fig. 3.9B). These data suggest that SM hydrolysis 

through the neutral SMase activation may in part contribute to 13’-COOHs-induced 

anticancer effects. 
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Figure 3.9 Protective effects of inhibitors of enzymes in sphingolipid metabolism on 13’-
COOHs-induced cancer cell death. (A) HCT-116 cells were treated with 20 μM δT- or 
δTE-13’-COOH with or without 3 μM myriocin, a specific inhibitor of serine 
palmitoyltransferase to block the de novo sphingolipid pathway. After 16 h of treatment, 
the cells were collected and analyzed for detection of LC3-II expression. Western blots in 
this figure are representative of three or more independent experiments. LC3-II protein 
levels were quantified from the blots. The data are mean ± SEM of three or four 
independent experiments. *p < 0.05 and **p < 0.01; #p < 0.05 and ##p < 0.01 versus 
control indicate a significant difference. (B) HCT-116 cells were treated with 5 or 10 μM 
δT-13’-COOH or 10 μM δTE-13’-COOH with or without 5 μM GW4869, an inhibitor of 
neutral SMase for 24 h. Relative cell viability was measured by MTT assay compared 
with control. The data are mean ± SD of three independent experiments. *p < 0.05 and 
**p < 0.01 indicate a significant difference. 
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3.4.7 δTE-13’-COOH supplementation attenuated colon inflammation and inhibited 

tumorigenesis induced by AOM with two cycles of 1.5% DSS in mice 

To examine whether the anticancer effect of 13’-COOH can be translated into 

whole body system, we investigated the effectiveness of δTE-13’-COOH 

supplementation against AOM-induced and DSS-promoted colon tumorigenesis in male 

Balb/c mice. The body weights and the amounts of food intake of AOM/DSS-treated 

δTE-13’-COOH-supplemented group were similar to those of the control diet group, and 

δTE-13’-COOH supplementation showed no apparent signs of toxicity throughout the 

experiment (Figs. 3.10B and C). δTE-13’-COOH supplementation attenuated colon 

inflammation induced by two-cycles of 1.5% DSS as indicated by significantly attenuated 

scores of rectal bleeding on day 6 of 2nd cycle DSS administration (Fig. 3.10D), and 

significantly attenuated DSS-caused colon L/W ratio reduction compared with the control 

diet group (Fig. 3.10E). After 43 days, AOM/DSS-treated control diet group had 4.7 ± 

0.3 tumors per mouse in the colon, but AOM/DSS-δTE-13’-COOH supplementation 

group showed beneficial effects with a significantly lower number of colon tumors (3.1 ± 

0.3; p < 0.01; Fig. 3.10F) even the supplementation was started 7 days after AOM 

injection. Interestingly, when the tumors were categorized as small (< 2 mm2) or large (> 

2 mm2) sizes, supplementation of δTE-13’-COOH after AOM/DSS treatment 

significantly decreased the number of large tumors by 58% (p < 0.05), which are closely 

associated with the development of malignancy, although it did not significantly decrease 

the number of small tumors. All these tumors were primarily found in the middle to rectal 

part of the distal colon. 
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Figure 3.10 Effects of δTE-13’-COOH on colon tumorigenesis induced by AOM with 
two cycles of 1.5% DSS. (A) The design of AOM/DSS study. (B) Body weight and (C) 
food intake of each group during the days after supplementation started. The effects of 
δTE-13’-COOH on (D) fecal scorings during DSS cycle 1 and 2, and (E) ratio of colon 
L/W. (F) The effects of δTE-13’-COOH on colon tumor multiplicity and polyps with 
sizes of < 2 mm2 or > 2 mm2 in the AOM/DSS study (mean ± SEM, n = 15-17). *p < 
0.05 and **p < 0.01 differences between control and δTE-13’-COOH supplementation 
group. 
 

 

3.4.8 δTE-13’-COOH supplementation attenuated colon inflammation induced by one 

cycle of 1.8% DSS in mice 

We further examined whether δTE-13’-COOH has any direct effects on colon 

inflammation caused by one cycle of 1.8% DSS. Similar to the results from AOM/DSS 

study above, the body weights and the amount of food intake were not different between 

groups (Figs. 3.11B and C). Treatment with one cycle of 1.8% DSS resulted in colon 

bleeding and diarrhea, and δTE-13’-COOH supplementation significantly decreased this 

fecal scoring compared with the control-diet group (Figs. 3.11D-F), indicating that δTE-

13’-COOH alleviated colon inflammation induced by DSS. 

 

 



127 

 

 

 

 

Figure 3.11 Effects of δTE-13’-COOH on colon inflammation induced by one cycle of 
1.8% DSS. (A) The design of DSS study. (B) Body weight and (C) food intake of each 
group during the study. The effects of δTE-13’-COOH on (D) rectal bleeding, (E) stool 
consistency, and (F) total fecal scorings during the DSS study (mean ± SEM, n = 12). *p 
< 0.05 and **p < 0.01 differences between control and δTE-13’-COOH supplementation 
group. 
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3.4.9 Combined treatment of specific natural vitamin E forms with their long-chain 

metabolites exhibited synergistic or additive antiproliferative effects 

Since parental vitamin E forms and their metabolites coexist in in vivo system, we 

evaluated whether the combined treatment of vitamin E forms and their long-chain 

metabolites has synergistic antiproliferative effects in colon cancer cells using MTT 

assay. Human colon HCT-116 cancer cells were treated with lower doses of δT or δT-

13’-COOH alone or with their combination for 72 h. Treatment of cells with 5-10 μM δT 

or 2.5-5 μM δT-13’-COOH had no or little effect on cell growth, but combinded 

treatment of δT with δT-COOH induced a significant inhibition of cell growth in a dose-

dependent manner (Fig. 3.12A). HCT-116 cells were also treated with lower doses of 

δTE or δTE-13’-COOH alone or with their combination for 72 h. Similar to the combined 

effects of δT and δT-13’-COOH, 2.5-5 μM δTE or 2.5-5μM had no effect on cell growth, 

but their combination exhibited a significant additive or synergistic antiproliferative 

effects (Fig. 3.12B). 
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Figure 3.12 Effects of combined treatment of specific vitamin E forms with their long-
chain metabolites on cancer cell growth. HCT-116 cells were treated with (A) δT, δT-
13’-COOH, and their combination or (B) δTE, δTE-13’-COOH, and their combination 
for 72 h. Relative cell viability was measured after treatment with individual natural 
forms of vitamin E or their metabolites alone or with a combination at the stated 
concentrations by MTT assay compared with control. The data are mean ± SD for three 
independent experiments, each performed in duplicate.  
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Table 3.1 Effect of δT-13’-COOH on sphingolipid metabolism in HCT-116 cells. HCT-
116 cells were treated with 10 or 20 µM δT-13’-COOH for 1, 2, 4, 8 and 16 h. The 
amount of each sphingolipid was determined by LC-MS/MS. Data are mean ± SEM of at 
least 3 independent experiments. *p < 0.05, **p < 0.01, significant difference between 
control and δT-13’-COOH-treated cells. Cer, ceramide; dhCer, dihydroceramide; Sph, 
sphingosine; dhSph, dihydrosphingosine; S1P, sphingosine-1-phosphate; SM, 
sphingomyelin; dhSM, dihydrosphingomyelin 
 

Ceramides (pmol/µg PC)   
C16:0-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 2.33 ± 0.40 1.96 ± 0.12 1.84 ± 0.15 
2 3.04 ± 0.06 1.92 ± 0.10** 2.15 ± 0.13** 
4 2.27 ± 0.26 1.81 ± 0.19** 2.36 ± 0.23 
8 2.41 ± 0.18 2.00 ± 0.28* 2.76 ± 0.21* 

16 2.91 ± 0.15 3.36 ± 0.05* 6.23 ± 0.47* 
C18:0-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.061 ± 0.005 0.062 ± 0.007 0.076 ± 0.014 
2 0.063 ± 0.004 0.052 ± 0.002 0.072 ± 0.004 
4 0.051 ± 0.012 0.050 ± 0.013 0.079 ± 0.021** 
8 0.041 ± 0.004 0.037 ± 0.003 0.064 ± 0.003** 

16 0.040 ± 0.002 0.052 ± 0.001** 0.091 ± 0.005** 
C20:0-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.043 ± 0.012 0.039 ± 0.007 0.044 ± 0.008 
2 0.045 ± 0.006 0.038 ± 0.005** 0.059 ± 0.006** 
4 0.036 ± 0.003 0.044 ± 0.017 0.085 ± 0.024** 
8 0.028 ± 0.003 0.029 ± 0.002 0.063 ± 0.005** 

16 0.028 ± 0.000 0.046 ± 0.002** 0.081 ± 0.005** 
C22:0-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.45 ± 0.14 0.52 ± 0.096 0.60 ± 0.11 
2 0.55 ± 0.074 0.56 ± 0.063 0.77 ± 0.069** 
4 0.30 ± 0.092 0.58 ± 0.19** 0.83 ± 0.23** 
8 0.27 ± 0.043 0.36 ± 0.027 0.53 ± 0.17 

16 0.26 ± 0.010 0.51 ± 0.020** 0.78 ± 0.049** 
C24:1-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 2.62 ± 0.55 2.13 ± 0.52** 2.35 ± 0.46 
2 3.25 ± 1.28 2.13 ± 0.58 2.65 ± 0.59 
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4 1.06 ± 0.03 0.90 ± 0.07* 1.32 ± 0.07** 
8 1.48 ± 0.40 1.03 ± 0.30** 1.87 ± 0.42** 

16 2.00 ± 0.34 1.43 ± 0.27** 2.65 ± 0.42 
C24:0-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 2.74 ± 0.50 2.64 ± 0.62 2.63 ± 0.55 
2 3.48 ± 1.10 2.93 ± 0.73 2.81 ± 0.69 
4 1.25 ± 0.16 1.66 ± 0.22** 1.24 ± 0.11 
8 1.70 ± 0.29 2.20 ± 0.42** 1.51 ± 0.27 

16 2.92 ± 0.28 3.59 ± 0.51* 2.11 ± 0.33* 
C26:1-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.27 ± 0.044 0.22 ± 0.045** 0.23 ± 0.034 
2 0.36 ± 0.13 0.23 ± 0.064** 0.27 ± 0.063 
4 0.12 ± 0.013 0.11 ± 0.011 0.14 ± 0.012 
8 0.15 ± 0.016 0.097 ± 0.015** 0.18 ± 0.017** 

16 0.23 ± 0.009 0.13 ± 0.010** 0.29 ± 0.013 
C26:0-Cer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.14 ± 0.076 0.11 ± 0.064 0.12 ± 0.063 
2 0.19 ± 0.12 0.12 ± 0.068 0.13 ± 0.072 
4 0.11 ± 0.009 0.097 ± 0.009 0.098 ± 0.008 
8 0.13 ± 0.016 0.11 ± 0.020** 0.12 ± 0.019 

16 0.24 ± 0.005 0.13 ± 0.014** 0.16 ± 0.010** 
Total Cers       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 8.66 ± 0.71 7.68 ± 1.02 7.89 ± 0.84  
2 10.97 ± 2.57 7.97 ±1.30**  8.91 ± 1.27  
4 5.20 ± 0.57 5.25 ±0.71 6.16 ± 0.67**  
8 6.21 ±0.90 5.87 ±1.03 7.08 ± 0.86** 

16 8.63 ±0.78 9.24 ± 0.86 12.39 ± 0.84 
 

Dihydroceramides (pmol/µg PC)   
C16:0-dhCer       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.073 ± 0.009 0.092 ± 0.004 0.12 ± 0.017* 
2 0.11 ± 0.004 0.13 ± 0.015 0.28 ± 0.031* 
4 0.060 ± 0.005 0.13 ± 0.024* 0.33 ± 0.017** 
8 0.087 ± 0.007 0.26 ± 0.031** 1.13 ± 0.092** 
16 0.23 ± 0.022 1.04 ± 0.060** 3.40 ± 0.43** 

C18:0-dhCer       
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Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.0016 ± 0.0001 0.0017 ± 0.0003 0.0025 ± 0.0005 
2 0.0016 ± 0.0001 0.0015 ± 0.0001 0.0035 ± 0.0003* 
4 0.0016 ± 0.0003 0.0022 ± 0.0007 0.0041 ± 0.0005 
8 0.0015 ± 0.0002 0.0023 ± 0.0004 0.011 ± 0.0024* 
16 0.0017 ± 0.0003 0.0060 ± 0.0008** 0.027 ± 0.0024** 

C20:0-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.0008 ± 0.0003 0.0007 ± 0.0001 0.0012 ± 0.0005 
2 0.0009 ± 0.0002 0.0012 ± 0.0003 0.0020 ± 0.0002 
4 0.0006 ± 0.0001 0.0013 ± 0.0006 0.0038 ± 0.0009* 
8 0.0006 ± 0.0001 0.0020 ± 0.0005* 0.143 ± 0.14 
16 0.0011 ± 0.0000 0.0058 ± 0.0006** 0.013 ± 0.003** 

C22:0-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.0035 ± 0.0012 0.0035 ± 0.001 0.0059 ± 0.0012 
2 0.0037 ± 0.001 0.0053 ± 0.001* 0.012 ± 0.0016** 
4 0.0030 ± 0.001 0.0098 ± 0.004 0.032 ± 0.0084** 
8 0.0034 ± 0.0002 0.014 ± 0.0024** 0.279 ± 0.23 
16 0.0059 ± 0.001 0.048 ± 0.0060** 0.069 ± 0.011** 

C24:1-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.0065 ± 0.001 0.0058 ± 0.001 0.0079 ± 0.001 
2 0.0080 ± 0.003 0.0068 ± 0.014 0.015 ± 0.003 
4 0.0045 ± 0.001 0.0105 ± 0.001** 0.025 ± 0.001** 
8 0.0079 ± 0.001 0.024 ± 0.004** 0.082 ± 0.007** 
16 0.025 ± 0.004 0.071 ± 0.005* 0.15 ± 0.013** 

C24:0-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.0078 ± 0.001 0.0060 ± 0.0004 0.0067 ± 0.001 
2 0.0080 ± 0.001 0.011 ± 0.003 0.017 ± 0.004 
4 0.0056 ± 0.0004 0.020 ± 0.003* 0.025 ± 0.001** 
8 0.011 ± 0.001 0.053 ± 0.009** 0.074 ± 0.004** 
16 0.039 ± 0.005 0.22 ± 0.014** 0.13 ± 0.013** 

C26:1-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.00025 ± 0.0002 0.00016 ± 0.0002 0.00054 ± 0.0005 
2 0.00022 ± 0.0002 0.00023 ± 0.0002 0.00054 ± 0.0005 
4 0.00064 ± 0.0003 0.00060 ± 0.0004 0.0015 ± 0.001 
8 0.00073 ± 0.0004 0.0017 ± 0.001 0.0088 ± 0.001 
16 0.0041 ± 0.001 0.0080 ± 0.001 0.020 ± 0.003** 
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Total dhCers       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.093 ± 0.009 0.11 ± 0.005 0.15 ± 0.021 
2 0.13 ± 0.007 0.16 ± 0.017 0.33 ± 0.036* 
4 0.075 ± 0.004 0.17 ± 0.033* 0.42 ± 0.027** 
8 0.11 ± 0.008 0.35 ± 0.047** 1.73 ± 0.44** 
16 0.31 ± 0.032 1.44 ± 0.10** 3.82 ± 0.47** 

 
Sphingoid bases (pmol/µg PC)   
Sph       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.80 ± 0.10 1.00 ± 0.31 1.01 ± 0.33 
2 1.03 ± 0.32 0.85 ± 0.22* 0.92 ± 0.29 
4 0.63 ± 0.14 0.56 ± 0.14 0.62 ± 0.14 
8 0.40 ± 0.057 0.38 ± 0.064 0.41 ± 0.035 
16 0.43 ± 0.023 0.37 ± 0.027 0.45 ± 0.037 

dhSph       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.057 ± 0.017 0.068 ± 0.009 0.11 ± 0.032** 
2 0.062 ± 0.008 0.067 ± 0.007* 0.12 ± 0.015 
4 0.054 ± 0.012 0.064 ± 0.003 0.14 ± 0.016* 
8 0.064 ± 0.003 0.060 ± 0.009 0.51 ± 0.18* 
16 0.059 ± 0.005 0.12 ± 0.006** 1.90 ± 0.24** 

S1P       
Hours Control δT-13' 10 µM δT-13' 20 µM 

1 0.025 ± 0.007 0.019 ± 0.005 0.029 ± 0.008 
2 0.016 ± 0.006 0.015 ± 0.004 0.019 ± 0.003 
4 0.011 ± 0.002 0.0065 ± 0.001 0.012 ± 0.001 
8 0.014 ± 0.005 0.021 ± 0.006 0.014 ± 0.004 
16 0.013 ± 0.003 0.013 ± 0.002 0.015 ± 0.002 

 
Sphingomyelins (pmol/µg PC)   
C16:0-SM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 54.41 ± 4.37 56.25 ± 5.70 54.49 ± 6.22 
2 64.18 ± 6.12 55.41 ± 1.62 54.51 ± 2.77* 
4 51.09 ± 3.76 52.39 ± 2.37 40.89 ± 2.23 
8 64.19 ± 3.16 49.32 ± 5.61** 39.78 ± 2.80** 

16 100.55 ± 13.49 58.11 ± 7.22** 48.45 ± 5.62** 
C18:0-SM       
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Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.69 ± 0.068 0.69 ± 0.079 0.66 ± 0.092 
2 0.78 ± 0.079 0.68 ± 0.046 0.68 ± 0.062* 
4 0.67 ± 0.037 0.66 ± 0.030 0.54 ± 0.009** 
8 0.69 ± 0.025 0.59 ± 0.055* 0.53 ± 0.020** 

16 0.74 ± 0.078 0.58 ± 0.043** 0.54 ± 0.083** 
C20:0-SM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.57 ± 0.092 0.60 ± 0.095* 0.56 ± 0.11 
2 0.68 ± 0.089 0.62 ± 0.052 0.60 ± 0.068 
4 0.62 ± 0.051 0.66 ± 0.046 0.55 ± 0.017 
8 0.62 ± 0.029 0.57 ± 0.030 0.49 ± 0.040** 

16 0.63 ± 0.047 0.53 ± 0.027* 0.46 ± 0.064* 
C22:0-SM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 3.31 ± 0.87 3.31 ± 0.75 3.21 ± 0.71 
2 3.89 ± 0.73 3.56 ± 0.41 3.50 ± 0.52* 
4 2.84 ± 0.35 3.28 ± 0.49* 2.56 ± 0.29* 
8 2.73 ± 0.19 2.93 ± 0.32 2.23 ± 0.16* 

16 3.11 ± 0.19 3.00 ± 0.02 2.32 ± 0.41* 
C24:1-SM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 15.13 ± 3.31 14.55 ± 3.49 14.25 ± 3.49 
2 17.69 ± 3.23 15.92 ± 1.41 15.63 ± 2.12 
4 14.94 ± 3.03 15.76 ± 3.46 12.65 ± 2.28** 
8 12.66 ± 1.51 10.88 ± 1.47* 8.92 ± 1.22** 

16 13.11 ± 1.24 9.16 ± 0.86** 7.43 ± 1.15** 
C26:1-SM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.79 ± 0.19 0.75 ± 0.19 0.72 ± 0.19 
2 0.96 ± 0.15 0.82 ± 0.05 0.78 ± 0.07* 
4 0.98 ± 0.27 1.09 ± 0.29 0.89 ± 0.21 
8 0.76 ± 0.18 0.60 ± 0.14* 0.55 ± 0.13** 

16 0.74 ± 0.11 0.45 ± 0.04** 0.46 ± 0.11** 
Total SMs       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 74.90 ± 8.79 76.16 ± 10.25 73.90 ± 10.75 
2 88.18 ± 10.37 77.01 ± 3.10 75.69 ± 5.59* 
4 71.14 ± 5.94 73.84 ± 4.43 58.09 ± 0.88 
8 81.65 ± 1.86 64.89 ± 5.26** 52.50 ± 2.29** 

16 118.88 ± 15.07 71.82 ± 8.03** 59.64 ± 7.39** 
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Dihydrosphingomyelins (pmol/µg PC)   
C16:0-dhSM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 6.60 ± 0.38 6.43 ± 0.27 6.53 ± 0.53 
2 8.42 ± 1.63 7.60 ± 1.52** 7.59 ± 1.38* 
4 8.12 ± 0.75 8.85 ± 1.61 7.57 ± 1.28 
8 9.18 ± 1.04 9.68 ± 0.65 8.24 ± 0.91* 

16 9.49 ± 0.98 10.73 ± 1.03 10.08 ± 1.68 
C18:0-dhSM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.14 ± 0.010 0.15 ± 0.012 0.14 ± 0.018 
2 0.18 ± 0.027 0.17 ± 0.041 0.16 ± 0.027** 
4 0.29 ± 0.078 0.28 ± 0.077 0.24 ± 0.071 
8 0.26 ± 0.065 0.24 ± 0.044 0.22 ± 0.052 

16 0.74 ± 0.078 0.58 ± 0.043 0.54 ± 0.083 
C20:0-dhSM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.13 ± 0.017 0.14 ± 0.025 0.14 ± 0.031 
2 0.15 ± 0.015 0.14 ± 0.022 0.13 ± 0.020 
4 0.22 ± 0.018 0.22 ± 0.032 0.20 ± 0.027 
8 0.18 ± 0.035 0.18 ± 0.029 0.16 ± 0.037* 

16 0.13 ± 0.032 0.16 ± 0.034** 0.14 ± 0.035 
C22:0-dhSM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.37 ± 0.067 0.39 ± 0.038 0.37 ± 0.039 
2 0.47 ± 0.061 0.46 ± 0.069 0.44 ± 0.072 
4 0.69 ± 0.12 0.67 ± 0.10 0.61 ± 0.11 
8 0.49 ± 0.061 0.55 ± 0.078 0.49 ± 0.079 

16 0.32 ± 0.051 0.59 ± 0.098** 0.50 ± 0.14 
C24:0-dhSM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.55 ± 0.13 0.49 ± 0.071 0.48 ± 0.071 
2 0.71 ± 0.080 0.61 ± 0.081* 0.64 ± 0.12 
4 1.05 ± 0.58 1.23 ± 0.71 0.89 ± 0.46 
8 0.46 ± 0.13 0.50 ± 0.086 0.40 ± 0.11 

16 0.45 ± 0.069 0.81 ± 0.12** 0.55 ± 0.18 
C26:0-dhSM       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 0.07 ± 0.007 0.06 ± 0.004* 0.06 ± 0.006 
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2 0.08 ± 0.011 0.08 ± 0.020 0.08 ± 0.017 
4 0.13 ± 0.061 0.13 ± 0.071 0.12 ± 0.057 
8 0.05 ± 0.024 0.05 ± 0.016 0.05 ± 0.014 

16 0.04 ± 0.010 0.12 ± 0.084 0.04 ± 0.013 
Total dhSMs       

Hours Control δT-13' 10 µM δT-13' 20 µM 
1 7.87 ± 0.61 7.65 ± 0.22 7.73 ± 0.51 
2 10.02 ± 1.76 9.06 ± 1.73** 9.03 ± 1.61* 
4 10.50 ± 1.01 11.38 ± 2.04 9.64 ± 1.40 
8 10.63 ± 1.30 11.20 ± 0.78 9.56 ± 1.12* 

16 10.58 ± 1.15 12.57 ± 1.29 11.49 ± 2.08 
 
 
Table 3.2 Effect of δT-13’-COOH on sphingolipid metabolism in MCF-7 cells. MCF-7 
cells were treated with 10 or 20 µM δT-13’-COOH for 4 and 8 h. The amount of each 
sphingolipid was determined by LC-MS/MS. Data are mean ± SEM of 2 independent 
experiments. 
 

