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ABSTRACT

Cao, Yankai PhD, Purdue University, December 2015. Parallel Algorithms for Non-
linear Programming and Applications in Pharmaceutical Manufacturing. Major
Professor: Carl D. Laird.

E↵ective manufacturing of pharmaceuticals presents a number of challenging opti-

mization problems due to complex distributed, time-independent models and the need

to handle uncertainty. These challenges are multiplied when real-time solutions are

required. The demand for fast solution of nonlinear optimization problems, coupled

with the emergence of new concurrent computing architectures, drives the need for

parallel algorithms to solve challenging NLP problems. The goal of this work is the

development of parallel algorithms for nonlinear programming problems on di↵erent

computing architectures, and the application of large-scale nonlinear programming

on challenging problems in pharmaceutical manufacturing.

The focus of this dissertation is our completed work on an augmented Lagrangian

algorithm for parallel solution of general NLP problems on graphics processing units

and a clustering-based preconditioning strategy for stochastic programs within an

interior-point framework on distributed memory machines.

Our augmented Lagrangian interior-point approach for general NLP problems is

iterative at three levels. The first level replaces the original problem by a sequence of

bound-constrained optimization problems. Each of these bound-constrained problems

is solved using a nonlinear interior-point method. Inside the interior-point method,

the barrier subproblems are solved using a variation of Newton’s method, where the

linear system is solved using a preconditioned conjugate gradient (PCG) method.

The primary advantage of this algorithm is that it allows use of the PCG method,
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which can be implemented e�ciently on a GPU in parallel. This algorithm shows an

order of magnitude speedup on certain problems.

We also present a clustering-based preconditioning strategy for stochastic pro-

grams. The key idea is to perform adaptive clustering of scenarios inside-the-solver

based on their influence on the problem. We derive spectral and error properties for

the preconditioner and demonstrate that scenario compression rates of up to 94% can

be obtained, leading to drastic computational savings. A speed up factor of 42 is

obtained with our parallel implementation on an stochastic market-clearing problem

for the entire Illinois power grid system.

In addition, we discuss an important application of nonlinear programming in con-

trol of pharmaceutical manufacturing processes. First, we focus on the development

of real-time feasible multi-objective optimization based NMPC-MHE formulations for

batch crystallization processes to control the crystal size and shape distribution. At

each sampling instance, based on a nonlinear DAE model, an estimation problem es-

timates unknown states and parameters and an optimal control problem determines

the optimal input profiles. Both DAE-constrained optimization problems are solved

by discretizing the system using Radau collocation and optimizing the resulting al-

gebraic nonlinear problem using Ipopt. NMPC-MHE is shown to provide better

setpoint tracking than the open-loop optimal control strategy in terms of setpoint

change, system noise, and model/plant mismatch. Second, to deal with the param-

eter uncertainties in the crystallization model, we also develop a real-time feasible

robust NMPC formulation. The size of optimization problems arising from the ro-

bust NMPC becomes too large to be solved by a serial solver. Therefore, we use a

parallel algorithm to ensure real-time feasibility.
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1. INTRODUCTION1

Fast solution of nonlinear programming (NLP) problems is important in a number

of di↵erent application areas, including many online or real-time applications. The

objective of this dissertation is to develop parallel algorithms to solve large-scale

nonlinear programming (NLP) problems. The motivation of developing these algo-

rithms is to make optimal decisions for model-based operations and, in particularly,

pharmaceutical manufacturing. This chapter provides an overview of the the current

state-of-art of parallel NLP algorithms, and an outline of the thesis.

1.1 Nonlinear Programming and Stochastic Programming

Optimization is an important tool to make decisions across industries. Investment

banks use this tool to select portfolios with high expected return while avoiding high

risks. Airline companies use this tool to assign planes with di↵erent capacity to a

number of flights with di↵erent demands. Electricity companies use this tool to decide

the output of various generators to meet the demand with the lowest cost subjected

to transmission constraints. Chemical companies use this tool to decide the control

strategy to optimize the product quality. Within the field of optimization, nonlinear

1Part of this section is reprinted with permission from “An Augmented Lagrangian Interior-Point
Approach for Large-Scale NLP Problems on Graphics Processing Units” by Cao, Y., Seth, A., Laird,
C.D., 2015. To Appear, Computers and Chemical Engineering, Copyright 2015 by Elsevier.
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optimization is one important area. The goal of nonlinear optimization is to solve the

following general nonlinear programming (NLP) problem:

min
x2Rn

f(x) (1.1a)

s.t. c(x) = 0 (1.1b)

x
L

 x  x
U

, (1.1c)

where x are the variables, and the objective function f : Rn!R and equality con-

straints c : Rn!Rm are twice continuously di↵erentiable. Both f and c can be

nonconvex. The vectors x
L

and x
U

are the lower and upper bounds on x. For

this discussion, at any local minimum x⇤, we assume that the linear independence

constraint qualification (LICQ) and second-order su�cient conditions (SOSC) hold.

Problems with general inequality constraints can be transformed to this form with

the introduction of slack variables.

To simplify the notation, we consider a problem of the form

min
x2Rn

f(x) (1.2a)

s.t. c(x) = 0 (�) (1.2b)

x � 0. (⌫) (1.2c)

Here, � 2 <m and ⌫ 2 <n

+ are the dual variables for the equality constraints and the

bounds. Algorithms that can solve the problem (1.2) can typically solve the general

form (1.1) with a few modifications. Furthermore, problem of the form in (1.1) can

be transformed to the form in (1.2), so there is no loss of generality in the discussion.

Nonlinear optimization is widely used in chemical engineering for problems rang-

ing from optimal design to optimal operations. The last two decades have witnessed

a wide development of nonlinear models based on the first principles. Nonlinear mod-

els have the advantages of higher fidelity and larger range of validity. The dynamics

of chemical reactions are often described as di↵erential-algebraic equations (DAEs),
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which can be discretized into a set a large-scale equations. Optimal real-time oper-

ations based on these large scale nonlinear models pushes the need for increasingly

powerful NLP solvers. Apart from its wide applications in industry, nonlinear op-

timization is also an essential component in developing many algorithms for mixed

integer nonlinear programming (MINLP) problems. A nonlinear solver is often called

hundreds of times to solve an MINLP problem. Therefore, an e�cient NLP solver

can also accelerate the solution time of an MINLP solver significantly.

Despite the high fidelity using the nonlinear models based on the first principles,

there are still uncertainties associated with external and internal disturbances. A

decision made without consideration of these uncertainties might not only result in

low-quality products but also carry the risk of violating some safety constraints. To

deal with these uncertainties, we need to solve the two-stage stochastic program of

the form

min
x2Rn0

f0(x0) + E[Q(x0, p)] (1.3a)

s.t. c0(x0) = 0 (1.3b)

x0 � 0 (1.3c)

Here, x0 2 Rn0 are the first stage variables, p are the parameters with uncertainties

following a known distribution on the set P 2 Rnp . The realization of uncertain

parameters remains unknown until the second stage. Q(x0, p) is the optimal value of

the second stage problem

min
xp

f
p

(x0, xp

) (1.4a)

s.t. c
p

(x0, xp

) = 0 (1.4b)

x
s

� 0 (1.4c)
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Here, x
p

are the second stage variables and the form of f
p

and c
p

may depend on the

realization of p.

To solve the problem (1.3) numerically, one method is to assume that p has a

finite number of realizations p1, ..., pS, with probability ⇠1, ..., ⇠S. S := {1..S} is the

scenario set and S is the number of scenarios. With this assumption,

E[Q(x0, p)] =
X

s2S

⇠
s

Q(x0, ps). (1.5)

Then we can derive the following deterministic equivalent of the two stage stochas-

tic programs and also drop ⇠
s

from the notation by defining f
s

 ⇠
s

f
s

min f0(x0) +
X

s2S

f
s

(x
s

, x0) (1.6a)

s.t. c0(x0) = 0 (�0) (1.6b)

c
s

(x0, xs

) = 0 (�
s

), s 2 S (1.6c)

x0 � 0 (⌫0) (1.6d)

x
s

� 0 (⌫
s

), s 2 S. (1.6e)

Here, x
s

is the second stage variable for scenario s, �0 2 <m0 and ⌫0 2 <n0 are the

dual variables for the first stage equality constraints and the bounds, and �
s

2 <ms

and ⌫
s

2 <ns are the dual variables for the second stage equality constraints and the

bounds. The total number of variables is n := n0 +
P

s2S ns

and the total number

of equality constraints is m := m0 +
P

s2S ms

. If we denote xT := [xT

0 , x
T

1 , ..., x
T

S

],

this problem is a general NLP problem. However, specific solvers can be developed

to take advantage of the problem structures.

In many cases, the number of possible realizations of p is infinite. To deal with

that situation, often a number of scenarios are generated using Monte Carlo simu-

lation. Although Equation (1.5) is no longer valid by definition, it is often a good

approximate when the number of scenarios is su�ciently large. This method is called
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the Sample Average Approximation (SAA) method. The optimal value from the de-

terministic equivalent problem (1.6) converges to that of the original problem(1.3)

with probability 1 as S !1 (Shapiro et al., 2014).

Problem formulation like that in (1.6) can become prohibitively large, especially

with large distributed models on large scenario sets. Fortunately, these problems are

inherently structured, and several strategies exit for more e�cient algorithm that

can exploit the structure. We will refer to this class of problems as structured NLP

problems.

1.2 Nonlinear Model Predictive Control and Robust Nonlinear Model Predictive
Control

One application of NLP is nonlinear model predictive control (NMPC) and one

application of structured NLP is robust NMPC. Linear MPC has been a popular

advanced control strategy in industry for many years (Qin and Badgwell, 2003). Be-

cause of the advances in both computational power and optimization algorithms,

nonlinear model predictive control has become more computational feasible, and is

advantageous for inherently nonlinear systems to achieve higher product quality and

satisfy tighter regulations (Rawlings, 2000; Mayne et al., 2000). The basic idea of

NMPC is to solve an optimal control problem at each sampling instance with the

updated measured or estimated states. The control values for only the next sampling

instance are implemented and the entire process is repeated in the next sampling

cycle. For batch processes, since our real interest is in the product quality at the end

of the batch, an end-point based shrinking horizon NMPC formulation is frequently
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used. The full process interval [t0, tf ] can be discretized into N steps. At a sampling

instance t
k

, the following optimal control problem is solved online:

min
u(t)
ky(t

f

)� y
set

k2⇧ (1.7a)

s.t.
dz(t)

dt
= f(z(t), u(t)) (1.7b)

y(t) = c(z(t), u(t)) (1.7c)

z(t
k

) = ẑ(t
k

) (1.7d)

g(z(t), u(t))  0, t 2 [t
k

, t
f

] , (1.7e)

where t is time, t0 and t
f

are the start time and end time of the process, z(t) is

the vector of state variables, y(t) is the vector of output variables, u represents the

manipulated variable temperature, ẑ(t
k

) is a vector of measured or estimated states

at t
k

, ⇧ is a weight matrix, and y
set

are the setpoint values we want to achieve at the

end of the batch. Although the whole input profile in the interval [t
k

, t
f

] is computed,

only the control action in the interval [t
k

, t
k+1) is implemented. At the next sampling

instance t
k+1, the control horizon shrinks from [t

k

, t
f

] to [t
k+1, tf ], and the optimal

control problem is re-evaluated with new measurements and updated state estimates.

This DAE-constrained optimization problem can be solved by discretizing the system

using Radau collocation on finite elements and optimizing the resulting algebraic

nonlinear problem using a general NLP solver.

The quality of the NMPC approach depends on the accuracy of the underlying

model. Despite the high fidelity of using the nonlinear models based on the first prin-

ciples, there are still uncertainties associated with external (e.g. price or demand) and

internal (unexplained phenomena) disturbances. One approach to take those uncer-
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tainties into consideration in the design of NMPC is to solve the following stochastic

program online at each sampling instance t
k

min
u(t)

X

s2S

ky
s

(t
f

)� y
set

k2⇧ (1.8a)

s.t.
dz

s

(t)

dt
= h(z

s

(t), u(t), p
s

) (1.8b)

y
s

(t) = c(z
s

(t), u(t)) (1.8c)

z
s

(t
k

) = ẑ(t
k

) (1.8d)

g(z
s

(t), u(t))  0, (1.8e)

t 2 [t
k

, t
f

], 8s 2 S, (1.8f)

where z
s

is a vector of states corresponding to scenario s and parameter value p
s

.

The control profile u needs to be determined before the true value of p is realized. In

the context of stochastic programming, we can view u as the first stage variables and

z
s

and y
s

as the second stage variables. The objective function here minimizes the

expected deviation of the product quality at the end of the batch from the desired

product qualities. The formulation minimizing the worst case deviation is given in

Equation (6.1). This DAE-constrained optimization problem can also be discretized

using Radau collocation and the resulting problem is a stochastic programming prob-

lem. This is then a highly structured problem that is appropriate for parallel decom-

position strategies.

1.3 Overview of Parallel Architectures

Fast solution of nonlinear programming (NLP) problems is important in a num-

ber of di↵erent application areas, including many online or real-time applications.

However, over the past decade, we have seen a fundamental change in computing

hardware, and previously observed exponential increases in CPU clock rate have stag-

nated. While clock rate is not the only determining factor in CPU performance, it is

clear that CPU manufacturers have shifted their focus towards multi-core and other
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parallel computing architectures even for everyday computing needs. The need for

increasingly powerful NLP solvers, coupled with the introduction of low-cost parallel

computing architectures, heightens the need for the development of NLP algorithms

that can utilize these emerging parallel architectures. To design an e�cient parallel

algorithm, we discuss the advantages and limitations of various parallel architectures.

According to Flynn’s taxonomy, there are two typical parallel architectures: multiple-

instruction-multiple-data (MIMD) architectures and single-instruction-multiple-data

(SIMD) architectures. MIMD architectures can simultaneously execute di↵erent in-

structions in parallel. Two relatively popular classes of MIMD architectures are dis-

tributed computing clusters (e.g. beowulf cluster) and multi-core (or shared memory)

machines. A distributed computer is typically composed of more than 100 proces-

sors connected by a network. For traditional desktop computing needs, the price

of distributed computers are generally prohibitive. Furthermore, the communication

overhead between processors can lead to e�ciency bottlenecks. On the other hand,

a multi-core or shared memory architecture provides multiple processing units that

share common memory within a single machine. This reduces communication costs,

but the possible gains in performance are limited by the number of cores, which is

typically small, and potential bottlenecks with multiple processes accessing shared

memory.

With single-instruction-multiple-data (SIMD) architectures, each thread can op-

erate on di↵erent data, but must execute the same fundamental instruction. Graphics

processing units (GPUs), one of the most widely used SIMD architectures available,

are emerging as massively parallel systems that o↵er a large degree of parallelism at

relatively low cost. For example, the NVIDIA GPU Tesla K20X, which sold for ap-

proximately three thousand US dollars provides 2688 cores capable of 3.95 teraflops

for single-precision operation and 1.31 teraflops for double-precision operation. GPUs

like the NVIDIA Tesla K20X are not pure SIMD architectures, but rather a hybrid

architecture that is composed of a number of independent Streaming Multiproces-

sors (SMs), each containing several CUDA (Compute Unified Device Architecture)
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cores. Nevertheless, e�cient performance requires that we make use of the paral-

lelism available in the SIMD components and it is reasonable to consider them as

such. GPUs o↵er a much higher level of parallelism than desktop multi-core architec-

tures, are much cheaper than distributed computers, and can be programmed using

the rapidly maturing GPU APIs integrated with commonly used languages like C

and C++. These advances in GPU technology make it a viable and highly acces-

sible architecture upon which to build numerical algorithms. Over the past several

years, GPUs have been used to solve problems in various fields, such as air pollu-

tion (Jr. et al., 2010), elasticity simulation (Dick et al., 2011), computational fluid

dynamics (Corrigan et al., 2011), neurosurgical simulation (Roman et al., 2010), risk

assessment (Zhang et al., 2011), partial di↵erential equations (Elble et al., 2010), and

bioinformatics (Vouzis and Sahinidis, 2011).

1.4 Overview of Parallel NLP algorihtms

In order to use parallel architectures to solve NLP problems, numerous algorithms

have been proposed. These algorithms can be classified into two categories: one is

designed for the general unstructured NLP problems and the other is tailored for

particular problem structures such as stochastic programs.

Parallel algorithms for general unstructured NLP problems focus on solving the

sparse linear systems to compute the step direction in parallel. For large-scale contin-

uous nonlinear optimization problems, interior-point methods, sequential quadratic

programming (SQP) methods and augmented Lagrangian methods are the most suc-

cessful general purpose algorithms (Nocedal and Wright, 1999). The dominant com-

putational expense in these NLP algorithms is the solution of a large, sparse linear

system to generate the step direction at each iteration. A scalable parallel algorithm

requires e�cient parallel solution of this linear system (along with all other scale

dependent operations). There is the possibility for parallel solution of these linear

systems using either direct or iterative methods. Amestoy et al. (2000) presents a

parallel distributed memory multifrontal approach to solve sparse linear equations.
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A speedup of more than 7 is achieved on some test problems with this algorithm.

However, the speedup is shown to stagnate with more than 32 processors for most

of the test problems. Schenk and Gärtner (2004) shows a parallel sparse unsymmet-

ric LU factorization method integrated into the PARDISO solver for use on shared

memory multiprocessor architectures, achieving a speedup of more than 7 on a 8-

core machine. Hogg and Scott (2010) develops a symmetric indefinite sparse direct

solver within the HSL library for use on multicore machines with OpenMP, achieving

a speedup of more than 6 on a 8-core machine. The speedup possible with these

approaches is promising, however, the available parallelism is too small for the GPU.

Recently, breakthroughs have been made by several researchers, who applied a mul-

tifrontal factorization method on a GPU (Krawezik and Poole, 2010; Lucas et al.,

2012). The multifrontal method factorizes a sparse matrix by factorizing a tree of

dense systems, each of which can be implemented e�ciently on a GPU (Galoppo

et al., 2005; Agullo et al., 2009; Tomov et al., 2010; Cao et al., 2013). A speedup

factor of 2-3 is reported for double precision on a matrix with more than half a mil-

lion rows/columns. Yeralan et al. (2013) pushes the research further by factorizing

those frontal matrices in parallel and achieved up to 10 times speedup on their test

problems. However the speedup is not always consistent. For some problems, this

algorithm provides limited parallelism, therefore the implementation on a GPU can

perform even worse than that on a CPU. In contrast to direct factorization tech-

niques, iterative methods, which require performing simple matrix-vector operations

on consistently structured data sets, are highly appropriate for the GPU architecture.

The PETSc Library has GPU support for many Krylov Subspace methods with Ja-

cobi, AMG (Algebraic Multigrid), and AINV (Aprroximate Inverse) preconditioners

(Kumbhar, 2011). Among iterative methods, the Preconditioned Conjugate Gradient

(PCG) method is known to have excellent performance, and several researchers have

demonstrated up to 10 times speedup using PCG approaches with di↵erent precon-

ditioners on GPUs (Li and Saad, 2013; Helfenstein and Koko, 2011; Buatois et al.,

2009).
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Developing a parallel solver for general NLP problems also requires an integration

of the host NLP algorithm with the parallel linear solver. Parallel linear solvers

designed for indefinite matrices can be directly applied to many NLP algorithms.

However, to use parallel PCG on a GPU to solve the linear system, the matrix in the

linear system needs to be positive definite (P.D.) (Golub and Van Loan, 2012). But

the Karush-Kuhn-Tucker (KKT) systems arising from many NLP algorithms are not

P.D. For example, in Ipopt (Wächter and Biegler, 2006), the KKT system arising

from the interior-point method is a saddle point system and is indefinite even for

convex problems.
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Our work in Cao et al. (2015) proposed an augmented Lagrangian interior-point

approach that can use PCG to compute the Newton step in parallel on a GPU.

For convex problems, the KKT matrices for subproblems are guaranteed to be P.D.

Furthermore, even for non-convex problems, when the variables are near the optimal

solution the matrix is also P.D. However, when the variables are far away from the

optimal solution, the matrix is not guaranteed to be P.D. Therefore, if the PCG

approach detects negative curvature, a diagonal modification to the matrix can be

made to ensure that the matrix is positive definite and the step direction is a descent

direction.

For structured NLP problems, an e�cient parallel algorithm often exploits the

structure at problem formulation level (e.g. Bender decomposition, Lagrangian de-

composition, Lagrangian relaxation, progressive hedging) or at linear algebra level.

Although the parallelization of the first class can be easily implemented, the conver-

gence rate is typically slow for general nonlinear problems. In contrast, the second

class of approaches can retain the fast convergence of the original host algorithms.

For this class, interior-point methods are popular because the structure of the linear

system remains the same at each iteration. The linear systems derived using interior
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point methods for stochastic programming problems have the block-bordered-diagonal

form. These linear systems can be decomposed using the Schur complement method

(Zavala et al., 2008). When the number of first stage variables is small, this ap-

proach has almost perfect strong scaling. However, when the number of first stage

variables is large, forming and solving the dense Schur complement system becomes

the bottleneck.

In order to deal with structured NLP problems with large first-stage dimensional-

ity, many approaches have been proposed. Kang et al. (2014) uses a PCG procedure

to solve the Schur system with an automatic L-BFGS preconditioner. This approach

avoids both forming and factorizing the Schur system explicitly. Lubin et al. (2012)

forms the Schur system as a byproduct of a sparse factorization and factorizes the

Schur system in parallel. Cao et al. (2015) performs adaptive clustering of scenarios

(inside-the-solver) and forms a sparse compressed representation of the large KKT

system as a preconditioner. The matrix that needs to be factorized in this approach

is much smaller than the full-space KKT system and more sparse than the Schur

system.

Besides parallel linear solvers, a scalable parallel algorithm also requires parallel

evaluations of the NLP functions and gradients, and parallel implementations of all

other linear algebra operations (e.g. vector-vector operations and matrix-vector mul-

tiplications). While the latter is easy for many parallel architectures, the former is

not. There is, to the best knowledge of the author, no e�cient modeling language

supporting parallel evaluations of functions and gradients for general NLP problems.

Furthermore, the structures of the steaming architecture of the GPU make this very

di�cult to automate for the general nonlinear case. However, for structured problems,

Kang et al. (2014) and Zavala et al. (2008) build one AMPL (Gay and Kernighan,

2002) instance for each scenario and evaluate all instances in parallel. Several packages

(e.g. PySP (Watson et al., 2012), StochJuMP(Huchette et al., 2014)) have also been

developed to support the parallel evaluation of functions and gradients for structured

NLP problems.
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1.5 Thesis Outline

Our goal is to develop e�cient algorithms for parallel solutions of nonlinear pro-

gramming problems with applications in pharmaceutical manufacturing. Therefore,

this dissertation is organized into two parts.

The first part describes parallel algorithms for NLP problems. Chapter 2 proposes

an augmented Lagrangian interior-point approach for general NLP problems that

solves in parallel on a Graphics Processing Unit (GPU). Significant speedup is possible

on problems with few equality constraints, however, this requires specialized parallel

implementations of the model evaluations.

Chapter 3 and Chapter 4 all target on algorithms to solve stochastic programs

with distributed memory clusters or multi-core machines. Chapter 3 describes a

method to decompose the structured KKT systems using the explicit Schur comple-

ment method. When the dimension of first stage variables is small, scalability of this

algorithm is almost perfect. However, the cost of forming and factorizing the dense

Schur complement matrix increases significantly as the number of first stage variables

increases.

In order to solve stochastic programs with a large number of first stage vari-

ables, Chapter 4 proposes an algorithm for solving nonlinear stochastic programming

problems e�ciently through scenario clustering. This approach is unique in that the

scenario clustering is applied at the linear solver level, not at the outer NLP level,

allowing for scenario clusters to change from iteration to iteration. Furthermore, this

clustering approach does not replace the KKT system, but rather is used to build

a pre-conditioner. This approach allows one to build a pre-conditioner with fewer

clusters, and then solve the full KKT system in parallel using GMRES.

The second part of this dissertation describes the application of nonlinear pro-

gramming in pharmaceutical manufacturing. Chapter 5 proposes nonlinear model

predictive control (NMPC) and nonlinear moving horizon estimation (MHE) formu-

lations for controlling the crystal size and shape distribution in a batch crystallization

process. The MHE and NMPC formulations are all DAE-constrained optimization
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problems that are solved by discretizing the system using Radau collocation on fi-

nite elements and optimizing the resulting algebraic nonlinear problem.This model is

built in the Modelica modeling language to support solution through the JModelica

modeling and optimization framework.

