
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

On New Approaches for Variable Selection under
Single Index Model and DNA Methylation Status
Calling
Longjie Cheng
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Cheng, Longjie, "On New Approaches for Variable Selection under Single Index Model and DNA Methylation Status Calling" (2015).
Open Access Dissertations. 1104.
https://docs.lib.purdue.edu/open_access_dissertations/1104

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220145831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1104?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 30 
Updated 1/15/2015 

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled 

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation  
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of  
Integrity in Research” and the use of copyright material. 

Approved by Major Professor(s): 

Approved by: 
   Head of the Departmental Graduate Program     Date 

Longjie Cheng

On New Approaches for Variable Selection under Single Index Model and DNA Methylation Status Calling

Doctor of Philosophy

Michael Yu Zhu
Chair

Rebecca W. Doerge
  

Jun Xie
   

Mary Ellen Bock

Michael Yu Zhu

Jun Xie 11/24/2015



ON NEW APPROACHES FOR VARIABLE SELECTION UNDER SINGLE

INDEX MODEL AND DNA METHYLATION STATUS CALLING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Longjie Cheng

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2015

Purdue University

West Lafayette, Indiana



ii

To my family.



iii

ACKNOWLEDGMENTS

First of all, I would like to express my most sincere gratitute towards my advisor,

Professor Michael Yu Zhu. He not only gives me considerable guidance and encour-

agement on my research, but also gives me valuable advice on my career and life.

I would also like to thank Professor Rebecca W. Doerge, Professor Jun Xie, and

Professor Mary Ellen Bock, for their time serving as my committee members. I thank

them for their valuable suggestions and inputs on my thesis.

I wish to express my appreciation to Professor Peng Zeng at Auburn Unversity

for his suggestions on my research.

It would be remiss of me if I forget to thank the faculty members, the staff, and

the fellow students at Department of Statistics. They help me in various ways, and

make my time at Purdue a great experience. I also would like to thank the members

in Professor Zhu’s research group for their helpful suggestions on my research and

presentation. I always enjoy the group meeting, and learn a great deal from them.

I must not forget to thank my friends, who continuously understand, support and

tolerate me. They bring so much joy to my life. I am grateful that I have them to

share the happiness and stress in my life.

Finally, I would like to express my wholehearted gratitute to my family for their

unparalleled and unconditional love. I will be no place near where I am without them.

I dedicate this work, and all of my future achievements to them.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Variable Selection for High-dimensional Single Index Model . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Single Index Model . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Variable Selection Methods for SIM . . . . . . . . . . . . . . 6

1.1.3 Review of the SICA penalty functions . . . . . . . . . . . . . 8

1.1.4 Review of B-Splines . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 BS-SIM: A Spline Estimation and Regularization Method for Single
Index Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Implementation for BS-SIM . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Coordinate Descent Algorithm for BS-SIM . . . . . . . . . . 15

1.3.2 Tuning Parameter Selection for BS-SIM . . . . . . . . . . . 18

1.4 Theoretical Properties for BS-SIM . . . . . . . . . . . . . . . . . . . 21

1.4.1 Estimation Consistency . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Intuition and Notations for Selection Consistency . . . . . . 21

1.4.3 Selection Consistency . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.1 Performance of the proposed method for small p . . . . . . . 29

1.5.2 Performance of the proposed method compared to that of the
unpenalized estimator . . . . . . . . . . . . . . . . . . . . . 30

1.5.3 Performance of the proposed method for several choices of a 33

1.5.4 Performance of the proposed method for moderate p . . . . 35



v

Page

1.5.5 Performance of the proposed method for large p . . . . . . . 36

1.5.6 Evaluation of the Irrepresentable Conditions . . . . . . . . . 38

1.5.7 Comparison of CV, logGIC and GIC under the violation of the
sparsity assumption . . . . . . . . . . . . . . . . . . . . . . . 42

1.6 Real Data Application . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6.1 Skin Cutaneous Melanoma Data . . . . . . . . . . . . . . . . 44

1.6.2 Analysis on Skin Cutaneous Melanoma Data with BS-SIM . 45

1.7 Linearly Constrained Single Index Model . . . . . . . . . . . . . . . 47

1.7.1 Single Index Model with Linear Constraints . . . . . . . . . 47

1.7.2 Coordinate Descent Algorithm for Linearly Constrained Single
Index Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.8.1 Regularity Conditions . . . . . . . . . . . . . . . . . . . . . 52

1.8.2 Proof of Theorem 1.4.1 . . . . . . . . . . . . . . . . . . . . . 53

1.8.3 Proof of Theorem 1.4.2 . . . . . . . . . . . . . . . . . . . . . 54

1.8.4 Proof of Theorem 1.4.3 . . . . . . . . . . . . . . . . . . . . . 57

1.8.5 Proof of Corollary 1.4.4 . . . . . . . . . . . . . . . . . . . . 59

2 DNA Methylation Status Quantification for Bisulphite-sequencing Data . 60

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.1.1 Introduction to DNA Methylation . . . . . . . . . . . . . . . 60

2.1.2 Review of Bisulphite-sequencing Experiment . . . . . . . . . 63

2.1.3 Review of Quantification Methods for Bisulphite-sequencing
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.1.4 Review of False Discovery Rate Controlling Procedures . . . 66

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.1 Mixture of Binomial Model . . . . . . . . . . . . . . . . . . 68

2.2.2 Classification based Methylation Status Calling Procedure . 73

2.2.3 Performance Assessment of the MSC Procedure . . . . . . . 74

2.2.4 Methylation Status Calling Procedure with FDR control . . 76



vi

Page

2.2.5 EM Algorithm for Computing the Parameters . . . . . . . . 79

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.1 Performance of MSC and FMSC . . . . . . . . . . . . . . . . 80

2.3.2 Estimation of Correct Allocation Rates . . . . . . . . . . . . 83

2.3.3 Choice of Null Hypothesis in FDR control . . . . . . . . . . 83

2.3.4 Estimation of FDR and FNDR with Memberships . . . . . . 84

2.4 Real Data Application . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.4.1 Performance of MSC and FMSC . . . . . . . . . . . . . . . . 86

2.4.2 Comparison of MSC and FMSC with Existing Methods . . . 88

2.4.3 Coverage Distribution . . . . . . . . . . . . . . . . . . . . . 91

2.5 Recent Development on DNA Methylation Analysis and FDR Control-
ling Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.5.1 DNA methylation status quantification for Bisulphite-sequencing
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.5.2 Sequencing-based DNA Methylation Profiling Approaches . 95

2.5.3 FDR Controlling Procedures for Discrete Tests . . . . . . . . 96

3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.1 Future Research Topics for Variable Selection under Single Index Model 97

3.2 Future Research Topics for DNA Methylation Status Calling . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



vii

LIST OF TABLES

Table Page

1.1 Comparison between our methods to the existing methods in low dimen-
sional scenario: Model 1 with COR1. . . . . . . . . . . . . . . . . . . . 31

1.2 Comparison between our methods to the existing methods in low dimen-
sional scenario: Model 3 with COR1. . . . . . . . . . . . . . . . . . . . 32

1.3 Comparison between the penalized estimator and the unpenalized estima-
tor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Comparison between the LASSO and the SICA penalties with various
choices of a for moderate p. . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Comparison between the proposed methods and the other existing meth-
ods in moderate dimensional scenario: Setting 1. . . . . . . . . . . . . . 36

1.6 Comparison between the proposed methods and the other existing meth-
ods in moderate dimensional scenario: Setting 2. . . . . . . . . . . . . . 37

1.7 Comparison between the proposed methods and the other existing meth-
ods in moderate dimensional scenario: Setting 3. . . . . . . . . . . . . . 37

1.8 Performance of BS-SIM with a = 0.1 under several settings in high dimen-
sional scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.9 Average percentages of times that the true model can be selected with
various choices of a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.10 Summary on η̄∞ for both Identifiability Constraints. . . . . . . . . . . 43

1.11 Performance comparison of CV, logGIC and GIC when q = 15. . . . . . 44

2.1 Four possible outcomes from multiple testing procedures. . . . . . . . . 68

2.2 Possible outcomes from the MSC procedure and the FMSC procedure. 74

2.3 Estimation of the overall correct allocation rate and correct allocation
rates for the two subgroups. . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4 Chromosome by Chromosome Results with MSC for the MethylC-Seq data
from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Contingency Table for Chromosome-wise and Genome-wide Evaluation 88



viii

Table Page

2.6 Assessment of Genome-wide Analysis by MSC and FMSC at three levels. 88

2.7 Comparison of whole-genome results from the MSC procedure and those
from the procedure used by [66] for all covered CpG sites. . . . . . . . 89

2.8 Typical examples of sites that the MSC procedure declares to be unmethy-
lated but the procedure used by [66] declares otherwise . . . . . . . . . 90

2.9 Third platform validation of the methylation calls for those sites that MSC
and the procedure used by [66] disagree on . . . . . . . . . . . . . . . . 91

2.10 Maximum Likelihood Estimates of v̂ and r̂ for Chromosome 1. . . . . . 92



ix

LIST OF FIGURES

Figure Page

1.1 Illustration of SICA for several choices of a. . . . . . . . . . . . . . . . 9

1.2 An illustration of the B-spline basis functions of order 4 with 9 equally-
spaced interior knots on [0,1]. . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 The percentages that the proposed BL-SIM method and the proposed
BS-SIM method with a = 2 select the true model versus η̄∞ for both
Identifiability Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.4 The plot of the fitted regression function and the observed log survival
time vesus the estimated index for the Skin Cutaneous Melanoma data. 46

2.1 Workflow for MethylC-Seq experiment. . . . . . . . . . . . . . . . . . . 64

2.2 (a) The box plots display FDRs for IBT at level 0.1, the MSC procedure,
and the FMSC procedure with FDR level 0.1, 0.05 and 0.01 from left to
right. (b) The box plots display FNDRs for these methods in the same
order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3 Comparison of different choices of null hypothesis. Left: Proportion of
methylated sites that are allocated to unmethylated group among those
allocated to unmethylated group. Right: Proportion of unmethylated
sites that are allocated to methylated group among those allocated to
methylated group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.4 Estimation of FDR and FNDR for c = (0.5, 0.4, 0.6) . . . . . . . . . . . 85

2.5 Histogram of the coverage with blue dots indicating fitted probabilities. 92



x

ABSTRACT

Cheng, Longjie PhD, Purdue University, December 2015. On New Approaches for
Variable Selection under Single Index Model and DNA Methylation Status Calling .
Major Professor: Yu Zhu.

This thesis consists of two main components: a regularization based variable selection

method for the single index model and a novel classification based method for DNA

methylation status calling for bisulphite-sequencing data.

The single index model is an intuitive extension of the linear regression model.

It has become increasingly popular due to its flexibility in modeling. Similar to the

linear regression model, the set of predictors for the single index model can contain a

large number of irrelevant variables. Therefore, it is important to select the relevant

variables when fitting the single index model. However, the problem of variable selec-

tion for high-dimensional single index model is not well settled in the literature. In the

first part of this thesis, we combine the idea of applying cubic B-splines for estimating

the single index model with the idea of using the family of the smooth integration

of counting and absolute deviation (SICA) penalty functions for variable selection.

Based on this combination, a new method is proposed to simultaneously perform pa-

rameter estimation and model selection for the single index model. This method is

referred to as the B-spline and SICA method for the single index model, or in short,

BS-SIM. Since LASSO is a limiting case of SICA, the proposed BS-SIM framework

can also be applied if one prefers LASSO. A coordinate descent algorithm is developed

to efficiently implement BS-SIM. Moreover, we develop the regularity conditions un-

der which BS-SIM can consistently estimate the parameter and select the true model.

Simulations with various settings and a real data analysis are conducted to demon-

strate the estimation accuracy, selection consistency and computational efficiency of
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BS-SIM. In addition, we also briefly discuss the problem of estimating the single in-

dex model with our framework when linear equality and inequality constraints are

imposed.

With the advent of high-throughput sequencing technology, bisulphite-sequencing

based DNA methylation profiling methods have emerged as the most promising ap-

proaches due to their single-base resolution and genome-wide coverage. Nevertheless,

statistical analysis methods for analyzing this type of methylation data are not well

developed. Although the most widely used proportion based estimation method is

simple and intuitive, it is not statistically adequate in dealing with the various sources

of noise in bisulphite-sequencing data. Furthermore, it is not biologically satisfactory

in applications that require binary methylation status calls. In the second part of

this thesis, we consider the problem of DNA methylation status calling. A mixture

of Binomial model is used to characterize bisulphite-sequencing data, and based on

the model, we propose to use a classification based procedure, called the Methylation

Status Calling (MSC) procedure, to make binary methylation status calls. The MSC

procedure is optimal in terms of maximizing the overall correct allocation rate, and

the FDR and FNDR of MSC can be estimated. In order to control FDR at any given

level, we further develop a FDR-controlled MSC (FMSC) procedure, which combines

a local false discovery rate (Lfdr) based adaptive procedure with the MSC proce-

dure. Both simulation study and real data application are carried out to examine the

performance of the proposed procedures. It is shown in our simulation study that

the estimates of FDR and FNDR of the MSC procedure are appropriate. Simulation

study also demonstrates that the FMSC procedure is valid in controlling FDR at a

prespecified level and is more powerful than the individual Binomial testing proce-

dure. In the real data application, the MSC procedure exhibits an estimated FDR of

0.1426 and an estimated FNDR of 0.0067. The overall correct allocation rate is more

than 0.97. These results suggest the effectiveness of the proposed procedures.
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1. VARIABLE SELECTION FOR HIGH-DIMENSIONAL

SINGLE INDEX MODEL

In this chapter, we focus on the problem of variable selection for single index model.

We start with a review of four crucial concepts in Section 1.1. Section 1.2 describes

the proposed framework, BS-SIM. Section 1.3 explains the implemention aspects of

BS-SIM. In Section 1.4, the theoretical properties of BS-SIM, including estimation

consistency and selection consistency, are demonstrated. Section 1.5 and Section 1.6

display the performance of BS-SIM under intensive simulation studies and a real data

example. Section 1.7 discusses the problem of variable selection for single index model

under linear constraints. The regularity conditions and the proofs to the theoretical

properties are given in Section 1.8.

1.1 Introduction

1.1.1 Single Index Model

The linear regression model is the most commonly used approach to model the rela-

tionship between a univariate scalar response Y and a p-dimensional predictor X. It

assumes the impact of the predictor X on the response Y is modeled through

Y = XTβ + ε,

where T indicates the transpose of a matrix, β is a vector of length p, and ε denotes

the random error term. The linear regression model is intuitive and easy to interpret.

However, the assumption that the relationship between the set of the predictor and

the response is linear is not always satisfied.
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To make the model more flexible, the single index model (SIM) takes the following

form

Y = f(XT θ0) + ε, (1.1)

where θ0 is a vector of length p, ε is an independent random error term with mean

0 and finite variance, and f is an unknown smooth function. The one-dimensional

projection XT θ0 is referred to as the index, and thus entails the name, single index

model.

The single index model is a semi-parametric model. It includes a parametric part,

θ. Meanwhile, it has two nonparametric components, the unknown link function f

and the unknown distribution of the error term. SIM suggests that the information

in X about Y is completely contained in the projection XT θ0, whereas the exact rela-

tionship between the projection and the response f is unknown but one-dimensional.

By this specification, the single index model is an intuitive generalization to many

parametric models, such as the linear regression model and the generalized linear

model (GLM) [1]. On the other hand, it has the advantage of being able to avoid

the curse of dimensionality frequently encountered by the nonparametric methodol-

ogy [2]. Due to these advantages, the single index model has applications in a wide

range of fields, such as economics [3]. A number of methods have been proposed to

estimate the true index θ0 in the literature. In what follows, we will briefly review

several popular ones among them.

Ichimura’s Estimator

The estimation of the single index model was first studied by Ichimura [3]. In his

Ph.D. thesis, he proposed to replace f with a leave-one-out kernel estimator as follows.

f̂−i(X
T
i θ) =

∑
j 6=i k

(
(Xj −Xi)

T θ/h
)
yi∑

j 6=i k ((Xj −Xi)T θ/h)
.
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Then he relied on a least-squares methodology to obtain an estimator of θ0 given

below,

θ̂ = argmin
θ

n∑
i=1

(
yi − f̂−i(XT

i θ)
)2

.

It is shown in [3] that under certain regularity conditions, the above estimator can

achieve consistency and asymptotic normality. Nevertheless, this estimator has the

disadvantage of being difficult to be computed in practice.

Average Derivative Estimation based Methods

The Average Derivative Estimation (ADE) method was first introduced by Härdle

and Stoker [4]. It relies on an intrinsic property of the single index model that θ0 is

proportional to the gradient ∂f/∂X, that is, δ ≡ E
(

df
d(Xθ

0 )

)
θ0 ≡ γθ0. Let g(X) be

the marginal density of X, and z ≡ −∂lng/∂x = −g′/g. Then by some calculations,

we have δ = E[z(X)y]. Härdle and Stoker [4] further proposed to use a kernel density

estimator ĝ(X) to estimate g(X), and as a result, we have ẑ(X) = −ĝ′(X)/ĝ(X).

Subsequently, the ADE estimator of δ is defined as

δ̂ = n−1

n∑
i=1

ẑ(Xi)yi.

Härdle and Stoker [4] also suggested using a trimming technique to stabilize the above

estimator. It was shown in [4] that under mild conditions, the above estimator enjoys

good statistical properties such as consistency and asymptotic normality. Several

modified ADE methods have been proposed later, including the density-weighted

ADE method [5], the structure adaptive approach [6] and the out-product of gradients

method [7]. Horowitz and Härdle [8] also proposed a generalized ADE based estimator

that can work for discrete covariates. A major drawback of the ADE-based estimators

is that most of them use high dimensional kernels in estimation, and thus suffer from

the curse of dimensionality. Consequently, they do not perform well in estimation even

when the dimension p is moderate. Another drawback for this category of methods

is that the conditions for them to be
√
n-consistent are quite restrictive.
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Minimum Average Variance Estimation Method

The Minimum Average Variance Estimation (MAVE) method by Xia et al. [9] is

originally proposed as a dimension-reduction method. When the dimension to be

reduced to is set to 1, the MAVE method leads to an estimator for SIM. By [9], we

have θ0 is the solution of

θ0 = argmin
θ

[E(Y − E(Y |XT θ))2] = argmin
θ

E(σ2
θ(X

T θ)),

where

σ2
θ(X

T θ) = E((Y − E(Y |XT θ))2|XT θ).

Xia et al. [9] proposed to use a local linear expansion to estimate σ2
θ(X

T θ) as follows.

σ̂2
θ(θ

TX) = min
a,b

(
n∑
i=1

[Yi − (a+ b(xi − x)T θ)]2ωi0

)
,

where ωi0 denotes some weights that sum up to 1. Subsequently, Ê
(
σ2
θ(X

T θ)
)
≈

1
n

n∑
i=1

σ̂2
θ(X

T θ). The MAVE estimator can be obtained below

θ̂ = argmin
θ

Ê
(
σ2
θ(X

T θ)
)

= argmin
θ,aj ,bj

(
n∑
j=1

n∑
i=1

[Yi − (aj + bj(xi − xj)T θ)]2ωij

)
,

where ωij are some weights that sum up to 1 for each j. As noted by [9], a natural

choice for the weights is to use the p-dimensional kernel. As a result, the above es-

timator would also suffer from the curse of dimensionality. To overcome this, Xia et

al. [9] also proposed the refined MAVE (rMAVE) method by replacing the high dimen-

sional kernel with a lower dimensional projection kernel. However, the computational

complexity of MAVE and rMAVE still grows rapidly with the sample size n, and they

can become unstable when p increases. From the theoretical property perspective,

it is shown that under certain conditions, the MAVE estimator for SIM enjoys good

statistical properties such as
√
n-consistency and asymptotically normality.
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Inverse Regression based Methods

This category of methods is originally intended for the purpose of sufficient dimension

reduction. The Inverse Regression based method was first introduced by Li [10]. It

relies on regressing the predictors x on the response y, which is different from the

traditional methods that regress y on x. The rationale behind this approach is that

under certain conditions, the standardized inverse regression curve falls into the lin-

ear space defined by the standardized effective dimension reduction directions. Based

upon this, Li [10] described an algorithm, called Sliced Inverse Regression (SIR), to

estimate the effective dimension reduction directions. Li [10] further developed the

asymptotic properties of SIR under assumptions on the distribution of the predic-

tors x. Due to the virtue of regressing x on the univariate response y, SIR is very

efficient in terms of computation, and it becomes considerably popular since it was

proposed. Besides SIR, other popular Inverse Regression based methods include the

sliced average variance estimator (SAVE) [11] and directional regression [12].

Single-Index Prediction Estimator

Recently, Wang and Yang [13] proposed the Single-Index Prediction (SIP) estimator.

In their work, cubic B-splines were used to obtain an estimator f̂θ for each fixed θ.

Then the empirical risk function R̂(θ) can be defined as

R̂(θ) = n−1

n∑
i=1

[Yi − f̂θ(XT
i θ)]

2.

Subsequently, the SIP estimator of θ0 is defined as

θ̂ = argmin
θ

R̂(θ).

They showed that under mild conditions, the SIP estimator achieves
√
n-consistency

and asymptotic normality. The application of the cubic B-splines circumvents the

drawbacks suffered by high dimensional kernels, and as expected, simulation studies

showed that SIP is considerably faster than MAVE, especially in the high dimensional

case.
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1.1.2 Variable Selection Methods for SIM

In practice, when the dimensionality p is large, the set of predictors can contain a

large number of irrelevant variables. For the high-dimensional scenario, it is usu-

ally computationally inefficient to estimate the single index model with the whole

collection of predictors. Moreover, even if an estimator is obtained with all of the

predictors, it is difficult to interpret the results. Thus, for interpretability and com-

putational efficiency purpose, it is important to perform variable selection when fit-

ting the high-dimensional single index model. Various traditional variable selection

methods have been extended to the single index model; for example, AIC [14] and

cross-validation [15]. However, these methods suffer from the same drawbacks as the

ones encountered in the linear regression model. They are intensive in terms of com-

putation, and sometimes unstable. Furthermore, it is infeasible to develop the large

sample properties for the resulting estimators.

Tibshirani [16] introduced the least absolute shrinkage and selection operator

(LASSO) as a regularization method for simultaneous parameter estimation and vari-

able selection in the linear models. LASSO has gained huge popularity since it was

proposed, due to its succinctness and computational efficiency. Zhao and Yu [17]

studied the sufficient and almost necessary condition, namely the Irrepresentable

Condition, under which LASSO can consistently select the true model. There are

various extensions or variants of LASSO proposed in the literature; see SCAD [18],

adaptive LASSO [19], and the Dantzig selector [20] among others. Several attempts

have been made to incorporate LASSO or its variants into the single index model,

and we will briefly review some of them below.

Sparse MAVE

Recall the empirical risk function of MAVE for SIM is given by

R(θ) =
n∑
j=1

n∑
i=1

[Yi − (aj + bj(xi − xj)T θ)]2ωij.
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Wang and Yin [21] proposed sparse MAVE or sMAVE. The idea is to add the LASSO

penalty on θ to the above risk function, and achieve automatic variable selection.

SIM-LASSO

Zeng et al. [22] introduced the SIM-LASSO method which adds a L1 penalty on

bjθ to the above MAVE objective function R(θ). The reason for including bj in the

penalty is that when f(XT θ0) is relatively flat at xTj θ0, the corresponding derivative

bj is close to zero and is not informative about θ0. Therefore, not only can SIM-

LASSO shrink some components of θ to zero, it also is able to shrink some bj’s to

zero and exclude the data points that do not contain much information about θ0 in

the estimation procedure. Another nice property of SIM-LASSO is that its target

function is invariant when b and θ are scaled by a constant and its reciprocal. This

property makes developing an implementation algorithm much more convenient.

SIM-Bridge

Wang et al. [23] proposed SIM-Bridge which combines the bridge penalty [24] on θ

with the above MAVE objective function R(θ). By using a concave penalty function,

simulation studies suggest that SIM-Bridge is better at controlling the number of

false positives than the two preceding LASSO based methods. Nevertheless, all of

the three methods mentioned so far combine some penalty function with MAVE,

thus they inherit the drawbacks of MAVE. They are computationally inefficient for

increasing sample size and become unstable when the dimensionality is high.