Ceramides (pmol/µg PC)   

C16:0-Cer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 1.49 ± 0.082 1.30 ± 0.17 1.56 ± 0.006 
8 1.48 ± 0.14 1.23 ± 0.007 2.23 ± 0.23 

C18:0-Cer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.10 ± 0.015 0.084 ± 0.0004 0.086 ± 0.005 
8 0.094 ± 0.001 0.071 ± 0.001 0.11 ± 0.001 

C20:0-Cer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.020 ± 0.0018 0.021 ± 0.0005 0.026 ± 0.0014 
8 0.018 ± 0.0006 0.022 ± 0.0014 0.033 ± 0.0023 

C22:0-Cer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.056 ± 0.024 0.070 ± 0.051 0.068 ± 0.048 
8 0.060 ± 0.038 0.079 ± 0.057 0.11 ± 0.096 

C24:1-Cer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 13.19 ± 1.19 12.21 ± 1.59 18.75 ± 1.51 
8 13.57 ± 1.71 12.60 ± 1.26 25.52 ± 3.41 
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C24:0-Cer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 2.34 ± 0.31 3.59 ± 0.24 2.56 ± 0.026 
8 2.34 ± 0.20 5.34 ± 0.092 4.00 ± 0.082 

C26:1-Cer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.26 ± 0.10 0.41 ± 0.031 0.45 ± 0.019 
8 0.27 ± 0.025 0.51 ± 0.0001 0.74 ± 0.035 

Total Cers       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 17..45 ± 1.67 17.68 ± 2.08 23.51 ± 1.56 
8 17.84 ± 2.12 19.85 ± 1.41 32.75 ± 3.69 

 

Dihydroceramides (pmol/µg PC)   

C16:0-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.093 ± 0.035 0.12 ± 0.027 0.14 ± 0.007 
8 0.11 ± 0.022 0.13 ± 0.030 0.29 ± 0.018 

C18:0-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.0019 ± 0.0005 0.0028 ± 0.0007 0.004 ± 0.0006 
8 0.0022 ± 0.0006 0.0036 ± 0.0009 0.0029 ± 0.0001 

C22:0-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 
0.00051 ± 

0.0003 0.0028 ± 0.0016 0.0039 ± 0.0012 
8 0.0019 ± 0.0004 0.0044 ± 0.00001 0.0091 ± 0.0009 

C24:1-dhCer       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.085 ± 0.0070 0.096 ± 0.018 0.24 ± 0.062 
8 0.055 ± 0.0067 0.11 ± 0.036 0.41 ± 0.088 

Total dhCers       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.18 ± 0.029 0.22 ± 0.011 0.39 ± 0.053 
8 0.16 ± 0.017 0.25 ± 0.0049 0.71 ± 0.071 

 

Sphingoid bases (pmol/µg PC)   



138 

 

 

Sph       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.51 ± 0.11 0.43 ± 0.017 0.49 ± 0.11 
8 0.47 ± 0.0036 0.40 ± 0.045 0.46 ± 0.064 

S1P       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.010 ± 0.0004 0.016 ± 0.008 0.013 ± 0.001 
8 0.013 ± 0.005 0.010 ± 0.0001 0.012 ± 0.004 

 

Sphingomyelins (pmol/µg PC)   

C16:0-SM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 32.77 ± 4.04 31.70 ± 0.15 23.85 ± 0.34 
8 34.30 ± 0.38 30.49 ± 0.09 23.92 ± 1.44 

C18:0-SM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 1.73 ± 0.33 1.73 ± 0.13 1.29 ± 0.10 
8 1.79 ± 0.11 1.62 ± 0.17 1.25 ± 0.22 

C20:0-SM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.90 ± 0.18 0.93 ± 0.056 0.60 ± 0.019 
8 0.92 ± 0.023 0.86 ± 0.11 0.62 ± 0.094 

C22:0-SM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 2.09 ± 0.67 2.06 ± 0.25 1.30 ± 0.068 
8 1.92 ± 0.13 2.18 ± 0.30 1.43 ± 0.34 

C24:1-SM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 14.23 ± 3.11 12.96 ± 0.0033 8.88 ± 0.32 
8 12.66 ± 0.61 11.89 ± 0.13 9.36 ± 0.66 

C26:1-SM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 3.26 ± 0.88 2.58 ± 0.016 1.72 ± 0.12 
8 2.58 ± 0.12 2.51 ± 0.028 1.73 ± 0.13 

Total SMs       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 54.98 ± 9.21 51.96 ± 0.60 37.64 ± 0.082 
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8 54.17 ± 0.85 49.55 ± 0.64 38.35 ± 2.87 
 

Dihydrosphingomyelins (pmol/µg PC)   

C16:0-dhSM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 3.84 ± 0.39 4.72 ± 0.027 3.30 ± 0.14 
8 4.38 ± 0.14 4.96 ± 0.14 3.85 ± 0.21 

C18:0-dhSM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.24 ± 0.040 0.28 ± 0.021 0.18 ± 0.006 
8 0.26 ± 0.010 0.30 ± 0.033 0.18 ± 0.026 

C20:0-dhSM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.18 ± 0.055 0.21 ± 0.020 0.12 ± 0.017 
8 0.18 ± 0.0005 0.23 ± 0.035 0.12 ± 0.030 

C22:0-dhSM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.16 ± 0..054 0.18 ± 0.021 0.10 ± 0.0026 
8 0.13 ± 0.0033 0.21 ± 0.024 0.12 ± 0.023 

C24:0-dhSM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.096 ± 0.029 0.11 ± 0.013 0.066 ± 0.0021 
8 0.080 ± 0.0017 0.13 ± 0.016 0.076 ± 0.015 

C26:0-dhSM       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 0.027 ± 0.0084 0.032 ± 0.0045 0.016 ± 0.0023 
8 0.021 ± 0.0003 0.031 ± 0.0017 0.020 ± 0.0057 

Total dhSMs       
Hours Control δT-13' 10 µM δT-13' 20 µM 

4 4.54 ± 0.58 5.55 ± 0.052 3.79 ± 0.12 
8 5.04 ± 0.13 5.86 ± 0.25 4.37 ± 0.31 

 
 
Table 3.3 Effect of δTE-13’-COOH on sphingolipid metabolism in HCT-116 cells. HCT-
116 cells were treated with 10 or 20 µM δTE-13’-COOH for 8 and 16 h. The amount of 
each sphingolipid was determined by LC-MS/MS. Data are mean ± SEM of 2 
independent experiments. 
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Ceramides (pmol/µg PC)   
C16:0-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 2.43  ± 0.036 1.79 ± 0.0047 2.20 ± 0.051 

16 2.82  ± 0.080 1.69 ± 0.070 3.04 ± 0.26 
C18:0-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 0.043 ± 0.003 0.035 ± 0.001 0.050 ± 0.002 

16 0.039 ± 0.001 0.030 ± 0.002 0.066 ± 0.010 
C20:0-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 0.025 ± 0.001 0.021 ± 0.002 0.052 ± 0.001 

16 0.027 ± 0.001  0.018 ± 0.002 0.064 ± 0.012 
C22:0-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 0.22 ± 0.016 0.24 ± 0.0004 0.49 ± 0.005 

16 0.23 ± 0.005 0.21 ± 0.001 0.55 ± 0.049 
C24:1-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 2.58 ± 0.27 1.92 ± 0.049 2.46 ± 0.12 

16 2.68 ± 0.029 1.49 ± 0.010 2.26 ± 0.15 
C24:0-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 2.64 ± 0.14 3.42 ± 0.22 3.12 ± 0.30 

16 3.40 ± 0.007 4.15 ± 0.026 3.22 ± 0.26 
C26:1-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 0.21 ± 0.007 0.17 ± 0.008 0.21 ± 0.014 

16 0.27 ± 0.008 0.16 ± 0.008 0.21 ± 0.004 
C26:0-Cer       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 0.16 ± 0.030 0.16 ± 0.003 0.16 ± 0.001 

16 0.23 ± 0.001 0.19 ± 0.003 0.13 ± 0.011 
Total Cers       

Hours Control δTE-13' 10 µM δTE-13' 20 µM 
8 8.31 ± 0.49 7.76 ± 0.28 8.74 ± 0.48 

16 9.70 ± 0.042 7.94 ± 0.098 9.55 ± 0.24 
 
Dihydroceramides (pmol/µg PC)   
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C16:0-dhCer       
Hours Control δTE-13' 10 µM δTE-13' 20 µM 

8 0.19 ± 0.02 0.38 ± 0.03 0.85 ± 0.01 
16 0.42 ± 0.002 0.52 ± 0.02 1.86 ± 0.22 

C18:0-dhCer       
Hours Control δTE-13' 10 µM δTE-13' 20 µM 

8 0.0011 ± 0.0001 0.0017 ± 0.0004 0.0035 ± 0.00003 
16 0.0020 ± 0.0006 0.0020 ± 0.0001 0.0087 ± 0.0005 

C20:0-dhCer       
Hours Control δTE-13' 10 µM δTE-13' 20 µM 

8 0.0010 ± 0.0004 0.0010 ± 0.0002 0.0047 ± 0.0019 
16 0.0004 ± 0.0001 0.0013 ± 0.0002 0.0086 ± 0.0009 

C22:0-dhCer       
Hours Control δTE-13' 10 µM δTE-13' 20 µM 

8 0.0043 ± 0.0011 0.0076 ± 0.0013 0.022 ± 0.0019 
16 0.0080 ± 0.0002 0.013 ± 0.0010 0.053 ± 0.0029 

C24:1-dhCer       
Hours Control δTE-13' 10 µM δTE-13' 20 µM 

8 0.016 ± 0.001 0.035 ± 0.001 0.076 ± 0.010 
16 0.043 ± 0.001 0.050 ± 0.005 0.14 ± 0.001 

C24:0-dhCer       
Hours Control δTE-13' 10 µM δTE-13' 20 µM 

8 0.028 ± 0.007 0.083 ± 0.011 0.086 ± 0.007 
16 0.066 ± 0.005 0.16 ± 0.011 0.21 ± 0.019 

Total dhCers       
Hours Control δTE-13' 10 µM δTE-13' 20 µM 

8 0.24 ± 0.033 0.51 ± 0.040 1.04 ± 0.007 
16 0.54 ± 0.003 0.74 ± 0.018 2.28 ± 0.20 

 
Sphingoid bases (pmol/µg PC)   
Sph       

Hours Control δTE-13' 10µM δTE-13' 20µM 
8 0.52 ± 0.067 0.42 ± 0.009 0.39 ± 0.097 
16 0.37 ± 0.043 0.35 ± 0.008 0.39 ± 0.063 

dhSph       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.049 ± 0.006 0.054 ± 0.003 0.12 ± 0.00002 
16 0.043 ± 0.005 0.074 ± 0.004 0.15 ± 0.013 

S1P       
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Hours Control δTE-13' 10µM δTE-13' 20µM 
8 0.025 ± 0.007 0.025 ± 0.001 0.019 ± 0.003 
16 0.013 ± 0.007 0.019 ± 0.002 0.011 ± 0.004 

 
Sphingomyelins (pmol/µg PC)   
C16:0-SM       

Hours Control δTE-13' 10µM δTE-13' 20µM 
8 55.88 ± 8.96 54.47 ± 4.88 44.53 ± 0.39 
16 71.01 ± 2.01 60.66 ± 3.38 50.29 ± 2.19 

C18:0-SM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.69 ± 0.16 0.70 ± 0.092 0.58 ± 0.037 
16 0.59 ± 0.060 0.65 ± 0.066 0.58 ± 0.043 

C20:0-SM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.60 ± 0.21 0.63 ± 0.19 0.53 ± 0.085 
16 0.44 ± 0.037 0.57 ± 0.084 0.54 ± 0.094 

C22:0-SM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 2.52 ± 0.83 2.85 ± 0.74 2.08 ± 0.25 
16 1.99 ± 0.25 2.97 ± 0.29 2.55 ± 0.27 

C24:1-SM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 9.52 ± 2.93 9.30 ± 2.02 6.70 ± 0.28 
16 7.98 ± 0.68 8.85 ± 0.66 6.65 ± 0.29 

C26:1-SM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.55 ± 0.22 0.47 ± 0.14 0.33 ± 0.028 
16 0.39 ± 0.049 0.43 ± 0.033 0.33 ± 0.038 

Total SMs       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 75.64 ± 15.77 74.35 ± 9.95 58.38 ± 0.62 
16 86.85 ± 3.84 81.38 ± 5.36 65.20 ± 1.17 

 
Dihydrosphingomyelins (pmol/µg PC)   
C16:0-dhSM       

Hours Control δTE-13' 10µM δTE-13' 20µM 
8 6.71 ± 1.44 8.80 ± 1.08 7.44 ± 0.32 
16 7.89 ± 1.63 13.28 ± 0.61 10.26 ± 0.60 
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C18:0-dhSM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.14 ± 0.045 0.17 ± 0.034 0.15 ± 0.009 
16 0.10 ± 0.019 0.18 ± 0.014 0.19 ± 0.023 

C20:0-dhSM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.11 ± 0..037 0.11 ± 0.029 0.10 ± 0.020 
16 0.064 ± 0.011 0.14 ± 0.023 0.15 ± 0.026 

C22:0-dhSM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.31 ± 0.12 0.37 ± 0.14 0.27 ± 0.052 
16 0.20 ± 0.039 0.60 ± 0.11 0.50 ± 0.080 

C24:0-dhSM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.37 ± 0.17 0.40 ± 0.15 0.24 ± 0.035 
16 0.26 ± 0.061 0.78 ± 0.14 0.48 ± 0.018 

C26:0-dhSM       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 0.030 ± 0.013 0.023 ± 0.0084 0.017 ± 0.0068 
16 0.016 ± 0.0050 0.033 ± 0.0008 0.023 ± 0.0013 

Total dhSMs       
Hours Control δTE-13' 10µM δTE-13' 20µM 

8 8.55 ± 2.13 10.82 ± 1.68 8.90 ± 0.55 
16 9.21 ± 1.88 16.10 ± 1.00 12.44 ± 0.80 

 
 
Table 3.4 Effect of δT-13’-COOH on de novo sphingolipid biosynthesis in HCT-116 
cells. HCT-116 cells were treated with either 400 µM 13C3, 15N-labeled L-serine alone as 
control or with a combination of 400 µM 13C3, 15N-labeled L-serine and 20 µM δT-13’-
COOH for 0.5, 1, 1.5, 2, and 4 h. The amount of each labeled de novo sphingolipid was 
determined by LC-MS/MS. Data are mean ± SEM of 3 independent experiments. *p < 
0.05, **p < 0.01, significant difference between control and δT-13’-COOH-treated cells. 
 

Ceramides (pmol/µg PC) 
De novo C16:0-Cer   

Hours Control δT-13' 20 µM 
0.5 0.081 ± 0.016 0.023 ± 0.010** 
1 0.26 ± 0.015 0.10 ± 0.0074** 

1.5 0.33 ± 0.046 0.18 ± 0.036** 
2 0.40 ± 0.059 0.25 ± 0.044** 
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4 0.63 ± 0.038 0.41 ± 0.010** 

De novo C24:1-Cer   
Hours Control δT-13' 20 µM 

0.5 0.17 ± 0.063 0.069 ± 0.038** 
1 0.40 ± 0.11 0.22 ± 0.060** 

1.5 0.53 ± 0.19 0.38 ± 0.16** 
2 0.65 ± 0.19 0.53 ± 0.18** 
4 0.72 ± 0.077 0.62 ± 0.041 

De novo C24:0-Cer   
Hours Control δT-13' 20 µM 

0.5 0.13 ± 0.052 0.048 ± 0.020** 
1 0.31 ± 0.064 0.13 ± 0.023** 

1.5 0.38 ± 0.12 0.22 ± 0.079** 
2 0.51 ± 0.15 0.32 ± 0.078** 
4 0.75 ± 0.021 0.54 ± 0.038** 

De novo total Cers   
Hours Control δT-13' 20 µM 

0.5 0.37 ± 0.13 0.14 ± 0.068** 
1 0.97 ± 0.15 0.45 ± 0.088** 

1.5 1.25 ± 0.36 0.78 ± 0.28** 
2 1.56 ± 0.39 1.11 ± 0.28** 
4 2.09 ± 0.071 1.58 ± 0.068* 

 

Dihydroceramides (pmol/µg PC) 
De novo C16:0-dhCer   

Hours Control δT-13' 20 µM 
0.5 0.013 ± 0.0029 0.0058 ± 0.0014* 
1 0.028 ± 0.0086 0.028 ± 0.010 

1.5 0.029 ± 0.0038 0.045 ± 0.0024* 
2 0.030 ± 0.0059 0.08 ± 0.0094** 
4 0.056 ± 0.014 0.24 ± 0.065** 

De novo total dhCers   
Hours Control δT-13' 20 µM 

0.5 0.013 ± 0.0029 0.0058 ± 0.0014* 
1 0.028 ± 0.0086 0.028 ± 0.010 

1.5 0.029 ± 0.0038 0.045 ± 0.0024* 
2 0.030 ± 0.0059 0.080 ± 0.0094** 
4 0.079 ± 0.025 0.32 ± 0.11** 
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Sphingomyelins (pmol/µg PC) 
De novo C16:0-SM   

Hours Control δT-13' 20 µM 
0.5 0.56 ± 0.049 0.47 ± 0.045 
1 0.77 ± 0.034 0.55 ± 0.041* 

1.5 1.05 ± 0.078 0.67 ± 0.092** 
2 1.52 ± 0.11 0.99 ± 0.080** 
4 2.00 ± 0.66 0.89 ± 0.12** 

De novo C18:0-SM   
Hours Control δT-13' 20 µM 

0.5 0.017 ± 0.0043 0.026 ± 0.0092 
1 0.026 ± 0.0077 0.023 ± 0.0078 

1.5 0.027 ± 0.0078 0.022 ± 0.0046 
2 0.031 ± 0.0034 0.031 ± 0.0057 
4 0.030 ± 0.0038 0.026 ± 0.0014 

De novo C24:1-SM   
Hours Control δT-13' 20 µM 

0.5 0.12 ± 0.016 0.11 ± 0.015 
1 0.16 ± 0.028 0.11 ± 0.011** 

1.5 0.19 ± 0.025 0.12 ± 0.007** 
2 0.26 ± 0.031 0.17 ± 0.018** 
4 0.36 ± 0.10  0.17 ± 0.029** 

De novo total SMs   
Hours Control δT-13' 20 µM 

0.5 0.71 ± 0.058 0.62 ± 0.061 
1 0.97 ± 0.056 0.69 ± 0.025* 

1.5 1.31 ± 0.052 0.84 ± 0.078** 
2 1.85 ± 0.058 1.22 ± 0.062** 
4 2.59 ± 0.79 1.18 ± 0.15** 

 

Dihydrosphingomyelins (pmol/µg PC) 
De novo C16:0-dhSM   

Hours Control δT-13' 20 µM 
0.5 0.76 ± 0.0084 0.077 ± 0.011 
1 0.11 ± 0.012 0.090 ± 0.0031 

1.5 0.14 ± 0.011 0.12 ± 0.013 
2 0.17 ± 0.011 0.20 ± 0.014 
4 0.23 ± 0.040 0.25 ± 0.025 
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De novo total dhSMs   
Hours Control δT-13' 20 µM 

0.5 0.085 ± 0.010 0.086 ± 0.015 
1 0.12 ± 0.0053 0.10 ± 0.0056 

1.5 0.16 ± 0.0042 0.13 ± 0.012 
2 0.19 ± 0.016 0.22 ± 0.0034 
4 0.26 ± 0.050 0.29 ± 0.026 

 
 
 
 

3.5 Discussion 

 

We show that vitamin E long-chain metabolites, δT- and δTE-13’-COOH, inhibit 

the proliferation and induce apoptosis and autophagy in human colon, breast and 

pancreatic cancer cells. In these anticancer effects, δT-13’-COOH appears to be more 

potent than δTE-13’-COOH, and both 13’-COOHs are much stronger than tocopherols 

and slightly stronger than γTE. Using a lipidomic approach with LC-MS/MS, we 

demonstrate for the first time that 13’-COOHs profoundly modulate sphingolipid 

metabolism. Specifically, 13’-COOH treatment quickly increased dhCers and dhSph, 

subsequently enhanced Cers and decreased SMs. The importance of sphingolipid 

modulation in 13’-COOH-induced anticancer effects is supported by three lines of 

evidence. First, 13’-COOH-caused increase of dhCers and dhSph took place prior to any 

manifestation of cell death, and subsequent elevation of Cers occurred prior to and 

coinciding with LC3-II increase and PARP cleavage. Secondly, dhCers, dhSph and Cers, 

which are enhanced by 13’-COOHs, have been shown to induce antiproliferation, cell 

stress and death in different types of cancer cells (Jiang et al., 2012; Jiang et al., 2004; 
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Zheng et al., 2006). Furthermore, chemically blocking the increase of dhCers and dhSph 

by myriocin or Cers by suppressing SM hydrolysis partially reversed 13’-COOH-

mediated cell death.   

We identify DEGS in the de novo synthesis of sphingolipid pathway as an initial 

inhibitory target by 13’-COOHs based on their temporal modulation of endogenous and 

newly synthesized sphingolipids. Specifically, in the study with 13C3, 15N-labeled L-serine 

for tracing newly-made sphingolipids, 13’-COOHs caused rapid increase of dhCers, but 

profoundly decreased Cers like C16:0- and C24-Cers and SMs through de novo synthesis. 

This observation strongly suggests that DEGS-catalyzed conversion of dhCers to Cers is 

compromised. Consistently, the similar pattern of sphingolipid changes was reported in 

DEGS knockout model (Ruangsiriluk et al., 2012; Siddique et al., 2013). We further 

show that despite having no impact on DEGS protein expression, δT-13’-COOH 

inhibited the enzyme activity in an in vitro assay. On the other hand, we did not observe 

inhibition of DEGS when rat’s microsome was used, which may be caused by limited 

access of 13’-COOHs to microsomal membrane under cell-free condition possibly due to 

lack of proper transportation.   

DEGS was first proposed as a potential inhibitory target for γT that induced 

intracellular accumulation of dhCers and dhSph without changing total Cers in prostate 

cancer cells (Jiang et al., 2004). Similar effects on sphingolipids were observed by other 

known anticancer agents including γTE (Gopalan et al., 2012; Jiang et al., 2012), 

resveratrol (Signorelli et al., 2009), fenretinide (or 4-HPR) (Rahmaniyan et al., 2011) and 

celecoxib, a selective COX-2 inhibitor (Schiffmann et al., 2009b). Resveratrol and 

celecoxib have further been demonstrated to inhibit DEGS enzyme activity in cell 
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homogenates or intact cells, respectively (Schiffmann et al., 2009b; Signorelli et al., 

2009). Recently, DEGS activity was found to be inhibited by hydrogen peroxide 

(Idkowiak-Baldys et al., 2010) or during hypoxia (Devlin et al., 2011). Interestingly, 

phenolic compounds are known to have prooxidant effects including presumably 

increasing hydrogen peroxide in vitro and the prooxidant activity can be counteracted by 

N-acetylcysteine (NAC) (Babich et al., 2009; Fujisawa et al., 2004).  In our studies, we 

found that NAC did not reverse 13’-COOHs’-induced cell death (data not shown) or γTE-

induced modulation of sphingolipids (Jang Y and Jiang Q, unpublished data). We 

therefore conclude that the modulation of dhCers and inhibition of DEGS is not likely 

caused by prooxidant activity, which is also supported by the inhibition of DEGS by 

celecoxib that is not a prooxidant.  

The use of LC-MS/MS approach revealed that 13’-COOHs have differential 

effect on different forms of Cers. For instance, compared with controls, 13’-COOH 

initially decreased C16:0-Cer but enhanced it after longer treatment, while caused a 

continuous increase of C18:0-Cer. This is an intriguing observation because recent studies 

demonstrate that endogenous Cers with specific fatty acid chain lengths have distinct or 

sometimes opposed roles in proliferation and death (Hannun and Obeid, 2011; Senkal et 

al., 2010; Sentelle et al., 2012). For instance, C16:0-Cer and C18:0-Cer generated by Cer 

synthases 5/6 (CerS5/6) and CerS1 have been shown to have anti- and pro-apoptosis 

properties (Senkal et al., 2010), respectively. Besides proapoptotic, C18:0-Cer has been 

found to induce lethal autophagy (Sentelle et al., 2012). The increase of C18:0-Cer 

therefore may contribute to 13’-COOH-caused apoptosis and autophagy. In addition, the 

distinct effect on different Cer species suggests that 13’-COOH may have different 
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impact on CerS1 or CerS5/6 in addition to inhibition of DEGS. This is supported by an 

increase of dhSph, a key substrate of CerSs. Further investigation should be conducted to 

characterize the effect of 13’-COOH on these Cer synthases. 

 The observation that 13’-COOHs increased Cers and decreased SM during 

prolonged treatment is likely resulted from involvement of multi-pathways and enzymes.  

Cellular levels of Cers and SMs are determined by the balance between de novo synthesis 

and SM hydrolysis via SMases (Fig. 3.7A). Cers are de novo synthesized in the ER and 

then converted to SMs by SM synthases (SMS) in the Golgi. SMs are the most abundant 

sphingolipids located in membranes and can be hydrolyzed to regenerate Cers by acid or 

neutral SMases (Marchesini and Hannun, 2004). In the current study, given that 13’-

COOHs inhibited DEGS and therefore led to decrease in de novo synthesized Cers, we 

reason that an increase of Cers in the prolonged treatment is likely caused by SMase-

mediated SM hydrolysis, which resulted in further decrease of SMs in addition to the 

reduced synthesis via the de novo pathway. Acid SMases are known to be present in 

lysosomes and the outer membrane leaflet and have been shown to be activated by 

TNFα, oxidants, and UV radiation (Henry et al., 2013; Marchesini and Hannun, 2004; 

Zhang et al., 2001). Neutral SMases are found in the inner leaflet of the bilayer (Hannun 

and Obeid, 2008), and are stimulated by serum starvation (Jayadev et al., 1995), oxidative 

stress (Marchesini and Hannun, 2004), treatment of vitamin D (Okazaki et al., 1994) and 

curcumin (Abdel Shakor et al., 2014). Neutral SMase activation was also a necessary 

signaling event for the TNF-induced human MCF-7 breast cancer cell death (Luberto et 

al., 2002). Here we found that co-treatment with neutral SMase inhibitor GW4869 but not 

an acid SMase inhibitor significantly counteracted 13’-COOHs-induced cancer cell death, 
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suggesting that neutral SMase-catalyzed SM hydrolysis may be involved. However, we 

cannot completely rule out the possibility that SMS was inhibited by 13’-COOHs so that 

Cers were accumulated with simultaneous decrease of SMs. 

Our finding that 13’-COOHs have potent anti-proliferation effect and induce cell 

death in various types of cancer cells has physiological implications. Previous studies 

have demonstrated that γT and mixed tocopherols are effective in suppression of colon 

tumorigenesis in preclinical mouse models (Jiang et al., 2013; Ju et al., 2009; Newmark 

et al., 2006). Interestingly, 13’-COOHs have been identified as a predominant fecal 

excreting vitamin E metabolite and found at relatively high levels in feces of mice fed γT 

or δT supplementation (Bardowell et al., 2012a; Bardowell et al., 2012b; Jiang et al., 

2013). Since 13’-COOHs appear to be much stronger than un-metabolized tocopherols in 

induction of death in colon cancer cells, 13’-COOHs likely contribute to the anticancer 

effects of tocopherol supplements against colon cancer in vivo. Furthermore, given the 

anticancer and anti-inflammatory activities possessed by 13’-COOHs, these compounds 

are potentially excellent agents for chemoprevention. Consistently, our animal studies 

showed that δTE-13’-COOH effectively attenuated DSS-caused colon inflammation and 

AOM/DSS-induced tumor development in mice, which mimic colitis and colitis-

promoted colon cancer, respectively.   

In summary, we have demonstrated for the first time that 13’-COOHs, long-chain 

metabolites of vitamin E, induce apoptosis and autophagy by modulating sphingolipids in 

various types of cancer cells. Our results indicate that 13’-COOHs initially targets DEGS 

and subsequently activate SM hydrolysis possibly via neutral SMase during cell death 

process. This anticancer activity together with dual inhibition of COXs and 5-LOX 
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strongly suggest that 13’-COOHs likely play significant roles in the chemoprevention 

effect by vitamin E forms in vivo and that long-chain carboxychromanols may be novel 

preventative and therapeutic agents against cancer. 
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CHAPTER 4. TARGETING SPHINGOLIPID METABOLISM FOR THE 
ANTICANCER EFFECTS OF VARIOUS CHEMOPREVENTIVE COMPOUNDS 

4.1 Abstract 

 

Phytochemicals have been shown to exert anticancer activities, but the underlying 

mechanisms; in particular, the first important target has not been completely identified 

yet. We have earlier shown that specific vitamin E forms, phenolic compounds in various 

classes of phytochemicals, and 13’-carboxychromanols, long-chain vitamin E metabolites 

induced cancer cell death by modulation of sphingolipid metabolism as an initial primary 

target. In this study, we investigated whether other chemopreventive compounds 

including representative phytochemicals (curcumin, resveratrol, epigallocatechin gallate 

(EGCG), quercetin, sulforaphane), ER stress inducers (dithiothreitol, thapsigargin), and 

chemotherapeutic drugs (doxorubicin, camptothecin) also show anticancer effects by 

modulation of sphingolipid metabolism using a sphingolipidomic analysis via employing 

liquid chromatography tandem mass spectrometry (LC-MS/MS) in human colon cancer 

HCT-116 cells. We show that all the tested compounds modulated sphingolipid 

metabolism in HCT-116 cells. Specifically, while the effects of individual compounds on 

different Ceramide (Cer) species with distinct chain-length of fatty acyl-CoA were 

different, all tested compounds increased the levels of dihydroceramides (dhCers) 

compared with controls. For instance, curcumin increased C24-Cers, but decreased C16:0-
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Cer, and resveratrol and DTT decreased the levels of all different species of Cers. On the 

other hand, while sulforaphane, quercentin, thapsigargin, doxorubicin and camptothecin 

increased all Cers, EGCG did not affect on the Cer levels during our tested treatment 

times. Moreover, we found that curcumin and quercetin significantly inhibited DEGS 

enzyme activities. Interestingly, these changes in sphingolipid metabolism by the tested 

compounds occurred quickly and prior to any manifestation of cell death. These data 

demonstrated that modulation of sphingolipid metabolism might be a general mechanism 

for the anticancer effects of various chemopreventive compounds against cancer, and 

inhibition of DEGS enzyme might be the initial primary target of their anticancer actions. 