To deal with the parameter uncertainties in the crystallization model, Chapter 6

proposes robust NMPC to minimize the deviation of the product quality from the

setpoint in the worst case. The size of these optimization problems becomes too large

to be solved by a serial solver, and the algorithm described in Chapter 3 is used to

solve the robust NMPC problems.

Finally, Chapter 7 closes this dissertation with conclusions and the directions for

future work.
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2. AN AUGMENTED LAGRANGIAN INTERIOR-POINT APPROACH FOR

LARGE-SCALE NLP PROBLEMS ON GPUS1

The demand for fast solution of nonlinear optimization problems, coupled with the

emergence of new concurrent computing architectures, drives the need for parallel al-

gorithms to solve challenging nonlinear programming (NLP) problems. In this chap-

ter, we propose an augmented Lagrangian interior-point approach for general NLP

problems that solves in parallel on a Graphics processing unit (GPU). The algorithm

is iterative at three levels. The first level replaces the original problem by a sequence

of bound-constrained optimization problems using an augmented Lagrangian method.

Each of these bound-constrained problems is solved using a nonlinear interior-point

method. Inside the interior-point method, the barrier sub-problems are solved using

a variation of Newton’s method, where the linear system is solved using a precon-

ditioned conjugate gradient (PCG) method, which is implemented e�ciently on a

GPU in parallel. This algorithm shows an order of magnitude speedup on several

test problems from the COPS test set.

The chapter is organized as follows. Section 2.1 gives some background infor-

mation. A description of the overall algorithm is given in Section 2.2. Section 2.3

describes the parallel implementation details of the proposed algorithm, including a

discussion of pros and cons for using di↵erent matrix storage formats. Section 2.4

presents the numerical performance of the algorithm on some problems selected from

the COPS (Dolan et al., 2004) test set including a comparison with the state of the

art solver Ipopt. Section 2.5 summarizes this chapter.

1Part of this section is reprinted with permission from “An Augmented Lagrangian Interior-Point
Approach for Large-Scale NLP Problems on Graphics Processing Units” by Cao, Y., Seth, A., Laird,
C.D., 2015. To appear, Computers and Chemical Engineering, Copyright 2015 by Elsevier.
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2.1 Preliminaries

Section 1.3 already discusses the advantages and limitations of various parallel

architecture. For GPU, because of its specific structure, it is not e�cient on fac-

torization of sparse matrix. In contrast to direct factorization techniques, iterative

methods, which require performing simple matrix-vector operations on consistently

structured data sets, are highly appropriate for the GPU architecture. Among iter-

ative methods, the Preconditioned Conjugate Gradient (PCG) method is known to

have excellent performance, and several researchers have demonstrated up to 10 times

speedup using PCG approaches with di↵erent preconditioners on GPUs (Li and Saad,

2013; Helfenstein and Koko, 2011; Buatois et al., 2009).

However, the desire to use PCG to solve the linear system imposes limitations

on the NLP algorithm we can use. PCG requires the matrix in the linear system to

be positive definite (P.D.) (Golub and Van Loan, 2012). But Karush-Kuhn-Tucker

(KKT) systems arising from many NLP algorithms are not P.D. For example, in

Ipopt (Wächter and Biegler, 2006), the KKT system arising from the interior-point

method is a saddle point system and is indefinite even for convex problems.
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Hence, PCG cannot be directly applied to this saddle point system. For a saddle

point system with D=0, Bergamaschi et al. (2004); Lukšan and Vlček (1998); Perugia

and Simoncini (2000); Gould et al. (2001) employ a constraint preconditioner that

allows the use of the PCG method. Dollar et al. (2006); Dollar (2007) extend the

constraint preconditioner for general D. Forsgren et al. (2007) shows that the saddle

point system with positive diagonal D can be transformed into the doubly augmented

system or condensed system. Provided the original saddle point system has the correct

inertia, the augmented system and condensed system can be proven to be positive

definite, and the PCG method in conjunction with the constraint preconditioner

shows promise. If the PCG method detects negative curvature, it implies the matrix
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is not positive definite and the intertia condition is not satisfied for the original

system. However, a major problem with applying this technique is that the constraint

preconditioner requires a sparse matrix factorization and backsolves, for which no

currently e�cient implementations are available for the general case.

The augmented Lagrangian method moves the equality constraints to the objec-

tive function and solve the NLP as a sequence of bound-constrained sub-problems.

This method has the benefit that the KKT system is positive definite when the prob-

lem is convex. Lancelot (Conn et al., 1988), first released in 1992, is a well-known

example of an augmented Lagrangian code for NLP problems. Lancelot uses the

gradient projection method to solve the bound-constrained problems. This method

first finds the Cauchy point, which is the first local minimizer of the approximation

of the objective function along the steepest descent direction (Conn et al., 1988), or

a point satisfying su�cient decrease condition (Lin and Moré, 1999). If the bounds

are reached before the first minimizer is found, the search direction is bent at the

corresponding bounds. Then the gradient projection method fixes the components of

the Cauchy point that are at their bounds and performs the subspace minimization

with the PCG method. When the bounds are violated in a particular PCG iteration,

the PCG method is terminated (Conn et al., 1988). With the gradient projection

method, PCG is easily stopped because of the violation of the bounds. In a GPU

implementation, changes in the active set (which are performed on the host), might

be the dominant computational expense compared to the PCG iterations performed

on the GPU. Therefore, gradient projection method is not directly appropriate for

parallel implementation on a GPU.

In this chapter, we use an interior-point method to solve the bound-constrained

problems by replacing each with a series of unconstrained barrier sub-problems. We

can use a variation of Newton’s method to solve the unconstrained sub-problem. The

primary advantage of this approach is that we can use PCG to compute the Newton’s

step in parallel on a GPU. For convex problems, the KKT matrix arising from the

unconstrained sub-problem is guaranteed to be P.D. Furthermore, even for non-convex



18

problems, when the variables are near the optimal solution the matrix is also P.D.

However, when the variables are far away from the optimal solution, the matrix is not

guaranteed to be P.D. Therefore, if the PCG approach detects negative curvature, a

diagonal modification to the matrix can be made to ensure that the matrix is positive

definite and the step direction is a descent direction.

2.2 Algorithm

In this section, we first present the proposed augmented Lagrangian interior-point

algorithm to deal with the nonlinear programming problem of the form (1.2). In

Section 2.2.5, we discuss the modifications necessary to handle the general form (1.1).

2.2.1 Bound-constrained Augmented Lagrangian Method

The augmented Lagrangian is formed by adding a quadratic penalty term to

the Lagrangian function. Neglecting the inequalities, the augmented Lagrangian for

eqs. (1.2a) and (1.2b) is

L
A

(x, �̄;µ) = f(x)� �̄T c(x) +
µ

2
c(x)T c(x), (2.1)

where µ is the penalty parameter and �̄ is the estimate of the true Lagrange multipliers

�. The augmented Lagrangian approach then computes the solution for a sequence

of bound-constrained sub-problems

min
x2Rn

L
A

(x, �̄;µ) (2.2a)

s.t. x � 0. (2.2b)

This sub-problem is solved approximately for fixed value of �̄ and µ. If the violation

of the equality constraints has decreased su�ciently, the estimate of the Lagrange

multipliers �̄ is updated, and the sub-problem tolerance is made tighter. Otherwise,

the penalty parameter µ is increased to improve feasibility.
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It can be proven (Nocedal and Wright, 2006) that under reasonable assumptions,

a good estimate of the optimal solution x⇤ can be obtained after solving a sequence

of sub-problems when µ is large enough or when �̄ is a good estimate of the Lagrange

multipliers �. Also, if µ is su�ciently large, then each �̄ update will lead to a more

accurate estimate of the Lagrange multipliers. It can also be proven that the Hessian

of the augmented Lagrangian function is positive definite when x and �̄ are su�ciently

close to the optimal solution.

The augmented Lagrangian framework forms the outer-loop of the algorithm. At

each iteration, we require the solution of the bound-constrained sub-problem.

2.2.2 Interior-Point Method for the Bound-Constrained Sub-Problem

There are several techniques one could use to solve the bound-constrained sub-

problem including an active set method, a gradient projection method, or an interior-

point method. The use of an interior-point method produces a linear system that can

be solved e�ciently on a GPU. Hence, we replace the bound-constrained sub-problem

by a series of unconstrained barrier sub-problems

min
x2Rn

�(x) = L
A

� µ
in

nX

i=1

ln(x(i)), (2.3)

where x(i) denotes the ith component of the vector x, and µ
in

> 0 is the barrier

parameter. The first-order optimality conditions of the unconstrained sub-problem

are

r�(x) = rL
A

(x)� µ
in

X�1e = 0, (2.4)
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where X=diag(x), and e is a vector with all elements equal to 1. The primal-dual

reformulation can be written by introducing ⌫=µ
in

X�1e,

rL
A

(x)� ⌫ = 0 (2.5a)

X⌫ � µ
in

e = 0. (2.5b)

When µ
in

is 0, the above equations together with x � 0, ⌫ � 0 are the KKT conditions

for the bound-constrained sub-problem (2.2). We can use a variation of Newton’s

method to solve the primal-dual system of Equations (2.5). At each iteration k of the

Newton’s method, the step direction is calculated by solving the linear system
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Here r2L
A

denotes the Hessian of the augmented Lagrangian function

r2L
A

= r2f(xk)�
X

(�̄
i

� µc
i

(xk))r2c
i

(xk) + µAk(Ak)T , (2.7)

with Ak:=rc(xk), while �xk and �⌫k are the search directions in xk and ⌫k respec-

tively. The first two terms of Equation (2.7) can be expressed as r2L(xk, �̄�µc(xk))

while L is the Lagrangian function. A smaller and symmetric system can be obtained

from Equation (2.6) by multiplying the last block row by (Xk)�1 and adding it to the

first block row

[r2L
A

+ ⌃k]�xk = �r�(xk), (2.8)

where ⌃k=Xk

�1
V k. After solving Equation (2.8) for �xk, the step in the multipliers

�⌫k can be obtained using

�⌫k = µ
in

Xk

�1
e� ⌫k � ⌃k�xk. (2.9)
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After the step directions are determined, the maximum step size ↵k,max

x

for primal

variables and ↵k

⌫

for dual variables can be calculated based on the fraction-to-the-

boundary rule to ensure x > 0 and ⌫ > 0. With ↵k,max

x

as the initial guess, a line

search is performed to get the step size ↵k

x

for primal variables. Finally, the values of

primal and dual variable for the next interior-point iteration are calculated by

x
k+1 = xk + ↵k

x

�xk (2.10a)

⌫
k+1 = ⌫k + ↵k

x

�⌫k. (2.10b)

2.2.3 Using PCG to Solve the Linear KKT System

The linear system (2.8) that needs to be solved at each interior-point iteration is

Jk�xk = �r�(xk), (2.11)

where

Jk := r2L
A

+ ⌃k. (2.12)

Solving this linear system is the dominant cost of the algorithm, and we want

to use a PCG method since it can be parallelized on the GPU. Applying the PCG

approach for solution of Equation (2.11) requires Jk to be P.D. If the original problem

(1.1) is convex, Jk is guaranteed to be P.D. and PCG can be applied to the system.

For non-convex problems, if Jk is P.D., then PCG can be applied directly. If Jk is

not P.D. (which can be detected in the PCG steps), then the PCG approach is aborted,

a diagonal modifier �
w

I is added to the Jk and the linear system is solved again. If

we continue to detect negative curvature the value of �
w

is increased according to the

rule described in Wächter and Biegler (2006).

Forming Jk explicitly using sparse matrix-matrix multiplication can be expensive.

At each iteration, PCG only requires a series of matrix-vector products with Jk.
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Hence, in our implementation, Jk is not formed explicitly. Instead, the matrix vector

products are performed across the right hand side expression in Equation (2.13).

Jk := r2L(xk, �̄� µc(xk)) + µAk(Ak)T + ⌃k + �
w

I, (2.13)

Therefore, each PCG step involves three sparse matrix-vector multiplications - r2L

with a vector, [Ak]T with a vector, and the multiplication of the resulting vector with

Ak. This implicit implementation saves significant computational expense.

It is possible that the PCG method converges (based on its tolerance) even if the

matrix Jk is not P.D. However, the starting point for �xk is set to zero, and the

solution from the PCG approach is still guaranteed to be a descent direction for the

barrier sub-problem (Dembo and Steihaug, 1983).

The PCG method can be accelerated with a suitable preconditioner. However it

can be very challenging to e�ciently implement many known preconditioners on a

GPU since preconditioner factorization and backsolves are typically ine�cient on the

GPU (Li and Saad, 2013; Naumov, 2011). Furthermore, in our algorithm the matrix

Jk is never explicitly formed, limiting the choice for preconditioner. Therefore, a

simple diagonal preconditioner is used.

2.2.4 Algorithm Summary

This section summarizes the overall algorithm for solving problem (1.2). The

algorithm is iterative at three levels. The first level replaces the original problem

by a sequence of bound-constrained optimization problems using an augmented La-

grangian method. Each of these bound-constrained problems is solved using a nonlin-

ear interior-point method. Inside the interior-point method, the barrier sub-problems

are solved using a variation of Newton’s method, and the linear system is solved iter-

atively with a preconditioned conjugate gradient method. In Algorithm 1 presented

below, we provide the augmented Lagrangian method used in chapter. Following
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that, we present Algorithm 2 that describes the interior-point method used to solve

the bound-constrained sub-problems in Algorithm 1.

Algorithm 1 : Augmented Lagrangian Method

1. Initialize

Initialize the iteration index j  0.
Set initial points (x0, �̄0) with x0 > 0; overall convergence tolerance for the equal-
ity constraints and sub-problems ⌘⇤ and !⇤; initial penalty parameter for jth
iteration µ

j

> 0; initial tolerance for jth sub-problem !
j

and ⌘
j

.
2. Solve bound-constrained sub-problems

Use Algorithm 2 to find a minimizer (x⇤
j

, ⌫⇤
j

) for (2.2) such that optimality error of
the sub-problems j satisfies E0(x⇤

j

, ⌫⇤
j

)  !
j

as computed in step 2 of Algorithm
2.

3. Update penalty parameter, Lagrangian multiplier and tolerance

if k c(x
j

) k ⌘
j

then

if k c(x
j

) k ⌘⇤ and E0(x⇤
j

, ⌫⇤
j

)  !⇤ then

Stop with solution (x⇤, ⌫⇤,�⇤) (x⇤
j

, ⌫⇤
j

, �̄
j

).
end if

Update multipliers �̄
j

and tighten tolerances ⌘
j

and !
j

.
else

Increase penalty parameter µ
j

and update tolerance ⌘
j

and !
j

.
end if

Update j  j + 1.
Return to step 2.

The details about µ
j

, !
j

, ⌘
j

initialization and how they are updated in step 3

are described in Conn et al. (1988). Now we provide the details of the interior-point

algorithm to solve the jth sub-problem in step 2.
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Algorithm 2 : Interior-point Method

1. Initialize

Initialize the iteration index k  0 and optimality tolerance !
j

from Algorithm
1.
Set starting point (x0, ⌫0) with ⌫0 > 0; initial barrier parameter µ

in

> 0; tolerance
constants 

✏

> 0.
2. Check convergence for the bound-constrained sub-problem j

if E0(xk, ⌫k)  !
j

then exit, solution found.
3. Check convergence for the barrier sub-problem

if E
µin(x

k, ⌫k)  
✏

µ
in

then

Update µ
in

.
Repeat step 3 if k=0. Otherwise go to step 4.

end if

4. Function Evaluations

Evaluate c(xk), r
x

f(xk), r
x

c(xk), and r2L(xk, �̄
0
=�̄�µc(xk)).

5. Compute the search direction

5.1 Solve (2.13) for �xk using the PCG method on GPU. .
5.2 Compute �⌫k from (2.9). .

6. Backtracking line-search

Calculate ↵k

x,max

and ↵k

⌫

based on the fraction-to-the-boundary rule.
With ↵k

x,max

as the initial guess, perform a line search to obtain the step size ↵k

x

.
7. Update iteration variables and continue to next iteration

Compute xk+1, ⌫k+1 with (2.10).
Update k  k + 1.
Return to step 2.

The optimality error for the barrier problems used in steps 2 and steps 3 is cal-

culated using

E
µin(x

k, ⌫k) = max{ k rL
A

� ⌫k k1, k Xk⌫k � µ
in

e k1}. (2.14)

while for step 2, µ
in

=0.
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2.2.5 Including General Variable Bounds

For the original problem formulation (1.1), we can generalize the above algorithm

and transform the barrier sub-problems to

min
x2Rn

�(x) = L
A

� µ
in

nX

i=1

ln(x(i) � x(i)
L

)� µ
in

nX

i=1

ln(x(i)
U

� x(i)). (2.15)

Coupled with this, bound multipliers for both upper bounds and lower bounds ⌫
L

and

⌫
U

are introduced. Now, the barrier term of the Hessian is defined as ⌃k=S
L

�1V
L

+

S
U

�1V
U

, with S
L

=diag(xk � x
L

) and S
U

=diag(x
U

� xk).

2.3 Parallel implementation

The authors implemented a serial version of Algorithm 1 and Algorithm 2 in

C++ and compared the runtime of di↵erent components of the implementation. The

performance of the serial implementation shows that in general about 80 percent of the

runtime is spent on the linear solver, 18 percent of the runtime on function evaluations,

and the rest on other calculations. Therefore, an e↵ective parallel implementation

must parallelize the PCG linear solver and the function evaluations. A discussion

of the parallel implementation requires a brief introduction to the GPU architecture

and CUDA programming. A typical NVIDIA GPU for scientific computing contains

several Streaming Multiprocessors (SMs), each of which contains several CUDA cores.

The memory architecture is complex. First, the GPU has global memory accessible to

all SMs. Second, each SM has its own shared memory that is accessible to all CUDA

cores on this specific SM. Finally, each CUDA core has its own register memory.

Global memory is typically quite large (e.g. several GB), whereas shared memory

and register memory are much smaller (e.g. 48 KB and 32 KB respectively on each

SM). Furthermore, global memory has high latency while shared and register memory

have significantly lower latency.
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In November 2006, NVIDIA introduced CUDA, a parallel computing platform

and programming framework for high performance computations. A CUDA program

is composed of a host program to be executed on the CPU and one or more CUDA

kernels for the GPU. A kernel is executed by a grid of thread blocks, each of which

can contain hundreds of threads. This can result in thousands of concurrent threads.

Threads within the same block are executed by the same SM in groups of 32 threads

called warps. Each SM can execute several blocks concurrently.

Di↵erent levels of software optimization techniques can be applied including mem-

ory optimization, execution configuration optimization, and instruction optimiza-

tion. Some of the most important software optimization techniques are coalesced

and aligned global memory access. For example, for devices that have compute capa-

bility 2.0 and support double precision data, if all threads of the same half warp access

adjacent blocks of global memory that are aligned at 128-byte boundary, only one

memory transaction needs to be performed by the device for all threads. Other impor-

tant software optimization techniques include minimizing data transfer between the

host and the device, minimizing bank conflicts in shared memory, and grid size/block

size optimization (occupancy optimization). Detailed descriptions about CUDA and

performance optimization are presented in the Programming Guide (NVIDIA, 2011)

and the Best Practices Guide (NVIDIA, 2012) provided by NVIDIA.

2.3.1 Parallel PCG on the GPU

In this section, we describe the parallel GPU implementation of the linear solver

for sparse systems arising from the augmented Lagragian NLP algorithm. The main

operations in the PCG method include: 1) solving the preconditioner equation, 2)

vector-vector operations, and 3) matrix-vector multiplications. For a general precon-

ditioner, one would typically need a backsolve which is, in general, ine�cient when

applied on a GPU. However, since we are using a diagonal preconditioner, the back-

solve becomes a vector-vector operation. Vector-vector operations are straightforward

to implement on the GPU. For example, to add two vectors, each element addition is
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performed on a separate thread. A slightly more challenging vector-vector operation

worth highlighting is the dot product because it involves a reduction operation from

all CUDA cores. The details about an e�cient implementation of this operation can

be found in (Harris, 2007). Matrix-vector operations are more complex, but also have

a larger scope for optimization, and we discuss these in the following sub-sections.

2.3.1.1 Sparse Matrix-Vector Multiplication

The most expensive step in the PCG method is the sparse matrix-vector multipli-

cation (SpMV). The challenge when implementing a general parallel SpMV operation

is that the data access is irregular for an unstructured matrix. As mentioned before,

coalesced and aligned global memory access is fast while irregular global memory ac-

cess is slow for a GPU. Consequently, optimizing memory access by choosing the best

sparse matrix storage format for a particular matrix structure is critical for improv-

ing performance. For this purpose, we evaluate four di↵erent sparse matrix storage

formats.

The coordinate (COO) format employs three arrays to store the row coordinates,

column coordinates, and values of every nonzeros. Typically, nonzeros are stored

row-wise, and to parallelize SpMV using the COO format, one thread is assigned

for each of the nonzeros to perform the multiplication. Then the sum of threads of

the same row is calculated by performing segmented reduction. The performance

of SpMV with COO format is generally poor but consistent across di↵erent sparse

matrix structures because of its fine granularity.

The compressed Sparse Row (CSR) format stores the values and column indices of

the nonzero values in two arrays ordered row-wise. It uses a third vector to store the

starting nonzero position of each row. An intuitive way of implementing SpMV for the

CSR format on a GPU is to assign one thread for each of the nonzeros. However, this

implementation, called a scalar kernel, makes the data access of contiguous threads

far from each other when the number of nonzeros per row is larger than one. A more

sophisticated approach used by CUSPARSE (Bell and Garland, 2009), called the
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vector kernel, assigns one warp for each row, while IBM’s SpMV library (Baskaran

and Bordawekar, 2008) shows it is more e�cient to assign a half warp for each row.

The results of the half warps are then saved in shared memory and summed using

parallel reduction. The advantage of this kernel is that the threads of the same

half warp access data contiguously. Although CSR works well when the number

of nonzeros in each row is larger than 16, its performance is poor when number of

nonzeros per row is small, causing some threads of the half warp to remain idle.

The Ellpack (ELL) format assumes that the number of nonzeros in each row is

constant and rows with fewer nonzeros are zero-padded. Since the number of nonzeros

per row is fixed, it uses only two arrays to store the column indices and values of each

of the nonzeros. To parallelize SpMV for the ELL format, one thread is assigned

for each row. The ith nonzeros in each row are stored contiguous, so the data access

across contiguous threads is coalesced. However, when the number of nonzeros vary

dramatically over the rows, the ELL format su↵ers from requiring too many zeros to

pad the rows, hence it will not only cause extra computational work but also extra

memory.

The Hybrid (HYB) format combines the e�ciency of the ELL format for struc-

tured problems and the stability of COO format over di↵erent sparse structures. The

first K entries of each row are stored in the ELL format while the remaining entries

are stored in the COO format. The value of K is selected to ensure that the majority

of the data is stored in the ELL parts.

Taking advantage of the discussion above about these sparse matrix formats and

their implementation on the GPU, we now discuss the implementation details of PCG

on GPU.

For the vector-vector operations performed in PCG, we make use of the CUBLAS

library (Toolkit, 2011), which is an implementation of dense BLAS (Basic Linear

Algebra Subprograms) on a GPU. However, within the PCG implementation, two

results of the dot product need be transferred back from the GPU to the CPU at

each iteration in order to determine whether negative curvature has been encountered
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and whether the PCG iterations have converged. While the data transfer for these

quantities can be time consuming, the GPU used in this chapter can perform data

transfer between pinned host memory and global memory concurrently with device

computations. We can take advantage of this by overlapping the data transfer with

the SpMV kernel execution for the next step. Since the CUBLAS 4.1 library currently

does not implement this overlapping feature, we have written a custom kernel for the

dot product.

For SpMV, there are already several libraries to choose from. The CUSPARSE

library (Bell and Garland, 2009) has implemented sparse matrix-vector multiplica-

tion with di↵erent sparse matrix formats. Recall that we do not form Jk explicitly,

but rather implement the required matrix-vector products by multiplying across the

expression in Equation (2.13). For [Ak]T and r2L, we have selected the HYB format

implemented in the CUSPARSE library since numerical results in (Bell and Garland,

2009) show that HYB is the fastest format for a majority of unstructured matrices.

We selected the CSR format for Ak because Ak has few rows but a large number of

nonzeros per row. Since the existing library does not support the overlap between

data transfer and kernel execution, we have written our own CSR kernel for the

SpMV.

2.3.2 Parallelize Function Evaluations

As we will show later in Section 4, for the serial version of the algorithm the

time spent on PCG iterations is around 65-85 percent of the runtime. Therefore the

maximum speedup achievable throughout parallelization of the PCG steps is only

about 3 to 7 times. The majority of the remaining runtime is spent on evaluating the

Hessian of Lagrangian function, gradient of the objective function, gradient of the

equality constraints, residual of the equality constraints, and the objective function.

