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PREFACE

This dissertation was mostly written in flight above 30, 000 feet in a variety of

aircraft ranging from CRJ-200 to A380.

“Fais de ta vie un rêve, et d’un rêve, une réalité.” Antoine de Saint-Exupéry
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ABSTRACT

Bosson, Christabelle S. PhD, Purdue University, December 2015. Optimizing Inte-
grated Airport Surface and Terminal Airspace Operations under Uncertainty. Major
Professor: Dengfeng Sun.

In airports and surrounding terminal airspaces, the integration of surface, arrival

and departure scheduling and routing have the potential to improve the operations

e�ciency. Moreover, because both the airport surface and the terminal airspace

are often altered by random perturbations, the consideration of uncertainty in flight

schedules is crucial to improve the design of robust flight schedules. Previous re-

search mainly focused on independently solving arrival scheduling problems, depar-

ture scheduling problems and surface management scheduling problems and most of

the developed models are deterministic.

This dissertation presents an alternate method to model the integrated opera-

tions by using a machine job-shop scheduling formulation. A multistage stochastic

programming approach is chosen to formulate the problem in the presence of uncer-

tainty and candidate solutions are obtained by solving sample average approximation

problems with finite sample size. The developed mixed-integer-linear-programming

algorithm-based scheduler is capable of computing optimal aircraft schedules and

routings that reflect the integration of air and ground operations.

The assembled methodology is applied to a Los Angeles case study. To show the

benefits of integrated operations over First-Come-First-Served, a preliminary proof-

of-concept is conducted for a set of fourteen aircraft evolving under deterministic

conditions in a model of the Los Angeles International Airport surface and surround-

ing terminal areas. Using historical data, a representative 30-minute tra�c schedule

and aircraft mix scenario is constructed. The results of the Los Angeles application

show that the integration of air and ground operations and the use of a time-based
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separation strategy enable both significant surface and air time savings. The solution

computed by the optimization provides a more e�cient routing and scheduling than

the First-Come-First-Served solution.

Additionally, a data driven analysis is performed for the Los Angeles environ-

ment and probabilistic distributions of pertinent uncertainty sources are obtained. A

sensitivity analysis is then carried out to assess the methodology performance and

find optimal sampling parameters. Finally, simulations of increasing tra�c density in

the presence of uncertainty are conducted first for integrated arrivals and departures,

then for integrated surface and air operations. To compare the optimization results

and show the benefits of integrated operations, two aircraft separation methods are

implemented that o↵er di↵erent routing options.

The simulations of integrated air operations and the simulations of integrated air

and surface operations demonstrate that significant traveling time savings, both total

and individual surface and air times, can be obtained when more direct routes are

allowed to be traveled even in the presence of uncertainty. The resulting routings in-

duce however extra take o↵ delay for departing flights. As a consequence, some flights

cannot meet their initial assigned runway slot which engenders runway position shift-

ing when comparing resulting runway sequences computed under both deterministic

and stochastic conditions. The optimization is able to compute an optimal runway

schedule that represents an optimal balance between total schedule delays and total

travel times.
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1. Introduction

Over the next 20 years, the Federal Aviation Administration (FAA) forecasts an air

tra�c growth of more than 90% [1]. The number of aircraft and passengers that

will fly in the National Airspace System (NAS) is projected to increase with a yearly

average of 2.2% over the next 20 years. The NAS, which is currently being used close

to its maximum capacity, is expected to be significantly more stressed by the projected

increase of the demand. As the aviation systems evolve with the emergence of new

navigation and air tra�c control technologies, the NAS is being transformed slowly

but surely towards the Next Generation of Air Transportation System (NextGen).

NextGen is a solution framework for handling safely, e�ciently and in a cleaner way

the future demand for service in the NAS. It will provide solutions to all actors

using the NAS, i.e. airlines and federal control facilities, to facilitate and improve

operations as well as increase their predictability. Automated tools and procedures

are currently being developed to provide NextGen’s solutions. Examples of tools

and procedures are enhanced weather forecast models for controllers and airlines,

reduced separation distances to improve airspace usage and, optimized scheduling

and routings both in the air and on the surface. The major challenge of NextGen is

to ensure that information and resources are shared in a coordinated fashion between

every operator of the NAS.

1.1 Background

In the NAS, airport surfaces and terminal airspaces are characterized by high

tra�c volume traveling through narrow portions of space in which many flights are

scheduled to depart and arrive in short periods of time. In these constrained envi-

ronments, most aircraft are moving on the surface or changing altitude in the air at
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various speeds. Both on the surface and in the air, operations are a↵ected by un-

certainty which prevent from predicting with perfect accuracy operated trajectories

and schedules. With the growth of air tra�c, airport surfaces and terminal areas are

congested and the e�ciency of air tra�c operations is impaired and disrupted by the

formation of bottlenecks on the surface. Therefore, the development of decision sup-

port algorithms that coordinate air and surface operations is needed to help improve

the e�cient use of terminal and airport surface resources.

In current airport surface and terminal airspace operations, route segments and

meter fixes are spatially segregated in order to reduce interactions between tra�c

flows. In current ground-side operations, wake vortex and tra�c flow management

separation requirements are imposed to separate aircraft on the runway and con-

trollers issue advice on visual spatial separation to aircraft that are moving on the

airport surface. Typically, as soon as aircraft are ready and cleared for pushback,

they leave the gates to meet on-time airline metric performance. However, this often

results in uncoordinated movements and tra�c congestion during peak hours because

of the limited amount of available airport surface space. As a consequence, bottle-

necks build up on the airport surface and the resulting delays propagate into the NAS

and reduce its e�ciency. In current air-side operations, spatial separation strategies

are applied to reduce interactions between tra�c flows and guarantee proper flight

spacing. To manage the use of shared resources such as waypoints or route segments,

controllers assign independent routes and meter fixes to arrival and departure flows.

Such separation strategy may introduce ine�ciencies in the airspace usage with longer

departure and arrival routes and altitude constraints. To remedy these ine�ciencies

and support improved operations e�ciency, time-based separation strategies are po-

tential approaches to manage integrated operations using shared resources.

Although the FAA imposes aviation regulations and policies on operations for all

NAS users, the current state of tra�c and congestion is primarily dictated by its

main operators, i.e. the airlines. In the United States, airlines own airport terminals,

concourses and gates partially or entirely. They control the surface movements on
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the ramp areas by the gates they own and operate. In the case where airline B

uses airline A gates, airline A might also control airline B ramping movements. The

airlines are driven by on-time performance metrics that illustrates to the Department

of Transportation (DOT) how well airlines operate their flights with respect to the

respective published schedules. To generate maximum revenue, the airlines try to

turn aircraft in short periods of time and avoid expensive extended surface block

times. Moreover, in order to meet D0, an on-time departure metric, aircraft are

pushed-back from the gates as soon as the boarding door is closed and the jetway

is retracted. Because taxi and runway operations are controlled by FAA controllers,

airlines try to anticipate surface congestion by operating on shortest-minimum-fuel

flight paths in order to land early and meet the on-time arrival metric A14 at the

gates.

This background introduces current airport surface and terminal airspace opera-

tions under a NAS user point of view. This point of view is biased by airlines because

they are in constant competition to mitigate the e↵ects of uncertainty and operate

the closest to published schedules. When airlines are taken out of the picture, every

NAS user is equal and has the right to operate the NAS under the FAA rules and

regulations. To help and support improved operations, one of NextGen’s challenges is

to ensure that shared resources are coordinated in a fair manner between every actor

involved in the NAS. This research investigates the integration of operations between

the airport surface and the terminal airspace for an una�liated NAS operator.

1.2 Research Questions

This present research aims at investigating the integration of airport surface and

terminal airspace in the presence of uncertainty. Evidence of benefits for airspace users

from integrated operations have not been fully covered and limited methodologies have

been developed. To support this evidence, a case study applied to the Los Angeles

International airport and surrounding terminal airspace is undertaken. Our objective
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is to provide a fast-time decision support algorithm that schedule and route integrated

operations in limited run times.

The present dissertation tackles the following research questions:

1. How can integrated operations support the e�ciency of surface and air tra�c

management?

2. How can the integration of tra�c uncertainty help improve flight on-time per-

formance?

1.3 Thesis Contribution and Outline

The contributions of this research have two dimensions involving practical and

theoretical challenges.

On one hand, the practical contributions include (1) supporting airport surface

and terminal airspace operations, (2) improving operations e�ciency, i.e. schedules

and routings and their predictability, and (3) integrating uncertainty and implement-

ing stochastic optimization procedures that are potentially tractable. With all three

contributions combined, schedules and routings are experimentally shown to be more

e�cient than solutions from First-Come-First-Served approaches and more robust

than solutions from deterministic optimization procedures. In addition, the case

study is applied to realistic operational conditions where mixed operations are using

a single runway.

On the other hand, the theoretical contributions include (1) developing a stochas-

tic programming-based scheduling and routing model, (2) deriving an assembled

methodology to solve complex stochastic programming under reasonable run times,

and (3) introducing statistic bounds to assess the methodology performance. These

three improvements lead to a fast-time decision support scheduling and routing based

algorithm that can produce solutions in reasonable computation times.