 

4.2 Introduction 

 

Colon cancer is one of the leading causes of cancer-related deaths in the United 

States (Siegel et al., 2015). Since there are no effective treatment for advanced cancer, 

chemoprevention becomes a promising strategy to reduce cancer-caused death. 

Chemoprevention against cancer includes antiproliferation and induction of death in 

malignant cells, and therefore stops or delays the onset of metastasis. Epidemiological 

studies have consistently shown that intake of high levels of fruits and vegetables is 

inversely associated with cancer incidence (Block et al., 1992; Steinmetz and Potter, 

1996). Recently, numerous dietary plant phytochemicals have been extensively studied 

and have exhibited cancer preventive activities through modulation of multiple signaling 

pathways and proteins, which are involved in cellular proliferation, differentiation, and 

apoptosis (Johnson, 2007; Lee et al., 2011; Surh, 2003). However, the underlying 
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mechanisms especially the first primary target of their anticancer effects is not 

understood yet. 

 Cellular metabolism, including sphingolipid metabolism, is emerging as 

promising targets as sphingolipids are closely associated with cell survival and death 

(Hannun and Obeid, 2008; Ryland et al., 2011; Zheng et al., 2006). Sphingolipids are 

structural components of cell membranes and play important roles in signal transduction. 

De novo sphingolipid biosynthesis starts in the endoplasmic reticulum with the 

condensation of palmitoyl-CoA and serine into 3-ketosphinganine by serine 

palmitoyltransferase, which rapidly reduced to dihydrosphingosine (dhSph) by 3-

ketosphinganine reductase. A family of (dihydro)ceramide synthases (CerSs) attached 

fatty acyl-CoA with variable chain lengths to dhSph to generate the corresponding 

dihydroceramide (dhCer) subspecies. DhCer desaturase (DEGS) introduces a 4,5-trans 

double bond in dhCer, thus generating ceramide (Cer). The Cer is transported to the 

Golgi apparatus to generate more complex sphingolipids such as glycosyl-, or galactosyl-

Cers and sphingomyelin (SM) by the actions of enzymes glucosyl-Cer synthase, Cer 

galactosyltransferase, or SM synthases, respectively (Hannun and Obeid, 2008). 

 DhCers were believed to be a non-signaling molecule and an inactive precursor of 

Cer, which is a well-known sphingolipid metabolite, especially involved in the regulation 

of apoptosis (Kolesnick, 2002; Radin, 2001; Woodcock, 2006). However, the potential 

effectiveness of dhCers has become recognized with the development of the new 

technology, LC-MS/MS, which can identify and distinguish the different species of Cer 

and dhCer. Since then, several recent studies reported that the increase of dhCers is 

related to the induction of cell cycle arrest (Kraveka et al., 2007), apoptosis (Gopalan et 
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al., 2012; Jiang et al., 2012; Stiban et al., 2006), and autophagy (Jiang et al., 2012; 

Signorelli et al., 2009; Zheng et al., 2006), and some compounds and environmental 

factors such as vitamin E forms (γT and γTE) (Gopalan et al., 2012; Jiang et al., 2012; 

Jiang et al., 2004), fenretinide (Rahmaniyan et al., 2011), resveratrol (Signorelli et al., 

2009), celecoxib (Schiffmann et al., 2009b), oxidative stress (Idkowiak-Baldys et al., 

2010), and hypoxia (Devlin et al., 2011) are known to induce accumulation of 

intracellular dhCers. In addition, the regulation of DEGS, an enzyme that converts dhCer 

into Cer, thus controls the levels of each sphingolipid metabolite became important, as 

genetic or chemical inhibition of DEGS was reported to induce accumulation of dhCer 

(Kraveka et al., 2007; Ruangsiriluk et al., 2012; Siddique et al., 2013). 

We have previously shown that γTE and 13’-carboxychromanol, a long-chain 

vitamin E metabolite, induced colon cell death by inhibition of DEGS as an initial target, 

resulting in the accumulation of intracellular dhCers (Jang Y and Jiang Q, unpublished 

data). Therefore, the objectives of this study were to investigate whether like vitamin E 

forms, other chemopreventive compounds also modulate sphingolipid metabolism as a 

general pathway, and to determine whether this modulation is an initial primary target for 

their anticancer activities. Here, we demonstrated that various chemopreventive 

compounds (Fig. 4.1) including representative phytochemicals (curcumin, resveratrol, 

epigalloatecin gallate (EGCG), quercetin, sulforaphane), endoplasmic reticulum (ER) 

stress inducers (dithiothreitol (DTT), thapsigargin), and chemotherapeutic drugs 

(doxorubicin, camptothecin) induced increases of dhCers and modulation of Cers by 

interrupting de novo sphingolipid metabolism as their initial primary target. 
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Figure 4.1 The structures of (A) representative phytochemicals, (B) ER stress inducers 
and (C) cancer chemotherapeutic drugs. (A) Representative phytochemicals: curcumin, 
resveratrol, quercetin, EGCG, and sulforaphane. (B) ER stress inducers: DTT and 
thapsigargin. (C) Cancer chemotherapeutic drugs: doxorubicin and camptothecin. 
 

4.3 Materials and Methods 

 

4.3.1 Materials and reagents 

Curcumin (≥90%), resveratrol (≥98%), and epigallocatechin gallate (EGCG; 

≥98%) were purchased from Sigma (St Louis, MO). Quercetin (≥95%), sulforaphane 

(≥90%), dithiothreitol (DTT; ≥99%), thapsigargin (≥98%), doxorubicin (98-102%), and 

camptothecin (≥90%) were purchased from Cayman Chemical (Ann Arbor, MI). All 
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sphingolipid standards were obtained from Avanti Polar Lipids (Alabaster, AL). C8-

cyclopropenylceramide (C8-CPPC) was purchased from Matreya LLC (Pleasant Gap, 

PA). 13C3, 15N-labeled L-serine, Dimethyl sulfoxide (DMSO), [3-(4,5)-dimethylthiazol-2-

yl]-2,5-diphenyl tetrazolium bromide] (MTT), and all other chemicals were from Sigma.  

 

4.3.2 Cell culture and treatment 

Human colon cancer HCT-116 cells were obtained from American Type Culture 

Collection (Manassas, VA). Cells were routinely cultured in McCoy’s 5A modified 

growth medium containing 10% fetal bovine serum (FBS) at 37 °C in 5% CO2. For 

experiments, cells were seeded in the growth medium with 10% FBS either at a density 

of 4 x 104 cells/well in 24-well plates or at a density of 7-8 x 105 cells in 10-cm dishes. 

After overnight attachment, media were replaced with fresh Dulbecco’s modified eagle 

medium (DMEM) containing 1% FBS with tested compounds. All the treatment solutions 

were freshly prepared for each experiment. All the tested compounds were dissolved in 

DMSO and the same amount of DMSO was added to control group. 

 

4.3.3 MTT assay 

Cell viability was examined by the estimation of mitochondrial dehydrogenase 

activity that reduces MTT to form formazan which was dissolved in DMSO and 

measured the absorbance at 570 nm by using a microplate reader (SpectraMax 190, 

Molecular Devices, Sunnyvale, CA) (Mosmann, 1983). 
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4.3.4 Lipid extraction 

Lipids were extracted according to a previously published method (Merrill et al., 

2005). Briefly, cell pellets were resuspended in methanol/chloroform/water (10:5:1 

[v/v/v]), after the addition of internal standard mixture containing 0.5 nmol of C12:0-Cer, 

C25:0-Cer, C17-sphingosine, C17-dhSph, and C12:0-SM (Avanti Polar Lipids, Alabaster, 

AL). The suspension was tip sonicated and then incubated overnight at 48 °C. A total of 

100 µL of suspension was used to determine the amount of total choline-containing 

phospholipids by an enzymatic colorimetric assay (Wako chemicals, Osaka, Japan) (Jiang 

et al., 2004) 75 µL of 1M KOH in methanol was added to the rest of the suspension and 

sonicated for 30 min. Samples were incubated at 37 °C for 2 h and evaporated under a 

stream of nitrogen. 

 

4.3.5 Measurement of sphingolipids using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) 

Immediately before the LC-MS/MS analyses, the prepared samples above were 

resolved in methanol, sonicated, and then briefly centrifuged. The LC-MS/MS analyses 

were performed using the Agilent 6460 triple quadrupole mass spectrometer coupled with 

the Agilent 1200 Rapid Resolution HPLC (Agilent Technologies, Santa Clara, CA) with 

identification of each sphingolipid in positive mode by multiple reaction monitoring 

(MRM) technique (Merrill et al., 2005). The HPLC mobile phases consisted of methanol-

H2O-formic acid (74:25:1, v/v/v; RA) and methanol-formic acid (99:1, v/v; RB); both RA 

and RB contain 5 mM ammonium formate. For measurement of Cers and sphingoid 

bases, Agilent column XDB-C18 (4.6 x 50 mm) with particle size of 1.8 µm, was used 
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with isocratic run (100% B) or gradient (0-1 min, 20% B, 10-13 min, 100% B and 15-20 

min at 20% B), respectively. For measurement of SMs, Agilent Zorbax XDB-C8 (2.1 x 

50 mm) with particle size of 3.5 µm, was used with gradient (0-1 min, 20% B, 10-20 min, 

100% B, 22-30 min, 20% B). The MS/MS parameters were as follows: gas temperature, 

325-350 °C; gas flow rate, 7-10 L/min; nebulizer pressure, 45-50 psi; capillary voltage, 

3500 V; The fragmentor voltage was 100 V and collision energy was 12-20 V. Precursor-

to-product ion transitions for each sphingolipid were used according to the method of 

Merrill et al. (Merrill et al., 2005). 

 

4.3.6 De novo sphingolipids anlaysis 

HCT-116 cells were treated with either 400 µM 13C3, 15N-labeled L-serine alone 

or with a combination of 400 µM 13C3, 15N-labeled L-serine and 10 µM of curcumin for 

20, 30, 60 and 90 min. Lipids were extracted and de novo synthesized sphingolipids were 

measured using LC-MS/MS. 

 

4.3.7 Dihydroceramide desaturase (DEGS) assays 

In Vitro DEGS assay - HCT-116 cells were treated with either a tested compound 

or 1 µM C8-CPPC as a positive control for 1 or 2 h. Cells were collected and 

homogenized in a buffer (5 mM Hepes, pH 7.4, containing 50 mM sucrose) followed by 

10 min incubation on ice. The cell homogenate was centrifuged at 250 x g for 5 min at 

4 °C to remove unbroken cells. Reaction was started by addition of C8:0-dihydroceramide 

(C8:0-dhCer) as a non-physiological substrate for the DEGS enzyme and NADH as a 
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cofactor at 37 °C for an hour. Immediately after the reaction, lipids were extracted and 

the products (C8:0-Cer and C8:0-SM) were quantified by LC-MS/MS. 

In Situ DEGS assay - HCT-116 cells were pretreated with either a tested 

compound or C8-CPPC, and then added 10 μM of C8:0-dhCer as a substrate for the DEGS 

enzyme, followed by 1h incubation. The cells were collected and lipids were extracted. 

The levels of products (C8:0-Cer and C8:0-SM) were measured by LC-MS/MS. 

 

4.3.8 Statistics 

Statistical significance was determined using a Student’s t-test.  P < 0.05 was 

considered statistically significant. 

 

4.4 Results 

 

4.4.1 Curcumin increased dhCers, dhSph, and C24-Cers, but decreased C16:0-Cer by 

DEGS inhibition 

We first investigated the effects of curcumin, which is a polyphenolic compound 

isolated from a rhizome of the plant Curcuma longa and a promising phytochemical for 

cancer chemoprevention and therapy, on sphingolipid metabolism using LC-MS/MS in 

human colon HCT-116 cancer cells. HCT-116 cells were treated with 10 μM of curcumin 

for 1, 2, and 4 hours. During the treatment times, curcumin caused significant increases 

of dhCers including C16:0-, C24:1-, and C24:0-dhCers, and dhSph, compared with controls 

(Fig. 4.2B). While C16:0-Cer was significantly decreased as early as 1 h incubation with 

curcumin, C24-Cers were increased compared with controls (Fig. 4.2C). Meanwhile, there 
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were no apparent changes of SM and dhSM species after 4 h incubation with curcumin 

(Fig. 4.2D; Table 4.1). Since treatment of curcumin induced accumulations of dhCers and 

dhSph, which are important sphingolipid metabolites in the de novo sphingolipid 

biosynthesis pathway (Fig. 4.3A), we used 13C3, 15N-labeled L-serine to only trace the 

effect of curcumin on de novo synthesized sphingolipids. Curcumin treatment induced 

significant increases in labeled dhCers, but decreases in C16:0-Cer as early as 20 min to 90 

min (Figs. 4.3C and D), without affecting the amount of total de novo-syntheized 

sphingolipids (Fig. 4.3B; Table 4.2). The increases of de novo dhCers but decreases of de 

novo Cers suggest the inhibition of DEGS-catalyzed reaction by curcumin treatment. 

Therefore, we next examined the effect of curcumin on the DEGS enzyme activity. In the 

in vitro DEGS assay with cell homogenates, 1 h incubation with 10 or 20 μM of 

curcumin showed ~76% and ~92% inhibition of DEGS enzyme activity, respectively 

(Fig. 4.4A). In another assay, in situ DEGS assay also showed significant inhibition of 

DEGS activity with 10 or 20 μM of curcumin after 2-3 hours incubation, though the 

inhibitory effects in this assay were much lower than those in the in vitro assay (Fig. 

4.4B). In both assays, C8-CPPC, a known competitive inhibitor of DEGS (Triola et al., 

2003), inhibited the enzyme activity by about 85~95%. Interestingly, these all modulation 

of sphingolipid metabolism was occurred prior to any signs of cell death determined by 

MTT cell viability assay (data not shown). 

 

 

 

 



162 

 

 

 

 



163 

 

 

 

 

 

Figure 4.2 Effects of curcumin on sphingolipid metabolism in HCT-116 cells. (A) The 
anti-proliferative effects of curcumin on human colon HCT-116 cancer cells. Relative 
cell viability was measured after treatment with curcumin at the stated concentrations and 
time by MTT assay compared with control. The data are mean ± SD for 3 independent 
experiments, each performed in duplicate. HCT-116 cells were treated with 10 μM of 
curcumin for 1, 2, and 4 hours. The sphingolipid levels including (B) dhCers; C16:0-, 
C24:1-, and C24:0-dhCers and dhSph, (C) Cers; C16:0-, C24:1-, and C24:0-Cers, (D) dhSM; 
C16:0- and C24:0-dhSMs, and SMs; C16:0- and C24:1-SMs were determined by LC-MS/MS. 
Results are shown as mean ± SD for 3-4 independent experiments. *p < 0.05 and **p < 
0.01 indicate a significant difference between treated and control cells.  
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Figure 4.3 Effects of curcumin on de novo sphingolipid biosynthesis in HCT-116 cells. 
(A) The de novo biosynthesis pathway of sphingolipids (SMS, sphingomyelin synthase; 
SMase, sphingomyelinase). HCT-116 cells were treated with either 400 μM 13C3, 15N-
labeled L-serine alone as control or with a combination of 400 μM 13C3, 15N-labeled L-
serine and 10 μM curcumin for 20, 30, 60, and 90 min. The amount of each labeled de 
novo sphingolipid including (B) total amounts of all the de novo synthesized 
sphingolipids, (C) de novo total dhCer and de novo C16:0-dhCer, (D) de novo total Cers, 
de novo C16:0-Cer, and de novo C24:1-Cer were determined by LC-MS/MS. Results are 
shown as mean ± SEM for 3-4 independent experiments. *p < 0.05 and **p < 0.01 
indicate a significant difference between treated and control cells. 
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Figure 4.4 Effects of curcumin on DEGS activity. HCT-116 cells were treated with either 
10 or 20 μM curcumin or 1 μM C8-CPPC as a positive control. (A) In vitro DEGS assay: 
After 1 h of treatment, cells were collected and homogenized. Using the homogenates, 
reaction was started by addition of C8:0-dhCer as a substrate for DEGS with NADH for an 
hour in 37 °C. The levels of products which are C8:0-sphingolipids were analyzed by 
using LC-MS/MS. The data are mean ± SD of 1-2 independent experiments. (B) In situ 
DEGS assay: After 1-2 hours of pretreatment, cells were incubated with 10 μM C8:0-
dhCer as a substrate for DEGS for additional 1 h. The cells were collected and the levels 
of products which are C8:0-sphingolipids were analyzed by using LC-MS/MS. The data 
are mean ± SD of three independent experiments. *p < 0.05 and **p < 0.01 indicate a 
significant difference between treated and control cells.  
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4.4.2 Resveratrol and DTT increased dhCers, dhSph, but decreased C16:0-Cer and C24-

Cers 

We next examined the modulation of sphingolipid using another naturally 

occurring, well-recognized cancer chemopreventive polyphenolic compound, resveratrol, 

found in grapes and wine. Reseveratrol has been shown to induce autophagy by inhibition 

of DEGS activity followed by dhCer accumulation in gastric cancer cells (Signorelli et 

al., 2009). Consistently, 50 μM of resveratrol treatment for 2-4 hours significantly 

enhanced intracelluar levels of dhCers and dhSph (Fig. 4.5B). Compared with controls, 

resveratrol treatment induced decreases in C16:0- and C24:1-Cers (Fig. 4.5C). While C16:0-

SM was decreased, C16:0-dhSM was increased by 4 h incubation with resveratrol (Fig. 

4.5D; Table 4.3). 

 In addition, we tested the effects of ER stress inducers including DTT and 

thapsigargin on sphingolipid metabolism. Since de novo synthesis pathway occurs in the 

ER, we hypothesized that disruption of ER environment by ER stress induction may also 

induce interruption of sphingolipid metabolism. As we expected, similar to resveratrol, 2 

mM of DTT treatment for 2-4 hours elevated dhCers and dhSph, but decreased in C16:0- 

and C24-Cers (Figs. 4.6A and B). DTT treatment also tends to decrease in C16:0-SM but 

increase in C16:0-dhSM as compared with controls (Fig. 4.6C; Table 4.4). 
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Figure 4.5 Effects of resveratrol on sphingolipid metabolism in HCT-116 cells. (A) The 
anti-proliferative effects of resveratrol on human colon HCT-116 cancer cells. Relative 
cell viability was measured after treatment with resveratrol at the stated concentrations 
and time by MTT assay compared with control. The data are mean ± SD for 1 duplicate 
experiment. HCT-116 cells were treated with 50 μM of resveratrol for 2 and 4 hours. The 
sphingolipid levels including (B) dhCers; C16:0-, C24:1-, and C24:0-dhCers and dhSph, (C) 
Cers; C16:0-, C24:1-, and C24:0-Cers, (D) dhSM; C16:0- and C24:0-dhSMs, and SMs; C16:0- 
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and C24:1-SMs were determined by LC-MS/MS. Results are shown as mean ± SD for 
three independent experiments. *p < 0.05 and **p < 0.01 indicate a significant difference 
between treated and control cells.  
 

 

Figure 4.6 Effects of DTT on sphingolipid metabolism in HCT-116 cells. HCT-116 cells 
were treated with 2 mM of DTT for 2 and 6 hours. The sphingolipid levels including (A) 
dhCers; C16:0-, C24:1-, and C24:0-dhCers and dhSph, (B) Cers; C16:0-, C24:1-, and C24:0-Cers, 
(C) dhSM; C16:0- and C24:0-dhSMs, and SMs; C16:0- and C24:1-SMs were determined by 
LC-MS/MS. Results are shown as mean ± SD for 1 (6 h) or 2 (2 h) independent 
experiments.  
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4.4.3 Sulforaphane, quercetin, thapsigargin, doxorubicin and camptothecin increased 

Cers and dhCers 

We then investigated to see whether sulforaphane also modulates sphingolipid 

metabolism as it belongs to a class of organosulfur compounds in phytochemical groups. 

Different with phenolic compounds that contain one or more hydroxyl groups attached to 

one or more aromatic rings, organosulfur compounds contain sulfur in their structure. 

Treatment of cells with 20 μM of sulforaphane for 2-4 hours also modulated sphingolipid 

metabolism by increasing the levels of Cers as well as the levels of dhCers compared 

with controls (Fig. 4.7; Table 4.5). Another phenolic compound, quercetin modulated the 

levels of sphingolipid metabolites as similar way with sulforaphane (Fig. 4.8; Table 4.6). 

Since 20 μM of quercetin elevated not only dhCers, but also Cers, we tested the effects of 

quercetin on DEGS enzyme activity. In the in situ DEGS assay, incubation of cells with 

20 μM of quercetin for 2-3 hours significantly inhibited the DEGS activity by 42% (Fig. 

4.8E). Interestingly, thapsigargin, another ER stress inducer, also induced accumulation 

of intracellular C16:0-dhCer after 6 h treatment with 1 μM concentration, but different 

with DTT, it did not decrease the levels of Cers (Fig. 4.9; Table 4.7). 

 Furthermore, to evaluate whether cancer chemotherapeutic drugs modulate 

sphingolipid metabolism or not, we used two well-known drugs, doxorubicin and 

camptothecin. Treatment of cells with 5 μM of doxorubicin or 1 μM of camptothecin 

both enhanced C16:0-dhCer and Cers after 24 h incubation (Fig 4.10; Table 4.8).  
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Figure 4.7 Effects of sulforaphane on sphingolipid metabolism in HCT-116 cells. HCT-
116 cells were treated with 20 μM of sulforaphane for 2 and 4 hours. The sphingolipid 
levels including (A) dhCers; C16:0-, C24:1-, and C24:0-dhCers and dhSph, (B) Cers; C16:0-, 
C24:1-, and C24:0-Cers, (C) dhSM; C16:0- and C24:0-dhSMs, and SMs; C16:0- and C24:1-SMs 
were determined by LC-MS/MS. Results are shown as mean ± SD for two independent 
experiments.  
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Figure 4.8 Effects of quercetin on sphingolipid metabolism in HCT-116 cells. (A) The 
anti-proliferative effects of quercetin on human colon HCT-116 cancer cells. Relative cell 
viability was measured after treatment with quercetin at the stated concentrations and 
time by MTT assay compared with control. The data are mean ± SD for 1 duplicate 
experiment. HCT-116 cells were treated with 20 μM of quercetin for 2 and 4 hours. The 
sphingolipid levels including (B) dhCers; C16:0-, C24:1-, and C24:0-dhCers and dhSph, (C) 
Cers; C16:0-, C24:1-, and C24:0-Cers, (D) dhSM; C16:0- and C24:0-dhSMs, and SMs; C16:0- 
and C24:1-SMs were determined by LC-MS/MS. Results are shown as mean ± SD for two 
independent experiments. (E) The effect of quercetin on DEGS activity was measured by 
in situ assay. HCT-116 cells were preincubated with either 20 μM quercetin or 1 μM C8-
CPPC for 2-3 hours followed by 10 μM C8:0-dhCer treatment for 1 h. The cells were 
collected and the levels of products which are C8:0-sphingolipids were analyzed by using 
LC-MS/MS. The data are mean ± SD of three independent experiments. *p < 0.05 and 
**p < 0.01 indicate a significant difference between treated and control cells.  
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Figure 4.9 Effects of thapsigargin on sphingolipid metabolism in HCT-116 cells. HCT-
116 cells were treated with 1 μM of thapsigargin for 6 hours. The sphingolipid levels 
including (A) dhCers; C16:0-, C24:1-, and C24:0-dhCers and dhSph, (B) Cers; C16:0-, C24:1-, 
and C24:0-Cers, (C) dhSM; C16:0- and C24:0-dhSMs, and SMs; C16:0- and C24:1-SMs were 
determined by LC-MS/MS. Results are shown as mean ± SD for two independent 
experiments.  
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Figure 4.10 Effects of cancer chemotherapeutic drugs (doxorubicin and camptothecin) on 
sphingolipid metabolism in HCT-116 cells. (A) The anti-proliferative effects of 
doxorubicin on human colon HCT-116 cancer cells. Relative cell viability was measured 
after treatment with doxorubicin at the stated concentrations and time by MTT assay 
compared with control. The data are mean ± SD for 1 duplicate experiment. HCT-116 
cells were treated with 5 μM of doxorubicin or 1 μM of camptothecin for 24 hours. The 
sphingolipid levels including (B and E) dhCers; C16:0-, C24:1-, and C24:0-dhCers and 
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dhSph, (C and F) Cers; C16:0-, C24:1-, and C24:0-Cers, (D and G) dhSM; C16:0- and C24:0-
dhSMs, and SMs; C16:0- and C24:1-SMs were determined by LC-MS/MS. Results are 
shown as mean ± SD for one independent experiment.  
 

 

4.4.4 EGCG increased dhCer, but did not affect other sphingolipids 

The effects of EGCG, the major polyphenolic compound found in green tea, on 

sphingolipid metabolism were investigated in human colon HCT-116 cancer cells. 

Treatment of cells with 50 μM of EGCG for 4 h elevated dhCers including C16:0-, C24:1-, 

and C24:0-dhCers compared with controls, but not in 2 h incubation with EGCG (Fig. 

4.11B). Even in 4 h incubation, EGCG did not change the levels of Cer species (Fig. 