If these function evaluations are also parallelized, a several fold improvement can be

further expected. However, so far, no library exists for automatic parallel function

evaluations of general NLP problems on the GPU, and the development of a general
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library for this task is challenging even on the CPU. Therefore, we developed problem

specific code for parallel function evaluations on the GPU for each test problem

presented in our results. The purpose of further parallelizing function evaluations is

to highlight the potential of this algorithm on the GPU instead of providing a general

solution.

2.4 Numerical Results

In this section, we present the numerical performance results of the proposed al-

gorithm on selected problems from the COPS test set. All the test problems are

written in the AMPL modeling language(Gay and Kernighan, 2002). Since the aug-

mented Lagrangian method is more e�cient for problems with few constraints, the

following six problems are selected - torsion, bearing, minsurf, lane-emden, dirichlet,

and henon. The first three problems have no equality constraints, while the last three

problems have few equality constraints relative to the number of variables. All test

problems have bound constraints on all variables. The number of variables for the

selected problems ranges from 10,000 to 120,000. For comparison, the state-of-the-art

nonlinear solver Ipopt with MA27 from the Harwell Subroutine Library is also used

to solve these problems. For both our algorithm and Ipopt, we set the convergence

tolerances for both equality constraints and optimality of the sub-problems to 10�6.

Both solvers are evaluated using a 2.50GHz Intel Xeon E5420 quad-core CPU and a

Tesla C2050 GPU with CUDA driver version 4.2. The Tesla C2050 contains 14 SMs

(each contains 32 cores) and a total of 3GB memory.

Before we parallelize the proposed algorithm, we need to make sure the serial aug-

mented Lagrangian method is competitive when compared with existing solvers. The

proposed algorithm was implemented in C++, and the timing results are compared

with those from Ipopt. Figure 2.1 shows that although the serial algorithm is in

general slower than Ipopt, the runtime ratio is below 2.5 for these test problems.

Table 2.1 shows the wall-clock time for each of these problems.
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Figure 2.1.: Runtime of the serial augmented Lagrangian interior-point method normalized with
respect to Ipopt (– –).

2.4.1 Performance of the Parallel Code

Figure 2.2 shows the average performance of the parallel PCG implementation

inside the augmented Lagrangian algorithm. As shown in this figure, each parallel

PCG iteration performs on average 10-21 times faster than the serial implementa-

tion. Because of di↵erent architectures and round-o↵ errors, the number of iterations

taken by the parallel implementation can be di↵erent from the serial implementation.

Between the two implementations, the number of barrier iterations never di↵er more

than 10 percent for all test problems, and the number of PCG iterations never di↵er

more than 60 percent. Therefore, the time per PCG iteration is used to compare the

serial code and the parallel code.

Once the PCG method is parallelized, the time for function evaluations becomes

the performance bottleneck. For example, Figure 2.3 depicts the time composition



32

Table 2.1: Wall-clock time of the serial algorithm for selected test problems.

Problem n m IPOPT(s) Serial AL-IP(s)
torsion 120000 0 21.27 21.69
bearing 120000 0 20.46 47.7
minsurf 50000 0 115.4 202.28
lane-emden 19322 81 397.67 144.54
dirichlet 18042 81 279.03 523.87
henon 10882 81 2628.87 1970.7
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Figure 2.2.: Average speedup of each PCG iteration comparing parallel PCG implementation with
serial PCG implementation (– –).

of the serial code and the parallel PCG code for test problem dirichlet. The PCG

linear solver takes more than 80 percent of the total runtime in the serial code but

only takes less than 30 percent in the parallel code. More than 90 percent of the
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remaining runtime is spent on the function evaluations, which motivates performing

the function evaluations in parallel as well.
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Figure 2.3.: Runtime composition of serial algorithm and parallel PCG algorithm for problem Dirich-
let.

Figure 2.4 gives the overall speedup on all test problems with only the PCG

step parallelized, and with both PCG and function evaluations parallelized. If only

the PCG steps are parallelized, the algorithm obtains a speedup of 3-6, whereas,

parallelizing the function evaluations pushes the overall speedup to 13-18.

2.5 Concluding Remarks

In summary, we have developed a parallel augmented Lagrangian interior-point

algorithm for solving large-scale NLP problems using graphics processing units. The

augmented Lagrangian approach ensures that the KKT system is positive definite for

convex problems. This enables us to solve the KKT system using a parallel PCG
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Figure 2.4.: Speedup with only PCG step parallelized and with both PCG and function evaluation
parallelized with respect to serial implementation (– –).

method on the GPU. An overall speedup of 13-18 was obtained on six test problems

from COPS test set.

The GPU we use (Tesla C2050) has 448 cores, 515 Gflops double precision floating

point performance, 144 GB/sec memory bandwith and around 3 GB global memory.

However, with the rapid development of parallel platforms, the latest GPUs like the

Tesla K20X already have 2688 cores,1.31 teraflops double precision floating point

performance, 250 GB/sec memory bandwith and around 6 GB global memory, which

can push the performance of our GPU implementation further.
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3. EXPLICIT SCHUR COMPLEMENT METHOD FOR STOCHASTIC

PROGRAMS

This chapter describes the parallel Schur complement method used in solving the

stochastic programs of the form (1.6) with distributed computing clusters or multi-

core machines. We will start with the general theories regarding interior-point meth-

ods for solving general NLP problems of the form (1.2) in Section 3.1. The de-

tails of interior-point algorithms can be found in Wächter (2002) and Wächter and

Biegler (2006). For continuous nonlinear optimization problems, interior-point meth-

ods, sequential quadratic programming (SQP) methods, and augmented Lagrangian

methods are the most successful general purpose algorithms (Nocedal and Wright,

1999). Several interior-point implementations exist, including Ipopt(Wächter and

Biegler, 2006), LOQO (Vanderbei and Shanno, 1999), and KNITRO/DIRECT (Waltz

et al., 2006); SQP implementations include SNOPT (Gill et al., 2002), FILTER-

SQP (Fletcher and Ley↵er, 2002), and KNITRO/ACTIVE (Byrd et al., 2003); and

augmented Lagrangian methods have been implemented in MINOS (Murtagh and

Saunders, 1982) and Lancelot (Conn et al., 1988).

For structured NLP problems, particularly stochastic programs, interior-point

methods are preferable because the structure of the linear system used to compute

the step remains the same at each iteration, making the development of tailored lin-

ear solvers appropriate. The linear systems derived using interior point methods for

stochastic programming problems have the block-bordered-diagonal form. Currently,

all the well-known parallel interior-point solvers for these NLP problems (e.g. OOPS

(Gondzio and Grothey, 2009), Schur-IPOPT (Kang et al., 2014), and PIPS-NLP

(Chiang et al., 2014)) are based on the parallel implementation of Schur complement
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method of the KKT system. This approach has almost perfect strong scaling e�-

ciency for solving the KKT system when the number of first stage variables is small.

One disadvantage of this approach is that forming and solving the dense Schur sys-

tem become the bottleneck when the number of first stage variables is large. This

disadvantage can be overcome by several methods discussed in Section 1.4 and the

algorithm proposed in Chapter 4.

3.1 Interior-Point Method for General NLP Problems

In this section, we present an interior-point algorithm to deal with nonlinear pro-

gramming problems of the form (1.2). It is quite similar to the algorithm introduced

in Section 2.2.2. The only di↵erence is that the nonlinear programming problems

discussed in this section also includes equality constraints. Necessary modifications

to handle the general form (1.1) have already been discussed In Section 2.2.5.

An interior-point method solves the problem (1.2) by solving a sequence of barrier

subproblems of the form:

min
x2Rn

'(x) = f(x)� µ
in

nX

i=1

ln(x(i)) (3.1a)

s.t. c(x) = 0, (3.1b)

where x(i) denotes the ith component of the vector x, and µ
in

> 0 is the barrier

parameter.

The first-order optimality conditions of the barrier sub-problem are

rf(x)� µ
in

X�1e+r
x

c(x)� = 0 (3.2a)

c(x) = 0 (3.2b)
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where X=diag(x), and e is a vector with all elements equal to 1. The optimality

conditions also have an implicit constraint of x � 0. The primal-dual reformulation

can be written by introducing ⌫=µ
in

X�1e,

rf(x)� ⌫ +rc(x)� = 0 (3.3a)

c(x) = 0 (3.3b)

X⌫ � µ
in

e = 0. (3.3c)

When µ
in

is 0, the above equations together with x�0, ⌫�0 are the KKT condi-

tions for the problem (1.2). We can use a variation of Newton’s method to solve the

primal-dual system of Equations (3.3). At each iteration k of the Newton’s method,

the step direction is calculated by solving the linear system

2

6664

Hk Ak �I

(Ak)T 0 0

V k 0 Xk

3

7775

2

6664

�xk

��k

�⌫k

3

7775
= �

2

6664

rf(xk) + Ak�k � ⌫k

c(xk)

Xk⌫k � µ
in

e

3

7775
. (3.4)

HereHk denotes the Hessian of the Lagrangian functionr2L, Ak:=rc(xk), while�xk

and ��k, �⌫k are the search directions in x, � and ⌫ respectively. The Lagrangian

function is of the form:

L(x,�, ⌫) = f(x) + �T c(x)� ⌫Tx. (3.5)

A smaller and symmetric system can be obtained from Equation (3.4) by multi-

plying the last block row by (Xk)�1 and adding it to the first block row

2

4 W
k

Ak

(Ak)T 0

3

5

2

4�xk

��k

3

5 = �

2

4r'(x
k) + Ak�k

c(xk)

3

5 , (3.6)
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where W
k

=Hk + ⌃k and ⌃k=(Xk)�1V k. After solving the Equation (3.6) for �xk,

�⌫k can be obtained by using

�⌫k = µ
in

(Xk)�1e� ⌫k � ⌃k�xk. (3.7)

After the step directions are determined, the maximum step size ↵k,max

x

for primal

variables and ↵k

⌫

for dual variables can be calculated based on the fraction-to-the-

boundary rule to ensure x > 0 and ⌫ > 0. The step size ↵k

x

is computed using a line

search filter method with ↵k,max

x

as the initial guess. The basic idea of this method is

to find a step size making su�cient progress in either decreasing '(x) or decreasing

the violation of c(x). Finally, the values of primal and dual variables for the next

interior-point iteration are calculated using the Equation (2.10).

One requirement for the line search filter method to guarantee a certain descent

property is that a projection of W into the null space N of (Ak)T must be positive

definite (Wächter and Biegler, 2005). Given a matrix M , its inertia denoted by

In(M), is the integer triple indicating the number of positive, negative and zero

eigenvalues (Forsgren et al., 2002). Therefore the line search filter method requires

In(NTWN) = (n�m, 0, 0).

For the KKT matrix

K =

2

4 W
k

Ak

(Ak)T 0

3

5 (3.8)

Forsgren et al. (2002) shows that In(K) = In(NTWN) + (m,m, 0) when A has full

rank. As a consequence, under the assumption of linear independence constraint

qualification (LICQ), In(K) = (n,m, 0) if and only if NTWN is positive definite.

Therefore, the requirement of line search filter method will be satisfied if the following

condition holds

In(K) = (n,m, 0). (3.9)
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The information of inertia can be obtained as a byproduct of LDL factorization. In

the case when the conditions (3.9) does not hold, inertia correction can be performed

by a diagonal modification of the KKT matrix (Wächter and Biegler, 2006). The

modified KKT matrix is of the form:

K =

2

4Wk

+ �
w

I Ak

(Ak)T ��
c

I

3

5 , (3.10)

where �
w

and �
c

are two positive values.

3.2 Schur Complement Method for Stochastic Programs

The dominant computational cost of the interior point method is the solution

of Equation (3.6). For stochastic programs, the problem structure can be exploited

to develop a tailored parallel linear solver. In this section, instead of solving the

original stochastic programs of the form (1.6), we solve the equivalent problem (3.11)

by duplicating the first stage variables x0 as x0,s, s 2 S

min f0(x0,1) +
X

s2S

f
s

(x
s

, x0,s) (3.11a)

s.t. c0(x0,1) = 0 (�0) (3.11b)

c
s

(x
s

, x0,s) = 0 (�
s

), s 2 S (3.11c)

x0,1 � 0 (⌫0) (3.11d)

x
s

� 0 (⌫
s

) s 2 S. (3.11e)

x0,s = x0 (�
s

) s 2 S. (3.11f)

Here, the equality and bound contraints previously applied on x0 only transfer to that

of x0,1 to prevent redundant constraints.
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Without the Equation (3.11f), the above formulation can be decomposed into S

sub-problems. The subproblem 1 has the form

min
x1,x0,1

f0(x0,1) + f
s

(x1, x0,1) (3.12a)

s.t. c0(x0,1) = 0 (3.12b)

c1(x1, x0,1) = 0 (3.12c)

x0,1 � 0 (3.12d)

x1 � 0 (3.12e)

with the Lagrangian function of subproblem 1 defined as

L1(x0,1, x1,�1,�0, ⌫1, ⌫0) =f0(x0,1) + f1(x1, x0,1) + �1
T c1(x0,1, x1)

+ �0
T c0(x0,1)� ⌫T

1 x1 � ⌫T

0 x0,1

(3.13)

Each subproblem s, s 2 {2..S} is of the form

min
xs,x0,s

X

s2S

f
s

(x
s

, x0,s) (3.14a)

s.t. c
s

(x
s

, x0,s) = 0 (3.14b)

x
s

� 0 (3.14c)

with the the Lagrangian function defined as:

L
s

(x0,s, xs

,�
s

, ⌫
s

) = f
s

(x
s

, x0,s) + �
s

T c
s

(x0,s, xs

)� ⌫T

s

x
s

(3.15)

The Lagrangian of the whole problem (3.11) can be formulated as:

L(x,�, ⌫, �) =
X

s2S

L
s

+ �T

s

(x0,s � x0) (3.16)
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For the problem (3.11), System (3.6) has the following arrowhead form after re-

formulation

2

6666666664

K1 B1

K2 B2

. . .
...

K
S

B
S

BT

1 BT

2 . . . BT

S

K0

3

7777777775

2

6666666664

�w1

�w2

...

�w
S

�w0

3

7777777775

=

2

6666666664

r1

r2
...

r
S

r0

3

7777777775

, (3.17)
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where,

�wT

0 := [�xT

0 ]

�wT

1 := [�xT

1 ,�x0,1
T ,��T

1 ,��T

0 , �
T

1 ]

�wT

s

:= [�xT

s

,�x0,s
T ,��T

s

, �T

s

] 8s 2 {2..S}

rT0 :=
X

s2S

�
s

rT1 = �
h�
r

x1L1 + ⌫1 � µ
in

X1
�1e

�
T

, cT1 , c
T

0 , (x0,1 � x0)
T

i

rT
s

= �
h�
r

xsLs

+ ⌫
s

� µ
in

X
s

�1e
�
T

, cT
s

, (x0,s � x0)
T

i
8s 2 {2..S}

K0 :=
h
0
n0

i

K1 :=

2

6666666664

W1 HT

0,1 A1 A0 0

H0,1 W0,1 T1 0 I

AT

1 T T

1 0 0 0

AT

0 0 0 0 0

0 I 0 0 0

3

7777777775

(3.18)

K
s

:=

2

6666664

W
s

HT

0,s,s A
s

0

H0,s,s W0,s T
s

I

AT

s

T T

s

0 0

0 I 0 0

3

7777775
8s 2 {2..S}

B1 :=
h
0 0 0 0 �I

i

B
s

:=
h
0 0 0 �I

i
8s 2 {2..S}

W
s

:= H
s

+X�1
s

V
s

8s 2 {1..S}

W0,1 := H0,1 +X�1
0,1V0,1

W0,s := H0,s 8s 2 {2..S}

Here c
s

=c
s

(x
s

, x0,s), As

=r
xscs(xs

, x0,s), Ts

=r
x0,scs(xs

, x0,s),Hs

=r2
xsxs

L
s

,H0,s=r2
x0,sx0,s

L
s

,

H0,s,s=r2
x0,sxs

L
s

.
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Assuming that all K
s

are of full rank, we can show with the Schur complement

method that the solution of the Equation (3.17) is equivalent to that of the following

system

(K0 �
X

s2S

BT

s

K�1
s

B
s

| {z }
:=Z

)�w0 = r0 �
X

s2S

BT

s

K�1
s

r
s

| {z }
:=rZ

(3.19a)

K
s

�w
s

= r
s

� B
s

�w0, 8s 2 S. (3.19b)

It can also been shown that the inertia information of the whole KKT matrix K

can be derived from the inertia of Z and K
s

(Kang et al., 2014)

In(K) =
X

s2S

In(K
s

) + In(Z). (3.20)

Therefore, the inertia correction can still be performed using the Schur complement

method to satisfy the requirements of line-search filter method.

The system (3.19) can be solved with 3 steps. The first step is to form Z and r
Z

by adding the contribution from each block. This step requires the factorizations of

one sparse matrix K1 of size n1 + 2n0 +m1 +m0 and S � 1 sparse matrix K
s

of size

n
s

+2n0+m
s

. Besides a total of S factorizations of block matrix, this step also requires

a total of (S + 1)n0 backsolves. The second step is to solve the Equation (3.19a) to

get direction of the first stage variables �w0. This step requires one factorization and

one backsolve of the dense matrix Z. With �w0, the third step is to compute �w
s

from Equation (3.19b). This step requires a total of S backsolves of the block spase

matrix.

The Schur complement decomposition in (3.19) restricts the pivot sequences that

are possible and is rarely beneficial over (3.17) in serial if optimal ordering is used.

However, finding the optimal ordering itself is an NP hard problem. In many linear

solver, some heuristics are used in the ordering algorithms. Therefore, in serial, it is

hard to predict which system is faster to solve. However, one significant advantage
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of solving the system (3.19) is that both step 1 and step 3 can be easily parallelized.

When n0 is relatively small, and thus the cost of factorizing matrix Z in step 2

is negligible, the e�ciency of the parallel implementation can be very close to 1.

Another advantage of using the parallel Schur complement method on distributed

architectures is that the memory requirement is much smaller for each node than

solving the system (3.6).

The disadvantage of this approach is that as the number of first stage variables

increases, the cost of forming the Schur complement in step 1 increases linearly,

and the cost of factorization of the (possibly) dense matrix Z increases cubically.

Therefore, this method is not appropriate to be directly applied to problems with a

large number of first stage variables.

3.3 Remarks

We close this chapter by discussing the advantages and disadvantages of the for-

mulation (3.11) over the formulation (1.6). Formulation (3.11) duplicates the first

stage variables for each scenario. The interior point method for the formulation (1.6)

is not derived in this dissertation, but the QP version of the formulation (1.6) is

considered in Chapter 4.

One advantage of using the formulation (3.11) is that the Schur complement ma-

trix is P.D. if the original KKT system and each K
s

block has the correct Inertia.

This property enables use of a PCG procedure to solve the Schur system (Kang et al.,

2014). This approach avoids both the explicit formation and factorization of the dense

Schur complement matrix.

Another advantage of using formulation (3.11) is that it facilitates the software

development process. The Equation (3.18) and (4.9) indicate that the KKT system

of the whole problem can be constructed by the Jacobian, Hessian, and function

evaluations of subblocks for both formulations. In other words, The whole model

can be constructed by generating one model file (e.g. AMPL file) for each sub-

block and setting appropriate su�xes in each model file to identify first stage vari-
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ables. Therefore, the model evaluation can be performed in parallel. The specialty

of formulation (3.11) is that the Hessian and Jacobian for the subblocks can be di-

rectly used. For example, the Jacobian evaluated for subproblem s, s 2 {2..S}, is

r
xs,x0,scs(xs

, x0,s)T = [AT

s

, T T

s

]. For the formulation (3.11), r
xs,x0,scs(xs

, x0,s)T can be

used directly in Equation (3.18). However, For the formulation (1.6), it must be split

into AT

s

and T T

s

in Equation (4.9).

The final advantage of using the formulation (3.11) is that it has a smaller Schur

complement matrix at the cost of larger sparse K
s

matrices. Using the formulation

(3.11), the size of Z is n0, the dimension of K1 is n1 + 2n0 +m1 +m0, and that of

K
s

, s 2 {2..S}, is n
s

+ 2n0 +m
s

. For the formulation (4.9), the size of Z is n0 +m0

and the dimension of K
s

, s 2 S, is n
s

+ m
s

. Thus, formulation (3.11) has a lower

computational cost of factorizing the Schur complement but a higher computational

cost of forming the Schur complement. The cost of factorizing the Schur complement

increases much faster than that of forming the Schur complement as the dimension

of first stage increases. Therefore, when the dimension of first stage is large, the

formulation (3.11) performs better, although explicit Schur complement method is

no longer a good choice in this circumstance.
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4. CLUSTERING-BASED PRECONDITIONING FOR STOCHASTIC

PROGRAMS1

Chapter 3 describes an explicit Schur complement method to solve stochastic pro-

grams in parallel. One drawback of an straightforward implementation of this method

is that when the dimension of first stage variables is large, formation and factorization

of Schur complement becomes the bottleneck. In this chapter, we discuss one method

that can solve stochastic programs with a large number of first stage variables in par-

allel e�ciently. The distinction of this method with all other parallel interior-point

solvers for stochastic programs is that this method is not based on Schur comple-

ment decomposition, although Schur complement is used in deriving mathematical

properties of this approach.

This method uses a clustering-based preconditioning strategy for KKT systems.

The key idea is to perform adaptive clustering of scenarios (inside-the-solver) based on

their influence on the problem as opposed to cluster scenarios based on problem data

alone, as is done in existing (outside-the-solver) approaches. We derive spectral and

error properties for the preconditioner and demonstrate that scenario compression

rates of up to 94% can be obtained, leading to dramatic computational savings. In

addition, we demonstrate that the proposed preconditioner can avoid scalability issues

of Schur complement decomposition in problems with large first-stage dimensionality.

1Part of this section is reprinted with permission from “Clustering-Based Preconditioning for
Stochastic Programs” by Cao, Y., Laird, C.D., and Zavala, V. M., 2015. Submitted to Compu-
tational Optimization and Applications.
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4.1 Preliminaries

We consider two-stage stochastic programs of the form

min

✓
1

2
xT

0H0x0 + dT0 x0

◆
+
X

s2S

⇠
s

✓
1

2
xT

s

H
s

x
s

+ dT
s

x
s

◆
(4.1a)

s.t. AT

0 x0 = b0, (�0) (4.1b)

T T

s

x0 + AT

s

x
s

= b
s

, (�
s

), s 2 S (4.1c)

x0 � 0, (⌫0) (4.1d)

x
s

� 0, (⌫
s

), s 2 S. (4.1e)

The problem variables are x0, ⌫0 2 <n0 , x
s

, ⌫
s

2 <ns , �0 2 <m0 , and �
s

2 <ms . The

total number of variables is n := n0 +
P

s2S ns

, of equality constraints is m := m0 +
P

s2S ms

, and of inequalities is n. We refer to (x0,�0, ⌫0) as the first-stage variables

and to (x
s

,�
s

, ⌫
s

), s 2 S, as the second-stage variables. We refer to Equation (4.1a)

as the cost function. The data defining problem (4.1) is given by the cost coe�cients

d0, H0, Hs

, d
s

, the right-hand side coe�cients b0, bs, and the matrix coe�cients T
s

, A
s

.

We refer to H
s

, d
s

, b
s

, T
s

, A
s

as the scenario data. We define scenario probabilities as

⇠
s

2 <+ but we drop them from the notation by redefiningH
s

 ⇠
s

H
s

and d
s

 ⇠
s

d
s

.

As is typical in stochastic programming, the number of scenarios can be large and

limits the scope of existing o↵-the-shelf solvers. In this chapter, we present strategies

that cluster scenarios at the linear algebra level to mitigate complexity.