This dissertation is structured as follows. In Chapter 2, a literature review of

previous research undertaken on airport surface and terminal airspace scheduling and
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routings problems are presented. Additionally, the chapter reviews previous related

work on machine job-shop scheduling problems and stochastic models, and solution

procedures developed for aviation problems. In Chapter 3, an assembled method-

ology is derived to tackle the integration of airport surface and terminal airspace

operations. Inspired from operations research, the modeling is first defined and fol-

lowed by the problem statement, and problem formulation as a three-stage stochastic

program. Finally, a solution methodology is proposed based on the Sample Average

Approximation. The assembled methodology is applied to a Los Angeles case study in

Chapter 4. This chapter contains the implementation of a simple problem serving as

proof-of-concept that illustrates the evidence of integrated operation benefits, a data

driven analysis of uncertainty sources in the Los Angeles environment and a solution

methodology performance assessment. Using the solution methodology parameters

computed in the previous chapter, Chapter 5 presents simulations of increasing traf-

fic density for integrated operations. The benefits of this research approach are first

demonstrated for integrated arrivals and departures, then for integrated surface and

air operations. Concluding remarks are finally provided in Chapter 6 along with a

summary of this thesis, operational implications in the field and directions for future

research.
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2. Literature Review

The literature review presented in this chapter is divided in four main sections that

cover research topics pertinent to this research. Section 2.1 reviews previous schedul-

ing work of flight operations from the airport surface to the terminal airspace. The

review shows that most of the models developed so far are deterministic and that

limited research was conducted on integrated operations of the airport surface and

terminal airspace. In Section 2.2, machine job-shop scheduling models are reviewed

and similarities between machine job-shop scheduling problems and flight operations

scheduling problems are examined. In Section 2.3, methodologies used to solve avia-

tion optimization problems with uncertainty are presented. In Section 6.1 a summary

concludes the findings and highlights the research gaps that this thesis attempts to

fill.

2.1 Scheduling of Flight Operations

In this research, flight operations are considered both on the ground and in the

air, i.e. from the airport surface to the terminal airspace. The di↵erent associated

scheduling problems are presented along with a review of the methodologies developed

to solve the problems.

2.1.1 Airport Surface Scheduling and Routing

In current ground-side operations, wake vortex and tra�c flow management sep-

aration requirements are imposed to separate aircraft on the runway and controllers

issue advice on visual spatial separation to aircraft that are moving on the airport

surface. However, regardless of the airport visibility conditions, this often results in
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uncoordinated movements and tra�c congestion during peak hours because of the

limited amount of available airport surface space. In the past decade, several re-

search e↵orts have aimed at mitigating airport surface congestion by independently

solving taxiway scheduling problems [2–5] and runway sequencing and scheduling

problems [6, 7]. In more recent work, because taxiways and runways are undeniably

linked in airport systems, researchers have been investigating scheduling and routing

optimization models for the integrated taxiway and runway operations [8–10].

Taxiway Scheduling Problems

To reduce aircraft taxi times, optimization models have been applied at several

airports such as the Amsterdam Airport Schiphol (AMS) in Europe [2] and the Dallas

Forth Worth International Airport (DFW) in the United States [3,5]. The models pre-

sented below illustrate the research e↵orts that focused on solving taxiway scheduling

problems applied on both continents.

Smeltink et al. [2] developed a Mixed-Integer-Linear-Programming (MILP) for-

mulation to model aircraft movements on the airport surface. The formulation uses

sequencing-based operations to compute optimal times along each aircraft route to

maximize movements e�ciency. The optimization model was applied to AMS and

showed great taxi time potential improvements. Additionally, Roling et al. [4] con-

structed a MILP-based taxi-planning tool to better coordinate surface tra�c move-

ments. The algorithm extends previous work by Smeltink et al. [2] to include aircraft

holding points and rerouting options.

Balakrishnan and Jung [3] derived an Integer-Programming formulation to opti-

mize taxiway operations by utilizing surface control points such as controlled pushback

and taxi reroutes. The algorithm was applied to the eastern half of DFW for di↵er-

ent tra�c densities. It was shown that average departure taxi times can be reduced

with controlled pushback whereas average arrival taxi time can be reduced with taxi

reroutes for high tra�c densities. Additionally, Rathinam et al. [5] extended previous
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MILP formulations of the aircraft taxi-scheduling problem by incorporating all safety

constraints required to keep any two aircraft separated by a minimum distance at

any time instant. The optimization model was applied to DFW and the computed

solutions allowed a taxi time average of six minutes per aircraft when compared to a

First-Come-First-Served algorithm (FCFS).

Runway Sequencing Problems

To optimize airport surface scheduling operations, researchers have also inves-

tigated the runway sequencing problem. Deau et al. [6] showed that during tra�c

peaks, runway sequencing influences the departure delay less than taxiway scheduling.

Therefore, they developed several runway sequencing models (FCFS, genetic-based

sequencer) to optimize the coupling of taxiway and runway operations. When applied

to the Paris Charles de Gaulle Airport (CDG) and its taxiway schedules, it was found

that significant ground delays reductions could be achieved with optimized runway

sequences. Moreover, Sölveling et al. [7] derived a stochastic optimization framework

to model runway operations in the presence of uncertainty. A two-stage formulation

was used to model the runway scheduling problem. It was found that when the arrival

and departure rates are high compared to runway capacity, average delay reductions

could be achieved from runway sequences computed with the developed stochastic

runway planner over solutions obtained with a FCFS methodology.

Sureshkumar [11] proposed a runway system model for optimal sequencing and

runway assignment of arrivals and departures. Based on a branch-and-bound tech-

nique, the algorithm computes optimal runway sequences with minimal makespan

at the Hartsfield-Jackson Atlanta International Airport (ATL). The lower and upper

bounds of the cost of each branch are computed such that the FAA wake vortex sepa-

ration minima are satisfied at all times. Di↵erent runway configurations were studied

and it was shown that the model could significantly improve the runway operations

by providing optimal runway sequences and assignments. Additionally, Ghoniem et
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al. [12] examined the combined arrival-departure aircraft runway sequencing prob-

lem. The problem was modeled using a modified variant of the asymmetric traveling

salesman problem with time-windows and solved using a Mixed-Integer-Programming

(MIP). For mixed operations on a single runway or on close parallel runways, the sep-

aration constraints between non-consecutive operations increased the complexity of

the problem formulation. However, the modeling enabled the development of e�cient

preprocessing routines and probing procedures to enhance the problem solvability via

tighter reformulations. The application was performed for the Doha International

Airport (DOH) and two heuristics were also developed to further improve the so-

lution computation. When compared to a FCFS algorithm with priority landing,

the exact and heuristics solution methods report makespan reductions and limited

aircraft position deviations.

Integrated Taxiway Scheduling and Runway Sequencing Problems

Because both taxiway and runway systems are dependent on each other, recent re-

search investigated the integration of taxi and runway operations. Clearly, optimized

taxiway schedules might not be optimal without considering runway sequences, while

optimized runway sequences might not be optimal without proper taxiway routing

and scheduling.

Clare and Richards [8] developed a MILP optimization method for the coupled

problems of airport taxiway routing and runway scheduling; a receding horizon-based

approach was used to formulate the problem. In this work, Clare and Richards fixed

the runway sequencing and scheduling of arrivals and only dealt with the runway

scheduling of departures. Moreover, the objective focused on optimizing taxiway op-

erations of the London Heathrow Airport (LHR) and only runway operations were

considered in the constraints. The receding horizon approach allowed the computa-

tions of aircraft taxi schedules at di↵erent airport network nodes but did not predict
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the aircraft runway sequence. By fixing landing times, the algorithm focused on

computing taxiway schedules, resulting in suboptimal runway schedule.

Lee and Balakrishnan [9] investigated two di↵erent optimization models to simul-

taneously solve the taxiway and runway scheduling problem. A single MILP approach

was first derived to solve the integrated airport surface scheduling problem whereas

in a second approach, a sequential methodology was derived to combine the taxiway

scheduling and runway scheduling algorithms. The first model extends the MILP

formulation of the taxiway scheduling derived by Rathinam et al. [13] to the run-

way scheduling by introducing an additional term to minimize runway delays. The

model adopts a rolling time horizon and accounts for existing flights taxiing on the

surface. For high tra�c demand, the model might require large computational times.

Therefore two separate optimization models were derived for taxiway and runway

schedulings. After estimating earliest runway arrival times for departures in Step

1, Step 2 optimizes the departure runway schedules using a runway scheduling al-

gorithm. Then Step 3 optimizes the taxiway schedules using a MILP model. The

application of both models to the Detroit Airport (DTW) showed that computed

flight schedules could save taxi-out times and mitigate taxiway congestion. However,

arrival flight schedules were not optimized in the study.

