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ABSTRACT

Chen, Ningning PhD, Purdue University, December 2015. Assessing Inter-rater Agree-
ment for Compositional Data. Major Professor: Bruce A. Craig.

Compositional data are non-negative vectors whose elements sum to one (e.g., [0.1,

0.5, 0.4]). This type of data occurs in many research areas where the relative magni-

tudes between the vector’s elements are of primary interest. In this dissertation we

propose novel methodology for assessing inter-rate agreement based on compositional

data. This is needed because existing agreement measures either involve converting

the vector to a univariate value, thereby losing information, or they fail to account

for the sum-to-one restriction. We propose a novel Bayesian approach, enabled by

Markov chain Monte Carlo, to investigate di↵erences in the pattern of compositional

vector scores. We extend our model to handle discrete compositional scores, com-

parisons involving more than two raters, and studies that involve replicate scores on

the same subjects. Numerous simulation studies are used to demonstrate the validity

of our model and the advantages of our approach. Both simulated data and a real

scoring data set are analyzed to illustrate our method and compare it to traditional

agreement indices. The application of this new methodology is focused on pathol-

ogy, where pathologists rate immunohistochemistry (IHC) assays using compositional

scores. To enhance the use of this methodology and help with the design of future

agreement studies, an R Shiny package designed for the IHC agreement analysis is

developed.
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CHAPTER 1. OVERVIEW OF COMPOSITIONAL DATA

1.1 Introduction

Compositional data are non-negative vectors whose elements sum to one. Because

each vector sums to one (or 100%), the vectors carry only relative information. This

type of data arises in numerous research areas. A geologist may describe samples of

rock by the proportional makeup of di↵erent minerals. A demographer may describe

cities in terms of their racial breakdowns. Lastly, a forest researcher may quantify

patches of forest by the relative amount of woody plants, mosses, fungi, and flowering

plants.

Inference using these data has primarily focused on the comparison of group means

and developing classifiers to discriminate groups. For example, geologists compare

the geochemical composition of rock and soil from di↵erent locations. They also

classify rocks or soil samples based on their geochemical components. For the latter,

the classifier may utilize all the elements in the compositional vector or only a subset

of components. Studies like these help geologists better understand di↵erent rock

formations and transformation processes throughout history.

For example, in order to elucidate the nature of the petrogenetic and tectonic

processes that a↵ected the Cenozoic volcanites in Hungary, Kovács et al. (2006) ap-

plied discrimination analysis to separate alkaline basalt from calc-alkaline rocks. The

compositional separation disclosed for these two types of rocks provided quantita-

tive interpretations of stratigraphical and petrographical processes. Another study,

provided by Thomas and Aitchison (2006), used variably impure metamorphosed

Scottish Dalradian limestones to help correlate and discriminate lithostratigraphical

sequences. That is, the succession of strata or rock layers that can be recognized and

defined based on the observable rock geochemical components.
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In pathology, researchers classify tissue in terms of cell abnormalities and/or de-

viations in their rate of growth. To classify breast cancer, special antibodies that

identify the HER2/neu protein are applied to breast tissue. The antibodies are flu-

orescently tagged so when they attach to HER2 proteins, the cells with the protein

will fluorense. The test result is typically reported as the percent of cells in a breast

tissue sample that fall in di↵erent staining intensity categories. Cancers that are

HER2-positive have a large amount of HER2/neu protein, resulting in a high percent

of strong intensity cells. A decision rule determines whether the breast tissue sample

belongs to the HER2-positive, inconclusive, or HER2-negative group.

Animal habitat or resource selection studies are particular important in providing

indications of the life history, physiology, and ethological traits of a focal species.

Data are frequently collected with geographic information system (GIS) and individ-

ual radio-trackers. An individual’s home range is described in terms of the relative

proportions of di↵erent types of habitat. An individual’s habitat use over a specific

time frame is also described by the relative amount of time spent in each of these

habitats. There is interest in comparing the means of available habitat to the means

of focal individuals’ habitat use, or comparing the means of habitat use across dif-

ferent groups of animals. Aebischer et al. (1993), for example, considered a paired

comparison compositional analysis using two data sets: 13 radio-tagged Ring-necked

Pheasants in Ireland (Robertson 1986) and 17 radio-tagged Gray Squirrels in United

Kingdom (Kenward 1982).

Besides classification and the comparison of means, researchers are also interested

in assessing how much variability in the vector components is explainable by other

factors or covariates. Aitchison (1986) investigated the relationship between lake

sediment compositions and water depth. In economics, compositional data analysis is

used to study how consumers allocate their budgets or expenditures among available

commodities, using exogenous variables (e.g., prices). Woodland (1979), Ronning

(1992) and Fry et al. (1996, 2000, 2001) proposed di↵erent methods to estimate the

shares of expenditures. Details of these approaches are discussed later.
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Despite the fact that compositional data are widely used by researchers, the sum-

to-one constraint is often ignored when analyzing these data. This has continued de-

spite numerous warnings by researchers about using statistical methods designed for

unconstrained multivariate data (Pearson, 1897; Chayes, 1971; Rock, 1988; Rollinson

1992). Since compositional vectors are normalized to one (or 100%), element depen-

dencies and negative correlations are introduced. With many conventional statistical

analyses, it is impossible to distinguish correlation induced by the sum-to-one con-

straint from the natural correlation among vector components. The latter is often

the purpose of the analysis. Pearson (1897) used the term “spurious correlation”

to describe the correlation between ratios of absolute measurements that arises as a

consequence of using ratios. In Chayes’s book (1971), he discusses the implications

of conventional statistical analyses in great detail.

Another key analytic issue with compositional analysis is the occurrence of zero

components. For example, when counting plant species within a forest site, it could

happen that one species of plant exists but is not observed in the limited sampling

area. Zero components can also happen in geochemical or biological studies when

the percentage of a chemical is below some detection limit. Finally, zeros are also

possible when components are “truly” missing. A type of plant, for example, may

not exist at a site or a geochemical component may not exist in a type of rock.

Zeros in compositional vectors make the analysis more di�cult because the com-

mon distributions used to describe compositional data do not accommodate zeros.

To address the zero issue, one must first determine whether the zeros are true or

rounded/censored. There are imputation methods to deal with rounded zeros in com-

positional data, including both nonparametric (Aitchison, 1986; Mart́ın-Fernández,

2003) and parametric (Palarea-Albaladejo et al., 2007) replacement strategies. These

imputations work under di↵erent assumptions. To address true zero issues, some hier-

archical models have been developed (Aitchison and Kay, 2003; Bacon-Shone, 2008).

Details of these procedures are discussed later in this chapter.
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For my research, I consider a di↵erent type of inference involving compositional

data. In many of the examples I’ve previously introduced, the compositional vectors

were subjectively determined by researchers. This subjectivity can be problematic.

When classifying tissue samples, for example, there is not just one pathologist look-

ing at all the samples. An agreement among pathologists is pertinent for a consistent

diagnosis. At this time, there is no methodology available that assesses agreement

using the compositional score vectors directly. This work fills this gap. Before de-

scribing our approach, we first use the remainder of Chapter 1 to provide a review of

compositional data and its terminology and properties. Then in Chapter 2, we discuss

the statistical approaches to assess agreement. We describe our modeling approach

in Chapter 3 and then follow this up with some simulation studies and the analysis

of real data in Chapter 4. We conclude with a summary of our approach and future

directions for research.

1.2 Basic Concepts

John Aitchison was the first statistician to publish a book on compositional data.

In his book, The Statistical Analysis of Compositional Data, he defined a composition

as follows:

Definition 1.1 A vector, x = [x1, x2, . . . , xD

], is a D-part composition when all

its elements are positive real numbers that sum to one.

Compositional vectors are di↵erent from standard vectors in RD

+ due to the constraint
P

D

i=1 xi

= 1.

Definition 1.2 The sample space of compositional data is:

SD =
n

x = [x1, x2, . . . , xD

]
�

�

�

x

i

> 0, i = 1, 2, . . . , D;
D

X

i=1

x

i

= 1
o

.

SD is a D-dimensional simplex embedded in D-dimensional positive real space RD

+ so

we have the subset relationship: SD ⇢ RD

+ ⇢ RD.
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Sometimes, compositions are represented asw = [w1, w2, . . . , wD

] with w1, w2, . . . , wD

2
R+ and

P

D

i=1 wi

= W . If D-1 elements of the composition as well as the constant

sum W are known, this composition is completely determined. Aitchison, however,

did not call this a composition.

Definition 1.3 For any vector w 2 RD

+ (w
i

> 0 for i = 1, 2, . . . , D) where W =
P

D

i=1 wi

, the closure of w is defined as:

C[w1, w2, . . . , wD

] =
h

w1

W

,

w2

W

, . . . ,

w

D

W

i

.

Given a vector w 2 RD

+ , a D-part composition x is simply the closure of w.

In practice, it is sometimes computationally di�cult and/or unnecessary to include

all possible components in an analysis. In these cases, analysis of a subcomposition

is more attractive. For example, Carr (1981) investigated a set of 102 rock specimens

and reported the data in terms of the relative weights of 10 oxides. Geologists,

however, are more commonly interested in just a few oxides (e.g., CaO, Na2O and

K2O). We can use the closure of a vector with just those three oxides to form a

subcomposition.

Definition 1.4 For a D-part composition x and its subvector x
s

= [x
i1 , xi2 , . . . , xi

s

],

the subcomposition of x with s parts is defined as C[x
s

], where i1, i2, . . . , is indicates

the selected indices of x.

Inference of compositional data is di↵erent from the analysis of vectors in real

space because of the unit sum constraint. Any analytic approach that ignores the

unit sum constraint may result in misleading results. Aitchison (1986) proposed that

compositional data analysis must meet three principles:

(i) scale invariance.

(ii) permutation invariance.

(iii) subcompositional coherence.



6

Scale invariance can easily be derived from the closure function (Definition 1.3). If

x,y 2 RD

+ and y = �x, where � is a positive real number, then C[x] = C[y]. Permu-

tation invariance means that any function applied to compositional data yields the

same result regardless of the order of the components in the composition. Subcom-

positional coherence means that any results found by analyzing any subcomposition

should be consistent with the results when analyzing the full compositions.

In additional to these three principles, Aitchison (1986) also introduced basic

operations in the D-dimensional simplex that are the analogues to operations in RD.

Definition 1.5 Assume x is a D-part composition and let u 2 RD

+ . A perturbation

is defined as

X = u� x = C[u1x1, u2x2, . . . , uD

x

D

].

Without loss of generality, we can restrict the perturbation vector u to the simplex

space SD. This is because of the scale invariance of the closure.

We call  x the inverse element of x as it undoes a perturbation. It is defined to

be  x = C[1/x1, 1/x2, . . . , 1/xD

]. Thus,

X x = C[X1/x1, X2/x2, . . . , XD

/x

D

] = [u1, u2, . . . , uD

].

If we perturb x with itself, then x � x = C[x2
1, x

2
2, . . . , x

2
D

]. Similarly, x � x � x =

C[x3
1, x

3
2, . . . , x

3
D

]. This procedure, perturbing a composition by itself many times, is

defined as powering. A more general powering definition is as follows:

Definition 1.6 If x is a D-part composition and let u 2 RD, then the powering

operation � is

X = u� x = C[xu1
1 , x

u2
2 , . . . , x

u

D

D

].
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In addition to powering, there is also the inner product of two compositions.

Definition 1.7 The inner product of two compositions x,y 2 SD is

hx,yi
S

=
D

X

i=1

log
x

i

g(x)
log

y

i

g(y)
,

where g(·) is the geometric mean of the composition, i.e., g(x) = (x1x2 · · · xD

)1/D.

Accordingly, the norm and distance between two vectors in SD are defined as

kxk
S

= hx,xi =
v

u

u

t

D

X

i=1

✓

log
x

i

g(x)

◆2

and

d(x,y)
S

= kx yk
= kC[x1/y1, . . . , xD

/y

D

]k

=

(

D

X

i=1

h

log

✓

x

i

/y

i

g(x)/g(y)

◆

i2
)1/2

=

(

D

X

i=1

h

log

✓

x

i

g(x)

◆

� log

✓

y

i

g(y)

◆

i2
)1/2

.

The distance above is called the Aitchison distance and is shown to meet all three

invariance principals for compositional data analysis.

1.3 Modeling Compositional Data

Because of the sum-to-one constraint, there are two common approaches to de-

scribe and model compositional data. We discuss each of these in this section.

1.3.1 Log-ratio transformations

Log-ratio transformations provide a way to connect compositions in the SD simplex

space with the more familiar multivariate analyses in the RD�1 Euclidean space.

There are three popular transformations available. They are the
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(i) Additive log-ratio transformation (Aitchson, 1986)

(ii) Centered log-ratio transformation (Aitchson, 1986)

(iii) Isometric log-ratio transformation (Egozcue et al., 2003)

Definition 1.8 The additive log-ratio transformation, alr(x), is a one-to-one

transformation from x 2 SD to y 2 RD�1 where

y

i

= log(x
i

/x

D

) (i = 1, 2, . . . , D � 1).

Under this transformation, the y vector no longer has the unit-sum constraint. The

divisor x

D

doesn’t necessarily need to be the last component in the composition.

Di↵erent choices of the divisor will result in di↵erent additive log-ratios. Since the

transformed data are all in reference to the component used in the denominator, we

have to be careful in choosing metrics applied to the alr transformed data and in

interpretation. For instance, a naive Euclidean distance of alr transformed data is

not permutation invariant and thus should not be used.

Definition 1.9 The centered log-ratio transformation, clr(x), is a one-to-one

transformation from x 2 SD to z where

z

i

= log(x
i

/g(x)) (i = 1, 2, . . . , D),

and g(·) is the geometric mean function. The inner product and Aitchison distance

between two compositions can be expressed in forms of the clr:

kxk
S

=
D

X

i=1

�

clr(x
i

))2,

d(x,y)
S

=

(

D

X

i=1

h

clr(x
i

)� clr(y
i

)
i2
)1/2

.

The clr transformation avoids the issue of choosing an arbitrary divisor as with the

alr transformation and it is symmetric in the components (permutation invariant),
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but the z vector has a zero-sum constraint
P

D

i=1 zi = 0. Because of this zero-sum con-

straint, the covariance matrix of z is singular and thus eliminates the use of standard

multivariate methods. Furthermore, the clr transformation doesn’t preserve subcom-

positional coherence, because the geometric mean of the parts of a subcomposition is

not necessarily equal to that of the full composition.

Definition 1.10 The isometric log-ratio transformation, ilr(x), is based on

the choice of an orthonormal basis (in the Euclidean sense) on the hyperplane H :

z1 + · · · + z

D

= 0 in RD that is formed by the clr transformation. Egozcue et al.

(2003) suggested the basis

v
i

=

r

i

i+ 1

✓

1

i

, . . . ,

1

i

,�1, 0, . . . ,
◆

0

(i = 1, 2, . . . , D � 1).

Then x 2 SD can be transformed to y 2 RD�1 as

y

i

= ilr(x) =

r

i

i+ 1
log
h

g(x)

x

i+1

i

(i = 1, 2, . . . , D � 1),

where g(·) is the geometric mean function.

There is a relationship between clr and ilr that can be expressed as

z = Vy,

where V = (v1, . . . ,vD�1) is the D ⇥ (D � 1) matrix with orthonormal basis vec-

tors on the hyperplane H. The ilr preserves all the merits of clr with the additional

advantage that it avoids the singularity introduced by clr. Thus standard multivari-

ate procedures can be used straightaway. However, the interpretation in terms of

the transformed components is di�cult because ilr-coordinates refer to “mixtures”

of components. The clr transformation preserves the direct one-to-one relationship

between the components and the clr-coordinates.

1.3.2 Logistic Normal distribution

In order to describe the variability of observations in the simplex sample space,

a parametric class of distributions on SD has to be well-defined. Aitchison (1986)
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proposed using the Normal distribution to model the log-ratio transformed data. Let

N
D

(µ,⌃) denote the D-dimensional Normal distribution with mean vector µ and

covariance matrix ⌃.

Definition 1.11 A D-part composition x follows the additive logistic Normal distri-

bution L
D

(µ,⌃) when y = alr(x) ⇠ N
D�1(µ,⌃). Under this distribution,

E[y
i

] = E[log(x
i

/x

D

)],

⌃ = [�
i,j

] = cov[log(x
i

/x

D

), log(x
j

/x

D

)],

where i, j = 1, . . . , D � 1.

It is also possible to parametrize the logistic Normal class using the clr but this

requires di↵erent specifications of the mean vector and the covariance matrix. With

the clr transformation, the dimension of the covariance matrix of the logistic Normal

increases from (D�1)⇥ (D�1) to D⇥D. To avoid this unnecessary complication in

matrix specification with clr, all further discussion about logistic Normal distributions

consider the alr transformation.

Aitchson (1986) proved that the logistic Normal distributions have many nice

properties. For example,

(i) Every subcomposition of a logistic Normal composition has a logistic Normal

distribution.

(ii) A conditional subcomposition also follows a logistic Normal distribution.

(iii) Logistic Normal distributions preserve all three principles of compositional anal-

ysis: scale invariance, permutation invariance, and subcompositional coherence.

Though the logistic Normal distribution maintains nice moment properties from the

Normal distribution, its inferences are all based on the ratio of two components rather

than the original components. However, there is no direct transformation from the

moments of the alr back to the moments of the original components. This often leads

to an interpretion di�culty.
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1.3.3 Dirichlet distributions

The log-transformation converts a compositional vector on SD to the real space

RD�1. Alternatively, one could consider analysis directly on the simplex space. In

that situation, Dirichlet distributions are a parametric class of distributions on the

simplex space SD and its use in compositional data analysis dates back to 1969 when

Connor and Mosimann proposed the Dirichlet distribution as a null model for rats’

bone structure components and turtles’ scute proportions.

Definition 1.12 A compositional vector x 2 SD follows the Dirichlet distribution

D
D

(↵) with density function

�(↵1 + ↵2 + · · ·+ ↵

D

)

�(↵1) · · ·�(↵D

)

D

Y

i=1

x

↵

i

�1
i

, where all ↵
i

> 0.

The support of the Dirichlet distribution is exactly the D-dimensional simplex. Let-

ting ↵0 = ↵1 + ↵2 + · · ·+ ↵

D

, this distribution has the following moment properties:

(i) E(x
i

) = ↵

i

/↵0.

(ii) Var(x
i

) = ↵

i

(↵0 � ↵

i

)/↵2
0(↵0 + 1).

(iii) Cov(x
i

, x

j

) = �↵
i

↵

j

/↵

2
0(↵0 + 1), (i 6= j).

A D-part composition that follows a Dirichlet distribution can be visualized as a

composition formed from D independent gamma-distributed components. That is, if

w1, w2, . . . , wD

are independent random variables from Gamma(↵
i

, 1) (i = 1, . . . , D),

then x = C[w1, w2, . . . , wD

] has the Dirichlet distribution D
D

(↵) with the param-

eter vector ↵ = (↵1,↵2, . . . ,↵D

). As a potential model for compositional data, the

Dirichlet distribution is far more restrictive than the logistic Normal as it implies that

the correlation between any two components of the composition are proportional to

�↵
i

↵

j

.
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Aitchison (1986) minimized the Kullback-Leibler divergence (KL) of the logis-

tic Normal L
D

(µ,⌃) and the Dirichlet D
D

(↵) to determine an appropriate logistic

Normal distribution that approximates the Dirichlet. This KL distance is

K(p, q) =

Z

SD
p(x|↵) log

⇣

p(x|↵)

q(x|µ,⌃)
⌘

dx,

where p(x|↵) and q(x|µ,⌃) are the density functions of the Dirichlet D
D

(↵) and the

logistic Normal L
d

(µ,⌃) distributions.

The parameters for the logistic Normal are:

µ

i

=  (↵
i

)�  (↵
D

) (i = 1, . . . , D � 1),

�

ii

=  

0
(↵

i

)�  

0
(↵

D

) (i = 1, . . . , D � 1), (1.1)

�

ij

=  

0
(↵

D

) (i 6= j = 1, . . . , D � 1),

where  (·) and  

0
(·) are the first and second derivatives of the gamma function

�(·). This approximation is particularly accurate for large ↵. In fact, when all

↵

i

!1 at the same rate (i = 1, . . . , D), L
D

(µ,⌃)! D
D

(↵) in distribution.

1.4 Statistical Inference Methods

The general approach to compositional data analysis is to apply some transfor-

mation to move the problem to the more familiar Euclidean space, and then apply

standard multivariate statistical modeling or statistical testing (Filzmoser, 2012).

Far fewer studies have analyzed compositional data directly in the simplex space. We

describe both approaches in this section.

1.4.1 Log-ratio analysis

Comparing means

An example of comparing means is a habitat study provided by Aebischer et

al. (1993). They compared habitat use and availability of habitat-types for a given
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home range. For each individual animal i (i = 1, . . . , n), a compositional vector of

habitat-type availability within its home range, denoted as x
iA

= [x
iA1 , . . . , xiA

D

], is

compared to the proportions of sequentially collected radio locations from the tagged

animal, denoted as x
iU

= [x
iU1 , . . . , xU

D

]. If the habitat types are used randomly,

then µ

x

iA

= µ

x

iU

. Equivalently, given the alr transformation y
iA

= alr(x
iA

) and

y
iU

= alr(x
iU

), the null hypothesis then becomes a standard test of whether the

mean di↵erences between the habitat use and availability d = µ(y
iU

�y

iA

) follow a

multivariate Normal distribution N
D�1(0,⌃).

When the interest is in comparing average habitat use between two di↵erent an-

imal groups, it is equivalent to constructing a multivariate two–sample test. For

example, let x
g

i

(i = 1, . . . ,m) and x
k

i

(j = 1, . . . , n) denote the proportions of col-

lected radio locations from the tagged animal g
i

in group G and the tagged animal

k

j

in group K, respectively. Letting y
g

i

= alr(x
g

i

) and y
k

j

= alr(x
k

j

), a standard

two–sample test such as Hotelling’s T 2 (1931) can then be used for the null hypothesis

µ

y

G

= µ

y

K

.