We start the discussion by presenting some basic notation. The Lagrange function

of (4.1) is given by

L(x,�, ⌫) = 1

2
xT

0H0x0 + dT0 x0 + �T

0 (A
T

0 x0 � b0)� ⌫T

0 x0

+
X

s2S

✓
1

2
xT

s

H
s

x
s

+ dT
s

x
s

+ �T

s

(T T

s

x0 + AT

s

x
s

� b
s

)� ⌫T

s

x
s

◆
. (4.2)
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Here, xT := [xT

0 , x
T

1 , ..., x
T

S

], �T := [�T

0 ,�
T

1 , ...,�
T

s

], and ⌫T := [⌫T

0 , ⌫
T

1 , ..., ⌫
T

S

]. In a

primal-dual interior-point (IP) setting we seek to solve nonlinear systems of the form

r
x0L = 0 = H0x0 + d0 + A0�0 � ⌫0 +

X

s2S

T
s

�
s

(4.3a)

r
xsL = 0 = H

s

x
s

+ d
s

+ A
s

�
s

� ⌫
s

, s 2 S (4.3b)

r
�0L = 0 = AT

0 x0 � b0 (4.3c)

r
�sL = 0 = T T

s

x0 + AT

s

x
s

� b
s

, s 2 S (4.3d)

0 = X0V0en0 � µ
i

ne
n0 (4.3e)

0 = X
s

V
s

e
S

� µ
i

ne
ns , s 2 S, (4.3f)

with the implicit condition x0, ⌫0, xs

, ⌫
s

� 0. Here, µ
i

n � 0 is the barrier parameter

and e
n0 2 <n0 , e

ns 2 <ns are vectors of ones. We define the diagonal matrices

X0 := diag(x0), Xs

:= diag(x
s

), V0 := diag(⌫0), and V
s

:= diag(⌫
s

). We define

�0 := X0V0e� µ
i

ne
n0 and �

s

:= X
s

V
s

e� µ
i

ne
ns , s 2 S. The search step is obtained

by solving the linear system

H0�x0 + A0��0 +
X

s2S

T
s

��
s

��⌫0 = �rx0L (4.4a)

H
s

�x
s

+ A
s

��
s

��⌫
s

= �r
xsL, s 2 S (4.4b)

AT

0�x0 = �r�0L (4.4c)

T T

s

�x0 + AT

s

�x
s

= �r
�sL, s 2 S (4.4d)

X0�⌫0 + V0�x0 = ��0 (4.4e)

X
s

�⌫
s

+ V
s

�x
s

= ��
s

, s 2 S. (4.4f)
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After eliminating the bound multipliers from the linear system we obtain

W0�x0 + A0��0 +
X

s2S

T
s

��
s

= r
x0 (4.5a)

W
s

�x
s

+ A
s

��
s

= r
xs , s 2 S (4.5b)

AT

0�x0 = r
�0 (4.5c)

T T

s

�x0 + AT

s

�x
s

= r
�s , s 2 S, (4.5d)

where,

W0 := H0 +X�1
0 V0 (4.6a)

W
s

:= H
s

+X�1
s

V
s

, s 2 S. (4.6b)

We also have that r
x0 := �(rx0L+X�1

0 �0), rxs := �(rxsLs

+X�1
s

�
s

), r
�0 := �r�0L,

and r
�s := �r�sL. The step for the bound multipliers can be recovered from

�⌫0 = �X�1
0 V0�x0 �X�1

0 �0 (4.7a)

�⌫
s

= �X�1
s

V
s

�x
s

�X�1
s

�
s

, s 2 S. (4.7b)

System (4.5) has the arrowhead form

2

6666666664

K1 B1

K2 B2

. . .
...

K
S

B
S

BT

1 BT

2 . . . BT

S

K0

3

7777777775

2

6666666664

�w1

�w2

...

�w
S

�w0

3

7777777775

=

2

6666666664

r1

r2
...

r
S

r0

3

7777777775

, (4.8)
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where�wT

0 := [�xT

0 ,��T

0 ],�wT

s

:= [�xT

s

,��T

s

], rT0 := [�rT
x0
,�rT

�0
], rT

s

:= [�rT
xs
,�rT

�s
],

and

K0 :=

2

4 W0 A0

AT

0 0

3

5 , K
s

:=

2

4 W
s

A
s

AT

s

0

3

5 , B
s

:=

2

4 0 0

T T

s

0

3

5 . (4.9)

We refer to the linear system (4.8) as the KKT system and to its coe�cient

matrix as the KKT matrix. We assume that each scenario block matrix K
s

, s 2 S is

nonsingular.

We use the following notation to define a block-diagonal matrix M composed of

blocks M1,M2,M3, ... :

M = blkdiag{M1,M2,M3, ...}. (4.10)

In addition, we use the following notation to define a matrix B that stacks (row-wise)

the blocks B1, B2, B3... :

B = rowstack{B1, B2, B3, ...}. (4.11)

We apply the same rowstack notation for vectors. We use the notation v(k) to indicate

the k-th entry of vector v. We use vec(M) to denote the row-column vectorization of

matrix M and we define �
min

(M) as the smallest singular value of matrix M . We use

k · k to denote the Euclidean norm for vectors and the Frobenius norm for matrices,

and we recall that kMk = kvec(M)k for matrix M .

4.2 Clustering Setting

In this section we review work on scenario reduction and highlight di↵erences and

contributions of our work. We then present our clustering-based preconditioner for

the KKT system (4.8).
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4.2.1 Related Work and Contributions

Scenario clustering (also referred to as aggregation) is a strategy commonly used in

stochastic programming to reduce computational complexity. We can classify these

strategies as outside-the-solver and inside-the-solver strategies. Outside-the-solver

strategies perform clustering on the scenario data (right-hand sides, matrices, and

gradients) prior to the solution of the problem (de Oliveira et al., 2010; Latorre et al.,

2007; Heitsch and Römisch, 2009; Casey and Sen, 2005). This approach can provide

lower bounds and error bounds for linear programs (LPs) and this feature can be

exploited in branch-and-bound procedures (Casey and Sen, 2005; Birge, 1985; Shetty

and Taylor, 1987; Zipkin, 1980).

Outside-the-solver clustering approaches give rise to several ine�ciencies, however.

First, several optimization problems might need to be solved in order to refine the

solution. Second, these approaches focus on the problem data and thus do not capture

the e↵ect of the data on the particular problem at hand. Consider, for instance, the

situation in which the same scenario data (e.g., weather scenarios) is used for two very

di↵erent problem classes (e.g., farm and power grid planning). Moreover, clustering

scenarios based on data alone is ine�cient because scenarios that are close in terms

of data might have very di↵erent impact on the cost function (e.g., if they are close

to the constraint boundary). Conversely, two scenarios that are distant in terms of

data might have similar contributions to the cost function. We also highlight that

many scenario generation procedures require knowledge of the underlying probability

distributions (Dupačová et al., 2003; Heitsch and Römisch, 2009) which are often not

available in closed form (e.g., weather forecasting) (Zavala et al., 2009; Lubin et al.,

2011).

In this chapter, we seek to overcome these ine�ciencies by performing clustering

adaptively inside-the-solver. In an interior-point setting this can be done by creating

a preconditioner for the KKT system (4.8) by clustering the scenario blocks. A key

advantage of this approach is that a single optimization problem is solved and the
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clusters are refined only if the preconditioner is not su�ciently accurate. In addition,

this approach provides a mechanism to capture the influence of the data on the partic-

ular problem at hand. Another advantage is that it can enable sparse preconditioning

of Schur complement systems. This is beneficial in situations where the number of

first-stage variables is large and thus Schur complement decomposition is expensive.

Moreover, our approach does not require any knowledge of the underlying probability

distributions generating the scenario data. Thus, it can be applied to problems in

which simulators are used to generate scenarios (e.g., weather forecasting), and it can

be applied to problem classes that exhibit similar structures such as support vector

machines (Ferris and Munson, 2002; Jung et al., 2008) and scenario-based robust op-

timization (Calafiore and Campi, 2006). Our proposed clustering approach can also

be used in combination with outside-the-solver scenario aggregation procedures, if

desired.

Related work on inside-the-solver scenario reduction strategies includes stochastic

Newton methods (Byrd et al., 2011). These approaches sample scenarios to create

a smaller representation of the KKT system. Existing approaches, however, cannot

handle constraints. Scenario and constraint reduction approaches for IP solvers have

been presented in Chiang and Grothey (2012); Jung et al. (2012); Petra and Anitescu

(2012); Colombo et al. (2011). In Jung et al. (2012), scenarios that have little influence

on the step computation are eliminated from the optimality system. This influence

is measured in terms of the magnitude of the constraint multipliers or in terms of the

products X�1
s

V
s

. In that work, it was found that a large proportion of scenarios or

constraints can be eliminated without compromising convergence. The elimination

potential can be limited in early iterations, however, because it is not clear which

scenarios have strong or weak influence on the solution. In addition, this approach

eliminates the scenarios from the problem formulation, and thus special safeguards

are needed to guarantee convergence. Our proposed clustering approach does not

eliminate the scenarios from the problem formulation; instead, the scenario space is

compressed to construct preconditioners.
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In Petra and Anitescu (2012) preconditioners for Schur systems are constructed by

sampling the full scenario set. A shortcoming of this approach is that scenario outliers

with strong influence might not be captured in the preconditioner. This behavior is

handled more e�ciently in the preconditioner proposed in Chiang and Grothey (2012)

in which scenarios having strong influence on the Schur complement are retained and

those that have weak influence are eliminated. A limitation of the Schur precondition-

ers proposed in Petra and Anitescu (2012); Chiang and Grothey (2012) is that they

require a dense preconditioner for the Schur complement, which hinders scalability

in problems with many first-stage variables. Our preconditioning approach enables

sparse preconditioning and thus avoids forming and factorizing dense Schur comple-

ments. In addition, compared with approaches in Chiang and Grothey (2012); Jung

et al. (2012); Petra and Anitescu (2012), our approach clusters scenarios instead of

eliminating them (either by sampling or by measuring strong/weak influence). This

enables us to handle scenario redundancies and outliers. In Colombo et al. (2011),

scenarios are clustered to solve a reduced problem and the solution of this problem

is used to warm-start the problem defined for the full scenario set. The approach

can reduce the number of iterations of the full scenario problem; but the work per

iteration is not reduced, as in our approach.

4.2.2 Clustering-Based Preconditioner

To derive our clustering-based preconditioner, we partition the full scenario set S

into C clusters, where C  S. For each cluster i 2 C := {1..C}, we define a partition

of the scenario set S
i

✓ S with !
i

:= |S
i

| scenarios satisfying

[

i2C

S
i

= S (4.12a)

S
i

\
S
j

= ;, i, j 2 C, j 6= i. (4.12b)
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For each cluster i 2 C, we pick an index c
i

2 S
i

to represent the cluster and we use

these indexes to define the compressed set R := {c1, c2, .., cC} (note that |R| = C).

We define the binary indicator 
s,i

, s 2 S, i 2 C, satisfying


s,i

=

8
<

:
1 if s 2 S

i

0 otherwise.
(4.13)

Using this notation we have that for arbitrary vectors v
ci , vs, i 2 C, the following

identities hold:

X

i2C

X

s2Si

kv
ci � v

s

k =
X

s2S

X

i2C


s,i

kv
ci � v

s

k (4.14a)

X

i2C

X

s2Si

v
s

=
X

s2S

v
s

(4.14b)

X

i2C

X

s2Si

v
ci =

X

i2C

!
i

v
ci . (4.14c)

At this point, we have yet to define appropriate procedures for obtaining the cluster

information S,R,S
i

,!
i

and 
s,i

. These will be discussed in Section 4.3.

Consider now the compact representation of the KKT system (4.8),

2

4 KS BS

BT

S K0

3

5

| {z }
:=K

2

4 qS

q0

3

5

| {z }
:=q

=

2

4 tS

t0

3

5

| {z }
:=t

, (4.15)

where

KS := blkdiag {K1, ..., KS

} (4.16a)

BS := rowstack {B1, ..., BS

} (4.16b)

qS := rowstack {q1, ..., qS} (4.16c)

tS := rowstack {t1, ..., tS} . (4.16d)
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Here, (t0, tS) are arbitrary right-hand side vectors and (q0, qS) are solution vectors.

If the solution vector (q0, qS) does not exactly solve (4.15), it will induce a residual

vector that we define as ✏T
r

:= [✏T
r0
, ✏T

rS
] with

✏
r0 := K0q0 +BT

S qS � t0 (4.17a)

✏
rS := KSqS +BSq0 � tS . (4.17b)

The Schur system of (4.15) is given by

(K0 � BT

SK
�1
S BS)| {z }

:=Z

q0 = t0 � BT

SK
�1
S tS| {z }

:=tZ

. (4.18)

Because KS is block-diagonal, we have that

Z = K0 �
X

i2C

X

s2Si

BT

s

K�1
s

B
s

(4.19a)

t
Z

= t0 �
X

i2C

X

s2Si

BT

s

K�1
s

t
s

. (4.19b)

We now define the following:

K!

R := blkdiag {!1Kc1 ,!2Kc2 , ...,!C

K
cC} (4.20a)

K1/!
R := blkdiag {1/!1Kc1 , 1/!2Kc2 , ..., 1/!C

K
cC} (4.20b)

BR := rowstack {B
c1 , Bc2 , ..., BcC} (4.20c)

tR := rowstack {t
c1 , tc2 , ..., tcC} . (4.20d)

In other words, K!

R is a block-diagonal matrix in which each block entry K
ci is

weighted by the scalar weight !
i

and K1/!
R is a block-diagonal matrix in which each

block entry K
ci is weighted by 1/!

i

. Note that

(K1/!
R )�1 = (K�1

R )!, (4.21)
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where,

(K�1
R )! := blkdiag

�
!1K

�1
c1

,!2K
�1
c2

, ...,!
C

K�1
cC

 
. (4.22)

We now present the clustering-based preconditioner (CP),

2

4 K1/!
R BR

BT

R K0

3

5

2

4 ·

q0

3

5 =

2

4 tR

t0 + t
CP

3

5 (4.23a)

K
s

q
s

= t
s

� B
s

q0, i 2 C, s 2 S
i

, (4.23b)

where

t
CP

:=
X

i2C

!
i

BT

ci
K�1

ci
t
ci �

X

i2C

X

s2Si

BT

s

K�1
s

t
s

(4.24)

is a correction term that is used to establish consistency between CP and the KKT

system. In particular, the Schur system of (4.23a) is

Z̄q0 = t0 + t
CP

� BT

R(K
1/!
R )�1tR

= t0 + t
CP

�
X

i2C

!
i

BT

ci
K�1

ci
t
ci

= t0 �
X

i2C

X

s2Si

BT

s

K�1
s

t
s

= t
Z

, (4.25)

with

Z̄ := K0 �
X

i2C

!
i

BT

ci
K�1

ci
B

ci

= K0 �
X

i2C

X

s2Si

BT

ci
K�1

ci
B

ci . (4.26)
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Consequently, the Schur system of the preconditioner and of the KKT system have

the same right-hand side. This property is key to establishing spectral and error

properties for the preconditioner. In particular, note that the solution of CP system

(4.23a)-(4.23b) solves the perturbed KKT system,

2

4 KS BS

BT

S K0 + E
Z

3

5

| {z }
:=K̄

2

4 qS

q0

3

5 =

2

4 tS

t0

3

5, (4.27)

where

E
Z

:=
X

i2C

X

s2Si

BT

s

K�1
s

B
s

�
X

i2C

X

s2Si

BT

ci
K�1

ci
B

ci , (4.28)

is the Schur error matrix and satisfies Z + E
Z

= Z̄. The mathematical equivalence

between CP system (4.23a)-(4.23b) and (4.27) can be established by constructing

the Schur system of (4.27) and noticing that it is equivalent to (4.25). Moreover,

the second-stage steps are the same. Consequently, applying preconditioner CP is

equivalent to using the perturbed matrix K̄ as a preconditioning matrix for the KKT

matrix K. We will use this equivalence to establish spectral and error properties in

Section 4.3.

The main idea behind preconditioner CP (we will use CP for short) is to compress

the KKT system (4.15) into the smaller system (4.23a) which is cheaper to factorize.

We solve this smaller system to obtain q0, and we recover qS from (4.23b) by factor-

izing the individual blocks K
s

. We refer to the coe�cient matrix of (4.23a) as the

compressed matrix.

In the following, we assume that the Schur complements Z and Z̄ are nonsingu-

lar. The nonsingularity of Z together with the assumption that all the blocks K
s

are

nonsingular implies (from the Schur complement theorem) that matrix K defined in

(4.15) is nonsingular and thus the KKT system has a unique solution. The nonsin-

gularity of Z̄ together with the assumption that all the blocks K
s

are nonsingular
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implies that the compressed matrix is nonsingular and thus CP has a unique solu-

tion. Note that we could have also assumed nonsingularity of matrix K directly and

this, together with the nonsingularity of the blocks K
s

, would imply nonsingularity

of Z (this also from the Schur complement theorem). The same applies if we assume

nonsingularity of the compressed matrix, which would imply nonsingularity of Z̄.

Although Schur complement decomposition is a popular approach for solving

structured KKT systems, it su↵ers from poor scalability with the dimension of q0.

The reason is that the Schur complement needs to be formed (this requires as many

backsolves with the factors of K
s

as the dimension of q0) and factored (this requires

a factorization of a dense matrix of dimension q0). We elaborate on these scalability

issues in Section 4.4. We thus highlight that the Schur system representations are

used only for analyzing CP.

Our preconditioning setting is summarized as follows. At each IP iteration k, we

compute a step by solving the KKT system (4.8). We do so by finding a solution

vector (�w0,�wS) of the ordered KKT system (4.8) for the right-hand side (r0, rS)

using an iterative linear algebra solver such as GMRES, QMR, or BICGSTAB. Here,

(r0, rS) are the right-hand side vectors of the KKT system (4.8) in ordered form. Each

minor iteration of the iterative linear algebra solver is denoted by ` = 0, 1, 2, ..,. We

denote the initial guess of the solution vector of (4.8) as (�w`

0,�w`

S) with ` = 0. At

each minor iterate `, the iterative solver will request the application of CP to a given

vector (t`0, t
`

S), and the solution vectors (q`0, q
`

S) of (4.23) are returned to the iterative

linear algebra solver. Perfect preconditioning occurs when we solve (4.8) instead of

(4.23) with the right-hand sides (t`0, t
`

S).

4.3 Preconditioner Properties

In this section we establish properties for CP and we use these to guide the design

of appropriate clustering strategies. The relationship between the CP system (4.23)

and the perturbed KKT system (4.27) allows us to establish the following result.
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Lemma 1 The preconditioned matrix K̄�1K has (n+m�n0�m0) unit eigenvalues,

and the remaining (n0 +m0) eigenvalues are bounded as

|�(K̄�1K)� 1|  1

�
min

(Z̄)
kE

Z

k.

Proof: The eigenvalues � and eigenvectors w := (wS , w0) of K̄�1K satisfy K̄�1Kw =

�w, and thus Kw = �K̄w. Consequently,

KSwS +BSw0 = �(KSwS +BSw0)

BT

SwS +K0w0 = �BT

SwS + �(K0 + E
Z

)w0.

From the first relationship we have n+m�n0�m0 unit eigenvalues. Applying Schur

complement decomposition to the eigenvalue system, we obtain

Zw0 = �(Z + E
Z

)w0

= �Z̄w0.

We can thus express the remaining n0 + m0 eigenvalues of K̄�1K as � = 1 + ✏
Z

to

obtain

|✏
Z

| = kEZ

w0k
kZ̄w0k

 1

�
min

(Z̄)
kE

Z

k.

The proof is complete. ⇤
The above lemma is a direct consequence of Theorem 3.1 in Dollar (2007). From the

definition of E
Z

we note that the following bound holds:

|�(K̄�1K)� 1|  1

�
min

(Z̄)

X

i2C

X

s2Si

��BT

s

K�1
s

B
s

� BT

ci
K�1

ci
B

ci

�� . (4.30)
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Lemma 1 states that we can improve the spectrum of K̄�1K by choosing clusters that

minimize kE
Z

k. This approach, however, would require expensive matrix operations.

An interesting and tractable exception occurs when Q
s

= Q, W
s

= W , and T
s

=

T, i 2 C, s 2 S
i

. This case is quite common in applications and arises when the

scenario data is only defined by the right-hand sides b
s

and the cost coe�cients d
s

of

(4.1). We refer to this case as the special data case. In this case we have that E
Z

reduces to

E
Z

=
X

i2C

X

s2Si

BT

�
K�1

s

�K�1
ci

�
B. (4.31)

We also have that K
s

and K
ci di↵er only in the diagonal matrices X�1

s

V
s

and X�1
ci

V
ci .

We thus have,

K
s

�K
ci =

2

4 (X�1
s

V
s

�X�1
ci

V
ci) 0

0 0

3

5 . (4.32)

If we define the vectors,

�
s

= vec(X�1
s

V
s

), i 2 C, s 2 S
i

(4.33a)

�
ci = vec(X�1

ci
V
ci), i 2 C, (4.33b)

we can establish the following result.

Theorem 4.3.1 Assume that Q
s

= Q, W
s

= W , and T
s

= T, i 2 C, s 2 S
i

holds.

Let vectors �
s

, �
ci be defined as in (4.33). The preconditioned matrix K̄�1K has

(n+m� n0 �m0) unit eigenvalues, and there exists a constant c
K

> 0 such that the

remaining (n0 +m0) eigenvalues are bounded as

|�(K̄�1K)� 1|  c
K

�
min

(Z̄)

X

s2S

X

i2C


s,i

k�
ci � �

s

k.
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Proof: From Lemma 1 we have that n0 +m0 eigenvalues � of K̄�1K are bounded as

|�� 1|  1
�min(Z̄)

kE
Z

k. We define the error matrix,

E
s

:= K
s

�K
ci , i 2 C, s 2 S

i

and use (4.31) and (4.32) to obtain the bound,

kE
Z

k 
X

i2C

X

s2Si

kBTBkkK�1
s

�K�1
ci
k

=
X

i2C

X

s2Si

kBTBkk(K
ci + E

s

)�1 �K�1
ci
k.

We have that

(K
ci + E

s

)�1 �K�1
ci

= �(K
ci + E

s

)�1E
s

K�1
ci

= �K�1
s

E
s

K�1
ci

.

This can be verified by multiplying both sides by K
ci + E

s

. We thus have

kE
Z

k 
X

i2C

X

s2Si

kBTBkk(K
ci + E

s

)�1 �K�1
ci
k


X

i2C

X

s2Si

kBTBkkK�1
s

kkK�1
ci
kkE

s

k

 c
K

X

i2C

X

s2Si

kvec(X�1
ci

V
ci)� vec(X�1

s

V
s

)k,

with c
K

:=
P

i2C
P

s2Si
kBTBkkK�1

s

kkK�1
ci
k. The existence of c

K

follows from the

nonsingularity of K
s

and K
ci . The proof is complete. ⇤

We now develop a bound of the preconditioning error for the general data case in

which the scenario data is also defined by coe�cient matrices. Notably, this bound

does not require the minimization of the error kE
Z

k. The idea is to bound the

error induced by CP relative to the exact solution of the KKT system (4.15) (perfect
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preconditioner). This approach is used to characterize inexact preconditioners such

as multigrid and nested preconditioned conjugate gradient (Szyld and Vogel, 2001).

We express the solution of CP obtained from (4.23) as qT = [qTS , q
T

0 ] and that of the

KKT system (4.15) as q⇤T = [q⇤S
T , q⇤0

T ]. We define the error between q and q⇤ as

✏ := q � q⇤ and we seek to bound ✏. If we decompose the error as ✏T = [✏TS , ✏
T

0 ], we

have that ✏0 = q0 � q⇤0 and ✏S = qS � q⇤S .

We recall that the Schur systems of (4.15) and of (4.23) and their respective

solutions satisfy

Zq⇤0 = t
Z

(4.34a)

Z̄q0 = t
Z

. (4.34b)

If we define the vectors,

�
s

= (BT

s

K�1
s

B
s

)t
Z

, i 2 C, s 2 S
i

(4.35a)

�
ci = (BT

ci
K�1

ci
B

ci)tZ , i 2 C. (4.35b)

we can establish the following bound on the error ✏ = q � q⇤.

Lemma 2 Assume that there exists c
T

> 0 such that k(Z � Z̄)Z�1t
Z

k  c
T

k(Z �

Z̄)t
Z

k holds; then there exists c
ZK

> 0 such that the preconditioner error ✏ is bounded

as

k✏k  c
ZK

k(Z � Z̄)t
Z

k.
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Proof: From ✏0 = q0 � q⇤0 we have Z̄✏0 = Z̄q0 � Z̄q⇤0. From (4.34) we have Z̄q0 =

Zq⇤0 = t
Z

and thus Z̄✏0 = Zq⇤0 � Z̄q⇤0. We thus have,

Z̄✏0 = Zq⇤0 � Z̄q⇤0

= t
Z

� Z̄q⇤0

= t
Z

� Z̄Z�1t
Z

= t
Z

� (Z + (Z̄ � Z))Z�1t
Z

= (Z � Z̄)Z�1t
Z

We recall that

q⇤S = K�1
S (tS � BSq

⇤
0)

qS = K�1
S (tS � BSq0)

and thus

✏S = K�1
S BS(q

⇤
0 � q0)

= �K�1
S BS✏0.