To reduce large number of decision variables related to the number of network

nodes used to describe airports and the complexity associated with simultaneous

optimization of both departure and arrival flights, Yu and Lau [10] proposed a set

partitioning model for integrating taxiway routing and taxiway scheduling. Routing

and scheduling decision variables are computed for each aircraft. Route paths, i.e.

node sequences, are first generated by a shortest path algorithm and route schedules

(passage times at each route node), then sequentially optimized at each node. The

route-schedule cost computation consists of minimizing taxi times and schedule devi-

ations for both arrival and departure flights. Preliminary results based on simulated

data prove the feasibility and e�ciency of the proposed methodology.
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2.1.2 Terminal Airspace Scheduling

In current air-side operations, spatial separation strategies are applied to reduce

interactions between tra�c flows and to guarantee proper flight spacing. To manage

the use of shared resources such as waypoints or route segments, controllers assign

independent routes and fixes to arrival and departure flows. This separation strategy

may introduce ine�ciencies in the airspace usage with longer departure and arrival

routes and altitude constraints. Over the past few decades, the air tra�c management

community has been conducting research to help improve the e�ciency of terminal

airspace operations by separately solving arrival scheduling problems [14–18] and de-

parture scheduling problems [13,19,20]. Recently, researchers have been investigating

the integration of arrival and departure operations, and its ability to improve opera-

tions e�ciency has been demonstrated [21–27]. The dynamic nature of terminal areas

pushed the research community to develop e�cient aircraft routing and scheduling

methods that also optimize the runway operations.

Arrival and Departure Scheduling Problems

One of the earliest studies on arrival scheduling was published by Dear in 1976 [14].

Dear solved the static arrival scheduling problem by generating aircraft sequences and

schedules. To solve the dynamic arrival scheduling problem, the Constraint Position

Shifting (CPS) framework was introduced by the author. The CPS process stipulates

that the resulting sequence from a FCFS model might not be an optimal and fair

solution for every aircraft. CPS constrains the number of positions that an aircraft

can be shifted from its original FCFS position. To find the optimal sequence, all pos-

sible sequences are enumerated resulting in an unpractical method for a large number

of aircraft. To reduce the computational complexity, Psaraftis [28] developed a dy-

namic programming method and Dear and Sherif [29] proposed heuristics to solve the

single runway problem. Neuman and Erzberger [15] investigated various scheduling

algorithms such as modified FCFS, modified CPS and modified time advance and
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analysed them with di↵erent tra�c scenarios. Balakrishnan and Chandran [17] de-

veloped a modified version of the shortest path problem to model the aircraft landing

problem and used dynamic programming to solve the runway scheduling problem.

A review of the literature shows that scheduling studies in flight operations have

been mainly devoted to the aircraft landing problem. As an attempt to solve the

departure scheduling problem, Rathinam et al. [13] improved and transformed the

Psaraftis’s dynamic programming approach into a generalized dynamic programming

method. Instead of only minimizing the total delay, the authors formulated a multi-

objective function that minimizes both the total delay and the departure time of the

last departed aircraft. However, this optimization model lacks of the ability to assess

the concept of departure queuing. To fill this gap, Gupta et al. [20] developed a

MILP formulation that schedules aircraft departure deterministically. By investigat-

ing various aircraft queuing scenarios, they found that this approach minimizes delays

and maximizes the runway throughput. Motivated by the London Heathrow Airport

(LHR) taxiway layout, Atkin et al. [19] applied tabu search and simulated annealing

heuristic techniques to solve a variant of the departure scheduling problem. Malik et

al. [30] extended the aircraft departure problem by focusing on the taxi scheduling

problem. A MILP algorithm was formulated to optimize the departure throughput

airport surface by considering a gate release control strategy.

Most of the methods presented so far are deterministic and assume exact knowl-

edge of arrival and departure flight times. Several exceptions can be found in the

literature. Chandran and Balakrishnan [31] developed an algorithm that generates

runway schedules of arrivals that are robust to perturbations caused by terminal

airspace uncertainty. The CPS method is implemented with uncertainty in the es-

timated time of arrival flights. The error distribution is modeled as a triangular

distribution with a range of ±150 sec for aircraft equipped with a Flight Manage-

ment System (FMS), and ±300 sec for non-equipped aircraft. Additionally, Hu and

Paolo [32] developed a genetic algorithm for arrival scheduling where 20% of uncer-
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tainty in the range of ±5 minutes was introduced between iterations in the estimated

time of arrival flights.

Integrated Terminal Airspace Operations Under Uncertainty

In metroplex areas, recent studies conducted by Capozzi et al. [21,22] showed that

integrated departure and arrivals have the ability to improve terminal airspace opera-

tions e�ciency. However, in terminal areas, flight schedules are subject to uncertainty

which can be caused by inaccurate wind predictions, errors in aircraft dynamics or

human factors when close to arrival or departure times. The integration of uncer-

tainty in algorithm formulations is crucial to better reflect the reality of current air

tra�c operations. To address this, uncertainty analyses were conducted to help es-

timating the robustness of the solutions and benefits obtained. In arrival scheduling

problems, Thipphavong et al. [33] used the Stochastic Terminal Arrival Scheduling

Software (STASS) to study the relationship between uncertainty and system perfor-

mance. For the integrated departures and arrivals problem, Xue et al. [25] analysed

the impacts of flight time uncertainty on integrated schedule operations on a model

of the Los Angeles terminal airspace. Using deterministic solutions as references and

adding time perturbations to flight times, Monte Carlo simulations were performed

to simulate controller interventions to resolve conflicts in the event of separation loss.

It was shown that terminal airspace operations can be improved by the integration of

arrivals and departures without dramatically increasing the controller workload and

that uncertainty studies could be useful to decision makers to resolve separation con-

flicts. Additionally, Xue et al. [26] developed a genetic algorithm-based scheduler for

integrated operations under uncertainty. The impacts of flight time uncertainty was

analysed on the integrated schedule operations by investigating the impacts on delays

and controller workloads. It was found that the results computed by the stochastic

optimization could help identify compromise schedules for shared waypoints that re-

duce both delays and the number of controller interventions.
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However, considering uncertainty in models can represent a computational chal-

lenge with a level of complexity that can prevent real-time applications and further

developments. Previous work conducted by Bosson et al. [34] focused on minimizing

computation time of the genetic-algorithm-based stochastic scheduler developed by

Xue et al. [26] when dealing with uncertainty through the usage of Graphics Pro-

cessing Units (GPU). GPU computing techniques enabled a fast decision support

algorithm to schedule flights evolving in a mixed-environment sharing resources in

the presence of uncertainty.

2.2 Machine Job-Shop Scheduling

Given the similarities to production or manufacturing operations scheduling prob-

lems, machine job-shop scheduling terminology can be used to describe airport schedul-

ing problems. Beasley et al. [16] adapted the machine-scheduling model to solve the

aircraft-sequencing problem and an analogy was made between the processing time

of a job on a machine and the separation requirements between aircraft. Bianco et

al. [35, 36] developed a combinatorial optimization approach to solve the aircraft-

sequencing problem for arrival flows in the case of a single runway. The problem was

modeled using n jobs (i.e. n aircraft) and a single machine (i.e. the runway) with

processing times but no setup times were considered. Both job-shop and aircraft se-

quencing problems are time and sequence dependent. A review of the literature shows

that many machine-scheduling models developed so far consider sequence-dependent

setup times and most of them are deterministic. Theory and examples can be found

in references published by Jain and Meeran [37], and Gupta and Smith [38]. The

stochastic machine job-shop scheduling studies primarily focused on probabilistic pro-

cessing times [39–41]. For example, considering random processing times, Soroush [41]

minimized the early tardy job cost, while Jan [39] and Seo et al. [40] addressed the

tardy minimization problem. However, the previous models considers deterministic

due dates. But in the context of arrival and departure operations at airports, un-



15

certainty a↵ects the exact knowledge of operational factors such as pushback times

or taxi times to the runway. In machine scheduling terminology, this can be referred

to probabilistic release times and probabilistic due dates. Stochastic versions of such

problems received limited attention and probabilistic release times and due dates were

rarely introduced. One of the only models that considers both was developed by Wu

and Zhou [42] to solve a single machine-scheduling problem. However, the model

developed in that study does not include sequence-dependent setup times. The first

attempt that considered sequence-dependent setup times and probabilistic release

and due dates can be found in recent work by Sölveling et al. [43], who developed a

runway planning optimization model.

2.3 Optimization with Uncertainty in Air Tra�c Management

To facilitate the air tra�c growth, optimization techniques have been applied to

Air Tra�c Management and air transportation applications. However, the perfor-

mance improvements of the optimization algorithms are being slowed down by the

consideration of uncertainty. Uncertainty comes from many sources: data availability,

measurement errors, human factors, aircraft dynamics, wind prediction and weather

forecast; these are di�cult to model accurately. Integrating uncertainty can easily

become a computational challenge that requires heuristics and advanced program-

ming techniques to be solved. However, the integration of uncertainty in algorithms

is crucial to better reflect the reality of current air tra�c operations.

2.3.1 Modeling Optimization Problems with Uncertainty

As approach attempts to cope with the complexity of optimization problems un-

der uncertainty, methodologies such as recourse-based stochastic programming, ro-

bust stochastic programming and probabilistic programming have been developed.

Although optimization of stochastic terminal airspace operations has been receiving

little attention, there are several references for other applications in ATM.
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Richetta and Odoni [44] solved the Single Airport Ground Holding Problem (SAGHP)

with a recourse-based stochastic programming whereas Ball et al. [45] addressed the

SAGHP using an integer stochastic programming. Both formulations were solved by

Linear Programming (LP). Mukherjee and Hansen [46] developed a stochastic pro-

gramming method which was extended to solve the SAGHP under dynamic settings.