Classification

The earliest study on classification using compositional data goes back to Toucher

(1908), who classified boys to each county in Scotland according to various physi-

cal characteristics. Perhaps better known studies of classification with compositional

data are in petrology, where the geochemical composition, e.g., relative percentage of

chemical oxides, are used to classify rock samples (Thompson et al., 1972; Carr, 1981).

To describe the approach, we consider Carr (1981), who collected 102 rock samples,

and classified them into Permian and Post Permian rock types using just their geo-

chemical characteristics. Carr considered logistic discriminant analysis (Cox, 1966;

Anderson, 1972; Dawid, 1976), a well-established method to model type probabilities

given a vector of diagnostic features. His training set consisted of 65 Permian and
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37 Post-Permian rock samples and each composition x 2 S10, contained the relative

percentages of 10 major oxides.

Aitchison (1986) argued that using the raw, untransformed compositions x in

such logistic discriminant modeling is misleading because the covariance matrix con-

structed from the raw proportions has little validity in providing useful information

about the nature of dependence between the components of the composition. He

proposed applying the alr transformation to the raw compositions before performing

the logistic discriminant analysis on the transformed vectors y. The corresponding

logistic form of the model is:

log(
p1

1� p1
) = �0 + �1y1 + · · ·+ �9y9,

where p1 is the probability the sample is Permian. By using standard maximum

likelihood estimation methods, the estimates of � can be obtained.

Using the full compositions, Aitchison found three misclassifications in Permian

and six misclassifications in post-Permian. He also conducted systematic subcompo-

sition analyses to investigate which of the 10 components significantly contribute to

the estimated rock type identity by applying �2 test to each subcompostion model.

The conclusion from Aitchison’s subcompostion analysis is that there are two 6-part

subcompostions that are adequate for classifying rock types. The misclassifications

from the two subcompsitional analysis are four in Permian, seven in post-Permian,

and two in Permian, six in post-Permian respectively. This contradicts Carr’s (1981)

result that some 2– or 3–part subcompostions would be adequate. Even though

Carr’s results concluded 95.1% maximum separation between these two types of rocks,

Aitchison was concerned about the overfit of Carr’s analysis.

Linear modeling

In economics, estimating the relative shares of demand in total expenditure is

closely related to compositional data analysis. The shares of total expenditure fall in

the interval [0,1] and the sum of all shares should be equal to one. In a system of share
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equations, the shares are determined by two components: a deterministic component

and a stochastic component. The deterministic component is derived from economic

theory. A traditional approach to estimate and predict the shares equations is:

w

ij

= W

i

(z,�) + e

ij

, i = 1, . . . , N � 1; j = 1, . . . ,m,

where N is the number of goods, m is the number of individuals, z is a vector of

exogenous variables, (i.e., prices and expenditures), � are the parameters, and the

W

i

()’s are the deterministic functions from economic theory which are restricted to

the simplex. Due to the unit sum constraint, there are only N � 1 share equations

to be estimated. The deviations (e
1

, e
2

, . . . , e
N�1

) are typically assumed to follow a

(N-1)-variate Normal distribution N
N�1(0,⌦).

Since this assumption of e results in non-zero probabilities of the estimated shares

falling outside [0,1], it is obviously not an appropriate assumption. Fry et al. (1996)

proposed that a logistic Normal distribution is a more realistic stochastic component.

A direct approach is to model the alr transformed observed shares,

y

ij

= log(w
ij

/w

Nj

),

in terms of the parameters µ and ⌃. The vector µ can be written in terms of the

exogenous variables z and the parameters �:

µ

i

(z,�) = log(W
i

(z,�)/W
N

(z,�)).

This gives the following form for estimation of alr transformed observed shares:

y

ij

= log(w
ij

/w

Nj

) = log(W
i

(z,�)/W
N

(z,�)) + v

ij

, i = 1, . . . , N � 1; j = 1, . . . ,m,

where v is assumed to have additive logistic Normal distribution L
N

(0,⌃) such that

the shares w is distributed as logistic Normal. This assumption ensures that the

estimated shares will fall into the interval [0,1]. Another advantage of assuming the

logistic Normal distribution for the stochastic component is that it allows w

i

to be

estimated as zero. For goods i and a particular value of z and �, if W
i

(z,�) = 0, then
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the deterministic part of y
i

is �1. When we apply alr transformation on w

i

and any

drawing of v
i

still gives y
i

= �1, thus w
i

is modeled as zero. With the traditional

approach, w
i

will always result in a non-zero estimated value.

Principal component analysis

Compositional data are often high-dimensional and hard to visualize. Dimension-

reduction techniques are often used to obtain lower-dimensional data without losing

much information. Aitchison (1986) proposed the log-contrast principal component

analysis as the standard principal component analysis (PCA) for compositional data.

The procedure of doing log-contrast principal component analysis is the same as the

standard principal component analysis in RD. However, the eigensolutions for the

covariance structure of the clr transformed compositions should be used instead of raw

compositions. The alr transformation and the ilr transformation are not preferable

here because a di↵erent choice of denominator component in alr transformation results

in di↵erent log-contrast and new variables are not directly interpretable by using the

ilr transformation.

Definition 1.13 Let �1,�2, . . . ,�D be the D positive eigenvalues of the centered

log-ratio covariance matrix � in a descending order, i.e., �1 > �2 >, · · · , > �

D

and

↵1, . . . ,↵D

are the corresponding standardized eigenvectors, satisfying

(�� �

i

I)↵
i

= 0 (i = 1, 2, . . . , D),

then ↵

0
i

log x is termed the ith logcontrast principal component.

Logcontrast principal components preserve the orthogonal and uncorrelated prop-

erties in the sense that ↵
0
i

↵

j

= 0 (i 6= j) and Cov(↵
0
i

log x,↵
0
j

log x) = 0. The pro-

portion of the total variability that is explained by the first c log-contrast principal

components is then
c

X

i=1

�

i

/

D

X

i=1

�

i

.
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After the introduction of the use of log-contrast principal component in PCA,

Flizmoser et al.(2009) proposed a robust PCA for compositional data to handle out-

liers. This procedure is based on a robust covariance estimator, like the minimum

covariance determinant (MCD). Since MCD only works for nonsingular data with

rank equal to the number of variables, the ilr transformation is applied to the original

compositional data for the use in robust PCA. Examples of classical PCA and robust

PCA were provided in Flizmoser’s paper (2009) using the Baltic Soil Survey (BSS)

data (Reimann et al., 2003). The data consist of 769 samples of agricultural soil com-

ing from two di↵erent layers, labeled top and bottom. All samples are represented as

compositions with more than 40 chemical elements. A PCA inspection of this data

set provides a better understanding of the relations between the chemical elements as

well as how the geochemical processes would a↵ect the element distribution in the sur-

vey area. In particular, visualizing the first few PCs shows the regions where certain

concentrations are higher or lower due to some key geochemical processes. Because

the di�culty of interpreting the results given ilr transformed space, the loadings and

scores have to be back-transformed to the clr space.

1.4.2 Dirichlet analysis

Linear modeling

In the section on log-ratio linear modeling, Fry et al. (1996) proposed to use the

logistic Normal distribution to model the shares in the share equations to account for

the restriction that all shares have to fall in [0,1] interval. Woodland (1979) noted

this restriction as well and proposed using the Dirichlet distribution.

Recall that the system of N shares equations for an individual are

w

i

= W

i

(z,�) + e

i

, i = 1, . . . , N.

If the shares vector w is assumed to follow a Dirichlet distribution D
N

(↵) and ↵ is

defined in terms of the vector of exogenous variables z and � as ↵
i

= kS

i

(z,�) (i =
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1, 2, . . . , N, k > 0), then immediately we have the following covariance structure from

Dirichlet properties:

Var(w
i

) = ↵

i

(↵0�↵i

)/↵2
0(↵0� 1) = W

i

(z,�)(1�W

i

(z,�))/(↵0+1), i = 1, 2, . . . , N,

Cov(w
i

, w

j

) = �↵
i

↵

j

/↵

2
0(↵0�1) = �Wi

(z,�)W
j

(z,�)/(↵0+1), i 6= j, j = 1, 2, . . . , N,

where S0 =
P

N

i=1 Si

(z,�) and ↵0 =
P

N

i=1 ↵i

= kS0. The parameter k can be viewed

as a variance parameter. The bigger k is, the smaller are all the elements of the

covariance matrix while the mean vector of w is fixed. Parameters � and k can be

obtained by maximizing the log-likelihood function of the Dirichlet.

Classification

Statistical classification with compositional data can also be done using Dirichlet

regression. Consider a medical example dealing with the di↵erential diagnosis for

two diseases based on the composition of four serum protein components provided

by Maier (2014). These data include 30 blood samples of diagnosed patients, and 6

more samples of patients who are undiagnosed. The purpose of the study is to classify

the undiagnosed patients based on the classifier built from the 30 diagnosed samples.

The Dirichlet regression for classification in this example can be set up as

y
i

⇠ D4(↵i) (i = 1, . . . , 30),

and

g(↵
c

) = X�

c

(c = 1, 2, 3, 4),

where y
1

, . . . ,y
30

are the 30 diagnosed blood samples and the predictor X is the

indicator of disease type. The g(·) is the log link function since ↵

ic

> 0. The

parameters � can be obtained using standard MLEs.

To make predictions for the undiagnosed patients, a likelihood-based approach

can be used here. That is, calculate the Dirichlet likelihoods of the new observations

given the parameters of both disease groups and assign the new observations to the

disease type with the larger likelihood.
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Comparing means

Even though no explicit studies have been found using Dirichlet distributions

to compare compositional means across di↵erent groups, a likelihood ratio based

approach could be used to test the di↵erence of means in this case. For example,

a separate Dirichlet model can be fit within each group and an overall model is fit

using all the data. One can then construct a hypothesis test for comparing means by

comparing the corresponding likelihoods.

1.5 Compositional Analysis with Zeros

A common issue with compositional data is the presence of zeros. There are two

types of zeros: essential (or true) zeros and rounded (or censored) zeros. Essential

zeros mean that some elements in the composition vector are actually zero, or absent.

The pattern of occurrence of true zeros should be investigated and separately mod-

eled. Most zeros occur because of rounding/censoring. Rounded zeros mean that the

value of a present component is either below a detection limit or zero due to chance

variation.

All the transformation techniques we discussed in Section 1.4 can not be directly

used on compositional data with zero elements. For example, if the component with

a zero is chosen to be the denominator in the alr transformation, the transformed

composition doesn’t exist. Similarly, the geometric average g(·) will end up as zero

if any element is zero. Therefore, both clr and ilr transformations are not applicable

without some adjustments of the zeros. Finally, a D-dimensional Dirichlet distribution

does not allow a zero to occur in any of the D components. Because zeros cannot be

handled in a log-transformation (logistic Normal) or Dirchlet settings, it is common

to treat them as censored data and impute a non-zero value prior to analysis.
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1.5.1 Nonparametric replacement strategy for rounded zeros

Nonparametric replacement is a general strategy to replace rounded zeros. In

Aitchison’s book (1986), the following additive replacement strategy for rounded zeros

is suggested.

r

j

=

8

<

:

�(Z+1)(D�Z)
D

2 , if x
j

= 0,

x

j

� �(Z+1)(Z)
D

2 , if x
j

> 0,

where x is a D-part composition with Z rounded zeros and � is a small value, less

than a given threshold. Aitchison (1986) conducted sensitivity analysis and suggested

the range �

r

5  �  2�
r

, where �
r

is the maximum rounding-o↵ error for �. Sandford,

Pierson, and Crovelli (1993) consider 0.55 as a suitable imputed value of the threshold.

Mart́ın-Fernández (2003) argued that the Aitchison distance between two replaced

compositions using additive replacement strategy is extremely sensitive to changes in

�. Also if x has more than one zero value, then r

j

r

k

6= x

j

x

k

, for x
j

> 0, x
k

> 0. Therefore,

the covariance structure of the subcomposition on these parts is not preserved.

Alternatively, many researchers simply replace the rounded zeros in a composition

x by a small quantity to obtain a vector of positive components, w 2 RD. Then the

closure operation is used to get r = C(w). This simple replacement strategy can be

expressed as

r
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:
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1+

P
k|x
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=0 �k
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, if x
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= 0,
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, if x
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Mart́ın-Fernández (2003) proposed the multiplicative replacement strategy:

r

j

=

8

<

:

�

j

, if x
j

= 0,

(1�P
k|x

k

=0 �k)xj

, if x
j

> 0.

When the percent of rounded zeros in the full data set is less than 10%, Mart́ın-

Fernández (2003) recommends imputing zeros with the values equal to 65% of the
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threshold using multiplicative replacement. He argues this imputation minimizes the

distortion of the covariance matrix. Actually, the simple replacement strategy and

the multiplicative replacement strategy are equivalent when the zero components are

imputed with the same value. Using the multiplicative replacement, the imputed

zero components do not depend on the amount of parts D nor the number Z of ze-

ros. It is also intuitive that if �
j

is equal to the “true” detection limit or censored

value, then the “true” composition can be recovered. The simple replacement strat-

egy does not explicitly satisfy this property unless it is made to be equivalent to the

multiplicative replacement. Moreover, the multiplicative replacement strategy pre-

serves subcomposition invariance, perturbation invariance, and power transformation

invariance properties. Thus it is more suitable than the additive replacement strategy

and generally recommended.

1.5.2 Parametric replacement strategy

When the proportion of zeros is large (e.g., more than 10%), a parametric im-

putation strategy is recommended. Such imputation fully depends on the choice of

parametric distribution. The EM algorithm (Dempster et al., 1977) is a well-known

iterative procedure to impute missing data based on observed data. The standard EM

can deal with values missing at random (MAR), which means the probability that a

value is missing depends on the observed data but not the missing data. However,

the rounded zeros in compositional data occur when they are below a detection limit,

which means they are not missing at random (NMAR). Here we outline two popular

EM imputations for NMAR compositional data based on the additive logistic Normal

distribution and Dirichlet distributions.

Modified EM algorithm based on additive log-ratio transformation

Palarea-Albaladejo et al. (2007) developed a modified EM algorithm to impute

rounded zeros based on the alr transformation. Let Y = (Y
obs

,Y
mis

) be the com-

plete compositional dataset with Y
obs

and Y
mis

denoting the observed and missing
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compositional parts, respectively. Let ✓ denote the unknown parameters of the prob-

ability distribution P for the complete data. Let L(✓|Y) denote the corresponding

log-lilkelihood function.

Modified E-step with alr transformation: In a standard E-step, we compute the

conditional expectation Q(✓|✓(t)),

Q(✓|✓(t)) =

Z

L(✓|Y)P (Y
mis

|Y
obs

;✓(t))dY
mis

.

With compositional data, suppose y
i

= alr(x
i

) where x
i

= [x
i1, xi2, . . . , xiD

] and

i = 1, 2, . . . , n. Assume the complete transformed data Y follow a logistic Normal

distribution L
D

(µ,⌃). Let  = ( 
ij
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j

/x

iD

)) where �
j

is the detection limit

or threshold for the component x

j

. Note that x

D

has to be a component without

zeros. In the modified E-step, we compute the conditional expectation incorporating

the detection limit information,
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where var(y
j

) = �
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j

, and � and � are the density and the distribution function of the

standard Normal respectively. On the t th iteration, we replace the values in Y by

y

(t)
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Modified M-step with alr transformation: This step is the same as the standard

M-step by maximizing the Normal log-likelihood given the complete dataset Y in t th

iteration.

EM algorithm based on Dirichlet distribution

Hijazi (2011) provides the details of the EM algorithm for rounded zeros under

Dirichlet models. Suppose X = (X
obs

,X
mis

) be the complete compositional dataset
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which follow D-dimensional Dirichlet distribution D
D

(↵).  is the detection limit for

x

ij

. The E-step for this algorithm:
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The conditional expectation above can be written as:
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where ↵0 =
P

D

j=1 ↵j

, F1 and F2 are the distribution functions of beta random variables

with parameters (↵
j

+ 1,↵0 � ↵j

) and (↵
j

,↵0 � ↵j

) respectively. This comes directly

from the Dirichlet property that the marginal distribution of a Dirichlet is a beta

distribution.

Bayesian replacement algorithm for zero counts

Compositional data can also be formed by scaling counts data to sum to one.

If the counts for D categories w1, w2, . . . , wD

contain any zero count(s), then the

formed compositional vector x = C(w1, w2, . . . , wD

) will contain zero component(s).

For rounded zeros due to zero counts, Daunis-i-Estadella et al.(2008) introduced a

Bayesian-multiplicative approach as a replacement strategy for zero counts. Let w
i

be the counts vector and T

i

=
P

D

j=1 wij

be the total count. The w
i

can be viewed

as coming from a multinomial distribution with associated probabilities ✓

i

. The

conjugate distribution of the multinomial parameters ✓

i

is a Dirichlet distribution

with parameter vector ↵
i

, where ↵
ij

= k

i
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ij

, j = 1, 2, . . . , D. From Bayes theorem,

after applying such priors on ✓
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Then the replacement strategy can be written as

r

ij
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Notice that this strategy coincides with the multiplicative replacement when �

ij

=
↵

ij

T

i

+k

i

. Thus all desirable properties obtained by multiplicative replacement (Mart́ın-

Fernández, 2003) can be satisfied by the Bayesian-multiplicative approach.

1.5.3 Handling true zeros

All the strategies described above are used to replace rounded zeros. Dealing with

essential zeros is more complicated and there is not a well-founded general approach to

the problem. A few approaches have been proposed to handle the essential zeros when

the components are either percents or counts. If we have percent essential zeros occur,

an approach based on a binomial conditional logistic Normal model (Aitchison and

Kay 2003) seems to be promising. On the other hand, if we have count essential zeros,

an approach based on the Poisson-Log Normal distribution may be more appropriate

(Bacon-Shone 2008). Both approaches are based on the idea of hierarchical modeling:

first model the pattern of zeros for multiple components, then model the composition

conditional on the particular pattern. This is similar to the idea of two-part models

and can be viewed as an extension of the zero problem in univariate analyses cases.

However, there remains many questions about these two approaches, such as the

estimability of parameters and the complexity of computations, therefore they are

rarely used in practice.
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1.6 Discussion

Log-ratio transformations serve as a bridge to connect the simplex space with Eu-

clidean space thereby allowing standard multivariate statistical techniques. However,

there have been a number of criticisms towards the di↵erent forms of log-ratios. The

biggest criticism about the alr transformation is in the choice of element to be the

divisor. In most of the literature, it appears the divisor is chosen arbitrarily. Even

though Aitchison (1986, 2000) has shown that multivariate linear regressions with

compositional data as the dependent variable are invariant to the choice of divisor, it

still remains problematic because the distances between alr transformed data points

are not consistent given di↵erent divisors. This might lead to inconsistent conclusions

when comparing compositional means across groups. That’s why the clr transforma-

tion is usually used for computing the distance between two compositional vectors

as clr provides a symmetric transformation method. Moreover, if a large number of

zeros are present in all the components across the compositional vectors, the EM

replacement strategy is not applicable because it requires at least one component

without zeros to be the divisor in the alr transformation. The clr transformation

avoids the need of choosing the divisor but the covariance matrix of clr is singular

and clr doesn’t preserve subcomposition coherence, making it di�cult to adapt to

standard statistical procedures without special modifications. The idea of the ilr

transformation is that compositions can be represented by their coordinates in the

simplex with an orthonormal basis. Using ilr avoids both the arbitrariness of divisor

in alr and the singularity of covariance matrix in clr. Unfortunately, there is not a

unique and simple basis as in RD for ilr and the interpretation of the results may be

di�cult, since there is no one-to-one relation between the original components and

the transformed variables.

The logistic Normal distribution and the Dirichlet distribution are two popular

parametric classes in the simplex and a lot of statistical applications are developed

based on these two distributions. Dirichlet distributions, indeed, have more restric-
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tions than the logistic Normal distribution as it assumes a specific negative correlation

structure among the components. Another strong restriction of the Dirichlet distri-

butions is the complete subcompositional independence. That is, C[x
s

] ? C[x�s

] for

each possible partition of the composition. As a consequence, Dirichlet distributions

are considered as the model of maximum independence compatible with unit-sum

constrained random variables.

In contrast, logistic Normal distributions allow for a more flexible covariance struc-

ture, including both positive and negative correlations among the components, and

more importantly, its normality assumption makes parameter estimation easier. How-

ever, it cannot handle strong forms of independence (Rayens and Srinivasan, 1994).

There is also the trade-o↵ between its flexibility and parsimony. Logistic Normal

distributions require (D � 1)(D + 2)/2 parameters while Dirichlet distributions re-

quire only D parameters. In practice, if we don’t have enough information in the

data to estimate a flexible covariance structure, Dirichlet distributions are the usual

alternative. Furthermore, Berhm et al. (1998) performed a Monte Carlo simulation

study comparing the performance of Dirichlet distributions and logistic Normal dis-

tributions on multivariate linear modeling with compositional data. The conclusion

was when compositional distributions are influenced by common covariates, i.e., co-

variates that influence all the components, the Dirichlet distribution was as successful

as the logistic Normal distribution. He also showed that as the correlations between

log-ratios increase, both approaches gave more errors on the parameter estimates

thus no obvious evidence favors the logistic Normal distribution over the Dirichlet

distribution.

Another advantage of Dirichlet distributions is that they provide easy interpre-

tation to the statistical questions in respect to the original components. Given an

alternative way of parametrizing Dirichlet distribution as D
D

(µ, k), where µ is a D-

dimensional vector indicating the “location” and k is the “variance” parameter, it is

straightforward to interpret a Dirichlet distributed composition x as E(x) = µ and

k describes how tightly the compositional point concentrates on its mean µ. Com-
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pared to the Dirichlet covariance structure, the logistic Normal covariance structure

provides an interpretation of relative information between ratios of components, but

not in terms of the original components.