4.11C). While EGCG tends to increase C24:1-SM at 2 h, it did not affect SM and dhSM 

levels in 4 h incubation (Fig. 4.11D; Table 4.9). 
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Figure 4.11 Effects of EGCG on sphingolipid metabolism in HCT-116 cells. (A) The 
anti-proliferative effects of EGCG on human colon HCT-116 cancer cells. Relative cell 
viability was measured after treatment with EGCG at the stated concentrations and time 
by MTT assay compared with control. The data are mean ± SD for 1 duplicate 
experiment. HCT-116 cells were treated with 50 μM of EGCG for 2 and 4 hours. The 
sphingolipid levels including (B) dhCers; C16:0-, C24:1-, and C24:0-dhCers and dhSph, (C) 
Cers; C16:0-, C24:1-, and C24:0-Cers, (D) dhSM; C16:0- and C24:0-dhSMs, and SMs; C16:0- 
and C24:1-SMs were determined by LC-MS/MS. Results are shown as mean ± SD for 
three independent experiments. *p < 0.05 and **p < 0.01 indicate a significant difference 
between treated and control cells.  
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Table 4.1 Effect of curcumin on sphingolipid metabolism in HCT-116 cells. HCT-116 
cells were treated with 10 µM curcumin for 1, 2, and 4 h. The amount of each 
sphingolipid was determined by LC-MS/MS. Data are mean ± SEM of 3-4 independent 
experiments. *p < 0.05, **p < 0.01, significant difference between control and curcumin-
treated cells. Cer, ceramide; dhCer, dihydroceramide; Sph, sphingosine; dhSph, 
dihydrosphingosine; S1P, sphingosine-1-phosphate; SM, sphingomyelin; dhSM, 
dihydrosphingomyelin 
 

Ceramides (pmol/µg PC) 
C16:0-Cer     

Hours Control Cur 10 µM 
1 2.36 ± 0.29 1.65 ± 0.13** 
2 3.29 ± 0.38 1.53 ± 0.11** 
4 3.46 ± 0.42 1.66 ± 0.12** 

C18:0-Cer     
Hours Control Cur 10 µM 

1 0.069 ± 0.008 0.10 ± 0.020 
2 0.083 ± 0.009 0.093 ± 0.011 
4 0.084 ± 0.019 0.11 ± 0.022* 

C20:0-Cer     
Hours Control Cur 10 µM 

1 0.046 ± 0.009 0.072 ± 0.013** 
2 0.057 ± 0.006 0.080 ± 0.008* 
4 0.058 ± 0.016 0.099 ± 0.026** 

C22:0-Cer     
Hours Control Cur 10 µM 

1 0.49 ± 0.11 0.71 ± 0.13* 
2 0.64 ± 0.032 0.87 ± 0.092 
4 0.58 ± 0.15 1.03 ± 0.20** 

C24:1-Cer     
Hours Control Cur 10 µM 

1 2.43 ± 0.43 3.18 ± 0.85* 
2 2.39 ± 0.31 2.77 ± 0.31** 
4 1.98 ± 0.33 2.57 ± 0.45* 

C24:0-Cer     
Hours Control Cur 10 µM 

1 2.54 ± 0.41 3.23 ± 0.74* 
2 2.61 ± 0.19 2.97 ± 0.21** 
4 2.11 ± 0.34 2.08 ± 0.72 
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C26:1-Cer     
Hours Control Cur 10 µM 

1 0.24 ± 0.041 0.45 ± 0.11** 
2 0.24 ± 0.026 0.45 ± 0.052** 
4 0.20 ± 0.029 0.50 ± 0.089** 

C26:0-Cer     
Hours Control Cur 10 µM 

1 0.14 ± 0.054 0.21 ± 0.088** 
2 0.19 ± 0.019 0.28 ± 0.030** 
4 0.15 ± 0.024 0.32 ± 0.060** 

Total Cers     
Hours Control Cur 10 µM 

1 8.32 ± 0.61 9.61 ± 1.55 
2 9.51 ± 0.88 9.05 ± 0.80 
4 8.61 ± 0.96 8.36 ± 0.94 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control Cur 10 µM 
1 0.067 ± 0.009 0.11 ± 0.011** 
2 0.11 ± 0.015 0.16 ± 0.023 
4 0.11 ± 0.011 0.29 ± 0.039** 

C18:0-dhCer     
Hours Control Cur 10 µM 

1 0.0016 ± 0.0001 0.0035 ± 0.0006* 
2 0.0020 ± 0.0004 0.0035 ± 0.0006** 
4 0.0019 ± 0.0004 0.0071 ± 0.0012** 

C20:0-dhCer     
Hours Control Cur 10 µM 

1 0.00080 ± 0.0002 0.0021 ± 0.0004 
2 0.0011 ± 0.0001 0.0017 ± 0.0001** 
4 0.0012 ± 0.0002 0.0054 ± 0.0014** 

C22:0-dhCer     
Hours Control Cur 10 µM 

1 0.0036 ± 0.001 0.009 ± 0.003** 
2 0.0037 ± 0.001 0.011 ± 0.002 
4 0.0049 ± 0.001 0.03 ± 0.007** 

C24:1-dhCer     
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Hours Control Cur 10 µM 
1 0.0055 ± 0.001 0.015 ± 0.003** 
2 0.0055 ± 0.001 0.017 ± 0.003 
4 0.0069 ± 0.043 0.043 ± 0.004** 

C24:0-dhCer     
Hours Control Cur 10 µM 

1 0.0069 ± 0.001 0.014 ± 0.003** 
2 0.0060 ± 0.0009 0.016 ± 0.002** 
4 0.0081 ± 0.0003 0.046 ± 0.004** 

C26:1-dhCer     
Hours Control Cur 10 µM 

1 0.00041 ± 0.0002 0.0012 ± 0.0007 
2 0.00081 ± 0.0001 0.0020 ± 0.0006 
4 0.00085 ± 0.0002 0.0060 ± 0.0005** 

Total dhCers     
Hours Control Cur 10 µM 

1 0.085 ± 0.010 0.15 ± 0.014** 
2 0.13 ± 0.019 0.21 ± 0.030 
4 0.13 ± 0.010 0.42 ± 0.044** 

 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control Cur 10 µM 
1 0.94 ± 0.16 1.25 ± 0.30 
2 1.40 ± 0.15 1.27 ± 0.17 
4 1.02 ± 0.25 1.03 ± 0.17 

dhSph     
Hours Control Cur 10 µM 

1 0.057 ± 0.012 0.14 ± 0.025** 
2 0.082 ± 0.007 0.16 ± 0.027* 
4 0.071 ± 0.011 0.18 ± 0.010* 

S1P     
Hours Control Cur 10 µM 

1 0.022 ± 0.006 0.025 ± 0.013 
2 0.018 ± 0.004 0.011 ± 0.001 
4 0.017 ± 0.005 0.0091 ± 0.003 

 

Sphingomyelins (pmol/µg PC) 
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C16:0-SM     
Hours Control Cur 10 µM 

1 54.91 ± 3.13 59.54 ± 4.97* 
2 64.14 ± 4.06 56.92 ± 2.24* 
4 66.1 ± 4.76 65.24 ± 3.01 

C18:0-SM     
Hours Control Cur 10 µM 

1 0.69 ± 0.048 0.81 ± 0.064* 
2 1.06 ± 0.14 1.02 ± 0.076 
4 0.90 ± 0.075 1.42 ± 0.11* 

C20:0-SM     
Hours Control Cur 10 µM 

1 0.57 ± 0.065 0.70 ± 0.076** 
2 1.04 ± 0.24 1.12 ± 0.18 
4 0.95 ± 0.21 1.49 ± 0.18 

C22:0-SM     
Hours Control Cur 10 µM 

1 3.19 ± 0.62 3.77 ± 0.61* 
2 4.77 ± 0.93 4.95 ± 0.55 
4 4.06 ± 1.15 6.49 ± 1.01 

C24:1-SM     
Hours Control Cur 10 µM 

1 14.09 ± 2.57 16.35 ± 2.76 
2 22.00 ± 5.07 21.88 ± 2.62 
4 19.56 ± 5.76 28.11 ± 4.06 

C26:1-SM     
Hours Control Cur 10 µM 

1 0.72 ± 0.15 0.89 ± 0.17 
2 1.41 ± 0.37 1.42 ± 0.25 
4 1.23 ± 0.42 1.78 ± 0.39 

Total SMs     
Hours Control Cur 10 µM 

1 74.16 ± 6.26 82.05 ± 8.59* 
2 94.42 ± 10.73 87.31 ± 5.17 
4 92.81 ± 7.20 107.21 ± 5.95* 

 

Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     
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Hours Control Cur 10 µM 
1 7.14 ± 0.60 7.63 ± 0.68 
2 13.42 ± 3.22 11.47 ± 2.39* 
4 10.91 ± 1.33 12.06 ± 2.32 

C18:0-dhSM     
Hours Control Cur 10 µM 

1 0.16 ± 0.018 0.19 ± 0.029 
2 0.38 ± 0.10 0.37 ± 0.089 
4 0.31 ± 0.033 0.54 ± 0.083** 

C20:0-dhSM     
Hours Control Cur 10 µM 

1 0.14 ± 0.012 0.18 ± 0.033 
2 0.32 ± 0.083 0.34 ± 0.092 
4 0.25 ± 0.054 0.46 ± 0.050 

C22:0-dhSM     
Hours Control Cur 10 µM 

1 0.38 ± 0.047 0.46 ± 0.057 
2 0.84 ± 0.15 0.86 ± 0.15 
4 0.78 ± 0.16 1.37 ± 0.14 

C24:0-dhSM     
Hours Control Cur 10 µM 

1 0.56 ± 0.094 0.67 ± 0.11 
2 1.44 ± 0.30 1.44 ± 0.32 
4 1.24 ± 0.32 5.63 ± 3.20 

C26:0-dhSM     
Hours Control Cur 10 µM 

1 0.067 ± 0.006 0.075 ± 0.010 
2 0.19 ± 0.058 0.19 ± 0.070 
4 0.14 ± 0.052 0.17 ± 0.011 

Total dhSMs     
Hours Control Cur 10 µM 

1 8.44 ± 0.71 9.21 ± 0.83 
2 16.58 ± 3.55 14.66 ± 2.93 
4 13.63 ± 0.98 20.23 ± 5.73 

 
 
Table 4.2 Effect of curcumin on de novo sphingolipid biosynthesis in HCT-116 cells. 
HCT-116 cells were treated with either 400 µM 13C3, 15N-labeled L-serine alone as 
control or with a combination of 400 µM 13C3, 15N-labeled L-serine and 10 µM curcumin 
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for 20, 30, 60, and 90 min. The amount of each labeled de novo sphingolipid was 
determined by LC-MS/MS. Data are mean ± SEM of 3-4 independent experiments. *p < 
0.05, **p < 0.01, significant difference between control and curcumin-treated cells. 
 

Ceramides (pmol/µg PC) 
De novo C16:0-Cer   

Minutes Control Cur 10 µM 
20 0.045 ± 0.014 0.027 ± 0.008** 
30 0.15 ± 0.035 0.078 ± 0.022** 
60 0.27 ± 0.035 0.13 ± 0.023** 
90 0.38 ± 0.065 0.18 ± 0.031** 

De novo C24:1-Cer   
Minutes Control Cur 10 µM 

20 0.063 ± 0.032 0.056 ± 0.029 
30 0.16 ± 0.070 0.18 ± 0.082 
60 0.25 ± 0.094 0.31 ± 0.11** 
90 0.40 ± 0.15 0.53 ± 0.21* 

De novo total Cers   
Minutes Control Cur 10 µM 

20 0.11 ± 0.046 0.082 ± 0.038* 
30 0.33 ± 0.10 0.27 ± 0.10* 
60 0.55 ± 0.13 0.47 ± 0.14 
90 0.86 ± 0.22 0.79 ± 0.23 

 

Dihydroceramides (pmol/µg PC) 
De novo C16:0-dhCer   

Minutes Control Cur 10 µM 
20 0.0076 ± 0.002 0.0059 ± 0.001 
30 0.018 ± 0.003 0.019 ± 0.001 
60 0.027 ± 0.005 0.037 ± 0.010 
90 0.030 ± 0.005 0.045 ± 0.007** 

 

Sphingomyelins (pmol/µg PC) 
De novo C16:0-SM   

Minutes Control Cur 10 µM 
20 0.26 ± 0.043 0.27 ± 0.051 
30 0.34 ± 0.025 0.31 ± 0.040 
60 0.42 ± 0.056 0.40 ± 0.032 
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90 0.64 ± 0.052 0.56 ± 0.033 

De novo C18:0-SM   
Minutes Control Cur 10 µM 

20 0.0095 ± 0.007 0.0038 ± 0.002 
30 0.024 ± 0.019 0.028 ± 0.024 
60 0.018 ± 0.015 0.045 ± 0.038 
90 0.018 ± 0.009 0.018 ± 0.009 

De novo C24:1-SM   
Minutes Control Cur 10 µM 

20 0.14 ± 0.073 0.13 ± 0.076 
30 0.15 ± 0.054 0.11 ± 0.052** 
60 0.13 ± 0.048 0.17 ± 0.058 
90 0.18 ± 0.076 0.21 ± 0.066 

De novo total SMs   
Minutes Control Cur 10 µM 

20 0.41 ± 0.079 0.41 ± 0.061 
30 0.51 ± 0.043 0.45 ± 0.049 
60 0.57 ± 0.077 0.62 ± 0.064 
90 0.83 ± 0.12 0.79 ± 0.070 

 

Dihydrosphingomyelins (pmol/µg PC) 
De novo C16:0-dhSM   

Minutes Control Cur 10 µM 
20 0.094 ± 0.019 0.071 ± 0.005 
30 0.11 ± 0.012 0.088 ± 0.008 
60 0.094 ± 0.004 0.11 ± 0.010 
90 0.12 ± 0.005 0.17 ± 0.023 

 
Table 4.3 Effect of resveratrol on sphingolipid metabolism in HCT-116 cells. HCT-116 
cells were treated with 50 µM resveratrol for 2 and 4 h. The amount of each sphingolipid 
was determined by LC-MS/MS. Data are mean ± SEM of 3 independent experiments. *p 
< 0.05, **p < 0.01, significant difference between control and resveratrol-treated cells. 
 

Ceramides (pmol/µg PC) 
C16:0-Cer     

Hours Control Res 50 µM 
2 3.29 ± 0.38 1.46 ± 0.11** 
4 3.78 ± 0.37 1.37 ± 0.11** 
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C18:0-Cer     
Hours Control Res 50 µM 

2 0.083 ± 0.009 0.068 ± 0.005** 
4 0.098 ± 0.018 0.069 ± 0.003* 

C20:0-Cer     
Hours Control Res 50 µM 

2 0.057 ± 0.006 0.049 ± 0.004 
4 0.069 ± 0.016 0.049 ± 0.006* 

C22:0-Cer     
Hours Control Res 50 µM 

2 0.64 ± 0.032 0.64 ± 0.067 
4 0.70 ± 0.13 0.78 ± 0.046 

C24:1-Cer     
Hours Control Res 50 µM 

2 2.39 ± 0.31 1.60 ± 0.18** 
4 2.18 ± 0.38 1.29 ± 0.26** 

C24:0-Cer     
Hours Control Res 50 µM 

2 2.61 ± 0.19 2.43 ± 0.27 
4 2.31 ± 0.39 2.62 ± 0.58 

C26:1-Cer     
Hours Control Res 50 µM 

2 0.24 ± 0.026 0.24 ± 0.036 
4 0.22 ± 0.034 0.25 ± 0.043 

C26:0-Cer     
Hours Control Res 50 µM 

2 0.19 ± 0.019 0.19 ± 0.023 
4 0.17 ± 0.023 0.21 ± 0.035* 

Total Cers     
Hours Control Res 50 µM 

2 9.51 ± 0.88 6.66 ± 0.65** 
4 9.52 ± 0.44 6.64 ± 0.92* 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control Res 50 µM 
2 0.11 ± 0.015 1.04 ± 0.090** 
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4 0.12 ± 0.011 0.92 ± 0.029** 

C18:0-dhCer     
Hours Control Res 50 µM 

2 0.0020 ± 0.0004 0.012 ± 0.0005** 
4 0.0021 ± 0.0005 0.011 ± 0.002** 

C20:0-dhCer     
Hours Control Res 50 µM 

2 0.0011 ± 0.0001 0.014 ± 0.0003 
4 0.0014 ± 0.0003 0.013 ± 0.0035** 

C22:0-dhCer     
Hours Control Res 50 µM 

2 0.0037 ± 0.001 0.14 ± 0.011** 
4 0.0055 ± 0.002 0.17 ± 0.028** 

C24:1-dhCer     
Hours Control Res 50 µM 

2 0.0055 ± 0.0014 0.16 ± 0.016* 
4 0.0069 ± 0.0004 0.15 ± 0.0058** 

C24:0-dhCer     
Hours Control Res 50 µM 

2 0.0060 ± 0.0009 0.23 ± 0.019** 
4 0.0083 ± 0.0002 0.29 ± 0.019** 

C26:1-dhCer     
Hours Control Res 50 µM 

2 0.00081 ± 0.0001 0.022 ± 0.0034 
4 0.0010 ± 0.0002 0.020 ± 0.0003 

Total dhCers     
Hours Control Res 50 µM 

2 0.13 ± 0.019 1.62 ± 0.12** 
4 0.14 ± 0.008 1.56 ± 0.007** 

 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control Res 50 µM 
2 1.40 ± 0.15 1.24 ± 0.10 
4 1.17 ± 0.27 0.91 ± 0.17* 

dhSph     
Hours Control Res 50 µM 
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2 0.082 ± 0.007 0.29 ± 0.014** 
4 0.074 ± 0.016 0.27 ± 0.040** 

S1P     
Hours Control Res 50 µM 

2 0.018 ± 0.004 0.018 ± 0.004 
4 0.020 ± 0.006 0.013 ± 0.002 

 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     

Hours Control Res 50 µM 
2 64.14 ± 4.06 58.89 ± 5.65* 
4 66.68 ± 6.68 51.39 ± 5.09* 

C18:0-SM     
Hours Control Res 50 µM 

2 1.06 ± 0.14 0.93 ± 0.13 
4 0.92 ± 0.10 0.83 ± 0.11* 

C20:0-SM     
Hours Control Res 50 µM 

2 1.04 ± 0.24 1.05 ± 0.25 
4 0.96 ± 0.30 1.02 ± 0.19 

C22:0-SM     
Hours Control Res 50 µM 

2 4.77 ± 0.93 5.07 ± 1.06* 
4 4.01 ± 1.62 5.43 ± 0.99 

C24:1-SM     
Hours Control Res 50 µM 

2 22.00 ± 5.07 22.84 ± 5.11 
4 19.51 ± 8.14 22.94 ± 3.91 

C26:1-SM     
Hours Control Res 50 µM 

2 1.41 ± 0.37 1.49 ± 0.41 
4 1.30 ± 0.58 1.57 ± 0.31 

Total SMs     
Hours Control Res 50 µM 

2 94.42 ± 10.73 90.27 ± 12.59 
4 93.38 ± 10.16 83.17 ± 10.59** 
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Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control Res 50 µM 
2 13.42 ± 3.22 13.73 ± 1.23 
4 11.70 ± 1.52 16.18 ± 1.52* 

C18:0-dhSM     
Hours Control Res 50 µM 

2 0.38 ± 0.10 0.45 ± 0.087 
4 0.34 ± 0.019 0.64 ± 0.023** 

C20:0-dhSM     
Hours Control Res 50 µM 

2 0.32 ± 0.083 0.43 ± 0.11* 
4 0.28 ± 0.069 0.65 ± 0.076 

C22:0-dhSM     
Hours Control Res 50 µM 

2 0.84 ± 0.15 1.48 ± 0.30** 
4 0.79 ± 0.22 2.70 ± 0.23 

C24:0-dhSM     
Hours Control Res 50 µM 

2 1.44 ± 0.30 1.79 ± 0.44 
4 1.19 ± 0.44 3.15 ± 0.33 

C26:0-dhSM     
Hours Control Res 50 µM 

2 0.19 ± 0.058 0.22 ± 0.057* 
4 0.15 ± 0.071 0.35 ± 0.034 

Total dhSMs     
Hours Control Res 50 µM 

2 16.58 ± 3.55 18.11 ± 1.65 
4 14.44 ± 0.77 23.67 ± 0.91** 

 
Table 4.4 Effect of DTT on sphingolipid metabolism in HCT-116 cells. HCT-116 cells 
were treated with 2 mM DTT for 2 and 6 h. The amount of each sphingolipid was 
determined by LC-MS/MS. Data are mean ± SEM of 1 (6 h) or 2 (2 h) independent 
experiments.  
 

Ceramides (pmol/µg PC) 
C16:0-Cer     
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Hours Control DTT 2 mM 
2 2.59 ± 0.20 1.75 ± 0.059 
6 1.76 1.55 

C18:0-Cer     
Hours Control DTT 2 mM 

2 0.055 ± 0.002 0.043 ± 0.004 
6 0.038 0.036 

C20:0-Cer     
Hours Control DTT 2 mM 

2 0.034 ± 0.0001 0.027 ± 0.0007 
6 0.029 0.023 

C22:0-Cer     
Hours Control DTT 2 mM 

2 0.27 ± 0.002 0.15 ± 0.007 
6 0.10 0.059 

C24:1-Cer     
Hours Control DTT 2 mM 

2 2.07 ± 0.90 1.05 ± 0.51 
6 0.12 0.054 

C24:0-Cer     
Hours Control DTT 2 mM 

2 1.95 ± 0.94 1.15 ± 0.49 
6 0.17 0.069 

C26:1-Cer     
Hours Control DTT 2 mM 

2 0.22 ± 0.069 0.11 ± 0.046 
6 0.019 0.0076 

Total Cers     
Hours Control DTT 2 mM 

2 7.20 ± 2.12 4.28 ± 1.11 
6 2.23 1.80 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control DTT 2 mM 
2 0.15 ± 0.049 2.30 ± 0.89 
6 0.16 5.95 
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C18:0-dhCer     
Hours Control DTT 2 mM 

2 0.00066 ± 0.0007 0.0052 ± 0.0052 
6 0.0018 0.028 

C22:0-dhCer     
Hours Control DTT 2 mM 

2 0.0017 0.023 
6 0.0022 0.096 

C24:1-dhCer     
Hours Control DTT 2 mM 

2 0.0080 ± 0.006 0.27 ± 0.12 
6 0.0018 0.063 

C24:0-dhCer     
Hours Control DTT 2 mM 

2 0.015 ± 0.007 0.22 ± 0.10 
6 0.0040 0.070 

Total dhCers     
Hours Control DTT 2 mM 

2 0.17 ± 0.034 2.81 ± 0.64 
6 0.17 6.23 

 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control DTT 2 mM 
2 0.68 ± 0.059 0.56 ± 0.068 
6 1.69 1.06 

dhSph     
Hours Control DTT 2 mM 

2 0.088 ± 0.016 0.15 ± 0.018 
6 0.19 0.62 

S1P     
Hours Control DTT 2 mM 

2 0.042 ± 0.003 0.035 ± 0.005 
6 0.037 0.020 

 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     
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Hours Control DTT 2 mM 
2 38.08 ± 4.13 33.91 ± 3.57 
6 28.09 19.89 

C18:0-SM     
Hours Control DTT 2 mM 

2 1.54 ± 0.091 0.64 ± 0.075 
6 0.53 0.40 

C20:0-SM     
Hours Control DTT 2 mM 

2 0.33 ± 0.054 0.49 ± 0.015 
6 0.64 0.44 

C22:0-SM     
Hours Control DTT 2 mM 

2 0.90 ± 0.29 1.41 ± 0.33 
6 0.77 0.55 

C24:1-SM     
Hours Control DTT 2 mM 

2 3.16 ± 0.89 4.68 ± 1.02 
6 4.29 2.99 

C26:1-SM     
Hours Control DTT 2 mM 

2 0.68 ± 0.017 0.28 ± 0.10 
6 0.43 0.33 

Total SMs     
Hours Control DTT 2 mM 

2 44.69 ± 5.47 41.41 ± 5.08 
6 34.75 24.59 

 

Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control DTT 2 mM 
2 10.36 ± 0.79 10.76 ± 1.18 
6 5.15 6.30 

C18:0-dhSM     
Hours Control DTT 2 mM 

2 0.27 ± 0.005 0.35 ± 0.022 
6 0.18 0.18 
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C20:0-dhSM     
Hours Control DTT 2 mM 

2 0.11 ± 0.002 0.30 ± 0.010 
6 0.17 0.20 

C22:0-dhSM     
Hours Control DTT 2 mM 

2 0.19 ± 0.090 0.37 ± 0.029 
6 0.12 0.23 

C24:0-dhSM     
Hours Control DTT 2 mM 

2 0.20 ± 0.045 0.41 ± 0.054 
6 0.27 0.57 

Total dhSMs     
Hours Control DTT 2 mM 

2 11.13 ± 0.91 12.20 ± 1.30 
6 5.96 7.61 

 
Table 4.5 Effect of sulforaphane on sphingolipid metabolism in HCT-116 cells. HCT-116 
cells were treated with 20 µM sulforaphane for 2 and 4 h. The amount of each 
sphingolipid was determined by LC-MS/MS. Data are mean ± SEM of 2 independent 
experiments. 
 