SIM-SCAD

Peng and Huang [25] proposed a nonconcave penalized least squares method for vari-

able selection in the single index model, called SIM-SCAD. In SIM-SCAD, a local

linear approximation strategy is used to obtain an estimate of f , denoted as f̂ , at a



8

current estimate of θ0, θ̂0. Subsequently, Peng and Huang [25] proposed to rely on

the following quadratic optimization problem to achieve simultaneous estimation and

selection for the single index model.

min
θ

n∑
i=1

[Yi − f̂(XT
i θ̂0)− f̂ ′(XT

i θ̂0)(XT
i θ −XT

i θ̂0)]2 + n

p∑
j=1

pλ(|θj|),

where pλ(|θ|) represents the SCAD penalty [18]. Peng and Huang [25] further showed

that under certain regularity conditions, the SIM-SCAD estimator possesses the oracle

properties [18].

1.1.3 Review of the SICA penalty functions

As mentioned in Lv and Fan [26], Nikolova [27] first studied a family of L1 transformed

penalty functions, whose form is given by

ρ(t) =
bt

1 + bt
,

where t ∈ [0,∞) and b > 0. Lv and Fan [26] considered a modified version of the

above penalty function, and studied the following family of penalty functions.

ρa(t) =

(
t

a+ t

)
I(t 6= 0) +

(
a

a+ t

)
t, t ∈ [0,∞),

where I denotes the indicator function, and t ∈ [0,∞). It follows that

ρ0(t) = lim
a→0+

ρa(t) = I(t 6= 0), and ρ∞(t) = lim
a→∞

ρa(t) = t.

As noted by [26], this family of penalty functions forms a smooth homotopy between

the L0 and L1 penalities, and thus is referred to as smooth integration of counting

and absolute deviation (SICA) penalty functions. By the above equations, it can be

seen that SICA includes LASSO as a limiting case.

The SICA penalty functions consist of a family of concave functions, and a is

a tuning parameter that controls the maximum concavity. Figure 1.1 shows the

shape of the SICA penalty functions on [-2,2] for the following sequence of a, a =

(0, 0.1, 1, 2, 5,∞).
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Fig. 1.1. Illustration of SICA for several choices of a.

Based on SICA, Lv and Fan [26] studied the problems of sparsity recovery and

variable selection under the linear model. For the variable selection problem with

SICA, they obtained the conditions on the design matrix under which the resulting

SICA estimator can recover the true model. They showed that these conditions on

the design matrix are more restrictive when a increases, and eventually converge to

the Irrepresentable Condition developed by Zhao and Yu [17] for LASSO, as a→∞.

This property suggests that under certain conditions, applying SICA with a finite a

is more likely to select the true model than applying LASSO. And this may make the

SICA penalty more appealing in cases where the Irrepresentable Condition does not

hold and LASSO is not consistent in variable selection.
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1.1.4 Review of B-Splines

A m-order spline function f(x) is a piecewise polynomial function of order m. The

places that these polynomial pieces meet are called knots, or knot sequence. The

lowest order for a spline function is 1. A spline function of order 1 is a piecewise

constant function, and a spline function of order 2 is a piecewise linear function, and

so on. The smoothness of a spline function is largely decided by its order. A spline

function of order m has up to m − 2 order continuous derivatives. In practice, the

most commonly used spline functions are order 4 splines, that is, cubic splines.

Spline functions of a given order and a given knot sequence can be represented

as a linear combination of the spline basis functions. There are several equivalent

forms of the basis functions, including the truncated power basis and the B-spline

basis [28]. In what follows, we will introduce the B-spline basis functions. Without

loss of generality, we assume the domain for x is [0, 1], and assume the sequence of

the interior knots are T = (t1, t2, · · · , tN) with 0 6 t1 6 t2 6 · · · 6 tN 6 1, where

N denotes the number of interior knots. Before we proceed to define the B-spline

basis, we need first augment the knot sequence. The additional knots we need are

outside of or on the boundary of the domain of x. Let the augmented knot sequence

be S = (s1, s2, · · · , sN+2m), and they satisfy the following.

1. s1 6 s2 6 · · · 6 sm 6 0;

2. si+m = ti, for i = 1, 2, · · · , N ;

3. 1 6 sm+N+1 6 · · · 6 sN+2m.

The additional knots are defined merely for computational convenience purpose.

Their locations are arbitrary, as long as they satisfy the three conditions above.
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Let Bq = (Bq,1, Bq,2, . . . , Bq,N+q)
T be the collection of B-spline basis functions for

spline functions of order q 6 m with knot sequence S. B can be defined recursively

as follows [28].

B1,i(x) =

1, x ∈ [si, si+1);

0, otherwise

for i = 1, 2, · · · , n+ 2m− 1. And

Bq,i(x) =
x− si

si+m−1 − si
Bq−1,i +

si+1 − x
si+m − si+1

Bq−1,i+1,

for i = 1, 2, · · · , n + 2m − q. Note that for q < m, not all of the augmented knots

are needed in computing the basis functions. By the above construction, the B-spline

basis functions of any order can be computed for a given knot sequence [29]. Figure

1.2 illustrates the B-spline basis functions of order 4 with 9 equally-spaced interior

knots on [0,1].
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Fig. 1.2. An illustration of the B-spline basis functions of order 4 with 9
equally-spaced interior knots on [0,1].

As a conclusion to this subsection, we will make several remarks on B-splines.

First, each basis function of order q is nonzero in only up to q subintervals. Moreover,
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at a given x ∈ [0, 1], only q basis functions are nonzero. Due to the orthogonality

property, B-spline basis provides the most convenience and efficiency in computing,

especially when N is large. Therefore, it is the most widely-used basis in practice. As

for the placement of the knot sequence, the most convenient choices include locating

the knots at the quantiles of x and spreading the knots with equal space between

two adjacent knots. There exists more sophisticated choices, such as those proposed

by [30] and [31]. One thing that needs to be careful about here is that when there

exists replicates in the knot sequence, the B-spline functions defined by the resulting

basis functions will have one less continuous derivative at the corresponding replicated

knot.

1.2 BS-SIM: A Spline Estimation and Regularization Method for Single

Index Model

Suppose a random sample of n observations is generated from the single index model

yi = f(xTi θ0) + εi,

i = 1, 2, · · · , n, where θ0 = (θ0,1, θ0,2, . . . , θ0,p)
T is the true index, and εi’s are i.i.d

random variables with mean 0 and a common variance σ2. Let Y = (y1, · · · , yn)T

denote the n × 1 reponse vector, and X = (x1, x2, · · · , xn)T be the n × p matrix

with xi representing its i-th row. The true index θ0 is only identifiable up to a scale

constant without further constraint. In the literature, there are two popularly used

identifiability constraints:

1. Identifiability Constraint 1: θ0,1 = 1;

2. Identifiability Constraint 2: ‖θ0‖2 = 1 and θ0,1 > 0.

In this thesis, we consider any general and feasible constraint on the scale of θ0.

For example, other than the two popular identifiability constraints,
p∑
i=1

θ0,i = 1 can

also be used. Here we work with the nontrivial case that there is at least one non-

zero component in θ0. Thus, for any constraint, it is important to first identify one
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component θ0,k that is non-zero. This component θ0,k can be assumed as known from

prior knowledge, or identified by methods such as marginal correlation. Without loss

of generality, we assume k = 1. Although a large number of general identifiability

constraints can be used, in Section 1.5, we show with simulation studies that different

constraints can have different impacts on the performance of the used method in

various aspects.

Suppose one specifies the following identifiability constraint: C(θ) = 1, where

θ = (θ1, θ2, . . . , θp)
T , and C is an explicit function on the scale of θ. Then θ1 can be

expressed as a function of the remaining components, that is, θ1 = C1(θ2, θ3, . . . , θp).

Let φ = (θ2, θ3, . . . , θp)
T be the (p− 1)-dimensional sub-vector of θ by excluding the

first component, and let tθ = XT θ. Let φ0 denote the last (p − 1) components of

θ0. Let Φ be the space for φ. With an appropriate identifiability constraint imposed,

φ and θ have a one-to-one association. Then the goal of inference under the single

index model is to estimate φ0 (and thus θ0) and the true link function f .

For a given θ, let tiθ = xTi θ be the projected data onto the direction of θ, i =

1, 2, . . . , n. Let tθ(min) = min
i
tiθ and tθ(max) = max

i
tiθ. The interval [tθ(min), tθ(max)]

is partitioned into (N + 1) subintervals. Let TN be the sequence of the N interior

knots that separate the subintervals. Let B4 = (B4,1, B4,2, . . . , B4,N+4)T be the cubic

B-spline basis functions on [tθ(min), tθ(max)] with knots TN . As mentioned in Section

1.1.4, the explicit form of B4 can be derived recursively. Here we slightly abuse the

notations in the sense that θ and TN are omitted in the representation of the basis

functions. The evaluations of the basis functions on the projected data points are de-

noted as Bθ. That is, Bθ = (B4(t1θ), . . . , B4(tnθ ))T , where B4(t) denotes the evaluation

of the cubic B-spline basis functions at t.

The cubic B-spline estimator of f is defined as f̂θ(·) = α̂TB4(·), where α̂ =

(α̂1, . . . , α̂N+4)T , and can be obtained by solving the following least-squares problem

min
α∈RN+4

1

n

n∑
i=1

(
yi − αTB4(tiθ)

)2
.
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It immediately follows that α̂ = (BT
θ Bθ)

−1BT
θ Y. Note that f̂θ(·) depends on θ. Wang

and Yang [13] further proposed to use the following least-squares method to estimate

θ0

θ̂un = argmin
θ∈Θ

1

n

n∑
i=1

(yi − f̂θ(tiθ))2,

where θ̂un denotes the unpenalized estimator of θ0, and Θ = {θ : ‖θ‖2
2 = 1, θ1 > 0}.

As discussed previously, the dimension p can be high in practice, and the set of

predictors can include a large number of irrelevant variables. Therefore, it is of interest

to produce a sparse estimator of θ0, and thus achieve automatic variable selection.

This motivates us to utilize the spline estimator f̂θ(·) for f described above, coupled

with the regularized least squares method for estimating θ0 to achieve efficient and

simultaneous parameter estimation and variable selection.

Since θ0,1 is assumed to be non-zero, we penalize φ instead of θ. We further use

the family of the SICA penalty functions. That leads us to the following objective

function R(φ;λ).

R(φ;λ) =
1

n

n∑
i=1

(
yi − f̂θ(tiθ)

)2

+ λ

p−1∑
j=1

ρa(|φj|),

where f̂θ is the cubic B-spline estimator of f for a given θ, λ is a tuning parameter,

and ρa(u) denotes the SICA penalty function with the following form

ρa(u) =

(
u

a+ u

)
I(u 6= 0) +

(
a

a+ u

)
u, u ∈ [0,∞).

For simplicity, we do not include a in the notation of R, and write R(φ;λ) as R(φ)

when there is no confusion. For a fixed λ, we define the following estimator of φ0,

φ̂ = argmin
φ∈Φ

R(φ), (1.2)

The corresponding estimator for θ0 is denoted as θ̂, and is referred to as the BS-SIM

estimator.

Recall that the SICA family of penalty functions provides a smooth homotopy

between the L0 and L1 penalties, and we have

ρ0(u) = lim
a→0+

ρa(u) = I(u 6= 0), and ρ∞(u) = lim
a→∞

ρa(u) = u.
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That means, the LASSO penalty is the limiting case of the SICA penalty. In some

applications, the LASSO penalty can also be of interest, and the estimator based on

LASSO is defined separately below. We denote the objective function when a = ∞

as RL(φ;λ). That is,

RL(φ;λ) =
1

n

n∑
i=1

(
yi − f̂θ(tiθ)

)2

+ λ‖φ‖1,

where ‖ · ‖1 denotes the L1 norm. We write it as RL(φ) when there is no confusion.

For a fixed λ, we define the following estimator of φ0,

φ̂L = argmin
φ∈Φ

RL(φ), (1.3)

and the corresponding estimator for θ0 is denoted as θ̂L. We refer to θ̂L as the BL-

SIM estimator. It can be expected that the BS-SIM estimator can converge to the

BL-SIM estimator as a approaches ∞.

1.3 Implementation for BS-SIM

1.3.1 Coordinate Descent Algorithm for BS-SIM

For ease of representation, we define H(φ) = 1
n

∑n
i=1(yi− f̂θ(tiθ))2. Then the objective

function R(φ) can be expressed as R(φ) = H(φ) + λ
p−1∑
j=1

ρa(|φj|). Next, we develop a

coordinate descent algorithm to find φ̂ (or φ̂L) for any given λ on a dense grid.

Since H(φ) is a complicated function of φ, we further use a local quadratic ap-

proximation strategy to iteratively solve Problem (1.2). Let H(1)(·) = ∂H(·)/∂φ and

H(2)(·) = ∂2H(φ)
∂φ∂φT

(·), which are the gradient and Hessian matrix of H, respectively.

Then, given a current estimate φ̂(0), the quadratic approximation to H(φ) at φ(0) is

given as follows.

H(φ) ≈ H(φ(0)) + (φ− φ(0))TH(1)(φ(0)) +
1

2
(φ− φ(0))TH(2)(φ(0))(φ− φ(0))

=
1

2
φTH(2)(φ(0))φ− φT

(
H(2)(φ(0))φ(0) −H(1)(φ(0))

)
+ constant.

(1.4)
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In addition, we use a local approximation to the SICA penalty function suggested

by [26] as follows.

p−1∑
j=1

ρa(|φj|) =

p−1∑
j=1

[ρa(|φ(0)
j |) + ρ′a(|φ

(0)
j |)(|φj| − |φ

(0)
j |)], (1.5)

where φ(0) = (φ
(0)
1 , φ

(0)
2 , · · · , φ(0)

p−1)T .

These two approximations entail that for a given φ(0), Problem (1.2) can be ap-

proximated by

min
φ∈Φ

1

2
φTH(2)(φ(0))φ− φT

(
H(2)(φ(0))φ(0) −H(1)(φ(0))

)
+ λ

p−1∑
j=1

wj|φj|, (1.6)

where wj = ρ′a(|φ
(0)
j |) for j = 1, 2, · · · , p − 1. To solve Problem (1.6), we cyclically

update each component of φ while holding the other components fixed. That means,

for j = 1, 2, · · · , p− 1, we solve the following univariate problem

min
φj

1

2
hjjφ

2
j +

(
p−1∑

k=1,k 6=j

hjkφk − βj

)
φj + λwj|φj|+ constant, (1.7)

where hkl denotes the component in the kth row and the lth column of H(2)(φ(0)), and

βj denotes the jth element of H(2)(φ(0))φ(0) −H(1)(φ(0)). Notice that Problem (1.7)

is essentially a univariate LASSO problem, and the solution can be written down

explicitly as

φj = sign(aj)
(|aj| − λwj)+

hjj
=


(aj − λwj)/hjj, if aj > λwj;

(aj + λwj)/hjj, if aj < −λwj; (1.8)

0, otherwise.

where aj = βj −
∑
k 6=j

hjkφk. We repeatedly iterate through j and update the estimate

of φ0, until some convergence criterion is met.

When implementing Algorithm 1, there are two issues that require further atten-

tion. First, during the sth cycle of j, linear search method is applied [32]. We start

with φ̂(s), and obtain a tentative update φ̂(s). Before setting φ̂(s+1) as the most current

estimate of φ0, we need to check that the objective function R is indeed decreasing.
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If it is not, the step δ = φ̂(s+1)− φ̂(s) is repeatedly multiplied by 0.8, until the amount

of movement along the direction δ that can result in a decrease in R is obtained.

Here, 0.8 is chosen for the purpose of convenience, and may not be optimal. A more

sophisticated choice can be further explored; see the previously mentioned reference

on line search. The other issue faced during the implementation is that the optimiza-

tion over φ should be carried out in the space Φ. However, the algorithm described

above does not consider any constraint on the space over which the optimization is

executed. For some identifiability constraints, such as the Identifiability Constraint

1 mentioned earlier, Φ is actually Rp−1; for other identifiability constraints, such as

the Identifiability Constraint 2 in the previous section, Φ is a constrained subspace of

Rp−1. In the former case, no adjustment is needed; in the latter case, there requires an

additional step that ensures that the updated φ̂ is in the constrained space Φ. For in-

stance, it needs to be checked that the updated φ̂ satisfies ‖φ̂‖2 < 1, for Identifiability

Constraint 2. If it does not, the step δ needs to be shortened such that φ̂ falls within

Φ. Algorithm 1 outlines the search for φ̂ at a given λ in more detail. Problem (1.3)

can be solved in a similar fashion. The only difference is that for Problem (1.3), there

is no need to use the local linear approximation to the penalty function. Therefore,

the algorithm of searching for φ̂L is not separately displayed.
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Algorithm 1 Coordinate Descent Algorithm for BS-SIM

For any λ,

1. Initialize φ to be φ̂(0) and let s = 0.

2. Given φ̂(s) = (φ̂
(s)
1 , φ̂

(s)
2 , . . . , φ̂

(s)
p−1)T , calculate the quadratic approximation (1.4)

to H(φ) and the linear approximation (1.5) to pλ(φ).

3. For j = 1, 2, . . . , p− 1, update φ̂j by the following formulars:

φj = sign(aj)
(|aj| − λwj)+

hjj
=


(aj − λwj)/hjj, if aj > λwj;

(aj + λwj)/hjj, if aj < −λwj;

0, otherwise.

If needed, check whether φ is within Φ. If it is not, adjust it to fall within Φ.

4. After one cycle of j, a tentative update φ̂(s+1) and the corresponding R(φ̂(s+1))

are obtained. If R(φ̂(s+1)) > R(φ̂(s)), calculate δ = φ̂(s+1) − φ̂(s), and check the

objective function for

φ̂(s+1) = φ̂(s) + (0.8)kδ,

for k = 1, 2, . . . until R(φ̂(s+1)) is smaller than R(φ̂(s)).

5. Calculate ∆ = R(φ̂(s)) − R(φ̂(s+1)). If ∆ is below a prespecified threshold,

then stop and set φ̂ = φ̂(s+1) and calculate the corresponding θ̂; otherwise, set

s = s+ 1 and go back to Step 2.

1.3.2 Tuning Parameter Selection for BS-SIM

For regularization-based approaches, it is crucial to choose the tuning parameters,

namely λ and a in our case. We start with the discussion of the selection of λ.

We consider two types of methods for determining λ. The first one is m-fold cross-

validation, denoted as CV hereafter. In CV, the sample is randomly partitioned into

m subsamples of equal size. Among these m folds, m− 1 of them are treated as the
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training set, and the remaining one is treated as the validation set. At each given

candidate value for λ, the proposed approach is applied to the training set, and a

fitting is obtained. Subsequently, the test set is used to assess the predictive accuracy

of the obtained model. The residual sum of squares can be used as the assessment.

This process is repeated m times until each fold of the sample is used as the test set

exactly once. For a given λ, the m results on the assessment are then averaged. The

value of λ that yields the smallest average is regarded as optimal.

The second type is the Bayesian Information Criterion (BIC) and its variants [33].

For variable selection under the linear model Y = XTβ+ ε, we examine the following

four BIC-based criteria (1.9)-(1.12).

BIC = RSSλ/n+ dσ2log(n)/n, (1.9)

logBIC = log(RSSλ/n) + dlog(n)/n, (1.10)

GIC = RSSλ/n+ dσ2kn/n, (1.11)

logGIC = log(RSSλ/n) + dkn/n, (1.12)

where RSSλ denotes the residual sum of squares at a given λ, σ2 denotes the error

variance, and d is the size of the identified model at a given λ. Furthermore, for

criteria (1.11) and (1.12), kn represents the additional penalty imposed on the size of

the model. In practice, σ2 is rarely known. On the other hand, according to Shao [34],

under certain conditions, the BIC defined in (1.9) has the same asymptotic behavior

as the one defined in (1.10). Thus, it is more convenient to rely on logBIC in (1.10) to

select the tuning parameter λ. It has been previously proved that, when the number

of predictors p is fixed as the number of observations n grows, one can identify the

true model with probability tending to 1 in the linear models by using the logBIC

criteria [35]. Nevertheless, when p diverges, the logBIC criterion (1.10) tends to yield

a model that contains many irrelevant predictors. Several adjustments have been

proposed in the literature to circumvent this issue [35–37]. The common approach

these adjustments take is to place more penalty on the model complexity d. This idea

naturally leads us to consider the GIC criterion in (1.11) and the logGIC criterion in
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(1.12). It is clear that GIC and logGIC include BIC and logBIC as a special case,

respectively. Thus, GIC and logGIC can be regarded as the unified criteria to achieve

the selection of λ for any p, and they can be extended to models other than the linear

regression models. It is also worth noting that GIC involves σ2. When σ2 is unknown,

there are various ways to obtain an estimate σ̂2 and replace σ2 with σ̂2 in GIC. We

will elaborate on it in the next paragraph.

In order to choose a proper type of method for determining λ under our framework,

we carry out extensive simulation studies under both the linear model and the single

index model. We try different settings of p and the size of the true model. In the

simulation studies, we use σ̂2 = RSS0/(n−p) when n > p, and σ̂2 = RSSλcv/(n−dcv)

otherwise, where λcv denotes the value of λ selected by CV, and dcv denotes the size

of the model selected by CV. For all settings, CV generally leads to an overfitted

model. When the true model is sparse, logGIC with an appropriate kn performs the

best in terms of identifying the true model for any p. GIC is a close second. As the

number of relevant variables grows, the performance of GIC surpasses that of logGIC,

and GIC becomes the most preferable. For the moderately sparse scenario, logGIC

starts to break down as p increases. When the size of the true model is large, logGIC

fails to work in the sense that it leads to either a very large model, or a very small

model. Meanwhile, GIC can still produce significant improvement over CV when p is

not large. When p also becomes large, the problem itself becomes too difficult that

all of the methods rarely perform satisfactorily.

Based upon these observations, we propose the following rule of thumb principle

for the selection of λ under our framework. When sparsity of the true model is

assumed, we use logGIC; when the size of the true model is relatively large, we use

GIC. An example illustrating the breakdown of logGIC and the advantage of using

GIC under the violation of the sparsity assumption is given in Section 1.5.7.

As for the selection of a, it can generally be accomplished by m-fold cross-

validation. Since the focus of this work is to study the properties of θ̂ and θ̂L, we do

not intensively examine the selection of a.
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1.4 Theoretical Properties for BS-SIM

1.4.1 Estimation Consistency

To begin with, we show that, under mild conditions, θ̂ is consistent in terms of

estimation, and can achieve the optimal
√
n rate for a well-selected λ. Moreover, as

a special case, θ̂L share the same property on parameter estimation.

Theorem 1.4.1 Suppose Conditions (A1)-(A3) in Section 1.8 hold.

(a) If λ = O(n−1/2), there exists a local minimum φ̂ of R(φ), such that φ̂ is
√
n-

consistent. Consequenly, the BS-SIM estimator θ̂ is a
√
n-consistent estimator of θ0;

(b) If λ = O(n−1/2+δ) for some δ ∈ (0, 1/2), there exists a local minimum φ̂ of R(φ),

such that ‖φ̂− φ0‖2 = Op(n
−1/2+δ). As a result, ‖θ̂ − θ0‖2 = Op(n

−1/2+δ);

(c) As a special case, the BL-SIM estimator θ̂L possesses the above properties.

Theorem 1.4.1 is expected and standard. Part (b) of Theorem 1.4.1 also facilitates

the derivations on the selection consistency given below.

1.4.2 Intuition and Notations for Selection Consistency

Observe that if no identifiability constraint is imposed, we have f(tθ) − f(tθ0) ≈

D′θ(tθ0)(θ − θ0), where D′θ(tθ0) =
(
∂f(tθ0 )

∂θ1
,
∂f(tθ0 )

∂θ2
, . . . ,

∂f(tθ0 )

∂θp

)
. By simple calculations,

we obtain
∂f(tiθ0)

∂θj
= h(tiθ0)Xij , gij,

where h(tiθ0) = f ′|t=tiθ0 for j = 1, 2, . . . , p, and i = 1, 2, . . . , n. Let

F =



∂f(t1θ0
)

∂θ1
,

∂f(t1θ0
)

∂θ2
, · · · ,

∂f(t1θ0
)

∂θp
∂f(t2θ0

)

∂θ1
,

∂f(t2θ0
)

∂θ2
, · · · ,

∂f(t2θ0
)

∂θp

· · · · · · · · · · · ·
∂f(tnθ0

)

∂θ1
,

∂f(tnθ0
)

∂θ2
, · · · ,

∂f(tnθ0
)

∂θp


n×p

= (gij)i=1,2,...,n;j=1,2,...,p .

By the definition of gij, it is apparent that F is a weighted design matrix. That is,

F is computed by multiplying row i of X with the corresponding derivative of f at
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tiθ0 , h(tiθ0), for i = 1, 2, · · · , n. When f is flat at tiθ0 , this data point does not contain

much information on θ0, and the weight placed on row i is small; on the other hand,

when f is steep at tiθ0 , this data point is informative, and the corresponding row is

scaled with a larger weight. In the special case of the linear models, F reduces to X.