Several generalizations of the Dirichlet class has been proposed in the literature,

e.g., the scaled Dirichlet (Aitchison, 2003), the generalized Liouville (Rayens and

Srinivasan, 1994), the conditional generalized liouville (Smith, 2002), and the flex-

ible Dirichlet (Ongaro, 2008). The purpose of these generalizations is to relax the

strong independent assumption so that they can be used to model various forms of

dependence structure of compositional data. However, we’ve seen little use of these

generalized distributions in practice because they require a larger number of param-

eters.

1.7 Our Compositional Data Problem

As discussed in the introduction, there are some compositional data problems that

remain open. One such statistical question is the evaluation of agreement between

pairs of compositional vectors. For example, in diagnostic testing of tumors, one

may want to know how well pathologists agree with each other or agree with a gold

standard. Immunohistochemistry (IHC) is a staining process usually performed on

cancer tissues. Pathologists give vectors of scores representing proportions of cells

with di↵erent staining levels. A popular scoring vector is the percent of cells falling

into negative, weak, moderate, and positive staining categories. This scoring can be

viewed as counting the number of cells within the di↵erent staining intensities and

then applying the closure (Definition 1.3).

The vector provided by a pathologist for a tissue sample will vary not only be-

cause of inherent variability in this counting/closure process but also because the true

distribution of the cells varies slide to slide and the category cutpoints that define

the intensity categories are likely subjective. Identifying and eliminating this last

source of variability is important because it results in as consistent a diagnosis as



28

possible given the inherent variability in scoring. Thus a common question in this

area of research is: how to assess inter-rater agreement given pairs of compositional

vectors across di↵erent slides? This thesis provides methodology to do this and that

is described in Chapter 3. In Chapter 2, we provide an overview of rater agreement

methodology to help set the stage for this novel work.
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CHAPTER 2. ASSESSING INTER-RATER AGREEMENT

2.1 Introduction

Inter-rater agreement is a measure of the similarity in ratings or scores among

multiple raters or observers. Agreement in scores is very important when there is

a common scoring scale and consistency in category classifications across raters is

desired. A similar but distinct measure is inter-rater reliability, which assesses the

relative similarity or relative order of ratings.

Two raters may have very high inter-rater reliability but very low inter-rater

agreement. For example, the pairs of scores (1,2), (2,3), (3,4), and (4,5) have high

reliability. However, if the scoring scale is such that 1s are classified as negative, scores

of 2 and 3 as neutral, and scores of 4 and 5 as positive, the pairs of classifications are

(�, 0), (0, 0), (0,+), and (+,+). Only two of the four pairs give similar classifications.

To have high inter-rater agreement, the scores must be consistently the same. Inter-

rater reliability allows the scores of one rater to also be consistently higher or lower

than the other rater. In this chapter, we focus on the discussion of the measures of

agreement, that is, the absolute di↵erences between scores.

In medicine, raters are typically physicians or automated diagnostic devices. These

raters assess a patient’s severity of disease or illness. In practice, these scores can be

nominal, ordinal, or continuous. For instance, nominal scores occur in diagnostic test-

ing when raters classify patients as having or not having a certain medical condition.

Ordinal scores occur when raters determine severity status or disease progression,

such as the five stages of beta-cell dysfunction of Type I diabetes. Continuous scores

occur in some common screening tests, including systolic blood pressure for hyper-

tension, thyroid-stimulating hormone (TSH) for hypothyroid and hyperthyroid, and

fasting blood cholesterol for heart disease.
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Initial attempts to assess inter-rater agreement focused on analyzing nominal

scores. For example, Goodman and Kruskal (1954) used the observed proportion

of agreements as a measure of agreement. Scott (1955) introduced a chance-corrected

version of this measure and this was extended by Cohen (1960) to form the kappa

coe�cient. The kappa coe�cient and its extensions (Cohen, 1968; Fleiss, 1971; Bar-

low et al., 1991) are commonly used to assess agreement when scores are nominal or

ordinal.

For continuous scores, the intraclass correlation coe�cient (ICC) (Shrout and

Fleiss, 1977) and the concordance correlation coe�cient (CCC) (Lin, 1989) are two

popular inter-rater agreement measures. These measures focus on the ratio of between-

subject variability relative to the total variability. The ICC relies on ANOVA assump-

tions while the CCC does not.

More recently, the coe�cient of inter-rater variability (CIV) was proposed (Haber,

2005) as an inter-rater agreement index. It looks at the ratio of between-rater vari-

ability relative to the total rater-related variability. Soon after, Barnhart (2007a) pro-

posed another inter-rater agreement index, called the coe�cient of individual agree-

ment (CIA). The CIA can be viewed as an extension of the CIV to the cases with and

without a reference/gold standard. When agreement is assessed without an existing

reference/gold standard, the CIA is equivalent to the CIV. Because of their more

recent development, the CIV and the CIA are far less used.

Finally, the introduction of the iota coe�cient by Janson (2001) extended the as-

sessment of agreement among multiple raters with nominal or continuous multivariate

scores. In the nominal setting, the iota coe�cient can also be viewed as the extension

of the kappa coe�cient.

In addition to agreement indices, log-linear models and latent-class models have

been proposed to model agreement pattern for univariate nominal or ordinal data

(Tanner and Young, 1985 a, b; Graham, 1995; Agresti, 1988, 1992). We discuss the

details of these approaches later.
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In the reminder of this chapter, we provide more details of these agreement models

and indices. We conclude with a section on compositional data, providing justification

for the need of alternative measures in this setting.

2.2 Inter-rater Agreement Indices

This overview will follow the development of agreement indices chronologically.

This means that we start with the analysis of nominal and ordinal scores and then

move to the analysis of continuous scores, both univariate and multivariate. We con-

clude with a discussion of the limitations with these methods and models to identify

patterns of agreement.

2.2.1 Kappa coe�cient and its extension

As mentioned in the introduction, the earliest measures of agreement were simply

the proportion of observed agreements (Goodman and Kruskal, 1954). This index

ranges from 0 to 1, with 1 signifying perfect agreement. When raters are uncertain

about a classification, a degree of guessing may occur. This simple agreement measure

does not take into account any possibility that some agreements may occur by chance.

Several chance-corrected measures were proposed with the kappa coe�cient being the

most commonly used measure of rater agreement (Cohen, 1960).

Consider two raters and a nominal or ordinal score scale consisting of m levels.

We can summarize the joint evaluation of n objects in a m ⇥m contingency table,

where the rows refer to the scores from Rater 1 and the columns refer to the scores

from Rater 2. Each cell c
ij

in this table represents the number of objects in which

Rater 1 classifies the object in level i and Rater 2 classifies the object in level j.

Let p

ij

= c

ij

/n, p

i.

=
P

m

j=1 cij/n, and p

.j

=
P

m

i=1 cij/n be the observed cell,

row, and column proportions, respectively. The observed proportion of agreement

between the two raters is p0 =
P

m

i=1 pii. Assuming independence among evaluations
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and raters, the expected proportion of agreement by chance is p
c

=
P

m

i=1 pi.p.i. Given

these two proportions, the kappa coe�cient is defined to be

̂ =
p0 � p

c

1� p

c

.

Theoretically, the range of ̂ is from -1 to 1, though it is usually observed between

0 and 1. A value of 1 represents perfect agreement (i.e., p0 = 1.0) while a value of

0 represents pure chance agreement. The value, p
c

, is the proportion of times raters

would agree if they randomly assign a score on every case with the probabilities that

match their marginal proportions of ratings. Landis and Koch (1977) categorized the

degree of agreement based on di↵erent ranges of kappa values. These categorizations

are shown in Table 2.1. While commonly used, this interpretation is subjective and

by no means universally accepted.

Table 2.1.
Interpretation of  by Landis and Koch (1977)

 Interpretation

< 0 Poor agreement

(0.01� 0.20) Slight agreement

(0.21� 0.40) Fair agreement

(0.41� 0.60) Moderate agreement

(0.61� 0.80) Substantial agreement

(0.81� 1.00) Almost perfect

Some researchers (e.g., Uebersax, 1987) argued that the kappa coe�cient is not

a “true” chance-corrected measure as claimed because it supposes that raters simply

assign a score at random on every case when not completely certain. A more e↵ective

way to account for this is done by modeling rater agreement (e.g., Agresti, 1992). We

will discuss such models later in next section.
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The kappa coe�cient treats all disagreements between categories equally. How-

ever, this is not always desired. When considering an ordinal score, disagreements

between extreme categories may be considered more severe than disagreements be-

tween adjacent categories. For example, in a cancer diagnostic study, a disagreement

when the classifications are benign and cancerous, is far more egregious than a dis-

agreement when the classifications are neutral and benign.

In 1968, Cohen proposed a weighted kappa coe�cient, which incorporates sub-

jective disagreement weightings. Suppose w

ij

represents the weight assigned to the

(i, j)th cell, the weighted kappa coe�cient is then

̂

w

=

P

m

i=1

P

m

j=1 wij

p

ij

�Pm

i=1

P

m

j=1 wij

p

i.

p

.j

1�Pm

i=1

P

m

j=1 wij

p

i.

p

.j

, (w
ij

2 R+).

When w

ij

= 1 for i = j and w

ij

= 0 for i 6= j, the weighted kappa ̂
w

is equal to the

kappa coe�cient ̂.

Studies have showed that the kappa coe�cient is sensitive to di↵erent populations

of subjects and di↵erent marginal distributions of ratings (Feinstein and Cicchetti,

1990; Byrt et al., 1993). For example, the kappa coe�cient can only reach its theo-

retical maximum value of 1 when both raters have the same marginal distribution of

ratings. This sensitivity leads to an interpretation di�culty of the kappa coe�cient

and further complicates the interpretation of ̂ (Table 2.1). We can calculate the

maximum value kappa can achieve given unequal marginal distributions to help in-

terpret the kappa value obtained. Often tests for marginal homogeneity of ratings are

suggested before considering the kappa coe�cient. It is also recommended to avoid

comparing kappa coe�cients across di↵erent studies and populations.

Under the assumption of homogenous marginal distributions, Bloch and Kraemer

(1989) introduced an alternative version of Cohen’s kappa, called the intraclass kappa.

The intraclass kappa is defined for data consisting of dichotomous scores on each of

n subjects sampled from a population. It is assumed that the two scores for each

subject are interchangeable, i.e., in the population of subjects, the two scores for

each subject have a distribution that is invariant under permutations of the raters.
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Let x

ij

denote the score for the ith subject by Rater j and p

i

= P(x
ij

= 1) denote

the probability that subject i is a “success”. Over the population of subjects, let

E(p
i

) = P and var(p
i

) = �

2
P

, then the intraclass kappa can be expressed as



I

=
�

2
P

P (1� P )
.

The expected probability of each of the cell frequencies based on our model is listed

below:

Table 2.2.
The probability model for the joint responses

x

i1 x

i2 Obs. freq. Expected probability

1 1 c11 P

2 + �

2
P

1 0 c10 P (1� P )� �

2
P

0 1 c01 P (1� P )� �

2
P

0 0 c00 (1� P )2 + �

2
P

The MLE of the intraclass kappa can be obtained as

̂

I

=
4(c00c11 � c01c10)� (c01 � c10)2

(2c00 + c01 + c10)(2c11 + c01 + c10)
.

This estimator is identical to the estimator of an intraclass correlation coe�cient

(ICC) for dichotomous data. Di↵erent types of ICC will be discussed in the next

subsection.

If the marginal distributions of ratings are not homogenous and depend on some

covariates, then the kappa coe�cient needs to be investigated for di↵erent covari-

ates. Barlow et al. (1991) proposed a stratified kappa to deal with non-homogenous

marginal distributions given categorical covariates. Suppose that a covariate has

m di↵erent strata, and ̂1, . . . , ̂m donate the kappa coe�cients for each of these

strata. The stratified kappa is simply the weighted average of these kappa coe�cients

̂

s

=
P

m

i=1 wi

̂

i

(i = 1, . . . ,m) where w

i

is the weight for each stratum.
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Barlow et al. (1991) considered three weighting schemes: 1) equal weighting, 2)

weighting by the relative sample size of each stratum, and 3) weighting by the inverse

variance, and compared them to the non-stratified kappa coe�cient. Simulations

show the estimator using stratum sample size as weights minimizes the mean square

error among these three weighting options. However, with m and/or the number of

covariates increasing, there are often only a few observations in each stratum, result-

ing in poor estimates of stratified kappa. Also the stratified kappa is not invariant to

di↵erent populations. If the subjects in di↵erent stratum are from di↵erent popula-

tions, it is inappropriate to average stratum-specific kappa. Donner (1996) discussed

a method using large-sample variance of kappa to test the homogeneity of kappa

across populations, and also proposed a goodness-of-fit test as an alternative test if

the sample size is relatively small.

Fleiss’s kappa (1971) is a generalized kappa for more than two raters. Fleiss’s

kappa calculates the degree of agreement in classification over that which would be

expected by chance, thus it is not simply a weighted average of pairwise kappas. The

Fleiss’s kappa is defined as



F

=
p̄0 � p̄

e

1� p̄

e

,

where p̄0 and p̄

e

represent the observed agreement and expected agreement by chance

among k raters. In terms of a contingency table, we can present the data as follows:

Subject Category 1 · · · Category m

1 k11
... k1m p1.

...
...

...
...

...

n k

n1
... k

nm

p

n.

p

.1 · · · p

.m
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In this table, k
ij

is the number of raters who assigned the ith subject to the jth

category, (i = 1, . . . , n; j = 1, . . . ,m), and the proportion of all assignments which

were to the jth category is

p

.j

=
1

nk

n

X

i=1

k

ij

.

The proportion of rater pairs that are in agreement on subject i, relative to the

number of all possible rater pairs is

p

i.

=
1

k(k � 1)

m

X

j=1

k

ij

(k
ij

� 1).

Then the observed agreement and expected agreement by chance are

p̄0 =
1

n

n

X

i=1

p

i.

and

p̄

e

=
m

X

j=1

p

2
.j

.

Note that di↵erent from Cohen’s kappa, Fleiss kappa can be used only with binary

or nominal-scale scores. It can be interpreted as the extent to which the observed

amount of agreement among raters exceeds what would be expected if all raters made

their scores randomly. Often when the Fleiss kappa is not satisfactory, pairwise kappa

will be investigated.

2.2.2 Correlation coe�cients of rater agreement

We now move to the discussion of continuous scores, moving from indices to

correlation coe�cients.
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Intraclass correlation coe�cient (ICC)

The ICC is a measure that quantifies how strongly subjects in the same group or

scores of the same subject resemble each other. The ICC is now commonly described

within the random e↵ects model framework. The most basic model is

y

ij

= µ+ b

i

+ ✏

ij

,

where y
ij

is the jth observation on the ith subject, µ is an overall mean, b
i

is a random

e↵ect due to subject i, and ✏

ij

is a random error term. Then the corresponding

theoretical formula for ICC is

⇢

I

=
�

2
b

�

2
b

+ �

2
✏

, (2.1)

where �2
b

is the variance of b
i

and �2
✏

is the variance of ✏
ij

. This can be interpreted

as the proportion of total variance due to subject di↵erences.

One prominent application of ICC is to measure inter-rater reliability or agree-

ment of univariate continuous ratings from multiple raters on the same set of subjects,

with di↵erent forms for reliability and agreement study purposes. Since the ICC is

defined as the between-subject reliability relative to the total variability, from a de-

sign point of view, this means that data used in calculating ICCs require multiple

measurements on these subjects. However, given di↵erent types of designs and study

purposes, modifications of the basic ICC are needed. Shrout and Fleiss (1979) dis-

cussed the ICC under three di↵erent study designs. McGraw and Wong (1996) pro-

posed more versions of the ICC, which were not defined by Shrout and Fleiss (1979),

and distinguished ICCs for rater–reliability versus rater–agreement. Chen and Harn-

hart (2008) provided a summary of di↵erent versions of ICC for both data with and

without replicates. We give a summary of ICC formulas for inter-rater agreement

under the three typical cases.

Case 1: A random set of n subjects is selected from a population. Each subject is

rated by a di↵erent set of k raters, randomly selected from a larger population
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of raters. In this design raters are nested within subjects (Table 2.3). ICC

is calculated based on the one-way random e↵ect ANOVA. Let y
ij

denote the

j

th rating (j = 1, . . . , k) on subject i (i = 1, . . . , n). The linear model y
ij

=

µ+ ↵

i

+ e

ij

is assumed, where µ is the overall mean, ↵
i

is the random e↵ect of

subject i assumed to be Normally distributed as N(0, �2
↵

), and e

ij

is a residual

component equal to the sum of the inseparable e↵ects of the rater and the

measurement error, which is assumed to be i.i.d. Normal N (0, �2
e

). The ICC

and its corresponding estimate are

ICC1 =
�

2
↵

�

2
↵

+ �

2
e

,

\
ICC1 =

BMS �WMS

BMS + (k � 1)WMS

.

Table 2.3.
Sources of variance for Case 1

Source of Variance df Mean Squares

Between subjects n� 1 BMS

Raters(subjects) n(k � 1) WMS

Table 2.4.
Sources of variance for Case 2 & Case 3

Source of Variance df Mean Squares

Between subjects n� 1 BMS

Within subjects n(kr � 1) WMS

Between raters (k � 1) RMS

Interaction (k � 1)(n� 1) IMS

Error kn(r � 1) EMS

Case 2: Randomly choose k raters from the population of raters and n subjects from the

population of subjects. Each rater then scores each of the n subjects r times.
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This is a block design with subjects as blocks (Table 2.4). Under Case 2, the

ICC is calculated based on a two-way random e↵ects ANOVA. The assumed

linear model is y
ijl

= µ+ ↵

i

+ �

j

+ (↵�)
ij

+ e

ijl

, where µ, y

ijl

, and ↵
i

have the

same assumptions and interpretations as in Case 1, and �
j

is the random e↵ect

from Rater j which is assumed to be i.i.d Normal N (0, �2
�

). The interaction

(↵�)
ij

is estimable when r � 2 and are assumed to be i.i.d Normal N (0, �2
↵�

).

Without repeated ratings, the e↵ects due to components (↵�)
ij

and e

ij

can not

be separated. The ICC and its estimate for Case 2 without replicates are:

ICC2 =
�

2
↵

�

2
↵

+ �

2
�

+ �

2
↵�

+ �

2
e

,

\
ICC2 =

BMS � EMS

BMS + (k � 1)EMS + k(RMS � EMS)/n
.

When r > 1, the interaction term (↵�)
ij

can be estimated. Thus the estimate

for ICC2 becomes

\
ICC2 =

BMS � IMS

BMS + k(r � 1)EMS + (k � 1)IMS + k(RMS � IMS)/n
.

Case 3: Each subject is rated by each of the fixed k raters. Under Case 3, the ICC is

calculated based on a two-way mixed e↵ects ANOVA. The linear model for Case

3 has the same form as Case 2 but now �

j

is a fixed e↵ect from Rater j subject to

some constraint (e.g.,
P

�

j

= 0). With repeated ratings, the interaction (↵�)
ij

is still a random e↵ect subject to the some constraint (e.g.,
P

k

j=1(↵�)ij = 0).

Again (↵�)
ij

and e

ij

cannot be separated without repeated ratings. The ICC

for Case 3 is

ICC3 =
�

2
↵

� �

2
↵�

/(k � 1)
P

k

j

�

2
j

+ �

2
↵

+ �

2
↵�

+ �

2
e

The estimate without replicates is reduced to \
ICC2:

\
ICC3 =

BMS � EMS

BMS + (k � 1)EMS + k(RMS � EMS)/n
= \

ICC2,

and the estimate with r > 1 repeated ratings is

\
ICC3 =

BMS � IMS

BMS + k(r � 1)EMS + (k � 1)IMS + k(RMS � IMS)/n
.
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Under the three cases discussed above, all the ICC denominators include rater

variability. This is why they are considered measures of inter-rater agreement instead

of reliability. If the relative standing of subjects is of interest, it does not matter

that Rater 1 consistently assigns relatively higher scores than Rater 2. Therefore, the

rater variability is deemed to be an irrelevant source of variance and is excluded from

the denominators of the ICC. If any di↵erence between raters are considered to be

disagreements, the denominator of the ICC should include the total score variability.

The range of these ICC’s is usually (0, 1) but it can be negative under Case

3 due to the negative correlation between any two interaction components (↵�)
ij

and (↵�)
ij

0
. An alternative is to use REML estimates of mixed e↵ects models and

REML method can avoid interpreting negative values of ICC. An ICC value close to

1 can be interpreted as high agreement among raters while a smaller ICC means less

agreement.

Since the ICC is calculated based on the ANOVA model assumption, that is, data

follow the one-way random e↵ect model or two-way mixed-e↵ect model Normality

and constant variance assumptions, we have to use it carefully because the violation

of ANOVA assumptions will result in a serious bias of the estimates of ICC. An

alternative coe�cient that can be used to assess inter-rater agreement without the

ANOVA assumptions is called the Concordance correlation coe�cient (CCC), first

proposed by Lin (1989).

Concordance correlation coe�cient (CCC)

The original CCC (Lin, 1989) was used to evaluate the agreement between two

univariate continuous measurements. Suppose two vectors of measurements from two

raters are X1 and X2, then the CCC is expressed as

CCC = 1� E{(X1 �X2)2}
E{(X1 �X2)2|X1, X2 are uncorrelated} =

2⇢12�1�2
�

2
1 + �

2
2 + (µ1 � µ2)2

.
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Similar to the Pearson correlation coe�cient, the CCC ranges from -1 to 1 with 1

indicating perfect agreement. If µ1 = µ2 and �

2
1 = �

2
2, the CCC reduces to the

Pearson correlation coe�cient.

When there are replications from the raters, �2
j

can be further decomposed into

between and within subject variability from Rater j (i.e., �2
j

= �

2
jW

+�2
jB

). The CCC

with replications (Barnhart 2005) can be further expressed as

CCC =
2⇢12�1B�2B

2�1B�2B + (µ1 � µ2)2 + (�1B � �2B)2 + �

2
1W + �

2
2W

.