We thus have

k✏0k  c
Z

k(Z � Z̄)t
Z

k

k✏⌦k  c
KSk✏0k,

with c
Z

:= kZ̄�1kc
T

and c
KS := kK�1

S BSk. The existence of c
Z

follows from the

assumption that Z̄ is nonsingular. The existence of cS follows from the assumption

that the blocks K
s

are nonsingular and thus KS is nonsingular. The result follows

from k✏k  k✏0k+ k✏Sk and by defining c
ZK

:= c
Z

(1 + c
KS ). ⇤
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The assumption that there exists c
T

> 0 such that k(Z � Z̄)Z�1t
Z

k  c
T

k(Z �

Z̄)t
Z

k holds is trivially satisfied when Z�1 and Z̄ commute (i.e., Z̄Z�1 is a symmetric

matrix). In this case we have that c
T

= kZ�1k. The matrices also commute in the

limit Z̄ ! Z because Z̄Z�1 = ZZ�1 + (Z̄ � Z)Z�1 and thus Z̄Z�1 ! I. When Z

and Z̄ do not commute we require that k(Z� Z̄)Z�1t
Z

k decreases when k(Z� Z̄)t
Z

k

does. We validate this empirically in Section 4.4.

Theorem 4.3.2 Let vectors �
s

, �
ci be defined as in (4.35). The preconditioner error

✏ is bounded as

k✏k  c
ZK

X

s2S

X

i2C

k
s,i

k�
ci � �

s

k,

with c
ZK

defined in Lemma 2.

Proof: From (4.35) and (4.28) we have that

Z̄t
Z

� Zt
Z

= E
Z

t
Z

=
X

i2C

X

s2Si

BT

s

K�1
s

B
s

t
Z

�
X

i2C

X

s2Si

BT

ci
K�1

ci
B

citZ

=
X

i2C

X

s2Si

(BT

s

K�1
s

B
s

t
Z

� BT

ci
K�1

ci
B

citZ)

=
X

i2C

X

s2Si

(�
s

� �
ci).

We bound this expression to obtain,

kZ̄t
Z

� Zt
Z

k =

�����
X

i2C

X

s2Si

(�
s

� �
ci)

�����


X

i2C

X

s2Si

k�
ci � �

s

k

=
X

s2S

X

i2C


s,i

k�
ci � �

s

k.
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The result follows from Lemma 2. ⇤

We can see that the properties of CP are related to a metric of the form

D
C

:=
X

s2S

X

i2C


s,i

k�
ci � �

s

k. (4.36)

This is the distortion metric widely used in clustering analysis (Bishop et al., 2006).

The distortion metric is (partially) minimized by K-means, K-medoids, and hierarchi-

cal clustering algorithms to determine 
s,i

and �
ci . The vectors �s are called features,

and �
ci is the centroid of cluster i 2 C (we can also pick the scenario that is closest to

the centroid if the centroid is not an element of the scenario set). The distortion met-

ric is interpreted as the accumulated distance of the elements of the cluster relative to

the centroid. If the distortion is small, then the scenarios in a cluster are similar. The

distortion metric can be made arbitrarily small by increasing the number of clusters

and is zero in the limit with S = C because each cluster is given by one scenario.

Consequently, we see that Theorems 4.3.1 and 4.3.2 provide the necessary insights to

derive clusters using di↵erent sources of information of the scenarios.

Theorem 4.3.1 suggests that, in the special data case with features defined as

�
s

= vec(X�1
s

V
s

), the spectrum of K̄�1K can be made arbitrarily close to one if

the distortion metric is made arbitrarily small. This implies that the definition of

the features is consistent. We highlight, however, that the bounds of Theorem 4.3.1

assume that the clustering parameters are given (i.e., the sets C and C
i

are fixed).

Consequently, the constants c
K

, and �
min

(Z̄) change when the clusters are changed.

Because of this, we cannot guarantee that reducing the distortion metric will indeed

improve the quality of the preconditioner. The aforementioned constants depend in

nontrivial ways on the clustering parameters and it is thus di�cult to obtain bounds

for them. In the next section we demonstrate empirically, however, that the constants

c
K

and �
min

(Z̄) are insensitive to the clustering parameters. Consequently, reducing
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the distortion metric in fact improves the quality of the preconditioner. We leave the

theoretical treatment of this issue as part of future work.

We can obtain useful insights from the special data case. First note that the

scenarios are clustered at each IP iteration k because the matrices X�1
s

V
s

change

along the search. The clustering approach is therefore adaptive, unlike outside-the-

solver scenario clustering approaches. In fact, it is not possible to derive spectral

and error properties for preconditioners based on clustering of problem data alone.

Our approach focuses directly on the contributions X�1
s

V
s

and thus assumes that the

problem data enters indirectly through the contributions X�1
s

V
s

, which in turn a↵ect

the structural properties of the KKT matrix. The features �
s

= vec(X�1
s

V
s

) have

an important interpretation: these reflect the contribution of each scenario to the

logarithmic barrier function. From complementarity we have that kX
s

k � 0 implies

kV
s

k ⇡ 0 and kX�1
s

V
s

k ⇡ 0. In this case we say that there is weak activity in the

scenario and we have from (4.6) that W
s

= H
s

+ X�1
s

V
s

⇡ H
s

. Consequently, the

primal-dual term X�1
s

V
s

for a scenario with weak activity puts little weight on the

barrier function. In the opposite case in which the scenario has strong activity we

have that kV
s

k � 0, kX
s

k ⇡ 0, and kX�1
s

V
s

k � 0. In this case we thus have that

a scenario with strong activity puts a large weight on the barrier function. This

reasoning is used in Jung et al. (2012); Gondzio and Grothey (2003) to eliminate the

scenarios with weak activity. In our case we propose to cluster scenarios with similar

activities. Clustering allows us to eliminate redundancies in both active and inactive

scenarios and to capture outliers. In addition, this strategy avoids the need to specify

a threshold to classify weak and strong activity.

Theorem 4.3.2 provides a mechanism to obtain clusters for the general data case

in which the scenario data is defined also by the coe�cient matrices. The result

states that we can bound the preconditioning error using the Schur complement error

E
Z

= Z̄ � Z projected on the right-hand side vector t
Z

. Consequently, the error can

be bounded by the distortion metric with features defined in (4.35). This suggests

that the error can be made arbitrarily small if the distortion is made arbitrarily small.
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Moreover, it is not necessary to perform major matrix operations. As in the special

data case of Theorem 4.3.1, however, the bounding constant c
Z

of Theorem 4.3.2

depends on the clustering parameters. Moreover, we need to verify that the term

k(Z � Z̄)Z�1t
Z

k decreases when k(Z � Z̄)t
Z

k does. In the next section we verify

these two assumptions empirically.

The error bound of Theorem 4.3.2 requires that clustering tasks and the factoriza-

tion of the compressed matrix be performed at each minor iteration ` of the iterative

linear algebra solver. The reason is that the features (4.35) change with t`
Z

. Per-

forming these tasks at each minor iteration, however, is expensive. Consequently, we

perform these tasks only at the first minor iteration ` = 0. If the initial guess of the

solution vector of the KKT system is set to zero (�w`

0 = 0 and �w`

S = 0) and if

GMRES, QMR, or BICGSTAB schemes are used, this is equivalent to performing by

clustering using the features

�
s

= (BT

s

K�1
s

B
s

)r
Z

, i 2 C, s 2 S
i

(4.37a)

�
ci = (BT

ci
K�1

ci
B

ci)rZ , i 2 C, (4.37b)

where

r
Z

= t0
Z

= r0 �
X

i2C

X

s2Si

BT

s

K�1
s

r
s

(4.38)

is the right-hand side of the Schur system of (4.8).

4.4 Numerical Results

In this section we discuss implementation issues of CP and present numerical re-

sults for benchmark problems in the literature and a large-scale stochastic market

clearing problem. We begin by summarizing the procedure for computing the step
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(�xk,��k,�⌫k) at each IP iteration k.

Step Computation Scheme

1. Initialization. Given iterate (xk,�k, ⌫k), number of clusters C, tolerance ⌧ k,

and maximum number of linear solver iterates m
it

.

2. Get Clustering Information.

2.0. Compute features �
s

, s 2 S as in (4.33) or (4.37).

2.1. Obtain 
s,i

and �
ci using K-means, hierarchical clustering, or any other

clustering algorithm.

2.2. Use 
s,i

to construct C, R, ⌦, and !
i

.

2.3. Construct and factorize compressed matrix

2

4 K1/!
R BR

BT

R K0

3

5

and factorize scenario matrices K
s

, i 2 C, s 2 S
i

.

3. Get Step.

3.1. Call iterative linear solver to solve KKT system (4.15) with right-hand

sides (r0, rS), set ` = 0, and initial guess �w`

0 = 0 and �w`

S = 0. At each

minor iterate ` = 0, 1, ..., of the iterative linear solver, DO:

3.1.1. Use factorization of compressed matrix and of KS to solve CP (4.23a)-

(4.23b) for right-hand sides (t`0, t
`

S) and RETURN solution (q`0, q
`

S).

3.1.2. From (4.17), get ✏`
r

using solution vector (�w`

0,�w`

S) and right-hand

side vectors (r0, rS). If k✏`
r

k  ⌧ k, TERMINATE.

3.1.3. If ` = m
it

, increase C, and RETURN to Step 3.1.

3.2. Recover (�xk,��k) from (�w`

0,�w`

S).
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3.3. Recover �⌫k from (4.7).

We call our clustering-based IP framework IP-CLUSTER. The framework is written

in C++ and uses MPI for parallel computations. In this implementation we use the

primal-dual IP algorithm of Mehrotra (Mehrotra, 1992). We use the matrix tem-

plates and direct linear algebra routines of the BLOCK-TOOLS library (Kang et al.,

2014). This library is specialized to block matrices and greatly facilitated the im-

plementation. Within BLOCK-TOOLS, we use its MA57 interface to perform all direct

linear algebra operations. We use the GMRES implementation within the PETSc library

(http://www.mcs.anl.gov/petsc) to perform all iterative linear algebra operations.

We have implemented serial and parallel versions of CP. We highlight that the par-

allel version performs the factorizations of (4.23b) in parallel and exploits the block-

bordered-diagonal structure of the KKT matrix to perform matrix-vector operations

in parallel as well. We use the K-means and hierarchical clustering implementations of

the C-Clustering library (http://bonsai.hgc.jp/~mdehoon/software/cluster/

software.htm). To implement the market clearing models we use an interface to

AMPL to create individual instances (.nl files) for each scenario and indicate first-stage

variables and constraints using the suffix capability.

4.4.1 Benchmark Problems

We consider stochastic variants of problems obtained from the CUTEr library and

benchmark problems (SSN, GBD, LANDS, 20TERM) reported in Linderoth et al.

(2006). The deterministic CUTEr QP problems have the form

min
1

2
xTHx+ dTx, s.t. Ax = b, x � 0. (4.39)
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We generate a stochastic version of this problem by defining b as a random vector.

We create scenarios for this vector b
s

, s 2 S using the nominal value b as mean and a

standard deviation ±� = 0.5b. We then formulate the two-stage stochastic program:

min eTx0 +
X

s2S

⇠
s

✓
1

2
xT

s

Hx
s

+ dTx
s

◆
(4.40a)

s.t. Ax
s

= b
s

, s 2 S (4.40b)

x
s

+ x0 � 0, s 2 S (4.40c)

x0 � 0. (4.40d)

Here, we set ⇠
s

= 1/|S|. We first demonstrate the quality of CP in terms of the

number of GMRES iterations. For all cases, we assume a scenario compression rate

of 75% (only 25% of the scenarios are used in the compressed matrix), and we solve

the problems to a tolerance of 1 ⇥ 10�6. We use the notation x% to indicate the

compression rate (i.e., the preconditioner CP uses 100-x% of the scenarios to define

the compressed matrix). A compression rate of 0% indicates that the entire scenario

set is used for the preconditioner (ideal). A compression rate of 100% indicates that

no preconditioner is used. We set the maximum number of GMRES iterations m
it

to

100.

For this first set of results we cluster the scenarios using a hierarchical clustering

algorithm with the features (4.35). The results are presented in Table 4.1. As can

be seen, the performance of CP is satisfactory in all instances, requiring fewer than

20 GMRES iterations per interior-point iteration (this is labeled as LAit/IPit). We

attribute this to the particular structure of CP, which enable us to pose the pre-

conditioning systems in the equivalent form (4.27) and to derive favorable spectral

properties and error bounds. To support these observations, we have also experi-
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Table 4.1: Performance of naive and preconditioner CPs in benchmark problems.

NPI (75%) CP (75%) NPII (75%)
Problem S n m IPit LAit LAit/IPit IPit LAit LAit/IPit IPit LAit LAit/IPit
HS53 100 1,010 800 19 152 8 19 113 5 20 112 5
LOTSCHD 100 1,212 700 27 911⇤ 33 25 203 8 26 178 6
HS76 100 707 300 24 626⇤ 26 23 98 4 24 107 4
HS118 100 5,959 4,400 47 1499⇤ 31 47 409 8 50 484 9
QPCBLEND 100 11,514 7,400 57 258 4 57 253 4 55 273 4
ZECEVIC2 100 606 400 27 451⇤ 16 29 111 3 26 107 4
QPTEST 100 505 300 23 569⇤ 24 23 108 4 26 109 4
SSN 100 70,689 8,600 114 738⇤ 6 114 1857 16 114 2506 21
GBD 1000 10,017 5,000 24 627⇤ 26 24 144 6 24 92 4
LANDS 1000 12,004 7,003 29 481⇤ 16 29 115 3 29 122 4
20TERM 100 76,463 12,404 57 581⇤ 10 57 976 17 58 905⇤ 16

mented with a couple of naive preconditioners. The first naive preconditioner (NPI)

has the form:

2

4 K̄S B̄S

B̄T

S K0

3

5

2

4 qS

q0

3

5 =

2

4 tS

t0

3

5 , (4.41)

where,

K̄S := blkdiag {K
c1 , ..., Kc1 , Kc2 , ..., Kc2 , ..., KcC , ..., KcC} (4.42a)

B̄S := rowstack {B
c1 , ..., Bc1 , Bc2 , ..., Bc2 , ..., BcC , ..., BcC} . (4.42b)

We can see that NPI replaces the block matrix elements of the cluster with those of the

scenario representing the cluster. This, in fact, is done implicitly by the compressed

system (4.23a). Note also that the right-hand side of NPI is consistent with that of

the KKT system. The design of NPI seems reasonable at first sight but it has several
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structural deficiencies. We highlight these by noticing that the Schur system of NPI

has the form

Z̄q0 = t0 �
X

i2C

X

s2Si

BT

ci
K�1

ci
t
s

. (4.43)

This system has the same Schur matrix as that of the Schur system of CP (4.25) but

does not have the same right-hand side. Moreover, the second-stage steps obtained

from NPI are

K
ciqs = t

s

� B
ciq0, i 2 C, s 2 S

i

. (4.44)

By comparing (4.44) with (4.23b) we can see that the recovery of the second-stage

steps in NPI does not use the second-stage matrices K
s

, B
s

corresponding to each

scenario (as is done in CP approach). We propose an alternative naive preconditioner

(NPII) to analyze the impact of the second-stage step (4.23b). This preconditioner

computes q0 using (4.41) as in NPI but computes the second-stage steps using (4.44)

as in CP. Consequently, NPII and CP only di↵er in the way q0 is computed. It is not

di�cult to verify that the solution of NPII is equivalent to the solution of the system:

2

4 KS BS

BT

S K0 + E
Z

3

5

2

4 qS

q0

3

5 =

2

4 tS

t0 + t
CP

3

5 . (4.45)

By comparing the equivalent system (4.27) of CP and the equivalent system (4.45)

of NPII we can see that NPII introduces the additional perturbation t
CP

on the right-

hand side.

The structural deficiencies of NPI and NPII prevent us from obtaining the error

bounds of Theorems 4.3.1 and 4.3.2 and highlight the importance of the structure of

CP. In Table 4.1 we compare the performance of the di↵erent preconditioners. We can

see that the performance of NPI is not competitive. In particular, CP outperforms

NPI in nine instances out of eleven. Moreover, in all instances except HS53 and
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QPCBLEND, it was necessary to refine preconditioner NPI in several iterations (this

is done by increasing the number of clusters). We highlight instances in which this

occurs using a star next to the total number of GMRES iterations. The performance

of NPII is highly competitive with that of CP. In fact, NPII performs slightly better

than CP in several instances. For problem 20TERM, however, it was necessary to

increase the number of clusters for NPII in some iterations. We can thus conclude

that CP has in general better performance and is more robust. Moreover, we can

conclude that the second-stage step (4.23b) plays a key role.

In Table 4.2 we compare the performance of CP with that of the unpreconditioned

strategy (compression rate of 100%) and with that of the naive strategies. We only

show results for a single instance to illustrate that the matrices of the benchmark

problems are nontrivial and preconditioning is indeed needed.

Table 4.2: Performance of preconditioned and unpreconditioned strategies.

Problem S n Compress. IPit LAit LAit/IPit

HS53 100 1,010
100% 19 12861 676
75% (NPI) 19 152 8
75% (CP) 19 113 5
75% (NPII) 20 112 5

We note that the instances reported in Tables 4.1 and 4.2 are small (n < 100, 000).

In most of these small instances we found that the solution times obtained with full

factorization are shorter than those obtained with CP. This is because the overhead

introduced by the iterative linear solver is not su�cient to overcome the gains ob-

tained by compressing the linear system. We illustrate this behavior in Table 4.3

where we compare the performance of full factorization (0% compression rate) with

that of preconditioner CP for problem 20TERM. We clearly see that the total solu-

tion times (denoted as ✓
tot

) obtained with full factorization are significantly shorter
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than those obtained with CP. Most notably, this trend holds for problems with up to

600,000 variables and the times scale linearly with the number of scenarios. These

results illustrate that sparse direct factorization codes such as MA57 can e�ciently

handle certain large-scale problems. As we show in Section 4.4.2, this e�ciency en-

ables us to overcome scalability bottlenecks of Schur complement decomposition. Full

factorization, however, will eventually become expensive as we increase the problem

size and, at this point, the use of CP becomes beneficial. We illustrate this in Table

4.6 where we compare the performance of CP with that of full factorization for two

large instances. Instance QSC2015 has 63,717 variables, while instance AUG3DC has

131,682 variables. We use ✓
fact

to denote the time spent in the factorization of the

compressed matrix and of the block matrices, ✓
clus

to denote the time spent perform-

ing clustering operations, and ✓
gmres

to denote the time spent in GMRES iterations

(without considering factorization operations in the preconditioner). As can be seen,

the solution times of full factorization are dramatically reduced by using CP.

From Table 4.3 we can also see that the performance of CP deteriorates as we

increase the compression rate. This is because the distortion metric increases as we

increase the compression rate and thus the quality of the preconditioner deteriorates,

as suggested by Theorems 4.3.1 and 4.3.2. We recall, however, that the bounds

provided in these theorems depend on constants that change with the clustering

parameters. Consequently, it is not obvious that reducing the distortion metric will

improve the quality of the preconditioner. We designed a numerical experiment to

gain more insight into this issue. In the experiment we compute the constants and

metrics of Theorems 4.3.1 and 4.3.2 for two additional instances (GBD and LANDS)

and for two di↵erent compression rates (50% and 75%). We only report the results

at a single iteration because we observed similar behavior at other iterations. The

results are summarized in Tables 4.4 and 4.5. As can be seen in Table 4.4, the

constants c
K

and �
min

(Z̄) of Theorem 4.3.1 are insensitive to the compression rate.

The distortion metric D
C

, on the other hand, changes by an order of magnitude. We

also report the Schur complement error kE
Z

k = kZ̄ � Zk and we see that this error
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Table 4.3: E↵ect of compression rates on 20TERM problem.

S n Compress. IPit LAit/IPit ✓
tot

100 76,463

0% 54 - 16
50% 57 10 54
75% 57 19 79
87% 57 17 69

200 152,863

0% 69 - 44
50% 72 9 137
75% 72 14 166
87% 72 18 185

400 305,663

0% 87 - 108
50% 92 20 578
75% 92 21 555
87% 92 23 570

800 611,263

0% 88 - 232
50% 97 25 1440
75% 97 25 1427
87% 97 27 1417
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Table 4.4: Performance of di↵erent clustering strategies for benchmark problems (Theorem 1).

Problem Compress. c
K

�
min

(Z̄) kZ � Z̄k D
C

LANDS
50% 6.8⇥ 10+2 3.7⇥ 10�3 3.9⇥ 10�2 6.5⇥ 10�2

75% 6.8⇥ 10+2 3.8⇥ 10�3 1.8⇥ 10�1 5.8⇥ 10�1

GBD
50% 4.5⇥ 10+12 6.8⇥ 10�2 6.6⇥ 10�3 5.0⇥ 10�4

75% 4.5⇥ 10+12 6.7⇥ 10�2 6.1⇥ 10�2 1.6⇥ 10�3

Table 4.5: Performance of di↵erent clustering strategies for benchmark problems (Theorem 2).

Problem Compress. c
Z

D
C

k(Z̄ � Z)Z�1t
Z

k k(Z̄ � Z)t
Z

k

LANDS
50% 5.7⇥ 10+2 1.0⇥ 10+1 2.0⇥ 10+0 6.1⇥ 10+2

75% 5.8⇥ 10+2 1.0⇥ 10+2 2.9⇥ 10+1 8.5⇥ 10+3

GBD
50% 9.2⇥ 10+0 1.0⇥ 10�1 5.6⇥ 10�3 9.2⇥ 10�2

75% 9.2⇥ 10+0 3.5⇥ 10�1 2.0⇥ 10�2 7.1⇥ 10�1

changes by an order of magnitude as well. In Table 4.5 we can see that the constant

c
Z

of Theorem 4.3.2 is insensitive to the compression rate but the distortion is rather

sensitive as well. Moreover, we can see that metrics k(Z̄�Z)Z�1t
Z

k, k(Z̄�Z)t
Z

k, and

D
C

change significantly with the compression rate. We highlight that the distortion

metric of Theorem 1 is defined using the features (4.33) while the distortion metric of

Theorem 2 is defined using the features (4.35). From these results we can conclude that

the distortion metrics proposed are indeed appropriate indicators of preconditioning

quality and can thus be used to guide the construction of the preconditioners.

From Table 4.3 we can also see that the deterioration of performance due to

increasing compression rates becomes less pronounced as we increase the number of

scenarios. The reason is that more redundancy is observed as we increase the number

of scenarios and, consequently, compression potential increases. This behavior has
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been found in several instances and indicates that it is possible to deal with problems

with a large number of scenarios.

In Table 4.6 we compare the performance of di↵erent clustering strategies. To

this end, we perform clustering using features (4.33) (we label this as X�1V ) and

using (4.37) (we label this as r
Z

). As can be seen, the performance of both clustering

strategies is very similar. This demonstrates that the design of the features (4.33)

and (4.35) is consistent.

Table 4.6: Performance of di↵erent clustering strategies for benchmark problems.

Problem Compress. Clustering IPit ✓
tot

✓
fact

✓
clus

✓
gmres

LAit LAit/IPit

QSC205

0% 110 1331 1321
50% X�1V 110 220 157 5 42 747 6
75% X�1V 110 91 25 6 45 933 8
50% r

Z

110 229 161 5 43 747 6
75% r

Z

110 89 24 5 43 924 8

AUG3DC

0% 11 1427 1423
50% X�1V 11 96 84 0.3 6 26 2
75% X�1V 11 24 13 0.3 6 27 2
50% r

Z

11 93 80 0.3 6 26 2
75% r

Z

11 25 13 0.3 6 27 2

4.4.2 Stochastic Market Clearing Problem

We demonstrate the computational e�ciency of the preconditioner by solving a

stochastic market-clearing model for the entire Illinois power grid system (Pritchard
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et al., 2010; Zavala et al., 2010). The system is illustrated in Figure 4.1. The stochastic

programming formulation is given by

min
xi,Xi(!)

X

i2G

�
�
i

x
i

+ E
!