However, θ0 is not free of identifiability constraint, and only the last p−1 elements

of θ0 are of interest. Consequently, we consider

F0 =



∂f(t1θ0
)

∂θ2
,

∂f(t1θ0
)

∂θ3
, · · · ,

∂f(t1θ0
)

∂θp
∂f(t2θ0

)

∂θ2
,

∂f(t2θ0
)

∂θ3
, · · · ,

∂f(t2θ0
)

∂θp

· · · · · · · · · · · ·
∂f(tnθ0

)

∂θ2
,

∂f(tnθ0
)

∂θ3
, · · · ,

∂f(tnθ0
)

∂θp


n×(p−1)

.

Here, F0 depends on the design X, the true link function f , and the true index θ0.

To some extent, F0 can be treated as the design matrix in the single index models,

and it can play a crucial role in the subsequent analysis. For a given identifiability

constraint, we can express θ1 as a function of the rest (p− 1) components of θ, that

is θ1 = C1(θ2, . . . , θp). Let J be the corresponding Jacobian matrix for θ0, that is,

J =



∂C1(φ0)
∂θ2

, ∂C1(φ0)
∂θ3

, · · · ∂C1(φ0)
∂θp

1, 0, · · · 0

· · · · · · · · · · · ·

0, 0, · · · 1


p×(p−1)

.

And it follows that F0 = FJ . For simplicity, here we omit the dependence of J on

the identifiability constraint in the notation. The forms of F0 for the two popular

identifiability constraints are illustrated below. Notice that F0 is essentially a scaled

and adjusted version of the design matrix X.
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Identifiability Constraint 1: θ0,1 = 1.

In this case, C1(θ2, . . . , θp) ≡ 1. Thus,

J =



0, 0, · · · 0

1, 0, · · · 0

0, 1, · · · 0

· · · · · · · · · · · ·

0, 0, · · · 1


,

and

F0 =


g12, g13, · · · g1p

g22, g23, · · · g2p

· · · · · · · · · · · ·

gn2, gn3, · · · gnp

 ,

which is actually a sub-matrix of F .

Identifiability Constraint 2: ‖θ0‖2 = 1 and θ0,1 > 0.

This yields that C1(θ2, . . . , θp) =
√

1− θ2
2 − · · · − θ2

p. Thus,

J =



− θ0,2
θ0,1
, − θ0,3

θ0,1
, · · · − θ0,p

θ0,1

1, 0, · · · 0

0, 1, · · · 0

· · · · · · · · · · · ·

0, 0, · · · 1


,

and

F0 =


g12 − θ0,2

θ0,1
g11, g13 − θ0,3

θ0,1
g11, · · · g1p − θ0,p

θ0,1
g11

g22 − θ0,2
θ0,1
g21, g23 − θ0,3

θ0,1
g21, · · · g2p − θ0,p

θ0,1
g21

· · · · · · · · · · · ·

gn2 − θ0,2
θ0,1
gn1, gn3 − θ0,3

θ0,1
gn1, · · · gnp − θ0,p

θ0,1
gn1

 .

Without the loss of generality, let θ0 = (θ0,1, θ0,2, . . . , θ0,q, θ0,q+1, . . . , θ0,p)
T where

θ0,j 6= 0 for j = 1, 2, . . . , q and θ0,j = 0 for j = q + 1, q + 2, . . . , p. Let A1 =
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{2, 3, . . . , q} and A2 = {q + 1, q + 2, . . . , p}. For any φ, we also decompose it into

two sub-vectors as follows φ(1) = (θ2, θ3, . . . , θq)
T , and φ(2) = (θq+1, . . . , θp)

T . Let

C0 = 1
n
F T

0 F0. Let F0(1) and F0(2) be the first q − 1 and the last p − q columns of

F0. Let C0(11) = 1
n
F T

0 (1)F0(1), C0(21) = 1
n
F T

0 (2)F0(1), C0(12) = 1
n
F T

0 (1)F0(2) and

C0(22) = 1
n
F T

0 (2)F0(2). Then we can decompose C0 into the following four blocks

C0 =

 C0(11) C0(12)

C0(21) C0(22)

 .

In the following subsections, we also rely on this decomposition to formulate the

results on the selection consistency of the proposed estimators.

1.4.3 Selection Consistency

As detailed earlier, we use the cubic spline function to estimate the true link function

f . For any θ, let Γ(θ) be the cubic spline space defined according to Section 1.2. We

denote the projection matrix onto Γ(θ) as Pθ = Bθ(B
T
θ Bθ)

−1BT
θ . Thus,

f̂θ =
(
f̂θ(tθ,1), . . . , f̂θ(tθ,n)

)T
= PθY.

Consequently, we have

E
(
f̂θ(t

i
θ)
)

= Pθf(tiθ0) , f̄θ(t
i
θ),

for i = 1, 2, · · · , n. Then, for any given θ, we can similarly define F̄θ and C̄θ as

F̄θ =

(
∂f̄θ(t

i
θ)

∂θj

)
i=1,2,...,n;j=2,3,...,p

,

and C̄θ = 1
n
F̄ T
θ F̄θ. For succinctness, we write F̄θ0 and C̄θ0 as F̄0 and C̄0. Different

from F0, F̄0 not only depends on X, f and θ0, it also relies on the spline approxi-

mation of the link function. We decompose C̄0 into four blocks in the same way we

decompose C0. With the notations introduced above, we can impose the following

crucial conditions on C̄0 to establish the selection consistency of BS-SIM.
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Condition 1 (Irrepresentable Conditions for BS-SIM) C̄0 satisfies that

‖C̄−1
0 (11)‖∞ 6 L̄1,

‖C̄0(21)C̄−1
0 (11)‖∞ 6 L̄2,

where L̄1 ∈ (0,∞), L̄2 ∈
(

0, L̄ ρ′(0+)

ρ′(b0−λL̄3)

)
for some L̄ and L̄3 ∈ (0,∞), and b0 =

min
j∈A1

|θ0,j|.

Note that C̄0 is related to the spline estimator of f , and thus it depends on the

number and the location of the knots. That means the conditions given above are

not free of the sample size n. On the other hand, F̄0 is a scaled and adjusted version

of the design matrix X. Hence, the Irrepresentable Conditions for BS-SIM are similar

to the conditions by [26] in the sense that the above conditions replace the design

matrix X in [26] with F̄0. With the Irrepresentable Conditions for BS-SIM, we are

ready to state our theorem next.

Theorem 1.4.2 Assume the Irrepresentable Conditions for BS-SIM hold, and the

regularity conditions (A1)-(A3) in Section 1.8 are satisfied. Then for λ = O(nc−2/5),

with some c ∈ (0, 2/5), there exists a local minimum φ̂ of R(φ) such that

P
(

sign(φ̂) = sign(φ0)
)

= 1− o(e−nc), as n→∞,

where sign(s) is the sign function that equals 1 when s is positive, equals -1 when s

is negative, and equals 0 when s = 0.

Theorem 1.4.2 characterizes the behaviour of BS-SIM in recovering the true model.

It suggests that, if the Irrepresentable Conditions for BS-SIM hold, then the prob-

ability that BS-SIM is able to identify the true model converges to 1 exponentially.

It can be easily shown that ρ′(0+) = 1 + a−1. As noted by [26], the conditions for

SICA to identify the true model in the linear regression becomes less restrictive as a

decreases, at the sacrifice of computational convenience. This statement also holds in

the context of the single index model. That means, with smaller a, the Irrepresentable
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Conditions for BS-SIM are less restrictive, but it is harder to find φ̂. As pointed out

earlier, LASSO is a limiting case of the SICA penalty. Therefore, it is expected that

the BL-SIM estimator φ̂L would possess the similar properties as given in Theorem

1.4.2. To present the properties for φ̂L, we start with the following assumption on

C̄0.

Condition 2 (Irrepresentable Condition for BL-SIM) There exists a positive

constant vector η̄, such that the following inequality holds component-wise

∣∣C̄0(21)C̄−1
0 (11)sign(φ0(1))

∣∣ 6 1p−q − η̄,

where 1p−q denotes a vector of 1’s of length p− q.

Again, the Irrepresentable Condition for BL-SIM resembles the Irrepresentable Condi-

tion in [17], and the major difference is that the Irrepresentable Condition for BL-SIM

replaces X with F̄0.

Theorem 1.4.3 Assume the Irrepresentable Condition for BL-SIM holds, and the

regularity conditions (A1)-(A3) in Section 1.8 are satisfied. Then for λ = O(nc−2/5),

with some c ∈ (0, 2/5), there exists a local minimum φ̂L of RL(φ) such that

P
(

sign(φ̂L) = sign(φ0)
)

= 1− o(e−nc).

Theorem 1.4.3 demonstrates that with the Irrepresentable Condition for BL-SIM

imposed, the probability that BL-SIM selects the true model approaches 1 expo-

nentially. Consistent with the monotonicity of the restrictiveness of the conditions,

the Irrepresentable Condition for BL-SIM is more restrictive than the Irrepresentable

Conditions for BS-SIM with finite a. This observation is also in line with that in the

linear regression scenario, and it implies that BS-SIM may be able to recover the true

model when BL-SIM fails.

Recall that the conditions presented previously rely on the sample size n. In what

follows, we show that if C̄0 satisfies certain regularity condition, the selection consis-



27

tency of the proposed methods can be achieved under conditions that are independent

of n. From [13], we have

sup
j=2,3,...,p

sup
θ:‖θ‖2=1

max
i

∣∣∣∣ ∂∂θj (f̄θ − f)(tiθ)

∣∣∣∣ = O
(
h3
)
,

where h = 1/(N + 1) is the bandwith for the cubic B-spline functions. This means

that (F̄0)i → (F0)i, as n → ∞, for any i, and (·)i denotes the ith row of a matrix.

Based on this result, the following regularity condition can be imposed,

C̄0 → C, as n→∞,

for some matrix C free of n. We decompose C into four blocks in the same way

we decompose C0. Next, we show that if the Irrepresentable Conditions on C are

imposed, the proposed methods can consistently select the true variables.

Condition 3 (Limiting Irrepresentable Conditions for BS-SIM) C satisfies that

‖C−1(11)‖∞ 6 L1,

‖C(21)C−1(11)‖∞ 6 L2,

where L1 ∈ (0,∞), and L2 ∈
(

0, L ρ′(0+)
ρ′(b0−λL3)

)
for some L and L3 ∈ (0,∞).

Condition 4 (Limiting Irrepresentable Condition for BL-SIM) There exists

a positive constant vector η, such that the following inequality holds component-wise

∣∣C(21)C−1(11)sign(φ0(1))
∣∣ 6 1p−q − η,

where 1p−q denotes a vector of 1’s of length p− q.

Corollary 1.4.4 (a) Assume that λ satisfies that λ ∼ nc−2/5, for some c ∈ (0, 2/5),

and the Limiting Irrepresentable Conditions for BS-SIM hold. Under regularity con-

ditions (A1)-(A3) in Section 1.8, there exists a local minimum φ̂ of R(φ) such that

P
(

sign(φ̂) = sign(φ0)
)

= 1− o(e−nc).
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(b) Assume that λ satisfies that λ ∼ nc−2/5, for some c ∈ (0, 2/5), and the Limiting

Irrepresentable Condition for BL-SIM holds. Under regularity conditions (A1)-(A3)

in Section 1.8, there exists a local minimum φ̂L of RL(φ) such that

P
(

sign(φ̂L) = sign(φ0)
)

= 1− o(e−nc).

Corollary 1.4.4 suggests that under the corresponding Limiting Irrepresentable Con-

ditions, BS-SIM and BL-SIM can consistently recover the true model. On the other

hand, same as the statements given in the last subsection, the Limiting Irrepresentable

Conditions for BS-SIM become less restrictive as a decreases. As a result, the Limit-

ing Irrepresentable Condition for BL-SIM is more restrictive than those for BS-SIM

with finite a. The proofs of the theorems and the corollaries can be found in Section

1.8.

1.5 Simulation Studies

In this section, we present the results from seven simulation studies. We demonstrate

that the proposed regularization approach used is indeed beneficial in several aspects.

We also look at the impact of the tuning parameter a on the performance of the

resulting estimator, and point out a reasonable choice of a in practice. Subsequently,

we compare the performance of the proposed methods to other existing methods for

small to large p. The last simulation example is concerned about the impact that the

Irrepresentable Condition has on our proposed method’s ability of recovering the true

model. For the purpose of succinctness, we use V1 and V2 to denote the Identifiability

Constraint 1 and Identifiability Constraint 2 in this section, respectively. For the link

function, we consider the following three models:

1. Y = XT θ0 + 4
√
|XT θ0 + 1|+ ε;

2. Y = 1 + 2(XT θ0 + 3)log(3|XT θ0|+ 1) + ε;

3. Y = (XT θ0)2 + ε.
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The models above are refered to as Model 1, Model 2, and Model 3, respectively.

Furthermore, let Σ be a p-by-p matrix with the diagonal elements equal 1 and the

off-diagonal element in kth row and lth column equal ρkl. Each xi is sampled from

N(0,Σ). The errors εi’s are independently sampled from N(0, 1). We examine the

following three forms of Σ:

1. (No correlation) ρkl = 0, for k 6= l;

2. (Constant correlation) ρkl = 0.3, for k 6= l;

3. (Decaying correlation) ρkl = 0.5|k−l|, for k 6= l.

We denote these three types of correlation structure as COR1, COR2, COR3, respec-

tively.

For the first four examples, four metrics are used to assess the performance of an

estimator, which are Angle, False Positive Rate (FPR), Ture Positive Rate (TPR)

and Computing Time (Time), respectively. Angle is defined as Angle = arccos(θT0 θ̂),

where θ0 is the true index and θ̂ is an estimate, and they are standardized to have

unit norm. FPR is defined as the ratio of the number of falsely identified predictors to

the total number of identified predictor. TPR is the ratio of the number of correctly

identified predictors to the total number of true relevant predictors. Finally, Time

is the average time (in seconds) needed to obtain the estimate for one data set. In

Examples 2-4, we search the best estimate on a dense grid of λ, and thus, Time

represents the total amount of time consumed to find the estimate on the whole grid

and yield the final estimate. On the other hand, in Example 1, Time refers to the

amount of time used to find the estimate for a particular λ. In the tables presented

in this section, the best performance on each metric is highlighted.

1.5.1 Performance of the proposed method for small p

In this section, we will study the performance of the proposed estimators for a

small dimension p = 20. The other settings are q = 4, n = 100, and θ0 =
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(2.0,−1.0, 0.5, 1.0, 0, · · · , 0)T . The first model setting we consider is Model 1 with

COR1. Three choices for the number of interior knots N are used, which are N =2,

3, and 4. In this low dimensional case, we will rely on the logBIC criterion to choose

λ.

The purpose of this example is two fold. First, it examines the performance of

the proposed methods for different choices of N . On the other hand, it compares the

performance of our methods to the existing methods in the low dimensional scenario.

The comparison results on the four assessments are shown in Table 1.1. In terms of

estimation accuracy, all of the methods applied perform well. The two methods that

rely on a concave penalty, the proposed BS-SIM method and SIM-Bridge, outperform

the rest in controlling FPR. In the computational efficiency aspect, the proposed

methods are more efficient than the MAVE based methods in this example.

Given the results in Table 1.1, we will fix the number of knots at N = 2 for n = 100.

We shall use one more example to compare the performance of the aforementioned

methods for small p. The same values for p, q, n and θ0 are used, and the model setting

is changed to Model 3 with COR1. The comparison results are shown in Table 1.2. As

explained in Example 3 in Section 4 of the main article, the MAVE based methods do

not perform well for the quadratic link. The proposed BS-SIM and BL-SIM methods

are more preferable in terms of parameter estimation and computational efficiency

under this setting. In terms of selection consistency, the proposed BS-SIM method is

also among the best.

1.5.2 Performance of the proposed method compared to that of the un-

penalized estimator

This example compares the performance of the proposed estimator to that of the

unpenalized estimator. We consider a moderate dimension p = 70 with q = 8 and

θ0 = (2.0,−1.0, 0.5, 1.0,−1.5, 1.0,−0.3, 1.2, 0, · · · , 0)T . 100 samples of size n = 100

are generated from Model 1 with COR1. The coordinate descent algorithm described
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Model 1, COR1, p = 20

Method N Angle FPR TPR Time

2 2.590 (1.269) 0.057 1 3.66

BS-SIM-V1 3 2.904 (2.235) 0.076 1 3.98

4 2.455 (1.277) 0.077 1 4.16

2 2.540 (1.214) 0.050 1 3.30

BS-SIM-V2 3 2.697 (1.343) 0.072 1 3.58

4 2.406 (1.223) 0.065 1 3.98

2 4.714 (1.490) 0.262 1 6.54

BL-SIM-V1 3 4.913 (2.505) 0.295 1 7.57

4 4.658 (3.210) 0.340 1 8.11

2 3.945 (1.454) 0.192 1 6.48

BL-SIM-V2 3 4.052 (1.431) 0.186 1 7.46

4 3.677 (1.443) 0.215 1 8.33

SIM-LASSO-V2 3.891 (1.365) 0.446 1 18.25

SMAVE-V2 5.313 (2.210) 0.093 1 39.72

SIM-Bridge-V2 2.512 (1.334) 0.026 1 59.27

Table 1.1.
Comparison between our methods to the existing methods in low dimen-
sional scenario: Model 1 with COR1.

in Section 1.3.1 is used to implement BS-SIM with a = 0.1. The tuning parameter λ

is chosen by three criteria, denoted as logBIC, logGIC1, and logGIC2, respectively.

They correspond to three choices of kn for logGIC defined in Section 1.3.2, which are

k0
n = log(n), k1

n = loglognlogp, and k2
n = logp

√
logn, respectively. Our method with

λ = 0 is also applied to obtain the unpenalized estimate for θ0. In this example, only

V2 is used.
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Model 3, COR1, p = 20

Method Angle FPR TPR Time

BS-SIM-V1 0.907 (0.433) 0.044 1.000 18.40

BS-SIM-V2 0.902 (0.424) 0.040 1.000 9.98

BL-SIM-V1 1.936 (0.642) 0.289 1.000 25.95

BL-SIM-V2 1.531 (0.537) 0.216 1.000 21.65

SIM-LASSO-V2 3.716 (1.707) 0.209 1.000 26.44

SMAVE-V2 20.470 (32.846) 0.507 0.980 48.35

SIM-Bridge-V2 2.785 (10.489) 0.016 0.985 64.97

Table 1.2.
Comparison between our methods to the existing methods in low dimen-
sional scenario: Model 3 with COR1.

Table 1.3 shows the comparison results on the four aforementioned assessments. In

terms of estimation accuracy and computing efficiency, both the BL-SIM estimators

and the BS-SIM estimators are considerably better than the unpenalized estimator.

It is a strong sign that the proposed regularization approach substantially helps with

efficiently providing a more accurate estimator. Comparing the two proposed estima-

tors, the BS-SIM estimators slightly outperform the BL-SIM estimators in estimation.

In terms of the performance on variable selection consistency, the BS-SIM estimators

are dramatically better. More specifically, the BL-SIM estimators have a more than

3-fold higher average FPR, indicating applying LASSO is more likely to lead to an

overfitted model. In the computational efficiency aspect, BS-SIM is slightly faster

than BL-SIM. As for the comparison among the three BS-SIM estimators, the esti-

mator using logBIC has a noticeably higher average FPR than the estimators with

λ chosen by logGIC1 and logGIC2. Since the number of predictors is not that small

(p = 70) in this example, this observation on FPR is consistent with the fact that

logBIC yields a overfitted model when the dimension p increases. The performance
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of the two penalized estimators with λ chosen by logGIC1 and logGIC2 are similar

in terms of the four metrics.

Model 1, COR1, p = 70

Method Selection of λ Angle FPR TPR Time

logBIC 4.836 (2.309) 0.124 0.984 0.781

BS-SIM-V2 logGIC1 4.529 (1.868) 0.050 0.976 0.701

logGIC2 4.526 (1.976) 0.015 0.968 0.610

logBIC 7.010 (5.421) 0.466 0.995 0.796

BL-SIM-V2 logGIC1 6.828 (4.178) 0.457 0.995 0.577

logGIC2 6.228 (3.114) 0.428 0.975 0.453

Unpenalized λ = 0 50.350 (7.587) NA NA 12.749

Table 1.3.
Comparison between the penalized estimator and the unpenalized estima-
tor.

1.5.3 Performance of the proposed method for several choices of a

This example examines the performance of the proposed estimator for several choices

of a. 100 samples of size 100 are simulated from Model 2 with COR1. The other

settings are p = 50, q = 8, and θ0 = (2.0,−1.0, 0.5, 1.0,−1.5, 1.0,−0.3, 1.2, 0, · · · , 0)T .

BL-SIM and BS-SIM with several choices of a are applied, and their performance on

the four assessments introduced previously is compared. We rely on both logBIC and

logGIC2 defined in Example 1 to choose the tuning parameter λ, and only use V2 in

this example.

The comparison results are shown in Table 1.4. It can be observed that as a

increases, both Angle and FPR decrease first, then increase. Furthermore, when a
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continues to increase, the performance of the BS-SIM estimator approaches that of

the BL-SIM estimator. In theory, the performance of the BS-SIM estimator in terms

of variable selection should improve when a decreases. Nevertheless, the pattern

shown in Table 1.4 implies that there exists certain computational difficulty in find-

ing a consistent estimate when a is extremely small. On the other hand, the BS-SIM

estimator with a = 0.1 outforms the rest in terms of selection consistency. When it

comes to estimation accuracy, the performance of the BS-SIM estimator with a = 0.1

is also satisfactory. Therefore, we recommend to use a = 0.1 in practice. For the

remaining examples, we fix a at 0.1, unless otherwise specified.

Model 2, COR1, p = 50

Method Selection of λ Angle FPR TPR Time

BS-SIM-V2 logBIC 1.392 (0.578) 0.075 1 26.00

(a = 0.01) logGIC2 1.160 (0.440) 0.013 1

BS-SIM-V2 logBIC 1.178 (0.396) 0.029 1 32.78

(a = 0.05) logGIC2 1.122 (0.381) 0.005 1

BS-SIM-V2 logBIC 1.197 (0.399) 0.029 1 38.65

(a = 0.10) logGIC2 1.164 (0.397) 0.004 1

BS-SIM-V2 logBIC 1.503 (0.468) 0.140 1 77.70

(a = 0.50) logGIC2 1.504 (0.474) 0.132 1

BS-SIM-V2 logBIC 1.639 (0.472) 0.384 1 103.97

(a = 1.00) logGIC2 1.630 (0.470) 0.383 1

BL-SIM-V2 logBIC 1.938 (0.557) 0.417 1 103.63

(a =∞) logGIC2 1.925 (0.541) 0.413 1

Table 1.4.
Comparison between the LASSO and the SICA penalties with various
choices of a for moderate p.
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1.5.4 Performance of the proposed method for moderate p

This example illustrates the performance of the proposed estimator for moderate p.

We focus on the comparison between our method and other existing methods. In this

example, we implement the proposed BS-SIM method with a = 0.1, and the proposed

BL-SIM method, as well as the SIM-LASSO method proposed by [22], the SMAVE

method proposed by [21], and the MAVE method coupled with the Bridge penalty,

proposed by [23]. The last method is denoted as SIM-Bridge hereafter. For SIM-

LASSO, the tuning parameter is chosen by 10-fold cross-validation, and for SMAVE

and SIM-Bridge, the tuning parameter is selected based on BIC, as suggested in the

original papers. Moreover, all of these three methods only use V2. In this example,

we let p be moderate and vary it from 50 to 70. 100 data sets of size 100 are simulated

from the following settings:

1. Setting 1: Model 1, COR2, and p = 50;

2. Setting 2: Model 2, COR3, and p = 70;

3. Setting 3: Model 3, COR1, and p = 50.

Note that Model 3 is the most difficult one, thus its dimensionality is set to 50. Under

each setting, let q = 8, and θ0 = (2,−1, 1,−0.5, 0,−1.5, 1.0,−0.3, 1.2, · · · , 0)T . In this

example, logGIC2 is used to choose λ. The comparison results are given in Tables

1.5 - 1.7

For both Setting 1 and Setting 2, the BS-SIM estimators outperform the rest in

terms of both estimation accuracy and selection consistency. They are followed by

the SIM-Bridge estimator in terms of selection performance. The other three meth-

ods do not produce satisfactory performance on variable selection, as they tend to

result in overfitted models. In the computational efficiency aspect, the proposed BS-

SIM method is also among the best. For Setting 3, the quadratic link function is

used. Since Xi’s are generated from a multivariate normal distribution, they concen-

trate around 0. However, the MAVE based methods rely on local linear expansion,
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thus they do not perform well around the origin, and break down for this quadratic

link function. Hence, only the results from the proposed methods are presented for

this setting. It can be observed that the proposed BS-SIM method exhibits accept-

able performance in each aspect, and considerably outperforms the proposed BL-SIM

method. Lastly, it is also worth pointing out that satisfactory performance can be

maintained for the proposed methods under other combinations of model setting and

correlation structure.