Barnhart (2002) also extended Lin’s CCC (1989) to the case of multiple (k > 2)

raters. Here the CCC is

CCC
o

= 1� E
�

P

k�1
i=1

P

k

j=i+1(Xi

�X

j

)2
 

E
�

P

k�1
i=1

P

k

j=i+1(Xi

�X

j

)2|X1, . . . , Xk

are uncorrelated
 

=

P

k�1
i=1

P

k

j=i+1 CCCij

⇠

ij

P

k�1
i=1

P

k

j=i+1 ⇠ij

,

where ⇠
ij

= E
�

(X
i

�X

j

)2|X1, . . . , Xk

are uncorrelated
 

= �

2
i

+ �

2
j

+ (µ
i

� µ

j

)2. This

CCC
o

can be interpreted as the weighted average of all pairwise CCCs, where higher

weights are assigned to the pairs of raters whose ratings have higher variances and

larger mean di↵erences.

Barnhart (2002, 2007a) discussed the relationship between the ICC and the CCC.

The di↵erences between them are 1) the ICC are proposed for both random and

fixed raters, while the CCC usually treats the raters as fixed; and 2) the ICC requires

ANOVA model assumptions, while the CCC does not. However, he showed that if the

ANOVA model assumptions are met, the CCC equals the ICC in specific cases. Even

though Lin (1989) objected to the use of the ICC as a way of assessing agreement

between methods of measurement, there are similarities between certain specifications

of the ICC and the CCC. Chen and Barnhart (2008) provided a detailed discussion

about the comparison of the ICC and the CCC for data with and without replicates.

Moreover, the limitation of comparability of populations are present in both the ICC

and the CCC. This means, the ICC and the CCC are strongly influenced by the
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variance of the trait in the sample/population in which it is assessed (Muller 1994).

We investigate this limitation later in this section.

2.2.3 Iota coe�cient and its extension

All the agreement measures discussed so far are for univariate data. Suppose a

rater gives ratings on multiple features of a subject. One way to deal with multivari-

ate ratings is to convert them into a univariate measure. This might result in some

inconsistencies, however, due to the compression, and therefore, possible loss of infor-

mation. Janson (2001) extended Cohen’s kappa to a general case where the ratings

from multiple raters are multivariate nominal or interval data. The iota coe�cient is

defined as

◆ = 1� d

o

d

e

,

where d
o

is the observed disagreement between raters and d

e

is the expected disagree-

ment by chance. Next, we follow with the detailed calculations of d
o

and d

e

for both

continuous and nominal data.

For continuous data, suppose x

ijl

is the rating from Rater j (j = 1, . . . , k) on

Subject i (i = 1, . . . , n) for Feature l (l = 1, . . . ,m). The observed disagreement, d
o

,

is the average of the squared Euclidean distances between raters’ ratings of the same

subjects. This disagreement is

d

o

=
h

n

✓

k

2

◆

i�1X

j<j

0

n

X

i=1

m

X

l=1

(x
ijl

� x

ij

0
l

)2.

Similarly, the expected disagreement, d

e

, is the average of the squared Euclidean

distances between one rater’s rating of a subject and any other rater’s rating of any

subject. This disagreement d
e

is

d

e

=
h

n

2

✓

k

2

◆

i�1X

j<j

0

n

X

i

0=1

n

X

i=1

m

X

l=1

(x
ijl

� x

i

0
j

0
l

)2.

Since the calculation of the iota coe�cient is based on squared Euclidean distances,

there is an equivalency to the ANOVA sum squares from a two-way layout. Based
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on the decomposition of the sums of squares in the two-way ANOVA (Table 2.4 with

r=1), let the total sum of squares for the lth feature SS

T l

be decomposed into the

sum of squares between subjects SS
Bl

and the sum of squares within subjects SS
Wl

,

and SS

Wl

is further decomposed into the sum of squares between raters SS
Rl

and the

residual term SS

el

. Then d

o

and d

e

can also be expressed as

d

o

=
h

n

✓

k

2

◆

i�1

k

m

X

l=1

SS

Wl

,

d

e

=
h

n

✓

k

2

◆

i�1
m

X

l=1

[(k � 1)SS
T l

+ SS

Rl

].

With univariate interval data (m=1) and two raters (k=2), the iota coe�cient reduces

to the Cohen’s weighted kappa 

w

with the weights inversely proportional to the

squared Euclidean distances between ratings.

With multivariate ratings, one important consideration is whether each feature

contributes equally to the observed and expected distances. One reason that di↵er-

ent features may contribute di↵erently to the distances could be that features are

measured on di↵erent scales and/or have unequal variances. Another reason is that

disagreements for some features are more important than that from other features.

Adding weights to the disagreements will take this into account. Suppose w

l

is the

assigned weight for the lth feature that is incorporated into the calculations of d0 and

d

e

, then the weighted observed and expected disagreement become:

d

o

=
h

n

✓

k

2

◆

i�1X

j<j

0

n

X

i=1

m

X

l=1

w

l

(x
ijl

� x

ij

0
l

)2,

and

d

e

=
h

n

2

✓

k

2

◆

i�1X

j<j

0

n

X

i

0=1

n

X

i=1

m

X

l=1

w

l

(x
ijl

� x

i

0
j

0
l

)2.

Correspondingly, the calculations of iota coe�cient based on ANOVA decomposition

are

d

o

=
h

n

✓

k

2

◆

i�1

k

m

X

l=1

w

l

SS

Wl

,
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and

d

e

=
h

n

✓

k

2

◆

i�1
m

X

l=1

w

l

[(k � 1)SS
T l

+ SS

Rl

] .

For nominal data, Janson (2001) suggested to simply sum the number of disagree-

ments over features. The calculations for observed and expected disagreement are

then

d

o

=
h

n

✓

k

2

◆

i�1X

j<j

0

n

X

i=1

m

X

l=1

{x
ijl

6= x

ij

0
l

},

d

e

=
h

n

2

✓

k

2

◆

i�1X

j<j

0

n

X

i

0=1

n

X

i=1

m

X

l=1

{x
ijl

6= x

i

0
j

0
l

}.

Similar to the interval data case, weights can be assigned to the disagreements from

di↵erent features by including w

l

. This weighted iota coe�cient can be viewed as an

extension of the kappa coe�cient to the multivariate nominal data. When there are

only two raters and one nominal-scale feature, the iota coe�cient reduces to Cohen’s

kappa (1960). The interpretation of the iota coe�cient is similar to the interpretation

of the . A value of 1 indicates perfect agreement and the lower limit of ◆ is �1/(k�1).

2.2.4 Limitations of the agreement indices for continuous data

A common limitation of all the agreement indices discussed so far is the di�culty

in comparing indices across di↵erent population or studies. The reason is that they

all depend on between-subject variability (Vangeneugden et al., 2004, 2005; Molen-

berghs et al., 2007; Barnhart et al., 2007). To demonstrate this, we consider two

populations where Population 1 has true subject scores x ⇠ N(30, 5) and Population

2 has true subject scores y ⇠ N (30, 10). For both populations, we consider two raters

rating 50 subjects whose scores are distributed Gamma(x, 0.5) and Gamma(y, 0.5),

respectively. This setup indicates Population 2 has larger between-subject variability

but regardless of population, both raters give unbiased scores with the same precision.

Because the rater distributions for a given subject are identical, we expect to see a

good agreement between these two raters. Table 2.5 summarizes the average of ICC2,
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ICC3 and CCC for each population setting. The kappa coe�cient is used for nominal

or ordinal data so it is not calculated here. The iota coe�cient reduces to the CCC

when there is a single response feature. These averages are based on 100 simulated

data sets.

Table 2.5.
ICC and CCC for two raters assessing 50 subjects from two populations

Population ICC2 ICC3 CCC

x ⇠ N(30, 5) 0.291 0.292 0.287

y ⇠ N(30, 10) 0.610 0.610 0.605

Even though the rater distributions are identical in each population setting, all

agreement indices are much smaller in Population 1, where there is less variability

among subjects. Such a phenomenon will also occur with multivariate data because

the calculation is based on the same ANOVA decomposition.

It is easy to understand this limitation by investigating the basic form of chance-

corrected agreement indices:

Between subjects variation

Between subjects variation +Within subjects variation
.

As long as the between subjects variation gets bigger, the index value will increase.

Due to this fact, some researchers argue that such indices should be interpreted as

a reliability measure that assesses the degree of di↵erentiation of subjects from a

population, rather than agreement (Vangeneugden et al., 2004, 2005; Molenberghs et

al., 2007).

2.2.5 Coe�cient of inter-rater variability (CIV)

Haber et al. (2005) proposed an approach to evaluate inter-rater agreement that

does not have this limitation. Their coe�cient of inter-rater variability (CIV) is
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defined as the ratio of the between-rater variability to the total rater variability.

This coe�cient compares the rater di↵erence component relative to the total rater-

related components (i.e., inter-rater component + intra-rater component), thus it is

considered to be a more appropriate measure for inter-rater agreement.

In order to compare the CIV to the ICC, we follow the same notation of the ICC

study designs (Section 2.2.2, page 37-40), that is, �2
↵

, �2
�

, �2
↵�

, and �2
e

represent the

variabilities due to subjects, raters, subject by rater interactions, and within rater

error, respectively. CIV is defined as

�

2
�

+ �

2
↵�

�

2
�

+ �

2
↵�

+ �

2
e

.

The CIV is an index between 0 and 1, and 1-CIV is interpreted as an inter-rater

agreement measure with a value of 1 signifying perfect agreement and a value of 0

signifying complete disagreement.

For the Case 1 ICC calculation scenario, the study design for the CIV is altered

to be a random set of k raters is selected from a large rater population and each

rater rates a random set of n subjects from a large subject population. This is a

more realistic design in rater agreement studies than the design presented in Table

2.3 because there is usually limited raters that can be randomly selected. The design

layout is shown in Table 2.6. The inter-rater agreement index based on the CIV is

 = 1� �

2
�

�

2
�

+�2
e

= �

2
e

�

2
e

+�2
�

Table 2.6.
Sources of variance for Case 1

Source of Variance df Mean Squares

Between raters k � 1 BMS

Subjects(rater) k(n� 1) WMS

For the Case 2 and Case 3 scenarios, the CIV study designs are the same but the

agreement index is calculated as  = 1� �

2
�

+�2
↵�

�

2
�

+�2
↵�

+�2
e

.
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Barnhart et al. (2007a) proposed a coe�cient of individual agreement (CIA),

which emphasizes the interchangeability or switch-ability of multiple raters (or meth-

ods). He compared the CCC, the CIV, and the CIA in detail, given the scenarios

with and without a reference/gold standard. In fact, when there is no gold standard,

the CIA is equivalent to the CIV. In this chapter we focus on the discussion of agree-

ment measures without references. To compare the CIV/CIA to the CCC, we assume

there are two raters and each rater rates n subjects r > 1 times. The CCC and the

1-CIV/CIA index  can be written as:

CCC =
2⇢12�1B�2B

2�1B�2B + (µ1 � µ2)2 + (�1B � �2B)2 + �

2
1W + �

2
2W

,

 =
(�2

1W + �

2
2W )

2(1� ⇢12)�1B�2B + (µ1 � µ2)2 + (�1B � �2B)2 + �

2
1W + �

2
2W

.

Both coe�cients decreases when the correlation decreases. In contrast to the CCC,

 decreases when within-subject variability decreases and the between-subject vari-

ability increases. Moreover,  is shown to depend less on the magnitude of �2
B

/�

2
W

than the CCC (Barnhart et al. 2007).

Compared to the ICC and the CCC, the CIV has a simple intuitive definition in

terms of the di↵erence between the scores assigned by di↵erent raters to the same

subject while the ICC and the CCC use correlations to evaluate rater agreement. In

Haber’s paper (2005), a non-parametric estimation approach was proposed, thus the

CIV is not subject to the ANOVA assumptions as the ICC is.

2.3 Modeling Patterns of Rater Agreement

The agreement measures discussed in the previous section are all single indices

that focus on the degree of agreement. However, how raters di↵er from each other

is also an important aspect in assessing rater agreement. For example, is there a

systematic bias in one of the raters? Log-linear models and latent-class models are

approaches that can assess the patterns of rater agreement for nominal or ordinal

scale data.
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2.3.1 Log-linear models

Assuming there are k raters who categorize n subjects into m nominal categories,

Tanner and Young (1985a) modeled the agreement structure using the following log-

linear model:

log(c
ij...l

) = µ+ µ

R1
i

+ µ

R2
j

+ · · ·+ µ

R

k

l

+ �

ij...l

, (i, j, . . . , l
| {z }

k

= 1, . . . ,m),

where c

ij...l

is the expected count in the (ij . . . l)th cell of the joint k-dimensional

cross-classificiation of the ratings, µ is the overall e↵ect, µ

R

r

h

is the e↵ect due to

categorization by the rth rater in the hth category (r = 1, . . . , k;h = 1, . . . ,m), and
P

m

i=1 µ
R1
i

= · · ·Pm

i=1 µ
R

k

i

= 0. The additional term �

ij...l

indicates agreement beyond

chance for the (ij . . . l)th cell.

When modeling ordinal data, Agresti (1988) argued that ordinal scale ratings

always exhibit a positive association between ratings. That is, there is a tendency for

high (low) ratings by one rater to be accompanied by high (low) ratings by another

rater. He proposed a log-linear model with linear-by-linear association, a combination

of Tanner and Young’s (1985a) log-linear model with the uniform association model

(Goodman 1979). Assuming only two raters for simplicity, the corresponding log-

linear model is

log(c
ij

) = µ+ µ

R1
i

+ µ

R2
j

+ ��

i

�

j

+ �

ij

,

where �1 < · · · < �

m

are fixed scores assigned to the response categories.

To investigate di↵erent patterns of agreement beyond chance, �
ij...l

can be speci-

fied and tested. For example, �
ij...l

= �

i

I{i=j=···=l}, where I is an indicator function,

assumes non-homogeneous pattern of agreement by response category. The speci-

fication �

ij...l

= �I{i=j=···=l} assumes homogeneous agreement among raters and the

specification �
ij...l

= 0 assumes nothing beyond chance agreement. These three model

representations are nested so likelihood ratio tests can be constructed to compare

them.
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2.3.2 Latent-class models

Latent-class models were proposed to investigate inter-rater agreement (Aickin,

1990; Uebersax and Grove, 1990; Agresti, 1992) using unobserved (latent) variables.

It is assumed that there is an unobserved categorical scale X, with V categories, such

that subjects in each category of X are homogeneous. The basic latent-class model

applied to nominal scale data is:

log(c
ij...lv

) = µ+ µ

R1
i

+ µ

R2
j

+ · · ·+ µ

R

k

l

+ µ

X

v

+ µ

R1X

iv

+ µ

R2X

jv

+ · · ·+ µ

R

k

X

lv

,

i, j, . . . , l

| {z }

k

= 1, . . . ,m, and v = 1, . . . , V.

Latent-class models applied to ordinal data of raters’ ratings treat the unobserved

variable X as ordinal and assume a linear-by-linear association between each classifi-

cation and X, assigning scores for both observed scale and unobserved scale (Agresti

and Lang, 1993). For simplicity, the basic latent-class model for ordinal data from

two raters is

log(c
ijv

) = µ+ µ

R1
i

+ µ

R2
j

+ µ

X

v

+ �

R1X
�

i

x

v

+ �

R2X
�

j

x

v

,

where {�} and {x} are the assigned scores to response categories and latent categories

respectively.

A strong agreement, in terms of relatively high probability of identical ratings,

requires both similar marginal distributions and a strong positive association. For

example, in a simple case that the ordinal response is binary (1 and 2) and there are

2 raters (R1 and R2), one can simply compare the marginal distributions using odds

ratios:

P (R1 = 1|X = v)/P (R1 = 2|X = v)

P (R2 = 1|X = v)/P (R2 = 2|X = v)
= exp(�

R1 � �

R2), v = 1, . . . , V,

where �
R1 = µ

R1
1 � µ

R1
2 and �

R2 = µ

R2
1 � µ

R2
2 . The variation in marginal distributions

can be addressed by variation in the �’s parameters. On the other hand, the strength

of association is induced by the association between each rater and the latent variable.
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Thus, the strength of agreement improves in the two-way tables as {�} move toward

uniformity and the association between each rater and X increases. This model can

be expanded to higher orders and standard likelihood ratio tests can be constructed

to compare models, but we do not discuss the details here.

2.4 Agreement with Compositional Data

The existing agreement indices and methods are for univariate or multivariate

nominal, ordinal, or continuous data. However, not a single agreement index can

be directly used to assess agreement of compositional data. Since compositional data

contain D components (D > 2), an agreement measure for multivariate data is needed.

Based on the idea of the iota coe�cient, if there is an appropriate function to

measure the distance between two compositional vectors, then this distance measure

can replace the squared Euclidean distance to calculate the observed and expected

disagreement. Aitchison distance and Mahalanobis distance with clr transformation

are two candidates that meet the three principals in compositional data analysis

(Aitchison 1986). With this in mind, we investigate two questions.

Question 1: How does the iota coe�cient behave using clr trans-

formed compositional data?

Suppose the true compositional scores of 10 subjects µ

i

(i = 1, . . . , 10) follow a

Dirichlet distribution D(µ, k
s

). Rater scores are obtained assuming they are D(µ
i

, k),

(i = 1, . . . , 10), where k is the intra-rater variability parameter. Ratings coming from

the same Dirichlet distribution indicate a perfect agreement between the two raters.

When k

s

gets bigger, the variability among subjects tend to be smaller.

The observed and expected disagreement is calculated based on the squared

Aitchison distance and squared Mahalanobis distance. Mahalanobis distance for two

compositional vectors is d

M

(x,y) =
p

[clr(x)� clr(y)]0S+[clr(x)� clr(y)] where S+

is the Moore-Penrose pseudoinverse inverse of the data covariance matrix. The clr

transformation results in a singular covariance matrix of transformed data, thus a gen-
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eralized inverse of S is needed. Table 2.7 summarizes the limitation of the existing

agreement indices: variability among subjects is needed to get a proper assessment of

similarity among raters. When there is little or no variability among the slides, the

intra-rater variability dominates and the iota coe�cient is small.

Table 2.7.
Iota coe�cient based on Aitchison distance and Mahalanobis distance

Distributions of Subjects Iota(Squared Aitchison) Iota(Squared Mahalanobis)

x ⇠ D10((0.3, 0.4, 0.3), ks = 10) 0.818(0.07)a 0.800(0.07)

x ⇠ D10((0.3, 0.4, 0.3), ks = 50) 0.478(0.15) 0.409(0.16)

a values were calculated based on 1000 simulations and presented as mean(sd)

Question 2: Does a null distribution of distances exist when raters

agree perfectly?

To answer this question, we address whether the Aichison distance and Maha-

lanobis distance are invariant to the mean and variance of the Dirichlet distribution.

The hope is that if a null distribution can be found invariant to the mean, we can then

compare the observed distance distribution or average distance to the null distribution

to assess the degree of agreement.

Consider two populations, where Population 1 has 50 pairs of scores from the

Dirichlet D((0.3, 0.4, 0.3), k
s

= 50) and Population 2 has 50 pairs of scores from

D((0.1, 0.1, 0.8), k
s

= 50). For each population, squared Aitchison distances and

squared Mahalanobis distances are calculated between pairs of scores and the averages

of the distances are stored. Repeat this procedure 1000 times within each population

to get a distribution of averaged distances.

Comparisons between the two di↵erent distributions of subjects reveal significant

di↵erences in distributions of distances (Table 2.8). This suggests that Aitchison

distance and Mahalanobis distance based on compositional data are not invariant to

the compositional means of the Dirichlet distribution.
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Table 2.8.
Distributions of squared Aitchison distance and squared Mahalanobis
distance between compositional pairs

Distributions of Subjects Squared Aitchison Squared Mahalanobis

x ⇠ Dir10((0.3, 0.4, 0.3), ks = 50) 0.267(0.09)a 2.356(0.64)

x ⇠ Dir10((0.1, 0.1, 0.8), ks = 50) 0.665(0.28) 2.181(0.65)

a mean(sd) based on 1000 simulations.

Potential solution: Can we fit the observed compositional ratings with

some parametric distribution?

In the rater agreement problem, if we assume the compositional rating(s) from

each rater on each subject comes from a certain distribution, then the distance be-

tween two compositional vectors can be viewed as the probabilistic distance between

two distributions. As we discussed in Chapter 1, there are two parametric distribu-

tions, the logistic Normal and the Dirichlet, that are available for modeling compo-

sitional data. However, to be able to estimate the parameters of the distribution, we

need replicate observations of each subject for each rater.

We consider the Dirichlet distribution primarily because it has fewer parameters.

A D-part compositional rating x
ij

⇠ D(µ
i

, k) involves D parameters. The vector µ
i

is the underlying mean of subject i from Rater j. When k increases, the variance

within the rater, as well as the negative correlations between pairs of vector elements

gets smaller. That is, the rater is more consistent in rating the same subject multiple

times.

Rauber et al. (2008) discussed di↵erent distance measures for probability dis-

tributions and concluded that only the Cherno↵ distance is an appropriate metric

to measure the distance between two Dirichlet distributions. The definition of the

Cherno↵ distance is:
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where 0 < � < 1. Bhattacharyya distance D

B

is a special case of Cherno↵ distance

when � = 1/2. The Bhattacharyya coe�cient ⇢
B

is defined as the logarithm of the

negative Bhattacharyya distance so that ⇢
B

is between 0 and 1. The form of ⇢
B

between two Dirichlet distributions is:
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In general, the Bhattacharyya coe�cient ⇢
B

is a measure of the amount of overlap

between two statistical samples or populations. If ⇢
B

= 1, the two samples overlap

perfectly, while ⇢
B

= 0 means there is no agreement between two raters. This means,

if we know the distributions of raters’ scores, Bhattacharyya coe�cient is a potential

candidate to measure overall agreement between raters. We will investigate in detail

the behavior of the Bhattacharyya coe�cient in Chapter 3.