⇥
�+
i

(X
i

(!)� x
i

)+ � ��
i

(X
i

(!)� x
i

)�
⇤�

s.t. ⌧
n

(f) +
X

i2G(n)

x
i

= d
n

, n 2 N (4.46a)

⌧
n

(F (!))� ⌧
n

(f) +
X

i2G(n)

(X
i

(!)� x
i

) = 0, n 2 N ,! 2 ⌦ (4.46b)

f, F (!) 2 F , ! 2 ⌦ (4.46c)

(x
i

, X
i

(!)) 2 X
i

(!), i 2 G,! 2 ⌦. (4.46d)

Here, N denotes the set of network nodes and L the set of transmission lines. The

set of all suppliers is denoted by G. Subsets G(n) denote the set of players connected

to node n 2 N . The forward (first-stage) dispatched quantities for players are x
i

,

and the spot (second-stage) quantities under scenario ! are X
i

(!). Symbol f denotes

the vector of all line flows and ⌧
n

(·) are flow injections into node n 2 N . Similarly,

F (!) denotes the vector of line flows for each scenario !. The demand is assumed

to be deterministic and inelastic and is represented by d
n

, n 2 N . The sets F and

X
i

(!) are polyhedral and define lower and upper bounds for the flows and dispatch

quantities. The objective of the market clearing problem is to minimize the forward

dispatch cost plus the expected recourse dispatch cost. Here [y]+ = max{y, 0} and

[y]� = max{�y, 0}. The coe�cients �
i

denote the supply price bids, and �+
i

and

��
i

are price bids for corrections of the generators. A supplier i asks �+
i

> �
i

to sell

additional power or asks ��
i

< �
i

to buy power from the system (e.g., reduces output).

The scenarios ! characterize the randomness in the model due to unpredictable supply

capacities (in this case wind power). We use a sample-average approximation of the

problem to obtain a deterministic equivalent.

The market clearing model has large first-stage dimensionality. The Schur com-

plement has a dimension of 64,199 and has a large dense block. In Table 4.7 we



79

−92 −90 −88

37

38

39

40

41

42

43

° Longitude W

°
 L

a
tit

u
d

e
 N

Figure 4.1.: Illinois transmission system. Dark dots are generation nodes and blue dots are demand
nodes.

present the solution times for this problem using a Schur complement decomposition

strategy for a single scenario. Here, ✓
tot

is the total solution time, ✓
factschur

is the

time spent factorizing the Schur complement, ✓
formschur

is the time spent forming the

Schur complement, and ✓
factblock

is the time spent factorizing the scenario blocks (in

this case just one block). All times are reported in seconds. The solution time for

this problem is 8.7 hr, with 13% of the time spent forming the Schur complement

and 87% spent factorizing the Schur complement. Note that if more scenarios are

added, the time spent forming and factorizing the Schur complement will dominate

(even if the scenarios can be parallelized). Iterative strategies applied to the Schur

complement system can avoid the time spent forming the Schur complement but not

the factorization time because a preconditioner with a large dense block still needs

to be factored (Petra and Anitescu, 2012).
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We now assess the serial performance of CP. By comparing Tables 4.7 and 4.8 we

can see that the full factorization approach will be as e�cient as Schur complement

decomposition for problems with up to 64 scenarios. In other words, it would be

faster to factorize the full sparse KKT system than forming and factorizing the large

Schur complement. The fast growth in solution time of the full factorization approach

is remarkable, however. We attribute this to the tight connectivity induced by the

network constraints which introduce significant fill-in. CP reduces the solution times

of full factorization by a factor of 2 for the problem with 32 scenarios and by a factor

of 8 for the problem with 64 scenarios. We highlight that CP is highly e↵ective,

requiring on average 5 to 10 GMRES iterations per IP iteration for compression rates

of 50% and 11 to 13 iterations for compression rates of 75%. We also observe that

the performance of di↵erent clustering strategies is similar.

For the problem with 64 scenarios we can see that the solution time of CP increases

as we increase the compression rate from 75% to 87% (even if the factorization time

is dramatically reduced). This is because the time spent in GMRES to perform back-

solves and matrix-vector operations dominates the factorization time. We mitigate

this by using the parallel implementation of CP. The results are presented in Table

4.9. We can see that the solution time spent in GMRES to perform backsolves and

matrix-vector operations is dramatically reduced by exploiting the block-bordered-

diagonal structure of the KKT matrix. This enables us to solve a market clearing

problem with over 1.2 million variables in 10 minutes, as opposed to 8 hours using the

full factorization approach. This represents a speed up factor of 42. By comparing

the parallel results with those of Table 4.7 we can also see that the Schur complement

approach is not competitive because of the time needed to form and factorize the

Schur complement (this holds even for a single scenario).

From Table 4.9 we can see that scalability slows down as we increase the number

of processes. This is because the remaining serial components (beyond backsolves and

matrix-vector operations) of CP start dominating. This overhead includes operations
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Table 4.7: Performance of Schur complement decomposition approach.

S n IPit ✓
tot

✓
factschur

✓
formschur

✓
factblock

1 30,472 55 31280 27236 4023 4

Table 4.8: Serial performance of preconditioner CP against full factorization for stochastic market
clearing problem.

S n Compress. Cluster. IPit ✓
tot

✓
fact

✓
clus

✓
gmres

LAit LAit/IPit

16 309,187
0% 57 473 452
50% X�1V 57 544 119 0.4 325 631 11
50% r

Z

57 508 117 0.15 296 519 9

32 606,483

0% 65 3480 3414
50% X�1V 65 1477 661 8 606 574 8
75% X�1V 65 1479 145 8 1141 1194 18
50% r

Z

65 1347 672 3 459 398 6
75% r

Z

65 1131 150 3 769 804 12

64 1,201,075

0% 64 28022 27883
50% X�1V 64 5163 3513 29 1292 660 10
75% X�1V 64 2878 656 29 1844 902 14
87% X�1V 64 2499 135 29 1990 1040 16
50% r

Z

64 5238 3492 12 1349 666 10
75% r

Z

64 3003 659 12 1924 937 14
87% r

Z

64 2440 115 12 1944 1147 17
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Table 4.9: Parallel performance of preconditioner CP against full factorization for stochastic market
clearing problem.

S n MPI Proc. Compress. IPit ✓
tot

✓
fact

✓
clus

✓
factblock

✓
gmres

LAit LAit/IPit

64 1,201,075

1 0% 64 28022 27883
1 87% 64 2440 115 12 288 1944 1147 17
2 87% 64 1211 116 12 147 892 1025 16
4 87% 64 817 134 12 80 592 919 14
8 87% 64 658 152 12 44 398 905 14
1 94% 64 3223 49 12 327 2764 1489 23
2 94% 64 1558 43 12 151 1306 1471 22
4 94% 64 993 49 12 84 801 1420 22
8 94% 64 733 54 12 46 570 1409 22

inside the GMRES algorithm itself. We are currently investigating ways to parallelize

these operations.

In Table 4.9 we also present experiments using a compression rate of 94%. We

performed these experiments to explore the performance limit of CP. We can see that

the performance of CP deteriorates in terms of total solution time because the number

of GMRES iterations (and thus time) increases. Consequently, it does not pay o↵ to

cluster the KKT system further. We highlight, however, that the deterioration of CP

in terms of GMRES iterations is graceful. It is remarkable that, on average, the linear

system can be solved in 22 GMRES iterations when only four scenarios are used in

the compressed matrix. This behavior again indicates that the computation of the

second-stage variables in (4.23b) plays a key role in the performance of CP.

We emphasize on the e�ciency gains obtained from parallelization with respect to

the computation of the second-stage steps (4.23b). This step requires a factorization

of all the block matrices K
s

prior to calling the iterative linear solver. When the

factorizations of the blocks are performed serially, the total solution time grows lin-

early with the number of scenarios. This can be observed from the block factorization

times (denoted as ✓
factblock

) reported in Table 4.9. In particular, the time spent in

the factorization of the block matrices in the serial implementation (one processor)
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is a significant component of the total time. This overhead is eliminated using the

parallel implementation (with almost perfect scaling).

4.5 Concluding Remarks

We have presented a preconditioning strategy for stochastic programs using clus-

tering techniques. This inside-the-solver clustering strategy can be used as an alterna-

tive to (or in combination with) outside-the-solver scenario aggregation and clustering

strategies. Practical features of performing inside-the-solver clustering is that no in-

formation on probability distributions is required and the e↵ect of the data on the

problem at hand is better captured. We have demonstrated that the preconditioners

can be implemented in sparse form and dramatically reduce computational time com-

pared to full factorizations of the KKT system. We have also demonstrated that the

sparse form enables the solution of problems with large first-stage dimensionality that

cannot be addressed with Schur complement decomposition. Scenario compression

rates of up to 94 % have been observed in large problem instances.
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5. NONLINEAR MODEL PREDICTIVE CONTROL OF A BATCH

CRYSTALLIZATION PROCESS1

This chapter presents nonlinear model predictive control (NMPC) and nonlinear mov-

ing horizon estimation (MHE) formulations for controlling the crystal size and shape

distribution in a batch crystallization process. MHE is used to estimate unknown

states and parameters prior to solving the NMPC problem. Combining these two

formulations for a batch process, we obtain an expanding horizon estimation problem

and a shrinking horizon model predictive control problem. The batch process has

been modeled as a system of di↵erential algebraic equations (DAEs) derived using

the population balance model (PBM) and the method of moments. Therefore, the

MHE and NMPC formulations lead to DAE-constrained optimization problems that

are solved by discretizing the system using Radau collocation on finite elements and

optimizing the resulting algebraic nonlinear problem using Ipopt. The performance

of the NMPC-MHE approach is analyzed in terms of setpoint change, system noise,

and model/plant mismatch, and it is shown to provide better setpoint tracking than

an open-loop optimal control strategy. Furthermore, the combined solution time for

the MHE and the NMPC formulations is well within the sampling interval, allowing

for real world application of the control strategy.

5.1 Preliminaries

Batch crystallization is a crucial process in the pharmaceutical industry because

more than 90% of the active pharmaceutical ingredients (API) are in the form of

1Part of this section is reprinted with permission from “Real-time Feasible Multi-objective Optimiza-
tion Based Nonlinear Model Predictive Control of Particle Size and Shape in a Batch Crystallization
Process” by Cao, Y., Acevedo, D., Nagy, Z., and Laird, C.D., 2015. Submitted to Journal of Process
control.
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crystals (Alvarez and Myerson, 2010). The crystal size and shape distribution is

of great concern to both product quality and downstream processing such as filtra-

tion. Primarily because of the technology limitations to monitor the crystal shape

(Nagy et al., 2013), early works in the crystallization research community focused on

modeling and controlling the size distribution of crystals (Qamar et al., 2009; Mes-

bah et al., 2009). Focused Beam Reflectance Measurements (FBRM) is frequently

used to monitor the size distribution online (Braatz, 2002; Fujiwara et al., 2005; Puel

et al., 2003). The last decade has witnessed a significant progress in monitoring and

modeling the shape distribution of crystals allowing the standard feedback control

(Nagy and Braatz, 2003; Wang et al., 2007; Wan et al., 2009; Patience and Rawlings,

2001; Mesbah et al., 2011, 2012). Derived using the multidimensional population

balance model (PBM) (Hulburt and Katz, 1964; Ramkrishna, 2000) and the method

of moments, the dynamic evolution of the crystal size and shape distribution can be

modeled as a system of di↵erential algebraic equations. The size and shape distri-

bution can be controlled by manipulating the cooling profile of the reactor, which

directly a↵ects the supersaturation.

To balance the trade-o↵ between the size and shape distribution, Acevedo et al.

(2015) proposes a multi-objective optimization approach to control both the size

and shape distribution o✏ine. However, in the presence of model/plant mismatch

and system noise, the real plant trajectory can be quite di↵erent from the optimal

trajectory obtained from the open-loop multi-objective optimization. Therefore, in

this chapter, we developed a nonlinear model predictive control (NMPC) formulation

that can be used to control the crystal size and shape distribution in real-time and

in the presence of modeling and measurement noise.

Linear MPC has been a popular advanced control strategy in industry for many

years (Qin and Badgwell, 2003). Because of the advances in both computational

power and optimization algorithms, nonlinear model predictive control (NMPC) has

become more computational feasible and is more appropriate for inherently nonlinear

systems to achieve higher product quality and satisfy tighter regulations (Rawlings,
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2000; Mayne et al., 2000). The basic idea of NMPC is to solve an optimal control

problem at each sampling instance with the updated measured or estimated states.

The control values for only the next sampling instance are implemented and the entire

process is repeated in the next sampling cycle. For batch processes, since our real

interest is in the product quality at the end of the batch, end-point based shrinking

horizon NMPC formulation is frequently used.

Nevertheless, for many processes, it is not possible (or cost e↵ective) to accurately

measure all states online, and model parameters may change from batch to batch.

This challenge drives the need for a state estimator to reconstruct unknown states

and parameters. The Extended Kalman filter (EKF) is a popular state estimator for

unconstrained systems (Prasad et al., 2002). However, this technique is not appro-

priate for the batch crystallization model because of the highly nonlinear dynamics

and hard constraints such as nonnegative concentrations. In contrast, nonlinear mov-

ing horizon estimation (MHE) uses nonlinear constrained optimization to estimate

unknown states and parameters and has proven its advantages over EKF in many

applications (Haseltine and Rawlings, 2005; Rao et al., 2003; Rawlings and Bakshi,

2006). Therefore, in this chapter, we propose an MHE formulation that can be used

to estimate the unmeasured states in our model prior to solving the NMPC problem

for the batch crystallization process.

The computational burden of this approach is that at each sampling instance,

an expanding horizon estimation problem and a shrinking horizon model predictive

control problem need to be solved. Both problems are DAE-constrained optimization

problems and there exist multiple solution approaches. “Optimize then discretize”

or indirect approaches try to solve the first-order optimality conditions for the DAE-

constrained problem. For problems without inequality constraints, the first-order

optimality conditions can be formulated as boundary value DAE problems. However,

for problems with active inequality constraints, determining the switch points of the

inequality constraints can become very challenging and thus limits the application

of these methods. On the contrary, “discretize then optimize” or direct approaches
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discretize the control variables and solve the resulting nonlinear programming (NLP)

problems. Among “discretize then optimize” approaches, the sequential approach dis-

cretizes only the control variables and treats the DAE system as a black box. A DAE

integrator is used to simulate the system at each iteration and calculate its sensitivity

with regards to the discretized control variables. One drawback of this approach is

that the solution time increases significantly when the controls are discretized finer.

However, a finer discretization of the controls can often improve the performance

of the NMPC. In contrast, the simultaneous approach (Biegler, 2007; Biegler et al.,

2002) discritizes both control and state variables and optimizes the resulting alge-

braic nonlinear problem with an NLP solver. The performance of the simultaneous

approach is less dependent on the number of discretized control variables. Another

advantage of this approach is that state constraints can be formulated in a more

straightforward way. Therefore, this chapter chooses the simultaneous approach to

solve these DAE-constrained optimization problems arising from the NMPC-MHE

formulations.

One challenge of using the simultaneous approach is that the burden of manually

discretizing the DAE system before it is embedded into an optimization formulation

often lies on the user. However, packages such as the Modelica-based JModelica.org

platform (Åkesson et al., 2010) allow for straightforward declaration of di↵erential

equations and automatically perform this transcription process. Therefore, we imple-

ment these control formulations for batch crystallization within the Modelica libarary,

which is already interfaced with solvers like Ipopt.

This chapter is organized as follows: a description of the unseeded batch crys-

tallization model is presented in Section 5.2. Section 5.3 presents the NMPC-MHE

approaches and e�cient methods to solve the related optimization problems. Section

5.4 demonstrates the performance of the NMPC-MHE compared with the open-loop

control in terms of setpoint change, system noise, and model/plant mismatch. Final

conclusions are presented in Section 5.5.
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5.2 Multidimensional Unseeded Batch Crystallization Model

This section provides a brief description of the multidimensional unseeded batch

crystallization model. The details can be found in Acevedo and Nagy (2014). The

population balance model (PBM) has been widely used to describe the crystallization

process. Considering only the e↵ect of growth and nucleation, the population balance

equation for a well-mixed batch crystallization process can be expressed as

@

@t
n(t,X) + O

X

[Gn(t,X)] = B�(X �X0) (5.1a)

I.C. : n(0, X) = n0(X) , (5.1b)

where n(t,X) is the density distribution at time t, X is the vector of characteristic

lengths, G is the vector of growth rates, B is the nucleation rate, X0 is the size of

the nuclei, � is the Dirac delta function acting at X = X0, and n0(X) is the initial

seed distribution. The population balance model can be transformed into a set of

ordinary di↵erential equations (ODEs) using the method of moments (MOM). If we

only consider two characteristic dimensions, the length L and the widthW of crystals,

the moments can be expressed by

µ
ij

=

Z 1

0

Z 1

0

n(t,X)W iLjdWdL . (5.2a)

The ODEs obtained from the MOM with the assumption that the nucleus size is

negligible, are given by

dµ00

dt
= B (5.3a)

dµ10

dt
= G1µ00 (5.3b)

dµ01

dt
= G2µ00 (5.3c)

dµ11

dt
= G1µ01 +G2µ10 (5.3d)

dµ20

dt
= 2G1µ10, (5.3e)
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where G1 and G2 are the growth rates along the width and length of the crystals

respectively, and B is the nucleation rate. In this chapter, size independent growth

rates and primary nucleation rate are considered as follows:

G1 = k
g1S

g1 (5.4a)

G2 = k
g2S

g2 (5.4b)

B = k
b

Sb (5.4c)

S =
C � C

s

(T )

C
s

(T )
, (5.4d)

where the kinetic parameters k
g1 , kg2 , g1, g2, kb, and b are usually sensitive to process

conditions. S is the relative supersaturation, C is the solute concentration, and C
s

is

the equilibrium concentration at a given temperature, which can be expressed using

a polynomial expression, given by

C
s

(T ) = cT 2 + dT + e . (5.5a)

According to the mass balance equation, the evolution of the solute concentrate is

given by

dC

dt
= �2⇢

c

k
v

G1(µ11 � µ20)� ⇢
c

k
v

G2µ20 , (5.6a)

where ⇢
c

is the density of the solution and k
v

is a constant volumetric shape factor.

5.3 Computationally E�cient Online NMPC-MHE

At the end of the batch crystallization process, the product qualities are evaluated

in terms of the size and shape distribution of crystals. Therefore, the mean length
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(ML) and aspect ratio (AR) are used to evaluate the quality of crystals. ML can be

calculated with the following equation

ML =
µ01

µ00
, (5.7a)

and AR is determined by the following equation

AR =
µ01

µ10
. (5.8a)

The product qualities are determined by the supersaturation trajectory, which is

dependent on the temperature profile. Thus, the temperature profile can be used to

control the crystal qualities to achieve the desired size and shape distribution.

5.3.1 O↵-line Multi-objective Optimization

Before implementing the control strategy, we need to set an endpoint target. To

find achievable end-point setpoints for the ideal case, we first solve the multi-objective

optimization problems o↵-line. The problems follow the formulations in Acevedo et al.

(2015) and Ma et al. (2002),

min
u(t)

'(y(t
f

)) (5.9a)

s.t.
dz(t)

dt
= f(z(t), u(t)) (5.9b)

y(t) = c(z(t), u(t)) (5.9c)

z(t0) = z̃0 (5.9d)

g(z(t), u(t))  0, t 2 [t0, tf ] , (5.9e)

where t is the time, t0 and t
f

are the start time and end time of the process, z(t) is the

vector of state variables including di↵erential variables and algebraic variables, y(t)

is the vector of output variables AR, ML and C, and u represents the manipulated

variable temperature. The initial state values z̃0 of the process is known. Equation
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(5.9e) is a vector of constraints on the inputs and state variables that can be further

detailed using the following set of equations:

T
min

<= T (t) <= T
max

(5.10a)

�R
max

<=
dT (t)

dt
<= 0, (5.10b)

C(t
f

)� C
max

<= 0 . (5.10c)

Equation (5.10a) and (5.10b) ensure that changes of temperature are within the

operation range. Equation (5.10c) is the yield constraint.

For batch crystallization process, we want to avoid needle crystals. Therefore,

we want AR to be small and ML to be large. The objective function is defined as

(1 � w)AR � wML. With a set of weight values 0 < w < 1, we can calculate a set

of non-dominated points. Without the existence of any model/measurement noise

or model/plant mismatch, each pareto point is achievable using either the open-loop

control or NMPC. Therefore, We should choose points on or above the pareto front

as the setpoint.

5.3.2 Endpoint-based Shrinking Horizon NMPC Formulation

NMPC uses a nonlinear model to predict the dynamic behavior of the system

and thus to determine the optimal input profile. This section describes the endpoint

based shrinking horizon NMPC used in this chapter. The whole process interval [t0,
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t
f

] can be discretized into N steps. At a sampling instance t
k

, the following optimal

control problem is solved online:

min
u(t)
ky(t

f

)� y
set

k2⇧ (5.11a)

s.t.
dz(t)

dt
= f(z(t), u(t)) (5.11b)

y(t) = c(z(t), u(t)) (5.11c)

z(t
k

) = ẑ(t
k

) (5.11d)

g(z(t), u(t))  0, t 2 [t
k

, t
f

] , (5.11e)

where ẑ(t
k

) is a vector of states at t
k

estimated from measurements using MHE and

y
set

is the setpoint we want to achieve at the end of the batch based on the o↵-line

multi-objective optimization. Although the whole input profile in the interval [t
k

,

t
f

] is computed, only the control action in the interval [t
k

, t
k+1) is implemented. At

the next sampling instance t
k+1, the control horizon shrinks from [t

k

, t
f

] to [t
k+1, tf ],

and the optimal control problem is re-evaluated with new measurements and updated

state estimates.

For end-point based NMPC, the objective function only depends on z(t
f

). Here,

we want to minimize the deviation of the product quality at the end of the batch

from the desired product qualities. The deviation is weighted by a positive definite

matrix O.

5.3.3 Nonlinear Expanding Horizon MHE formulation

Since the NMPC approach requires that the initial values of all state variables ẑ(t
k

)

are known, and since not all states can be measured , we need to reconstruct the state

information from a limited number of measurements. At each sampling instance t
k

,

a state estimation problem is solved online and the solution ẑ(t
k

) is provided to the

NMPC formulation. The objective function of the optimization problem penalizes

the model noise and the deviation of predicted output from the measurements and
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the estimated parameters from the reference value. The formulation of the estimation

problem is as follows:

min
p,w(t)

Z
tk

t0

k w(t) k2
R

dt+
kX

i=1

k y(t
i

)� y(t
i

)meas k2
W

+ kp� prefk2
Z

(5.12a)

s.t.
dz(t)

dt
= f(z(t), u(t), p) + w(t) (5.12b)

y(t) = c(z(t)) (5.12c)

z(t0) = z̃0 (5.12d)

z(t) � 0, t 2 [t0, tk] , (5.12e)

where y(t
i

)meas is their corresponding set of actual measured values at sampling in-

stance t
i

, w is the vector of model noise, p is the vector of parameters selected for

online adjustment, pref is the vector of reference value for p, and R, W and Z are

weighting matrices. Generally, the objective function of MHE also includes a term

about the initial state estimation. However, for this unseeded batch process, the ini-

tial state values are known. The time span of this problem is [t0,tk], therefore the

entire historical input profile is known. At the next sampling instance t
k+1, the time

span of the problem expands from [t0,tk] to [t0,tk+1], and the estimation problem is

re-evaluated with new measurements y(t
k+1).

5.3.4 E�cient Optimization via the Simultaneous Approach

The o↵-line multi-objective optimization problem, the NMPC problem and MHE

problem are all DAE-constrained optimization problems. These problems can be

solved using simultaneous method by discretizing the problem with collocation meth-

ods and optimizing the large NLP problem afterwards. The details of this method

can be found in Biegler (2010). This section uses the NMPC problem as an exam-

ple to give a brief description of this method. This approach partitions the time

domain [t
k

,t
f

] into n
e

stages with length h
i

, i = 1, ..., n
e

, where
P

ne

i=1 hi

= t
f

� t
k

.
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At each stage, we discretize using n
c

collocation points. This section assumes Radau

collocation is used. After discretization, the problem can be formulated as:

min
ui,j ,zi,j ,yi,j ,żi,j

kz
ne,nc � z

set

k2⇧ (5.13a)

s.t. z
i,j

= z
i

+ h
i

ncX

k=1

w
j,k

ż
i,j

(5.13b)

ż
i,j

= f(z
i,j

, u
i,j

) (5.13c)

y
i,j

= c(z
i,j

, u
i,j

) (5.13d)

z1 = ẑ(t
k

) (5.13e)

z
i+1 = z

i,nc (5.13f)

g(z
i,j

, u
i,j

)  0 (5.13g)

8i = 1, ..., n
e

, j = 1, ...n
c

, (5.13h)

where w are the coe�cients from the radau collocation method.

One challenge of using the simultaneous approach is manual discretization of the

problem. However, the Modelica-based JModelica.org platform (Åkesson et al., 2010)

allows for straightforward declaration of di↵erential equations and automatically per-

form this transcription process using direct collocation methods. Therefore, we imple-

ment the control formulation for batch crystallization within the Modelica libarary,

which is already interfaced with solvers like Ipopt.