Model 1, COR2, p = 50

Method Angle FPR TPR Time

BS-SIM-V1 4.866 (2.850) 0.019 0.963 34.463

BS-SIM-V2 4.819 (2.749) 0.017 0.963 25.262

BL-SIM-V1 13.269 (3.956) 0.347 0.963 64.532

BL-SIM-V2 8.626 (3.121) 0.160 0.968 52.522

SIM-LASSO-V2 7.476 (2.085) 0.552 0.990 56.845

SMAVE-V2 12.493 (9.445) 0.316 0.898 39.747

SIM-Bridge-V2 7.686 (4.434) 0.058 0.901 102.349

Table 1.5.
Comparison between the proposed methods and the other existing meth-
ods in moderate dimensional scenario: Setting 1.

1.5.5 Performance of the proposed method for large p

This example demonstrates the performance of the proposed estimator for large p. In

this example, two choices of the dimension, p = 200 and p = 400, are examined. The

other settings are q = 10, n = 100 and θ0 = (2,−1, 0.5, 1,−1.5, 1.2,−0.8, 0.6, 1,−1, 0, 0, · · · , 0)T .

For p = 200, the results under all of the three aforementioned correlation structures
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Model 2, COR3, p = 70

Method Angle FPR TPR Time

BS-SIM-V1 2.250 (0.959) 0.012 0.999 146.390

BS-SIM-V2 2.429 (0.951) 0.025 0.999 169.485

BL-SIM-V1 7.569 (2.160) 0.694 0.994 519.186

BL-SIM-V2 5.060 (1.673) 0.728 1.000 494.885

SIM-LASSO-V2 6.602 (1.920) 0.684 0.993 212.528

SMAVE-V2 9.275 (4.629) 0.784 0.995 65.740

SIM-Bridge-V2 6.775 (4.114) 0.094 0.906 166.558

Table 1.6.
Comparison between the proposed methods and the other existing meth-
ods in moderate dimensional scenario: Setting 2.

Model 3, COR1, p = 50

Method Angle FPR TPR Time

BS-SIM-V1 10.003 (21.004) 0.147 0.956 466.565

BS-SIM-V2 9.346 (19.750) 0.142 0.965 218.957

BL-SIM-V1 22.328 (27.810) 0.644 0.979 1037.898

BL-SIM-V2 35.757 (29.855) 0.705 0.979 413.221

Table 1.7.
Comparison between the proposed methods and the other existing meth-
ods in moderate dimensional scenario: Setting 3.

are exhibited; for p = 400, the proposed method cannot produce acceptable results

when there exists correlation among the predictors. Nevertheless, with more data

points, the proposed BS-SIM method can still handle this high dimensional scenario

with correlation among the predictors. However, we exclusively focus on COR1 and
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n = 100 for p = 400 here. The proposed BL-SIM method suffers greatly from over-

selection and is too time-consuming in the large p scenario, and SIM-LASSO and

SMAVE break down in this example. Therefore, only the results from the proposed

BS-SIM method and SIM-Bridge are presented. Since V1 poses no restriction on

the magnitude of φ, the estimation with V1 becomes noticeably more unstable, and

slower for some models, as p increases. Therefore, it is recommended to use V2 when

p is large. Based on our simulation studies, V1 and V2 lead to comparable results

under Model 1; whereas for Model 2, V2 is much more preferable. As for the choice

of kn, it is recommended to use k3
n = logplogn.

Table 1.8 shows the results on the four metrics. In terms of estimation accuracy

and selection consistency for Model 1 and p = 200, the proposed BS-SIM method

yields reasonably accurate estimates, while SIM-Bridge does not perform well under

all of the three correlation structures. For Model 2 and p = 200, comparable results on

selection consistency are obtained. However, the proposed BS-SIM method produces

more accurate estimate than SIM-Bridge, especially under COR3. When p = 400,

SIM-Bridge fails, while the proposed BS-SIM method can still yield satisfactory re-

sults. In terms of computational capacity, for the proposed BS-SIM method, it takes

about 20 minutes on average to complete one run for p = 200, and takes less than

two hours for p = 400. Considering that this amount of time encompasses the search

for the optimal λ on a dense grid, this computational efficiency is still acceptable.

Moreover, the proposed BS-SIM method is noticeably more efficient than SIM-Bridge

in this example.

1.5.6 Evaluation of the Irrepresentable Conditions

This example focuses on the impact of the Irrepresentable Conditions. In this exam-

ple, let n = 200, p = 30, q = 6N = 5 and θ0 = (2.0,−1.0, 0.5, 1.0, 0.3,−0.7, 0, · · · , 0)T ,

and we exclusively focus on Model 1. It is clear that, for a given combination of design
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p Model COR Method Angle FPR TPR Time

BS-SIM-V1 5.355 (5.188) 0.001 0.972 490.5

1 1 BS-SIM-V2 7.086 (8.536) 0.004 0.945 858.1

SIM-Bridge-V2 30.585 (12.085) 0.292 0.662 2216.0

BS-SIM-V1 8.696 (9.836) 0.007 0.919 870.0

1 2 BS-SIM-V2 10.552 (11.822) 0.021 0.894 894.8

SIM-Bridge-V2 35.201 (11.743) 0.317 0.585 2196.0

200 BS-SIM-V1 16.904 (16.423) 0.013 0.792 498.6

1 3 BS-SIM-V2 15.974 (17.906) 0.024 0.808 707.4

SIM-Bridge-V2 47.550 (11.925) 0.438 0.381 2222.0

2 1 BS-SIM-V2 2.124 (0.644) 0.137 1.000 1823.6

SIM-Bridge 3.617(2.258) 0.041 0.991 1841.0

2 2 BS-SIM-V2 2.231 (0.680) 0.039 1.000 1510.9

SIM-Bridge-V2 4.365 (3.029) 0.034 0.984 2262.0

2 3 BS-SIM-V2 2.724 (1.497) 0.057 0.999 1786.1

SIM-Bridge-V2 12.435 (9.140) 0.227 0.898 2415.0

1 1 BS-SIM-V1 17.533 (16.648) 0.060 0.775 2296.7

400 BS-SIM-V2 12.837 (15.665) 0.035 0.855 1991.8

2 1 BS-SIM-V2 2.508 (2.258) 0.213 1.000 6519.0

Table 1.8.
Performance of BS-SIM with a = 0.1 under several settings in high di-
mensional scenario.
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matrix X, link function f and true index θ0, the Irrepresentable Conditions depend

on the choice of a and the Identifiability Constraint used. The following sequence of

a, a = (0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 5.0), as well as a = ∞, are examined, and V1 and

V2 are applied.

The simulation scheme is as follows. A covariance matrix Σ is first generated from

Wishart(p,p), as done in [17]. Then we generate a sample of 100 observations of X

from N(0,Σ), and standardize them. 100 normalized designs are generated in this way.

Next, for each generated design, we run the following simulation 100 times. During

each simulation, n copies of εi are sampled from N(0, 0.32), and yi’s are calculated

according to Model 1. Subsequently, the proposed method with the various choices

of a specified above are applied, and the percentage of times that the applied method

can identify the true model along the solution path is recorded.

Since it is difficult to quantify the Irrepresentable Conditions for BS-SIM, we

compute

η̄∞ = 1− ‖C̄0(21)C̄−1
0 (11)sign(φ0(1))‖∞,

associated with the Irrepresentable Condition for BL-SIM for each design, instead.

The sign of η̄∞ indicates whether the Irrepresentable Condition for BL-SIM holds.

That is, if η̄∞ > 0, the Irrepresentable Condition for BL-SIM holds; otherwise, it

fails to hold. Considering the fact that the Irrepresentable Conditions for BS-SIM are

more relaxed than that for BL-SIM, η̄∞ also implies how strongly the Irrepresentable

Conditions for BS-SIM satisfy or fail, to some extent. η̄∞ is computed for each

generated design according to each Identifiability Constraint. The summary can be

found in Table 1.9.

We first look at how the magnitude of η̄∞ affects the performance of the proposed

BL-SIM method in selecting the true model. On the two top graphs in Figure 1.3, the

percentage of times that the true model can be identified by the proposed BL-SIM

method is plotted against the corresponding η̄∞, for the two Identifiability Constraints

separately. It can be observed that the percentage increases as η̄∞ increases, for both

Identifiability Constraints. The increase is the sharpest around 0, as expected. On
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the two bottom graphs in Figure 1.3, the percentage of times of achieving selection

consistency for the proposed BS-SIM method with a = 2 is plotted against η̄∞, for the

two Identifiability Constraints separately. It is obvious that the percentage for BS-

SIM is larger than that for BL-SIM at any η̄∞ for both constraints. It is consistent

with our expectation that BS-SIM with finite a should perform better in terms of

variable selection than BL-SIM.
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Fig. 1.3. The percentages that the proposed BL-SIM method and the
proposed BS-SIM method with a = 2 select the true model versus η̄∞ for
both Identifiability Constraints.

Next, we examine how a affects the proposed method in terms of selection con-

sistency in more detail. The average percentages of times that the true model can

be selected with various choices of a are shown in Table 1.9. In theory, the Irrepre-

sentable Conditions become more restrictive when a increases. Thus, it is expected

that it is less likely to choose the true model when a increases. However, as indicated
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in Table 1.9, when a gets larger, the percentage of runs that the true model can be

identified increases slightly first, then decreases; and when a continues to increase, the

percentage for the BS-SIM estimator approaches that for the BL-SIM estimator. This

particular pattern for the performance of BS-SIM implies that for extremely small a,

it is computationally slightly more difficult to find a consistent estimator, although

the Irrepresentable Conditions are relaxed. These observations on the impact of a

are in line with those stated in [26].

The results in Table 1.9 also cast light on the role that the Identifiability Con-

straint plays. In most cases shown in Table 1.9, using V2 leads to a higher chance

of recovering the true model. The difference of the chances becomes larger as a in-

creases. This observation is consistent with the observation on the relative magnitude

on η̄∞, as shown in 1.10. Among the 100 designs generated above, 92% of them have

larger η̄∞ for V2. It is probably due to the fact that the Irrepresentable Conditions

for V2 contains more information than those for V1.

a 0.05 0.10 0.30 0.50 1.00 2.00 5.00 ∞

V1 0.9995 1.0000 1.0000 0.9924 0.8741 0.6548 0.4665 0.3382

V2 0.9990 0.9999 0.9997 0.9956 0.9562 0.8786 0.7850 0.6909

Table 1.9.
Average percentages of times that the true model can be selected with
various choices of a.

1.5.7 Comparison of CV, logGIC and GIC under the violation of the

sparsity assumption

In this section, we will illustrate the performance of the three tuning parameter

selection methods under the violation of the sparsity assumption. A setting similar

to the real data setting is applied. That is, n = 100 and p = 180. Let q = 15 and
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V1 V2

min. mean max. min. mean max.

η̄∞ -1.177 -0.080 0.436 -0.330 0.160 0.518

Table 1.10.
Summary on η̄∞ for both Identifiability Constraints.

θ0 = (0.5, 0.5, · · · , 0.5, 0, · · · , 0)T . 100 random samples of size n are generated from

Model 1 with COR1. The BS-SIM method with a = 0.1 and N = 2 are applied to each

sample. Each time, CV, logGIC, and GIC are used to determine the best λ and yield

the estimates for θ0. The performance of the obtained estimates on Angle, FPR and

TPR is recorded. In addition, we also use the average size of the selected model and

the proportion of times that the correct model is selected to assess the performance

of each tuning parameter selection method. These two metrics are denoted as Size

and CorrectModel in the subsequent table. In this example, four choices of kn for

both logGIC and GIC are considered, which are logn, loglogplogn, logp
√

logn and

logplogn.

The comparison result is shown in Table 1.11. For logGIC, using loglogplogn and

logp
√

logn produce exactly the same results as those produced by using logn, thus

only one of them is displayed. Table 3 suggests that for logGIC there is a lack of

an appropriate value for kn. That means with a small kn, logGIC always leads to

the full model, while with a large kn, it frequently selects a extremely small model.

This pattern becomes more evident when q continues to increase. Meanwhile, GIC

can steadily yield reasonable results, and is obviously more advantageous than CV.

With an appropriate kn, the frequency that GIC can identify the true model is twice

of that for CV. Moreover, the model obtained by using GIC with an appropriate kn

is more accurate and smaller in size, and also has lower FPR and higher TPR than
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Method kn Angle FPR TPR Size CorrectModel

CV NA 35.18 0.34 0.85 33.14 0.14

logGIC log(n) 41.49 0.92 1.00 180.00 0.00

logGIC log(n)log(p) 47.81 0.01 0.43 8.05 0.31

GIC log(n) 30.65 0.40 0.90 37.10 0.29

GIC log(n)loglog(p) 28.58 0.31 0.89 31.56 0.30

GIC
√

log(n)log(p) 28.23 0.27 0.87 29.20 0.30

GIC log(n)log(p) 30.65 0.20 0.81 25.00 0.27

Table 1.11.
Performance comparison of CV, logGIC and GIC when q = 15.

that obtained by using CV. In conclusion, we believe it is beneficial to use GIC to

conduct the tuning parameter selection in practice when the true model is not sparse.

1.6 Real Data Application

1.6.1 Skin Cutaneous Melanoma Data

Melanoma is a type of cancer that starts with a certain type of skin cell called

melanocyte. There are more than 70 thousands people diagnosed with skin cuta-

neous melanoma in U.S. each year. While it is not the most prevalent type of skin

cancer, skin cutaneous melanoma is believed to be the most aggressive. It can occur

in all types of skins, and spread widely to other organs of the body. This type of

cancer has a number of potential risk factors. However, it is most likely to be caused

by intensive exposure to ultraviolet radiation. Early-stage cutaneous melanomas can

often be treated with surgery effectively, while more advanced ones need other treat-

ments or a combination of treatments, such as immunotherapy, chemotherapy, and

radiation therapy.
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In this real data analysis, we aim to study how the protein expression levels

influence the survival time of the patients who suffer from skin cutaneous melanoma.

We download the relevant data from The Cancer Genome Atlas (TCGA) data portal.

There are two sets of files that we use: clinic dataset and protein expression datasets.

On the clinical data, there are in total 433 patients. Their demographic information,

tumor status, vital status and survival time are recorded. On a separate set of files,

the expression levels of 181 proteins are measured for 207 patients using the M.D.

Anderson Reverse Phase Protein Array Core platform. We combine these two files,

and based on our goal, we only retain those patients that failed to survive and had

protein expression level measured for further analysis. After this pre-processing, we

have 94 patients, and the expression levels of 181 proteins. The expression levels are

subsequently standardized and used as the predictors. The survival time is taken

logarithm, and treated as the response.

1.6.2 Analysis on Skin Cutaneous Melanoma Data with BS-SIM

We apply the proposed BS-SIM method with a = 0.1 and 2 interior knots to the

aforementioned processed data. Since we speculate there exists a relatively large

number of relevant proteins, the GIC criterion introduced at the end of Section 1.3.2

with kn = log(n)loglog(p) is used to determine the optimal tuning parameter λ. We

also try the logGIC defined in Section 1.3.2 with various choices of kn. However, it

fails to effectively yield a reasonable model. This behaviour of the logGIC criterion

also to some extent confirms that the number of relevant proteins is relatively large.

Based on the combination mentioned in the last paragraph, we are able to select 30

proteins, which are P21-R-V, 4E-BP1-pT37-T46-R-V, ACC1-R-E, Beclin-G-C, Dvl3-

R-V, Notch1-R-V, p27-pT157-R-C, p53-R-E, Paxillin-R-C, PEA15-R-V, PTEN-R-V,

Smad1-R-V, Smad4-M-V, Src-pY527-R-V, Syk-M-V, Tuberin-R-E, YB-1-pS102-R-V,

FoxM1-R-V, MYH11-R-V, RBM15-R-V, Rictor-R-C, SCD1-M-V, TAZ-R-V, TSC1-
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Fig. 1.4. The plot of the fitted regression function and the observed log
survival time vesus the estimated index for the Skin Cutaneous Melanoma
data.
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R-C, Tuberin-pT1462-R-V, VHL-M-C, 53BP1-R-E, c-Jun-pS73-R-V, Caveolin-1-R-V

and Rb-pS807-S811-R-V. The estimated projection direction is given below.

Projection direction = P21 + 0.63 · 4E-BP1 + 0.24 · 53BP1 + 0.54 · ACC1 + 0.76 · Beclin

−0.21 · c-Jun + 0.25 · Caveolin− 0.24 ·Dvl3 + 0.69 · Notch1 + 0.56 · p27− 0.37 · p53

+0.59 · Paxillin + 0.24 · PEA15 + 0.31 · PTEN− 0.19 · Rb− 0.23 · Smad1 + 0.89 · Smad4

+0.46 · Src + 0.58 · Syk + 0.56 · Tuberin + 0.17 · YB− 0.25 · FoxM1− 0.42 ·MYH11

+0.64 · RBM15 + 0.10 · Rictor− 0.41 · SCD1− 0.57 · TAZ− 0.74 · TSC1− 0.49 · Tuberin

+0.53 · VHL.

The final fitted regression function is plotted against the estimated direction in Figure

1.4.

Out of these detected proteins, the irregular expression of the p21, p27, p53,

PTEN, TAZ, Notch1, Caveolin, 53BP1, TSC1, Rb and Tuberin proteins have been

shown to be related to the survival or occurence of the Skin Cutaneous Melanoma

[38–42]. This partially demonstrates the effectiveness of BS-SIM.

1.7 Linearly Constrained Single Index Model

1.7.1 Single Index Model with Linear Constraints

In many applications, prior information about the magnitude of the effects of the

predictors on the response is available. Incorporating this information into the es-

timation procedure can bring considerable value and lead to more accurate results.

The problem of variable selection for the linear model under linear constraints has

been studied in the literature; see [43,44] among others. Since the single index model

is a intuitive generalization of the linear model, it is also of interest to study how to

conduct variable selection for the single index model under linear constraints. Recall

that the single index model requires an identifiability constraint that is imposed on

the scale of θ. One distinct difference between the linear model and the single in-

dex model under linear constraints is that the identifiability constraint used in the
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single index model can be important. For some equality constraints, they are not

affected by what identifiability constraint is being used. These equality constraints

are imposed on the relative scale of the components of θ0. For instance, θ2 = θ3 + θ4

is not influenced by the identifiability constraint applied. However, for most linear

constraints, equality or inequality, they need to be scaled according to the identifia-

bility constraint. To name a few among them, θ2 > 0 and θ2 + θ3 = 2. These linear

constraints correspond to the true index θ0 under certain scale. In this section, for

the purpose of convenience, we will use Identifiability Constraint 1 defined in the pre-

vious Section 1.2, which is θ1 = 1. Since it is also a linear constraint, Identifiability

Constraint 1 can greatly facilitate the algorithm that we are going to introduce next.

1.7.2 Coordinate Descent Algorithm for Linearly Constrained Single In-

dex Model

Recall that the objective function for BS-SIM, R(φ;λ), is written as

R(φ;λ) =
1

n

n∑
i=1

(
yi − f̂θ(tiθ)

)2

+ λ

p−1∑
j=1

ρa(|φj|),

where f̂θ is the cubic B-spline estimator of f , λ is a tuning parameter, and ρa(u)

denotes the SICA penalty functions. For variable selection of the linearly constrained

single index model (LC-SIM) problem, we still use the same framework. Thus, LC-

SIM problem can be formulated as the following optimization problem.

min
φ
R(φ;λ), subject to Cφ ≥ d, Eφ = f. (1.13)

Here, both linear equality constraints Eφ = f and linear inequality constraints Cφ ≥

d are considered. Furthermore, E is a l × (p − 1) matrix, where l is the number of

equality constraints; C is a m× (p− 1) matrix, where m is the number of inequality

constraints; d and f are vectors of length m and l, respectively.

Adopting the approach proposed by Rosset and Zhu [45], we introduce the slacker

variables φ+
k and φ−k such that φk = φ+

k −φ
−
k , φ+

k > 0 and φ−k > 0,for k = 1, 2, · · · , p−1.
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Let φ+ = (φ+
1 , φ

+
2 , · · · , φ+

p−1)T , and φ− = (φ−1 , φ
−
2 , · · · , φ−p−1)T . Then we solve for φ at

any given λ on a dense grid. Same as in Section 1.3, we still use the local quadratic

approximation strategy 1.14 to H and the local approximation 1.15 to the SICA

penalty function, at the current estimate φ(s).

H(φ) ≈ 1

2
φTH(2)(φ(s))φ− φT

(
H(2)(φ(s))φ(s) −H(1)(φ(s))

)
+ constant, (1.14)

ρa(|φj|) = ρa(|φ(s)
j |) + ρ′a(|φ

(s)
j |)(|φj| − |φ

(s)
j |), for j = 1, 2, · · · , p− 1. (1.15)

These two approximations entail that at the current φ(s), Problem 1.13 can be ap-

proximated by

min
φ+,φ−

1

2
(φ+

j − φ−j )TH(2)(φ(s))(φ+
j − φ−j )− (φ+

j − φ−j )T
(
H(2)(φ(s))φ(s) −H(1)(φ(s))

)
+ λ

p−1∑
j=1

w
(s)
j (φ+

j + φ−j ),

subject to φ+
j ≥ 0, φ−j ≥ 0 for k = 1, . . . , p− 1,

C(φ+ − φ−) ≥ d and E(φ+ − φ−) = f, (1.16)

where w
(s)
j = ρ′a(|φ

(s)
j |) for j = 1, 2, · · · , p − 1. Let S = H(2)(φ(s)), and β =

H(2)(φ(s))φ(s) −H(1)(φ(s)).

To work out a solution to Problem 1.16, we first figure out the KTT conditions

as follows.

Sφ− β + λw − v+ − CTγ − ETh = 0, (1.17)

−Sφ+ β + λw − v− + CTγ + ETh = 0, (1.18)

v+
k φ

+
k = 0, (1.19)

v−k φ
−
k = 0, (1.20)

γs(Csφ− ds) = 0, (1.21)

Etφ− ft = 0, (1.22)

φ+ ≥ 0, φ− ≥ 0, v+
k ≥ 0, v−k ≥ 0, γs ≥ 0, (1.23)

for k = 1, 2, · · · , p − 1, s = 1, 2, · · · ,m, and t = 1, 2, · · · , l. Here, v+ and v− are

vectors of length p − 1; γ is a vector of length m; h is a vector of l; and all of them
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are Lagrange multipliers. Moreover, Cs and Et denote the s-th and t-th rows of C

and E.

For φ(s), denote the current active set as

A = {i : φ
(s)
i 6= 0} ⊂ {1, . . . , p− 1},

and define the current active set for inequality constraints as

B = {j : Cjφ
(s) = dj} ⊂ {1, . . . , k}.

Define the complement of A and B as Ac = {i : {1, . . . , p − 1} \ A} and Bc = {i :

{1, . . . , k} \B}. Let I, J , and K be sets of integers. Let ZIJ denote the submatrix of

Z whose row and column are indexed by I and J , respectively. This notation is not

to be confused with Cs and Et above. When there is only one letter in the subscript,

it means we are subsetting certain rows of a matrix; when there are two letters, it

indicates we are subsetting both certain rows and columns of a matrix. Let WK be

a subvector of W whose entries are formed by the set K. Then the KTT conditions

for the candidate φ’s subject to the current active set A and the current active set

for inequality constraints B are given by Equations 1.24 through 1.30.

S
(s)
AAφA − β

(s)
A − C

T
BAγB − ET

Ah = −λw(s)
A · sign(φ

(s)
A ), (1.24)

S
(s)
BAφA − β

(s)
Ac − C

T
BAcγB − ET

Ach+ λw
(s)
Ac > 0, (1.25)

−S(s)
BAφA + β

(s)
Ac + CT

BAcγB + ET
Ach+ λw

(s)
Ac > 0, (1.26)

EAφA = f, (1.27)

CBAφA = dB, (1.28)

γB > 0, (1.29)

CBcAφA > dBc , (1.30)

where ·means componentwise multiplication, S(s) = H(2)(φ(s)), and β(s) = H(2)(φ(s))φ(s)−

H(1)(φ(s)). For convenience, we define the following notations.