2.5 Discussion

In Chapter 1, we reviewed what common compositional data problems have been

addressed in the literature. In this chapter, we reviewed the existing indices and

methods that can be used to assess inter-rater agreement with nominal, ordinal, and

continuous data, for both univariate and multivariate responses. We pointed out the

strengths and limitations of these approaches. Our goal is to develop a method to

assess inter-rater agreement with compositional data. Some preliminary investiga-

tions could not find a simple adjustment of a current approach. However, the idea of

modeling the compositional vectors using an appropriate parametric distribution and

then comparing the probabilistic distances (discussed in Section 2.4) is very appealing

and similar in flavor to the CIV. The di�culty we have to overcome is the lack of

replicate ratings on each subject from each rater. This puts heavy restrictions on

the parametric distributions we can consider and how we can model the relationship

between scores from two raters. In the next chapter, we detail our use of Dirichlet

distributions and the Bhattacharyya coe�cient as a means to assess agreement of

compositional data.
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CHAPTER 3. ASSESSING INTER-RATER AGREEMENT FOR

COMPOSITIONAL DATA

3.1 Motivation

All the popular agreement indices and methods described in Chapter 2 are de-

signed either for univariate data or for unconstrained multivariate data. The need

for agreement methodology designed for compositional data arises primarily within

pathology and the medical sciences, where similarity in compositional scores is crucial

for consistent prognosis and treatment.

We start this chapter with a brief description of our motivating application, im-

munohistochemistry (IHC) assays, and an overview and critique of the current agree-

ment measures used by researchers to compare IHC scores. We then provide a de-

scription of our proposed methodology, both in terms of model concept/structure

and approach to inference. We conclude the chapter with a few simulation studies

to demonstrate the benefits of our approach relative to the currently-used agreement

methodology.

3.1.1 Immunohistochemistry (IHC) assays

IHC is a process of detecting targeted antigens through their interaction with

tagged antibodies. An antigen is any substance (e.g., protein, chemical, pollen, bac-

teria) that causes one’s immune system to produce antibodies against it. To visualize

an antibody-antigen interaction, the antibody of a target antigen is tagged with flu-

orescein or other enzyme that will catalyze a color-producing reaction.

IHC staining is widely used in the diagnosis of cancerous tumors, where over-

expression (or underexpression) of certain proteins predicts disease status. Tagged
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antibodies bind to these proteins so higher (lower) intensity of the color-reaction

indicate cancer is present.

An IHC assay typically involves a sample of tissue, which consists of a very large

number of cells. After the staining process, a trained pathologist exams the assay

slide under a microscope and provides a compositional vector score. This vector rep-

resents the percent of cells in the sample that fall in each of four ordered staining

categories, traditionally labeled negative, weak, moderate, and positive. Since dif-

ferent pathologists will examine and score di↵erent assays/slides, agreement between

pathologists is very important for consistency in prognosis and therapy. Pathologists

are trained how to score and numerous studies are performed to assess the agreement

among pathologists.

3.1.2 Current IHC agreement methods

The design of a typical agreement study between two pathologists, or a pathologist

and an automated reader, is shown in Table 3.1. The two raters score each of the

n slides once. Each slide is typically a di↵erent tissue sample with a di↵erent mean,

so there are no replicates to assess rater consistency (i.e., test-retest reliability or

intra-rater variability).

This setup is the same as the study design described in Case 3 on page 36 (Table

2.3) for assessing the ICC. The di↵erence here is that the response is a compositional

vector instead of a univariate continuous score.

Table 3.1.
Basic layout for an IHC agreement study

Slide Rater A Rater B

1 x1 = (x11, x12, x13, x14) y1 = (y11, y12, y13, y14)
...

...
...

n x
n

= (x
n1, xn2, xn3, xn4) y

n

= (y
n1, yn2, yn3, yn4)
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Most agreement assessments involve converting the composite vectors into uni-

variate responses and then using the ICC (or CCC). The most popular conversion is

called the H-score. The H-score is a weighted sum of the percent components and

ranges between 0 and 300. The weights are simply the whole numbers 0, 1, 2 and 3,

respectively,

H-score = 0⇥% negative + 1⇥% weak + 2⇥% moderate + 3⇥% positive. (3.1)

The H-score method was first introduced by McCarty et al. (1985) and quickly grew

in popularity (e.g., Michelle, 1999; Flanagan et al., 2008; Bhargava et al. 2009).

There are, however, potential drawbacks with the H-score. First, the conversion

to an H-score is not one-to-one and results in some loss of information (Etzioni et al.

2005). For example, suppose the two scores for a sample are: (20%, 70%, 10%, 0%)

and (40%, 35%, 20%, 5%). The first vector suggests the cells are predominately weak,

whereas the second vector suggests a more uniform mixture of the first three types.

Their H-scores, however, are the same (H-score=90), suggesting these two vectors are

comparable.

The second drawback with the H-Score is not particular to the H-score but rather

the ICC (or CCC) methodology. This was discussed in Chapter 2 and involves the

interpretability of the ICC (or CCC) across studies. That is, they depend on the

between-slide variability. The larger the variability among slides, the closer the ICC

(CCC) index is to 1. Although the CIV/CIA is insensitive to this, we have not seen

any application of the CIV/CIA using the H-score.

Despite these concerns with the H-score, or any other univariate conversion, there

has been no literature on the analysis of the score vectors. This may, in part, be due

to the fact that the one multivariate approach, the iota coe�cient, is not designed

to handle the sum-to-one restriction that these vectors have. The iota coe�cient

also su↵ers from the same drawback as the ICC in regards to its dependence on the

variability among slides.

Our goal is to fill this void and propose a multivariate approach that explicitly

considers both the frequency and intensity of tissue staining. We also want an ap-
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proach that is insensitive to the variability among slides, thereby allowing one to

make comparisons across studies. To do this, we first need to consider, conceptually,

how a rater scores a slide and how raters will di↵er in scoring. That is the focus of

the next section.

3.1.3 Latent model for determining average percents

To conceptualize how a rater assigns percents to each category, we assume that

the rater visualizes a continuous spectrum of intensities (low to high) and determines

“cutpoints” along this spectrum to define the categories. It is our belief that these

cutpoints are rater-specific and that di↵erences in these cutpoints are what cause

di↵erences in vector scores.

Consider the two red (low intensity) to yellow (high intensity) images pictured in

Figure 3.1. Both images span a rater’s spectrum of intensities. The rate at which

each image changes from red to yellow is related to the CDF of cell intensities on the

slide. The first image represents a slide that has a relatively uniform distribution of

intensities and the second image represents a slide with larger high intensity staining

(i.e., more yellow than red).

Now suppose that Rater A and B are asked to apportion the spectrum to “No yel-

low”, “Moderate Yellow” and “Strong Yellow” categories. The marks labeled (A1, A2)

and (B1, B2) along the bottom of each spectra represent the chosen breakpoints, which

in turn define the mean response of each rater for that image.

To handle the unit-sum constraint, we consider describing the distribution of cell

intensities on each slide using logistic distributions. Rather than varying the logistic

distributions across slides, we consider the standard logistic distribution and vary

Rater A’s cutpoints for each slide to alter the mean. Figure 3.2 represents the same

two images/mean responses in Figure 3.1 under this construction. No information

regarding Rater A is lost in doing this. The red solid lines represent the cutpoints of
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Rater A with the percents defined as the area under the curve, which defines Rater

A’s percent of each category.

Fig. 3.1. Red-yellow spectrum

Intensity

 

Spectrum 1 Rater A:(30%,40%,30%)
Rater B:(37%,42%,21%)

Intensity

 

Specturm 2 Rater A:(20%,30%,50%)
Rater B:(25%,37%,38%)

Fig. 3.2. Logit link of slide means and rater-specific cutpoints
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If Rater B were to agree perfectly with Rater A, the cutpoints would match and

the shifts would be zero. To link Rater B’s cutpoints to Rater A’s, we allow for rater

di↵erences by considering shifts in the cutpoints. For each of the two distributions

(slides) Rater B’s cutpoints, and thus percents, are defined by adding these shifts to

Rater A’s cutpoints. These are represented by the blue dashed lines.

The most general model would allow these shifts to vary slide to slide. We,

however, keep them constant. The reasoning for this is two-fold. First, we expect

there to be some consistency across slides. If Rater B scores one image on average

to have more yellow, all images on average should be scored to have more yellow.

Second, we simply don’t have enough information to consider more general models.

Given the use of the standard logistic distribution and constant shifts to describe

the mean score vectors, we’re imposing a proportional odds relationship between the

cumulative percents of the two raters. Let A and B denote the events that Rater

A and Rater B, respectively, categorizes a randomly chosen cell from a slide. The

proportional odds relationship means that for any slide,

odds(B  C

k

)

odds(A  C

k

)
= e

�

k

, k = {1, 2},

where �
k

is defined as the shift between the two raters at the boundary between

category C

k

and C

k+1. Other distributions, such as the standard Normal distribution,

could be used in place of the standard logistic. While this switch would eliminate

this proportional odds relationship, we do not expect the choice to have a substantial

impact on the shift parameters.

Given these additive shifts, an additional caveat is that Rater B’s cutpoints cannot

cross. In other words, we need to avoid the situation when log
⇥

odds(A  C

k

)
⇤

+�
k

>

log
⇥

odds(A  C

k+1)
⇤

+ �

k+1. In a 3-dimensional compositional vector, this would

most likely happen when the two cutpoints are very close. However, we wouldn’t

expect a slide to be bimodal in intensity so this event will be rare. More concerns

would be when a slide has one dominating category. This is where we have to look

out for crossing cutpoints.
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Our approach links the two rater means using constant shifts on the logit scale.

An alternative approach would be to consider constant shifts on the intensity scale. In

other words, assuming Rater’s A and B have fixed cutpoints on the intensity spectrum

and the logistic distribution associated with each slide is changing in shift and scale

(Figure 3.3). With only 3 categories, this model involves 4 cutpoints (instead of 2

cutpoints for each slide and 2 shift parameters) but involves the estimation of two

logistic distribution parameters for each slide. Thus, with 3 categories, it has the

same number of parameters as our proposed model. When the number of categories

is over 3, however, it results in fewer parameters than our proposed proportional odds

model and thus is more restrictive.

With this approach, the log odds ratio is:

odds(B  C

k

)

odds(A  C

k

)
= e

⌘

Ak

�⌘

Bk

s

i

, k = {1, 2},

where s
i

is the scale parameter for the logistic distribution of slide i, and ⌘
A

and ⌘
B

are

the fixed cutpoints for Rater A and B, respectively. Based on this model assumption,

when one category dominates on a slide (i.e., s
i

is very small), the corresponding log

odds ratio tends to be really big.

In practice, we often observe that two raters score consistently when one category

dominates. This deviates from the expectation under this model thereby supporting

the proportional odds model. If the two raters were to become more disparate when

one category dominates, then the fixed cutpoint model would be the better choice.

To illustrate the di↵erences between these two models, we use a simplex plot

assuming the scores are 3-part compositions. Figure 3.4 plots six pairs of means

from Rater A and Rater B, where “+” represents Rater A’s mean percents on six

di↵erent slides. The “1” and “2” are Rater B’s means assuming proportional odds

and assuming fixed cutpoints, respectively. We considered shifts of (0.6, 0.3) on both

the intensity and logit scales. Thus, if the slide had a standard logistic distribution

of intensities, the two approaches would result in the same means for Rater B.

The slide distributions were obtained by sampling the location parameter from a

Normal N (0, 1) and the scale parameter from a Gamma(2, 0.5). On this simplex, we
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Intensity

 

Spectrum 1 Rater A:(20%,50%,30%)
Rater B:(25%,54%,21%)

Intensity

 

Specturm 2 Rater A:(6%,78%,16%)
Rater B:(10%,84%,6%)

Fig. 3.3. Fixed cutpoints of raters on di↵erent slides

can see that all Rater B’s means are shifted to the lower left corner due to the fact

that the two shift parameters are positive.

For most of the means, the di↵erences between ”1” and ”2” are not that substan-

tial. There are two means, however, where the di↵erence is more profound. These

are both cases where Rater’s A mean is dominated by the second category.
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Through discussions with pathologists and examination of real data, we feel the

proportional odds model is more realistic. As a result, we will focus the remainder of

this chapter on just the proportional odds model.

Fig. 3.4. Six pairs of 3-part compositions

3.1.4 Candidate distributions for response scores

Now that we have a model that links the two mean vectors for each slide, we

need a model to describe the variation in response about these means. In Chapter

1, we discussed two distributions used to describe compositional vectors. These two

distributions will be used here to model the inherent intra-rater variability.

Recall if a D-dimensional vector x follows a Dirichlet D
D

(µ, k), it has the moment

properties:

E(x
i

) = µ

i

, Var(x
i

) =
µ

i

(1� µ

i

)

k + 1
, Cov(x

i

, x

j

) =
�µ

i

µ

j

k + 1
, (i 6= j = 1, . . . , D).

The dispersion parameter k describes the intra-rater variability. For any µ a bigger k

means less intra-rater variability. If we use the Dirichlet distribution to describe the

variation about the mean, it only requires one parameter or n parameters if we were
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to vary it across slides, thus 2 or 2n if we allow it to vary across two raters or across

raters and slides.

The other distribution is the logistic Normal. Recall if a D-dimensional vector x

follows a logistic Normal distribution L
D

(m,⌃), it has the following moment proper-

ties:
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(i 6= j = 1, . . . , D � 1).

For a given mean, the logistic Normal distribution requires D(D�1)/2 parameters to

describe the intra-rater variability, thus nD(D � 1)/2 or nD(D � 1) if we allow it to

vary across two raters or across raters and slides. Compared to the Dirichlet distri-

bution, this distribution is more flexible and can describe both positive and negative

covariances among score components. Its drawbacks are the increased number of pa-

rameters and the fact that there are no closed-form solutions for E(x
i

) and Var(x
i

).

This greatly increases the computational complexity when using this distribution.

3.2 Hierarchical Model & Notation

We use Figure 3.5 to describe the hierarchical structure of our complete model. We

assume the n slides in the study are sampled randomly from a population distribution

g(·). This distribution can be any distribution that accommodates compositional

data. We will specify choices for this distribution in the next section. Two raters

score each of n slides once. Thus, we have n pairs of IHC scores {x
i

,y
i

}, each score

a D-part compositional vector. The observed data set for a typical agreement study

is shown in Table 3.1 (page 56).

For each slide i, the score mean µi represents the mean score vector for Rater A.

If the Dirichlet distribution is used to describe the observed score vectors, we assume

x
i

⇠ D
D

(µ
i

, k1) andyi

⇠ D
D

(f(µ
i

, �), k2),
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Fig. 3.5. Hierarchical model structure

where k1 and k2 are the intra-rater variability parameters and f(µ
i

, �) are Rater B’s

means determined from Rater A’s means and the shift parameters. We describe f(·)
for slide i as follows:

(i) Determine the logistic cutpoints of Rater A:

⌘

iJ

= log

 

P

J

j=1 µij

1�PJ

j=1 µij

!

, (J = 1, . . . , D � 1).

(ii) Shift the cutpoints:

⌘

yiJ

= ⌘

iJ

+ �

J

, (J = 1, . . . , D � 1),

making sure the �
J

2 R do not result in flipping cutpoints.

(iii) Back-transform to obtain the mean vector of Rater B.

To summarize, the unknown parameters in this model include:

(i) the D � 1 shift parameters �1, . . . , �D�1.

(ii) the intra-rater variability parameters k1 and k2.

(iii) the n reference mean vectors µ1, . . . ,µn

.
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3.2.1 Frequentist Estimation

A typical agreement study involves a single pair of scores from each of n slides.

We assume these observations are Dirichlet distributed but we do not know their

underlying means (nor the intra-rater variability parameters) that generate the scores.

Our model, however, assumes that for each pair, the di↵erence in the logits of the

cumulative means is �
J

. In other words,

�

J

= logit

 

J

X

j=1

µ

yij

!

� logit

 

J

X

j=1

µ

xij

!

, J = 1, . . . , D � 1,

This means we can estimate the �’s using the average di↵erence in observed logits. In

other words, we use
P

J

j=1 xij

and
P

J

j=1 yij as our estimates for the cumulative means

of each slide and compute the average di↵erence in their logits. The standard errors

of these �̂’s, however, depend on the unknown means and k’s so we cannot easily

compute them.

We can estimate the intra-rater variabilities only if we assume k1 = k2 = k. For

example, we can take an MLE approach for the observed y using the observed x

as our estimates for the unknown Rater A’s means and compute Rater B’s means

using the estimated �’s. This estimate tends to underestimate the true variability

parameter (i.e., estimates there to be more intra-rater variability than there truly is).

We will compare this frequentist estimation to our Bayesian estimation later in the

simulation studies.

When there are replicates, we can take a method of moments approach using

each slide’s x̄ and ȳ for our estimates of the cumulative means and use the average

di↵erence in their logits as the estimate for �’s. Similarly the variances of each

cumulative mean or the variances of each cumulative logit can be used to estimate

k. For example, in a simple Beta distribution case (i.e., x ⇠ Beta (kµ, k(1� µ))),

the mean of the cumulative logit is E(log(x/(1� x)) = z(kµ)�z(k(1� µ)) and the

variance is Var(log(x/(1� x)) = z1(k ⇤µ)�z1(k ⇤ (1�µ)), where z and z1 are the

digamma and trigamma functions.
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The inclusion of replicates also provides the opportunity to assess the proportional

odds assumption because we can separately estimate distributions of x and y for each

slide. Our focus, however, is on a typical study that has no replicates so we leave this

discussion to the future research section (Chapter 5).

3.3 Bayesian Inference via MCMC

Based on our hierarchical model structure, we are interested in the posterior dis-

tribution ⇡(�, k1, k2|data). To simplify the calculations, we consider the complete

posterior

⇡(�,µ
1

, · · · ,µn,k|data) / ⇡(data|�,µ
1

, · · · ,µn,k)⇡(�,µ1

, · · · ,µn,k),

where µ
1

, · · · ,µn are the latent means. Bayesian inference provides a natural frame-

work to incorporate these latent variables in our analysis. In addition, it allows us to

borrow information across pairs of scores (Bayesian shrinkage) to improve the preci-

sion of our estimates. Finally, the posterior samples allow us to directly assess the

uncertainty in the parameters.

Shrinkage estimators are commonly used in situations with a lack of replication.

The idea is to move the Dirichlet mean estimates closer to a provided constant value

(in our case, provided by the data) so that the resulting parameter estimates (both

means, shifts, and dispersion parameters) have improved mean square error. A well-

known example of this approach, and similar in flavor to our problem, is the James-

Stein estimator for a set of Normally distributed random variables, each with an

unknown mean. The raw estimator of each mean would be the observed value. James-

Stein suggested shrinking these means towards a common value based on a ratio of the

variability between observations versus the variability of an observation. We consider

this shrinkage approach in our Bayesian inference and describe it in next section.
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3.3.1 Priors

As described in Section 1.1.4, there are two common distributions used to model

compositional data. The Dirichlet distribution describes the variability about the

mean using a single parameter k. The logistic Normal, on the other hand, requires

a variance-covariance matrix that can involve up to six parameters when modeling

4-part compositional vectors.

In our model, we need to describe a distribution for the reference means and a

distribution that describes the observed scores given a mean vector. For the lat-

ter, we’ve chosen to use the Dirichlet distribution because we simply do not have

enough information to consider the more flexible logistic Normal distribution. For

the distribution of reference means g(·), either distribution can be considered.

For the unknown reference means µ

i

(i = 1, . . . , n), we consider them coming

from a Dirichlet prior D(µ
p

, k

p

), where µ

p

and k

p

are population-level parameters.

We take an empirical Bayes approach and use the observed data x to estimate these

two hyperparameters,

µ̂

p

= E(µ) = x̄, (3.2)

k̂

p

= max

✓

µ̂

p

(1� µ̂

p

)

var(x)
� 1

◆

. (3.3)

This prior, in essence, shrinks each estimated slide mean towards the population

mean. The degree of shrinkage depends on the estimate k̂
p

, which is calculated based

on the conditional expectation rule,

Var(x) = E (Var(x|µ, k)) + Var (E(x|µ, k))

= E

✓

µ(1� µ)

k + 1

◆

+
µ

p

(1� µ

p

)

k

p

+ 1
.

The term E
⇣

µ(1�µ)
k+1

⌘

can be estimated if we have an estimate of k. Since we ignore

this term in our estimate, we underestimate k

p

especially when k is small. Thus, we

use the maximum function in (3.3) to somewhat account for the underestimation. A
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simulation study was performed to investigate the impact of this underestimation by

comparing the results using our estimated k

p

and the results when we use the true

k

p

. The only noticeable di↵erence is that when k  10, we see some overestimation

of k when using (3.3).

For the intra-rater variability parameters k1 and k2, we consider uninformative

priors U(0, 150). These uniform priors span a wide range for the intra-rater variability.

The shift parameters (�1, . . . , �D�1) are Normally distributed with mean zero, that is,

�

J

⇠ N(0, �2
�

J

) (J = 1, . . . , D�1), where �2
�

J

is a rater-level parameter. In an ordered

rating system, there is often more consistency in scoring the extremes compared to

the intermediate categories. That means our prior belief is that �1 and �

D�1 are

often smaller than the other �’s. Therefore, we use �
�1 = �

�3 = 3 and �
�2 = 4 in the

simulations and analyses later in the case of 4-dimensional compositions.