5.4 Results and Discussion

In the results shown later, the potassium dihydrogen phosphate (KH2PO4, KDP)

and water system is used as a case study. The equilibrium concentration C
s

for KDP

estimated by Togkalidou et al. (2000, 2001) is given by

C
s

(T ) = 9.3027⇥ 10�5T 2 � 9.7629⇥ 10�5T + 0.2087 , (5.14)
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where the unit of T is �C and the unit of C
s

is g/cm3. The kinetic parameters of

KDP Gunawan et al. (2002); Majumder and Nagy (2013); Acevedo and Nagy (2014)

and process conditions are summarized in Table 5.1.

Table 5.1: Parameters used in the control of unseeded cooling batch crystallization systems

Parameters Values Units Parameters Values Units
k
g1 0.073 cm/min T

max

45 �C
g1 1.48 Dimensionless T

min

5 �C
k
g2 0.60 cm/min R

max

-4 �C/min
g2 1.74 Dimensionless C0 0.395 g/cm3

k
b

4.494 · 106 #/cm3 min C
max

0.2 g/cm3

b 2.04 Dimensionless t
f

90 min
k
v

0.67 Dimensionless ⇢
c

2.34 g/cm3

Before implementing the control strategies, we first find achievable end-point set-

points by solving open-loop multi-objective optimization problems o✏ine. Two cases

are considered with the control variable T discretized with 6 control steps and 90

control steps. The temperature profile inside the same step is assumed to be linear.

The state variables are discretized with 90 steps. For the larger case (using 90 control

steps), the number of variables and constraints in each problem are 5320 and 5230

respectively. All the problems are initialized using the simulation data with linear

temperature profile. The solution time for Ipopt on an individual pareto point is

approximately 2 seconds. By solving the problem repeatedly with di↵erent weights

we obtain the pareto front. Figure 5.1 clearly demonstrate the trade-o↵ between the

two objectives. The front obtained using 6 control steps is worse than that using 90

control steps since it has fewer degrees of freedom.

All the points below the pareto front are not achievable even in the ideal circum-

stance with no system noise or model/plant mismatch. Therefore we should choose

a point above the pareto front as the setpoint, which is then used to construct the



96

Figure 5.1.: Pareto fronts between AR and ML using 6 and 90 control steps

objective function in the NMPC. The objective function used in the NMPC for this

application is

cost = 100(AR(t
f

)� AR
set

)2 + (ML(t
f

)�ML
set

)2, (5.15a)

where AR
set1 and ML

set2 are the end-point setpoints. This cost function is also used

to judge the performance of di↵erent control approaches. We analyze the performance

of the NMPC-MHE during setpoint change, system noise and model/plant mismatch.
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5.4.1 Setpoint Change

Although setpoint change during the batch process is uncommon, we use this

study to examine the performance of our closed-loop NMPC-MHE. We first select

two points on the pareto front with 6 control steps as setpoints so that it is more fair

to compare the performance with di↵erent control steps. Here we choose AR
set1 =

2.735,ML
set1 = 190.53µm for setpoint s1 and AR

set2 = 3.883,ML
set2 = 210.68µm

for setpoint s2. At a certain time during the process, the setpoint is changed from s1

to s2. For the results discussed in this subsection, we assume all states are exactly

measured and there is no system noise and model/plant mismatch.

Figure 5.2 shows the input and measurement profiles when the setpoint is changed

at t = 30 min. The number of control and sampling steps are all 90. Before the

setpoint change, the NMPC profile follows the open-loop trajectory for achieving

s1. However, after the setpoint change, NMPC profile moves closer to the open-loop

trajectory for achieving s2.
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Figure 5.2.: Input and measurement profiles when the setpoint is changed at t=30 min. The solid
line denotes the NMPC profile, the dotted line denotes the open-loop trajectory achieving endpoint
setpoint s1, and the dashed line denotes the open-loop trajectory achieving endpoint setpoint s2.
Before t=30 min, the NMPC profile follows the dotted line, while after setpoint change, the NMPC
profile moves closer to the dashed line.
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Table 5.2: E↵ect of tchange and sampling/control steps on end-point performance.

Sampling/Control Steps t
change

(min) AR ML(µm) cost

6

0 3.880 210.65 0.00
30 3.358 198.10 185.8
60 2.884 195.32 335.7
90 2.735 190.53 537.8

18

0 3.883 210.66 0.0
30 3.533 197.67 181.5
60 2.784 197.26 300.8
90 2.735 190.53 537.8

90

0 3.882 210.65 0.0
30 3.439 197.97 181.2
60 2.769 197.47 298.6
90 2.735 190.53 537.8

Table 5.2 shows the e↵ect of t
change

and sampling/control steps, where t
change

is the

time setpoint changed. The endpoint product quality of NMPC is closer to setpoint

s2 when the setpoint change is performed earlier in the process. It also indicates that

increasing the number of sampling/control intervals can improve the performance of

NMPC slightly in this case.

5.4.2 System Noise

This subsection demonstrates the e↵ectiveness of the closed-loop MHE-MPC for

the batch process with both model and measurement noise. We assume that there

is one model noise term w added to dµ01(t)
dt

and the noise follows truncated normal

distribution on the interval [�20 20]cm/cm3min. The mean and standard deviation

of the original normal distribution is 0 and 10 cm/cm3min respectively. We also

assume that the measurement noise corresponding to three measurements ML, AR

and C follow a truncated normal distribution on the interval [�6 6]µm, [�0.1 0.1],

and [�0.004 0.004]g/cm3. The mean values of the original normal distribution are
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all zero, and the standard deviations are 3 µm, 0.05, and 0.002 g/cm3, respectively.

Because of the noise, points on the pareto front can no longer be achieved. Therefore,

we consider a more conservative setpoint s3, where AR
set3 is 2.9 and ML

set3 is 195

µm.
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Figure 5.3.: Evolution of the relative estimation error of states using MHE with 90 control and
sampling steps.



104

Figure 5.3 shows the relative estimation error of states using MHE with 90 con-

trol and sampling steps for one noise scenario. This figure shows that MHE can

reconstruct the evolution of the state for this batch process fairly accurately.

Table 5.3: Performance of NMPC-MHE (value of cost) on 10 cases with model and measurement
noise. Closed loop with true states is the performance of NMPC with 90 control and sampling steps
and all states exactly measured.

Scenario No.
Open Loop (cost) Closed Loop (cost)

90steps 6 steps 18 steps 90 steps True States
1 159 31.4 24.8 18.2 17.7
2 14.5 1.0 0.9 1.0 1.1
3 105.5 33.1 40.7 40.6 42.9
4 52.4 27.7 17.0 12.0 12.7
5 297.2 200.1 154.4 140.4 116.9
6 53.0 22.5 17.8 9.7 10.5
7 28.4 1.4 3.0 3.8 2.7
8 44.5 16.4 8.5 3.9 2.7
9 81.4 12.6 10.7 9.3 9.4
10 13.7 24.8 8.9 1.1 3.2

Average 85.0 37.1 28.7 23.9 22.0

Table 5.3 highlights the performance improvement that can be achieved from

the NMPC-MHE approach. It shows that the performance of ideal NMPC with all

states accurately measured is much better than that of the open-loop control. The

performance of NMPC-MHE is very close to that of the NMPC with true states and is

also much better than that of the open-loop control. This observation is only possible

with the excellent performance of MHE to reconstruct unmeasured states and thus

give accurate feedback. This table also indicates that increasing the number of control

and sampling steps can greatly improve the performance of NMPC-MHE.

Figure 5.4 shows that the CPU computational time of the expanding horizon esti-

mation problems increases along the batch process, and that of the shrinking horizon

model predictive control problems decreases. Because of the e�cient computational
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framework used, the maximum total computation time (approximately 7 seconds) is

far below the sampling interval of 60 seconds, allowing for real world application of

the proposed control strategy.

Figure 5.4.: Computational time of NMPC (solid line), computational time of MHE (dotted line),
and sampling interval (dash line) along the batch with 90 control and sampling steps.

5.4.3 Model/Plant Mismatch

This section considers the case with both model/plant mismatch and measurement

noise. It is assumed that the actual value in the plant for the parameter kb is 5.494·106,

while the initial guess used in the first MPC instance is 4.494 · 106. By using the

MHE, we not only reconstruct the state profiles from measurements, but also estimate

the unknown parameter. The unknown parameter and measurement noise become
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degrees of freedom in the MHE. Another term k kb� 4.494 · 106 k2 is added to the

objective function for regularization inside the MHE. The measurement noise and

setpoint are the same as that in the Section 5.4.2.

Table 5.4: Performance of NMPC-MHE (value of cost) on 10 cases with model/plant mismatch
and measurement noise. Closed loop with 6 steps, 18 steps, and 90 steps are the performance of
NMPC with state estimation and parameter updates from MHE. Closed loop with true states is the
performance of NMPC with 90 control and sampling steps and all states exactly measured. However,
the parameter kb is fixed to be 4.494 · 106, which is not accurate.

Scenario No.
Open Loop (cost) Closed Loop (cost)

90steps 6 steps 18 steps 90 steps True States
1 73.5 7.7 7.6 3.4 6.8
2 73.5 5.3 7.5 4.5 6.8
3 73.5 7.4 7.5 2.9 6.8
4 73.5 5.2 4.0 4.0 6.8
5 73.5 8.6 9.7 3.5 6.8
6 73.5 8.6 5.0 3.7 6.8
7 73.5 7.3 5.6 3.3 6.8
8 73.5 6.4 7.6 3.8 6.8
9 73.5 7.7 7.7 4.9 6.8
10 73.5 7.3 7.6 5.9 6.8

Average 73.5 7.2 7.0 4.0 6.8

The estimated parameter and state profiles from MHE are used in the NMPC

at the same sampling instance. Therefore, the accuracy of the state profile and

parameter estimation is very important to the performance of NMPC-MHE. The state

profile estimation results are still as accurate as the the results shown in Section 5.4.2.

However, the parameter estimation, as shown in Figure 5.5, is not very accurate over

the first 15 minutes but gradually converges to the true value as more measurement

data becomes available.

Table 5.4 shows the overall performance of NMPC-MHE in dealing with model/plant

mismatch. Again, the performance of NMPC-MHE is much better than that of open-



107

Figure 5.5.: Actual value (dash line), initial guess(dotted line), and MHE estimation (dots) of
parameter kb along the batch process with 90 control and sampling steps.

loop control. Increasing the number of control and sampling steps can improve the

performance of NMPC-MHE in the presence of model/plant mismatch. This table

also considers the performance of NMPC with all states accurately measured and a

fixed initial guess (inaccurate) of the parameter kb. Comparing with NMPC-MHE,

this NMPC has exact state measurement but has no parameter estimation updates.

The performance of NMPC-MHE is slightly better than that of the NMPC with true

states, indicating the importance of parameter updates.
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5.5 Concluding Remarks

In summary, we have developed a computationally e↵ective NMPC-MHE for-

mulations for batch crystallization processes to control the crystal size and shape

distribution. At each sampling instance, we need to solve an expanding horizon es-

timation problem and a shrinking horizon model predictive control problem. Based

on a nonlinear DAE model, the estimation problem estimates unknown states and

parameters and the control problem determines the optimal input profiles. Both

DAE-constrained optimization problems are solved by discretizing the system using

Radau collocation and optimizing the resulting algebraic nonlinear problem. We build

these formulations in the Modelica modeling language to support solution through

the JModelica modeling and optimization framework. This framework performs au-

tomatic transcription, and it is already interfaced with Ipopt.

The performance of this control strategy was tested using a case study of a 90-

minute batch crystallization process with 90 control steps and sampling steps. It

was analyzed in terms of setpoint change, system noise, and model/plant mismatch.

For all cases, the performance of the NMPC-MHE is shown to provide better setpoint

tracking than the open-loop optimal control strategy. The combined solution time for

the MHE and the NMPC formulations is well within the sampling interval, allowing

for real world application of the control strategy.
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6. ROBUST NONLINEAR MODEL PREDICTIVE CONTROL OF A BATCH

CRYSTALLIZATION PROCESS

The quality of the NMPC approach described in the previous chapter depends on the

accuracy of the underlying model. Despite the high fidelity of using the nonlinear

models based on the first principles, there are still uncertainties associated with ex-

ternal and internal disturbances. Although the robust Input-to-State Stability (ISS)

of NMPC can be proven for ideal NMPC (Jiang and Wang, 2001; Magni and Scat-

tolini, 2007) under several assumptions, it is of limited use in analyzing the robust

performance of batch processes.

Several approaches have been proposed to take those uncertainties into considera-

tion in the design of NMPC. The most widely-studied approach is to solve a min-max

optimization to minimize the worst case at each sampling instance (Scokaert and

Mayne, 1998). One concern about this approach is that the nominal performance is

sacrificed as the min-max optimization chooses a very conservative control strategy.

Some authors proposed to minimize the expected value of the performance index

based on multiple uncertainty scenarios (Huang et al., 2009). However, this approach

does not consider the variance of the performance index. Nagy and Braatz (2003)

proposes one formulation to minimize a weighted sum of expected value and variance

of the performance index. While all of these approaches can be implemented within

a feedback framework, this feedback is not considered in the NMPC optimization

formulation itself. By contrast, Magni et al. (2003) optimizes the control laws instead

of the control steps at each sampling step. However, if the form of the control law is

overly complex, this approach may not be computationally feasible.
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In this chapter we will use the min-max robust NMPC to deal with uncertainties

arising from the batch crystallization process.

6.1 Robust NMPC formulation

For a batch process controlled by the min-max robust NMPC, at each sampling

instance t
k

, instead of solving the problem 5.11, the following min-max optimal control

problem is solved online.

min
u(t)

worst (6.1a)

s.t. worst � ky
s

(t
f

)� y
set

k2⇧ (6.1b)

dz
s

(t)

dt
= h(z

s

(t), u(t), p
s

) (6.1c)

y
s

(t) = c(z
s

(t), u(t)) (6.1d)

z
s

(t
k

) = ẑ(t
k

) (6.1e)

g(z
s

(t), u(t))  0, (6.1f)

t 2 [t
k

, t
f

], 8s 2 S, (6.1g)

where z
s

is a vector of states if the real parameter turn out to be p = p
s

. The control

profile u needs to be determined before the realization of p. Hence, we can view u

and worst as the first stage variables and z
s

and y
s

as the second stage variables.

This DAE constrained problem can be discretized using collocation methods. This

approach partitions the time domain [t
k

,t
f

] into n
e

stages with length h
i

, i = 1, ..., n
e

,

where
P

ne

i=1 hi

= t
f

�t
k

. At each stage, we discretize using n
c

collocation points. This

section assumes that Radau collocation is used. After discretization, the problem can

be formulated as:

min
u

i,j
,z

i,j
,y

i,j
,ż

i,j
worst (6.2a)
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s.t. worst � kyne,nc
s

� y
set

k2⇧ (6.2b)

zi,j
s

= zi
s

+ h
i

ncX

k=1

w
j,k

żi,j
s

(6.2c)

żi,j
s

= h(zi,j
s

, ui,j) (6.2d)

yi,j
s

= c(zi,j
s

, ui,j) (6.2e)

z1
s

:= ẑ(t
k

) (6.2f)

zi+1
s

:= zi,nc
s

(6.2g)

g(zi,j
s

, ui,j)  0 (6.2h)

8i = 1, ..., n
e

, j = 1, ...n
c

, s 2 S (6.2i)

where w are the coe�cients from the radau collocation method.

6.2 E�cient Parallel Algorithm via the Explicit Schur Complement Decomposition

If we view worst and ui,j as first stage variables, and zi,j
s

, yi,j
s

, and żi,j
s

as second

stage variables, the above problem fits problem formulation (6.3) of the two stage

stochastic programs:

min f0(x0) +
X

s2S

f
s

(x
s

, x0) (6.3a)

s.t. c0(x0) = 0 (�0) (6.3b)

c
s

(x0, xs

) = 0 (�
s

), s 2 S (6.3c)

x0 � 0 (⌫0) (6.3d)

x
s

� 0 (⌫
s

), s 2 S. (6.3e)

Here, x
s

is the second stage variable for scenario s, �0 2 <m0 and ⌫0 2 <n0 are the

dual variables for the first stage equality constraints and the bounds, and �
s

2 <ms

and ⌫
s

2 <ns are the dual variables for the second stage equality constraints and the

bounds. The total number of variables is n := n0 +
P

s2S ns

and the total number
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of equality constraints is m := m0 +
P

s2S ms

. If we denote xT := [xT

0 , x
T

1 , ..., x
T

S

],

this problem is a general NLP problem. However, specific solvers can be developed

to take advantage of the problem structures.

If we use interior point method to solve the problem (6.3), the KKT system has

the following arrowhead form after reformulation

2
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S
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, (6.4)

Assuming that all K
s

are of full rank, we can show with the Schur complement

method that the solution of the Equation (3.17) is equivalent to that of the following

system

(K0 �
X

s2S

BT

s

K�1
s

B
s

| {z }
:=Z

)�w0 = r0 �
X

s2S

BT

s

K�1
s

r
s

| {z }
:=rZ

(6.5a)

K
s

�w
s

= r
s

� B
s

�w0, 8s 2 S. (6.5b)

The system (6.5) can be solved with 3 steps. The first step is to form Z and r
Z

by adding the contribution from each block. This step requires the factorizations of

one sparse matrix K1 of size n1 + 2n0 +m1 +m0 and S � 1 sparse matrix K
s

of size

n
s

+2n0+m
s

. Besides a total of S factorizations of block matrix, this step also requires

a total of (S + 1)n0 backsolves. The second step is to solve the Equation (6.5a) to

get direction of the first stage variables �w0. This step requires one factorization and

one backsolve of the dense matrix Z. With �w0, the third step is to compute �w
s

from Equation (6.5b). This step requires a total of S backsolves of the block spase

matrix.
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One significant advantage of solving the system (3.19) is that both step 1 and step 3

can be easily parallelized. When n0 is relatively small, and thus the cost of factorizing

matrix Z in step 2 is negligible, the e�ciency of the parallel implementation can be

very close to 1. Another advantage of using the parallel Schur complement method

on distributed architectures is that the memory requirement is much smaller for each

node than solving the system (3.6). For the batch process of crystallization, if we

discretize the control by 18 steps, the total number of first stage variables is 19, which

is small enough that the explicit Schur complement method is still e�cient.

6.3 Performance of Robust NMPC on Batch Crystalization

In this section, we evaluate the performance of the min-max NMPC with six uncer-

tain parameters. We assume that k
b

, b, k
g1 , g1, kg2 and g2 follow uniform distributions

on the interval [3.494 · 106 5.494 · 106] #/cm3 min, [2.02 2.06], [0.06326 0.08326]

cm/min, [1.46 1.50], [0.5045 0.7045] cm/min, [1.72 1.76]. We also assume that

the measurement noise corresponding to three measurements ML, AR and C fol-

lows truncated normal distributions on the interval [�12 12] µm, [�0.2 0.2], and

[�0.008 0.008] g/cm3. The mean values of the original normal distribution are all

zero, and the standard deviations are 6 µm, 0.1, and 0.004 g/cm3, respectively. The

setpoint s4 we chose is AR
set4=2.9 and ML

set4=200µm. Nominal values of parame-

ters are selected according to Table 5.1. The performance of a specific test scenario

is still evaluated by the cost function Eq. (5.15). We use 50 scenarios generated

from the uncertain parameter distribution to test the robust performance, and we

will refer to these scenarios as test scenarios. We will use another set of scenarios in

the NMPC optimization to determine the optimal control profile, and we will refer

to these scenarios as model scenarios.

Table 6.1 shows the robust performance of di↵erent control strategies. “Ideal”

is the NMPC/open-loop with accurate knowledge about the value of true parameter

used. “Open Loop” is the open loop performance with nominal value. “NMPC”

is the performance of NMPC with nominal value kb = 4.494 · 106. It also uses
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Table 6.1: The robust performance (value of cost) of di↵erent control strategies when six parameters
have uncertainties.

Nominal Average Standard Deviation Worst Case
Ideal 2e-4 44 68 317

Open Loop 2e-4 287 289 1626
NMPC 2e-1 171 221 1321
NMPC P 2e-1 131 169 1061

Exact Min-max NMPC 42 117 128 573

MHE to estimated unknown state variables. “NMPC P” is similar to NMHE but

uncertain parameters are estimated by MHE and provided to NMPC. “Exact min-

max NMPC” is the performance of robust NMPC with the model scenarios exactly

the same as the test scenarios. For this case, even if the NMPC knows exactly the

value of uncertain parameters, it cannot achieve the setpoint for several test scenarios.

The worst case performance for the ideal NMPC with exact parameters are 317.

This is the lower bound of the worst case performance of all other control strategies.

The robust performance of the NMPC with parameter updates is better than that

of the NMPC without parameter updates. This is likely because the measurement

noise is relatively small compared with the parameter uncertainties. In this case, the

robust performance of the robust NMPC is much better than that of nominal MPC

in terms of average, standard deviation and worst case cost evaluated by 50 test

scenarios. However, the robust NMPC needs to sacrifice the nominal performance

when the uncertain parameters are all at their nominal values. Compared with the

reduction in worst case cost, the nominal cost is still small. Figure 6.1 shows that

the optimal temperature profiles from the nominal NMPC and the robust NMPC are

quite di↵erent.

One drawback of “Exact Min-max NMPC” is that it uses the same scenarios for

testing the performance to optimize the control profile in the robust NMPC model.
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Figure 6.1.: Optimal temperature profile for nominal NMPC and robust NMPC.

Therefore we generate a di↵erent scenario set in the NMPC model from the uncertain

parameter distributions. Table 6.2 shows the robust performance of min-max NMPC

using di↵erent numbers of model scenarios. This table shows that increasing the

number of model scenarios can in general improve the performance. However, many

other factors (e.g. similarity of model scenarios and testing scenarios) also influence

the robust performance.

The size of the problem solved in Table 6.2 with 150 model scenarios is very large.

It has 651319 variables and 651300 constraints. Table 6.3 shows the solution time

of solving 1 optimization problem at step t = 0. The total time is composed of

both the time constructing the model and the time solving the NLP. Using the Schur

complement method can not only solve the problem in parallel but also build the
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Table 6.2: The robust performance of the robust NMPC using di↵erent numbers of scenarios evalu-
ated using 50 simulations.

S Nominal Average Standard Deviation Worst Case
Exact 42 117 128 573
50 13 163 192 1128
100 41 116 136 701
150 33 124 144 808

model in parallel. It gains 11 times speedup on a computer with 15 cores compared

with its own serial implementation. A solver using full factorization method like

Ipopt takes more than 1 hour to solve the problem while parallel Schur complement

solver takes less than 1 minute.

Table 6.3: The solution time of solving a robust optimization problem with 150 scenarios.

# Processors
Full Factorization Schur Complement Method

Time(s) Time(s) Speedup

Building Model

1 67.7 97.6 -
2 - 52.6 1.9
5 - 22 4.4
10 - 12.1 8.0
15 - 8.5 11.5

Solving NLP

1 � 3600 592 -
2 - 313.9 1.9
5 - 129.4 4.6
10 - 71.7 8.3
15 - 51.8 11.4
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6.4 Performance of Robust NMPC with Bayesian Inference on Batch Crystalization

Uncertain parameters can be estimated using MHE. However, in the presence of

significant noise and large uncertainties, point estimation results might not be accu-

rate. Nevertheless, we can use Bayesian inference to update the posterior distributions

of uncertainties and generate model scenarios used in the min-max NMPC according

to the posterior distribution instead of prior distribution at each sampling instance.

Specifically, if we denote the uncertain parameter as p and measurements as ymeas.

The posterior distribution is

f(p|ymeas) =
f(ymeas|p)f(p)

f(ymeas)
_ f(ymeas|p)f(p) (6.6)

Where, f(p) is the prior probability density before ymeas is observed, f(ymeas|p)

is the probability density of observing ymeas with a given p, and f(ymeas) is the

probability density of observing ymeas. Since it is the same for all p, it can be viewed

as a constant. For a given p, we can get a corresponding y(p) from simulation.

Therefore f(ymeas|p) is equivalent to f(ymeas|y(p)) and can be computed according

to the measurement error distribution. With these information, Markov chain Monte

Carlo (MCMC) can be used to generate a set of scenarios.

One drawback of min-max NMPC is that it also takes into consideration of some

uncertain scenarios that have very low probability. In our implementation, after S

scenarios are generated, we first compute the relative probability of each scenario

within the model scenario set by

Pr(p
s

|ymeas) =
f(ymeas|p

s

)f(p
s

)P
s2S f(y

meas|p
s

)f(p
s

)
(6.7)

If the posterior distribution also follows a uniform distribution, the relative probability

should be 1/S for each scenario. If the relative probability of p
s

is smaller than 10�6/S,

p
s

is discarded and a new scenario is generated.