GBA =

CBA
EA

 , gB =

dB
f

 , and αB =

γB
h

 .



51

Then some calculation on Equations 1.24 through 1.30 entails

φ
(s+1)
A = S−1

AA

[
βA − λwA · sign(φ

(s)
A )

+G′BA(GBAS
−1
AAG

′
BA)−1

(
gB −GBAS−1

AAβA +GBAS
−1
AAλwA · sign(φ

(s)
A )
)]
, (1.31)

αB = (GBAS
−1
AAG

′
BA)−1[gB +GBAS

−1
AAλwA · sign(φ

(s)
A )−GBAS−1

AAβA]. (1.32)

Here w, β and S depend the current the estimate φ(s) and are updated during each

iteration. However, for simplicity, we drop the notation (s) in these three terms on

the above and the following equations when there is no confusion. Subsequently, we

also have

v+
Ac = λwAc + SAcAφ

(s+1)
A − βAc −GT

BAcαB, (1.33)

v−Ac = λwAc − SAcAφ(s+1)
A + βAc +GT

BAcαB. (1.34)

After calculating the updates through Equations 1.31 through 1.34, we need to check

if A and B should be updated accordingly. If they do, we update them, and proceed

to update the KTT conditions with the new active sets; if they remain the same, we

are ready to start the next iteration of updating φ. The detailed algorithm can be

found in Algorithm 2.

For the tuning parameter selection of λ under LC-SIM, one clear choice is to use

logGIC or GIC defined in Section 1.3.2.
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Algorithm 2 Coordinate Descent Algorithm for BS-SIM with LC

For a given λ,

1. Initialize φ to be φ̂(0) and let s = 0.

2. Given φ̂(s) = (φ̂
(s)
1 , φ̂

(s)
2 , . . . , φ̂

(s)
p−1)T , obtain A and B. Calculate the quadratic ap-

proximation 1.14 to H(φ) and the linear approximation 1.15 to pλ(φ). Compute

w(s), β(s) and S(s).

3. Use Equations 1.31 to 1.34 to yield φ̂
(s+1)
A , αB, v+

Ac and v−Ac . Set φ̂
(s+1)
Ac = 0.

Check if any of the following four happen.

(a) φ̂
(s+1)
i equals 0 for some i ∈ A.

(b) v+
j or v−j equals 0 for some j ∈ Ac.

(c) γk = 0 for some k ∈ B.

(d) Clφ̂
(s+1) = dl for some k ∈ Bc.

If any of the above four happens, update A and B.

4. Repeat Step 2 and Step 3 until some convergence criterion is met.

1.8 Proofs

1.8.1 Regularity Conditions

(A1) The link function f has continuous and bounded second order derivative.

(A2) LetR∗(φ) = E[Y−f(XT θ)]2 be the population risk function. DefineH∗(2)(φ) =

∂2R∗(φ)
∂φ∂φT

as the Hessian matrix of R∗(φ). H∗(2)(φ0) is positive definite, and its

smallest eigenvalue is ρ(min), for some ρ(min) > 0.

(A3) The number of interior knots N satisfies N ∼ n1/5.



53

1.8.2 Proof of Theorem 1.4.1

We will first show that if λ = O(n−1/2), there exists a local minimum φ̂ of R(φ) that

is
√
n-consistent. To prove the

√
n-consistency, it is sufficient to show for any γ, there

exists a large enough D such that

P

(
sup

‖φ−φ0‖2=Dn−1/2

R(φ) > R(φ0)

)
≥ 1− γ. (1.35)

Notice that

R(φ)−R(φ0) = H(φ) + λ

p−1∑
j=1

ρa(|φj|)−H(φ0)− λ
p−1∑
j=1

ρa(|φ0,j|)

=
(
H(1)(φ0)

)T
(φ− φ0) +

1

2
(φ− φ0)TH(2)(φ0)(φ− φ0)

+λ

p−1∑
j=1

[ρa(|φj|)− ρa(|φ0,j|)] + o(‖φ− φ0‖2
2)

, I1 + I2 + I3 + o(‖φ− φ0‖2
2)

By Lemma A.15 of [13], we have

∣∣H∗(2)(φ0)−H(2)(φ0)
∣∣ = op(1).

This together with (A2) lead to

I2 ≥ [ρ(min) + o(1)]‖θ−1 − θ0,−1‖2
2/2 = D2[ρ(min) + o(1)]/2n.

On the other hand, by Cauchy-Schwarz Inequality, we have

|I3| 6 (a+ 1)λ
√
p− 1‖θ−1 − θ0,−1‖2/a = (a+ 1)Dλ

√
p− 1/a

√
n.

Thus, if λ = O(n−1/2), then for large enough D, I2 can dominate I3. From [13], we

have that H(1)(φ0) = Op(n
−1/2), therefore, I1 = D · Op(n

−1). This means, with large

enough D, I1 is also dominated by I2. As a result, (1) holds. And it implies that

there exists a local minimum of R(φ) in the ball {φ : ‖φ−φ0‖2 6 Dn−1/2}. Therefore,

there exists a local minimum φ̂ of R(φ) that is
√
n-consistent.
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With similar arguments given above, we can show that only λ = o(1) is needed

for the estimation consistency of φ̂. When λ = O(n−1/2), φ̂ is
√
n-consistent; when

λ = O(n−1/2+δ) for some δ ∈ (0, 1/2), it can be shown ‖φ̂− φ0‖2 = O(n−1/2+δ). The

proof for φ̂L is very similar to that given above, and is not separately displayed.

1.8.3 Proof of Theorem 1.4.2

By its definition, φ̂ is a local minimum of R(φ). Define µ = φ − φ0 for any φ, and

µ̂ = φ̂− φ0. Define

V (µ) = H(φ)−H(φ0) + λ

p−1∑
j=1

ρa(|φj|).

Then µ̂ is a local minimum of V (µ).

It follows that

V (µ) = H(φ)−H(φ0) + λ

p−1∑
j=1

ρa(|φj|)

=
1

n

n∑
i=1

(
yi − f̂θ(tiθ)

)2

− 1

n

n∑
i=1

(
yi − f̂θ0(tiθ0)

)2

+ λ

p−1∑
j=1

ρa(|φj|)

=
1

n

n∑
i=1

(
f̂θ(t

i
θ)− f̂θ0(tiθ0)

)2

− 2

n

n∑
i=1

εi

(
f̂θ(t

i
θ)− f̂θ0(tiθ0)

)
+

2

n

n∑
i=1

(
f̂θ(t

i
θ)− f̂θ0(tiθ0)

)(
f̂θ0(t

i
θ0

)− f(tiθ0)
)

+ λ

p−1∑
j=1

ρa(|φj|).

Notice that

f̂θ(t
i
θ)− f̂θ0(tiθ0) = f̂ ′θ∗(t

i
θ∗)(φ− φ0) = f̂ ′θ∗(t

i
θ∗)µ,

where

f̂ ′θ∗(t
i
θ∗) =

(
∂f̂θ∗(t

i
θ∗)

∂θ2

,
∂f̂θ∗(t

i
θ∗)

∂θ3

, . . . ,
∂f̂θ∗(t

i
θ∗)

∂θp

)
,∀i

and θ∗ is between θ and θ0. Here we slightly abuse the notation, and ignore the fact

that θ∗ may differ for each xi.
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It follows that,

V (µ) =
1

n
µT
(
F̂ ∗
)T

F̂ ∗µ− 2

n
εT F̂ ∗µ+

2

n

(
f̂θ0 − f

)T
F̂ ∗µ+ λ

p−1∑
j=1

ρa(|φj|),

where
(
f̂θ0 − f

)T
=
(
f̂θ0(t

1
θ0

)− f(t1θ0), . . . , f̂θ0(t
n
θ0

)− f(tnθ0)
)

, εT = (ε1, ε2, . . . , εn),

and for simplicity, F̂ ∗ and Ĉ∗ represent F̂θ∗ and Ĉθ∗ , repectively.

Let G(µ) = 1
n
µT
(
F̂ ∗
)T

F̂ ∗µ − 2
n
εT F̂ ∗µ + 2

n

(
f̂θ0 − f

)T
F̂ ∗µ. With the above no-

tations, we have

∂G(µ)

∂µ
= 2Ĉ∗µ− 2

n

(
F̂ ∗
)T

ε+
2

n

(
F̂ ∗
)T (

f̂θ0 − f
)

= 2C̄0µ−
2

n
F̄ T

0 ε+
2

n

(
F̂ ∗
)T (

f̂θ0 − f
)

+ 2
(
Ĉ∗ − C̄0

)
µ− 2

n

(
F̂ ∗ − F̄0

)T
ε

, 2C̄0µ−
2

n
F̄ T

0 ε+ T1 + T2 + T3,

From Theorem 1, we can obtain that, if λ satisfies that λ ∼ nc−2/5 for some c ∈

(0, 2/5), there exists a local minimum of R(φ) in the ball {φ : ‖φ− φ0‖2 6 Dnc−2/5}.

Hence, in this proof, we only focus on µ such that ‖µ‖ = Op(n
c−2/5).

From [13], we have

sup
θ:‖θ‖2=1

max
i

∣∣∣f̂θ(tiθ)− fθ(tiθ)∣∣∣ = Op

(
(nh)−1/2logn+ h4

)
;

sup
j=2,3,...,p

sup
θ:‖θ‖2=1

max
i

∣∣∣∣ ∂∂θj {f̂θ(tiθ)− fθ(tiθ)}
∣∣∣∣ = Op

(
(nh3)−1/2logn+ h3

)
;

sup
j=2,3,...,p

sup
θ:‖θ‖2=1

max
i

∣∣∣∣ ∂∂θj {f̂θ(tiθ)− f̄θ(tiθ)}
∣∣∣∣ = Op

(
(nh3)−1/2logn

)
.

These along with (A3) lead to T1 = Op

(
n−2/5logn

)
componentwise. On the other

hand,

sup
j=2,3,...,p

sup
θ:‖θ−θ0‖2=O(nc−2/5)

max
i

∣∣∣∣ ∂∂θj {f̂θ(tiθ)− f̂θ0(tiθ0)}
∣∣∣∣ = Op

(
nc−2/5

)
.

Then,∣∣∣∣ ∂∂θj f̂θ∗(tiθ∗)− ∂

∂θj
f̄θ0(t

i
θ0

)

∣∣∣∣ 6

∣∣∣∣ ∂∂θj {f̂θ∗(tiθ∗)− f̂θ0(tiθ0)}
∣∣∣∣+

∣∣∣∣ ∂∂θj {f̂θ0(tiθ0)− f̄θ0(tiθ0)}
∣∣∣∣

= Op

(
n−1/5logn+ nc−2/5

)
.
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Thus, |F̂ ∗ − F̄0| = Op

(
n−1/5logn+ nc−2/5

)
, and |Ĉ∗ − C̄0| = Op

(
n−1/5logn+ nc−2/5

)
,

entry-wise. It follows that,

T2 = Op

(
(n−1/5logn+ nc−2/5)× nc−2/5

)
,

componentwise. Furthermore, by Corollary 8.3 of [46],

T3 = Op

(
(n−1/5logn+ nc−2/5)× n−1/2logn

)
,

componentwise. Then for λ = O(nc−2/5), with some c ∈ (0, 2/5), λ can dominate T1,

T2, and T3.

Let W̄ = F̄ T
0 ε/
√
n. We decompose µ and W̄ into two sub-vectors that are formed

by A1 and A2, that is, W̄ T = (W̄ (1), W̄ (2))T , and µT = (φ1 − φ1,0, . . . , φq−1 −

φ0,q−1, φq, . . . , φp−1) = (µ(1), µ(2))T .

By the KTT conditions, if there exists µ̂ that satisfies the following

2C̄0(11)µ̂(1)− 2√
n
W̄ (1) + λρ′a(|φ̂(1)|)× sign(φ̂(1)) = 0; (1.36)

|µ̂(1)| < |φ0(1)|; (1.37)

−λρ′a(0+)1p−q 6 2C̄0(21)µ̂(1)− 2√
n
W̄ (2) 6 λρ′a(0+)1p−q, (1.38)

there exists a local minimum of R(φ), φ̂, such that sign(φ̂(1)) = sign(φ0(1)) and

sign(φ̂(2)) = 0. Here, × denotes component-wise multiplication. After some simpli-

fication, we have that the existence of µ̂ is implied by

|C̄−1
0 (11)W̄ (1)| <

√
n

(
|φ0(1)| − λ

2
|C̄−1

0 (11)ρ′a(|φ̂(1)|)× sign(φ̂(1))|
)

|C̄0(21)C̄−1
0 (11)W̄ (1)− W̄ (2)| 6

√
nλ

2

(
ρ′a(0+)1p−q − |C̄0(21)C̄−1

0 (11)ρ′a(|φ̂(1)|)× sign(φ̂(1))|
)
.

By Theorem 1.4.1, we know that there exists L̄3 such that ‖µ̂(1)‖ 6 λL̄3. Then,

|φ̂(1)| > (b0 − λL̄3)1p−q.

Since ρ′ is monotonically decreasing, we have

‖ρ′(|φ̂(1)|)× sign(φ̂(1))‖∞ 6 ρ′(b0 − λL̄3).
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Subsequently, we can obtain

‖C̄−1
0 (11)ρ′a(|φ̂(1)|)× sign(φ̂(1))‖∞ 6 ‖C̄−1

0 (11)‖∞ρ′(b0 − λL̄3) 6 L1ρ
′(b0 − λL̄3);

‖C̄0(21)C̄−1
0 (11)ρ′a(|φ̂(1)|)× sign(φ̂(1))‖∞ 6 ‖C̄0(21)C̄−1

0 (11)‖∞ρ′(b0 − λL̄3).

Let

A = {|C̄−1
0 (11)W̄ (1)| <

√
n(|φ0(1)| − λ

2
L̄1ρ

′(b0 − λL̄3))},

B = {|C̄0(21)C̄−1
0 (11)W̄ (1)− W̄ (2)| 6

√
nλ

2
L̄4},

for some L̄4 > 0. Then we have, if the Irrepresentable Conditions for BS-SIM hold,

P
(

sign(φ̂) = sign(φ0)
)
≥ P (A ∩B),

whereas

1−P (A∩B) 6
q−1∑
i=1

P

(
|zi| ≥

√
n(|φ0,i| −

λ

2
L̄1ρ

′(b0 − λL̄3))

)
+

p−q∑
i=1

P

(
|qi| ≥

√
nλ

2
L̄4

)
,

where z = (z1, z2, . . . , zq−1)T = C̄−1
0 (11)W̄ (1) and q = (q1, q2, . . . , qp−q)

T = C̄0(21)C̄−1
0 (11)W̄ (1)−

W̄ (2).

By the definition of W̄ , we have

C̄−1
0 (11)W̄ (1) →d N(0, σ2C̄−1

0 (11));

C̄0(21)C̄−1
0 (11)W̄ (1)− W̄ (2) →d N(0, σ2(C̄0(22)− C̄0(21)C̄−1

0 (11)C̄0(12))).

Since λ satisfies that λ ∼ nc−2/5, we have

q−1∑
i=1

P

(
|zi| ≥

√
n(|φ0,i| −

λ

2
L1ρ

′(b0 − λL̄2))

)
+

p−q∑
i=1

P

(
|qi| ≥

√
nλ

2
L̄4

)
= o(e−n

c

).

As a result, Theorem 1.4.2 follows.

1.8.4 Proof of Theorem 1.4.3

Let µ̂L = φ̂L − φ0. Define

VL(µ) = H(φ)−H(φ0) + λ‖µ+ φ‖1.
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Then µ̂L is a local minimum of VL(µ).

With the arguments used in the proof of Theorem 1.4.2, It follows that

VL(µ) = H(φ)−H(φ0) + λ‖µ+ φ0‖1

=
1

n
µT
(
F̂ ∗
)T

F̂ ∗µ− 2

n
εT F̂ ∗µ+

2

n

(
f̂θ0 − fθ0

)T
F̂ ∗µ+ λ‖µ+ φ0‖1

= G(µ) + λ‖µ+ φ0‖1.

By the argument given in the proof of Theorem 1.4.2, if there exists µ̂L that satisfies

the following

2C̄0(11)µ̂L(1)− 2√
n
W̄ (1) + λsign(φ0(1)) = 0;

|µ̂L(1)| < |φ0(1)|;

−λ1p−q 6 2C̄0(21)µ̂L(1)− 2√
n
W̄ (2) 6 λ1p−q,

there exists a local minimum of RL(φ), φ̂L, such that sign(φ̂L(1)) = sign(φ0(1)) and

sign(φ̂L(2)) = 0. After some simplification, we have that the existence of µ̂L is implied

by

|C̄−1
0 (11)W̄ (1)| <

√
n

(
|φ0(1)| − λ

2
|C̄−1

0 (11)sign(φ0(1))|
)

;

|C̄0(21)C−1
0 (11)W̄ (1)− W̄ (2)| 6

√
nλ

2

(
1− |C̄0(21)C̄−1

0 (11)sign(φ0(1))|
)
.

Let

A1 = {|C̄−1
0 (11)W̄ (1)| <

√
n(|φ0(1)| − λ

2
|C̄−1

0 (11)sign(φ0(1))|)},

B1 = {|C̄0(21)C̄−1
0 (11)W̄ (1)− W̄ (2)| 6

√
nλ

2
η̄}.

Subsequently, we have, if the Irrepresentable Condition for BL-SIM holds,

P
(

sign(φ̂L) = sign(φ0)
)
≥ P (A1 ∩B1),

whereas

1− P (A1 ∩B1) 6
q−1∑
i=1

P

(
|zi| ≥

√
n(|φ0(1)| − λ

2
|bi|)

)
+

p−q∑
i=1

P

(
|qi| ≥

√
nλ

2
η̄

)
,
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where b = (b1, b2, . . . , bq−1)T = C̄−1
0 (11)sign(φ0(1)).

Since λ satisfies that λ ∼ nc−2/5, we have

q−1∑
i=1

P

(
|zi| ≥

√
n(|φ0(1)| − λ

2
|bi|)

)
+

p−q∑
i=1

P

(
|qi| ≥

√
nλ

2
η̄

)
= o(e−n

c

).

As a result, Theorem 1.4.3 follows.

1.8.5 Proof of Corollary 1.4.4

The proof of Corollary 1.4.4 can be derived by using similar arguments applied in the

proofs of Theorem 1.4.2 and Theorem 1.4.3.
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2. DNA METHYLATION STATUS QUANTIFICATION

FOR BISULPHITE-SEQUENCING DATA

In this chapter, we focus on DNA methylation status calling for bisulphite-sequencing

data. The first section reviews several key concepts for DNA methylation profiling and

quantification. Section 2.2 describes the proposed approaches. Section 2.3 and Section

2.4 demonstrate its performance on simulated datasets and a real data, respectively.

The contents in Sections 2.2 through 2.4 are based on our work published in 2012

[47]. The last section of this chapter summarizes the recent development in DNA

methylation analysis and false discovery rate control for discrete tests since our work

was published.

2.1 Introduction

2.1.1 Introduction to DNA Methylation

Epigenetic modification is defined as heritable changes in chromosome without alter-

ing the DNA sequence [48]. There are three components in epigenetic modifications:

DNA methylation, histone modification and non-coding RNAs [49]. DNA methyla-

tion refers to the addition of a methyl group to some C-5 positions of DNA sequences.

It plays a crucial role in a variety of biological processes, including cell development,

imprinting and X-chromosome inactivation. It is prevalent at CpG positions with

60-90% of all CpGs being methylated in mammals, whereas it is much less frequent

at non-CpG sites with only less than 3% of non-CpGs being found to be methylated.

Unmethylated CpGs tend to cluster in small regions of DNA sequences called CpG

islands, most of which coincide with promoter regions of many genes [50]. The link

between abnormal DNA methylation pattern and cancer is two-fold [51]. First, a
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global hypomethylation is associated with genomic instability and is a common char-

acteristic of cancer cells. Second, hypermethylation of CpG islands located at gene

promoters results in suppression of gene expression and is conventionally observed

in cancer cells. Therefore, it is desirable to reveal both genome-wide and promoter-

specific DNA methylation patterns of a cell.

Various methods for genome-wide DNA methylation detection have been devel-

oped in the past 20 years. They can mainly be classified into three categories, which

are methylation-sensitive enzyme based methods, enrichment based methods, and

bisulphite conversion based methods [50]. A quick review of them are given below.

Methylation-sensitive Enzyme Based Methods

The basis of this type of methods is that genomic DNAs are fragmented by a methylation-

sensitive restriction enzyme differentially, according to the DNA methylation status.

To be more specific, a methylation-sensitive restriction enzyme is used to cut CpG

sites that are unmethylated, while it is blocked by methylated sites. As a result,

the DNA methylation profile can be inferred based on the cutting pattern, provided

by the subsequent read-out approaches. There are several choices for the restriction

enzymes, such as HpaII and SmaI. One major drawback of this class of methods is

that each restriction enzyme has a specific recognition sequence. That means, each

enzyme can only cut or be block by CpG sites in one specific sequence. For example,

HpaII can only work with CpG sites in CCGG sequences. Thus, the DNA methyla-

tion profile of CpG sites in other contexts can not be detected by using HpaII. This

restriction makes this type of methods unfavorably when a whole-genome profile of

DNA methylation is desired.

Enrichment Based Methods

This type of methods relies on immunoprecipitating DNA fragments containing methy-

lated CpG with specific antibodies or methyl-binding proteins to differentiate methy-
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lated sites from unmethylated sites. This is a more direct method to profile DNA

methylation status, compared to the enzyme based methods. The advantage of this

type is that it is of low cost and can provide whole-genome coverage. However, it

has its own limitations. Since the antibodies or proteins would pull down the DNA

fragments containing methylated sites, the exact sites that are methylated can be any

CpG sites within the fragment. Thus, for this type of method, the DNA methylation

status is often called as a whole fragment, rather than on a site-by-site basis. In other

words, the enrichment based methods can only provide a moderate resolution.

Bisulphite Conversion Based Methods

Sodium bisulphite can convert unmethylated Cytosine into Urasil whereus methylated

Cytosines are not affected by it. Since bisulphite-induced Urasil is subsequently

replaced by Thymine during amplification, the sodium bisulphite treatment leads

to a methylation specific single nucleotide polymorphism (SNP) at unmethylated

sites, and thus methylated sites can be distinguished from unmethylated sites by

some subsequent readout method. This finding revolutionized the way how DNA

methylation status was profiled in 1990s [50, 52, 53], since this property of sodium

bisulphite suggests that this collection of methods may be able to provide DNA

methylation profiles at single base resolution with whole genome coverage.

After applying one of the above methods on the genomic DNAs, one read-out

method is needed. In the past, array-based techniques, such as microarray technol-

ogy, were the leading platforms to be combined with methods from all three above

categories to survey DNA methylation status. To name one array-based methylation

profiling method from each category, methylated CpG island amplification with array

hybridization (MCAM) uses a pair of enzymes SmaI and XmaI with array hybridiza-

tion [54]; MeDIP relies on a methylation specific antibody coupled with hybridiza-

tion [55]; Illumina Infinium assay for DNA methylation analysis, or HumanMethy-
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lation27 DNA Analysis BeadChip, is a bisulphite conversion based approach [56].

Although the application of these array-based platforms enables comprehensive DNA

methylation profiling at economical cost, they can only interrogate C sites at given

regions with moderate resolution [50].

In recent years, the rapid development of Next Generation Sequencing (NGS)

technology enables read-out methods with high coverage and high resolution [57].

NGS has been incorporated into all three categories of methods for genome-wide

methylation profiling. Again, we list one NGS based method from each category

here: HpaII tiny fragment enrichment by ligation-mediated PCR (HELP), or HELP-

Seq [58]; MeDIP-Seq [59]; and MethylC-Seq [60]. Despite the fact that NGS-equiped

methods have relative advantages over array-based methods, those methods from

the first two categories are still subject to the same weaknesses they had when cou-

pled with array-based techniques. More specifically, methylation-sensitive enzyme

based methods equipped with NGS technology remain restricted to the recognition

sites of the particular enzymes used; and enrichment based methods equipped with

NGS technology do not overcome the disadvantage of moderate resolution. On the

other hand, bisulphite conversion based methods coupled with NGS technology, desig-

nated as bisulphite-sequencing methods, have emerged as the most promising methods

since they generate whole-genome DNA methylation profiles at single-base resolution.

Among all bisulphite-sequencing methods, MethylC-Seq and reduced representation

bisulfite sequencing (RRBS) are the two most popularly used methods, which we will

introduce in the next subsection [60,61].