Ceramides (pmol/µg PC) 
C16:0-Cer     

Hours Control SFN 20 µM 
2 2.40 ± 0.18 3.13 ± 0.073 
4 2.85 ± 0.36 3.83 ± 0.010 

C18:0-Cer     
Hours Control SFN 20 µM 

2 0.038 ± 0.001 0.054 ± 0.009 
4 0.042 ± 0.0002 0.061 ± 0.006 

C20:0-Cer     
Hours Control SFN 20 µM 

2 0.022 ± 0.003 0.035 ± 0.006 
4 0.025 ± 0.002 0.042 ± 0.010 

C22:0-Cer     
Hours Control SFN 20 µM 

2 0.19 ± 0.017 0.26 ± 0.024 
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4 0.21 ± 0.0003 0.30 ± 0.025 

C24:1-Cer     
Hours Control SFN 20 µM 

2 4.45 ± 0.42 5.61 ± 0.35 
4 4.76 ± 0.26 6.68 ± 0.58 

C24:0-Cer     
Hours Control SFN 20 µM 

2 4.41 ± 0.59 4.31 ± 0.40 
4 4.67 ± 0.67 4.41 ± 0.50 

C26:1-Cer     
Hours Control SFN 20 µM 

2 0.37 ± 0.051 0.47 ± 0.017 
4 0.43 ± 0.037 0.47 ± 0.024 

Total Cers     
Hours Control SFN 20 µM 

2 11.88 ± 1.23 13.87 ± 0.65 
4 12.99 ± 1.32 15.79 ± 1.04 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control SFN 20 µM 
2 0.053 ± 0.006 0.078 ± 0.007 
4 0.072 ± 0.018 0.11 ± 0.019 

C24:1-dhCer     
Hours Control SFN 20 µM 

2 0.0078 ± 0.008 0.012 ± 0.012 
4 0.0074 ± 0.007 0.016 ± 0.016 

Total dhCers     
Hours Control SFN 20 µM 

2 0.061 ± 0.002 0.090 ± 0.004 
4 0.079 ± 0.011 0.12 ± 0.003 

 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control SFN 20 µM 
2 0.57 ± 0.018 0.50 ± 0.013 
4 0.53 ± 0.025 0.61 ± 0.055 
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dhSph     
Hours Control SFN 20 µM 

2 0.10 ± 0.011 0.081 ± 0.005 
4 0.10 ± 0.001 0.10 ± 0.006 

S1P     
Hours Control SFN 20 µM 

2 0.013 ± 0.007 0.016 ± 0.003 
4 0.010 ± 0.002 0.014 ± 0.004 

 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     

Hours Control SFN 20 µM 
2 83.97 ± 19.12 62.22 ± 15.81 
4 90.58 ± 20.91 67.94 ± 22.24 

C18:0-SM     
Hours Control SFN 20 µM 

2 1.59 ± 0.26 0.65 ± 0.17 
4 1.61 ± 0.13 0.60 ± 0.14 

C20:0-SM     
Hours Control SFN 20 µM 

2 0.37 ± 0.17 0.50 ± 0.13 
4 0.28 ± 0.084 0.50 ± 0.13 

C22:0-SM     
Hours Control SFN 20 µM 

2 1.32 ± 0.63 1.77 ± 0.29 
4 1.03 ± 0.33 1.84 ± 0.47 

C24:1-SM     
Hours Control SFN 20 µM 

2 4.80 ± 2.52 5.98 ± 1.14 
4 3.86 ± 1.53 6.31 ± 1.74 

C26:1-SM     
Hours Control SFN 20 µM 

2 2.12 ± 0.12 0.25 ± 0.040 
4 2.15 ± 0.048 0.27 ± 0.064 

Total SMs     
Hours Control SFN 20 µM 

2 94.16 ± 22.83 71.37 ± 17.57 
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4 99.51 ± 23.04 77.45 ± 24.79 
 

Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control SFN 20 µM 
2 6.22 ± 0.15 6.78 ± 0.46 
4 5.50 ± 0.42 6.24 ± 0.12 

C18:0-dhSM     
Hours Control SFN 20 µM 

2 0.11 ± 0.019 0.16 ± 0.005 
4 0.082 ± 0.016 0.13 ± 0.008 

C20:0-dhSM     
Hours Control SFN 20 µM 

2 0.033 ± 0.005 0.078 ± 0.016 
4 0.025 ± 0.011 0.068 ± 0.007 

C22:0-dhSM     
Hours Control SFN 20 µM 

2 0.081 ± 0.006 0.17 ± 0.034 
4 0.053 ± 0.026 0.15 ± 0.004 

C24:0-dhSM     
Hours Control SFN 20 µM 

2 0.063 ± 0.010 0.12 ± 0.026 
4 0.045 ± 0.029 0.11 ± 0.012 

C26:0-dhSM     
Hours Control SFN 20 µM 

2 0.0052 ± 0.001 0.010 ± 0.002 
4 0.0036 ± 0.002 0.011 ± 0.003 

Total dhSMs     
Hours Control SFN 20 µM 

2 6.51 ± 1.16 7.30 ± 0.17 
4 5.71 ± 0.00002 6.71 ± 0.84 

 
Table 4.6 Effect of quercetin on sphingolipid metabolism in HCT-116 cells. HCT-116 
cells were treated with 20 µM quercetin for 2 and 4 h. The amount of each sphingolipid 
was determined by LC-MS/MS. Data are mean ± SEM of 2 independent experiments. 
 

Ceramides (pmol/µg PC) 
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C16:0-Cer     
Hours Control Quer 20 µM 

2 2.59 ± 0.20 3.79 ± 0.29 
4 3.04 ± 0.32 4.10 ± 0.11 

C18:0-Cer     
Hours Control Quer 20 µM 

2 0.055 ± 0.002 0.082 ± 0.003 
4 0.058 ± 0.009 0.085 ± 0.004 

C20:0-Cer     
Hours Control Quer 20 µM 

2 0.034 ± 0.0001 0.052 ± 0.001 
4 0.038 ± 0.005 0.050 ± 0.003 

C22:0-Cer     
Hours Control Quer 20 µM 

2 0.27 ± 0.002 0.32 ± 0.022 
4 0.25 ± 0.025 0.32 ± 0.010 

C24:1-Cer     
Hours Control Quer 20 µM 

2 2.07 ± 0.90 2.19 ± 1.08 
4 2.31 ± 1.07 2.10 ± 0.89 

C24:0-Cer     
Hours Control Quer 20 µM 

2 1.95 ± 0.94 2.28 ± 1.03 
4 2.23 ± 1.07 2.48 ± 0.98 

C26:1-Cer     
Hours Control Quer 20 µM 

2 0.22 ± 0.069 0.17 ± 0.10 
4 0.21 ± 0.085 0.16 ± 0.086 

Total Cers     
Hours Control Quer 20 µM 

2 7.20 ± 2.12 8.88 ± 2.52 
4 8.14 ± 2.59 9.30 ± 2.06 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control Quer 20 µM 
2 0.15 ± 0.049 0.34 ± 0.10 
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4 0.19 ± 0.055 0.68 ± 0.18 

C24:1-dhCer     
Hours Control Quer 20 µM 

2 0.0080 ± 0.006 0.020 ± 0.008 
4 0.025 ± 0.015 0.060 ± 0.029 

C24:0-dhCer     
Hours Control Quer 20 µM 

2 0.015 ± 0.007 0.048 ± 0.020 
4 0.016 ± 0.009 0.12 ± 0.063 

Total dhCers     
Hours Control Quer 20 µM 

2 0.17 ± 0.034 0.42 ± 0.064 
4 0.24 ± 0.028 0.87 ± 0.081 

 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control Quer 20 µM 
2 0.68 ± 0.059 1.13 ± 0.31 
4 0.75 ± 0.029 0.77 ± 0.017 

dhSph     
Hours Control Quer 20 µM 

2 0.088 ± 0.016 0.11 ± 0.008 
4 0.11 ± 0.021 0.14 ± 0.037 

S1P     
Hours Control Quer 20 µM 

2 0.042 ± 0.003 0.039 ± 0.001 
4 0.033 ± 0.008 0.026 ± 0.019 

 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     

Hours Control Quer 20 µM 
2 38.08 ± 4.13 39.18 ± 2.96 
4 43.38 ± 5.40 35.33 ± 4.79 

C18:0-SM     
Hours Control Quer 20 µM 

2 1.54 ± 0.091 0.68 ± 0.021 
4 1.69 ± 0.078 0.59 ± 0.15 
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C20:0-SM     
Hours Control Quer 20 µM 

2 0.33 ± 0.054 0.51 ± 0.069 
4 0.33 ± 0.092 0.60 ± 0.070 

C22:0-SM     
Hours Control Quer 20 µM 

2 0.90 ± 0.29 1.55 ± 0.23 
4 0.93 ± 0.30 1.33 ± 0.40 

C24:1-SM     
Hours Control Quer 20 µM 

2 3.16 ± 0.89 5.24 ± 0.92 
4 3.25 ± 1.13 4.77 ± 1.25 

C26:1-SM     
Hours Control Quer 20 µM 

2 0.68 ± 0.017 0.34 ± 0.083 
4 0.78 ± 0.099 0.30 ± 0.065 

Total SMs     
Hours Control Quer 20 µM 

2 44.69 ± 5.47 47.51 ± 4.28 
4 50.37 ± 7.10 42.93 ± 6.72 

 

Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control Quer 20 µM 
2 10.36 ± 0.79 11.25 ± 0.92 
4 10.56 ± 1.01 9.13 ± 1.95 

C18:0-dhSM     
Hours Control Quer 20 µM 

2 0.27 ± 0.005 0.40 ± 0.012 
4 0.36 ± 0.11 0.33 ± 0.072 

C20:0-dhSM     
Hours Control Quer 20 µM 

2 0.11 ± 0.002 0.21 ± 0.054 
4 0.087 ± 0.010 0.17 ± 0.021 

C22:0-dhSM     
Hours Control Quer 20 µM 

2 0.19 ± 0.090 0.36 ± 0.048 
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4 0.17 ± 0.046 0.32 ± 0.095 

C24:0-dhSM     
Hours Control Quer 20 µM 

2 0.20 ± 0.045 0.35 ± 0.046 
4 0.16 ± 0.004 0.38 ± 0.18 

Total dhSMs     
Hours Control Quer 20 µM 

2 11.13 ± 1.72 12.56 ± 1.73 
4 11.34 ± 1.62 10.33 ± 3.30 

 
Table 4.7 Effect of thapsigargin on sphingolipid metabolism in HCT-116 cells. HCT-116 
cells were treated with 1 µM thapsigargin for 6 h. The amount of each sphingolipid was 
determined by LC-MS/MS. Data are mean ± SEM of 2 independent experiments. 
 

Ceramides (pmol/µg PC) 
C16:0-Cer     

Hours Control TG 1 µM 
6 2.21 ± 0.45 3.43 ± 0.93 

C18:0-Cer     
Hours Control TG 1 µM 

6 0.045 ± 0.007 0.088 ± 0.020 

C20:0-Cer     
Hours Control TG 1 µM 

6 0.031 ± 0.003 0.059 ± 0.004 

C22:0-Cer     
Hours Control TG 1 µM 

6 0.16 ± 0.059 0.31 ± 0.15 

C24:1-Cer     
Hours Control TG 1 µM 

6 0.68 ± 0.56 0.81 ± 0.66 

C24:0-Cer     
Hours Control TG 1 µM 

6 0.72 ± 0.55 0.90 ± 0.73 
Total Cers     

Hours Control TG 1 µM 
6 3.92 ± 1.68 5.71 ± 2.57 
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Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control TG 1 µM 
6 0.20 ± 0.035 0.67 ± 0.19 

C24:1-dhCer     
Hours Control TG 1 µM 

6 0.0059 ± 0.0041 0.0094 ± 0.0068 

C24:0-dhCer     
Hours Control TG 1 µM 

6 0.0054 ± 0.0015 0.017 ± 0.010 

Total dhCers     
Hours Control TG 1 µM 

6 0.21 ± 0.038 0.71 ± 0.20 
 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control TG 1 µM 
6 1.12 ± 0.56 1.03 ± 0.27 

dhSph     
Hours Control TG 1 µM 

6 0.13 ± 0.060 0.11 ± 0.048 

S1P     
Hours Control TG 1 µM 

6 0.032 ± 0.005 0.030 ± 0.003 
 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     

Hours Control TG 1 µM 
6 28.09 ± 1.52 31.20 ± 3.89 

C18:0-SM     
Hours Control TG 1 µM 

6 1.60 ± 0.023 0.63 ± 0.085 

C20:0-SM     
Hours Control TG 1 µM 

6 0.35 ± 0.12 0.58 ± 0.10 
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C22:0-SM     
Hours Control TG 1 µM 

6 0.40 ± 0.12 1.03 ± 0.25 

C24:1-SM     
Hours Control TG 1 µM 

6 2.25 ± 0.25 4.32 ± 0.17 

C26:1-SM     
Hours Control TG 1 µM 

6 0.85 ± 0.089 0.41 ± 0.10 
Total SMs     

Hours Control TG 1 µM 
6 33.54 ± 1.16 38.18 ± 3.85 

 

Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control TG 1 µM 
6 5.15 ± 0.97 7.23 ± 1.63 

C18:0-dhSM     
Hours Control TG 1 µM 

6 0.20 ± 0.021 0.24 ± 0.070 

C20:0-dhSM     
Hours Control TG 1 µM 

6 0.17 ± 0.003 0.19 ± 0.014 

C22:0-dhSM     
Hours Control TG 1 µM 

6 0.12 ± 0.059 0.19 ± 0.059 

C24:0-dhSM     
Hours Control TG 1 µM 

6 0.14 ± 0.038 0.29 ± 0.045 

Total dhSMs     
Hours Control TG 1 µM 

6 5.86 ± 0.98 8.21 ± 1.78 
 
Table 4.8 Effect of cancer chemotherapeutic drugs (doxorubicin and camptothecin) on 
sphingolipid metabolism in HCT-116 cells. HCT-116 cells were treated with 5 µM 
doxorubicin or 1 µM camptothecin for 24 h. The amount of each sphingolipid was 
determined by LC-MS/MS. Data are results of 1 experiment. 
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Ceramides (pmol/µg PC)  
C16:0-Cer       

Hours Control Dox 5 µM CPT 1 µM 
24 2.03 3.93 6.04 

C18:0-Cer       
Hours Control Dox 5 µM CPT 1 µM 

24 0.025 0.064 0.094 

C20:0-Cer       
Hours Control Dox 5 µM CPT 1 µM 

24 0.022 0.039 0.062 

C22:0-Cer       
Hours Control Dox 5 µM CPT 1 µM 

24 0.16 0.24 0.27 

C24:1-Cer       
Hours Control Dox 5 µM CPT 1 µM 

24 1.18 2.03 2.08 

C24:0-Cer       
Hours Control Dox 5 µM CPT 1 µM 

24 1.87 1.51 1.75 

C26:1-Cer       
Hours Control Dox 5 µM CPT 1 µM 

24 0.16 0.11 0.22 

C26:0-Cer       
Hours Control Dox 5 µM CPT 1 µM 

24 0.15 0.11 0.24 
Total Cers       

Hours Control Dox 5 µM CPT 1 µM 
24 5.60 8.03 10.77 

 

Dihydroceramides (pmol/µg PC)  
C16:0-dhCer       

Hours Control Dox 5 µM CPT 1 µM 
24 0.26 0.57 0.38 

C24:1-dhCer       
Hours Control Dox 5 µM CPT 1 µM 
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24 0.024 0.088 0.021 

Total dhCers       
Hours Control Dox 5 µM CPT 1 µM 

24 0.28 0.66 0.40 
 

Sphingoid bases (pmol/µg PC)  
Sph       

Hours Control Dox 5 µM CPT 1 µM 
24 0.88 0.96 2.10 

dhSph       
Hours Control Dox 5 µM CPT 1 µM 

24 0.08 0.10 0.16 

S1P       
Hours Control Dox 5 µM CPT 1 µM 

24 0.011 0.029 0.034 
 

Sphingomyelins (pmol/µg PC)  
C16:0-SM       

Hours Control Dox 5 µM CPT 1 µM 
24 62.19 66.74 68.25 

C18:0-SM       
Hours Control Dox 5 µM CPT 1 µM 

24 0.51 0.65 0.68 

C20:0-SM       
Hours Control Dox 5 µM CPT 1 µM 

24 0.45 0.55 0.55 

C22:0-SM       
Hours Control Dox 5 µM CPT 1 µM 

24 1.58 1.99 1.94 

C24:1-SM       
Hours Control Dox 5 µM CPT 1 µM 

24 7.02 9.60 8.38 

C26:1-SM       
Hours Control Dox 5 µM CPT 1 µM 

24 0.37 0.57 0.48 

Total SMs       
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Hours Control Dox 5 µM CPT 1 µM 
24 72.12 80.11 80.28 

 

Dihydrosphingomyelins (pmol/µg PC)  
C16:0-dhSM       

Hours Control Dox 5 µM CPT 1 µM 
24 10.19 13.65 12.52 

C18:0-dhSM       
Hours Control TG 1 µM CPT 1 µM 

24 0.23 0.38 0.38 

C20:0-dhSM       
Hours Control TG 1 µM CPT 1 µM 

24 0.15 0.26 0.24 

C22:0-dhSM       
Hours Control TG 1 µM CPT 1 µM 

24 0.26 0.42 0.38 

C24:0-dhSM       
Hours Control TG 1 µM CPT 1 µM 

24 0.31 0.50 0.38 

C26:0-dhSM       
Hours Control TG 1 µM CPT 1 µM 

24 0.03 0.06 0.06 

Total dhSMs       
Hours Control TG 1 µM CPT 1 µM 

24 11.17 15.26 13.96 
 
 
Table 4.9 Effect of EGCG on sphingolipid metabolism in HCT-116 cells. HCT-116 cells 
were treated with 50 µM EGCG for 2 and 4 h. The amount of each sphingolipid was 
determined by LC-MS/MS. Data are mean ± SEM of 3 independent experiments. *p < 
0.05, **p < 0.01, significant difference between control and EGCG-treated cells. 
 

Ceramides (pmol/µg PC) 
C16:0-Cer     

Hours Control EGCG 50 µM 
2 3.29 ± 0.38 3.80 ± 0.10 
4 3.78 ± 0.37 4.22 ± 0.40 
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C18:0-Cer     
Hours Control EGCG 50 µM 

2 0.083 ± 0.009 0.080 ± 0.008 
4 0.098 ± 0.018 0.085 ± 0.009 

C20:0-Cer     
Hours Control EGCG 50 µM 

2 0.057 ± 0.006 0.058 ± 0.006 
4 0.069 ± 0.016 0.064 ± 0.008 

C22:0-Cer     
Hours Control EGCG 50 µM 

2 0.64 ± 0.032 0.63 ± 0.069 
4 0.70 ± 0.13 0.59 ± 0.031 

C24:1-Cer     
Hours Control EGCG 50 µM 

2 2.39 ± 0.31 2.47 ± 0.28 
4 2.18 ± 0.38 1.76 ± 0.38 

C24:0-Cer     
Hours Control EGCG 50 µM 

2 2.61 ± 0.19 2.76 ± 0.35 
4 2.31 ± 0.39 2.21 ± 0.42 

C26:1-Cer     
Hours Control EGCG 50 µM 

2 0.24 ± 0.026 0.22 ± 0.036 
4 0.22 ± 0.034 0.16 ± 0.028* 

C26:0-Cer     
Hours Control EGCG 50 µM 

2 0.19 ± 0.019 0.17 ± 0.026 
4 0.17 ± 0.023 0.15 ± 0.022 

Total Cers     
Hours Control EGCG 50 µM 

2 9.51 ± 0.88 10.18 ± 0.86 
4 9.52 ± 0.44 9.24 ± 0.87 

 

Dihydroceramides (pmol/µg PC) 
C16:0-dhCer     

Hours Control EGCG 50 µM 
2 0.11 ± 0.015 0.11 ± 0.002 
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4 0.12 ± 0.011 0.24 ± 0.037* 

C18:0-dhCer     
Hours Control EGCG 50 µM 

2 0.0020 ± 0.0004 0.0019 ± 0.0002 
4 0.0021 ± 0.0005 0.0037 ± 0.0004* 

C20:0-dhCer     
Hours Control EGCG 50 µM 

2 0.0011 ± 0.0001 0.00092 ± 0.0001 
4 0.0014 ± 0.0003 0.0019 ± 0.0002 

C22:0-dhCer     
Hours Control EGCG 50 µM 

2 0.0037 ± 0.0006 0.0034 ± 0.0007 
4 0.0055 ± 0.0019 0.012 ± 0.0027* 

C24:1-dhCer     
Hours Control EGCG 50 µM 

2 0.0055 ± 0.0014 0.0058 ± 0.0002 
4 0.0069 ± 0.0004 0.013 ± 0.0011** 

C24:0-dhCer     
Hours Control EGCG 50 µM 

2 0.0060 ± 0.0009 0.0056 ± 0.0010 
4 0.0083 ± 0.0002 0.020 ± 0.0025** 

C26:1-dhCer     
Hours Control EGCG 50 µM 

2 0.00081 ± 0.0001 0.0009 ± 0.0001 
4 0.0010 ± 0.0002 0.0015 ± 0.0002 

Total dhCers     
Hours Control EGCG 50 µM 

2 0.13 ± 0.019 0.13 ± 0.003 
4 0.14 ± 0.008 0.29 ± 0.041* 

 

Sphingoid bases (pmol/µg PC) 
Sph     

Hours Control EGCG 50 µM 
2 1.40 ± 0.15 1.24 ± 0.16 
4 1.17 ± 0.27 0.96 ± 0.20* 

dhSph     
Hours Control EGCG 50 µM 
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2 0.082 ± 0.007 0.067 ± 0.003 
4 0.074 ± 0.016 0.045 ± 0.019 

S1P     
Hours Control EGCG 50 µM 

2 0.018 ± 0.004 0.022 ± 0.003 
4 0.020 ± 0.006 0.017 ± 0.004 

 

Sphingomyelins (pmol/µg PC) 
C16:0-SM     

Hours Control EGCG 50 µM 
2 64.14 ± 4.06 66.62 ± 9.12 
4 66.68 ± 6.68 55.12 ± 1.34 

C18:0-SM     
Hours Control EGCG 50 µM 

2 1.06 ± 0.14 1.34 ± 0.25 
4 0.92 ± 0.10 0.99 ± 0.088* 

C20:0-SM     
Hours Control EGCG 50 µM 

2 1.04 ± 0.24 1.30 ± 0.37 
4 0.96 ± 0.30 1.05 ± 0.12 

C22:0-SM     
Hours Control EGCG 50 µM 

2 4.77 ± 0.93 5.90 ± 1.51 
4 4.01 ± 1.62 4.99 ± 0.55 

C24:1-SM     
Hours Control EGCG 50 µM 

2 22.00 ± 5.07 25.67 ± 6.43** 
4 19.51 ± 8.14 23.25 ± 2.37 

C26:1-SM     
Hours Control EGCG 50 µM 

2 1.41 ± 0.37 1.65 ± 0.47** 
4 1.30 ± 0.58 1.53 ± 0.15 

Total SMs     
Hours Control EGCG 50 µM 

2 94.42 ± 10.73 102.48 ± 17.82 
4 93.38 ± 10.16 86.92 ± 4.56 
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Dihydrosphingomyelins (pmol/µg PC) 
C16:0-dhSM     

Hours Control EGCG 50 µM 
2 13.42 ± 3.22 12.75 ± 1.58 
4 11.70 ± 1.52 10.46 ± 2.02 

C18:0-dhSM     
Hours Control EGCG 50 µM 

2 0.38 ± 0.10 0.44 ± 0.10 
4 0.34 ± 0.019 0.40 ± 0.044 

C20:0-dhSM     
Hours Control EGCG 50 µM 

2 0.32 ± 0.083 0.40 ± 0.11 
4 0.28 ± 0.069 0.35 ± 0.031 

C22:0-dhSM     
Hours Control EGCG 50 µM 

2 0.84 ± 0.15 1.08 ± 0.22** 
4 0.79 ± 0.22 1.08 ± 0.12 

C24:0-dhSM     
Hours Control EGCG 50 µM 

2 1.44 ± 0.30 1.62 ± 0.34 
4 1.19 ± 0.44 1.65 ± 0.16 

C26:0-dhSM     
Hours Control EGCG 50 µM 

2 0.19 ± 0.058 0.22 ± 0.059* 
4 0.15 ± 0.071 0.27 ± 0.059 

Total dhSMs     
Hours Control EGCG 50 µM 

2 16.58 ± 3.55 16.51 ± 2.07 
4 14.44 ± 0.77 14.21 ± 2.25 
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4.5 Discussion 

 

We show that various anticancer compounds including representative 

chemopreventive phytochemicals against cancer (phenolics: curcumin, resveratrol, 

quercetin, EGCG; organosulfur compound: sulforaphane), ER stress inducers (DTT, 

thapsigargin), and cancer chemotherapeutic drugs (doxorubicin, camptothecin), all 

modulated sphingolipid metabolism in human colon HCT-116 cancer cells. Specifically, 

while the effects of individual compounds on Cer species with specific fatty acid chain 

lengths were different, all tested compounds increased the levels of dhCers compared 

with controls. For instance, curcumin increased C24-Cers, but decreased C16:0-Cer, and 

resveratrol and DTT decreased the levels of all different species of Cers. On the other 

hand, while sulforaphane, quercentin, thapsigargin, doxorubicin and camptothecin 

increased all Cers, EGCG did not affect on the Cer levels during our tested treatment 

times. Moreover, we found that curcumin and quercetin significantly inhibited DEGS 

enzyme activities. Interestingly, these changes of sphingolipid by the tested compounds 

occurred quickly and took place prior to any manifestation of cell death. These data 

demonstrated that modulation of sphingolipid metabolism might be a general mechanism 

for the anticancer effects of chemopreventive compounds against cancer, and inhibition 

of DEGS enzyme might be the initial primary target of their anticancer actions. 

We suggests DEGS in the de novo sphingolipid biosynthesis pathway as an initial 

inhibitory target of various cancer chemopreventive compounds based on the quick 

increase of intracellular dhCers after treatment of all the tested compounds in human 

colon HCT-116 cancer cells. DEGS is a key enzyme, which is responsible for addition of 
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a double bond in dhCer, thus regulating the levels of dhCer as well as Cer in the cell. As 

well as the elevation of dhCers, various compounds seem to have different effects on the 

regulation of individual Cer species. Recent studies have shown that individual Cers with 

specific fatty acid chain lengths have distinct roles in cell proliferation and death 

(Hannun and Obeid, 2011; Ryland et al., 2011). For instance, C18:0-Cer generated by 

CerS1 has been found to induce apoptosis (Senkal et al., 2010) or lethal autophagy 

(Sentelle et al., 2012). The roles of C16:0-Cer generated by CerS5/6 are still debatable as it 

has shown anti- or pro-apoptotic properties (Mullen et al., 2011; Schiffmann et al., 

2009b; Senkal et al., 2010; White-Gilbertson et al., 2009). In this study, in contrast to 

dhCer, the effects of various cancer chemopreventive or chemotherapeutic compounds on 

Cer varied with treatment time and specific Cer species. Therefore, further studies are 

needed to verify their specific effects on CerS enzymes and the roles of individual Cers in 

the regulation of cell fate. 

 Plant-derived phytochemicals were thought to act as only antioxidants to exhibit 

their chemopreventive effects against cancer. However, interestingly, these compounds 

have been found to show dual roles as pro-oxidants as well as antioxidants depending on 

various environmental factors. They can generate reactive oxygen species and cause 

oxidative stress (Babich et al., 2011; Fujisawa et al., 2004; Galati et al., 2002). Recently, 

DEGS activity was found to be inhibited by hydrogen peroxide (Idkowiak-Baldys et al., 

2010). The mechanism whether the inhibition of DEGS and modulation of sphingolipid 

metabolism by our tested compounds are caused by their pro-oxidant effects is not 

understood, which warrants further investigation. In addition, the concentrations of 

several compounds that we used in this study are not physiological as their low 
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bioavailability due to rapid metabolism and excretion. Although many studies reported 

anticancer effects of phytochemicals in vitro and in vivo, the effects of phytochemicals in 

humans will need to be assessed in the future studies.  