Mukherjee and Hansen [47] also addressed the Air Tra�c Flow Management

(ATFM) problem using linear dynamic stochastic optimization. Weather uncer-

tainty was accounted through a scenario tree. Gupta and Bertsimas [48] formulated

a multi-stage recourse and adaptive robust optimization to solve the ATFM problem.

Clare and Richards [49] augmented MILP optimization with a chance-constraint-

probabilistic programming method. In all previous cited works considering uncer-

tainty, weather and unscheduled demand were the uncertain parameters considered.

Another way to accommodate for uncertainty in algorithms is to use bu↵ering

or probabilistic sampling techniques. Few research endeavors attempted to include

uncertainty in the tra�c operations optimization computation by the use of bu↵ering

techniques [50,51] or sampling methods [26,27]. Xue et al. [26] employed Monte Carlo

simulations to represent the propagation of uncertainty in the flight times. Thousands

of sampling points were used to run Monte Carlo simulations of the integrated arrival

and departure scheduling. To optimize surface operations, several attempts investi-

gated historical data of pushback times, taxi-out and runway schedules, and linear

regression was applied to predict taxi times [52]. Whereas considering uncertainty

allows for more realistic computations, it usually induces an increased computational

e↵ort that compromises real time implementations. Therefore solving such modeling

in reasonable run times requires a trafeo↵ to be reach between formulation complexity

and computational workload.



17

2.3.2 Solving Optimization Problems with Uncertainty

Researchers in Air Tra�c Management (ATM) are deterred by large computa-

tional runtime that do not meet real-time requirements. Relaxation methods and

heuristics have commonly been used to find integer solutions on sequential proces-

sors. However, computationally expensive general purpose applications are benefiting

from the emergence of GPUs and parallel computing techniques. Many areas of study

have already proven significant advantages of using GPUs (multitasking [53], medical

application [54] or finance [55]). In ATM, few applications can be found. Tandale et

al. [56], accelerated by 30 times a CPU implementation of a large-scale Tra�c Flow

Management (TFM) problem with 17, 000 aircraft. Bosson et al. [34] implemented

on a GPU, an optimization model of integrated departures and arrivals under uncer-

tainty solved by a non-sorted genetic algorithm. The GPU-based code resulted in a

637x speed up in Monte Carlo simulations that handle uncertainty cost computation

and a 154x speed up for the entire algorithm.

2.4 Summary

Aircraft scheduling problems have been mainly examined from the runway per-

spective because the runway has been identified as the main source of the NAS-wide

delay [57]. The di↵erent reviewed algorithms were mainly applied deterministically

to the scheduling problems assuming that all inputs are known before running the

algorithms. For the airport surface operations, most of the studies considered either

taxiway scheduling or runway sequencing and limited attention was given to the in-

tegration of both problems. Previous work independently optimizes the taxiway and

runway schedules which often results in suboptimal solutions. Additionally for the ter-

minal airspace operations, most of the studies considered either the arrival scheduling

problem or the departure scheduling problem, but not the integrated departures and

arrivals problem. These formulations assume that there are no interactions between

the arrival and departure aircraft sequences. For the integration of both airport sur-
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face and terminal airspace operations, conceptual frameworks were discussed in the

literature. Zelinski [58] proposed a framework for integrating scheduling between Ar-

rival, Departure, and Surface (IADS) operations to address the drawbacks of domain

segregated scheduling. Zelinski suggested a time-based decomposition rather than a

domain-based decomposition. Simons [59] presented a functional analysis of a con-

cept for IADS operations in which integrated schedules would define crossing times

for points within the arrival or departure airspace, and on the airport surface. To

the author’s knowledge, no paper was found that presents the implementation of a

scheduling methodology that integrates both the airport surface and the terminal

airspace operations.

A few attempts [26,43] were found that integrate uncertainty in flight scheduling

computations, but they often resulted in significant computational complexity and

unrealistic runtime. This literature review highlights the lack of stochastic models

for airport surface and terminal airspace operations. Additionally, it shows too few

job-shop machine scheduling models that consider both probabilistic processing and

releasing times.

It is also worth noting that so far, no frameworks or models capable of optimizing

integrated airport surface and terminal airspace operations under uncertainty have

been reported in the literature. Moreover, implementation of scheduling optimization

under uncertainty benefiting from parallel computing techniques has not received

major attention.
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3. An Assembled Methodology to Tackle the Integration of

Airport Surface and Terminal Airspace Operations

In this chapter, an assembled methodology is constructed and derived to tackle the

integration of airport surface and terminal airspace operations. In the preliminary,

some assumptions are made to set up the problem. Inspired from manufacturing

operations, a scheduler is built using machine job-shop scheduling modeling. A multi-

stage stochastic programming approach is chosen to formulate the problem because

of its ability to handle multi-objectives and multiple constraints. Then, a sampling

method is implemented coupled to a multi-threading approach to solve the problem

in the presence of uncertainty.

3.1 Problem Setup

3.1.1 Aircraft Weight Classification

During all flying phases, aircraft generate wake vortices of di↵erent strengths and

intensities, which mainly depend on aircraft weight. Therefore, this research con-

siders di↵erent weight-based aircraft types defined according to the Federal Aviation

Administration (FAA) aircraft weight classification [60]. The standard defines three

aircraft weight categories, small (S), large (L) and heavy (H). In addition, the Boeing

757 is often considered as category. The weight of the Boeing 757 is in the large class,

yet it’s wake is the size of a heavy’s wake. Recently a fifth category, called Super,

was added with the introduction of the A380 in the NAS, but in this research this

aircraft type is not considered [61]. Therefore, four categories, denoted S, 7, L and

H, are considered in this thesis.
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3.1.2 Surface and Airspace Route Network Model

Operations on the airport surface are characterized by aircraft movements in gate

areas, along the taxiway system and at the runways, which are strongly influenced

by terminal area operations.

On the airport surface, aircraft are guided on the taxiway system from a surface

origin to a surface destination. In particular, arrival flights are routed from runways to

assigned gates whereas departure flights are routed from departure gates to runways.

Taxi routes are specified by a sequence of surface waypoints that often include taxiway

intersections. Therefore, the surface route network is defined by the taxiway system

and the ramp areas of the airport layout considered. The airport network layout is

described using surface waypoints and taxiway segments. Gates, taxiway intersections

and runway thresholds are represented by surface waypoints and taxiway segments

do not necessarily all have the same length.

For the air-side operations, aircraft are advised to fly along paths that are char-

acterized by di↵erent flight plans. Therefore, the air route network is defined by the

terminal airspace departure and arrival routes. Because Standard Terminal Arrival

Routes (STARs) and Standard Instrumental Departures (SIDs) procedures need to

be flown by aircraft when flying within the terminal airspace, these procedures are

used in this work to define the airspace routes as ordered sequence of air waypoints.

Meter fixes and air waypoints are linked by flight plan segments and they do not not

necessarily all have the same length.

The ground and air network models are connected at the runway.

3.1.3 Aircraft Separation

In current ground-side operations, wake vortex and tra�c flow management sep-

aration requirements are imposed to separate aircraft on the runway and controllers

issue advice on visual spatial separation to aircraft that are moving on the airport sur-

face. Typically, aircraft movements are controlled by FAA controllers on the taxiway



21

system and by airline controllers on the ramp areas. In both zones, spatial separa-

tions are communicated by the controllers to the pilots to ensure aircraft spacing and

colison-free displacements. However, this often results in uncoordinated movements

and tra�c congestion during peak hours because of the limited amount of available

airport surface space.

In current air-side operations in the terminal airspace, the FAA defines aircraft

separation distances that need to be enforced between aircraft at all times [60]. Con-

trollers spatially separate aircraft flying on the same tra�c flow by imposing these

separation requirements. Moreover, controllers also spatially segregate arrival and de-

parture flows by assigning them independent routes to fly. These spatial separation

strategies are enforced to reduce interactions between tra�c flows and to guarantee

proper flight spacing. This however often introduces ine�ciencies in the airspace

usage with longer flight routes and altitude constraints.

To mitigate such constraints and allow some flexibility in future operations, this

work integrates ground and air operations by implementing a temporal control sepa-

ration strategy that converts separation requirements prescribed in distance to time

scale using the aircraft speeds. In this work, three types of separation requirements

are considered that depend on the aircraft situation. It is assumed that all aircraft

move on the ground withing a defined ground speed range. In the air, it is assumed

that aircraft speed ranges are di↵erent for departures and arrivals.

First, according to Roling et al. [4], any pair of aircraft must always be separated

on the airport surface by a minimum distance of 200 meters when moving along the

taxiways. This fixed separation is converted into time via the speed of the leading

aircraft of each pair. Second, on the runway, minimum inter-operation spacings for

wake separation must be enforced between any two aircraft [60, 62]. But because

the sequence of aircraft weight-class determines wake vortex separation requirements,

the requirements are asymmetric at the runway. If a large aircraft leads a small,

the separation requirement will be greater than the opposite because large aircraft

produce larger wake turbulences than small aircraft. Finally in the air, according to
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Capozzi et al. [21] all aircraft pairs are separated by a fixed separation distance of 4

nautical miles (nmi) that is converted into time via the speed of the leading aircraft

of each pair.