Table 6.4 illustrates that the performance of min-max NMPC with Bayesian in-

ference with 50 model scenarios at each sampling instance is close to the ideal per-
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formance. Increasing the number of scenarios can improve the robust performance.

The performance of Bayesian min-max NMPC with 12 scenarios is already close to

that of conventional min-max NMPC with 50 exact scenarios.

Table 6.4: Robust Performance of min-max NMPC with Bayesian inference using di↵erent numbers
of model scenarios evaluated using 50 simulations.

S Nominal Average Standard Deviation Worst Case
12 17.0 99 121 649
25 15.2 96 122 482
50 13.6 72 87 378

6.5 Concluding Remarks

In conclusion, robust NMPC not only ensures that the constraints are satisfied

for all uncertain scenarios if each optimization can find a feasible solution, but also

provides a reliable way to get moderate robust performance, especially when there are

multiple uncertain parameters and the uncertainty is large. The performance of robust

NMPC can be improved by generating model scenarios from posterior distribution

from Bayesian inference.
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7. SUMMARY

The demand for fast solution of nonlinear optimization problems, coupled with the

emergence of new concurrent computing architectures, drives the need for parallel

algorithms to solve challenging nonlinear programming (NLP) problems. The ob-

jective of this dissertation is to develop parallel algorithms to solve structured and

unstructured large-scale nonlinear programming (NLP) problems. This chapter first

summarizes our contributions and then makes suggestions for future work.

7.1 Thesis Summary and Contributions

Chapter 1 highlights the importance of solving large-scale NLP problems in paral-

lel and gives an introduction of the parallel architectures and the current state-of-art

in parallel NLP algorithms. The problems addressed by these algorithms can be clas-

sified into two categories: one is the general unstructured NLP problems and the

other is structured NLP problems (such as stochastic programs). One algorithm for

the first class of problems is discussed in Chapter 2 and two algorithms for the second

class of problems are discussed in Chapters 3 and 4.

Chapter 2 proposes a parallel algorithm on the GPU for general NLP problems.

The main contributions in Chapter 2 are:

• The first algorithm for solving large-scale unstructured constrained NLP prob-

lems using graphics processing units. The advantage of the augmented La-

grangian approach is that the KKT system is positive definite for convex prob-

lems, which enables us to solve the KKT system using a parallel PCG method

on the GPU.
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An overall speedup of 13-18 was obtained on six test problems from COPS test

set. Three major algorithm optimizations were implemented in order to achieve these

speedups.

• First, since each PCG iteration only requires a series of matrix-vector prod-

ucts with Jk, the PCG iterations were performed without explicitly forming

Jk. Second, in order to ensure improved coalesced and aligned global memory

access on the GPU, di↵erent matrix storage formats were utilized as appropri-

ate. Lastly, we implemented problem specific code for parallel function and

derivative evaluations on the GPU.

Chapter 3 describes a parallel Schur complement method for nonlinear stochastic

programs. When the number of first stage variables is small, this approach has almost

perfect e�ciency. However, the performance of this approach quickly deteriorates as

the number of first stage variables increases. This disadvantage is overcome by the

algorithm proposed in Chapter 4. Chapter 4 presents the following contributions:

• The first parallel algorithm to solve stochastic programs within interior point

framework not based on Schur complement method. The algorithm performs

adaptive clustering of scenarios (inside-the-solver) based on their influence on

the problem to form a preconditioner. The preconditioner is then used by an

iterative solver to solve the KKT system.

The preconditioners can be implemented in sparse form and dramatically reduce

computational time compared to full factorizations of the KKT system. The sparse

form enables the solution of problems with large first-stage dimensionality that cannot

be addressed with explicit Schur complement method. This parallel algorithm is used

to solve a market clearing problem with a speed up factor of 42 compared to the

full factorization method. Scenario compression rates of up to 94 % are shown to be

possible.

The second half of this dissertation describes the application of nonlinear pro-

gramming in pharmaceutical manufacturing. we look at a specific manufacturing
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unit and seeks to control the product quality in batch crystallization process. Chap-

ter 5 presents the following contributions:

• We design and develop real-time feasible multi-objective optimization based

NMPC-MHE formulations for batch crystallization processes to control the crys-

tal size and shape distribution.

At each sampling instance, based on a nonlinear DAE model, an estimation problem

estimates unknown states and parameters and an optimal control problem determines

the optimal input profiles. Both DAE-constrained optimization problems are solved

by discretizing the system using Radau collocation and optimizing the resulting al-

gebraic nonlinear problem using Ipopt. The performance of this control strategy is

analyzed in terms of setpoint change, system noise, and model/plant mismatch. For

all cases, the performance of the NMPC-MHE is shown to provide better setpoint

tracking than the open-loop optimal control strategy. Furthermore, the combined

solution time for the MHE and the NMPC formulations is well within the sampling

interval, allowing for real world application of the control strategy.

The quality of the NMPC approach depends on the accuracy of the underlying

model. Despite the high fidelity of using the nonlinear models based on the first prin-

ciples, there are still uncertainties associated with external and internal disturbances.

To deal with the parameter uncertainties in the crystallization model, Chapter 6

presents the following contributions:

• We design and develop real-time feasible robust NMPC formulations for batch

crystallization processes to minimize the deviation of the product quality from

the setpoint in the worst case. The size of optimization problems solved online

becomes too large to be solved by a serial solver, and the algorithm described

in Chapter 3 is used to solve the robust NMPC problems.

Robust NMPC not only ensures the constraints are satisfied for all uncertain scenarios

if each optimization can find a feasible solution, but also provides a consistent way
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to get moderate robust performance especially when there are multiple uncertain

parameters and the uncertainties are large.

7.2 Future Work

The following are some recommendations for future work:

• The augmented Lagrangian approach as implemented in Chapter 2 is best for

problems with few equality constraints. Future work will explore modifications

to handle more equalities. For example, the augmented Lagrangian algorithm

used by MINOS is better for problems with little degrees of freedom. In ad-

dition, we used a straightforward diagonal preconditioner, and other parallel

capable preconditioners should be investigated. Finally, we manually imple-

mented routines for parallel model evaluations, and this approach should be

automated.

• The clustering preconditioning approach as implemented in Chapter 4 are de-

signed for convex stochastic QP problems. We will investigate the performance

of the preconditioner in a nonlinear programming setting, and we will investi-

gate extensions to multi-stage stochastic programs.

• We will test the robust NMPC approach in Chapter 6 with more model scenarios

and more cores. Also, although there are lots of statistical inference about

stochastic programs minimizing the expected performance index, we need to

investigate more about the statistical inference about the stochastic programs

minimizing the worst case performance index.
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strategies for dynamic process optimization. Chemical Engineering Science 57 (4),
575–593.

Birge, J. (1985). Aggregation bounds in stochastic linear programming. Mathemat-
ical Programming 31, 25–41.

Bishop, C. et al. (2006). Pattern recognition and machine learning, Volume 4.
Springer, New York.

Braatz, R. D. (2002). Advanced control of crystallization processes. Annual reviews
in control 26 (1), 87–99.

Buatois, L., G. Caumon, and B. Levy (2009). Concurrent number cruncher: a gpu
implementation of a general sparse linear solver. International Journal of Parallel,
Emergent and Distributed Systems 24 (3), 205–223.

Byrd, R. H., G. M. Chin, W. Neveitt, and J. Nocedal (2011). On the use of stochastic
Hessian information in optimization methods for machine learning. SIAM Journal
on Optimization 21 (3), 977–995.

Byrd, R. H., N. I. Gould, J. Nocedal, and R. A. Waltz (2003). An algorithm for non-
linear optimization using linear programming and equality constrained subproblems.
Mathematical Programming 100 (1), 27–48.

Calafiore, G. C. and M. C. Campi (2006). The scenario approach to robust control
design. Automatic Control, IEEE Transactions on 51 (5), 742–753.

Cao, C., J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov (2013). clmagma:
High performance dense linear algebra with opencl. University of Tennessee Com-
puter Science Technical Report (Lawn 275).

Cao, Y., C. Laird, and V. M. Zavala (2015). Clustering-based preconditioning for
stochastic programs. submited to Computational optimization and applications .

Cao, Y., A. Seth, and C. Laird (2015). An augmented lagrangian interior-point
approach for large-scale nlp problems on graphics processing units. Computers &
Chemical Engineering In Press.

Casey, M. and S. Sen (2005). The scenario generation algorithm for multistage
stochastic linear programming. Mathematics of Operations Research 30 (3), 615–
631.

Chiang, N. and A. Grothey (2012). Solving security constrained optimal power
flow problems by a structure exploiting interior point method. Optimization and
Engineering , 1–23.

Chiang, N., C. G. Petra, and V. M. Zavala (2014). Structured nonconvex optimiza-
tion of large-scale energy systems using pips-nlp. In Power Systems Computation
Conference (PSCC), 2014, pp. 1–7. IEEE.

Colombo, M., J. Gondzio, and A. Grothey (2011). A warm-start approach for large-
scale stochastic linear programs. Mathematical Programming 127 (2), 371–397.



125

Conn, A. R., N. I. Gould, and P. L. Toint (1988). Testing a class of methods for
solving minimization problems with simple bounds on the variables. Mathematics
of Computation 50 (182), 399–430.

Corrigan, A., F. F. Camelli, R. Lhner, and J. Wallin (2011). Running unstructured
grid based CFD solvers on modern graphics hardware. International Journal for
Numerical Methods in Fluids 66, 221–229.
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Dolan, E. D., J. J. Moré, and T. S. Munson (2004). Benchmarking optimization
software with cops 3.0. Argonne National Laboratory Technical Report ANL/MCS-
TM-273 .

Dollar, H. (2007). Constraint-style preconditioners for regularized saddle point prob-
lems. SIAM Journal on Matrix Analysis and Applications 29 (2), 672–684.

Dollar, H. S., N. I. Gould, W. H. Schilders, and A. J. Wathen (2006). Implicit-
factorization preconditioning and iterative solvers for regularized saddle-point sys-
tems. SIAM Journal on Matrix Analysis and Applications 28 (1), 170–189.
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A. DETAILED PERFORMANCE OF DIFFERENT CONTROL STRATEGIES

FOR 50 TEST SCENARIOS

Table A.1: The value of uncertain parameters in 50 tests.

Scenario No. k
b

(106/cm3 min) b k
g1 (cm/min) g1 k

g2 (cm/min) g2

1 3.99 2.05 0.075 1.48 0.68 1.74

2 4.69 2.05 0.076 1.50 0.68 1.73

3 4.21 2.04 0.082 1.48 0.61 1.75

4 4.25 2.05 0.066 1.49 0.53 1.73

5 3.54 2.05 0.075 1.47 0.53 1.75

6 3.97 2.02 0.077 1.48 0.67 1.74

7 4.27 2.05 0.079 1.50 0.69 1.75

8 4.86 2.05 0.066 1.47 0.70 1.74

9 5.17 2.05 0.075 1.48 0.56 1.74

10 5.02 2.05 0.077 1.48 0.69 1.72

11 3.94 2.04 0.068 1.46 0.62 1.73

12 3.62 2.05 0.077 1.47 0.66 1.73

13 5.05 2.03 0.070 1.49 0.61 1.76

14 4.94 2.05 0.064 1.48 0.57 1.73

15 3.88 2.04 0.081 1.48 0.69 1.74

16 4.52 2.05 0.078 1.50 0.66 1.76

17 3.63 2.04 0.079 1.50 0.57 1.74

18 4.28 2.02 0.074 1.50 0.69 1.74

19 5.46 2.02 0.073 1.48 0.64 1.73

20 4.10 2.02 0.077 1.48 0.62 1.73
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21 5.06 2.04 0.082 1.47 0.57 1.74

22 4.96 2.05 0.078 1.47 0.52 1.73

23 5.17 2.06 0.071 1.46 0.59 1.75

24 3.74 2.03 0.077 1.48 0.56 1.73

25 5.23 2.03 0.064 1.49 0.60 1.76

26 4.62 2.02 0.076 1.47 0.54 1.72

27 5.17 2.03 0.070 1.48 0.67 1.73

28 4.97 2.04 0.066 1.46 0.66 1.73

29 5.07 2.06 0.072 1.49 0.54 1.73

30 4.86 2.02 0.081 1.49 0.61 1.75

31 5.32 2.06 0.067 1.49 0.64 1.75

32 3.94 2.04 0.063 1.47 0.53 1.75

33 4.64 2.03 0.083 1.50 0.59 1.73

34 4.75 2.06 0.071 1.48 0.66 1.74

35 3.52 2.03 0.070 1.48 0.54 1.72

36 4.02 2.05 0.070 1.46 0.62 1.72

37 4.95 2.03 0.072 1.49 0.60 1.73

38 5.08 2.05 0.065 1.47 0.56 1.76

39 4.14 2.03 0.082 1.47 0.60 1.72

40 4.05 2.04 0.076 1.47 0.53 1.73

41 3.74 2.04 0.080 1.50 0.68 1.74

42 4.31 2.03 0.066 1.48 0.54 1.74

43 5.40 2.03 0.073 1.50 0.57 1.74

44 3.97 2.03 0.068 1.47 0.66 1.75

45 3.51 2.05 0.069 1.46 0.60 1.72

46 3.53 2.05 0.068 1.46 0.68 1.73

47 4.81 2.03 0.067 1.46 0.64 1.73

48 4.86 2.03 0.065 1.47 0.69 1.74

49 4.90 2.05 0.074 1.50 0.64 1.73
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50 4.90 2.04 0.078 1.50 0.60 1.75

Table A.2: Performance (value of cost) of Ideal control

strategy when six parameters have uncertainty.

Scenario No. AR ML cost

1 3.38 209.68 116.48

2 3.76 211.34 203.27

3 3.04 198.24 5.07

4 2.92 199.98 0.03

5 3.15 196.69 17.30

6 2.90 200.02 0.00

7 3.10 200.73 4.66

8 3.49 202.75 42.35

9 3.26 191.91 78.68

10 3.20 200.90 9.52

11 3.00 200.38 1.16

12 3.31 204.08 33.39

13 3.22 196.20 24.67

14 3.03 199.96 1.72

15 3.11 201.75 7.58

16 2.90 199.99 0.00

17 2.90 200.02 0.00

18 3.64 205.10 80.90

19 3.01 199.75 1.32

20 2.90 200.00 5.29E-07

21 3.37 186.31 209.14

22 3.34 184.90 247.13

23 3.31 194.97 42.10
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24 2.90 199.99 0.00

25 3.19 197.46 14.62

26 3.32 192.69 71.45

27 3.52 202.19 43.56

28 3.17 200.71 7.77

29 2.98 194.29 33.28

30 3.30 194.73 43.52

31 3.23 200.29 11.14

32 2.97 199.06 1.40

33 2.98 196.91 10.15

34 3.24 201.04 12.32

35 2.90 200.01 0.00

36 3.46 207.39 85.41

37 3.02 199.95 1.33

38 3.43 193.49 70.02

39 2.90 199.98 0.00

40 3.13 195.27 27.53

41 3.35 205.07 45.86

42 2.91 199.95 0.01

43 3.17 192.60 62.11

44 3.00 200.29 1.02

45 3.26 202.33 18.41

46 3.70 215.93 317.49

47 3.01 199.96 1.26

48 3.62 203.64 65.67

49 3.67 207.02 109.03

50 3.12 196.44 17.67
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Table A.3: Performance (value of cost) of open loop con-

trol strategy when six parameters have uncertainty.

Scenario No. AR ML cost

1 3.11 220.12 409.38

2 3.43 223.47 578.86

3 2.47 188.95 140.12

4 3.08 203.37 14.61

5 2.30 185.40 249.55

6 3.04 212.13 149.04

7 3.18 217.82 325.75

8 3.54 222.27 536.37

9 2.66 184.60 243.13

10 3.28 218.59 359.74

11 3.12 216.64 281.43

12 3.10 226.80 722.11

13 2.90 188.88 123.65

14 3.24 206.46 53.26

15 2.98 218.71 350.85

16 2.94 203.34 11.30

17 2.81 205.02 26.11

18 3.57 226.30 736.57

19 3.17 198.70 8.80

20 2.91 204.26 18.15

21 2.34 176.08 603.31

22 2.35 176.77 570.03

23 2.58 184.65 245.75

24 2.61 196.36 21.37

25 3.16 193.17 53.33
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26 2.60 184.63 245.32

27 3.60 220.23 457.78

28 3.36 215.01 246.40

29 2.80 189.93 102.31

30 2.67 185.38 218.93

31 3.46 211.28 158.34

32 2.77 193.26 47.09

33 2.75 192.18 63.24

34 3.33 218.29 352.72

35 2.95 207.08 50.39

36 3.13 221.09 450.25

37 3.20 203.26 19.71

38 2.71 182.90 296.28

39 2.57 195.00 36.12

40 2.47 187.19 182.62

41 3.23 227.80 783.46

42 2.97 196.86 10.41

43 2.96 187.66 152.69

44 3.19 214.41 215.97

45 3.11 224.03 581.81

46 3.43 239.98 1626.01

47 3.24 209.14 95.21

48 3.66 223.28 599.42

49 3.45 219.88 425.45

50 2.79 189.69 107.60
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Table A.4: Performance (value of cost) of NMPC with-

out parameter updates when six parameters have uncer-

tainty.

Scenario No. AR ML cost

1 3.47 215.29 266.82

2 3.77 217.06 366.61

3 2.76 194.10 36.70

4 3.06 200.44 2.71

5 2.47 190.14 115.59

6 3.25 207.68 71.23

7 3.52 212.71 199.27

8 3.71 216.40 334.15

9 2.94 188.53 131.74

10 3.51 213.10 208.20

11 3.34 210.95 138.79

12 3.56 220.80 476.30

13 3.06 193.08 50.56

14 3.24 201.35 13.39

15 3.31 214.39 224.02

16 2.96 199.20 0.94

17 2.89 201.81 3.30

18 3.85 220.45 508.54

19 3.12 199.46 5.22

20 2.91 203.02 9.11

21 2.67 179.84 411.98

22 2.67 179.89 409.69

23 2.91 189.82 103.56

24 2.86 199.82 0.23
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25 3.11 195.98 20.48

26 2.95 188.22 139.08

27 3.72 215.04 293.96

28 3.64 209.92 153.79

29 3.03 193.26 47.09

30 2.98 189.85 103.58

31 3.39 206.21 62.85

32 2.84 195.06 24.80

33 2.93 195.97 16.29

34 3.56 212.35 196.78

35 3.12 202.56 11.30

36 3.53 214.81 259.54

37 3.15 200.42 6.67

38 3.01 188.28 138.56

39 2.82 199.29 1.13

40 2.67 191.45 78.24

41 3.70 221.55 529.09

42 2.99 198.50 3.04

43 3.19 191.38 82.53

44 3.58 210.61 159.56

45 3.40 217.48 330.96

46 4.03 234.53 1321.35

47 3.21 204.19 27.19

48 3.70 216.78 346.43

49 3.52 213.45 219.95

50 3.02 193.74 40.64
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Table A.5: Performance (value of cost) of NMPC with

parameter updates when six parameters have uncer-

tainty.

Scenario No. AR ML cost

1 3.32 212.41 171.85

2 3.69 211.48 194.81

3 3.49 200.04 34.73

4 3.17 200.28 7.37

5 3.21 195.46 30.13

6 3.53 210.52 150.89

7 3.32 207.47 73.18

8 3.69 211.74 199.77

9 3.27 190.72 100.01

10 3.64 208.66 129.32

11 3.35 207.49 76.08

12 3.43 215.00 253.38

13 2.90 191.59 70.75

14 3.28 201.56 17.02

15 3.34 211.90 160.91

16 3.28 201.05 15.41

17 3.75 204.12 89.94

18 3.94 218.13 436.22

19 3.05 199.29 2.86

20 2.95 203.06 9.60

21 3.06 183.39 278.54

22 3.06 182.36 313.83

23 3.51 194.89 63.34

24 3.09 198.43 5.95
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25 3.06 195.16 25.96

26 3.50 191.72 104.78

27 3.90 210.11 202.70

28 3.90 207.07 150.38

29 3.09 193.75 42.82

30 3.63 195.21 76.07

31 3.37 204.87 46.06

32 2.92 194.88 26.23

33 3.44 197.50 35.36

34 3.68 209.39 149.69

35 3.32 201.47 19.54

36 3.56 213.96 238.21

37 3.10 200.19 3.87

38 3.46 192.19 92.83

39 2.96 200.19 0.44

40 3.18 194.18 41.83

41 3.52 215.52 278.87

42 3.11 198.78 6.02

43 3.16 190.66 94.15

44 3.23 206.71 56.27

45 3.45 217.84 348.22

46 3.73 231.50 1061.13

47 3.62 202.45 57.45

48 3.76 214.99 297.79

49 3.89 209.64 191.56

50 3.10 194.98 29.15
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Table A.6: Performance (value of cost) of Exact Min-max

NMPC when six parameters have uncertainty.

Scenario No. AR ML cost

1 3.09 207.39 58.34

2 3.34 211.66 155.80

3 2.41 190.04 123.33

4 2.94 198.92 1.37

5 2.26 187.22 204.59

6 2.95 202.27 5.47

7 3.14 205.35 34.25

8 3.34 211.26 146.27

9 2.63 185.87 206.91

10 3.22 206.61 53.95

11 3.00 206.50 43.37

12 3.11 213.45 185.39

13 2.79 188.89 124.53

14 3.10 197.03 12.65

15 2.95 208.27 68.60

16 2.78 196.51 13.57

17 2.69 200.50 4.68

18 3.41 215.50 266.60

19 3.01 197.15 9.22

20 2.76 201.16 3.23

21 2.43 177.91 509.92

22 2.40 178.39 492.04

23 2.53 185.67 218.83

24 2.54 196.67 24.18

25 3.01 192.05 64.46
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26 2.58 186.05 204.83

27 3.42 210.25 132.04

28 3.22 205.12 36.15

29 2.78 191.15 79.77

30 2.58 186.20 200.60

31 3.29 201.46 16.98

32 2.65 191.83 73.09

33 2.66 193.34 50.06

34 3.17 208.30 76.38

35 2.81 200.88 1.57

36 3.14 207.55 62.92

37 3.05 198.71 3.83

38 2.62 183.59 276.92

39 2.50 196.27 29.95

40 2.41 188.86 148.64

41 3.30 213.40 195.89

42 2.88 196.11 15.15

43 2.91 188.65 128.74

44 3.13 202.83 13.33

45 3.09 211.49 135.57

46 3.61 222.85 573.26

47 3.06 199.88 2.48

48 3.45 212.47 185.66

49 3.30 209.99 115.74

50 2.74 190.69 89.16
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Table A.7: Performance (value of cost) of Bayesian min-

max NMPC using 50 training scenarios when six param-

eters have uncertainty.

Scenario No. AR ML cost

1 3.27 208.89 92.68

2 3.56 203.04 52.54

3 2.97 196.89 10.19

4 3.15 199.71 6.39

5 3.19 195.86 25.80

6 3.08 206.89 50.62

7 3.07 205.26 30.35

8 3.56 203.34 54.64

9 3.16 190.61 95.09

10 3.29 204.01 31.22

11 2.98 206.27 39.90

12 3.39 215.97 279.15

13 3.10 194.70 32.17

14 3.10 198.90 5.11

15 3.24 213.68 198.76

16 2.86 198.26 3.16

17 3.06 202.20 7.31

18 3.66 207.32 111.39

19 3.04 196.96 11.22

20 3.02 202.01 5.53

21 3.12 184.56 242.95

22 3.02 182.97 291.39

23 3.19 193.15 55.55

24 3.07 197.58 8.82
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25 3.10 190.27 98.72

26 3.12 191.05 85.11

27 3.60 201.69 51.93

28 3.49 200.73 35.30

29 3.29 194.83 41.52

30 3.14 192.98 55.15

31 3.39 197.85 28.47

32 3.34 194.62 48.10

33 3.07 197.28 10.13

34 3.21 204.98 34.35

35 3.21 204.31 28.15

36 3.33 207.82 80.07

37 3.11 198.52 6.77

38 3.30 191.69 84.91

39 2.99 199.30 1.29

40 3.10 193.91 41.17

41 3.32 213.45 198.92

42 2.97 197.15 8.64

43 3.03 190.88 84.71

44 3.03 201.30 3.36

45 3.29 216.62 291.58

46 3.63 218.05 378.55

47 3.08 198.90 4.49

48 3.65 204.65 77.48

49 3.48 201.47 35.37

50 2.88 193.33 44.49
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