The current results also showed that ER stress inducers, DTT and thapsigargin, 

modulated sphingolipid metabolism in cancer cells. The ER is an important organelle that 

plays roles in the folding and maturation of newly synthesized transmembrane and 

secretory proteins. Disruption of ER function causes an accumulation of unfolded and 

misfolded proteins in the ER lumen, a condition termed ER stress, which then activates 

unfolded protein response (UPR) to recover the condition. However, the excessive and 

unresolvable ER stress induces apoptosis of the cell (Sano and Reed, 2013). DTT is an 

ER stress inducer as it is a strong reducing compound and blocks disulfide-bond 

formation. Thapsigargin is another well-known ER stress inducer and it acts as a specific 

inhibitor of the sarcoplasmic/ER Ca2+-ATPase (SERCA), resulting in a decrease in 

calcium levels in the ER. The decreased calcium levels in the ER lead to the 

accumulation of unfolded protein followed by ER stress induction due to the loss of 

activities of calcium-dependent ER chaperones (Oslowski and Urano, 2011). Since the de 

novo sphingolipid biosynthesis pathway occurs in the ER, we hypothesized that ER stress 

inducers may interrupt this sphingolipid metabolism. We found that both ER stress 

inducers, DTT and thapsigargin enhanced dhCers and modulated sphingolipid 

metabolism. Their mechanism of actions on sphingolipid metabolism is not completely 

identified yet, but DTT has been shown to strongly inhibit DEGS activity, probably by 

elevating cellular thiol contents or/and interfering with disulfide bonds in enzyme, 

leading to impaired protein stability and catalytic activity (Michel et al., 1997). 
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 In summary, we have shown that various compounds with cancer preventive or 

therapeutic properties all induced accumulation of dhCers and modulation of sphingolipid 

metabolism in human colon HCT-116 cancer cells. Our results indicate that these 

compounds initially target DEGS and induce subsequent increase of dhCer species as 

these responses took place very quickly and prior to any signs of cell death. Although 

further studies to identify the clear mechanisms and the different effects of 

chemopreventive compounds on individual CerSs are needed, we have demonstrated that 

sphingolipid metabolism is the initial primary target of anticancer effects of various 

compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 



213 

 

 

CHAPTER 5.  SUMMARY AND FUTURE DIRECTION 

5.1 Effects and Mechanisms of γTE on Sphingolipid Metabolism 

 

Sphingolipids are structural components of cell membranes and play important 

roles in cellular signal transduction. Using sphingolipidomic approach by LC-MS/MS, 

we demonstrated that γTE, a vitamin E form abundant in palm oil, modulated 

sphingolipid metabolism as an initial primary target and led to induction of apoptosis, 

autophagy and death of cancer cells. Specifically, γTE induced accumulation of 

intracellular dhCers and dhSph, which are important sphingolipid intermediates in the de 

novo biosynthesis pathway and appear to mediate cell death, but decreased in total Cers 

during the initial phase. In the study with 13C3, 15N-labeled L-serine for tracing newly-

synthesized sphingolipids, γTE caused rapid increase of dhCers, but decreases of Cers, 

suggesting that DEGS-catalyzed reaction is likely inhibited by γTE. Consistently, we 

found the inhibition of DEGS activity by γTE, but not the expression. In addition, γTE 

treatment caused increases of endogenous Cer levels with still lower levels of de novo 

Cers during prolonged incubation, suggesting hydrolysis of SM via SMases activation by 

γTE treatment. Blocking the γTE-induced increases of dhCers/dhSph or Cers from SM by 

using myriocin (a specific inhibitor of the first enzyme in the de novo sphingolipid 

pathway) or desipramine (an inhibitor of acid SMase), repectively, partially but 
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significantly reversed the γTE-induced cancer cell death. Overall, our results indicate that 

γTE modulated enzyme activities in sphingolipid metabolism, specifically by inhibition 

of DEGS as an initial target and activation of SM hydrolysis, and this modulation of 

sphingolipid plays an important role in γTE-induced cancer cell death. 

 We showed that γTE also modulated Cer levels, although the effects of γTE on 

individual Cers were varied in cancer cells. For instance, γTE treatment led to significant 

decrease in C16:0-Cer during the initial phase, but increase in the longer time treatment. 

While γTE caused an increase in C18:0-Cer, it led to continuous decreases in C24:1- and 

C24:0-Cers. Interestingly, emerging results suggest that endogenous Cers with different 

fatty acyl-chain lengths appear to have distinct bioactivities. C18:0-Cer generated by 

CerS1 has been found to induce apoptosis and lethal autophagy (Senkal et al., 2010; 

Sentelle et al., 2012). However, the roles of C16:0-Cer and C24-Cers in the regulation of 

cell death are still debatable. C16:0-Cer generated by CerS5/6 have been proposed to have 

antiapoptotic roles (Senkal et al., 2010), but several other studies found that this Cer also 

plays important roles in apoptotic cell death (Mullen et al., 2011; Schiffmann et al., 

2009b; White-Gilbertson et al., 2009). Therefore, further investigation should be 

conducted to determine the role of individual Cer species and to characterize the effects 

of γTE on individual CerSs and Cers. 

 Although our study provided a mechanistic explanation of anticancer activity of 

γTE, the underlying mechanisms by which γTE modulates sphingolipid metabolism are 

not completely understood. Since sphingolipid metabolism is a dynamic and complex 

process, we need to consider many possible aspects that control this process. Specifically,  



215 

 

 

it remains to be investigated regarding how γTE inhibits DEGS enzyme activity and 

activates acid SMase. In addition, whether this mechanistic study can be translated in 

preclinical models also warrants further investigation. 

 

5.2 Anticancer Effects and Mechanisms of 13’-carboxychromanols, Long-chain 

Metabolites of Vitamin E 

 

Cancer is one of the leading causes of death worldwide. Natural forms of vitamin E 

are potentially good chemoprevention agents as they are known to be safe and specific 

forms of vitamin E have been shown to have cancer prevention effects. Among them, αT, 

which is the predominant vitamin E form in tissues, is the most extensively studied in 

relation to prevention of cancer. However, the human clinical studies as well as numerous 

animal studies of αT in cancer prevention resulted in inconsistent and disappointing 

outcomes. On the other hand, recent mechanistic and preclinical studies using preclinical 

animal models have demonstrated that other forms of vitamin E appear to have different 

and stronger biological properties for cancer prevention and therapy compared with αT. 

Despite these exciting findings, the anticancer effects may not directly be rooted in non-

αT form of vitamin E per se because most vitamin E forms are readily metabolized in 

vivo. Recently, long-chain carboxychromanols are found at high levels in feces from mice 

fed diet supplemented with γT or δT, and 13’-carboxychromanols (13’-COOHs) were 

major fecal excreted carboxychromanols (Bardowell et al., 2012a; Bardowell et al., 

2012b; Jiang et al., 2007; Jiang et al., 2013). Interestingly, 13’-COOHs appear to have 

superior anti-inflammatory properties over their vitamin E precursor by showing dual 
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inhibitory effects toward COXs and LOX activities (Jiang et al., 2008; Jiang et al., 2011). 

Since chronic inflammation has been recognized to be an important risk factor in cancer 

development, 13’-COOHs could be potential cancer preventive agents due to their strong 

anti-inflammatory properties. Birringer et al. recently found that 13’-COOHs 

metabolized from αT or δT induced apoptosis in human liver cells, but the underlying 

mechanism was not completely understood (Birringer et al., 2010). 

 We showed that 13’-COOHs derived from δT or δTE inhibited the growth and 

induced apoptosis and autophagy in human colon, breast, and pancreatic cancer cells. In 

these activities, 13’-COOHs were much stronger than natural forms of vitamin E. Using 

LC-MS/MS method, we found that δT-13’-COOH increased intracellular dhSph and 

dhCers but decreased C16:0-Cer within 2 h treatment. During longer treatment, δT-13’-

COOH enhanced all sphingoid bases including Cers while decreased SMs. Modulation of 

sphingolipids by 13’-COOHs was observed prior to or coinciding with biochemical 

manifestation of cell death including PARP cleavage and LC3-II increase. The 

importance of sphingolipid modulation was supported by the observation that 

pharmaceutically blocking the increase of these sphingolipids partially counteracted 13’-

COOH-induced cell death. Further mechanistic studies indicated that 13’-COOH 

inhibited DEGS without affecting its protein expression and may activate SM hydrolysis 

to enhance Cers. In agreement with these cell-based studies, δTE-13’-COOH 

significantly decreased colon tumor multiplicity induced by AOM with two cycles of 

1.5% DSS without any apparent toxicity even when the dietary supplementation was 

started after AOM injection. Our study demonstrates that 13’-COOHs have potent 
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anticancer effects by modulating enzyme activities in sphingolipid metabolism in cancer 

cells. 

 Current study demonstrated that 13’-COOHs have potent anticancer effects in 

various human cancer cells, even stronger than their unmetabolized vitamin E forms. 

However, as 13’-COOHs are relatively newly found compounds, studies to investigate 

the effects and mechanisms of 13’-COOHs are scarce. Therefore, many further studies 

are needed to understand the properties of these compounds using cell culture studies, 

animal models and human studies. First of all, although our study provides mechanistic 

insight into 13’-COOHs-mediated anticancer effects, underlying mechanisms by which 

13’-COOHs modulate enzyme activities in sphingolipid metabolism and exert anticancer 

effects are not completely understood. Moreover, investigation and comparison of the 

anticancer effects of other 13’-COOHs would be interesting. Second, in our AOM-DSS 

colon cancer animal study, supplementation of δTE-13’-COOH significantly attenuated 

DSS-caused colon inflammation and decreased the number of large-sized tumors. To 

better understand the underlying mechanisms of the anticancer effects of 13’-COOHs, we 

can analyze other cancer biomarkers such as β-catenin and Ki67 as a proliferation marker 

as well as inflammatory markers such as PGE2 and LTB4 from plasma. Further 

measurement of the levels of 13’-COOHs in plasma, feces, and other tissues also needed 

to be conducted. In addition, further researches are needed to investigate bioavailability 

of 13’-COOHs in animals and humans. Although we know that relative high levels of 

13’-COOHs can be found in feces after vitamin E supplementation and we can speculate 

that 13’-COOHs may exert their anticancer effects when they pass through the colon 

tissue, the bioavailability information of these metabolites in other tissues is lacking. 
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Therefore, future studies are needed to investigate their anticancer effects and underlying 

mechanisms as well as bioavailability in other cancer tissues. 

 

5.3 Phytochemicals as Chemopreventive Agents 

 

Carcinogenesis is generally recognized as a multistep process including tumor 

initiation, promotion and progression, and cancer cell growth is driven by multiple altered 

signaling pathways to gain unlimited growth potential. Therefore, blocking only one 

signaling transduction pathway might not be sufficient to suppress the growth of cancer 

cells.  

Dietary phytochemicals have been used for the prevention as well as treatment of 

cancer for a long time due to their safety and general availability. Chemopreventive 

phytochemicals can block or reverse the multistep carcinogenesis by targeting multiple 

signaling pathways and proteins. Despite their beneficial properties against cancers, the 

underlying mechanisms are not completely understood. Although many studies have 

shown the multiple targets of chemopreventive phytochemicals, if we can find the initial 

primary target of their anticancer effects, it would be more useful information to 

understand their mechanism. 

 We demonstrate that various representative phytochemicals including curcumin, 

resveratrol, EGCG, quercetin and sulforaphane show anticancer effects by modulation of 

sphingolipid metabolism using LC-MS/MS technology. Specifically, while the effects of 

individual compounds on different Cer species with distinct chain-length of fatty acyl-

CoA were different, all the tested compounds increased the levels of dhCers compared 
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with controls. Interestingly, these changes of sphingolipids by the tested phytochemicals 

occurred quickly and took place prior to any signs of cell death. These data demonstrated 

that modulation of sphingolipid metabolism might be a general mechanism for the 

anticancer effects of various chemopreventive compounds against cancer, and inhibition 

of DEGS enzyme might be the initial primary target of their anticancer actions. 

 Although several phytochemicals have been extensively studied and have 

exhibited potent anticancer activities through alteration of various mechanisms, and our 

study demonstrates the modulation of sphingolipid metabolism as an initial and primary 

target for anticancer activity of them, there are still a number of key weaknesses and 

further researches to be conducted. First weakness of the current researches of 

phytochemicals is that most studies have been conducted in vitro and little is known 

about the bioavailability of the compounds. Although numerous cell-culture studies have 

evaluated and defined the anticancer effects and mechanisms of several phytochemicals, 

most in vitro studies used supraphysiological concentrations, which might not be 

achievable when the phytochemicals are administered as a diet. In addition, 

phytochemicals generally show very low bioavailability as the small proportion of these 

compounds is absorbed and it further has extensive metabolism before going to target 

organs. Moreover, their bioavailability might become further lower as they are present as 

glycosides or converted to other conjugated forms after absorption. Finally, although 

many reports have suggested health benefits and molecular targets of dietary 

phytochemicals in cell culture and animal models, the effects of phytochemicals in 

humans will need to be assessed. In order to apply phytochemicals as cancer preventive 
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agents in humans, further investigations of pharmacokinetics and bioavailability, and the 

anticancer effects and mechanisms of the compounds should be conducted carefully. 

 

5.4 Dietary Vitamin E in Colon Cancer Prevention 

 

Colon cancer is one of the leading causes of cancer-related deaths in the US (Siegel 

et al., 2015). Because advanced colon cancer is a devastating disease for patients, 

intervening before the development of tumor can prevent cancer-associated deaths. Early 

detection of dysplasia and prevention of colon cancer progression in high-risk population 

as secondary prevention, which is the treatment for patients who already have developed 

risk factors or disease, will be a key strategy to reduce its incidence. Given that chronic 

inflammation has been directly associated with the malignant transformation and 

development of colon cancer, patients with long-standing inflammatory bowel disease 

(IBD), which can be divided into two major disorders such as ulcerative colitis and 

Chrohn’s disease, have an increased risk of developing colon cancer and have been 

known to be a high-risk population for colon cancer. Although IBD-associated colon 

cancer accounts for only about 1~2% of all cases of colon cancer, patients with IBD are 

six times more likely to develop colon cancer than the general population (Lennard-Jones 

et al., 1983). Thus, secondary prevention must be considered in this population to prevent 

the risk.  

The ideal chemopreventive agent would be safe, inexpensive, and effective. In this 

regard, natural forms of vitamin E are considered as potentially promising 

chemopreventive agents. Recent studies by others and us have shown that vitamin E 



221 

 

 

forms such as γT and γTE, and δT-13’-COOH, a long-chain metabolite of δT exert anti-

inflammatory activities (Jiang, 2014; Jiang et al., 2000; Wang and Jiang, 2013; Wang et 

al., 2015). In addition, results from previous studies in our lab and this study have 

demonstrated that supplementation of vitamin E forms (Jiang et al., 2013) or its long-

chain metabolite results in a significant reduction of carcinogen-induced colon tumor 

incidence or the fecal scores in AOM-DSS colon cancer model and DSS colitis model in 

mice, respectively, suggesting that vitamin E may play important roles in preventing 

colon tumorigenesis.  

Although the doses of vitamin E used in the current study had no adverse effects in 

mice, more researches are needed to translate the dose of vitamin E and the timing to 

begin vitamin E supplementation in animal studies into clinical trials in humans. Overall, 

our data from the in vivo studies as well as in vitro studies support that dietary vitamin E 

reduces the risk of colon tumorigenesis and may contribute to the establishment of 

dietary recommendation for vitamin E to prevent colon cancer. 

 

 

 

 



8 

 

 

LIST OF REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 



222 
 

 

 

LIST OF REFERENCES 

Abdel Shakor, A.B., M. Atia, I.A. Ismail, A. Alshehri, H. El-Refaey, K. Kwiatkowska, 
and A. Sobota. 2014. Curcumin induces apoptosis of multidrug-resistant human 
leukemia HL60 cells by complex pathways leading to ceramide accumulation. 
Biochim Biophys Acta. 1841:1672-1682. 

Agarwal, B., and J.A. Baur. 2011. Resveratrol and life extension. Ann N Y Acad Sci. 
1215:138-143. 

Ahmad, N., D.K. Feyes, A.L. Nieminen, R. Agarwal, and H. Mukhtar. 1997. Green tea 
constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle 
arrest in human carcinoma cells. J Natl Cancer Inst. 89:1881-1886. 

Ahn, E.H., and J.J. Schroeder. 2002. Sphingoid bases and ceramide induce apoptosis in 
HT-29 and HCT-116 human colon cancer cells. Exp Biol Med (Maywood). 
227:345-353. 

Amtmann, E. 1996. The antiviral, antitumoural xanthate D609 is a competitive inhibitor 
of phosphatidylcholine-specific phospholipase C. Drugs Exp Clin Res. 22:287-
294. 

Babich, H., N.J. Ackerman, F. Burekhovich, H.L. Zuckerbraun, and A.G. Schuck. 2009. 
Gingko biloba leaf extract induces oxidative stress in carcinoma HSC-2 cells. In 
Toxicol In Vitro. Vol. 23, England. 992-999. 

Babich, H., A.G. Schuck, J.H. Weisburg, and H.L. Zuckerbraun. 2011. Research 
strategies in the study of the pro-oxidant nature of polyphenol nutraceuticals. J 
Toxicol. 2011:467305. 

Balkwill, F., and A. Mantovani. 2001. Inflammation and cancer: back to Virchow? 
Lancet. 357:539-545. 

Bardowell, S.A., X. Ding, and R.S. Parker. 2012a. Disruption of P450-mediated vitamin 
E hydroxylase activities alters vitamin E status in tocopherol supplemented mice 
and reveals extra-hepatic vitamin E metabolism. J Lipid Res. 53:2667-2676. 

Bardowell, S.A., F. Duan, D. Manor, J.E. Swanson, and R.S. Parker. 2012b. Disruption 
of mouse cytochrome p450 4f14 (Cyp4f14 gene) causes severe perturbations in 
vitamin E metabolism. J Biol Chem. 287:26077-26086. 

Behrens, W.A., and R. Madere. 1986. Alpha- and gamma tocopherol concentrations in 
human serum. J Am Coll Nutr. 5:91-96. 

Bharti, A.C., N. Donato, S. Singh, and B.B. Aggarwal. 2003. Curcumin 
(diferuloylmethane) down-regulates the constitutive activation of nuclear factor-
kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to 
suppression of proliferation and induction of apoptosis. Blood. 101:1053-1062.



223 
 

 

 

 
Bielawska, A., H.M. Crane, D. Liotta, L.M. Obeid, and Y.A. Hannun. 1993. Selectivity 

of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. J 
Biol Chem. 268:26226-26232. 

Bieri, J.G., and R.P. Evarts. 1974. Vitamin E activity of gamma-tocopherol in the rat, 
chick and hamster. J Nutr. 104:850-857. 

Birringer, M., D. Lington, S. Vertuani, S. Manfredini, D. Scharlau, M. Glei, and M. 
Ristow. 2010. Proapoptotic effects of long-chain vitamin E metabolites in HepG2 
cells are mediated by oxidative stress. Free Radic Biol Med. 49:1315-1322. 

Bishayee, A. 2009. Cancer prevention and treatment with resveratrol: from rodent studies 
to clinical trials. Cancer Prev Res (Phila). 2:409-418. 

Block, G., B. Patterson, and A. Subar. 1992. Fruit, vegetables, and cancer prevention: a 
review of the epidemiological evidence. Nutr Cancer. 18:1-29. 

Blot, W.J., J.Y. Li, P.R. Taylor, W. Guo, S. Dawsey, G.Q. Wang, C.S. Yang, S.F. Zheng, 
M. Gail, G.Y. Li, and et al. 1993. Nutrition intervention trials in Linxian, China: 
supplementation with specific vitamin/mineral combinations, cancer incidence, 
and disease-specific mortality in the general population. J Natl Cancer Inst. 
85:1483-1492. 

Bode, A.M., and Z. Dong. 2009. Cancer prevention research - then and now. Nat Rev 
Cancer. 9:508-516. 

Brigelius-Flohe, R., and M.G. Traber. 1999. Vitamin E: function and metabolism. Faseb 
j. 13:1145-1155. 

Britton, G. 1995. Structure and properties of carotenoids in relation to function. Faseb j. 
9:1551-1558. 

Burton, G.W., M.G. Traber, R.V. Acuff, D.N. Walters, H. Kayden, L. Hughes, and K.U. 
Ingold. 1998. Human plasma and tissue alpha-tocopherol concentrations in 
response to supplementation with deuterated natural and synthetic vitamin E. Am 
J Clin Nutr. 67:669-684. 

Campbell, S.E., W.L. Stone, S. Lee, S. Whaley, H. Yang, M. Qui, P. Goforth, D. 
Sherman, D. McHaffie, and K. Krishnan. 2006. Comparative effects of RRR-
alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human 
colon cancer cell lines. BMC Cancer. 6:13. 

Catarzi, S., E. Giannoni, F. Favilli, E. Meacci, T. Iantomasi, and M.T. Vincenzini. 2007. 
Sphingosine 1-phosphate stimulation of NADPH oxidase activity: relationship 
with platelet-derived growth factor receptor and c-Src kinase. Biochim Biophys 
Acta. 1770:872-883. 

Chatelain, E., D.O. Boscoboinik, G.M. Bartoli, V.E. Kagan, F.K. Gey, L. Packer, and A. 
Azzi. 1993. Inhibition of smooth muscle cell proliferation and protein kinase C 
activity by tocopherols and tocotrienols. Biochim Biophys Acta. 1176:83-89. 

Chen, C., R. Yu, E.D. Owuor, and A.N. Kong. 2000. Activation of antioxidant-response 
element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by 
major green tea polyphenol components during cell survival and death. Arch 
Pharm Res. 23:605-612. 

Clarke, J.D., R.H. Dashwood, and E. Ho. 2008. Multi-targeted prevention of cancer by 
sulforaphane. Cancer Lett. 269:291-304. 



224 
 

 

 

Clement, M., and J.M. Bourre. 1997. Graded dietary levels of RRR-gamma-tocopherol 
induce a marked increase in the concentrations of alpha- and gamma-tocopherol 
in nervous tissues, heart, liver and muscle of vitamin-E-deficient rats. Biochim 
Biophys Acta. 1334:173-181. 

Cooney, R.V., A.A. Franke, P.J. Harwood, V. Hatch-Pigott, L.J. Custer, and L.J. Mordan. 
1993. Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alpha-
tocopherol. Proc Natl Acad Sci U S A. 90:1771-1775. 

Coward, J., G. Ambrosini, E. Musi, J.P. Truman, A. Haimovitz-Friedman, J.C. Allegood, 
E. Wang, A.H. Merrill, Jr., and G.K. Schwartz. 2009. Safingol (L-threo-
sphinganine) induces autophagy in solid tumor cells through inhibition of PKC 
and the PI3-kinase pathway. Autophagy. 5:184-193. 

Cuvillier, O. 2002. Sphingosine in apoptosis signaling. Biochim Biophys Acta. 1585:153-
162. 

D'Angelo, G., E. Polishchuk, G. Di Tullio, M. Santoro, A. Di Campli, A. Godi, G. West, 
J. Bielawski, C.C. Chuang, A.C. van der Spoel, F.M. Platt, Y.A. Hannun, R. 
Polishchuk, P. Mattjus, and M.A. De Matteis. 2007. Glycosphingolipid synthesis 
requires FAPP2 transfer of glucosylceramide. Nature. 449:62-67. 

Das, R., G.H. Mahabeleshwar, and G.C. Kundu. 2003. Osteopontin stimulates cell 
motility and nuclear factor kappaB-mediated secretion of urokinase type 
plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling 
pathways in breast cancer cells. J Biol Chem. 278:28593-28606. 

Dashwood, W.M., G.A. Orner, and R.H. Dashwood. 2002. Inhibition of beta-catenin/Tcf 
activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor 
contribution of H(2)O(2) at physiologically relevant EGCG concentrations. 
Biochem Biophys Res Commun. 296:584-588. 

Devlin, C.M., T. Lahm, W.C. Hubbard, M. Van Demark, K.C. Wang, X. Wu, A. 
Bielawska, L.M. Obeid, M. Ivan, and I. Petrache. 2011. Dihydroceramide-based 
response to hypoxia. J Biol Chem. 286:38069-38078. 

Erdreich-Epstein, A., L.B. Tran, N.N. Bowman, H. Wang, M.C. Cabot, D.L. Durden, J. 
Vlckova, C.P. Reynolds, M.F. Stins, S. Groshen, and M. Millard. 2002. Ceramide 
signaling in fenretinide-induced endothelial cell apoptosis. J Biol Chem. 
277:49531-49537. 

Evans, H.M., and K.S. Bishop. 1922. ON THE EXISTENCE OF A HITHERTO 
UNRECOGNIZED DIETARY FACTOR ESSENTIAL FOR REPRODUCTION. 
Science. 56:650-651. 

Freiser, H., and Q. Jiang. 2009. Gamma-tocotrienol and gamma-tocopherol are primarily 
metabolized to conjugated 2-(beta-carboxyethyl)-6-hydroxy-2,7,8-
trimethylchroman and sulfated long-chain carboxychromanols in rats. J Nutr. 
139:884-889. 

Fujisawa, S., T. Atsumi, M. Ishihara, and Y. Kadoma. 2004. Cytotoxicity, ROS-
generation activity and radical-scavenging activity of curcumin and related 
compounds. Anticancer Res. 24:563-569. 

Gable, K., H. Slife, D. Bacikova, E. Monaghan, and T.M. Dunn. 2000. Tsc3p is an 80-
amino acid protein associated with serine palmitoyltransferase and required for 
optimal enzyme activity. J Biol Chem. 275:7597-7603. 



225 
 

 

 

Galati, G., O. Sabzevari, J.X. Wilson, and P.J. O'Brien. 2002. Prooxidant activity and 
cellular effects of the phenoxyl radicals of dietary flavonoids and other 
polyphenolics. Toxicology. 177:91-104. 

Gault, C.R., L.M. Obeid, and Y.A. Hannun. 2010. An overview of sphingolipid 
metabolism: from synthesis to breakdown. Adv Exp Med Biol. 688:1-23. 

Gaziano, J.M., R.J. Glynn, W.G. Christen, T. Kurth, C. Belanger, J. MacFadyen, V. 
Bubes, J.E. Manson, H.D. Sesso, and J.E. Buring. 2009. Vitamins E and C in the 
prevention of prostate and total cancer in men: the Physicians' Health Study II 
randomized controlled trial. Jama. 301:52-62. 

Goldkorn, T., K.A. Dressler, J. Muindi, N.S. Radin, J. Mendelsohn, D. Menaldino, D. 
Liotta, and R.N. Kolesnick. 1991. Ceramide stimulates epidermal growth factor 
receptor phosphorylation in A431 human epidermoid carcinoma cells. Evidence 
that ceramide may mediate sphingosine action. J Biol Chem. 266:16092-16097. 

Gong, L., Y. Li, A. Nedeljkovic-Kurepa, and F.H. Sarkar. 2003. Inactivation of NF-
kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. 
Oncogene. 22:4702-4709. 

Gonzalez-Vallinas, M., M. Gonzalez-Castejon, A. Rodriguez-Casado, and A. Ramirez de 
Molina. 2013. Dietary phytochemicals in cancer prevention and therapy: a 
complementary approach with promising perspectives. Nutr Rev. 71:585-599. 

Gopalan, A., W. Yu, Q. Jiang, Y. Jang, B.G. Sanders, and K. Kline. 2012. Involvement of 
de novo ceramide synthesis in gamma-tocopherol and gamma-tocotrienol-induced 
apoptosis in human breast cancer cells. Mol Nutr Food Res. 56:1803-1811. 

Guan, F., G. Li, A.B. Liu, M.J. Lee, Z. Yang, Y.K. Chen, Y. Lin, W. Shih, and C.S. 
Yang. 2012. delta- and gamma-tocopherols, but not alpha-tocopherol, inhibit 
colon carcinogenesis in azoxymethane-treated F344 rats. Cancer Prev Res 
(Phila). 5:644-654. 