3.3.2 Estimating the posterior distribution via Markov chain Monte Carlo

The posterior distribution of the unknown parameters given the observed data

can be expressed as

⇡(�1, . . . , �D�1,µ1, . . . ,µn

, k1, k2|x1, . . . ,xn

,y1, . . . ,yn

)

/
n

Y

i=1

D
D

(x
i

|µ
i

, k1)DD

(y
i

|µ
i

, �, k2)DD

(µ
i

|µ̂
p

, k̂

p

)

⇥N

�1(0, �
2
�1
) · · ·N

�

D�1(0, �
2
�

D�1
). (3.4)

Since the posterior distribution is a multidimensional mixture distribution with

no closed form, we construct a Markov chain to draw samples from the posterior

distribution and approximate the quantities of interest using

E(f(⇥)) ⇡ 1

N

N

X

t=1

f(⇥
t

),

where ⇥ is the unknown parameter set.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a

very useful tool for drawing samples from a multi-dimensional stationary distribution.
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This approach involves a proposal and acceptance-rejection step. In the proposal

step, a candidate value z

⇤
t+1 is drawn from a proposal distribution, e.g., a Gaussian

distribution, with probability g(z⇤
t+1|zt). In the acceptance-rejection step, we calculate

the conditional probability to accept the proposed candidate at state t+1. Based on

the detailed balance:

⇡(z
t

)g(z⇤
t+1|zt) = ⇡(z⇤

t+1)g(zt|z⇤t+1),

the accept conditional probability is then derived to be

min(1,
⇡(z⇤

t+1)g(zt|z⇤t+1)

⇡(z
t

)g(z⇤
t+1|zt)

).

If accepted, set z

t+1 = z

⇤
t+1. Otherwise, set z

t+1 = z

t

. In our case, the algorithm

consists of a series of successive single Metropolis-Hastings steps that are detailed

below.

3.3.3 Metropolis—Hastings sampling implementation

The MCMC algorithm to estimate ⇥ = (�1, . . . , �D�1, k1, k2,µ) can be summarized

as follows:

(i) Initialize the parameters: µ0 = x, �01 = · · · = �

0
D�1 = 0, k0

1 = k

0
2 = 50.

(ii) Compute model hyperparameters based on (3.2) and (3.3).

(iii) Iterate through the following three updates for T iterations.

a) Update �1, . . . , �D�1 through a series of single parameter updates. These

shifts need to be monitored to make sure that all cutpoints remain in the

proper order. That is, for a proposed �⇤1

⌘

i1 + �

⇤
1 < ⌘

i2 + �2, for all i = 1, . . . , n; (3.5)

For J = 2, . . . , D � 2, the check is

⌘

i,J�1 + �

J�1 < ⌘

iJ

+ �

⇤
J

< ⌘

i,J+1 + �

J+1, for all i = 1, . . . , n; (3.6)
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And for J = D � 1, the check is

⌘

iJ

+ �

⇤
J

> ⌘

i,J�1 + �

J�1, for all i = 1, . . . , n; (3.7)

To satisfy these restrictions, the proposal distributions are truncated Nor-

mals. For the t

th iteration:

i) When J = 1, propose �⇤1 ⇠ N(�t1, �
2
1), where �

⇤
1 < min(⌘2 � ⌘1) + �

t

2.

ii) When J = 2, . . . , D � 2, propose �⇤
J

⇠ N(�t
J

, �

2
J

), where max(⌘
J�1 �

⌘

J

) + �

t+1
J�1 < �

⇤
J

< min(⌘
J+1 � ⌘

J

) + �

t

J+1.

iii) When J = D � 1, propose �

⇤
D�1 ⇠ N(�t

D�1, �
2
D�1), where �

⇤
D�1 >

max(⌘
D�2 � ⌘

D�1) + �

t+1
D�2.

Note that the best choices of �1, . . . , �D�1 depend on the data and often

require some fine-tuning. In our case we chose �1 = · · · = �

D�1 = 0.1.

The acceptance rate r is:

r = min

 

1,
n

Y

i=1

D(y
i

|µi, �
⇤
J

, k2)

D(y
i

|µi, �
t

J

, k2)

N

�

⇤
J

(0, �2
�

J

)

N

�

t

J

(0, �2
�

J

)

TN

�

J

(L
J

, U

J

, �

⇤
J

, �

2
J

)

TN

�

⇤
J

(L
J

, U

J

, �

t

J

, �

2
J

)

!

= min

0

@1,
n

Y

i=1

D(y
i

|µi, �
⇤
J

, k2)

D(y
i

|µi, �
t

J

, k2)

N

�

⇤
J

(0, �2
�

J

)

N

�

t

J

(0, �2
�

J

)

�(
U

J

��t
J

�

J

)� �(LJ

��t
J

�

J

)

�(
U

J

��⇤
J

�

J

)� �(LJ

��⇤
J

�

J

)

1

A

, (3.8)

where TN(a, b, µ, �) is the truncated Normal function with a and b as the

lower and upper truncated boundaries, and U

J

and L

J

representing the upper

and lower boundaries of the corresponding proposed shift �⇤
J

(3.4-3.6). When

J = 1, L
J

= �1, and when J = D � 1, U
J

=1.

Generate u ⇠ U(0, 1) and accept �t+1
J

= �

⇤
J

if u < r. Otherwise set �t+1
J

= �

t

J

.

b) Update intra-rater variabilities k1, k2:

Propose k⇤
1 ⇠ N(kt

1, �
2
k

), where k⇤
1 2 (0, 150). Thus the proposal distribution

is a truncated Normal. The variance �2
k

is again fine-tuned. In our case, we

chose �
k

= 5.
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Calculate the acceptance ratio r:

r = min

✓

1,
⇡(k⇤

1|�t+1
,µ

t

,x,y)

⇡(kt

1|�t+1
,µ

t

,x,y)

◆

= min

 

1,
n

Y

i=1

D(x
i

|k⇤
1,µ

t

i

)

D(x
i

|kt

1,µ
t

i

)

�(150�k

t

1
�

k

)� �(0�k

t

1
�

k

)

�(150�k

⇤
1

�

k

)� �(0�k

⇤
1

�

k

)

!

. (3.9)

Generate u ⇠ U(0, 1) and accept kt+1
1 = k

⇤
1 if u < r. Otherwise set kt+1

1 = k

t

1.

The update procedure of k2 is the same as above with the acceptance rate r

calculated as:

r = min

✓

1,
⇡(k⇤

2|�t+1
,µ

t

,x,y)

⇡(kt

2|�t+1
,µ

t

,x,y)

◆

= min

 

1,
n

Y

i=1

D(y
i

|�t+1
, k

⇤
2,µ

t

i

)

D(y
i

|�t+1
, k

t

2,µ
t

i

)

�(150�k

t

2
�

k

)� �(0�k

t

2
�

k

)

�(150�k

⇤
2

�

k

)� �(0�k

⇤
2

�

k

)

!

. (3.10)

c) Update reference means µ
i

for slide i = 1, . . . , n:

Propose µ⇤
i

⇠ D
D

(µt

i

, V ). We chose V to be relatively big (V=80) such that

it is less likely to propose unrealistic means. In other words, µ
i

that do not

meet the constraints (3.4 - 3.6), given the current �. When we get a proposed

µ

⇤
i

that is unrealistic, we skip this update round.

Calculate the acceptance rate r

i

for each slide mean:

r

i

= min

✓

1,
⇡(µ⇤

i

|�t+1

, k

t+1
1 , k

t+1
2 ,x,y, µ

p

, k

p

)D(µt

i

|µ⇤
i

, V )

⇡(µt

i

|�t+1

, k

t+1
1 , k

t+1
2 ,x,y, µ

p

, k

p

)D(µ⇤
i

|µt

i

, V )

◆

= min

✓

1,
D(y

i

|�t+1
, k

t+1
2 ,µ

⇤
i

)D(x
i

|kt+1
1 ,µ

⇤
i

)D(µt

i

|µ⇤
i

, V )

D(y
i

|�t+1
, k

t+1
2 ,µ

t

i

)D(x
i

|kt+1
1 ,µ

t

i

)D(µ⇤
i

|µt

i

, V )

D(µ⇤
i

|µ
p

, k

p

)

D(µt

i

|µ
p

, k

p

)

◆

.

(3.11)

Generate u ⇠ U(0, 1) and accept µt+1
i

= µ

⇤
i

if u < r. Otherwise, set µt+1
i

=

µ

t

i

.

(iv) Set t = t+ 1 and repeat Step (iii) until T samples are drawn.

3.4 Model Interpretation

Our model is set up to compare one rater to a reference rater. The shift parameters

estimated from our model are with respect to the reference rater. Based on the
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MCMC algorithm, we obtain a set of correlated draws from the posterior distribution

of interest. We extract every 10th posterior sample with a 500 sample burn-in and

use the posterior means and credible intervals based on these remaining posterior

samplings ⇥ = (�1, . . . , �D�1, k1, k2) to interpret the inter-rater agreement between

two raters.

3.4.1 Interpretation of shift parameters

Posterior means of shifts �1, . . . , �D�1 are the quantities of prime interest because

they indicate how Rater B di↵ers from the reference rater (Rater A). For example, a

positive shift, �
J

> 0 means Rater B has higher cutpoint value when distinguishing

between category J and category J + 1, and vice versa. A shift �
J

close to zero then

indicates Rater B has a good agreement with the reference rater on that cutpoint. By

constructing credible intervals of posterior shift parameters, we can make an inference

that whether one or more shifts are significantly di↵erent from zero or not. Note,

however, that the category means typically depend on two cutpoints so agreeing on

a single cutpoint does not imply agreement on category percents.

3.4.2 Overall agreement index

While the shift parameters give information on the pattern of di↵erences, they do

not give a measure of overall agreement. We propose the use of an index that incorpo-

rates both the shifts and the intra-rater variabilities. Given that we use Dirichlet dis-

tributions to describe intra-rater variability, a natural probabilistic distance measure

is the Bhattacharyya coe�cient (⇢
B

or BC), which we briefly discussed in Chapter 2.

We now investigate how BC behaves when measuring the amount of overlap between

two Dirichlet distributions and discuss how it can be used as an agreement index in

our case.

For demonstration purposes, we revert back to a 3-dimensional vector. In Figure

3.6, we assume two raters have the same intra-rater variability parameter but di↵erent
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means. Suppose µ1, . . . ,µ5 are Rater A’s means for five di↵erent slides. Red points

are simulated from D(µ
i

, 100) (i = 1, . . . , 5) to represent possible scores of Rater A.

Blue points were simulated from D(µ⇤
i

, 100) (i = 1, . . . , 5) where µ

⇤
i

was computed

based on µ

i

and the shifts (�1, �2) = (0.3, 0.3). The corresponding true BC values are

shown for these five pairs of Dirichlet distributions.

It is clear that in each case there is a di↵erence in the average score between

Raters A and B but there is also some overlap in scores suggesting the two raters are

somewhat similar in scores. The BCs range from 0.714 to 0.825, which are fairly close

to one, suggesting good agreement between the two raters. The shape of the Dirichlet

distribution depends on the mean so even though the same � and k were used, the

BC is not the same for each of the means. When the distribution is concentrated in

a corner, the overlapped portion is higher. Therefore, given the same shifts (0.3, 0.3),

BC1, BC3, and BC5 are slightly bigger than BC2 and BC4. Because of this, we suggest

reporting the BC for some reference mean so it can be compared across studies.

In Figure 3.7, it is assumed Raters A and B have the same Dirichlet means, i.e.,

�1 = �2 = 0, but di↵erent intra-rater variability parameters. Here we only show two

means but consider two sets of dispersions parameters. One mean is located in the

center and the other one is located in a corner. By varying Rater B’s variability

parameter from k = 100 to k = 160 with Rater A’s variability parameter fixed at

k = 50, we can see that the overlapped portion between these two raters decreases.

This results in an decreased BC from around 0.94 to 0.85. Again, the BC calculated

from a mean in the center overlapped slightly less than those from a mean in the

corner. This indicates that even if two raters agree perfectly on the means, the BC

will not necessarily be 1 and it decreases when there is a bigger deviance between the

two intra-rater variabilities.

One way to view BC is as a conditional agreement index, that is, how close two

raters’ distributions are conditional on a given slide (or mean). Thus, this BC index

is similar in flavor to the CIV/CIA and the between-slide variability doesn’t a↵ect it.

Notice that if two raters have exactly the same mean and intra-rater variability, the
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Fig. 3.6. BCs based on di↵erent means

BC is equal to 1 regardless of the value of the intra-rater variability, while ICC and

CCC are likely to be smaller given larger intra-rater variability. Thus, we propose

to take a look at both BC and k (or k1 and k2) together as measures of the overall

agreement.

3.5 An Illustrative Example

3.5.1 Data Simulation

To demonstrate our model and estimation approach, we consider two scenarios.

Scenario 1 is set up such that Rater A and Rater B have good agreement while

Scenario 2 indicates Rater A and Rater B are di↵erent, especially in distinguishing

Category 2 and 3. For illustration purpose, we set k1 = k2 = 50 and update k as a
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Fig. 3.7. BCs based on di↵erent intra-rater variabilities

single intra-rater variability parameter. The Scenario 1 data are simulated using the

following steps:

(i) Simulate 50 Rater A (i.e., the reference rater) means µ1, . . . ,µ50 from a Dirichlet

prior D((0.3, 0.4, 0.3), 10).

(ii) Generate Rater A’s scores using x
i

⇠ D(µ
i

, 50).

(iii) Using the shifts (�1, �2) = (�0.1, 0.1), compute the Rater B means µ

yi

=

f(µ
i

, �1, �2) using the logit transformation.

(iv) Simulate Rater B scores using y
i

⇠ D(µ
yi

, 50).

This gives us 50 pairs of scores (x
i

,y
i

), which we use to assess agreement. For Scenario

2, we repeat steps (iii)-(iv) above with (�1, �2) = (0.3, 0.8).
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3.5.2 Data Visualization

Figure 3.8 contains two ternary plots to help visualize the two scenarios. Due

to the larger absolute shifts (+0.3, +0.8) in Scenario 2, Rater B’s scores are further

away from Rater A’s scores (right plot). The plots do not link pairs of scores but it

is clear in the right figure that the average score is di↵erent. For the left plot, there

is much more overlap.

Fig. 3.8. Simulated data on the simplex

3.5.3 MCMC output

To demonstrate that our algorithm converges on a single posterior distribution

(single mode), we performed two runs with di↵erent starting values (Table 3.2) for

each of these two examples. Run 1 starts at shift values representing perfect agreement

and small intra-rater variability. Run 2 starts at shift values representing substantial

deviations in means and relatively large intra-rater variability.

Figure 3.9 displays the posterior samples of �1, �2 and k for Scenario 1 and Scenario

2 under both starting values. It is clear that both chains converge quickly to the same
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Table 3.2.
Starting values for parameters in two runs of the MCMC

Parameter Run 1 Run 2

�1 0 -1

�2 0 1

k 100 10

µ

x

x x

posterior. We discard the first 500 iterations (10%) as burn-in and extract every 10th

iteration to compute posterior means and variances of parameters as well as compute

95% credible intervals of parameters combining both chains. Table 3.3 summarizes

the results from the runs in Figure 3.8. All 95% credible intervals contain the true

parameters and the posterior means are very close to the true values. Except for the

95% credible interval of �1 under Scenario 1, all other shift credible intervals do not

contain zero.

Table 3.4 summarizes the BC index for several di↵erent reference means. For

Scenario 1, all the BC estimates are between 0.94 and 0.95 and very close to the

truth. For Scenario 2, because of the bigger shift parameters, the BC estimates are

reduced to around 0.6. The posterior mean estimates are bigger than the true values

because of the underestimation of k and � in this case.
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Table 3.3.
Posterior summary based on the combination of two chains of 5000 draws

True Parameter Posterior Mean 95% Credible Interval

�1 = +0.1 0.0 (-0.129, 0.116)

�2 = �0.1 -0.161 (-0.273, -0.052)

k = 50 51.99 (37.86, 67.65)

�1 = +0.3 0.254 (0.117, 0.377)

�2 = +0.8 0.709 (0.574, 0.842)

k = 50 42.49 (31.11, 54.20)

Table 3.4.
BCs computed based on posterior estimates

Reference Mean

�1 = +0.1, �2 = �0.1 �1 = +0.3, �2 = +0.8

Posterior Mean(Truth) 95% CI Posterior Mean(Truth) 95% CI

(0.3, 0.4, 0.3) 0.945(0.951) (0.883, 0.996) 0.609(0.490) (0.481, 0.749)

(0.1, 0.1, 0.8) 0.940(0.944) (0.869, 0.998) 0.527(0.387) (0.367, 0.683)

(0.5, 0.3, 0.2) 0.951(0.945) (0.892, 0.996) 0.692(0.593) (0.585, 0.797)



79

Fig. 3.9. Sampled values for �1, �2, and k from two runs of the MCMC
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This simulation demonstrates the ability of our model to obtain reasonable esti-

mates for standard data sets without replicates. More intensive simulation studies

are needed to investigate bias. We use the rest of this chapter for these investigations.

3.6 Simulation Studies on Continuous Data

To investigate possible bias of the shift and intra-rater variability estimates, we

performed simulation studies following the general data simulation procedure de-

scribed in the previous section. For each data set, we run a MCMC chain with 5000

iterations. Since typical IHC scores are 4-part compositional vectors, these simula-

tions involve 4 dimensional compositional data. We consider two settings and simulate

50 data sets of 50 slides from each setting. There are no replicate scores for any of the

slides. For Setting 1, the population of means is D4(µ
p

= (0.25, 0.25, 0.25, 0.25), k
p

=

10). For each set of 50 slides, the three shift parameters �’s are randomly chosen

and the intra-rater variability parameter ranges between 10 and 100. For Setting 2,

we use the same shift parameters and k as Setting 1 but the slide mean distribu-

tion is D4(µ
p

= (0.1, 0.1, 0.2, 0.6), k
p

= 80). This setting involves a non-central and

compact population of slides while the first setting involves a disperse central popu-

lation. The thought here is to investigate the robustness of the methodology under

non-ideal (Setting 2) conditions. For both simulation settings, the posterior means

of �1, �2, �3 and k are used as our point estimates. For each simulation, absolute de-

viances between the true shift parameters and the posterior estimates are calculated

(i.e, deviance = estimated - true ). To better investigate the pattern of k estimates,

the % deviances between the true k and the posterior estimates are calculated( i.e.,

(estimated - true)/true ).

Figure 3.10 displays these deviances versus the true values for all simulations from

Setting 1. We label the 50 simulated data set with numbers from 1 to 50 to be able

to pair the deviances across a single data set and across settings. In general, there

appears to be no bias from shift estimates as the deviances bounce above and below
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the zero reference lines. Data sets with a low number (e.g., 1, 2, 4, and 5) tend

to have larger deviances. A likely reason for this is that these runs involved cases

with a large intra-rater dispersion parameter (k = 10), which in general mean more

uncertainty. We observe some overestimation of k especially when k = 10. Further

investigations suggest that this overestimation coming from the underestimation of

k

p

(not shrinking enough towards the overall mean).
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Fig. 3.10. Deviances of model estimates given continuous data sets
from a disperse, central mean population

We also use the frequentist estimation approach described in Section 3.2.1 to

estimate our model parameters. We can still get unbiased estimates of �’s. However,

k gets severely underestimated using the MLE (Figure 3.11), which demonstrates the

strength of our Bayesian approach to improve the model estimation.
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Fig. 3.11. Comparison of estimated model parameters
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Figure 3.12 displays the deviances versus the true parameters for the 50 simu-

lations under Setting 2. Each data set number here indicates the same shift and

intra-rater variability parameters used in Setting 1. One di↵erence between the shift

estimates we notice immediately is that the deviances of �3 are generally smaller than

those in Figure 3.10. This is due to the skewness of the slide mean population in this

setting. The slide means are skewed to the positive category so there is a lot of infor-

mation about the cutpoint between the moderate and positive categories. Conversely,

there is less information regarding the first shift, and while it is not as strongly appar-

ent, we see more dispersion in the �1 estimates under the second setting. Besides, the

estimates of k get slightly bigger compared to those from Setting 1. More simulations

have been done by varying population mean µp and population dispersion k

p

and it

suggests that less variation in slide means results in an overestimation of k (i.e., less

intra-rater variability) especially for small k.
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Fig. 3.12. Deviances of model estimates given continuous data sets
from a skewed slide population
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We also investigated the posterior distributions of the estimated parameters for

the simulated data sets. Since our imposed priors of the parameters are pretty flat,

most information is coming from the data. Note that the 50 simulations we display

in Figures 3.10 and 3.12 assumed one intra-rater variability parameter k for both

raters. When there are no replicates from raters, allowing k1 and k2 to be estimated

separately would result in flat posterior distributions of k1 and k2, because there is

no information of each intra-rater variability provided by data.

In contrast, when the true k1 and k2 are di↵erent but we update them as if they

were the same in our MCMC procedure, we end up getting a “pooled” estimate of

k1 and k2, that is, the posterior distributions of k would be between the two truths.

We’ve run a couple chains with data simulated from di↵erent k1 and k2 but only

update one k, and this is the only noticeable result. There were negligible changes in

the estimates of �’s.

3.7 Model Extensions: Discrete Compositional Scores with Rounded Ze-

ros

The previous model assumes the scores are on the simplex spaces. In practice,

however, pathologists give compositional scores using deciles values between 0 and

1. We conceptualize this as pathologists rounding percentages to the nearest decile

when scoring slides. Since the Dirichlet distributions don’t accommodate vectors with

0 elements, a modification of our approach is needed.

3.7.1 Modified model and MCMC implementation

In the modified model, we consider the x and y to still be on the simplex space

but they are now latent scores. Figure 3.13 adds this latent layer to the hierarchical

model structure. The observed data x
0
and y

0
are the rounded decile compositional

vectors of these latent scores. To guarantee these vectors sum to one, we assume the

lowest, highest, and the second lower categories are rounded. The third category is
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then one minus the sum of these rounded values. To include and update the latent

scores, we need to add an additional step to our MCMC algorithm. We propose

two modifications to the Metropolis-Hastings sampling implementation described in

Section 3.3.3.