3.1.4 Uncertainty Considerations

On the airport surface and in the terminal airspace, flight schedules are subject to

uncertainties that come from many sources such as human factors, errors in aircraft

dynamics or inaccurate wind predictions. The potential start and end times of an air-

craft taxi operations are constrained by gate and runway schedules. These schedules

are determined by a combination of flight schedules and gate turnaround operations

that are provided by the airlines and are therefore a↵ected by uncertainty. In this

research, in order to better reflect the reality of current surface and air tra�c oper-

ations, uncertainty is added to the flight time schedules by introducing errors that

follow probabilistic distributions. Details about the distributions will be provided in

a later chapter. As a consequence, speed clearances might be issued to prevent any

loss of separations between aircraft.

3.2 Modeling Definitions

3.2.1 Background

Due to similarities with production and manufacturing operations, the integrated

airport surface and terminal airspace operations can be described using machine job-

shop scheduling terminology. In this section, a machine job-shop scheduling formu-

lation is derived and adapted to model the routing, sequencing and scheduling of

aircraft when integrating flights using shared resources. To emphasize the mapping

of the technique to this application, machine job-shop scheduling notations are used

to described the modeling in this section these are mentioned in parenthesis.
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3.2.2 Modeling

A scheduler is built to schedule and route a set of aircraft (set of jobs) evolving

on the airport surface and the terminal airspace in a given planning horizon (e.g.

from 9 : 00AM to 9 : 30AM) in which waypoints (machines) are shared by departures

and arrivals. The set of aircraft is denoted as AC and each aircraft j 2 AC belongs

to an aircraft category (job category) defined by a specific type T . An aircraft type

is twofold, it is represented by a weight class C = {H, 7, L, S} and an operation

O = {A,D}, where A stands for arrival and D for departure. For example, a large

departing aircraft and a small arriving aircraft have their types respectively denoted

by TLD and TSA. The set of all weight-operation combinations forms the aircraft type

set K, i.e. K = {Tpq, p 2 C, q 2 O}. On the airport surface, each aircraft moves

on the taxiway system from the ramp areas to the runway and vice versa. Surface

routes are defined by operated taxi routes of the considered airport and each surface

waypoint (surface machine) isurface 2 Isurface. In the terminal airspace, each aircraft

flies a route that is defined by a flight plan, i.e. sequence of air waypoints (sequence of

air machines). Air routes are defined by the Standard Instrument Departures (SIDs)

and the Standard Terminal Arrival Routes (STARs) waypoints of the considered

terminal airspace and each air waypoint iair 2 Iair. The entire set of waypoints is

denoted by I and each waypoint i 2 I. It combines the sets of all air and surface

waypoints such that I = Iair [ Isurface. Denote respectively as entry and exit, the

first and last waypoint of each aircraft route such that entry 2 I and exit 2 I.

Additionally, define as release time and due date schedules, the aircraft schedules

respectively at entry and exit waypoints. For each aircraft j 2 AC, denote respec-

tively as rji and dji, a scheduled release time and a scheduled due date at waypoint

i. The aircraft release time corresponds to when the aircraft is expected to enter the

airspace considered. Hence, for arrival flights, the release time is when aircraft are

expected to fly by the first waypoint of the arrival route (i.e. first arrival fix), and it

is the estimated pushback time from the gates for departing flights. The aircraft due
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dates corresponds to times at which aircraft are expected to exit the considered sur-

face and airspace network. Therefore, the due date is defined as the estimated time of

gate arrival for an arrival and as the fly by time of the last waypoint of the departure

route for a departure (i.e. last departure fix). Moreover, a processing time is defined

at each waypoint of the route traveled. A processing time pji is defined by the time

aircraft j, j 2 AC is being processed by waypoint i, i 2 I. Each waypoint can only

process one aircraft at a time and each aircraft can only travel by one waypoint at a

time. Therefore in this model, a processing time is defined as a waypoint block time

and depends on the separation time requirements between type-based aircraft pairs.

To determine the waypoint block time for an aircraft, the model identifies the type of

the following aircraft. Then using the types of the aircraft forming the aircraft pair, it

computes the separation time requirement. On the ground, waypoint block times are

computed by converting the ground separation distance to ground separation time

via the speed of the leading aircraft of each pair. At the runway, wake vortex separa-

tion times define the runway block times. However in the air, waypoint block times

are determined by the conversion of distance separations to temporal separations via

the speed of the leading aircraft. In operations, based on the aircraft leader’s speed,

updated speed clearances are given on the ground and in the air to the following

aircraft to maintain separation.

In operations, aircraft do not necessarily take-o↵ at their ETDs and land at their

ETAs because flight times are sensitive to uncertainty. To model the perturbations,

error sources following probabilistic distributions are added to release times and due

dates. Several sets of schedules can be generated using this method to study the

impact of uncertainty on actual departure and arrival times. Denote respectively as

aircraft starting time and aircraft completion time, the actual times at which aircraft

respectively enter and exit the considered surface and airspace network. For each set

of schedules generated, the optimization will compute these times for each aircraft

j 2 AC and they are respectively referred as tjentry and tjexit.
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To illustrate the di↵erent terms and notations introduced, two waypoint timelines

are drawn in Figure 3.1.

Figure 3.1. Waypoint Timelines With Two Arrivals

Each row corresponds to a timeline associated with a waypoint and for simplicity

only two waypoints, WPT and Gate, are considered. In this simple example, two

arrival flights of types TLA and TSA are being scheduled. Both aircraft arrive at

waypoint WPT later than their respective release time (t1entry > r1entry and t2entry >

r2entry) because of uncertainty. At the arrival gate, the first aircraft arrives later than

its estimated time of arrival (t1exit > d1exit ) whereas the second aircraft is on-time

t2exit = d2exit). For the two timelines, waypoint processing times pji, where i = {1, 2}

and j = {WPT,Gate}, are represented by blocks of di↵erent lengths.

3.3 Optimization Model

To optimally integrate terminal airspace and airport surface operations, a single

optimization model is created. In this section, the problem is first stated then for-

mulated. A Mixed-Integer-Linear-Programming (MILP) model for scheduling and

routing is proposed in this thesis.

3.3.1 Problem Statement

This thesis addresses the integrated airport surface and terminal airspace opera-

tions problem with uncertainty considerations. Given a set of aircraft AC = {1, ..., n}

navigating in a defined terminal airspace containing both arrival and departure flights
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to and from a given airport within a 30-minute time period, the objective is to com-

pute optimal schedules and routings for each aircraft such that both the total flight

plus taxi times of all aircraft and the impact of uncertainty are minimized, subject

to the following constraints:

1. Runway Constraints: the number of runway slots by aircraft type is equal to

the number of aircraft for each type considered. A runway can only be occupied

by one aircraft at any time. Each aircraft must be separated by the minimum

wake vortex separation (converted to time) at the runway threshold.

2. Waypoint Capacity Constraints: both in the air and on the surface, waypoints

can only process one aircraft at a time and aircraft must be separated at any

time by a minimum distance (or time) from any other aircraft.

3. Waypoint Precedence Constraints: when assigned to a route (air or surface),

aircraft have to follow the waypoints defining the route in order.

4. Speed Constraints: both in the air and on the surface, aircraft speeds must

remain appropriately limited by minimum and maximum allowable speeds.

5. Schedule Timing Constraints: release times and due dates respectively define

origin and destination times and must be met as closely as possible.

This problem statement holds under the following set of assumptions:

• The surface and air route network are respectively defined by the airport net-

work layout and the terminal airspace departure and arrival routes. The airport

layout is described using surface waypoints and taxiway segments and the termi-

nal departure and arrival routes are described by the STARs and SIDs procedure

waypoints. In operations, airports have standard taxi routes, therefore a set of

predefined taxi routes is generated connecting gates to runways and vice versa.

For the terminal airspace, a set of STARs and SIDs procedures are selected to

generate the set of predefined air routes. In this work, it is assumed that the
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gate assignment is determined for all flights prior to running the optimization

and used as input in simulation runs. Additionally, when a gate is assigned to a

flight, it is always assumed to be available when needed and no gating overlap

issues are considered.

• The minimum separations on the runway are computed using the combination

of rules of wake vortex separation and one aircraft on the runway at any given

time.

• Aircraft must be separated on the surface and in the air from any other aircraft

by a minimum distance that is converted into minimum separation time at the

di↵erent surface/air waypoints using the length of taxiway/flight plan segments

and aircraft speeds.

• Aircraft enter and leave the portion of considered surface/airspace through entry

and exit waypoints. Departure flight trajectories originate at gates and finish at

the last air waypoints of departure routes. Arrival flight trajectories originate

at the first air waypoints of arrival routes and finish at gates.

• A reference schedule for gate pushback, gate arrival and entry/exit air waypoint

times are assumed to be known. An uncertainty analysis using historical data

is performed to draw the probabilistic distributions describing surface and air

schedule perturbations.