Guthrie, N., A. Gapor, A.F. Chambers, and K.K. Carroll. 1997. Inhibition of proliferation 
of estrogen receptor-negative MDA-MB-435 and -positive MCF-7 human breast 
cancer cells by palm oil tocotrienols and tamoxifen, alone and in combination. J 
Nutr. 127:544s-548s. 

Hanada, K. 2003. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. 
Biochim Biophys Acta. 1632:16-30. 

Hanada, K., K. Kumagai, S. Yasuda, Y. Miura, M. Kawano, M. Fukasawa, and M. 
Nishijima. 2003. Molecular machinery for non-vesicular trafficking of ceramide. 
Nature. 426:803-809. 

Handelman, G.J., L.J. Machlin, K. Fitch, J.J. Weiter, and E.A. Dratz. 1985. Oral alpha-
tocopherol supplements decrease plasma gamma-tocopherol levels in humans. J 
Nutr. 115:807-813. 

Hannun, Y.A., C.R. Loomis, A.H. Merrill, Jr., and R.M. Bell. 1986. Sphingosine 
inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro 
and in human platelets. J Biol Chem. 261:12604-12609. 

Hannun, Y.A., and L.M. Obeid. 2008. Principles of bioactive lipid signalling: lessons 
from sphingolipids. Nat Rev Mol Cell Biol. 9:139-150. 

Hannun, Y.A., and L.M. Obeid. 2011. Many ceramides. J Biol Chem. 286:27855-27862. 



226 
 

 

 

Hayes, J.D., and M. McMahon. 2001. Molecular basis for the contribution of the 
antioxidant responsive element to cancer chemoprevention. Cancer Lett. 174:103-
113. 

Heart, P.g. 2002. MRC/BHF Heart Protection Study of antioxidant vitamin 
supplementation in 20,536 high-risk individuals: a randomised placebo-controlled 
trial. Lancet. 360:23-33. 

Heinonen, O.P., D. Albanes, J. Virtamo, P.R. Taylor, J.K. Huttunen, A.M. Hartman, J. 
Haapakoski, N. Malila, M. Rautalahti, S. Ripatti, H. Maenpaa, L. Teerenhovi, L. 
Koss, M. Virolainen, and B.K. Edwards. 1998. Prostate cancer and 
supplementation with alpha-tocopherol and beta-carotene: incidence and mortality 
in a controlled trial. J Natl Cancer Inst. 90:440-446. 

Helzlsouer, K.J., H.Y. Huang, A.J. Alberg, S. Hoffman, A. Burke, E.P. Norkus, J.S. 
Morris, and G.W. Comstock. 2000. Association between alpha-tocopherol, 
gamma-tocopherol, selenium, and subsequent prostate cancer. J Natl Cancer Inst. 
92:2018-2023. 

Henry, B., R. Ziobro, K.A. Becker, R. Kolesnick, and E. Gulbins. 2013. Acid 
sphingomyelinase. Handb Exp Pharmacol:77-88. 

Heo, K., K.A. Park, Y.H. Kim, S.H. Kim, Y.S. Oh, I.H. Kim, S.H. Ryu, and P.G. Suh. 
2009. Sphingosine 1-phosphate induces vascular endothelial growth factor 
expression in endothelial cells. BMB Rep. 42:685-690. 

Hercberg, S., P. Galan, P. Preziosi, S. Bertrais, L. Mennen, D. Malvy, A.M. Roussel, A. 
Favier, and S. Briancon. 2004. The SU.VI.MAX Study: a randomized, placebo-
controlled trial of the health effects of antioxidant vitamins and minerals. Arch 
Intern Med. 164:2335-2342. 

Hiura, Y., H. Tachibana, R. Arakawa, N. Aoyama, M. Okabe, M. Sakai, and K. Yamada. 
2009. Specific accumulation of gamma- and delta-tocotrienols in tumor and their 
antitumor effect in vivo. J Nutr Biochem. 20:607-613. 

Holmes-McNary, M., and A.S. Baldwin, Jr. 2000. Chemopreventive properties of trans-
resveratrol are associated with inhibition of activation of the IkappaB kinase. 
Cancer Res. 60:3477-3483. 

Huang, H.C., T. Nguyen, and C.B. Pickett. 2002. Phosphorylation of Nrf2 at Ser-40 by 
protein kinase C regulates antioxidant response element-mediated transcription. J 
Biol Chem. 277:42769-42774. 

Huitema, K., J. van den Dikkenberg, J.F. Brouwers, and J.C. Holthuis. 2004. 
Identification of a family of animal sphingomyelin synthases. Embo j. 23:33-44. 

Idkowiak-Baldys, J., A. Apraiz, L. Li, M. Rahmaniyan, C.J. Clarke, J.M. Kraveka, A. 
Asumendi, and Y.A. Hannun. 2010. Dihydroceramide desaturase activity is 
modulated by oxidative stress. Biochem J. 427:265-274. 

Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J.D. Engel, and M. Yamamoto. 
1999. Keap1 represses nuclear activation of antioxidant responsive elements by 
Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13:76-86. 

Jarvis, W.D., F.A. Fornari, R.S. Traylor, H.A. Martin, L.B. Kramer, R.K. Erukulla, R. 
Bittman, and S. Grant. 1996. Induction of apoptosis and potentiation of ceramide-
mediated cytotoxicity by sphingoid bases in human myeloid leukemia cells. J Biol 
Chem. 271:8275-8284. 



227 
 

 

 

Jayadev, S., B. Liu, A.E. Bielawska, J.Y. Lee, F. Nazaire, M. Pushkareva, L.M. Obeid, 
and Y.A. Hannun. 1995. Role for ceramide in cell cycle arrest. J Biol Chem. 
270:2047-2052. 

Jemal, A., F. Bray, M.M. Center, J. Ferlay, E. Ward, and D. Forman. 2011. Global cancer 
statistics. In CA Cancer J Clin. Vol. 61, United States. 69-90. 

Jiang, Q. 2014. Natural forms of vitamin E: metabolism, antioxidant, and anti-
inflammatory activities and their role in disease prevention and therapy. Free 
Radic Biol Med. 72:76-90. 

Jiang, Q., and B.N. Ames. 2003. Gamma-tocopherol, but not alpha-tocopherol, decreases 
proinflammatory eicosanoids and inflammation damage in rats. Faseb j. 17:816-
822. 

Jiang, Q., S. Christen, M.K. Shigenaga, and B.N. Ames. 2001. gamma-tocopherol, the 
major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 
74:714-722. 

Jiang, Q., I. Elson-Schwab, C. Courtemanche, and B.N. Ames. 2000. gamma-tocopherol 
and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase 
activity in macrophages and epithelial cells. Proc Natl Acad Sci U S A. 97:11494-
11499. 

Jiang, Q., H. Freiser, K.V. Wood, and X. Yin. 2007. Identification and quantitation of 
novel vitamin E metabolites, sulfated long-chain carboxychromanols, in human 
A549 cells and in rats. J Lipid Res. 48:1221-1230. 

Jiang, Q., Z. Jiang, Y.J. Hall, Y. Jang, P.W. Snyder, C. Bain, J. Huang, A. Jannasch, B. 
Cooper, Y. Wang, and M. Moreland. 2013. Gamma-tocopherol attenuates 
moderate but not severe colitis and suppresses moderate colitis-promoted colon 
tumorigenesis in mice. Free Radic Biol Med. 65:1069-1077. 

Jiang, Q., X. Rao, C.Y. Kim, H. Freiser, Q. Zhang, Z. Jiang, and G. Li. 2012. Gamma-
tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing 
intracellular dihydrosphingosine and dihydroceramide. International journal of 
cancer. Journal international du cancer. 130:685-693. 

Jiang, Q., J. Wong, H. Fyrst, J.D. Saba, and B.N. Ames. 2004. gamma-Tocopherol or 
combinations of vitamin E forms induce cell death in human prostate cancer cells 
by interrupting sphingolipid synthesis. Proc Natl Acad Sci U S A. 101:17825-
17830. 

Jiang, Q., X. Yin, M.A. Lill, M.L. Danielson, H. Freiser, and J. Huang. 2008. Long-chain 
carboxychromanols, metabolites of vitamin E, are potent inhibitors of 
cyclooxygenases. Proc Natl Acad Sci U S A. 105:20464-20469. 

Jiang, Z., X. Yin, and Q. Jiang. 2011. Natural forms of vitamin E and 13'-
carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene 
generation from stimulated neutrophils by blocking calcium influx and 
suppressing 5-lipoxygenase activity, respectively. J Immunol. 186:1173-1179. 

Joe, A.K., H. Liu, M. Suzui, M.E. Vural, D. Xiao, and I.B. Weinstein. 2002. Resveratrol 
induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker 
expression in several human cancer cell lines. Clin Cancer Res. 8:893-903. 

Johnson, I.T. 2007. Phytochemicals and cancer. Proc Nutr Soc. 66:207-215. 



228 
 

 

 

Ju, J., X. Hao, M.J. Lee, J.D. Lambert, G. Lu, H. Xiao, H.L. Newmark, and C.S. Yang. 
2009. A gamma-tocopherol-rich mixture of tocopherols inhibits colon 
inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-
treated mice. In Cancer Prev Res (Phila). Vol. 2, United States. 143-152. 

Kamal-Eldin, A., and L.A. Appelqvist. 1996. The chemistry and antioxidant properties of 
tocopherols and tocotrienols. Lipids. 31:671-701. 

Karahatay, S., K. Thomas, S. Koybasi, C.E. Senkal, S. Elojeimy, X. Liu, J. Bielawski, 
T.A. Day, M.B. Gillespie, D. Sinha, J.S. Norris, Y.A. Hannun, and B. Ogretmen. 
2007. Clinical relevance of ceramide metabolism in the pathogenesis of human 
head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide 
in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. 
Cancer Lett. 256:101-111. 

Khan, N., F. Afaq, M. Saleem, N. Ahmad, and H. Mukhtar. 2006. Targeting multiple 
signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer 
Res. 66:2500-2505. 

Kitatani, K., J. Idkowiak-Baldys, and Y.A. Hannun. 2008. The sphingolipid salvage 
pathway in ceramide metabolism and signaling. Cell Signal. 20:1010-1018. 

Kitatani, K., K. Sheldon, V. Anelli, R.W. Jenkins, Y. Sun, G.A. Grabowski, L.M. Obeid, 
and Y.A. Hannun. 2009. Acid beta-glucosidase 1 counteracts p38delta-dependent 
induction of interleukin-6: possible role for ceramide as an anti-inflammatory 
lipid. J Biol Chem. 284:12979-12988. 

Kolesnick, R. 2002. The therapeutic potential of modulating the ceramide/sphingomyelin 
pathway. J Clin Invest. 110:3-8. 

Koybasi, S., C.E. Senkal, K. Sundararaj, S. Spassieva, J. Bielawski, W. Osta, T.A. Day, 
J.C. Jiang, S.M. Jazwinski, Y.A. Hannun, L.M. Obeid, and B. Ogretmen. 2004. 
Defects in cell growth regulation by C18:0-ceramide and longevity assurance 
gene 1 in human head and neck squamous cell carcinomas. J Biol Chem. 
279:44311-44319. 

Kraveka, J.M., L. Li, Z.M. Szulc, J. Bielawski, B. Ogretmen, Y.A. Hannun, L.M. Obeid, 
and A. Bielawska. 2007. Involvement of dihydroceramide desaturase in cell cycle 
progression in human neuroblastoma cells. J Biol Chem. 282:16718-16728. 

Kroesen, B.J., B. Pettus, C. Luberto, M. Busman, H. Sietsma, L. de Leij, and Y.A. 
Hannun. 2001. Induction of apoptosis through B-cell receptor cross-linking 
occurs via de novo generated C16-ceramide and involves mitochondria. J Biol 
Chem. 276:13606-13614. 

Kumar, K.S., M. Raghavan, K. Hieber, C. Ege, S. Mog, N. Parra, A. Hildabrand, V. 
Singh, V. Srinivasan, R. Toles, P. Karikari, G. Petrovics, T. Seed, S. Srivastava, 
and A. Papas. 2006. Preferential radiation sensitization of prostate cancer in nude 
mice by nutraceutical antioxidant gamma-tocotrienol. Life Sci. 78:2099-2104. 

Kunnumakkara, A.B., B. Sung, J. Ravindran, P. Diagaradjane, A. Deorukhkar, S. Dey, C. 
Koca, V.R. Yadav, Z. Tong, J.G. Gelovani, S. Guha, S. Krishnan, and B.B. 
Aggarwal. 2010. {Gamma}-tocotrienol inhibits pancreatic tumors and sensitizes 
them to gemcitabine treatment by modulating the inflammatory 
microenvironment. Cancer Res. 70:8695-8705. 



229 
 

 

 

Laviad, E.L., L. Albee, I. Pankova-Kholmyansky, S. Epstein, H. Park, A.H. Merrill, Jr., 
and A.H. Futerman. 2008. Characterization of ceramide synthase 2: tissue 
distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J 
Biol Chem. 283:5677-5684. 

Lee, H.J., J. Ju, S. Paul, J.Y. So, A. DeCastro, A. Smolarek, M.J. Lee, C.S. Yang, H.L. 
Newmark, and N. Suh. 2009. Mixed tocopherols prevent mammary tumorigenesis 
by inhibiting estrogen action and activating PPAR-gamma. Clin Cancer Res. 
15:4242-4249. 

Lee, I.M., N.R. Cook, J.M. Gaziano, D. Gordon, P.M. Ridker, J.E. Manson, C.H. 
Hennekens, and J.E. Buring. 2005. Vitamin E in the primary prevention of 
cardiovascular disease and cancer: the Women's Health Study: a randomized 
controlled trial. Jama. 294:56-65. 

Lee, K.W., A.M. Bode, and Z. Dong. 2011. Molecular targets of phytochemicals for 
cancer prevention. Nat Rev Cancer. 11:211-218. 

Lennard-Jones, J.E., B.C. Morson, J.K. Ritchie, and C.B. Williams. 1983. Cancer 
surveillance in ulcerative colitis. Experience over 15 years. Lancet. 2:149-152. 

Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nat Rev 
Immunol. 2:725-734. 

Li, Y., and F.H. Sarkar. 2002. Inhibition of nuclear factor kappaB activation in PC3 cells 
by genistein is mediated via Akt signaling pathway. Clin Cancer Res. 8:2369-
2377. 

Libby, P., P.M. Ridker, and A. Maseri. 2002. Inflammation and atherosclerosis. 
Circulation. 105:1135-1143. 

Lippman, S.M., E.A. Klein, P.J. Goodman, M.S. Lucia, I.M. Thompson, L.G. Ford, H.L. 
Parnes, L.M. Minasian, J.M. Gaziano, J.A. Hartline, J.K. Parsons, J.D. Bearden, 
3rd, E.D. Crawford, G.E. Goodman, J. Claudio, E. Winquist, E.D. Cook, D.D. 
Karp, P. Walther, M.M. Lieber, A.R. Kristal, A.K. Darke, K.B. Arnold, P.A. 
Ganz, R.M. Santella, D. Albanes, P.R. Taylor, J.L. Probstfield, T.J. Jagpal, J.J. 
Crowley, F.L. Meyskens, Jr., L.H. Baker, and C.A. Coltman, Jr. 2009. Effect of 
selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium 
and Vitamin E Cancer Prevention Trial (SELECT). Jama. 301:39-51. 

Liu, R.H. 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of 
action. J Nutr. 134:3479s-3485s. 

Loganathan, R., K.R. Selvaduray, K. Nesaretnam, and A.K. Radhakrishnan. 2013. 
Tocotrienols promote apoptosis in human breast cancer cells by inducing 
poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B 
activity. Cell Prolif. 46:203-213. 

Lonn, E., J. Bosch, S. Yusuf, P. Sheridan, J. Pogue, J.M. Arnold, C. Ross, A. Arnold, P. 
Sleight, J. Probstfield, and G.R. Dagenais. 2005. Effects of long-term vitamin E 
supplementation on cardiovascular events and cancer: a randomized controlled 
trial. Jama. 293:1338-1347. 

Luberto, C., D.F. Hassler, P. Signorelli, Y. Okamoto, H. Sawai, E. Boros, D.J. Hazen-
Martin, L.M. Obeid, Y.A. Hannun, and G.K. Smith. 2002. Inhibition of tumor 
necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral 
sphingomyelinase. J Biol Chem. 277:41128-41139. 



230 
 

 

 

MacDonald, B.T., K. Tamai, and X. He. 2009. Wnt/beta-catenin signaling: components, 
mechanisms, and diseases. Dev Cell. 17:9-26. 

Mahmoud, N.N., A.M. Carothers, D. Grunberger, R.T. Bilinski, M.R. Churchill, C. 
Martucci, H.L. Newmark, and M.M. Bertagnolli. 2000. Plant phenolics decrease 
intestinal tumors in an animal model of familial adenomatous polyposis. 
Carcinogenesis. 21:921-927. 

Maiani, G., M.J. Caston, G. Catasta, E. Toti, I.G. Cambrodon, A. Bysted, F. Granado-
Lorencio, B. Olmedilla-Alonso, P. Knuthsen, M. Valoti, V. Bohm, E. Mayer-
Miebach, D. Behsnilian, and U. Schlemmer. 2009. Carotenoids: actual knowledge 
on food sources, intakes, stability and bioavailability and their protective role in 
humans. Mol Nutr Food Res. 53 Suppl 2:S194-218. 

Maloney, D.J., and S.M. Hecht. 2005. A stereocontrolled synthesis of delta-trans-
tocotrienoloic acid. Organic letters. 7:4297-4300. 

Manor, D., and S. Morley. 2007. The alpha-tocopherol transfer protein. Vitam Horm. 
76:45-65. 

Marchesini, N., and Y.A. Hannun. 2004. Acid and neutral sphingomyelinases: roles and 
mechanisms of regulation. Biochem Cell Biol. 82:27-44. 

McLaughlin, P.J., and J.L. Weihrauch. 1979. Vitamin E content of foods. J Am Diet 
Assoc. 75:647-665. 

Merrill, A.H., Jr. 2002. De novo sphingolipid biosynthesis: a necessary, but dangerous, 
pathway. J Biol Chem. 277:25843-25846. 

Merrill, A.H., Jr., A.M. Sereni, V.L. Stevens, Y.A. Hannun, R.M. Bell, and J.M. 
Kinkade, Jr. 1986. Inhibition of phorbol ester-dependent differentiation of human 
promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. 
J Biol Chem. 261:12610-12615. 

Merrill, A.H., Jr., M.C. Sullards, J.C. Allegood, S. Kelly, and E. Wang. 2005. 
Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis 
of sphingolipids by liquid chromatography tandem mass spectrometry. Methods. 
36:207-224. 

Merrill, A.H., Jr., M.C. Sullards, E. Wang, K.A. Voss, and R.T. Riley. 2001. 
Sphingolipid metabolism: roles in signal transduction and disruption by 
fumonisins. Environ Health Perspect. 109 Suppl 2:283-289. 

Michel, C., G. van Echten-Deckert, J. Rother, K. Sandhoff, E. Wang, and A.H. Merrill, 
Jr. 1997. Characterization of ceramide synthesis. A dihydroceramide desaturase 
introduces the 4,5-trans-double bond of sphingosine at the level of 
dihydroceramide. J Biol Chem. 272:22432-22437. 

Mizutani, Y., A. Kihara, and Y. Igarashi. 2006. LASS3 (longevity assurance homologue 
3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad 
substrate specificity. Biochem J. 398:531-538. 

Moriarty, R.M., R. Naithani, and B. Surve. 2007. Organosulfur compounds in cancer 
chemoprevention. Mini Rev Med Chem. 7:827-838. 

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application 
to proliferation and cytotoxicity assays. J Immunol Methods. 65:55-63. 



231 
 

 

 

Moya-Camarena, S.Y., and Q. Jiang. 2012. The role of vitamin E forms in cancer 
prevention and therapy - studies in human intervention trials and animal models. 
N.a.C.N.Y. Springer, editor. 323-354. 

Mullen, T.D., R.W. Jenkins, C.J. Clarke, J. Bielawski, Y.A. Hannun, and L.M. Obeid. 
2011. Ceramide synthase-dependent ceramide generation and programmed cell 
death: involvement of salvage pathway in regulating postmitochondrial events. J 
Biol Chem. 286:15929-15942. 

Murakami, A., H. Ashida, and J. Terao. 2008. Multitargeted cancer prevention by 
quercetin. Cancer Lett. 269:315-325. 

Newmark, H.L., M.T. Huang, and B.S. Reddy. 2006. Mixed tocopherols inhibit 
azoxymethane-induced aberrant crypt foci in rats. Nutr Cancer. 56:82-85. 

Ohanian, J., and V. Ohanian. 2001. Sphingolipids in mammalian cell signalling. Cell Mol 
Life Sci. 58:2053-2068. 

Ohrvall, M., G. Sundlof, and B. Vessby. 1996. Gamma, but not alpha, tocopherol levels 
in serum are reduced in coronary heart disease patients. J Intern Med. 239:111-
117. 

Ohta, H., E.A. Sweeney, A. Masamune, Y. Yatomi, S. Hakomori, and Y. Igarashi. 1995. 
Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible 
endogenous modulator of apoptotic DNA fragmentation occurring during phorbol 
ester-induced differentiation. Cancer Res. 55:691-697. 

Okamoto, T. 2005. Safety of quercetin for clinical application (Review). Int J Mol Med. 
16:275-278. 

Okazaki, T., A. Bielawska, N. Domae, R.M. Bell, and Y.A. Hannun. 1994. 
Characteristics and partial purification of a novel cytosolic, magnesium-
independent, neutral sphingomyelinase activated in the early signal transduction 
of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol 
Chem. 269:4070-4077. 

Oslowski, C.M., and F. Urano. 2011. Measuring ER stress and the unfolded protein 
response using mammalian tissue culture system. Methods Enzymol. 490:71-92. 

Packer, L., S.U. Weber, and G. Rimbach. 2001. Molecular aspects of alpha-tocotrienol 
antioxidant action and cell signalling. J Nutr. 131:369s-373s. 

Park, S.K., B.G. Sanders, and K. Kline. 2010. Tocotrienols induce apoptosis in breast 
cancer cell lines via an endoplasmic reticulum stress-dependent increase in 
extrinsic death receptor signaling. Breast Cancer Res Treat. 124:361-375. 

Parker, R.A., B.C. Pearce, R.W. Clark, D.A. Gordon, and J.J. Wright. 1993. Tocotrienols 
regulate cholesterol production in mammalian cells by post-transcriptional 
suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 
268:11230-11238. 

Pewzner-Jung, Y., S. Ben-Dor, and A.H. Futerman. 2006. When do Lasses (longevity 
assurance genes) become CerS (ceramide synthases)?: Insights into the regulation 
of ceramide synthesis. J Biol Chem. 281:25001-25005. 

Pianetti, S., S. Guo, K.T. Kavanagh, and G.E. Sonenshein. 2002. Green tea polyphenol 
epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and 
transformed phenotype of breast cancer cells. Cancer Res. 62:652-655. 



232 
 

 

 

Plummer, S.M., K.A. Holloway, M.M. Manson, R.J. Munks, A. Kaptein, S. Farrow, and 
L. Howells. 1999. Inhibition of cyclo-oxygenase 2 expression in colon cells by 
the chemopreventive agent curcumin involves inhibition of NF-kappaB activation 
via the NIK/IKK signalling complex. Oncogene. 18:6013-6020. 

Pyne, S., and N.J. Pyne. 2000. Sphingosine 1-phosphate signalling in mammalian cells. 
Biochem J. 349:385-402. 

Radin, N.S. 2001. Killing cancer cells by poly-drug elevation of ceramide levels: a 
hypothesis whose time has come? In Eur J Biochem. Vol. 268, Germany. 193-
204. 

Rahmaniyan, M., R.W. Curley, Jr., L.M. Obeid, Y.A. Hannun, and J.M. Kraveka. 2011. 
Identification of dihydroceramide desaturase as a direct in vitro target for 
fenretinide. J Biol Chem. 286:24754-24764. 

Riebeling, C., J.C. Allegood, E. Wang, A.H. Merrill, Jr., and A.H. Futerman. 2003. Two 
mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, 
regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol 
Chem. 278:43452-43459. 

Rimando, A.M., and N. Suh. 2008. Biological/chemopreventive activity of stilbenes and 
their effect on colon cancer. Planta Med. 74:1635-1643. 

Ruangsiriluk, W., S.E. Grosskurth, D. Ziemek, M. Kuhn, S.G. des Etages, and O.L. 
Francone. 2012. Silencing of enzymes involved in ceramide biosynthesis causes 
distinct global alterations of lipid homeostasis and gene expression. J Lipid Res. 
53:1459-1471. 

Ryland, L.K., T.E. Fox, X. Liu, T.P. Loughran, and M. Kester. 2011. Dysregulation of 
sphingolipid metabolism in cancer. Cancer Biol Ther. 11:138-149. 

Sano, R., and J.C. Reed. 2013. ER stress-induced cell death mechanisms. Biochim 
Biophys Acta. 1833:3460-3470. 

Scarlatti, F., C. Bauvy, A. Ventruti, G. Sala, F. Cluzeaud, A. Vandewalle, R. Ghidoni, 
and P. Codogno. 2004. Ceramide-mediated macroautophagy involves inhibition 
of protein kinase B and up-regulation of beclin 1. J Biol Chem. 279:18384-18391. 

Schiffmann, S., J. Sandner, K. Birod, I. Wobst, C. Angioni, E. Ruckhaberle, M. 
Kaufmann, H. Ackermann, J. Lotsch, H. Schmidt, G. Geisslinger, and S. Grosch. 
2009a. Ceramide synthases and ceramide levels are increased in breast cancer 
tissue. Carcinogenesis. 30:745-752. 

Schiffmann, S., J. Sandner, R. Schmidt, K. Birod, I. Wobst, H. Schmidt, C. Angioni, G. 
Geisslinger, and S. Grosch. 2009b. The selective COX-2 inhibitor celecoxib 
modulates sphingolipid synthesis. J Lipid Res. 50:32-40. 

Senkal, C.E., S. Ponnusamy, J. Bielawski, Y.A. Hannun, and B. Ogretmen. 2010. 
Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective 
regulation of the ATF6/CHOP arm of ER-stress-response pathways. Faseb j. 
24:296-308. 

Sentelle, R.D., C.E. Senkal, W. Jiang, S. Ponnusamy, S. Gencer, S.P. Selvam, V.K. 
Ramshesh, Y.K. Peterson, J.J. Lemasters, Z.M. Szulc, J. Bielawski, and B. 
Ogretmen. 2012. Ceramide targets autophagosomes to mitochondria and induces 
lethal mitophagy. Nat Chem Biol. 8:831-838. 



233 
 

 

 

Shankar, S., and R.K. Srivastava. 2007. Involvement of Bcl-2 family members, 
phosphatidylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin 
(diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol. 30:905-
918. 