Fig. 3.13. Hierarchical model structure for discrete data

Modified Initialization Step

First, apply the multiplicative replacement strategy (Mart́ın-Fernández, 2003)

described in Chapter 1 (Section 1.5.1, page 20) to replace the observed zeroes in

compositional scores of both raters with a small value. Let x
0

(r) and y
0

(r) be the

discrete observed data with the replacement. Then initialize the parameters using

µ

0 = x
0

(r), �
0
1 = · · · = �

0
D�1 = 0, k0

1 = k

0
2 = 50, and t = 0.

Propose Continuous Compositional Vectors
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Before updating the shift parameters in the MCMC step, an extra step is imple-

mented to update the latent scores. In this step, we propose:

for i = 1, . . . , n,

x

⇤
ij

⇠

8

>

>

>

<

>

>

>

:

U(x
0
ij

� 0.05, x
0
ij

+ 0.05), if x
0
ij

> 0,

U(0, 0.05), if x
0
ij

= 0, (j = 1, . . . , D).

U(0.95, 1), if x
0
ij

= 1,

To guarantee
P

D

j=1 x
⇤
ij

= 1, we set x

⇤
i3 = 1 � PD

j 6=3 x
⇤
ij

. Then we calculate the

acceptance ratio:

r

i

= min

✓

1,
D(x⇤

i

|µt

i

, k1)

D(xt

i

|µt

i

, k1)

◆

.

Generate u ⇠ U(0, 1) and accept xt+1
i

= x⇤
i

if u < r

i

. Otherwise set xt+1
i

= xt

i

.

Similarly, we update Rater B’s latent continuous compositional vectors yt

i

in the

same way as described above.

Besides these two modified steps, all other update steps are the same as described

in Section 3.3.3, with x
i

replaced by the updated xt

i

in each iteration.

3.7.2 Simulation studies for discrete data

To investigate how our model performs on discrete compositional data, we rounded

the 50 continuous data sets simulated from Setting 1 of the previous section to obtain

decile score vectors. We then implemented our modified MCMC algorithm to esti-

mate the shift and the intra-rater variability parameters. Figure 3.14 shows that the

deviances for the shift and the intra-rater variability parameters are still bouncing

around the zero reference lines.

To better compare the estimates from each continuous data set and its paired

discrete data set, Figure 3.15 displays the di↵erences of the model estimates for each

data set. Each red point represents the posterior mean estimate from a continuous

data set minus the posterior mean estimate from the corresponding rounded decile

data set. Each blue point represents the relative di↵erence between k estimates (i.e.,
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di↵(k̂)/k). There are no obvious patterns in the shift estimates and the di↵erences are

relatively small (between -0.1 and 0.1). However, we do observe that the estimated k

from the 50 continuous data sets tends to be bigger than those from the 50 rounded

data sets. This might be coming from the rounding procedure because it introduces

more artificial intra-rater variability.
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Fig. 3.14. Deviances of model estimates given decile data sets from a
disperse, central mean population

We also summarize the standard deviation of posterior samples within a simulation

in Table 3.5. Even though we don’t see a pattern between the dispersion of posterior

means of �’s versus the value of k, we do see bigger uncertainty of �̂’s within a MCMC

chain when k is smaller, which is also expected.
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Fig. 3.15. Comparison: continuous and discrete data sets

Table 3.5.
SD of posterior samples based on di↵erent k’s

k SD(

ˆ�1) SD(

ˆ�2) SD(

ˆ�3)

10 0.13 0.11 0.12

50 0.07 0.07 0.07

100 0.05 0.05 0.06

3.8 Model Extension: Replicate Scores on All or a Subset of Slides

All simulations so far assumed that raters only score each slide once. In those

cases, we restricted the intra-rater variabilities for both raters to be the same (i.e.,

k1 = k2). When there are replicate scores from raters on all or a subset of the slides,

we can relax the restriction k1 = k2 and update k1 and k2 separately in the MCMC

algorithm.
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To investigate how the replication impacts our model estimates, we take the 50

simulated decile data sets from Setting 1 in the previous section, and simulated one

extra replicate score on each of the 50 slides from each rater. We perform the same

estimation approach and summarize the means and standard deviations of the 50

deviances in Table 3.6. The first column, as the reference, is the one without any

replication. The second column represents the data set with two replicates on all 50

slides from both raters. Columns 3 and 4 represent the same data set as the second

column except that they have replicate scores on a subset of 25 slides and replicate

scores on a subset of 10 slides, respectively. Column 5 represents a data set including

no replicates for the reference rater but two replicates on all 50 slides from Rater B.

In terms of the estimates of �’s, as the number of slides with replicates decreases, the

standard deviations of the 50 deviances increase slightly but it is almost negligible.

In terms of the estimates of k, we only compare the column 2-5 because we estimate a

single k when there is no replication. There is an increase of the observed deviations

as the number of slides with replicates decreases.

Table 3.6.
Summary of 50 deviances for shifts and intra-rater variabilities

Parameter No rep Rep on 50 slides Rep on 25 slides Rep on 10 slides Unbalance

�1 +0.01(0.08) 0.0(0.07) +0.01(0.08) +0.02(0.09) +0.02(0.08)

�2 �0.01(0.08) �0.01(0.06) 0.00(0.07) 0.00(0.08) �0.01(0.07)
�3 �0.02(0.10) �0.01(0.07) �0.01(0.09) �0.01(0.09) �0.01(0.08)
k1

+2.5(11.4)
+2.6(8.64) +0.83(12.40) �1.55(16.3) �3.76(14.9)

k2 +3.6(10.4) +2.35(13.8) +1.00(15.9) +4.49(11.3)

3.9 Model Extension: More Than Two Raters

When there are more than two raters, we simply modify the MCMC update Step

(v) in Section 3.3.3 to accommodate this. One of the raters has to be chosen as a
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reference rater, then we estimate the shifts from each of the other raters compared

to the reference.

Modified Update Reference Means Step

Let x,y(1), . . . ,y(R) denote the observed data from the reference rater, Rater 1

to Rater R (R � 2), and k(0), k(1), . . . , k(R) denote their corresponding intra-rater

variability parameters. For notation simplicity we assume the observed data are

continuous. For each of the R raters, their shifts are denoted as �(1), . . . , �(R).
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Generate u ⇠ U(0, 1) and accept µt+1
i

= µ

⇤
i

if u < r

i

. Otherwise, set µt+1
i

= µ

t

i

.

3.10 More Simulations with Di↵erent Sample Size

To better understand the sampling distributions of the posterior means of our

model parameters based on di↵erent sample sizes, we provide two more simulation

cases. For each case described below, 80 decile data sets are generated from a pop-

ulation D([0.25, 0.25, 0.25, 0.25], 10) for di↵erent numbers of slides n. Assume there

are two replicates on each slide from both raters, thus k1 and k2 can be estimated

separately.

Case 1: Two raters are relatively consistent in scoring all levels and both raters

have large intra-rater variabilities. Set �1 = �0.1, �2 = 0.2, �3 = 0.1, k1 =

10, k2 = 20, and n = 20, 40, 60, 80, 100. The distribution of 80 posterior means

is displayed using boxplots in Figure 3.16.
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Fig. 3.16. Distribution of posterior means for case 1

Case 2: Two raters are relatively consistent in scoring the negative and the positive

levels but vary quite a bit in distinguishing between the middle two levels. Rater

2 is relatively consistent when scoring the same slide. Set �1 = �0.1, �2 =

�0.6, �3 = �0.2, k1 = 30, k2 = 60, and n = 20, 40, 60, 80, 100,.

In Figure 3.16 and 3.17, again, no evidence of bias is shown in the estimates.

Generally, when the number of slides increases, the uncertainty of posterior means

becomes smaller. Data sets from a skewed population were also simulated and we

observe a similar trend. In practice, 50 slides are probably the most we can get.

Thus, we used n = 50 throughout this chapter for our simulation studies of model

properties.
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Fig. 3.17. Distribution of posterior means for case 2

3.11 Robustness of the Proposed Model

To investigate how our model performs when the observed data do not follow a

Dirichlet distribution, we simulated observed data using logistic Normal distributions

with positive correlations. The procedure of simulating logistic Normal data is as

follows:

(i) Simulate 50 reference means µ1, . . . ,µ50 from a Dirichlet prior D(µ
p

, k

p

) with

µ

p

= (0.2, 0.3, 0.3, 0.2) and k

p

= 10.

(ii) Based on the relationship between Dirichlet and logistic Normal (Equation 1.1,

page 12), the corresponding logistic Normal means m
i

can be calculated. This

would ensure the logistic Normal slide means are comparable to the Dirichlet

slide means. To allow for positive covariances, we simulated the ⌃
i

for each slide
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using the Inverse-Wishart ( , v). Set  =  

ij

, where  
ii

= 1 and  
ij

= 0.3 (i 6=
j), and v = 5, such that the simulated logistic Normal data have moderate

strength of positive correlation among components. Then generate Rater A’s

observations as x
i

⇠ L(m
i

,⌃
i

).

(iii) Given the 50 reference means and a fixed set of shifts (�1, �2, �3), calculate the 50

Dirichlet means µ
y1, . . . ,µy50 for Rater B. Again the comparable logistic Normal

distribution means m
yi

can be obtained and ⌃
yi

⇠ Inverse-Wishart( , v) for

each slide. Rater B’s observations y
i

are generated from this logistic Normal.

(iv) In order to compare the bias and the coverage, 50 pairs of observations from

Dirichlet distributions are also generated based on D(µ
i

, k) and D(µ
yi

, k).

For each scenario, the above procedure is repeated 100 times and 100 posterior

means and 95% credible intervals are stored. The numbers in Table 3.7 represent the

average of the 100 posterior means and how many times the 95% credible interval

contained the true parameters. Two intra-rater variabilities of Dirichlet distributions

and three sets of shifts are considered here. The intra-rater parameter k doesn’t

impact the covariance structure ⌃ but it does impact how close the logistic Normal

means approximate the corresponding Dirichlet means. Recall that the bigger k

is (thus the bigger ↵ since ↵ = µk), the closer the logistic Normal distribution

approximates the Dirichlet distribution. Each of the shift sets represents a typical

agreement case: two raters generally agree, two raters vary in terms of distinguishing

the middle categories, and two raters have relatively poor agreement.
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Table 3.7.
Logistic Normal data versus Dirichlet dataa

(�1, �2, �3) k Dirichlet Logistic Normal

(�0.1,+0.2,+0.1)
10 -0.14(0.90) 0.20(0.94) 0.18(0.90) 0.01(0.80) 0.24(0.88) 0.33(0.74)

50 -0.12(0.96) 0.20(0.94) 0.11(0.94) -0.06(0.78) 0.21(0.85) 0.18(0.83)

(�0.1,�0.6,�0.2)
10 -0.13(0.80) -0.60(0.88) -0.15(0.92) -0.13(0.73) -0.41(0.70) -0.01(0.77)

50 -0.12(0.87) -0.61(0.92) -0.18(0.92) -0.12(0.71) -0.58(0.84) -0.14(0.75)

(+0.8,+0.5,+0.2)
10 0.78(0.84) 0.54(0.82) 0.19(0.88) 0.70(0.84) 0.53(0.71) 0.36(0.63)

50 0.80(0.95) 0.51(0.93) 0.20(0.86) 0.81(0.88) 0.52(0.85) 0.10(0.70)

a
The average of 100 posterior means (coverage of 100 95% credible intervals)

When we compare the average posterior means, we do observe some bias from

the logistic Normal data when k = 10. The bias tends to get very small when

k increases to 50. Generally, our model with Dirichlet data provides greater than

80% chance (> 90% in most cases) that the 95% credible intervals cover the true

parameters. When k = 10, our approach using logistic Normal data can still provide

� 70% chance to cover the true parameters (except one in the poor agreement case).

When k increases to 50, the coverages given logistic Normal data slightly improve.

This shows our model is generally robust to logistic Normal data though a moderate

positive covariance structure is assumed. Further studies may still be needed to

investigate how our model performs given other covariance structures.

The average coverages from our model do not obtain 95% and this is particularly

true for small k’s. We used the highest posterior density (HPD) (the narrowest

intervals) to calculate the credible intervals, and this might be one of the reasons for

the under-coverage. In addition, the 95% credible intervals represent the Bayesian

coverages which don’t necessarily have the 95% coverage properties in a frequentist

setting (Wasserman, 2004). Adding sample size and increasing k would increase our

Bayesian coverages.
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3.12 Discussion

Motivated by the inter-rater agreement problem in IHC scoring, we propose a

Bayesian method to assess inter-rater agreement for compositional data. Due to the

sum-to-one constraint of the compositional data, the Dirichlet distribution serves as

a reasonable distribution to describe these compositional scores and we consider a

logistic link between pairs of rater means to describe pattern di↵erences in response.

Our proposed model is generalized to handle not only continuous but also discrete

or rounded compositional data across multiple raters with or without replication.

Simulation studies show that our model can provide unbiased estimates of parameters

with decent robustness. The interpretation of this model is fairly easy, as the shift

parameters serve as an indication of the pattern of rater agreement and the BC serves

as an overall agreement index.

Besides the proportional odds assumption inherent to our model through shifts

of the logit link, we have also considered another view of scoring. That is that the

cutpoints for both raters on the latent intensity scale are fixed and the distribution

of cell intensities on each slide varies. The di↵erence between these two approaches

was discussed in Section 3.1.3.
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CHAPTER 4. A REAL DATA APPLICATION IN IHC ASSAYS

4.1 Introduction

In Section 3.1, we provided an overview of IHC assays and the common scoring

method that results in a compositional vector. We also emphasized the importance

of inter-rater agreement of these vector scores for consistency in prognosis. In this

chapter, we apply our proposed methodology to some real IHC agreement study

data and provide a comparison of our assessment with those based on the H-score.

Moreover, we discuss power calculations based on our model to assist in determining

sample size for future studies.

To facilitate the use of our methodology, an online software platform was con-

structed using R Shiny (Version 0.12.1). We demonstrate the features of this program

throughout the chapter. It can be accessed at:

https://ningningchen.shinyapps.io/MyShinyTest. The program opens to a welcome

main page (Figure 4.1) which provides users with basic navigational instructions on

how to use the software, contact information if there are any questions, and a link to

a more detailed instruction document.

Fig. 4.1. Screenshot: welcome page
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4.2 Study Description

This real study was provided by the Oncology Lab, Eli Lilly & Company and

it follows the layout of a typical multivariate IHC study (Table 3.1), specifically to

compare three raters to a “Gold Standard” (a very experienced rater). Here is a

summary of the details:

Number of unique IHC slides: n = 30.

Rater labels: Rater GS (experienced rater), Rater A, Rater B, Rater C.

Replication: GS scored all 30 IHC slides once; Raters A, B and C scored 15 of these

IHC slides twice and the other 15 IHC slides once.

Missing data: Rater A has a missing score on one of the IHC slides that is scored

once.

To upload a data set into our platform it needs to be in a particular form. The

data set should include one column that identifies the rater, one column that identifies

the slide, and four columns that identify the four staining intensity categories. Figure

4.2 is an example of a data set ready for our software. The scores for each staining

category can be either in percent format as shown in the figure or in decimal format.

Users use the “Data Entry” option from the Navigate panel to upload data sets from

either a local machine, or provide a link where the data set is stored. The default data

set provided with the program is the real IHC data we use throughout this chapter.

After uploading, users specify the corresponding variable names by choosing them

from the drop-down lists on the left panel (Figure 4.3). The “View Summary Table”

option provides a more detailed summary of the data once the data set is uploaded

and the variable names are specified. The right side of the window lists each slide as

a row and each rater as a column. The number in each cell represents the number of

replicate scores. For our real data set (Figure 4.3), we can see Rater A has a missing

score for Slide 18.
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Fig. 4.2. Screenshot: Data format

Fig. 4.3. Screenshot: data summary
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4.3 Modeling Procedure and Results

4.3.1 Estimation using Rater GS as the reference

Fig. 4.4. Screenshot: preparation for model fit

To apply our model to the real IHC data set, users need to choose “Assessing

Rater Agreement” from the drop-down list in the Navigate panel and then choose

the reference rater (Figure 4.4). The Bayesian MCMC procedure will initiate once

a user clicks “Run”. A progress bar will show up on the right corner to indicate

the progress and results will be displayed after the procedure is completed. This

software can automatically detect di↵erent types of the data uploaded and use the

appropriate model to fit the data (Chapter 3, Section 3.7-3.9). For example, the

software can detect if there is any replication (i.e., multiple scores by the same rater on

the same slide). If no replication is detected, a single intra-rater variability parameter

is estimated. Moreover, if there are missing scores from the chosen reference rater,

the software will generate an error message indicating the missingness. Thus, for our

case, Rater A cannot be chosen as the reference rater.
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For this study, there are four raters assessing 30 IHC assays, with three raters

having partial duplicates. Due to the inclusion of replication and multiple raters, we

utilize our extended model summarized in Section 3.8 for the analysis.

Table 4.1.
Summary for model estimatesa

Parameter Rater GS Rater A Rater B Rater C

�1 — -0.74 (-1.1, -0.45) -0.82 (-1.14, -0.52) 0.49 (0.18, 0.81)

�2 — 0.54 (0.18, 0.86) -0.96 (-1.25, -0.66) 0.54 (0.18, 0.84)

�3 — 0.40 (0.04, 0.78) -0.90 (-1.23, -0.48) 0.25 (-0.17, 0.65)

k 9.09 (5.92, 12.16) 13.74 (8.3, 18.76) 14.80 (10.64, 19.71) 8.77 (5.78, 11.11)

a
Posterior means (95% credible interval)

Fig. 4.5. Posterior means and 95% credible intervals of model estimates

Since we are interested in comparing Rater A, B and C to Rater GS, there are

three sets of shifts and intra-rater variabilities corresponding to these three raters

that need to be estimated. Table 4.1 and Figure 4.5 summarize the model estimates.

To give readers a better idea of how these three raters di↵er from Rater GS in terms

of the percents rather than the shifts on the logistic scale, the presumed mean scores

for three di↵erent IHC assays are provided in Table 4.2.
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Table 4.2.
Expected scores for Rater A, B, and C given three reference assays

Rater GS (reference)(%) Rater A Rater B Rater C

(25, 25, 25, 25) (14, 49, 19, 18) (13, 15, 27, 45) (35, 28, 16, 21)

(10, 40, 40, 10) (5, 57, 31, 7) (5, 21, 52, 22) (15, 45, 31, 9)

(5, 15, 20, 60) (3, 28, 19, 50) (2, 6, 12, 80) (8, 21, 16, 55)

The overall population mean µp is estimated to be [0.25, 0.29, 0.19, 0.18] and the

population dispersion k

p

is estimated to be 2 based on the observed data from Rater

GS. This indicates our IHC slides have very di↵erent mixture means. All four raters

show a very large amount of intra-rater variability. Surprisingly, Rater GS has slightly

bigger intra-rater variability than Rater A and Rater B, but not significantly di↵erent

from any rater. Given these small value of k̂’s, we might still see some overestimation

of k because of the poor estimation of k
p

. In addition, this small value of k definitely

introduces large uncertainty in estimating the shifts. This is why we see relatively

wide credible intervals for �1, �2, and �3 similar to our simulation studies in Section

3.7, Chapter 3 (Table 3.5). We also expect that raters vary more when they score

the middle two staining levels than the lower and upper two levels. However, the

shift estimates and Table 4.2 doesn’t necessarily show the expected pattern except

for Rater C.

Overall, Rater A can be defined as a “moderate” rater because of the negative

shift (-0.74) between “negative” and “weak” staining categories and the positive shift

(0.40) between “moderate” and “positive” staining categories. All shift estimates of

Rater A are significantly di↵erent from zero based on the 95% credible intervals. This

implies Rater A tends to assign most of the cells to the middle two categories. Rater

B and Rater C have the opposite behaviors in terms of scoring IHC assays. Rater

B is a “bold” rater as the three shifts are consistently negative and significantly

di↵erent from zero, implying the cells are assigned to the higher categories. Rater C
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on the other hand is more “conservative” in assigning cells to the “positive” category

and tends to assign more cells to “negative” category. Only Rater C’s shift between

“moderate” and “positive” categories is not significantly di↵erent from zero.

4.3.2 Estimation using Rater C as the reference

Our software allows users to specify the reference rater. Instead of GS as the

reference, this section shows the output using Rater C as the reference rater. We

switch the reference rater from Rater GS to Rater C using the drop-down list option

shown in Figure 4.4 and re-run the analysis. In Table 4.3, we match Rater C’s mean

scores in Table 4.2 and calculate the expected mean scores from Rater GS, Rater A,

and Rater B based on the new estimates of model parameters.

Comparing Table 4.2 and Table 4.3, the shift estimates are consistent no matter

which rater is chosen as the reference since the estimated expected means are similar

across these two tables. The deviance of the expected mean percent in each category

is within 5% except the third reference row of Rater GS. This, again, may be due to

no replication from Rater GS. The k estimates for all raters are almost the same with

the values shown in Table 4.1, thus we omit listing a redundant table here.

Moreover, we notice that in Table 4.1 and Figure 4.5, Rater A and Rater C have

the same �̂2 and overlapped credible intervals for �2. After we switch the reference

rater to Rater C, we get �̂2 = 0.02 with the credible interval (�0.21, 0.29). This

confirms again our previous result using Rater GS as the reference rater.

Table 4.3.
Expected scores for Rater GS, A, and B given three reference assays

Rater GS Rater A Rater B Rater C (reference)(%)

(20, 33, 28, 19) (13, 53, 19, 15) (12, 17, 31, 41) (35, 28, 16, 21)

(8, 42, 42, 8) (5, 58, 31, 6) (4, 22, 54, 20) (15, 45, 31, 9)

(4, 18, 25, 53) (2, 29, 23, 46) (2, 7, 15, 76) (8, 21, 16, 55)
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4.3.3 Overall agreement using the BC index

Our purpose for this analysis is to compare all other three raters to GS, thus we

calculate the posterior mean estimates of the BC and the corresponding 95% credible

interval for the three pairwise comparisons. The reference slide used here is the overall

observed mean calculated from Rater GS. To also investigate and compare other

agreement indices, the CCC and the  (1-CIV) indices based on the H-score method,

as well as the iota coe�cient using the raw compositional vectors are calculated (Table

4.4).