3.3.2 Multi-Stage Stochastic Problem Formulation

To solve the problem previously stated in the presence of uncertainty using the

modeling previously defined, the optimization problem is formulated as a multi-stage

stochastic program.
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Decision Variables

The optimization model has two types of decision variables. Temporal variables

are used to save aircraft times at waypoints along surface taxi routes and flying paths

and are denoted tji where j 2 AC and i 2 I. Binary spatial variables are used to

establish the aircraft routes in the air and on the surface.

Objective

Integrating airport surface and terminal airspace operations for the problem pre-

viously stated in this research, consists of the minimization of a threefold objective.

For e�cient scheduling, the optimization model is designed to minimize the sum of

total travel times in the air and on the surface, i.e. flying times plus taxi times,

and maximize the on-time performance of the flights considered within a given time

window for optimization. To maximize the on-time performance of the flights con-

sidered, the earliness and tardiness of each flight must be minimized. In this problem

formulation, the earliness and tardiness of each flight is minimized at entry and exit

waypoints.

Because information about aircraft and schedules received by air tra�c controllers

becomes more certain the closer aircraft are to execution, air tra�c controller is more

likely to know with high accuracy the aircraft type mix of the aircraft set that will

depart or arrive in the next 30 minutes than the exact arrival and departure times of

each aircraft. Therefore, a decomposition by stage is appropriate and the objective

function of the stochastic scheduling is decomposed in three stages.

Stage 1 Due to wake vortex separation requirements, the runway capacity directly

depends on the aircraft weight sequence. Hence, stage 1 is a runway sequencer and

uses a reference schedule to compute the optimal sequence of aircraft types (i.e.

weight and operation) at the runway threshold such that the total sum of travel

times is minimized. Stage 1 is purely deterministic and is not a↵ected by uncertainty.
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The output of the program defining the optimal aircraft type sequence at the run-

way is a vector xi=RWY,T which can be described by the sequence of aircraft positions

at the runway, i.e. xi=RWY,T = (T (1)
CO, ..., T

(p)
CO, ..., T

(n)
CO) where p is the position such

that max(p) = n and TCO is the type of the aircraft having a weight class C and

an operation O. Define as nT the number of aircraft per type T . Denote � as the

set of all possible sequences and x 2 �. The objective of this stage is formulated in

Equation 3.1.

f1(x) =
nX

j=1

(tjexit � tjentry) 8j 2 AC (3.1)

Stage 1 computes the optimal aircraft type runway slots ordering.

Stage 2 Using an input set of release schedule scenarios, stage 2 assigns flights to the

aircraft type runway slots determined by stage 1 such that the earliness and tardiness

of optimized release times are minimized. At that point, the program does not know

the due dates. The goal is to process the aircraft as soon as possible after their release

times in order to minimize the amount of flight delay at release (i.e. minimize the

di↵erence between each aircraft start time and release time). The objective of this

stage is formulated in Equation 3.2.

f2(x) =
nX

j=1

(↵jmax{rjentry � tjentry, 0} + �jmax{tjentry � rjentry, 0}) 8j 2 AC (3.2)

where {↵j, �j} represents the earliness and tardiness costs at entry waypoints of

aircraft j 2 AC.

Stage 2 schedules and routes the aircraft using di↵erent release time schedule

scenarios as input. Because release times may be a↵ected by uncertainty, errors that

follow probabilistic distributions are introduced in the release times. Several scenarios,

each representing a set of perturbed release times, are generated and tested.

Stage 3 Stage 3 focuses on adjusting the flight assignments performed in stage 2

using an input set of due date schedule scenarios such that the earliness and tardiness
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of optimized complete times are minimized. The routing and scheduling of each

considered flight is optimized using di↵erent due date schedule scenarios in order to

maximize the on-time performance of each aircraft at its exit. Because due dates may

be a↵ected by uncertainty, errors that follow probabilistic distributions are introduced

in the due dates. The schedule and route of the objective of this stage is formulated

in Equation 3.3.

f3(x) =
nX

j=1

(�jmax{djexit � tjexit, 0} + �jmax{tjexit � djexit, 0}) 8j 2 AC (3.3)

where {�j, �j} represents the earliness and tardiness costs at exit waypoints of

aircraft j 2 AC.

To compute robust schedules, several scenarios corresponding to di↵erent sets of

due dates are generated and tested in this last stage.

Embedded 3-Stage Given the described structure, the scheduling and routing

problem is formulated as a 3-stage stochastic program.

To account for uncertainty, it is assumed that release times rjentry and flight due

dates djexit are not known with certainty. It is assumed that error sources that follow

discrete and finite probabilistic distributions are added to the di↵erent release times

and flight due dates. A scenario !l is a vector of perturbed flight times r0jentry if l = r

or d0jexit if l = d (i.e. r0jentry = rjentry+⇠jr or d
0
jexit = dexitj+⇠jd) with a corresponding

probability of occurrence. Let ⇠l = {⇠1l , ..., ⇠ml
} be the vector of perturbations ⇠jl for

scenarios of type l, l 2 {r, d} where ml is the number of scenarios of type l. Finally,

denote ⌦l as the set of all scenarios of type l, l 2 {r, d} such that ⌦l = {!1l , ...,!ml
},

where each scenario has a probability of occurrence ⇢!l
.

The errors a↵ecting the release times and the due dates are respectively introduced

in the notations with ⇠r and ⇠d. Details about the uncertainty handling will be

provided later on in this thesis. The embedded 3-stage objective function of the

optimization problem is formulated as an expected value cost function to consider all

scenario occurrences. in Equation 3.4.
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Objective
x2�

= �1f1(x) + E⇠r

⇥
�2f2(x, ⇠r) + E⇠d [�3f3(x, ⇠d)]

⇤
(3.4)

where f1(x), f2(x, ⇠r) and f3(x, ⇠d) are the respectve objectives of stage 1, 2 and

3 expressed in Equations 3.1, 3.2 and 3.3. The variables denoted by � represent the

relative objective weights of each goal and each � 2 [0, 1].

Using the linear property of expectation value, the objective function of the MILP

model becomes a weighted sum of three terms in which stages 2 and 3 are dependent.

Outputs

For each aircraft of the set considered, the outputs of the optimization provide

feasible air and surface routings as well as feasible schedules.

Constraints

The optimization model includes several constraints that need to be enforced to

ensure feasible operations both in the air and on the surface.

Runway Constraints: The first runway constraint expressed in Equation 3.5 and

the second runway constraint expressed in Equation 3.6 ensure that the number of

runway slots for each aircraft type is equal to the number of aircraft of each type,

nT , in the input data set and that only one aircraft j is assigned per runway slot at

RWY . Using the defined notations, xi=RWY,T = 1 if runway slot i = RWY is used

by aircraft type T and 0 otherwise.

X

i=RWY 2I

xi=RWY,T = nT , 8T 2 K (3.5)

X

T2K

xi=RWY,T = 1, 8i = RWY 2 I (3.6)
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The third runway constraint expressed in the Inequality 3.7 ensures that the run-

way separation requirements are met by enforcing the wake vortex separations. Con-

sider any two aircraft j1 and j2 of the aircraft set AC. Let sepj1j2i=RWY be the minimum

runway separation time enforced between aircraft j1 and j2. Denote as b a binary

variable that ensures that only one inequality is satisfied at a time per aircraft pair.

8j1, j2 2 AC, j1 6= j2,

tj1i � b(tj2i + sepj1j2i=RWY )

tj2i � (1� b)(tj1i + sepj2j1i=RWY )

(3.7)

Waypoint Capacity Constraints: The waypoint capacity constraints impose

that only one aircraft can be processed by a waypoint at a time. This is accomplished

by imposing separation requirements between aircraft at each waypoint. Consider any

two aircraft j1 and j2 of the aircraft set AC. Let sepj1j2i be the minimum separation

time enforced between aircraft j1 and j2 at waypoint i. Denote as b a binary variable

that ensures that only one inequality is satisfied at a time per aircraft pair. In this

research, aircraft can be routed on di↵erent routes Rj. Therefore, define as M1 and

M2, two penalty terms that enforces the aircraft separation as a function of the route

Rj assigned to aircraft j. The following Equation 3.8 expresses the waypoint capacity

constraints.

8j1, j2 2 AC, j1 6= j2, 8i 2 Rj1 [Rj2

tj1i � �M1 + b(tj2i + sepj1j2i

tj2i � �M2 + (1� b)(tj1i + sepj2j1i )

(3.8)

Waypoint Precedence and Speed Constraints: The waypoint precedence con-

straints and the speed constraints are naturally linked together. They enforce that

the sequence of waypoints that defines the assigned route is followed in order by the

aircraft while ensuring that aircraft speeds remain in a feasible range along the flight
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segments and taxiway segments. A route Rj assigned to aircraft j is an ordered set of

waypoints defining that route. Given a waypoint i, i 2 I, i + 1 is the next waypoint

in Rj. Denote as vji the speed of aircraft j, j 2 AC at waypoint i, i 2 I and let li$+1

be the length of segment linking waypoint i and i + 1 in the assigned route. The

following Equation 3.9 expresses the waypoint precedence constraints and the speed

constraints.