Shehzad, A., F. Wahid, and Y.S. Lee. 2010. Curcumin in cancer chemoprevention: 
molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch 
Pharm (Weinheim). 343:489-499. 

Shibata, A., K. Nakagawa, P. Sookwong, T. Tsuduki, S. Oikawa, and T. Miyazawa. 
2009. delta-Tocotrienol suppresses VEGF induced angiogenesis whereas alpha-
tocopherol does not. J Agric Food Chem. 57:8696-8704. 

Siddique, M.M., Y. Li, L. Wang, J. Ching, M. Mal, O. Ilkayeva, Y.J. Wu, B.H. Bay, and 
S.A. Summers. 2013. Ablation of dihydroceramide desaturase 1, a therapeutic 
target for the treatment of metabolic diseases, simultaneously stimulates anabolic 
and catabolic signaling. Mol Cell Biol. 33:2353-2369. 

Siegel, R.L., K.D. Miller, and A. Jemal. 2015. Cancer statistics, 2015. CA Cancer J Clin. 
65:5-29. 

Signorelli, P., J.M. Munoz-Olaya, V. Gagliostro, J. Casas, R. Ghidoni, and G. Fabrias. 
2009. Dihydroceramide intracellular increase in response to resveratrol treatment 
mediates autophagy in gastric cancer cells. Cancer Lett. 282:238-243. 

Siskind, L.J. 2005. Mitochondrial ceramide and the induction of apoptosis. J Bioenerg 
Biomembr. 37:143-153. 

Sjoholm, A., P.O. Berggren, and R.V. Cooney. 2000. gamma-tocopherol partially 
protects insulin-secreting cells against functional inhibition by nitric oxide. 
Biochem Biophys Res Commun. 277:334-340. 

Slover, H.T. 1971. Tocopherols in foods and fats. Lipids. 6:291-296. 
Smolarek, A.K., J.Y. So, B. Burgess, A.N. Kong, K. Reuhl, Y. Lin, W.J. Shih, G. Li, 

M.J. Lee, Y.K. Chen, C.S. Yang, and N. Suh. 2012. Dietary administration of 
delta- and gamma-tocopherol inhibits tumorigenesis in the animal model of 
estrogen receptor-positive, but not HER-2 breast cancer. Cancer Prev Res (Phila). 
5:1310-1320. 

Snider, A.J., K.A. Orr Gandy, and L.M. Obeid. 2010. Sphingosine kinase: Role in 
regulation of bioactive sphingolipid mediators in inflammation. Biochimie. 
92:707-715. 

Solomon, J.C., K. Sharma, L.X. Wei, T. Fujita, and Y.F. Shi. 2003. A novel role for 
sphingolipid intermediates in activation-induced cell death in T cells. Cell Death 
Differ. 10:193-202. 

Sontag, T.J., and R.S. Parker. 2002. Cytochrome P450 omega-hydroxylase pathway of 
tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J Biol 
Chem. 277:25290-25296. 

Spiegel, S., and A.H. Merrill, Jr. 1996. Sphingolipid metabolism and cell growth 
regulation. Faseb j. 10:1388-1397. 

Steinmetz, K.A., and J.D. Potter. 1996. Vegetables, fruit, and cancer prevention: a 
review. J Am Diet Assoc. 96:1027-1039. 

Stiban, J., D. Fistere, and M. Colombini. 2006. Dihydroceramide hinders ceramide 
channel formation: Implications on apoptosis. Apoptosis. 11:773-780. 



234 
 

 

 

Suh, N., S. Paul, H.J. Lee, Y. Ji, M.J. Lee, C.S. Yang, B.S. Reddy, and H.L. Newmark. 
2007. Mixed tocopherols inhibit N-methyl-N-nitrosourea-induced mammary 
tumor growth in rats. Nutr Cancer. 59:76-81. 

Sun, Y., T. Fox, G. Adhikary, M. Kester, and E. Pearlman. 2008. Inhibition of corneal 
inflammation by liposomal delivery of short-chain, C-6 ceramide. J Leukoc Biol. 
83:1512-1521. 

Surh, Y.J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 
3:768-780. 

Swanson, J.E., R.N. Ben, G.W. Burton, and R.S. Parker. 1999. Urinary excretion of 2,7, 
8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman is a major route of 
elimination of gamma-tocopherol in humans. J Lipid Res. 40:665-671. 

Takahashi, S., K. Takeshita, A. Seeni, S. Sugiura, M. Tang, S.Y. Sato, H. Kuriyama, M. 
Nakadate, K. Abe, Y. Maeno, M. Nagao, and T. Shirai. 2009. Suppression of 
prostate cancer in a transgenic rat model via gamma-tocopherol activation of 
caspase signaling. Prostate. 69:644-651. 

Tan, H.L., J.M. Thomas-Ahner, E.M. Grainger, L. Wan, D.M. Francis, S.J. Schwartz, 
J.W. Erdman, Jr., and S.K. Clinton. 2010. Tomato-based food products for 
prostate cancer prevention: what have we learned? Cancer Metastasis Rev. 
29:553-568. 

Tang, L., G. Li, L. Song, and Y. Zhang. 2006. The principal urinary metabolites of 
dietary isothiocyanates, N-acetylcysteine conjugates, elicit the same anti-
proliferative response as their parent compounds in human bladder cancer cells. 
Anticancer Drugs. 17:297-305. 

Tasinato, A., D. Boscoboinik, G.M. Bartoli, P. Maroni, and A. Azzi. 1995. d-alpha-
tocopherol inhibition of vascular smooth muscle cell proliferation occurs at 
physiological concentrations, correlates with protein kinase C inhibition, and is 
independent of its antioxidant properties. Proc Natl Acad Sci U S A. 92:12190-
12194. 

Terashima, K., T. Shimamura, M. Tanabayashi, l.M. Aqui, J. Akinniyi, and M. Niwa. 
1997. Constituents of the seeds of Garcinia kola: Two new antioxidants, 
Garcinoic acid and Garcinal. Heterocycles. 45:1559-1566. 

Terashima, K., Y. Takaya, and M. Niwa. 2002. Powerful antioxidative agents based on 
garcinoic acid from Garcinia kola. Bioorg Med Chem. 10:1619-1625. 

Ternes, P., S. Franke, U. Zahringer, P. Sperling, and E. Heinz. 2002. Identification and 
characterization of a sphingolipid delta 4-desaturase family. J Biol Chem. 
277:25512-25518. 

Thudichum, J.L.W. 1884. A Treatise on the chemical constitution of brain. Bailliere, 
Tindall and Cox, London. 

Traber, M.G. 2007. Vitamin E regulatory mechanisms. Annu Rev Nutr. 27:347-362. 
Traber, M.G., and J.F. Stevens. 2011. Vitamins C and E: beneficial effects from a 

mechanistic perspective. Free Radic Biol Med. 51:1000-1013. 
Triola, G., G. Fabrias, J. Casas, and A. Llebaria. 2003. Synthesis of cyclopropene 

analogues of ceramide and their effect on dihydroceramide desaturase. J Org 
Chem. 68:9924-9932. 



235 
 

 

 

Triola, G., G. Fabrias, M. Dragusin, L. Niederhausen, R. Broere, A. Llebaria, and G. van 
Echten-Deckert. 2004. Specificity of the dihydroceramide desaturase inhibitor N-
[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-
cyclopropenyl)ethyl]octanami de (GT11) in primary cultured cerebellar neurons. 
Mol Pharmacol. 66:1671-1678. 

Vagni, S., F. Saccone, L. Pinotti, and A. Baldi. 2011. Vitamin E Bioavailability: Past and 
Present Insights. Food and Nutrition Sciences. 2:1088-1096. 

Vane, J.R. 1976. Prostaglandins as mediators of inflammation. Adv Prostaglandin 
Thromboxane Res. 2:791-801. 

Venkataraman, K., C. Riebeling, J. Bodennec, H. Riezman, J.C. Allegood, M.C. Sullards, 
A.H. Merrill, Jr., and A.H. Futerman. 2002. Upstream of growth and 
differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity 
assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-
(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in 
mammalian cells. J Biol Chem. 277:35642-35649. 

Wadsworth, J.M., D.J. Clarke, S.A. McMahon, J.P. Lowther, A.E. Beattie, P.R. 
Langridge-Smith, H.B. Broughton, T.M. Dunn, J.H. Naismith, and D.J. 
Campopiano. 2013. The chemical basis of serine palmitoyltransferase inhibition 
by myriocin. J Am Chem Soc. 135:14276-14285. 

Wan Nazaimoon, W.M., and B.A. Khalid. 2002. Tocotrienols-rich diet decreases 
advanced glycosylation end-products in non-diabetic rats and improves glycemic 
control in streptozotocin-induced diabetic rats. Malays J Pathol. 24:77-82. 

Wang, D., and R.N. Dubois. 2010. Eicosanoids and cancer. Nat Rev Cancer. 10:181-193. 
Wang, H., A.G. Charles, A.J. Frankel, and M.C. Cabot. 2003. Increasing intracellular 

ceramide: an approach that enhances the cytotoxic response in prostate cancer 
cells. Urology. 61:1047-1052. 

Wang, H., B.J. Maurer, C.P. Reynolds, and M.C. Cabot. 2001. N-(4-
hydroxyphenyl)retinamide elevates ceramide in neuroblastoma cell lines by 
coordinate activation of serine palmitoyltransferase and ceramide synthase. 
Cancer Res. 61:5102-5105. 

Wang, Y., and Q. Jiang. 2013. gamma-Tocotrienol inhibits lipopolysaccharide-induced 
interlukin-6 and granulocyte colony-stimulating factor by suppressing C/EBPbeta 
and NF-kappaB in macrophages. J Nutr Biochem. 24:1146-1152. 

Wang, Y., N.Y. Park, Y. Jang, A. Ma, and Q. Jiang. 2015. Vitamin E gamma-Tocotrienol 
Inhibits Cytokine-Stimulated NF-kappaB Activation by Induction of Anti-
Inflammatory A20 via Stress Adaptive Response Due to Modulation of 
Sphingolipids. J Immunol. 195:126-133. 

Watson, P., and D.J. Stephens. 2005. ER-to-Golgi transport: form and formation of 
vesicular and tubular carriers. Biochim Biophys Acta. 1744:304-315. 

Watts, J.D., M. Gu, S.D. Patterson, R. Aebersold, and A.J. Polverino. 1999. On the 
complexities of ceramide changes in cells undergoing apoptosis: lack of evidence 
for a second messenger function in apoptotic induction. Cell Death Differ. 6:105-
114. 

 



236 
 

 

 

White-Gilbertson, S., T. Mullen, C. Senkal, P. Lu, B. Ogretmen, L. Obeid, and C. 
Voelkel-Johnson. 2009. Ceramide synthase 6 modulates TRAIL sensitivity and 
nuclear translocation of active caspase-3 in colon cancer cells. Oncogene. 
28:1132-1141. 

Wilson, E., M.C. Olcott, R.M. Bell, A.H. Merrill, Jr., and J.D. Lambeth. 1986. Inhibition 
of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role 
of protein kinase C in activation of the burst. J Biol Chem. 261:12616-12623. 

Wong, R.S., and A.K. Radhakrishnan. 2012. Tocotrienol research: past into present. Nutr 
Rev. 70:483-490. 

Woodcock, J. 2006. Sphingosine and ceramide signalling in apoptosis. In IUBMB Life. 
Vol. 58, England. 462-466. 

Xu, W.L., J.R. Liu, H.K. Liu, G.Y. Qi, X.R. Sun, W.G. Sun, and B.Q. Chen. 2009. 
Inhibition of proliferation and induction of apoptosis by gamma-tocotrienol in 
human colon carcinoma HT-29 cells. Nutrition. 25:555-566. 

Yang, F., H.S. Oz, S. Barve, W.J. de Villiers, C.J. McClain, and G.W. Varilek. 2001. The 
green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B 
activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell 
line IEC-6. Mol Pharmacol. 60:528-533. 

Yap, W.N., N. Zaiden, S.Y. Luk, D.T. Lee, M.T. Ling, Y.C. Wong, and Y.L. Yap. 2010. 
In vivo evidence of gamma-tocotrienol as a chemosensitizer in the treatment of 
hormone-refractory prostate cancer. Pharmacology. 85:248-258. 

Yu, R., W. Lei, S. Mandlekar, M.J. Weber, C.J. Der, J. Wu, and A.N. Kong. 1999a. Role 
of a mitogen-activated protein kinase pathway in the induction of phase II 
detoxifying enzymes by chemicals. J Biol Chem. 274:27545-27552. 

Yu, W., L. Jia, S.K. Park, J. Li, A. Gopalan, M. Simmons-Menchaca, B.G. Sanders, and 
K. Kline. 2009. Anticancer actions of natural and synthetic vitamin E forms: 
RRR-alpha-tocopherol blocks the anticancer actions of gamma-tocopherol. Mol 
Nutr Food Res. 53:1573-1581. 

Yu, W., L. Jia, P. Wang, K.A. Lawson, M. Simmons-Menchaca, S.K. Park, L. Sun, B.G. 
Sanders, and K. Kline. 2008a. In vitro and in vivo evaluation of anticancer actions 
of natural and synthetic vitamin E forms. Mol Nutr Food Res. 52:447-456. 

Yu, W., S.K. Park, L. Jia, R. Tiwary, W.W. Scott, J. Li, P. Wang, M. Simmons-
Menchaca, B.G. Sanders, and K. Kline. 2008b. RRR-gamma-tocopherol induces 
human breast cancer cells to undergo apoptosis via death receptor 5 (DR5)-
mediated apoptotic signaling. Cancer Lett. 259:165-176. 

Yu, W., M. Simmons-Menchaca, A. Gapor, B.G. Sanders, and K. Kline. 1999b. 
Induction of apoptosis in human breast cancer cells by tocopherols and 
tocotrienols. Nutr Cancer. 33:26-32. 

Zhang, W., and H.T. Liu. 2002. MAPK signal pathways in the regulation of cell 
proliferation in mammalian cells. Cell Res. 12:9-18. 

Zhang, Y., P. Mattjus, P.C. Schmid, Z. Dong, S. Zhong, W.Y. Ma, R.E. Brown, A.M. 
Bode, and H.H. Schmid. 2001. Involvement of the acid sphingomyelinase 
pathway in uva-induced apoptosis. J Biol Chem. 276:11775-11782. 

 



237 
 

 

 

Zheng, W., J. Kollmeyer, H. Symolon, A. Momin, E. Munter, E. Wang, S. Kelly, J.C. 
Allegood, Y. Liu, Q. Peng, H. Ramaraju, M.C. Sullards, M. Cabot, and A.H. 
Merrill, Jr. 2006. Ceramides and other bioactive sphingolipid backbones in health 
and disease: lipidomic analysis, metabolism and roles in membrane structure, 
dynamics, signaling and autophagy. Biochim Biophys Acta. 1758:1864-1884. 

 

 



13 

 

 

VITA 

 

 

 

 

 

 

 

 

 

 

 

 



238 

 

 

VITA 

Yumi Jang 

Graduate School, Purdue University 

 
Education 

- Ph.D., Nutrition Science, 2015, Purdue University, West Lafayette, Indiana, USA 
- M.S., Food and Nutrition, 2009, Seoul National University, Seoul, Republic of 

Korea 
- B.S., Food and Nutrition, 2007, Pusan National University, Pusan, Republic of 

Korea 
 
Awards and Honors 

- Purdue Research Foundation (PRF) Fellowship 2014-2015 
- Travel Award from Cancer Research Center (2014) 
- Poster Presentation Award (2014) at Health and Disease: Science, Culture and 

Policy Research Poster Session at Purdue University 
- Poster Presentation Honorable Mention (2014) at Interdepartmental Nutrition 

Program (INP) Poster Session at Purdue University 
- Poster Presentation Award (2013) at Chronic Disease Research Poster Session 

sponsored by the College of Health and Human Sciences at Purdue University 
 
Teaching Experience 

- Fall 2013: Teaching Assistant for course NUTR43800, Micronutrient Metabolism 
in Human Health and Disease at Purdue University 

- 2007-2008: Teaching Assistant for courses of Biochemistry and Nutrition at Seoul 
National University 

 
Research Experience 

- 2010-2015 Research Assistant in Dr. Qing Jiang’s Lab at Purdue University 
- 2007-2010 Research Assistant in Dr. Young Hye Kwon’s Lab at Seoul National 

University 
 



 
 

PUBLICATIONS  



239 

 

 

PUBLICATIONS 

1. Yumi Jang, Agnetha Rostgaard-Hansen, Jianjie Huang, and Qing Jiang. (2015) 
13’-Carboxychromanols, long-chain vitamin E metabolites, induced apoptosis and 
autophagy by modulating sphingolipid metabolism in different types of cancer 
cells. (in preparation) 

2. Yumi Jang, Xiayu Rao, and Qing Jiang. (2015) Sphingolipid metabolism is the 
initial primary target of gamma-tocotrienol and plays a role in cell death 
induction. (in preparation) 

3. Yumi Jang and Qing Jiang. (2015) Targeting sphingolipid metabolism for the 
anticancer effects of various chemopreventive compounds. (in preparation) 

4. Yun Wang, Na Young Park, Yumi Jang, Averil Ma, and Qing Jiang. (2015) 
Vitamin E γ-tocotrienol inhibits cytokine-stimulated NF-κB activation by 
induction of anti-inflammatory A20 via stress adaptive response due to 
modulation of sphingolipids. The Journal of Immunology, 195:126-133 

5. Qing Jiang, Ziying Jiang, Yava Jones-Hall, Yumi Jang, Paul W. Snyder, Carol 
Bain, Jianjie Huang, Amber Jannasch, Bruce Cooper, Yun Wang, and Michelle 
Moreland. (2013) Gamma-tocopherol attenuates moderate but not severe colitis 
and suppresses moderate colitis-promoted colon tumorigenesis in mice. Free 
Radical Biology and Medicine, 65:1069-1077 

6. Archana Gopalan, Weiping Yu, Qing Jiang, Yumi Jang, Bob G. Sanders and 
Kimberly Kline. (2012) Involvement of de novo ceramide synthesis in gamma-
tocopherol and gamma-tocotrienol induced apoptosis in human breast cancer 
cells. Molecular Nutrition & Food Research, 56:1803-1811 

7. Youn-Jin Park, Je Won Ko, Yumi Jang and Young Hye Kwon. (2012) Activation 
of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity 
in SH-SY5Y cells. Neurochemical Research, 38:1561-1571 

8. Juhae Kim, Youn-jin Park, Yumi Jang, and Young Hye Kwon. (2011) AMPK 
activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate 
in SH-SY5Y cells. Brain Research, 1418:42-51 

9. Youn-Jin Park, Yu-mi Jang and Young Hye Kwon. (2009) Isoflavones prevent 
endoplasmic reticulum stress-mediated neuronal degeneration by inhibiting tau 
hyperphosphorylation in SH-SY5Y cells. Journal of Medicinal Food, 12:528-535 

10. Hyang-ki Cho, Jin-young Lee, Yu-mi Jang and Young Hye Kwon. (2008) 
Involvement of endoplasmic reticulum stress in palmitate-induced apoptosis in 
HepG2 cells. Official Journal of Korean Society of Toxicology, 24:129-135



240 

 

 

11. Hyun-Jung Kim, Yu-mi Jang, Harriet Kim and Young Hye Kwon. (2007) 
Apoptotic effect of IP6 was not enhanced by co-treatment with myo-inositol in 
prostate carcinoma PC3 cells, Nutrition Research and Practice, 1:195-199 

 

Presentations: 

1. Yumi Jang and Qing Jiang. (2014) Lipidomic analysis reveals that gamma-
tocotrienol exerts anticancer effects by inhibition of dihydroceramide desaturase 
and activation of sphingomyelin hydrolysis. Experimental Biology meeting 2014, 
San Diego, CA 

2. Yumi Jang, Soo Yee Kuah and Qing Jiang. (2013) 13’-Carboxychromanol, a 
long-chain metabolite of δ-tocopherol, has potent anti-cancer effects by 
interrupting de novo sphingolipid synthesis in human cancer cells. Experimental 
Biology meeting 2013, Boston, MA 

3. Yumi Jang, Xiayu Rao and Qing Jiang. (2012) Vitamin E forms and 13’-
carboxychromanol, a long-chain metabolite of δ-tocopherol, induce cell death by 
interrupting de novo sphingolipid synthesis in human cancer cells. AACR annual 
meeting 2012, Chicago, IL 

 

 

 

 

 

 

 

 

 


	Purdue University
	Purdue e-Pubs
	January 2015

	Anticancer Effects of Vitamin E Forms and Their Long-chain Metabolites via Modulation of Sphingolipid Metabolism
	Yumi Jang
	Recommended Citation


	CHAPTER 1. LITERATURE REVIEW
	1.1 Vitamin E
	1.1.1 Vitamin E Forms and Food Sources
	methyl groups in the chromane ring. The structures of tocopherols and tocotrienols are illustrated in Figure 1.1.

	1.1.2 Bioavailability and Metabolites
	1.1.3 Bioactivities of Vitamin E

	1.2 Vitamin E Forms in Cancer Prevention
	1.2.1 Cancer
	1.2.2 α-Tocopherol
	1.2.3 Non-αT Forms of Vitamin E
	1.2.4 13’-Carboxychromanol, a Long-chain Vitamin E Metabolite

	1.3 Phytochemicals in Cancer Prevention
	1.3.1 Overview of Phytochemicals
	1.3.2 Molecular and Cellular Targets of Phytochemicals for Cancer Prevention
	1.3.2.1 NRF-KEAP1 Complex and Activation of NRF
	1.3.2.2 Suppressing NF-κB and AP1 Activation
	1.3.2.3 Downregulation of β-Catenin-mediated Signaling Pathway
	1.3.2.4 Induction of Apoptosis


	1.4 Sphingolipids Metabolism and Their Biological Activities
	1.4.1 Overview of Sphingolipids
	1.4.1.1 De novo Sphingolipids Biosynthesis
	1.4.1.2 Synthesis of Complex Sphingolipids
	1.4.1.3 Catabolism of Complex Sphingolipids and Ceramides

	1.4.2 Bioactive Sphingoid Bases and Their Roles in Cell Growth, Survival, and Death
	1.4.2.1 Sphingosine
	1.4.2.2 Ceramide
	1.4.2.3 Dihydrosphingosine and Sphingosine-1-phosphate
	1.4.2.4 Dihydroceramide



	CHAPTER 2.  SPHINGOLIPID METABOLISM IS THE INITIAL PRIMARY TARGET OF GAMMA-TOCOTRIENOL AND PLAYS A ROLE IN CELL DEATH INDUCTION
	2.1 Abstract
	2.2 Introduction
	2.3 Materials and Methods
	2.3.1 Materials and reagents
	2.3.2 Cell culture and treatment
	2.3.3 MTT assay
	2.3.4 Lipid extraction
	2.3.5 Measurement of sphingolipids using liquid chromatography tandem mass spectrometry (LC-MS/MS)
	2.3.6 De novo sphingolipids analysis
	2.3.7 In Situ dihydroceramide desaturase assay
	2.3.8 In Vitro dihydroceramide desaturase assay
	2.3.9 Transmission Electron Microscopy (TEM)
	2.3.10 Western Blotting
	2.3.11 Statistics

	2.4 Results
	2.4.1 Temporal changes of sphingolipids induced by γTE
	2.4.2 De novo synthesis of sphingolipids with labeled serine
	2.4.3 Direct evidence that γTE inhibits DEGS
	2.4.4 Temporal changes of cell death markers
	2.4.5 The role of sphingolipid modulation in (TE-induced cell death

	2.5 Discussion

	CHAPTER 3. 13’-Carboxychromanols, LONG-CHAIN VITAMIN E METABOLITES, INDUCE APOPTOSIS AND AUTOPHAGY BY MODULATING SPHINGOLIPID METABOLISM IN DIFFERENT TYPES OF CANCER CELLS
	3.1 Abstract
	3.2 Introduction
	3.3 Materials and Methods
	3.3.1 Materials and reagents
	3.3.2 Cell culture and treatment
	3.3.3 MTT assay
	3.3.4 Flow cytometry with Annexin V and Propidium Iodide staining
	3.3.5 Western Blotting
	3.3.6 Lipid extraction
	3.3.7 Measurement of sphingolipids using liquid chromatography tandem mass spectrometry (LC-MS/MS)
	3.3.8 De novo sphingolipids analysis
	3.3.9 Dihydroceramide desaturase (DEGS) assay
	3.3.10 Animal studies
	3.3.11 Statistics

	3.4 Results
	3.4.1 13’-COOHs inhibited proliferation of various human cancer cells
	3.4.2 13’-COOHs induced apoptosis and autophagy in various types of cancer cells
	3.4.3 13’-COOHs modulated sphingolipids in HCT-116 and MCF-7 cells
	3.4.4 13’-COOHs modulated de novo biosynthesis of sphingolipids
	3.4.5 13’-COOHs inhibited DEGS activity without affecting its protein expression
	3.4.6 The role of sphingolipid modulation in 13’-COOH-induced cell death
	3.4.7 (TE-13’-COOH supplementation attenuated colon inflammation and inhibited tumorigenesis induced by AOM with two cycles of 1.5% DSS in mice
	3.4.8 (TE-13’-COOH supplementation attenuated colon inflammation induced by one cycle of 1.8% DSS in mice
	3.4.9 Combined treatment of specific natural vitamin E forms with their long-chain metabolites exhibited synergistic or additive antiproliferative effects

	3.5 Discussion

	CHAPTER 4. targeting sphingolipid metabolism for the anticancer effects of various chemopreventive compounds
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and Methods
	4.3.1 Materials and reagents
	4.3.2 Cell culture and treatment
	4.3.3 MTT assay
	4.3.4 Lipid extraction
	4.3.5 Measurement of sphingolipids using liquid chromatography tandem mass spectrometry (LC-MS/MS)
	4.3.6 De novo sphingolipids anlaysis
	4.3.7 Dihydroceramide desaturase (DEGS) assays
	4.3.8 Statistics

	4.4 Results
	4.4.1 Curcumin increased dhCers, dhSph, and C24-Cers, but decreased C16:0-Cer by DEGS inhibition
	4.4.2 Resveratrol and DTT increased dhCers, dhSph, but decreased C16:0-Cer and C24-Cers
	4.4.3 Sulforaphane, quercetin, thapsigargin, doxorubicin and camptothecin increased Cers and dhCers
	4.4.4 EGCG increased dhCer, but did not affect other sphingolipids

	4.5 Discussion

	CHAPTER 5.  Summary and future direction
	5.1 Effects and Mechanisms of γTE on Sphingolipid Metabolism
	5.2 Anticancer Effects and Mechanisms of 13’-carboxychromanols, Long-chain Metabolites of Vitamin E
	5.3 Phytochemicals as Chemopreventive Agents
	5.4 Dietary Vitamin E in Colon Cancer Prevention