Before we make any conclusions based on these agreement indices, we investigate

the sensitivity of the BC, the CCC, the  , and the iota coe�cient to changes in �2.

We focus on changes just in �2 because this was the breakpoint considered to be the

most variable. Recall the BC and the  ranges from 0 to 1 with a value of 1 indicating

perfect overlap/agreement between two raters while the CCC and the iota coe�cient

both range from -1 to 1 for two-rater case. Though they have di↵erent ranges, most of

the values of the CCC and the iota coe�cient range from 0 to 1 and a value between

0 and 1 has the same interpretation among these four agreement indices.

Based on the data simulation procedure (Section 3.5.1, page 75), we simulated 100

slides for each �2 from the Dirichlet population with µp = [0.25, 0.25, 0.25, 0.25] and

k

p

= 5. The intra-rater variability parameter k is set to be 30 for both raters. This

setup introduces a large amount of between-slide variability. The BC was calculated

using µp as the reference mean, which is denoted as BC
o

. Since only one data set is

simulated for each �2, we do expect some noise in the results. To assess the trend, we

plot loess curves.

Figure 4.6 displays the index scores when �1 and �3 are fixed at zero and �2 varies

from -1.0 to 1.0 by 0.1 increment. Figure 4.6 clearly shows that the BC is very

sensitive to changes in �2 and ranges from 0.99 (�2 = 0) to nearly 0.07 (�2 = 1). The

second most sensitive index is  because the between-slide variability isn’t included

and the between-rater component dominates over the intra-rater variability. Due to
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the loss of information when the H-score is used, the  is not as sensitive as the BC.

The iota coe�cient shows some sensitivity, ranging from 0.85 to 0.57, but it factors

in the between-slide variability which is very large for this example. In fact, because

of the loss of information using the H-score and its dependence on the between-slide

variability, the CCC doesn’t really vary at all over the range of �2.
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Fig. 4.6. The values of BC, iota coe�cient, CCC,  based on uniform population

Figure 4.7 shows a similar experiment but here the slides come from a non-central

distribution D([0.1, 0.1, 0.2, 0.6], 80). The most noticeable di↵erence here is that the

CCC and iota coe�cient now range between 0.1 to 0.25, much lower than observed

previously. This is due to the dramatic decrease of the between-slide variability. The

BC
o

and  are more sensitive to positive changes of �2 due to the skewness of the

slide population. Similar trends and degrees of sensitivity, however, are observed here

for all four indices.
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Fig. 4.7. The values of BC, iota coe�cient, CCC,  based on skewed population

These two simulations assumed k1 = k2 = 30. Increasing k will reduce the

intra-rater variability, thereby increasing the sensitivity of BC
o

and  while simply

increasing the average value for the other two indices. Di↵erent values of k1 and k2

will not impact iota coe�cient and the CCC much but will generally lower the index

value for BC
o

.

We can understand the diminished sensitivity of the  and the insensitivity of the

CCC better by examining the distributions of the di↵erences of the H-score between

the two raters. In Figure 4.8, when �2 is small (0.2), the di↵erences of the H-score

between Rater A and Rater B are almost centered at 0. When �2 increases to 1.0, we

want to see this distribution shift far away from the center. However, we only observe

a small shift to the right which indicates that the H-score distribution is insensitive
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to big changes of �2. This example demonstrates the biggest drawback of using the

H-score for agreement analysis.

Difference in H−score
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Fig. 4.8. Distributions of H-score

Now that we have an idea of the sensitivity of all the agreement indices, we

calculate them based on our real data set. The results in Table 4.4 confirm our

findings from Figure 4.6 and Figure 4.7. Generally, the CCC does not vary as much

as the other three agreement indices. Given this 30-slide population, the BC index

shows Rater C has the best agreement with Rater GS, followed by Rater A, and then

Rater B, which is consistent with the iota coe�cient. In contrast, the  and the CCC

show that the agreement of Rater A > Rater C > Rater B based on the corresponding

H-score distribution. We notice that the value of  for Rater B is really low. This can

be explained by the three large negative shifts of Rater B resulting in more percent

assignments to the positive staining level. Since the H-score gives the biggest weight

to the percent in the positive staining level, the low value of  is expected. Similarly,

the value of  for Rater A is close to 1 even though there is a relatively big negative
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value of �1 and moderate positive values of �2 and �3, because the H-score doesn’t not

change much in this scenario.

To see if this pattern consistently occurs, we simulated 100 data sets using the

posterior means as our parameters, fit each data set, and calculated all the agreement

indices. We always observe the agreement pattern of Rater C > Rater A > Rater

B based on the estimated BCs. However, the CCC, the  and the iota coe�cients

show Rater B always has the lowest agreement with Rater GS but Rater A and Rater

C are very close since roughly half of the time we observe Rater A having the best

agreement. Except for Rater C, the BC scores are not particularly large. This is

due to the large estimated shifts and large amount on intra-rater variability. In fact,

even though Rater C has a BC value close to one, we may observe very di↵erent slide

scores between GS and C because of this intra-rater variability.

Table 4.4.
Comparisons of overall agreement indices: BC, CCC and the iota coe�cient

Agreement Index Rater A Rater B Rater C

BCa 0.64 (0.51, 0.77)b 0.58 (0.44, 0.75) 0.91 (0.78, 0.99)

 

c 0.98 0.38 0.91

CCC 0.88 (0.79, 0.94)d 0.79 (0.66, 0.88) 0.84 (0.71, 0.91)

iota 0.63e 0.55 0.66

a Reference assay mean is the observed overall mean (25, 28, 29, 18)%

b Posterior means (95% credible interval)

c Point estimate using ANOVA based method

d Point estimate (95% confidence interval)

e Point estimate (no confidence interval available)

The BC calculated in Table 4.4 is conditional on the observed overall mean, but

it varies if we specify di↵erent reference means (page 73-74). The BC index has its

advantage that it provides more information regarding the assay population. For
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Table 4.5.
The BCs based on three assay populations

Poppulation Rater A Rater B Rater C

(25, 25, 25, 25)% 0.65 (0.52, 0.81) 0.57 (0.42, 0.69) 0.87 (0.74, 0.99)

(10, 40, 40, 10)% 0.80 (0.67, 0.88) 0.60 (0.47, 0.75) 0.89 (0.77, 0.98)

(5, 15, 20, 60)% 0.75 (0.58, 0.88) 0.71 (0.59, 0.86) 0.87 (0.72, 0.99)

example, people may care more about agreement in the subpopulation having high

percents in the “positive” category. Table 4.5 lists three typical assay populations

with the corresponding posterior means and credible intervals of the BC. Generally,

we observe larger values of BC when one or two categories dominate.

4.3.4 Software instructions

All the tables and figures displayed and interpreted can be obtained using our

web application except the value of  . We do not present  because it is not widely

used yet and no existing standard software for calculating the CIV/CIA. In Figure

4.8, on the left panel of “Assessing Rater Agreement” Navigation, users can specify

the reference mean for the BC calculation and expected scores below “Table/plot

display option”. There are table and plot tabs on the main panel where users can

obtain all the desired results in forms of tables and plots. A download option is

also provided if users want to save the table/plot results on their local machines. To

better compare estimates across raters, a customize option is provided to plot each

parameter estimates on the same scale (Figure 4.10).

4.4 Power and Sample Size

Our model can also be used to help answer design questions, specifically how many

slides to include and how many replicates per slide. This is done through simulation
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Fig. 4.9. Screenshot: tables model estimates

Fig. 4.10. Screenshot: plots of model estimates
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under di↵erent scenarios. Recall in Section 3.10, we simulated decile data sets with

di↵erent sample sizes and investigated the posterior means of model estimates (Figure

3.15 and Figure 3.16, page 89-91). In particular, when slide numbers increases from

20 to 40, the variation of posterior means goes down quickly. However, as the slides

number continue to increase, there is only a slight variance reduction benefit.

In practice, 50 rater evaluations are probably the most we can get. Thus, we will

consider di↵erent combinations of slides and replicates to see if they have an impact

on power. We consider the slides coming from three di↵erent Dirichlet populations

and fix �1 = �3 = 0. We vary �2, k1, k2 and n. Power is approximated by simulating

100 data sets under each combination of (�2, k1, k2, n) and then counting how many

times the 95% credible interval of �2 does not contain 0 (Table 4.6 and Table 4.7).

Since �1 and �3 are fixed to be zero, the mean percents in “negative” and “pos-

itive” categories between two raters are fixed to be the same while the change of

�2 contributes solely to the percent variation between “weak” and “moderate” cate-

gories. For example, for Population 1 and Population 2, the population slide mean

(µ
p

) is symmetric, and ±0.1 of �2 results in ±2.5% change to the “weak” category.

Generally, the bigger the amount of percent change in original compositions is, the

higher power we have to detect such change. Based on the k estimates from the real

data set, intra-rater variabilities for both raters are set to be the same with a value of

20, for simplicity. This introduces considerable intra-rater variability. The results of

this power calculation show that when slides are from Population 1 and Population

2, over 75% power of detecting ±0.3 shifts can be obtained given 30 slides with no

replication (i.e., sample size: 30⇥1). Population 3 is an example of very skewed slide

population, therefore, the power decreases due to the decreased percent change given

the same value of �2. In summary, to be able to detect 5% percent change with close

to or over 70% power, 30 slides with two replicates from each rater (60 observations

from each rater) is recommended.

In Table 4.7, we also investigate the power when raters have less intra-rater vari-

ability (k1 = k2 = 40). As we expect, the power increases as k1 and k2 go up. Given



111

only 20 slides with two replicates, the power of detecting 5% percent change increases

to close to 80%.

Table 4.6.
Power based on 100 simulated datasets from di↵erent slide populations

Population

a
Sample Size

b
-0.1, 0.1 -0.2, 0.2 -0.3, 0.3

Population 1 30⇥ 1 0.23, 0.21 0.50, 0.52 0.78, 0.81

µ
p

= (0.1, 0.4, 0.4, 0.1) 20⇥ 2 0.21, 0.20 0.53, 0.55 0.86, 0.84

k
p

= 10 25⇥ 2 0.25, 0.27 0.70, 0.63 0.92, 0.90

30⇥ 2 0.27, 0.29 0.75, 0.71 0.92, 0.95

Population 2 30⇥ 1 0.21, 0.20 0.47, 0.43 0.77, 0.74

µ
p

= (0.25, 0.25, 0.25, 0.25) 20⇥ 2 0.20, 0.22 0.50, 0.52 0.84, 0.84

k
p

= 10 25⇥ 2 0.22, 0.25 0.62, 0.60 0.87, 0.88

30⇥ 2 0.24, 0.24 0.66, 0.66 0.94, 0.92

Percent change in “weak” category ±2.5% ±5% ±7.4%

Population 3 30⇥ 1 0.15, 0.12 0.30, 0.31 0.37, 0.40

µ
p

= (0.6, 0.2, 0.1, 0.1) 20⇥ 2 0.16, 0.15 0.34, 0.36 0.59, 0.51

k
p

= 10 25⇥ 2 0.15, 0.18 0.35, 0.38 0.60, 0.54

30⇥ 2 0.21, 0.23 0.45, 0.48 0.70, 0.62

Percent change in “weak” category ±1.6% (�3.4%,+3.0%) (�5.0%,+4.4%)

a
Intra-rater variability parameters k1 = k2 = 20

b
Slides⇥Number of replicates
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Table 4.7.
Power based on 100 simulated datasets from Population 3

Intra-rater Variability Sample Size -0.1, 0.1 -0.2, 0.2 -0.3, 0.3

30⇥ 1 0.15, 0.12 0.30, 0.31 0.37, 0.40

k1 = k2 = 20 20⇥ 2 0.16, 0.15 0.34, 0.36 0.59, 0.51

30⇥ 2 0.21, 0.23 0.45, 0.48 0.70, 0.62

30⇥ 1 0.18, 0.18 0.40, 0.39 0.57, 0.55

k1 = k2 = 40 20⇥ 2 0.18, 0.20 0.46, 0.41 0.78, 0.70

30⇥ 2 0.20, 0.25 0.58, 0.45 0.87, 0.78

Next we demonstrate the power calculation for the real data set using our soft-

ware. In Figure 4.11, the “Power Calculation” tab on the main panel provides the

built-in power calculation function for users. Users can input the population parame-

ters (i.e., prior means and dispersion for slide means), rater-specific parameters (i.e.,

shifts and precisions) as well as the sample size (i.e., number of slides and number

of observations) to start the power calculation. By default, the software uses model

estimates if users do not specify these options.

Since the procedures of power calculation are computationally intensive, we do not

recommend trying a huge number of simulations using our software. The software

uses n = 50 simulations to investigate the power for detecting the estimated shifts

from the real IHC scoring data (Table 4.8). Overall, we obtain at least 75% power

for the four di↵erent IHC populations we specify, except for Rater C’s shift 3 (=0.25).
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Fig. 4.11. Screenshot: power calculation

Table 4.8.
Power based on 100 simulations

µ

p

Rater A Rater B Rater C

(-0.74, 0.54, 0.40)a (-0.82, -0.96, -0.90)a (0.49, 0.54, 0.25)a

(0.25, 0.28, 0.29, 0.18)b (1, 0.95, 0.95) (1, 1, 1) (0.85, 0.85, 0.65)

(0.25, 0.25, 0.25, 0.25) (1, 1, 0.97) (1, 1, 1) (1, 1, 0.80)

(0.10, 0.40, 0.40, 0.10) (1, 1, 0.80) (1, 1, 1) (0.75, 1, 0.60)

(0.60, 0.20, 0.10, 0.10) (1, 0.95, 1) (1, 1, 1) (1, 0.95, 0.95)

a The estimated shifts for three raters

b Estimated population mean using the average of Rater GS
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4.5 Summary

This chapter discusses the inter-rater agreement application using our proposed

Bayesian method on a real IHC scoring data. Our aim here is to provide a user-

friendly software that allows researchers and raters to implement our method as well

as compare this new agreement index to some traditional agreement indices. The

software we introduced and described in this chapter is designed to assess inter-rater

agreement for decile IHC scores given multiple raters while one rater is chosen as

the reference rater. It provides a summary of the data set uploaded for agreement

analysis, Bayesian model estimates (i.e., posterior mean estimates and associated

credible intervals) displayed in both tables and plots, and power calculation function

that allow users to not only calculate the power for the current study but also the

sample size for a future design.
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CHAPTER 5. SUMMARY

Compositional data are frequently encountered in a variety of research areas. This

dissertation has focused on one area of inference with these data, inter-rater agree-

ment analysis. This is an area that has not received much attention. This dissertation

begins with literature reviews of compositional data analysis (Chapter 1) and methods

of assessing inter-rater agreement (Chapter 2). These two chapters build the funda-

mentals for our proposed methodology in Chapter 3. Our novel Bayesian approach to

assess inter-rater agreement is the first using the compositional vectors directly. Ex-

tensions to the approach allow applicability to di↵erent scenarios including discrete

compositional scores, multiple raters, and repeated scores on partial or full slides.

Based on the methodological development and simulation results in Chapter 3, we

introduce a user-friendly software in Chapter 4 as a tool to implement rater agree-

ment analysis. A real IHC data set was used to illustrate the analysis procedures and

power/sample size calculations using our software.

The primary contribution of this work is towards assessment of inter-rater agree-

ment for compositional data. There has been extensive research on methods for

compositional data (e.g., Aitchison’s book on compositional data analysis) and for

inter-rater agreement measures. However, there has been little work connecting these

two. In contrast to the other work on agreement using compositional data, our ap-

proach focuses on assessing agreement in the simplex space. Shift parameters are

introduced to describe the pattern of di↵erences between raters. We also include an

agreement index using the Bhattacharyya Coe�cient. This index is conditional in

the sense that its value is based on particular slide mean. In many ways it is similar

to the infrequently used CIV/CIA index, which assess the between-rater variability

relative to the rater-related variability (between-rater + within-rater variability). We

recommend using this approach instead of univariate agreement measures because
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often small shifts cannot be picked up by the H-score conversion. In some cases

where there are big shifts between low intensity categories, the H-score distribution

still won’t change much because of the small weights assigned to the percents of low

intensity categories when converted to the H-score. Moreover, numerous composi-

tional vectors can be converted to the same H-score given di↵erent combinations of

shifts. Simulation examples have been used to illustrate the insensitivity of di↵erent

univariate agreement indices in Section 4.3.3.

Motivated by the IHC scoring example described in the beginning of Chapter

3, our work is very important to medicinal and pathological research. On one hand,

when we don’t have a reference rater (or method), our rater agreement index provides

a guide for the consistency of raters. If there exists some inconsistency, this should

prompt an investigation into where the raters are di↵ering. Our shift parameters

provide such information and could be used to help in the training of new raters. On

the other hand, when we have a reference rater, our method assesses how the other

raters di↵er systematically from the reference and thus provides the way of adjusting

the other raters’ scores. Last but not the least, our model can be used to provide us

with the guidance of e�cient experimental design for similar studies.

Even though we described the application of our work mainly in agreement anal-

ysis in IHC scoring, the application can be extended to more broader areas, such as

geology, petrology, and economics, where compositional data appear very often. For

example, when the interest is in assessing the agreement between ecologists when they

sample plant species for the same set of sites, or the agreement between individuals’

consumption behaviors across various commodity categories, our approach can be

applied directly. Another example can be when they are interested in how the plant

species compositions change over time/seasons within certain sites. In this case, the

raters can be the two seasons.

Since this research area is new, much future work remains. Currently our approach

lacks any assessment of model fit because of the limited information provided in

these agreement studies. In order to assess agreement, we make some relatively
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strong assumptions about the distribution of scores for a given slide and the pattern

of di↵erences. When possible, we would like to assess if this assumption we impose

actually fits our data. We can do this assessment only when we have replicates as they

allow us to consider more general models. For example, we can allow the shifts to vary

slide to slide, and do Bayesian model comparisons. In a frequentist setting, we can

estimate the means of slides separately by raters and construct a likelihood ratio test

to assess the proportional odds assumption. However, these all require bigger studies

and more replicates from raters, and we simply don’t see these data sets in practice

yet. There are other potential directions we could consider to model the data. For

example, if we consider standard Normal distribution as the slide distribution, then

we don’t have the proportional odds assumption based on the logistic distribution.

Another direction regarding the shift means idea is the fixed cutpoints conceptual

framework, as we briefly described on page 61-62. Again, we then need to have the

appropriate experimental design and more data to validate these di↵erent models.

In the Bayesian paradigm, one often uses posterior predictive assessment to ex-

amine the model fit. However, there is no convenient distance measure to assess

the deviance between the observed and predicted compositional vectors. Suppose

we have a legitimate distance metric to measure the distance between two discrete

compositional vectors. One way to assess our model fit would be: simulate numerous

observations based on the estimated reference means, shift and intra-rater variability

parameters for each rater and each slide. Calculate the distances between each simu-

lated pairs of raters and the reference rater, e.g., distances between simulated Rater

A and simulated Rater GS, simulated Rater B and simulated Rater GS, etc, for each

slide. Plot the simulated distance distributions versus the observed distance. If we

observe the distance distribution is very compact and has the peak at the observed

distance, it provides some evidence of a good model fit to our study purpose. Figure

5.1 illustrates the model fit idea using the real IHC data set (Slide 1) and the squared

Euclidean metric is used to assess the distance of two compositional vectors.
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Fig. 5.1. Assessing model fit

In summary, we pioneer a methodology using Bayesian estimation to address the

inter-rater agreement assessment for compositional data, especially given limited sam-

ple size and replication. This dissertation provides a comprehensive and systematic

framework including conceptual and theoretical models, analysis procedure, and a

easy-to-use online software for data analysis and experimental design. However, this

is not the end. Some more questions have been and will be brought up and future

work are needed to help answer these new questions and further expand this research.
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A parametric approach for dealing with compositional rounded zeros. Mathemat-
ical Geology, 39:625–645, February 2007.



124

[76] J. A. Martin-Fernandez, C. Barcelo-Vidal, and V. Pawlowsky-Glahn. Dealing
with zeros and missing values in compositional data sets using nonparametric
imputation. Mathematical Geology, 35(3), April 2003.

[77] Peter Flizmoser, Karel Hron, and Clemens Reimann. Principal component analy-
sis for compositional data with outliers. Environmetrics, 20:621–632, September
2009.

[78] J. J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, and C. Barcelo-Vidal.
Isometric logratio transformations for compositional data analysis. Mathematical
Geology, 35(3), April 2003.

[79] John Berhm, Scott Gates, and Brad Gomez. A monte carlo comparison of meth-
ods for compositional data analysis. The 1998 annual meeting of the Society for
Political Methodology, July 1998.

[80] Robert J. Connor and James E. Mosimann. Concepts of independence for propor-
tions with a generalization of the dirichlet distribution. Journal of the American
Statistical Association, 64(325):194–206, March 1969.

[81] P Filzmoser, K Hron, and M Templ. Discriminant analysis for compositional
data and robust parameter estimation. Computational Statistics, 27(4):585–604,
2012.

[82] Jane M. Fry, Tim R. L. Fry, and Keith R. McLaren. The stochastic specifica-
tion of demand share equations: Restricting budget shares to the unit simplex.
Journal of Econometrics, 73(2):377–385, 1996.

[83] A. Woodland. Stochastic specification and the estimation of share equations.
Journal of Econometrics, 10(1):361–383, 1979.

[84] G. Ronning. Share equations in econometrics: A story of repression, frustration
and dead ends. Statistical Papers, 33(1):307–334, 1992.

[85] Vera Pawlowsky-Glahn and Antonella Buccianti. Compositional Data Analysis:
Theory and Applications. John Wiley and Sons, Ltd, 2011.
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