8j 2 AC, 8i 2 Rj, vji 2 [vmin
i , vmax

i ] tji+1 � tji +
li$+1

vji
(3.9)

The minimum and maximum speeds [vmin
i , vmax

i ] di↵er depending on the aircraft

type and on whether the route is on the surface or in the air.

Schedule Constraints: The release times at entry waypoint and due dates at exit

waypoint constrain aircraft operation timing variables. Because of uncertainty, the

actual aircraft release times and due dates might di↵er from schedule. On one hand,

departing aircraft must reach their entry waypoint near their pushback times (8qj =

D, rjentry = PBTj) whereas arriving aircraft must reach their entry waypoint near

their scheduled arrival times (8qj = A, rjentry = SATj). On the other hand, departing

aircraft must reach their exit waypoint near their scheduled departure times (8qj =

D, djexit = SDTj) whereas arriving aircraft must reach their exit waypoint near their

scheduled arrival gate time (8qj = A, djexit = SGTj). In this problem formulation, it

is assumed that optimized release times cannot be earlier than scheduled pushback

times, therefore 8qj = D, j 2 AC, ↵j = 0. Similarly, it is assumed that no arrival can

reach its assigned gate before its scheduled gate time, thus 8qj = A, j 2 AC, �j = 0.

Remarks on constraints: The combination of waypoint capacity and waypoint

precedence constraints ensures that aircraft are sequenced when two aircraft reach

the same waypoint at the same time and that there is no overtaking of the waypoint.

In particular, if two aircraft follow each other on the same segment and travel at
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di↵erent speeds, the aircraft order at the entrance of the segment is maintained at

the exit of the segment.

3.4 Solution Methodology

To evaluate the solution of the optimization model formulation and obtain opti-

mal candidate solutions, many schedule scenarios have to be generated and tested.

However, this would require a significant computational e↵ort. Therefore, a sampling

method is introduced to reduce the size of the scenario set to a manageable size.

The Sample Average Approximation (SAA) is chosen as the solution methodology

and allows the replacement of the expectation formulation of the stochastic program

by its sample average. As a consequence, assuming that the random variables used

to perturb the schedule scenarios follow discrete distributions with finite support,

the expectation formulation can be replaced by a finite sum and the probability of

occurrence of each scenario is given by one over the total number of scenarios.

3.4.1 Sample Average Approximation

The solution methodology chosen to solve the 3-stage stochastic program is the

Sample Average Approximation (SAA) method. Assuming that samples ⇠1, ..., ⇠N can

be generated from a random vector ⇠, where N is the sample size, the SAA method is

a Monte Carlo based technique that approximates a stochastic program by replacing

the expectation by its sample average. The stochastic program is thus replaced by

a sample average approximation that can be solved by a deterministic optimization

algorithm. In this problem, because two random vectors ⇠r and ⇠d are considered,

denote Nr and Nd as the respective number of replications of the random vectors.

Therefore, the SAA problem for the 3-stage stochastic program can be defined as in

Equation 3.10.
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Minimize
x2�

f1(x) +
1

Nr

NrX

j=1

⇣
f2(x, ⇠) +

1

Nd

NdX

j=1

f3(x, ⇠d)
⌘

(3.10)

where f1, f2 and f3 are respectively defined by Equations 3.1, 3.2, and 3.3.

In this research, because it is assumed that the random vectors ⇠r and ⇠d follow

discrete distributions with finite support of respective sizemr and md, each element of

the respective finite supports {⇠1r , ..., ⇠mr} and {⇠1d , ..., ⇠md
} has respective probability

p1r , ..., pmr and p1d , ..., pmd
. The expected value problem can then be replaced by its

equivalent using probabilities and the SAA problem for the 3-stage stochastic program

can be re-written as in Equation 3.11.

Minimize
x2�

f1(x) +
NrX

j=1

pnr

⇣
f2(x, ⇠) +

NdX

j=1

pnd
f3(x, ⇠d)

⌘
(3.11)

where f1(x), f2(x, ⇠r) and f3(x, ⇠d) are the respective objectives of stage 1, 2 and

3 expressed in Equations 3.1, 3.2 and 3.3. Equation 3.11 equivalent to Minimize
x2�

ĝ(x).

In summary, the proposed approach approximates the true stochastic problem

defined by Equations 3.1, 3.2, 3.3 and 3.4 by a SAA problem defined in Equation 3.10.

Denote ⌫⇤ and ⌫̂ as respectively the optimal objective function value of the true

problem and the optimal objective function value of the SAA problem. Shapiro and

Homem-de-Mello [63] showed that ⌫̂ converges to ⌫⇤ with probability approaching one

as the sample size increases (i.e. Nr ! 1 and Nd ! 1 in this problem). However

increasing the number of random vector realizations introduces large computational

times. Therefore, the proposed methodology suggests solving several SAA problems

with smaller sample size rather than solving one SAA problem with a large number

of random vector realizations. Define M as the number of SAA problem independent

replications. As defined previously, recall that mr and md are the respective finite

number of realizations (or scenarios) in stage 2 and stage 3. The following steps

summarize the proposed solution methodology using the SAA method:

1. For each repetition m = [1,M ]:
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(a) Generate mr and md independently and identically distributed scenarios

for each flight.

(b) For each fixed scenario m1 = [1,mr]:

i. Solve the 3-stage program, store the optimal solution for each scenario,

m2 = [1,md], and compute statistical upper bounds.

ii. A list of md solutions is obtained. Save the solution (i.e. sequence,

schedule and routing) with minimum objective function.

(c) A list ofmr solutions is obtained. Save the solution (i.e. sequence, schedule

and routing) with minimum objective function.

2. A list of M candidate solutions is obtained. Compute statistical lower bounds.

3. For each of the M solutions, compute the optimality gap and estimated vari-

ances. Choose the solution according to specific optimization goals.

The problem is formulated as a mixed-integer linear program (MILP), therefore

a global solution will be computed for each repetition. However, the values of pa-

rameters M , mr and md a↵ect the robustness of the computed optimal solutions

and the computation time. Hence, their adjustments are studied through a statistic

sensitivity analysis for which the results are presented in a later chapter.

3.4.2 Implementation

The mathematical model of the mixed-integer linear program is implemented in

Python [64] and Gurobi [65] is used as the optimization solver. The branch and

bound algorithm is selected to solve step A.(b).i of the proposed methodology. The

code is run on a Macintosh platform with 2.5GHz Intel Core i5 and 16 GB RAM.

To accelerate the computation time, a multi-threading approach is implemented to

compute each repetition individually with one thread. Note that the relative weight

�s, � 2 [0, 1] are set to 1 in this particular implementation.
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4. Application: A Los Angeles Case Study

The Los Angeles International Airport (LAX) and its surrounding terminal airspace

have an interesting layout that o↵ers room for potential operational improvements.

Therefore, the proposed methodology is applied to a Los Angeles case study which

is described in this chapter. In Section 4.1, the LAX airport surface and surround-

ing terminal airspace network layouts are first described. Then in Section 4.2, the

Los Angeles problem formulation is provided along with the adapted mathematical

derivations. A proof-of-concept study supporting the evidence of integrated opera-

tions benefits for the Los Angeles case study is conducted in Section 4.3. This study

focuses on exemplifying the benefits of integrated operations over First-Come-First-

Served operations and deterministic conditions are implemented. To model the un-

certainty a↵ecting the considered Los Angeles environment, a data driven analysis of

uncertainty sources is then conducted in Section 4.4. In Section 4.5, the methodology

performance is assessed in the presence of uncertainty with a sensitivity analysis.

4.1 Los Angeles International Airport Surface and Surrounding Terminal

Airspace Network Layout

In this section, the LAX airport surface and surrounding terminal airspace are

described along with their associated surface and air route network layout represen-

tations. The airport surface and terminal airspace network layouts are described by

a set of nodes and links respectively denoted by waypoints (surface and air) and

segments (taxiway and flight).
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4.1.1 Airport Surface Description

LAX is a major airport in the United States characterized by busy activities (com-

mercial and cargo), large numbers of travelling passengers and aircraft movements,

i.e. takeo↵ and landing. As of today, LAX is the 5th busiest airport in the world with

16, 416, 281 passengers that travelled this year as of March 2015 [66]. LAX has nine

passenger terminals, eight domestic and one international called the Tom Bradley

International Terminal (TBIT). The airport has four parallel runways organised in

pairs. In the northern airfield, operational runways are 6R/24L and 6L/24R and in

the southern airfield, operational runways are 7R/25L and 7L/25R. In current oper-

ations at LAX, both sets of parallel runways are in operation, and most commonly

outboard operations are arrivals and inboard operations are departures.

This research focuses only on the northern airfield. Although it is not necessarily

common practice at LAX, departures and arrivals are considered to operate on the

same runway 24L to show the benefits of integrated operations. In the airport surface

modeling, runway 24L is represented by waypoint RWY . For the airport surface

layout representation, the LAX airport diagram, provided in Figure 4.1, is spatially

discretized in terms of gates and taxiway intersections.