2.1.2 Review of Bisulphite-sequencing Experiment

In MethylC-Seq, genomic DNAs are first sonicated into smaller fragments. After going

through end-repair and adapter ligation, these fragments are treated with bisulphite.

As introduced in the previous subsecion, the bisulphite treatment converts unmethy-

lated Cytosines into Urasils and leaves methylated Cytosines unchanged. Subsequent
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PCR amplification process further replaces Urasils with Thymines. These PCR ampli-

fied fragments are then subject to standard sequencing technology to produce short

sequencing reads, which are mapped back to the reference genome. Thus the un-

methylated Cytosines are distinguishable from methylated Cytosines by examining

sequencing reads [50,60]. The workflow for MethylC-Seq experiment is given in Figure

2.1.

Fig. 2.1. Workflow for MethylC-Seq experiment.

RRBS utilizes the same mechanism as MethylC-Seq. The major difference between

RRBS and MethylC-Seq occurs in the first step, that is, the way genomic DNAs are

fragmented. In RRBS, genomic DNAs are digested with MspI, an enzyme which

cuts all CCGG sites [61]. These two methods have their relative advantages and

disadvantages, which make them suitable for different research purposes. By the

way genomic DNAs are digested in RRBS, CpG regions are substantially enriched in

DNA fragments after size selection. Thus RRBS is more preferable than MethylC-

Seq when the research is targeting regions with high density of CpG sites, such as

CpG islands. On the other hand, because of its theoretical capacity of capturing

methylation information from each C position in the whole genome, MethylC-Seq has



65

become the golden standard for genome-wide DNA methylation analysis. As reported

in Harris et al. [62], when these two methods are applied to biological replicates of

human embryonic stem cells, MethylC-Seq covers 95% of all CpGs, whereas RRBS

shows a genome-wide CpG coverage of only 12%.

2.1.3 Review of Quantification Methods for Bisulphite-sequencing Data

In the data generated by MethylC-Seq or RRBS, ideally there are only C reads or T

reads for each covered C position of interest, depending on the methylation status. In

other words, if a C position is methylated, then there should be only C reads at that

site in the data; whereas if a C position is unmethylated, then there should be only T

reads. However, due to various sources of noise, in the real data generated by these

two methods, there are both C reads and T reads for most of the target C sites. For

instance, the process of bisulphite conversion needs to be carried out under specific

experimental conditions [63]. Failure to meet any of those conditions would lead to

incomplete conversion, which further results in C reads at unmethylated C positions.

Moreover, as a typical and inevitable result of applying NGS technology, there will

be sequencing errors in the data, which means a small proportion of C reads will be

miscalled to be T reads and vice versa. Because there are both C reads and T reads

in the data, it is not straightforward to infer the true methylation status. The aim is

then to make methylation call for each target C position based on the number of C

reads and the number of T reads it receives, which becomes an interesting statistical

problem.

In some studies concerning DNA methylation analysis, researchers use the ratio

of C count to the total number of reads received at a site to quantify the methylation

level at that site ( [62]; [64]; [65]). Note that the total number of reads received at

a site is also referred to as coverage or sequencing depth. While this quantification

approach has the virtue of being simple and straightforward, it does not use proper

inference to deal with the noise in the data, and thus it is not statistically satisfactory.
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In other studies, researchers aim to make binary methylation calls for C positions

of interest. There exist a few such approaches in the literature. In Harris et al. [62],

the proportion of C count at each CpG site was calculated and binary methylation

call was made for each site with various choices of cutoff for the proportion. However,

those choices were not statistically justified. A more sophisticated method was used

in Lister et al. [66], which applied a multiple testing procedure to identify methy-

lated Cytosines. In the MethylC-Seq experiment conducted by Lister et al. [66], an

unmethylated Lambda DNA was spiked with the target genomic DNAs before son-

ication and was used to estimate the error rate at which a C count occurs at an

unmethylated C position. We denote the resulting estimate as p̂Lis1 . Then the fol-

lowing hypothesis was tested for each C site in the whole genome simultaneously to

detect methylated sites with false discovery rate level 0.01.

Hi0 : p = p̂Lis1 vs Hia : p > p̂Lis1 .

As will be shown in Section 2.3.3, the above procedure used by [66] is conservative in

detecting unmethylated Cytosines due to the underestimation of error rate and the

choice of null hypothesis.

2.1.4 Review of False Discovery Rate Controlling Procedures

Due to the rapid development of sequencing technologies, it is often the case that a

large number of hypothesis are tested simultaneously. For instance, in a RNA-seq

experiment, we may want to test if thousands of genes are differentially expressed

at the same time. False discovery rate (FDR), originally proposed by Benjamini and

Hochberg [67], is the most popularly used error measurement in multiple testing prob-

lems. Its prevalence owes largely to the fact that it is considerably less conservative

than the conventional family-wise error rates. To describe FDR, consider the pos-

sible outcomes from multiple testing procedures given in Table 2.1. Benjamini and

Hochberg [67] gave the following definition of FDR:

FDR = E{M01

V
|V > 0}P (V > 0).
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In their seminal paper [67], they also proposed a linear step-up approach for controling

FDR. They also proved that this step-up procedure can control FDR at a prespeci-

fied level for independent test statistics. However, since the BH approach does not

consider the unknown proportion of true nulls, it usually leads to conservative re-

sults. There are various procedures proposed later that consider this information.

For example, Storey [68] proposed to estimate the proportion of true nulls as

proportion =
#{p-values > λ}

(1− λ)M
,

for some well-selected λ. They also discussed how to choose λ. For more detail, we

refer to [68–70]. Since this procedure incorporates the estimation of the proportion

of true nulls, it is without surprise that this procedure is more powerful than the

procedure proposed by [67].

By the nature of hypothesis testing, the p-values from multiple testing problems

can be viewed to follow a mixture of two distributions. Then its cumulative distribu-

tion function (CDF) can be written down as

F = πF0 + (1− π)F1,

where F0 and F1 denote the CDF under the null hypothesis and the alternative

hypothesis respectively, and π stands for the unknown proportion of true nulls. It is

well known that under several assumptions, F0 is the standard uniform distribution.

Then FDR for a given cutoff t can be calculated as

FDR(t) =
πF0(t)

πF0(t) + (1− π)F1(t)
=

πt

πt+ (1− π)F1(t)
.

Efron et al. [71] proposed a related concept, local FDR (lfdr), that relies on the density

function instead of CDF and is given by

lfdr(t) =
π

π + (1− π)f1(t)
.

Efron et al. [71] also showed the linkage between lfdr and FDR. This mixture of two

components setup leads to another category of methods for estimating and controling
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Fails to reject H0 Reject H0 Total

Null is true M00 M01 M0

Alternative is true M10 M11 M1

Total U V M

Table 2.1.
Four possible outcomes from multiple testing procedures.

FDR or lfdr. They focus on modeling the distribution of the p-values under the

alternative hypothesis; see [71–74] among others.

Most of the procedures mentioned so far are intended for independent and continu-

ous statistics. Although they can also be applied to discrete p-values, they are usually

conservative in such scenarios. To overcome the conservativeness induced by discrete-

ness, there are also several FDR controlling procedures developed for discrete tests.

Tarone [75] proposed a modified Bonferroni method to control familywise error rate

for discrete data. Gilbert [76] combined this method with the original FDR control-

ling procedure [67] to account for the discreteness in the data. Pounds and Cheng [77]

developed two estimators for the true null proportion, as well as a smoothing method

to stablize the resulting lfdr estimator, for discrete tests. Heyse [78] proposed to re-

place p-values in [67] with mid p-values to mitigate the effect of discreteness. All of

the mentioned methods have been shown to provide certain improvements in power

over the methods that do not take discreteness into consideration.

2.2 Methods

2.2.1 Mixture of Binomial Model

As discussed in Section 2.1.2, MethylC-Seq experiment can roughly cover 95% of all

CpGs. Those sites that do not receive any C read and T read are referred to as
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uncovered sites and will be excluded from methylation calling analysis. Suppose we

consider M covered sites. These M sites can be the collection of all covered sites from

a specific DNA segment of interest, a whole chromosome, or even the whole genome.

For site i among these M sites, let Xi denote the total number of reads including both

C and T reads, and Yi denote the number of C reads alone. Note Yi 6 Xi. Let Si be

the indicator of the unobserved methylation status of site i, with Si = 0 indicating

site i is methylated and Si = 1 indicating site i is unmethylated. If there is no error

in the experiment, then Xi = Yi when site i is methylated; and Yi = 0 when site i is

unmethylated. In other words, there are only C reads for methylated sites and no C

read for unmethylated sites. However, MethylC-Seq experiments are subject to both

experimental errors and systematic errors. Thus, there are both C reads and T reads

for most sites, or equivalently, Yi < Xi for most methylated sites and Yi > 0 for most

unmethylated sites.

There exist three main causes for experimental errors in MethylC-Seq experiments.

First, incomplete conversion of unmethylated Cytosine to Urasil during bisulphite

treatment results in C reads at unmethylated sites. In other words, the failure to

convert unmethylated Cytosine to Urasil causes Yi > 0 for unmethylated sites. We

assume this non-conversion rate is eic, that is, the probability that an unmethylated

Cytosine fails to convert to Thymine. Second, over-treatment with bisulphite can

lead to conversion of methylated Cytosine to Thymine [50]. Suppose the miscoversion

rate, or equivalently, the probability that a methylated Cytosine converts to Thymine

is emc. Third, sequencing errors can potentially impact both methylated sites and

unmethylated sites. For methylated sites, Cytosines can be miscalled to be Thymines

and thus Yi < Xi; and for unmethylated sites, bisulphite-converted Thymines can

be mistakenly read out as Cytosines and thus Yi > 0. Suppose the probability that

a T read is miscalled to be a C read is etc and the probability that a C read is

miscalled to be a T read is ect. Experimental errors are unavoidable due to the random

nature of sequencing technology and has to be incorporated in the model. On the

other hand, systematic errors in bisulphite data can be identified and thus eliminated
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by carefully conducted data processing procedures. For MethylC-Seq experiment,

deamination of methylated Cytosine to Thymine during cell development and those

single-nucleotide polymorphisms that a Cytosine in the reference genome varies to a

Thymine in the sample DNA lead to systematic errors. Nevertheless, they can be

detected by examining the nucleotide on the opposite strand of the C sites and thus

can be eliminated from MethylC-Seq data [50]. When they are not removed from the

data, let esys denote the systematic error rate. For a more detailed review of potential

sources of noise in bisulphite-sequencing data, see Krueger et al. [79].

Let p1 stand for the overall error rate for obtaining C reads at unmethylated sites

caused by incomplete conversion, sequencing error, and systematic errors. Similarly,

let 1−p0 denote the overall error rate for obtaining T reads at methylated sites caused

by misconversion, sequencing error, and systematic errors. It is clear that p1 depends

on eic, etc and esys, and p0 depends on emc, ect and esys. The dependence of p0 and

p1 on the various types of individual errors can be greatly simplified if the following

three assumptions are imposed. First, there are no systematic errors in the data, that

is, esys = 0. Second, the two types of sequencing errors occur equally likely, which

implies etc = ect. Third, the sample is not overtreated with bisulphite, or equivalently,

emc = 0. Under these three assumptions, we postulate the relationship between the

overall error rates and individual ones to be p0 = 1− etc = 1− ect and p1 = eic + etc.

Under the postulated relationship, if we can identify the overall error rates 1−p0 and

p1, the individual error rates etc, ect and eic can also be identified. When any of the

three assumptions mentioned above fails to satisfy, further information is needed to

identify the various types of individual errors. Nevertheless, the overall error rates

1 − p0 and p1 can still be estimated and methylation calling can be made by the

procedure we will describe next. Due to this reason, we shall use p0 and p1 in the

rest of the paper.
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Based on the discussion above, we propose the following Binomial models as the

conditional distribution of the C count at site i given the coverage Xi and methylation

status Si:

Yi|(Xi = x, Si = 0) ∼ Bin(x, p0);

Yi|(Xi = x, Si = 1) ∼ Bin(x, p1).

Here one important premise is that all the M sites of interest share the same error

rates 1−p0 and p1. This assumption is commonly used in the literature on methylation

analysis; see Lister et al. [66] and Wu et al. [80].

Furthermore, suppose the proportion of methylated sites among these M sites is

π, that is, P (Si = 0) = π for any randomly selected site i. Then conditional on the

sequencing depth at one site, the corresponding C count follows a mixture of two

Binomial distributions:

Yi|(Xi = x) ∼ πBin(x, p0) + (1− π)Bin(x, p1). (2.1)

Even though MethylC-Seq data contain diverse types of errors, they are still assumed

to carry information regarding the underlying methylation status in the sense that

most methylated sites are dominated by C reads and most unmethylated sites are

dominated by T reads. Therefore, it is reasonable to assume that p1 and p0 should

satisfy p1 << p0. This assumption assures the identifiability of p1 and p0 and guar-

antees the validity of our procedure.

Suppose the coverages at the sites, i.e. Xi’s, are independent and identically

distributed with the same probability mass function (pmf) f(x). For convenience,

denote the pmf of the conditional distribution of C count of site i given Xi = x

defined in (1) as g(y|x). For fixed i, the pmf of the joint distribution of (Xi, Yi),

denoted as h(x, y), is given by h(x, y) = g(y|x)f(x). Let φ = (p0, p1, π). Noticing

that f(x) does not involve φ, therefore we only need to use g(y|x) for estimating φ.

Let y = (y1, y2, ..., yM) be the observed C counts and x = (x1, x2, ..., xM) the

observed coverages. Then under the assumption that yi is from a mixture of two
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Binomial distributions given xi, the log-likelihood function of φ can be written as

follows.

l(φ|x,y) =
M∑
i=1

ln {g(yi|xi)} =
M∑
i=1

ln {πgi0 + (1− π)gi1} ,

where gi0 and gi1 are the pmf’s of Bin(xi, p0) and Bin(xi, p1) for each i, respectively.

The maximum likelihood estimate (MLE) of φ can be obtained by applying the well-

established EM algorithm. However, our goal here is beyond estimating φ. What we

want to achieve is to classify each site i to be either methylated or unmethylated on

the basis of an adequate estimate of φ. Recall that for each i, Si is an indicator of

the true methylation status of site i with values equal to 0 or 1. Therefore, our goal

is essentially to identify the value of Si for each i.

Let θi0 and θi1 denote the posterior probabilities that Si = 0 and Si = 1, respec-

tively, given x, y and φ. The expressions of θi0 and θi1 are

θi0 = P (Si = 0|yi, xi, φ) =
πgi0(yi)

πgi0(yi) + (1− π)gi1(yi)
;

θi1 = P (Si = 1|yi, xi, φ) = 1− θi0.
(2.2)

Here θi0 and θi1 indicate how likely site i is methylated (Si = 0) and unmethylated

(Si = 1), respectively, given the observed data and φ. Note that θir(r = 0, 1) will play

a role in the EM algorithm for computing the MLE of φ. In addition to facilitating

the estimation of φ, θir also play a key role in the methylation status calling procedure

we will develop later.

Then the EM algorithm for computing the MLE of φ can be developed as follows.

We start off with an initial estimate of φ, and then compute the initial values of θir

given the initial values of φ. After the initial step, φ and θir are iteratively updated.

Conditional on the current values of θir, we update φ by

p̂0 =

∑M
i=1 θ̂i0yi∑M
i=1 θ̂i0xi

; p̂1 =

∑M
i=1 θ̂i1yi∑M
i=1 θ̂i1xi

; π̂ =

∑M
i=1 θ̂i0
M

. (2.3)

This new estimate of φ is then substituted back into (2.2) to yield new values of

θir. These two steps are repeated until certain convergence criterion is met. In

our simulation study and real data application, the convergence criterion is that the
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change of the log-likelihood function between two consecutive steps is below some

prespecified value. A discussion of the convergence properties of EM algorithms can

be found in [81]. The derivation of (2.3) is given in Section 2.2.5. Let φ̂ be the MLE

of φ obtained from the EM algorithm and θ̂ir the estimate of θir by plugging φ̂ into

(2.2). We shall call θ̂ir memberships hereafter.

2.2.2 Classification based Methylation Status Calling Procedure

After the EM algorithm in the last subsection converges, we obtain the estimates φ̂

as well as the memberships θ̂ir. The memberships can be further used to determine

the methylation status of each site. We propose to use the following rule to make

methylation status calling. For i = 1, 2, ...,M , site i is called to be methylated if

θ̂i0 > θ̂i1; otherwise, it is called to be methylated. We shall refer to this classification

procedure as the Methylation Status Calling (MSC) procedure. Based on the Bayes

rule, the MSC procedure is optimal in terms of maximizing overall correct allocation

rate [82].

As mentioned in Section 2.1.3, sometimes researchers are interested in quantifying

the methylation levels due to the heterogeneity of cell types or contamination during

cell preparation. When the experiment is conducted on a mixture of different types

of cells, it is valuable to directly use the membership θ̂i0 to quantify the methylation

level of each C position. Note that in this case, the interpretation of the overall error

rates 1− p0 and p1 is slightly different. More specifically, not only do they stand for

the various types of noises caused by the bisulphite-sequencing experiment, they also

represent the extent of cell type contamination. Since we are using a MethylC-Seq

data of H9 human embryonic stem cells in our real data application, we will focus on

the binary methylation status calling in our paper.
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Table 2.2.
Possible outcomes from the MSC procedure and the FMSC procedure.

Classified as methylated Classified as unmethylated Total

(Fails to reject H0) (Reject H0)

Group 0 M00 M01 M0

Group 1 M10 M11 M1

Total U V M

2.2.3 Performance Assessment of the MSC Procedure

We use individual and overall correct allocation rates to assess the performance of

our proposed MSC procedure. Let Group 0 and Group 1 consist of all methylated

sites and all unmethylated sites, respectively. Let M0 and M1 be the total number of

methylated and unmethylated sites in the sample, respectively. LetMij be the number

of sites that are from Group i and allocated to Group j by the MSC procedure, for

i = 0, 1, and j = 0, 1. Let the total number of sites that are classified to Group

0 be U and let the total number of sites that are classified to Group 1 be V . The

four possible outcomes from the proposed MSC procedure are listed in Table 2.2 with

their corresponding frequencies.

The correct allocation rate for methylated sites (i.e., Group 0), denoted as P0, is

defined as the proportion of sites that are methylated and correctly allocated to Group

0 among methylated sites; similarly, the correct allocation rate for unmethylated

sites (i.e., Group 1), denoted as P1, is defined as the proportion of sites that are

unmethylated and correctly allocated to Group 1 among unmethylated sites. The

overall correct allocation rate, denoted as P , is defined as the proportion of correctly

classified sites for both groups. Given Table 2.2, the correct allocation rates can be

computed by P0 = M00

M0
, P1 = M11

M1
, and P = M00+M11

M0+M1
. Note that the quantities on the

right hand side of these equations are unknown. Following Basford and McLachlan
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[83], they can be estimated by M̂0 = Mπ̂, M̂1 = M(1− π̂), M̂00 = θ̂k0I(θ̂k0 > θ̂k1) and

M̂11 = θ̂k1I(θ̂k0 6 θ̂k1), where I(A) is an indicator of event A, such that I(A) equals

1 if A is true and equals 0 otherwise. Thus P0, P1 and P can be estimated as follows.

P̂0 =
1

Mπ̂

M∑
k=1

{
θ̂k0I(θ̂k0 > θ̂k1)

}
;

P̂1 =
1

M(1− π̂)

M∑
k=1

{
θ̂k1I(θ̂k0 6 θ̂k1)

}
;

P̂ =
1

M

M∑
k=1

{
θ̂k0I(θ̂k0 > θ̂k1) + θ̂k1I(θ̂k0 6 θ̂k1)

}
.

As stated in [83], P̂0 − P0, P̂1 − P1 and P̂ − P converge to 0 in probability when M

goes to infinity. Therefore, P̂ , P̂0 and P̂1 can be used to assess the performance of the

MSC procedure. Basford and McLachlan [83] also proposed two versions of bootstrap

based methods to reduce the bias in estimating these correct allocation rates with P̂ ,

P̂0 and P̂1. However, we will not elaborate on the bias correction methods here. The

reason is that, based on the simulation results reported in Section 2.3.2, the bias of

the estimated correct allocation rates for our model is hardly noticeable.

The classification of two groups can also be viewed as a multiple testing problem

once one of the groups is specified as the null [69]. For our proposed MSC procedure,

if we designate one group (e.g., methylated group) to be the null, then the FDR and

FNDR can also be defined. Although the MSC procedure is optimal based on the

Bayes rule, it is not ascertained that it has control over FDR, which is the most widely

used criterion in multiple testing context. In the next subsection, we will view our

classification approach from a multiple testing perspective. We will first show how to

estimate the resulting FDR and FNDR for the MSC procedure. Then motivated by

the concern that a FDR level other than the estimated FDR may be needed, we will

develop a FDR-controlled MSC procedure.
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2.2.4 Methylation Status Calling Procedure with FDR control

We consider the following multiple testing problem after obtaining the estimated

parameter φ̂ from Section 2.2.1 :

Hi0 : p = p̂0 vs Hia : p = p̂1,

where i = 1, 2, ...,M . As mentioned in Section 2.1.3, Lister et al. [66] also applied

a multiple testing procedure to quantify DNA methylation status. Unlike the pro-

cedure used by [66], our procedure does not need to borrow information from the

unmethylated Lambda DNA, instead, it can directly estimate p1 as well as p0 from

the data.

Since θ̂i1 = 1 − θ̂i0 for any i, only θ̂i0 are used as the test statistic and they are

referred to as null memberships hereafter. It is clear that the proposed classification

rule is equivalent to the testing rule that rejects Hi0 if θ̂i0 6 0.5. The four possible

outcomes from the MSC procedure given in Table 2.2 can be viewed as the four

possible outcomes from the multiple testing perspective. And the frequencies for the

outcomes from the above multiple testing rule are exactly the same as those for the

outcomes from the MSC procedure.

By the definitions of FDR and FNDR, we have FDR = E
[
M01

V

]
and FNDR =

E
[
M10

U

]
. For the MSC procedure, U = #

{
θ̂k0 > θ̂k1

}
and V = #

{
θ̂k0 6 θ̂k1

}
.

Furthermore, based on the discussion in Section 2.2.3, we have M̂01 = M̂0 − M̂00 =∑M
k=1 θ̂k0I(θ̂k0 6 θ̂k1) and M̂10 = M̂1 − M̂11 =

∑M
k=1 θ̂k1I(θ̂k0 > θ̂k1). Therefore, FDR

and FNDR for the MSC procedure can be estimated as follows.

F̂DR =
M̂01

V
=

∑M
k=1 θ̂k0I(θ̂k0 6 θ̂k1)∑M
k=1 I(θ̂k0 6 θ̂k1)

; (2.4)

F̂NDR =
M̂10

U
=

∑M
k=1 θ̂k1I(θ̂k0 > θ̂k1)∑M
k=1 I(θ̂k0 > θ̂k1)

. (2.5)

Although FDR and FNDR can be estimated for the MSC procedure, this procedure

cannot control FDR at an arbitrary level. In practice, it can be a concern, especially

when the estimated FDR exceeds an acceptable level. Therefore, it is desirable to



77

incorporate a FDR-controlling component into the MSC procedure. We shall inves-

tigate such a method next.

Notice that for the MSC procedure, the cutoff in the decision rule for rejecting

the null hypothesis is 0.5. One way to control FDR is to adjust this cutoff according

to the desirable FDR level. Suppose the prespecified FDR level is α. Then the goal

here is to find a suitable cutoff c for null memberships such that the decision rule that

rejects H0 if

θ̂i0 6 c, i = 1, 2, ...,M. (2.6)

will have an FDR below α.

We follow an adaptive procedure developed by Sun and Cai [84] to achieve the

goal. In their original paper, Sun and Cai [84] aimed to find a multiple-testing proce-

dure that is more efficient than the conventional p-value based procedures. They first

developed a Lfdr-based procedure for marginal FDR control and showed it is opti-

mal in the sense that it controls marginal FDR at level α with the smallest marginal

FNDR. Then they proposed a data-dependent adaptive procedure based on estimated

Lfdr and proved that it asymptotically attains the performance of the optimal proce-

dure. It was also demonstrated with numerical results that their adaptive procedure

outperforms the conventional p-value based procedures when marginal FDR is con-

trolled at the same level. For our problem, recall that for site i, gi0 and gi1 are the

probability mass functions of Bin(xi, p0) and Bin(xi, p1), respectively. Note that the

local false discovery rate of site i is given by

Lfdri = P (Si = 0|yi, xi, φ) =
πgi0(yi)

πgi0(yi) + (1− π)gi1(yi)
.

Therefore the null membership θ̂i0 of site i is also an estimate of Lfdr. With this esti-

mated Lfdr of each site, the adaptive procedure proposed by [84] can be incorporated

into the MSC procedure.

Since Fdr(z) is the average of Lfdr(Z) for Z 6 z [72], the FDR of the decision

rule 2.6 can be estimated by

F̂DR(c) =

∑M
i=1 θ̂i0I(θ̂i0 6 c)∑M
i=1 I(θ̂i0 6 c)

; (2.7)
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F̂NDR(c) =

∑M
i=1(1− θ̂i0)I(θ̂i0 > c)∑M

i=1 I(θ̂i0 > c)
. (2.8)

When c = 0.5, which is the cutoff used by the MSC procedure, the resulting FDR and

FNDR can be estimated by: F̂DR(0.5) =
∑M

i=1 θ̂i0I(θ̂i0 6 0.5)/
∑M

i=1 I(θ̂i0 6 0.5) and

F̂NDR(0.5) =
∑M

i=1(1− θ̂i0)I(θ̂i0 > 0.5)/
∑M

i=1 I(θ̂i0 > 0.5). These two estimates are

exactly the same as F̂DR and F̂NDR given in (2.4) and (2.5) because θ̂i1 + θ̂i0 = 1.

Therefore F̂DR(c) and F̂NDR(c) given in (2.7) and (2.8) are extensions of F̂DR

and F̂NDR to the general decision rule 2.6. Simulation results given in Section 2.3.4

provides compelling evidence that the estimators in (2.7) and (2.8) are accurate in

estimating the true FDR and FNDR.

Suppose the desirable FDR level is α. We apply the method developed by [84]

to choose the cutoff c so that the resulting classification procedure will have its FDR

controlled at α. The procedure is described as follows.

1. Sort the null memberships in ascending order as θ̂i10,θ̂i20,...,θ̂iM0.

2. Find l = max{j :
∑j

k=1 θ̂ik0/j 6 α}.

3. Then let c = θ̂il0 and all Hij0 with j 6 l are rejected.

4. Site ij is called to be methylated if j 6 l; otherwise, it is called to be unmethy-

lated.

We shall refer to this procedure as the FDR-controlled Methylation Status Calling

Procedure at level α, or in short, the FMSC procedure at level α. Based on (2.7), the

resulting FDR for the FMSC procedure can be estimated by F̂DR =
∑l

k=1 θ̂ik0/l.

As mentioned in Section 2.2.3, Lister et al. [66] used Hi0 : p = p̂1 as the null

hypothesis, that is, the null hypothesis assumes that site i is unmethylated. In con-

trast, the null hypothesis we use here is Hi0 : p = p̂0, or equivalently, it assumes that

site i is methylated. Considering the fact that methylation is more prevalent in the

sense that more than 60% of all CpG sites are expected to be methylated, it is more

appropriate to assume the site is methylated in the null hypothesis instead of the
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other way around. Assuming the site is unmethylated in the null hypothesis leads to

the consequence that a significantly higher proportion of the claimed unmethylated

sites are indeed methylated. Therefore, in terms of detecting unmethylated sites, our

choice of null hypothesis produces more accurate results than the choice by [66]. See

Section 2.3.3 for more detail.

Sun and Cai [84] showed that under several assumptions, the Lfdr-based adaptive

method asymptotically attains the performance of the optimal method that controls

marginal FDR at level α with the smallest marginal FNDR. Despite the discreteness

and heterogeneity of the tests used for methylation status calling, our simulation study

in Section 2.3.1 shows the incorporation of this adaptive procedure into the MSC

procedure leads to satisfactory results. Therefore, we believe the FMSC procedure is

adequate in making methylation status calls when controlling FDR at a given level

is of interest. When the interest is to control FNDR at a given level, an adaptive

procedure similar to FMSC can be developed.

2.2.5 EM Algorithm for Computing the Parameters

The log-likelihood function of φ is given by:

l(φ|x,y) =
M∑
i=1

ln {πgi0 + (1− π)gi1} .

Then EM algorithm for φ can be developed as follows.

E-step: Compute memberships

θi0 = P (Si = 0|yi) =
πgi0(yi)

πgi0(yi) + (1− π)gi1(yi)
;

θi1 = 1− θi0.
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M-step: Update the estimates

Q(φ, φ(t)) = EP (S|x,y,φ(t))[lnP (x,y, S)|φ]

=
M∑
i=1

1∑
c=0

P (Si = c|yi, xi, φ(t)) · lnP (xi, yi, Si = c|φ)

=
M∑
i=1

1∑
c=0

P (Si = c|yi, xi, φ(t)) · [ln(gc(yi)) + lnP (Si = c)]

=
M∑
i=1

[θi1(ln(g1(yi)) + lnP (Si = 1)) + θi0(ln(g0(yi)) + lnP (Si = 0))]

=
M∑
i=1

[θi1lnµ+ θi0ln(1− µ)] +
M∑
i=1

θi0ln(g0(yi)) +
M∑
i=1

ln(g1(yi))

Differentiating Q(φ, φ(t)) with respect to each component of φ yields the following

results.

π̂ =

∑M
i=1 θi1
M

;

p̂0 =

∑M
i=1 θi0yi∑M
i=1 θi0xi

;

p̂1 =

∑M
i=1 θi1yi∑M
i=1 θi1xi

.

2.3 Simulation Results

2.3.1 Performance of MSC and FMSC

In this subsection, simulation results illustrating the behavior of our proposed pro-

cedures are presented. To carry out simulation study, we first use MethylC-Seq data

of all CpG sites on Chromosome 1 of H9 human embryonic stem cells from [66] to

fit a coverage distribution f̂ (see Section 2.4.3 for more detail). Then we apply the

mixture of Binomial model to the same data to obtain φ̂ = (p̂0, p̂1, π̂) (see Section

2.4.1). The total number of CpG sites in the simulation study is M = 1000. The

general scheme of our simulation study is described as follows.
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Step 1: Draw a random sample of M observations from f̂ and use them as the cov-

erage for M CpG sites. Let the simulated coverage of these M sites be Z =

(z1, z2, ..., zM). For each of the M sites, generate its methylation status inde-

pendently from Bernoulli(π̂). Simulate C count for each site according to its

methylation status and coverage. If the status for site i is methylated, the cor-

responding C count is generated from Bin(zi,p̂0); otherwise, it is generated from

Bin(zi,p̂1). Denote the generated C counts as R = (r1, r2, ..., rM).

Step 2: Apply the mixture of Binomial model to R and Z, obtain φ̃ = (p̃0, p̃1, π̃), com-

pute the memberships, and make methylation status call for each site using the

MSC procedure.

Step 3: For i = 1, 2, ...,M , compute the p-value, denoted as qi, for testing Hi0 : p =

p̃0 vs Hia : p = p̃1 using exact Binomial test, which is, qi =
∑ri

k=0

 zi

k

 (p̃0)k(1−

p̃0)zi−k. After obtaining the p-values, we apply the FDR-controlling procedure

proposed by [67] at level α = 0.1 to make methylation status calls. We shall

refer this procedure to as the individual Binomial testing (IBT) procedure.

Step 4: Use the FMSC procedure described in Section 2.2.4 to control FDR at three

levels α = (0.1, 0.05, 0.01) separately. Note that in the simulation study, for each

site, five methylation status calls are made based on three different methods,

which are the MSC procedure, the IBT procedure at level 0.1, and the FMSC

procedure with three different choices of FDR level. By comparing these calls

to the true methylation status, performances of these three procedures can be

compared in terms of FDR and FNDR.

The comparison results based on N = 100 repeated simulations are displayed in

Figure 2.2. Several observations can be made from the two plots in Figure 2.2.

First, the median FDRs for MSC and FMSC at level 0.1 is around 0.1, and the

corresponding median FNDRs are around 0.018 and 0.020, respectively. It shows

that the MSC procedure produces similar FDR and FNDR results as the FMSC
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procedure at level 0.1. Second, the FDRs for the FMSC procedures at all three levels

are well controlled. Third, the FNDR for the FMSC procedure at level 0.1 is notably

smaller than the FNDR for the IBT procedure at level 0.1. It is caused by the fact

that the IBT procedure at level 0.1 overcontrols FDR in the sense that the median

FDR is only around 0.05. As a result, the FNDR for IBT is compromised. It suggests

that the FMSC procedure is more powerful than the IBT procedure when their FDRs

are controlled at the same level.

In the simulation study, we also applied other FDR-controlling procedures to qi’s.

They include the q-value method [70] and procedures proposed by [68], [76] and [78].

The results are insensitive to the type of procedure used. Hence only the results from

the FDR-controlling procedure proposed by [67] are shown here.

Fig. 2.2. (a) The box plots display FDRs for IBT at level 0.1, the MSC
procedure, and the FMSC procedure with FDR level 0.1, 0.05 and 0.01
from left to right. (b) The box plots display FNDRs for these methods in
the same order.
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2.3.2 Estimation of Correct Allocation Rates

In Section 2.2.3, we follow the method proposed by Basford and McLachlan (1985)

to estimate the correct allocation rates for MSC. Here, we also apply both paramet-

ric version and semiparametric version of bootstrap procedures proposed by them to

correct the bias. Table 2.3 reports the simulation results. The simulation setting

is described in Step 1 and Step 2 of the simulation scheme given in Section 2.3.1.

It can be observed that the estimates for the whole population and the methylated

group are more accurate than that for the unmethylated group. However, both of the

bootstrap procedures do not help much in providing more accurate estimates.

Parametric Version Semiparametric Version

Popu- True Estimated Estimate Corrected Estimate Corrected

lation Rate Rate of Bias Rate of Bias Rate

overall 0.9750 0.9684 -0.0002 0.9686 0.0005 0.9678

methylated 0.9841 0.9822 0.0002 0.9819 -0.0003 0.9824

unmethylated 0.9068 0.8684 -0.0029 0.8713 0.0056 0.8628

Table 2.3.
Estimation of the overall correct allocation rate and correct allocation
rates for the two subgroups.

2.3.3 Choice of Null Hypothesis in FDR control

In this subsection, we compare FDR and FNDR results for different choices of null

hypothesis. 100 repeated simulations are carried out. In each simulation, the setting

is the same as that in Section 2.3.1. The individual Binomial testing (IBT) procedure

for two choices of null hypothesis and the MSC procedure are applied for each sim-

ulated data. To make the results comparable, the FDR for the IBT procedure with
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the null hypothesis used by [66] is controlled at level 0.04. The comparison results

are shown in Figure 2.3. The proportion of methylated sites that are allocated to

unmethylated group among those allocated to unmethylated group is around 0.1 for

both MSC and the IBT procedure for our choice of null hypothesis, while this pro-

portion for the IBT procedure for the null hypothesis used by [66] is rarely smaller

than 0.3. It illustrates that the MSC procedure outperforms the other two, and us-

ing methylated group as the null hypothesis provides significantly better accuracy in

terms of detecting unmethylated sites.
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Fig. 2.3. Comparison of different choices of null hypothesis. Left: Propor-
tion of methylated sites that are allocated to unmethylated group among
those allocated to unmethylated group. Right: Proportion of unmethy-
lated sites that are allocated to methylated group among those allocated
to methylated group.

2.3.4 Estimation of FDR and FNDR with Memberships

In Section 2.2.4, we show how to estimate the true FDR and FNDR for any cutoff c.

In this subsection, we report simulation results on the performances of these estimates
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for three choices of c, which are 0.5, 0.4 and 0.6. For each choice of c, 100 repeated

simulations are carried out, and in each simulation, the setting is the same as that in

Section 2.3.1. Figure 2.4 displays the results for the above three choices of c. It can

be observed that both of the estimates are accurate for all three choices of c.
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Fig. 2.4. Estimation of FDR and FNDR for c = (0.5, 0.4, 0.6)
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2.4 Real Data Application

2.4.1 Performance of MSC and FMSC

The MSC and FMSC procedures are applied to a real MethylC-Seq data of H9 human

embryonic stem cells from [66]. Three FDR levels, 0.1, 0.05 and 0.01, are considered

for FMSC. We first apply the procedures genome-wide. The resulting estimate for

φ = (p0, p1, π) is φ̂ = (0.9102, 0.1088, 0.8920). The MSC procedure is also applied

to the same MethylC-Seq data chromosome-wise. The results are given in Table

2.4. In the genome-wide evaluation with MSC, 42,987,496 out of 48,795,269 CpG

sites are called to be methylated. For the chromosome-wise evaluation, a total of

43,097,321 CpG sites are declared to be methylated. The difference is approximately

109 thousands, which account for less than 0.3% of all covered CpG sites. The

detailed comparison results are given in Table 2.5. This high concordance suggests

the consistency of the MSC procedure.

Correct allocation rates, estimated FDR and estimated FNDR for genome-wide

analysis by MSC and FMSC at three FDR levels are also calculated. The results are

given in Table 2.6. For MSC, the correct allocation rates for the overall population

and the methylated group are 0.9771 and 0.9810, respectively, while the rate for

the unmethylated group is 0.9450. As for FDR and FNDR, the estimates for MSC

are 0.1426 and 0.0067, respectively. For FMSC, as the FDR level decreases, the

correct allocation rate for the overall population decreases slightly and the rate for

the methylated group increases slightly, whereas the correct allocation rate for the

unmethylated group is influenced more dramatically. It decreases from 0.9450 to

0.6395 as the FDR level decreases from 0.1 to 0.01. For FMSC at any of the three

FDR levels, the resulting FDR is well controlled. And as expected, the estimated

FNDR increases as the FDR level decreases. Based on these results, the performances

of MSC and FMSC are acceptable.
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Chromo- Estimate of φ Number of Number of called

some p̂1 p̂0 π̂ covered CpG

sites

methylated CpG sites

1 0.9087 0.1024 0.8794 3,975,983 3,452,088

2 0.9126 0.0985 0.9027 3,782,466 3,369,491

3 0.9124 0.0954 0.9075 2,881,395 2,579,804

4 0.9143 0.1160 0.9117 2,550,805 2,357,090

5 0.9126 0.0982 0.9038 2,625,905 2,342,521

6 0.9120 0.0895 0.8938 2,609,387 2,301,334

7 0.9115 0.1179 0.8973 2,690,318 2,386,312

8 0.9120 0.1116 0.9052 2,286,755 2,044,208

9 0.9100 0.1114 0.8881 2,034,256 1,783,988

10 0.9111 0.1054 0.8977 2,369,400 2,099,966

11 0.9087 0.0999 0.8800 2,290,997 1,989,217

12 0.9120 0.0952 0.8907 2,274,053 1,999,301

13 0.9152 0.1050 0.9141 1,418,219 1,311,929

14 0.9100 0.1002 0.8857 1,521,511 1,330,347

15 0.9091 0.1077 0.8836 1,482,079 1,293,617

16 0.9113 0.1018 0.8857 1,899,471 1,660,913

17 0.9118 0.0852 0.8565 2,038,882 1,723,421

18 0.9126 0.1228 0.9089 1,203,933 1,081,334

19 0.9051 0.0970 0.8340 1,887,982 1,555,059

20 0.9071 0.1076 0.8852 1,299,389 1,135,158

21 0.9114 0.1835 0.9008 666,612 596,338

22 0.9104 0.1076 0.8838 1,008,544 879,711

X 0.8984 0.3440 0.8815 1,983,863 1,815,991

Y 0.7738 0.1954 0.6713 13,064 8,183

Table 2.4.
Chromosome by Chromosome Results with MSC for the MethylC-Seq
data from [66].
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`````````````````````̀
Chromosome-wise

Genome-wide Methylated Unmethylated Total

sites sites

Methylated sites 42,958,932 138,389 43,097,321

Unmethylated sites 28,564 5,669,384 5,697,948

Total 42,987,496 5,807,773 48,795,269

Table 2.5.
Contingency Table for Chromosome-wise and Genome-wide Evaluation

Correct Allocation Rate

Procedure Overall

Population

Methylated

Group

Unmethylated

Group

Estimated

FDR

Estimated

FNDR

the MSC pro-

cedure

0.9771 0.9810 0.9450 0.1426 0.0067

FMSC at

level 0.10

0.9758 0.9883 0.8727 0.1000 0.0154

FMSC at

level 0.05

0.9744 0.9949 0.8057 0.0500 0.0231

FMSC at

level 0.01

0.9604 0.9992 0.6395 0.0100 0.0418

Table 2.6.
Assessment of Genome-wide Analysis by MSC and FMSC at three levels.

2.4.2 Comparison of MSC and FMSC with Existing Methods

Next, the whole-genome results from the MSC procedure are compared to those from

the procedure used by [66]. The comparison results are shown in Table 2.7.
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Table 2.7.
Comparison of whole-genome results from the MSC procedure and those
from the procedure used by [66] for all covered CpG sites.

PPPPPPPPPPPPPP
Lister

Our method Methylated Unmethylated Total

sites sites

Methylated sites 42,987,456 1,175,275 44,162,731

Unmethylated sites 40 4,632,498 4,632,538

Total 42,987,496 5,807,773 48,795,269

Table 2.7 shows that these two procedures agree with each other on the methy-

lation status calls of 47,619,954 CpG sites, which account for more than 97% of all

covered CpG sites. For the sites that these two procedures make different methylation

status calls, they disagree in two directions. There are only 40 CpG sites that our

MSC procedure declares to be methylated but the procedure used by [66] declares

to be unmethylated; and we refer to this type of disagreement as the first direction.

There are roughly 1.17 million CpG sites that are called to be unmethylated by the

MSC procedure but called to be methylated by the procedure used by [66]; and we

refer to this type of disagreement as the second direction.

Since there are only 40 CpG sites in the first direction but 1.17 million sites in the

second direction, we will focus on the second direction in the subsequent analysis. A

typical example in the second direction is that for a site with coverage 60 and C count

6, MSC declares it to be unmethylated whereas the procedure used by [66] declares it

to be methylated. Several other typical cases are shown in Table 2.8. As mentioned in

the last paragraph, the null hypothesis for [66] is that the site is unmethylated, there-

fore, p-value is computed as p-value =
∑xi

k=yi

 xi

k

 (p̂Lis1 )k(1 − p̂Lis1 )xi−k. Because

Lister et al. [66] used an extremely small p̂Lis1 , which is less than 0.01, the resulting

p-value relies heavily on the C count in the sense that it decays to zero exponentially
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with increasing C count, regardless of coverage xi and π̂. Therefore, the C count

threshold for declaring one site to be methylated based on the multiple testing proce-

dure used by [66] is generally low, even for sites with high coverage. However, for the

MSC procedure, the null membership primarily depends on the proportion of C count

at one site instead of C count alone. The cutoff for the proportion is around a half

for all sites, which is intuitively more reasonable. Thus, the difference in the cutoff

values for these two procedures becomes more evident when coverage increases. This

difference is essentially caused by the underestimation of p1 in the procedure used

by [66], and it demonstrates that the procedure used by [66] lacks power in terms

of detecting unmethylated sites, especially for sites with moderate to high coverage.

Therefore, we believe the MSC procedure makes more accurate methylation status

calls for this type of disagreement.

MSC: Unmethylated Lister’s: Methylated

C count Coverage Null membership P-value

3 10 5.105499e-04 1.461094e-05

3 35 6.193205e-29 7.257909e-04

3 60 7.508808e-54 3.458198e-03

4 80 7.274099e-72 7.303491e-04

5 95 6.780415e-85 1.246015e-04

10 116 3.147355e-96 4.919773e-10

11 156 3.556955e-134 5.842736e-10

Table 2.8.
Typical examples of sites that the MSC procedure declares to be unmethy-
lated but the procedure used by [66] declares otherwise

As a final evaluation, the methylation calls for those sites that MSC and the

procedure used by [66] disagree on are compared to the results obtained from Infinium

Human Methylation 450K BeadChip. The Human Methylation 450K data used here
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is first analyzed by Merling et al. [85]. For those roughly 1.17 million sites that

MSC and the procedure used by [66] disagree on, 27,637 sites are covered by Human

Methylation 450K BeadChip. We use 0.5 as the cutoff value to dichotomize the beta

values in Human Methylation 450K BeadChip data to make binary methylation calls,

and compare the calls to those obtained from MSC and the procedure used by [66].

The comparison result is given in Table 2.9.

Table 2.9.
Third platform validation of the methylation calls for those sites that MSC
and the procedure used by [66] disagree on

Number of sites that agree Number of sites that disagree

Procedure with the third platform with the third platform

MSC 18,090 9,547

Lister’s 9,547 18,090

Table 2.9 shows that for nearly two thirds of the 27,637 target sites, the methy-

lation calls made by MSC are consistent with the calls made by Human Methylation

450K BeadChip. This suggests the calls made by the MSC procedure are more likely

to be correct than those obtained by the procedure used by [66].

2.4.3 Coverage Distribution

When fitting the coverage distribution, we find that the zero-truncated Negative

Binomial model provides a satisfactory fit. The pmf of the model is given as follows.

f(x; r, v) =
Γ(x+ r)vr(1− v)x

(1− vr)Γ(r)x!
.

Figure 2.5 and Table 2.10 display coverage data, fitted probabilities, estimated pa-

rameters for the MethylC-Seq data on Chromosome 1 from [66].
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v̂ r̂

0.1133268 2.7033616

Table 2.10.
Maximum Likelihood Estimates of v̂ and r̂ for Chromosome 1.

Histogram of Coverage on Chromosome 1
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Fig. 2.5. Histogram of the coverage with blue dots indicating fitted prob-
abilities.
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2.5 Recent Development on DNA Methylation Analysis and FDR Con-

trolling Procedures

2.5.1 DNA methylation status quantification for Bisulphite-sequencing

data

As pointed out in Baumann and Doerge [86], DNA methylation patterns can be dra-

matically heterogeneous between different annotated regions, which implies that it is

of value to bring annotation information into DNA methylation analysis. Baumann

and Doerge [87] incorporated the genome annotation information when analyzing

bisulphite-sequencing data, and proposed two differential methylation detection ap-

proaches, referred to as Methylation Analysis using Genome Information (MAGI).

In the first approach, each Cytosine in a given annotated region was tested for dif-

ferential methylation with Fisher’s exact test, and false discovery rate (FDR) was

controlled at a pre-specified level within the region. This procedure was employed

for each genome annotation region of interest. Subsequently, if the proportion of dif-

ferentially methylated sites within an annotated region exceeded a certain threshold,

the region was called to be differentially methylated. This approach is referred to as

MAGIC approach. In the second approach, the observed proportion of methylated

reads was first used to make the binary DNA methylation status call for each site: if

the proportion exceeded a certain threshold, the site was called to be methylated; oth-

erwise, it was called to be unmethylated. In Baumann and Doerge [87], the threshold

was chosen to be the mean of the two cluster centroids obtained by using the k-means

clustering on each chromosome and strand. Then, the site level methylation status

can be aggregated to the region level, and Fisher’s exact test with FDR controlled

at a pre-specified level can be conducted to detect differentially methylated genomic

regions. This approach is referred to as MAGIG approach. These two approaches

can work for both unreplicated and replicated data, and they can provide a gain in

statistical power, compared with existing differential methylation detection methods.
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Zheng et al. [88] focused on the DNA methylation status predictions for CpG sites

within CpG island (CGI). They considered a large collection of features, including

CGI-related attributes, DNA composition patterns, distributions of the transcription

factor binding sites, histone modification marks, and gene functions. These features

went through feature selection, and support vector machine was applied on the se-

lected features to quantify DNA methylation status. It was demonstrated that their

predictive models perform well for different cell types. It was also shown that histone

modification information makes a significant contribution to the prediction of DNA

methylation status.

Zhang et al. [89] used a random forrest (RF) classifier to make binary DNA methy-

lation status predictions at CpG sites. To build the classifier, they relied on 124

features that can be grouped into four classes: information on neighboring sites, ge-

nomic position, DNA sequence properties, and regulatory elements. They showed

their method achieves high accuracy for both genome-wide and CGI-specific DNA

methylation status predictions. Moreover, the contribution of each feature can be

evaluated to identify genomic features related to the occurence of DNA methylation.

They also compared the performance of the RF classifier with other popular classi-

fication algorithms, such as k-nearest neighbors classifier and logistic regression. It

was demonstrated that the RF classifier has higher prediction accuracy and larger

area under the receiver operating characteristic curve (AUC).

Prochenka et al. [90] pointed out that sometimes it may not be appropriate to

use our proposed approach [47] to make binary methylation status calls. The main

reason is that when there exists a mixture of DNA molecules, the methylation status

at a given C site can be heterogeneous. We acknowledge that for some studies, the

goal is to obtain continuous methylation status quantification, instead of binary ones.

In such studies, the memberships derived in our framework [47] can serve as the

continuous alternative to DNA methylation status quantification.
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2.5.2 Sequencing-based DNA Methylation Profiling Approaches

In the past few years, a number of new approaches have been developed for DNA

methylation profiling. As noted by Plongthongkum et al. [91], these new approaches

mainly aim to improve the current ones in four aspects: sample input, throughput,

accuracy and cost. To name a few among them, the dRRBS method [92] utilized a

pair of enzymes to fragment the sample DNAs. By doing this, an increased coverage

in both high-CG and low-CG regions can be achieved. As a result, higher through-

put and more accurate DNA methylation profiles can be yielded. Using barcoded

adapters, mRRBS [93] was able to process more samples in parallel, compared to

the original RRBS. As a result, mRRBS achieves increased throughput at lower cost.

Meanwhile, several attemps have been made to reduce the amount of sample DNAs re-

quired, for both whole-genome and CpG-specific methylation detection experiments.

They include LCM-RRBS [94], single-cell RRBS [95], Tn5mC-seq [96] and PBAT [97]

among others.

It has been discovered recently that hydroxymethylation is another important epi-

genetic modification to the carbon-5 position of the Cytosine. Traditional bisulphite

sequencing methods cannot distinguish between 5mC and 5hmC, as they both are

read as Cytosines after bisulphite treatment. To discriminate them effectively, oxida-

tive bisulfite sequencing (oxBs-seq) has been developed, where 5hmC was converted to

Uracil by oxidation and subsequent bisulphite treatment [98]. Thus, 5mC and 5hmC

became distinguishable at single-base resolution by comparing sequencing reads from

oxBs-seq and bisulphite-sequencing experiments. Other methods that can discrimi-

nate 5mC and 5hmC include RRHP [99] and TAB-Seq [100]. A detailed review of

recent development in DNA modification analysis can be found in Plongthongkum et

al. [91].

The development of third-generation sequencing technologies, such as single molecule

real time (SMRT) sequencing [101], induces a new category of DNA methylation pro-

filing methods. Flusberg et al. [102] introduced a direct DNA methylation detection
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method during SMRT sequencing, which did not need to apply bisulphite treatment;

Yang et al. [103] coupled bisulphite conversion with SMRT sequencing. As pointed

out by Plongthongkum et al. [91], the effectiveness of these third-generation sequenc-

ing based approaches still remains to be demonstrated.

2.5.3 FDR Controlling Procedures for Discrete Tests

As noted by Chen and Doerge [104], the existing FDR procedures usually suffer from

conservativeness when applied to discrete and heterogeneous tests. The reason is two-

fold. First, unlike the continuous scenario, the null distribution for the p-values from

discrete and heterogeneous tests is dominated by the standard Uniform distribution.

Second, the existing estimators for the true proportion of nulls have an upward bias.

Taking these two factors into consideration, Chen and Doerge [105] proposed a gener-

alized estimator for the true null proportion, a new divergence function, and a novel

grouping strategy for discrete and heterogeneous p-values based on the proposed di-

vergence. In addition to them, a novel FDR controlling procedure under discrete and

heterogeneous tests was introduced. This procedure can also be applied to continuous

tests, and is easy to implement as it does not require resampling. It was shown with

empirical studies that the proposed procedure is more powerful than other existing

procedures for the three widely used discrete tests, which are Binomial test, Fisher’s

exact test and Exact negative binomial test.

Heller and Gur [106] developed a FDR controlling procedure based on Benjamini

and Liu [107] by using the mid p-values instead of the original p-values, to mitigate

the effect of discreteness. This procedure is similar to the one proposed by Heyse [78]

where the mid p-values were combined with the procedure proposed by Benjamini

and Hochberg [67]. In simulation studies, it was shown that the mid p-value based

procedures are more powerful than the original ones.
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3. FUTURE WORK

3.1 Future Research Topics for Variable Selection under Single Index

Model

In this subsection, we will briefly discuss several future work directions for the pro-

posed BS-SIM framework. To begin with, we would like to extend our framework to

multi-index model

Y = f(XTB) + ε,

where B is a p×d matrix. One intuitive way here is to use d additive one-dimensional

spline functions. This approach has the advantage of conducting univariate estima-

tion for each projection direction, and can possibly avoid the curse of dimensionality.

However, it sacrifaces certain flexibility for modeling. Another way for estimating

multi-index model with our framework is to apply multivariate splines. This ap-

proach is more flexible than additive spline approach. Nevertheless, the number of

multivariate spline basis functions grows exponentially with the number of projection

directions d [29], and thus this approach may suffer from the curse of dimensionality.

We also would like to extend our framework to discrete response. This extension can

benefit a number of areas, such as marketing and risk management, where binary

response is frequently expected. Secondly, the cubic B-splines are applied in Chapter

1, and the number of knots used is determined by the rule of thumb. It has been

previously proved that N ∼ n1/5 is the optimal rate for the number of knots in terms

of minimizing the mean integrated squared error for nonparametric spline estimation.

In BS-SIM, we rely on this result to accomplish the selection for N . Nevertheless, we

show in Section 1.4 that the number of knots N also plays a crucial role in character-

izing BS-SIM’s ability in selecting the true variables. It would be of interest to study

the optimal choice for N in the sense that it can lead to the best performance on
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selection consistency. A related research direction is to look into the location of the

knots. In Section 1.1.4, we briefly mention several previous work on the placement for

the knots in spline estimation. It is also worthwhile to examine how to incorporate

these approaches into BS-SIM. Next, we will implement the algorithm for the linearly

constrained single index model developed in Section 1.7.2, and examine its perfor-

mance with simulation studies. Furthermore, it is also worthwhile to investigate the

theoretical properties of the resulting estimator.

3.2 Future Research Topics for DNA Methylation Status Calling

Our work in DNA methylation status calling also points to several future research

directions. It is interesting to study how to combine the newly developed methods

with our framework to make more precise DNA methylation calls or differential DNA

methylation detection. For instance, due to the discreteness and heterogeneity of the

p-values in our framework, the FDR procedure proposed in Chen and Doerge [105]

can be applied and lead to a more powerful FDR controling procedure. On the other

hand, Bowtie was used to align the read sequences by Lister et al. [66]. This may lead

to a bias towards the reference allele. How to correct this bias is worth exploring.

Possible solutions include the methods proposed by Wu et al. [108] and Yuan et

al. [109].
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[8] J. L. Horowitz and W. Härdle, “Direct semiparametric estimation of single-
index models with discrete covariates.” Journal of the American Statistical As-
sociation, vol. 91, pp. 1632–1640., 1996.

[9] Y. Xia, H. Tong, W. K. Li, and L. Zhu, “An adaptive estimation of dimension
reduction space (with discussion).” Journal of the Royal Statistical Society,
Series B, vol. 64, pp. 363–410, 2002.

[10] K. C. Li, “Sliced inverse regression for dimension reduction (with discussion).”
Journal of the American Statistical Association, vol. 86, pp. 316–342., 1991.

[11] R. D. Cook and B. Li, “Dimension reduction for the conditional mean in re-
gression.” Annals of Statistics, vol. 30, pp. 455–474, 2002.

[12] B. Li and S. Wang, “On directional regression for dimension reduction,” Journal
of the American Statistical Association, vol. 102, p. 997, 2007.

[13] L. Wang and L. Yang, “Spline estimation of single-index models.” Statistica
Sinica, vol. 19, pp. 765–783, 2009.

[14] P. Naik and C.-L. TSAI, “Single-index model selections.” Biometrika, vol. 88,
pp. 821–832, 2001.

[15] K. E. and X. Y.C., “Variable selction for the single-index model.” Biometrika,
vol. 94, pp. 217–229, 2007.



100

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso.” Journal of
the Royal Statistical Society, Series B, vol. 58, pp. 267–288, 1996.

[17] P. Zhao and B. Yu, “On model selection consistency of lasso.” Journal of Ma-
chine Learning Research, pp. 2541–2563, 2006.

[18] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and
its oracle properties.” Journal of the American Statistical Association, vol. 96,
pp. 1348–1360, 2001.

[19] H. Zou, “The adaptive lasso and its oracle properties.” Journal of the American
Statistical Association, vol. 101, no. 476, pp. 1418–1429, 2006.

[20] E. J. Candes and T. Tao, “The dantzig selector: Statistical estimation when p
is much larger than n (with discussion).” The Annals of Statistics, vol. 35, pp.
2313–2404, 2007.

[21] Q. Wang and X. Yin, “A nonlinear multi-dimensional variable selection method
for high dimensional data: Sparse mave.” Computational Statistics and Data
Analysis, vol. 52, pp. 4512–4520, 2008.

[22] P. Zeng, T. He, and Y. Zhu, “A lasso-type approach for estimation and vari-
able selection in single index models.” Journal of Computational and Graphical
Statistics, vol. 21, pp. 92–109, 2012.

[23] T. Wang, P. Xu, and L. Zhu, “Penalized minimum average variance estimation.”
Statistica Sinica, vol. 22, pp. 543–569, 2013.

[24] I. E. Frank and J. H. Friedman, “A statistical view of some chemometrics
regression tools (with discussion).” Technometrics, pp. 109–148, 1993.

[25] H. Peng and T. Huang, “Penalized least squares for single index models.” Jour-
nal of Statistical Planning and Inference, vol. 141, pp. 1362–1379, 2011.

[26] J. Lv and Y. Fan, “A unified approach to model selection and sparse recovery
using regularized least squares.” The Annals of Statistics, vol. 37, no. 6, 2009.

[27] M. Nikolova, “Local strong homogeneity of a regularized estimator.” SIAM J.
Appl. Math., no. 61, pp. 633–658, 2000.

[28] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag, 2001.

[29] H. T. Friedman, J. and R. Tibshirani, The elements of statistical learning. New
York: Springer series in statistics, 2001.

[30] S. Zhou and X. Shen, “Spatially adaptive regression splines and accurate knot
selection schemes.” Journal of the American Statistical Association, vol. 96, pp.
247–259, 2001.

[31] M. Osborne, B. Presnell, and T. B.A., “Knot selection for regression splines via
the lasso.” Computing Science and Statistics, vol. 30, pp. 44–49, 1998.

[32] J. Nocedal and S. Wright, Numerical Optimization. New York: Springer-
Verlag, 2006.



101

[33] G. Schwarz, “Estimating the dimension of a model.” Annals of Statistics, vol. 6,
no. 2, pp. 461–464, 1978.

[34] J. Shao, “An asymptotic theory for linear model selection (with discussion).”
Statistica Sinica, vol. 7, pp. 221–264, 1997.

[35] H. Wang, B. Li, and C. Leng, “Shrinkage tuning parameter selection with a
diverging number of parameters.” Journal of the Royal Statistical Society, Series
B, vol. 71, pp. 671–683, 2009.

[36] Y. Fan and C. Tang, “Tuning parameter selection in high dimensional penalized
likelihood.” Journal of the Royal Statistical Society, Series B, vol. 75, pp. 531–
552, 2013.

[37] J. Chen and Z. Chen, “Extended bayesian information criteria for model selec-
tion with large model space.” Biometrika, vol. 95, pp. 759–771, 2008.

[38] M. Ming and Y. He, “Pten: new insights into its regulation and function in skin
cancer.” Journal of Investigative Dermatology, vol. 129, pp. 2109–2112, 2009.

[39] S. Piccolo, M. Cordenonsi, and S. Dupont, “Molecular pathways: Yap and
taz take the center stage in organ growth and tumorigenesis.” Clinical Cancer
Research, vol. 19, pp. 4925–4930, 2013.

[40] A. Roesch and et al., “Overexpression and hyperphosphorylation of retinoblas-
toma protein in the progression of malignant melanoma.” Modern Pathology,
vol. 18, pp. 565–572, 2005.

[41] M. Lu and et al., “Restoring p53 function in human melanoma cells by inhibiting
mdm2 and cyclin b1/cdk1-phosphorylated nuclear iaspp.” Cancer Cell, vol. 23,
pp. 618–633, 2013.

[42] Z. Liu and et al., “Notch1 signaling promotes primary melanoma progression by
activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-akt
pathways and up-regulating n-cadherin expression.” Cancer Research, vol. 66,
pp. 4182–4190, 2006.

[43] T. He, “Lasso and general l1 regularized regression under linear equality and
inequality constraints.” Ph.D. thesis, Purdue University, 2011.

[44] G. James, C. Paulson, and P. Rusmevichientong, “The constrained lasso.” Tech-
nical report, University of Southern California, 2012.

[45] S. Rosset and J. Zhu, “Piecewise linear regularized solution paths.” The Annals
of Statistics, vol. 35, no. 3, pp. 1012–1030, 2007.

[46] S. van de Geer, Empirical Processes in M-Estimation. Cambridge University
Press, 2000.

[47] L. Cheng and Y. Zhu, “A classification approach for dna methylation profiling
with bisulfite next-generation sequencing data.” Bioinformatics, vol. 30, 2014.

[48] S. Berger, T. Kouzarides, R. Shiekhattar, and A. Shilatifard, “An operational
definition of epigenetics.” Genes Dev., vol. 23, 2009.



102

[49] R. Feil and M. Fraga, “Epigenetics and the environment: emerging patterns
and implications.” Nature Reiew. Genetics, vol. 13, pp. 97–109, 2011.

[50] P. Laird, “Principles and challenges of genomewide dna methylation analysis.”
Nature Reviews Genetics, vol. 11, pp. 191–203, 2010.

[51] K. Robertson, “Dna methylation and human disease.” Nature Reviews Genetics,
vol. 6, pp. 597–610, 2005.

[52] H. Hayatsu, “Discovery of bisulfite-mediated cytosine conversion to uracil, the
key reaction for dna methylation analysis a personal account.” Proc. Jpn Acad.
Ser. B Phys. Biol. Sci., vol. 84, pp. 321–330, 2008.

[53] M. Frommer and et al., “A genomic sequencing protocol that yields a positive
display of 5-methylcytosine residues in individual dna strands.” Proc. Natl Acad.
Sci. USA, vol. 89, pp. 1827–1831, 1992.

[54] M. R. Estecio and et al., “High-throughput methylation profiling by mca cou-
pled to cpg island microarray.” Genome Research, vol. 17, pp. 1529–1536, 2007.

[55] M. Weber and et al., “Distribution, silencing potential and evolutionary impact
of promoter dna methylation in the human genome.” Nature Genetics, vol. 39,
pp. 457–466, 2007.

[56] M. Bibikova and et al., “Genome-wide dna methylation profiling using infinium
assay.” Epigenomics 1, pp. 177–200, 2009.

[57] M. Metzker., “Sequencing technologies - the next generation.” Nature Reviews
Genetics, vol. 11, 2010.

[58] M. Oda and et al., “High-resolution genome-wide cytosine methylation profil-
ing with simultaneous copy number analysis and optimization for limited cell
numbers.” Nucleic Acids Research, vol. 37, pp. 3829–3839, 2009.

[59] T. A. Down and et al., “A bayesian deconvolution strategy for
immunoprecipitation-based dna methylome analysis.” Nature Biotechnology,
vol. 26, pp. 779–785, 2008.

[60] R. Lister and et al., “Human dna methylomes at base resolution show
widespread epigenomic differences.” Nature, vol. 462, pp. 315–322, 2009.

[61] A. Meissner and et al., “Reduced representation bisulfite sequencing for com-
parative high-resolution dna methylation analysis.” Nucleic Acids Research.,
vol. 33, pp. 5868–5877, 2005.

[62] R. Harris and et al., “Comparison of sequencing-based methods to profile dna
methylation and identification of monoallelic epigenetic modifications.” Nature
Biotechnology, vol. 28, pp. 1097–1105, 2010.

[63] Z. Smith and et al., “High-throughput bisulfite sequencing in mammalian
genomes.” Methods, vol. 48, pp. 226–232, 2009.

[64] C. Bock and et al., “Quantitative comparison of genome-wide dna methylation
mapping technologies.” Nature Biotechnology, vol. 28, pp. 1106–1114, 2010.



103

[65] H. Gu and et al., “Genome-scale dna methylation mapping of clinical samples
at single-nucleotide resolution.” Nature Methods, vol. 7, pp. 133–136, 2010.

[66] R. Lister and et al., “Hotspots of aberrant epigenomic reprogramming in human
induced pluripotent stem cells.” Nature, vol. 471, pp. 68–73, 2011.

[67] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practi-
cal and powerful approach to multiple testing.” Journal of the Royal Statistical
Society, Series B, vol. 57, pp. 289–300, 1995.

[68] J. D. Storey, “A direct approach to false discovery rates.” Journal of the Royal
Statistical Society, Series B, vol. 64, pp. 479–498, 2002.

[69] ——, “The positive false discovery rate: a bayesian interpretation and the q-
value.” Annals of Statistics, vol. 31, pp. 2013–2035, 2003.

[70] J. D. Storey and R. Tibshirani, “Statistical significance for genome-wide stud-
ies.” Proceedings of the National Academy of Sciences, vol. 100, pp. 9440–9445,
2003.

[71] B. Efron, R. Tibshirani, J. Storey, and V. Tusher, “Empirical bayes analysis
of a microarray experiment.” Journal of the American Statistical Association,
vol. 96, pp. 1151–1160, 2001.

[72] B. Efron, “Size, power and false discovery rates.” The Annals of Statistics,
vol. 35, pp. 1351–1377, 2007.

[73] J. Liao, Y. Lin, Z. Selvanayagam, and J. Weichung, “A mixture model for
estimating the local false discovery rate in dna microarray analysis.” Bioinfor-
matics, vol. 20, pp. 2694–2701, 2004.

[74] D. B. Allison, G. L. Gadbury, M. Heo, J. R. Fernandez, C. K. Lee, T. A. Prolla,
and R. Weindruch, “A mixture model approach for the analysis of microarray
gene expression data.” Computational Statistics and Data Analysis, vol. 35, pp.
1–20, 2002.

[75] R. E. Tarone, “A modified bonferroni method for discrete data.” Biometrics,
vol. 46, p. 515, 1990.

[76] P. Gilbert, “A modified false discovery rate multiple-comparisons procedure for
discrete data, applied to human immunodeciency virus genetics.” Journal of the
Royal Statistical Society, Series C, vol. 54, pp. 143–158, 2005.

[77] S. Pounds and C. Cheng, “Robust estimation of the false discovery rate.” Bioin-
formatics, vol. 22, 2006.

[78] J. Heyse, “A false discovery rate procedure for categorical data.” In Recent
Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related
Topics, pp. 43–58, 2011.

[79] F. Krueger and et al., “Dna methylome analysis using short bisulfite sequencing
data.” Nature Methods, vol. 9, pp. 145–151, 2012.

[80] G. Wu and et al., “Statistical quantification of methylation levels by next-
generation sequencing.” PLoS ONE, vol. 6, 2011.



104

[81] C. Wu, “On the convergence properties of the em algorithm.” Annals of Statis-
tics, vol. 11, pp. 95–103, 1983.

[82]

[83] K. Basford and G. McLachlan, “Estimation of allocation rates in a cluster
analysis context.” Journal of the American Statistical Association, vol. 80, pp.
286–293, 1985.

[84] W. Sun and T. Cai, “Oracle and adaptive compound decision rules for false
discovery rate control.” Journal of the American Statistical Association, vol.
102, pp. 901–912, 2007.

[85] R. Merling and et al., “Transgene-free ipscs generated from small volume pe-
ripheral blood nonmobilized cd34+ cells.” Blood, vol. 121, pp. 98–107, 2013.

[86] D. Baumann and R. Doerge, “Issues in testing dna methylation using next-
generation sequencing.” The Proceedings of the Kansas State University Con-
ference on Applied Statistics in Agriculture. Manhattan, KS, p. 1, 2011.

[87] ——, “Magi: methylation analysis using genome information.” Epigenetics,
vol. 9, 2014.

[88] H. Zheng, H. Wu, J. Li, and S.-W. Jiang, “Cpgimethpred: computational model
for predicting methylation status of cpg islands in human genome.” BMC Med-
ical Genomics, vol. 6, 2013.

[89] W. Zhang, T. Spector, P. Deloukas, J. Bell, and B. Engelhardt, “Predicting
genome-wide dna methylation using methylation marks, genomic position, and
dna regulatory elements.” Genome Biology, vol. 16, 2015.

[90] A. Prochenka and et al., “A cautionary note on using binary calls for analysis
of dna methylation.” Bioinformatics, vol. 31, 2015.

[91] N. Plongthongkum, D. Diep, and K. Zhang, “Advances in the profiling of dna
modifications: cytosine methylation and beyond.” Nature, vol. 15, 2014.

[92] J. Wang and et al., “Double restriction-enzyme digestion improves the coverage
and accuracy of genome-wide cpg methylation profiling by reduced representa-
tion bisulfite sequencing.” BMC Genomics, vol. 11, 2013.

[93] P. Boyle and et al., “Gel-free multiplexed reduced representation bisulfite se-
quencing for large-scale dna methylation profiling.” Genome Biology, vol. 13,
2012.

[94] M. Schillebeeckx and et al., “Laser capture microdissection reduced represen-
tation bisulfite sequencing (lcm-rrbs) maps changes in dna methylation associ-
ated with gonadectomy-induced adrenocortical neoplasia in the mouse.” Nucleic
Acids Research, vol. 41, 2013.

[95] H. Guo and et al., “Single-cell methylome landscapes of mouse embryonic stem
cells and early embryos analyzed using reduced representation bisulfite sequenc-
ing.” Genome Research, vol. 23, p. 2126, 2013.

[96] A. Adey and J. Shendure, “Ultra-low-input, tagmentation-based whole-genome
bisulfite sequencing.” Genome Research, vol. 22, p. 1139, 2012.



105

[97] F. Miura and et al., “Amplification-free whole-genome bisulfite sequencing by
post-bisulfite adaptor tagging.” Nucleic Acids Research, vol. 40, 2012.

[98] M. J. Booth and et al., “Oxidative bisulfite sequencing of 5-methylcytosine and
5-hydroxymethylcytosine.” Nature Protocols, vol. 8, p. 1841, 2013.

[99] A. Petterson and et al., “Rrhp: a tag-based approach for 5-
hydroxymethylcytosine mapping at single-site resolution.” Genome Biology,
vol. 15, p. 456, 2014.

[100] M. Yu and et al., “Base-resolution analysis of 5-hydroxymethylcytosine in the
mammalian genome.” Cell, vol. 149, p. 1368, 2012.

[101] J. Eid and et al., “Real-time dna sequencing from single polymerase molecules.”
Science, vol. 323, p. 133, 2009.

[102] B. A. Flusberg and et al., “Direct detection of dna methylation during single-
molecule, real-time sequencing.” Nature Methods, vol. 7, p. 461, 2010.

[103] Y. Yang and et al., “Quantitative and multiplexed dna methylation analysis
using long-read single-molecule real-time bisulfite sequencing (smrt-bs).” BMC
Genomics, vol. 16, p. 350, 2015.

[104] X. Chen and R. Doerge, “Towards better fdr procedures for discrete test statis-
tics.” The Proceedings of the Kansas State University Conference on Applied
Statistics in Agriculture. Manhattan, KS, p. 294, 2012.

[105] ——, “A weighted fdr procedure under discrete and heterogeneous null distribu-
tions.” ArXiv e-prints, http://arxiv.org/pdf/1502.00973v2.pdf., Last modified:
Oct 19th, 2015.

[106] R. Heller and H. Gur, “False discovery rate controlling procedures for discrete
tests.” ArXiv e-prints, http://arxiv.org/abs/1112.4627., 2012.

[107] Y. Benjamini and W. Liu, “A step-down multiple hypotheses testing procedure
that controls the false discovery rate under independence.” Journal of Statistical
Planning and Inference, vol. 82, p. 163, 1999.

[108] T. Wu and et al., “Fast and snp-tolerant detection of complex variants and
splicing in short reads.” Bioinformatics, vol. 26, pp. 873–881, 2010.

[109] S. Yuan and et al., “Read-mapping using personalized diploid reference genome
for rna sequencing data reduced bias for detecting allele-specific expression.”
BIBM 2012 Workshop on Data-Mining of Next Generation Sequencing, 2013.



VITA



106

VITA

Longjie Cheng was born and raised in Wuhan, China. She majored in Statistics

in college, and received her bachelor degree in 2010 from Wuhan University. She then

joined Department of Statistics at Purdue University in 2010.


	Purdue University
	Purdue e-Pubs
	January 2015

	On New Approaches for Variable Selection under Single Index Model and DNA Methylation Status Calling
	Longjie Cheng
	Recommended Citation


	tmp.1540581489.pdf.tWLlq