Figure 4.1. LAX Airport Diagram
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Because runway 24L is located in the northern airfield, this study only considers

gates and taxiways that commonly connect runway 24L. Based on flight gate assign-

ment observations and common practices, it is assumed that flights operating on the

northern airfield runways serve terminals 1 (T1), 2 (T2), 3 (T3) and international

(TBIT). Other gates and taxiways that connect the southern airfield of the airport

are not modeled. Figure 4.2 illustrates the corresponding node-link network layout

of the LAX northern resources used in the optimization. It can be observed that

there is no ramp area by terminal TBIT, which means that there is single lane and

that aircraft enter the taxiway system only once cleared to do so. The grey area on

Figure 4.2 indicates that only the northern gates of terminal TBIT are considered.

Runway 24L Taxiways Ramps Gates

Figure 4.2. Node-Link Network Layout for LAX Northern Resources

4.1.2 Terminal Airspace Description

The interactions between arrivals and departures in the northern flows of the

Los Angeles terminal airspace constitute an interesting case study because of their

complex natures and layouts. Figure 4.3 shows arrival and departure routes based on

the published SADDE6 STAR and CASTA2 SID for the Los Angeles International
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Airport (LAX), where STAR stands for Standard Terminal Approach Route and SID

for Standard Instrument Departure.

Figure 4.3. Route Interactions Between Arrivals and Departures in
the LA Terminal Airspace

The SADDE6 procedure stipulates that arrivals coming from fix FIM should fly

toward fix SMO via SYMON, SADDE and GHART fixes. Departure flights to the

North need to follow the SID procedure CASTA2. According to CASTA2, departures

takeo↵ from Runway 24L (represented by RWY in this model) and fly toward WPT11

via NAANC and GHART fixes.

GHART is the shared resource between SADDE6 and CASTA2 procedures. In this

work, SADDE6 and CASTA2 are denoted indirect routes for simplicity. Moreover,

this model assumes that arrivals and departures operate on the same runway 24L

(represented by RWY) to make this study more interesting and the scheduling more

challenging. In current operations, altitude constraints are imposed at fix GHART �

arrival flights are required to maintain their altitude above 12, 000 feet and departure

flights below 9, 000 feet and this forces flights to fly by WPT1 and WPT2. However,

1WPT1 is a waypoint made-up to simplify the route descriptions
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Figure 4.3 illustrates that if there were no flow interactions, arrivals and departures

could fly more direct routes, share resources and save flight times. A direct route for

departures would be RWY-WPT22-WPT1 and a direct route for arrivals would be

FIM-WPT1-SMO.

Timar et al. [67] showed that in current operations of the Los Angeles terminal

airspace, 28.1% of LAX arrivals follow SADDE6 and 10.4% of LAX departures follow

CASTA2. This can be converted to 220 arrivals and 80 departures in a typical tra�c

day. In this research, the application focuses on these partial flows and published

standard arrival and departure procedure fixes/waypoints represented in Figure 4.3

are used to model the airspace and flight plan routes. In this work, fixes and air

waypoints are interchangeable denominations.

4.2 Los Angeles Model Formulation and Operational Concepts

4.2.1 Model Application

For this application, the objective function of the proposed methodology expressed

in the previous chapter is adapted to the defined model of the Los Angeles airport

surface and terminal airspace. The previously described stage objectives are updated

for this application and are expressed in the following Equations 4.1, 4.2 and 4.3.

f1(x) =
nX

j=1

tjWPT1 � tjentry entry 2 {T1, T2, T3, TBIT} if qj = D

tjexit � tjFIM exit 2 {T1, T2, T3, TBIT} if qj = A
(4.1)

2WPT2 is a waypoint made-up to simplify the route descriptions
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For each scenario !r,

If qj = D, entry 2 {T1, T2, T3, TBIT}

f2(x, ⇠r) =
nX

j=1

(↵jmax{rjentry � tjentry, 0}+ �jmax{tjentry � rjentry, 0})

If qj = A

f2(x, ⇠r) =
nX

j=1

(↵jmax{rjFIM � tjFIM , 0}+ �jmax{tjFIM � rjFIM , 0})

(4.2)

For each scenario !d,

If qj = D

f3(x, ⇠d) =
nX

j=1

(�jmax{djWPT1 � tjWPT1, 0}+ �jmax{cjWPT1 � tjWPT1, 0})

If qj = A, exit 2 {T1, T2, T3, TBIT}

f3(x, ⇠d) =
nX

j=1

(�jmax{djexit � tjexit, 0}+ �jmax{tjexit � djexit, 0})

(4.3)

The methodology can be used with deterministic and stochastic settings. On one

hand, in order to simulate deterministic conditions, a single repetition of the SAA

methodology is run using a generated reference schedule scenario and setting the

number of scenarios of stage 2 and stage 3 to zero. On the other hand, in order to

simulate stochastic conditions, multiple repetitions of the SAA methodology can be

run using a generated reference schedule scenario and di↵erent numbers of scenarios

in stage 2 and stage 3. The number of scenarios in stage 2 and stage 3 can be varied

and this will be investigated in a later section of the chapter.

4.2.2 Operational Concepts

To model airport surface operations that stick with current procedural factors

and controller considerations, taxiways are considered unidirectional and dynamic
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aircraft routing is not investigated. Moreover, because taxi routes are generally gen-

erated based on runway and gate assignments, several taxi routes are determined

for each gate and runway pair. A set of predefined taxi routes is generated before

the scheduling and for each aircraft, optimal routes will be selected from the set. In

Figure 4.2, ramp areas serve as aircraft sources and sinks; displacements in the ramp

areas are not modeled. Once an aircraft has pushed back from the gate, it will appear

at a source point located in the ramp area close to the gate where the aircraft was

parked. For arrivals, once aircraft reach the ramp area close to the assigned gate,

they disappear and the gate is considered as used.

The early cost parameter ↵j is fixed to a large value when qj = D to avoid early

release departures from the gates. Moreover for flexibility and for both arrivals and

departures, late release times and early or late completion times are not penalized,

i.e. if qj = A or qj = D, �j = �j = �j = 1. However, delaying aircraft in the sky, i.e.

creating airborne delay, is more expensive than delaying aircraft on the ground, i.e.

creating ground delay. Therefore, the penalty on late arrivals at the gates is set such

that the cost of creating airborne delay for arrivals is twice that of creating ground

delay for departures, i.e. if qj0 = A and qj = D, �j0 = 2�j.

4.2.3 Separation Strategies

As mentioned previously, this research implements temporal separation controls

between aircraft at all times. To show the benefits of using shared resources in the

spatial dimension, this research also investigates spatial-based separation methods in

which temporal controls are implemented by default. The spatial separation strat-

egy only uses the indirect routes defined by the surface and air waypoints that are

currently operated to separate aircraft. The hybrid separation strategy additionally

allows both surface and air direct routes to be travelled.

In the formulation of the hybrid separation method, two di↵erent types of decision

variables are defined for each flight: timing variables at each waypoint and a routing
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variable. For both arrival and departure flights, the routing variable is the route

option flown: 0 for indirect and 1 for direct.

Longitudinal separation constraints are imposed at all times between all aircraft

pairs. In the air, a distance separation requirement of 4 nmi is imposed between all

aircraft pairs (according to Capozzi et al. [21]) and converted into time scale via the

speed of the leading aircraft of each pair. At the runway, wake vortex separations are

enforced between all aircraft pairs. The corresponding separation values are imposed

according to the FAA regulations [61] and Windhorst et al. [62] for all possible aircraft

pair types and they are presented in Tables 4.1, 4.2, 4.3 and 4.4.

Table 4.1. Wake Vortex Separations Between Consecutive Arrivals on
a Single Runway (sec)

Aircraft
Follower

Heavy B757 Large Small

Heavy 96 138 138 240

Leader
B757 96 108 108 198

Large 60 72 72 162

Small 60 72 72 102

Table 4.2. Wake Vortex Separations Between Consecutive Departures
on a Single Runway (sec)

Aircraft
Follower

Heavy B757 Large Small

Heavy 90 90 120 120

Leader
B757 90 90 120 120

Large 60 60 60 60

Small 60 60 60 60
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Table 4.3. Wake Vortex Separations Between Leading Arrivals Fol-
lowed By Departures on a Single Runway (sec)

Aircraft
Follower

Heavy B757 Large Small

Heavy 68 68 68 80

Leader
B757 68 68 68 80

Large 62 62 62 80

Small 48 55 55 80

Table 4.4. Wake Vortex Separations Between Leading Departures
Followed By Arrivals on a Single Runway (sec)

Aircraft
Follower

Heavy B757 Large Small

Heavy 24 28 28 40

Leader
B757 24 28 28 40

Large 24 28 28 40

Small 24 28 28 40

In this research, altitude restrictions are assumed to be satisfied at all times. A

constraint on maximum allowed amount of speed change on surface and flight seg-

ments between two consecutive waypoints is added to prevent steep speed gradients.

No more than 20% speed di↵erence is allowed between any two consecutive waypoints.

4.2.4 Controller Intervention Considerations

In the case of integrated operations, temporal controls must be computed at the

shared resources, i.e. surface and air waypoints, to ensure collision-free traveling. In

order to simulate the resolution of such conflicts, the controller behavior is modeled

as the number of times aircraft speed clearances must be communicated to the pilots.
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4.3 Supporting Benefit Evidences of Integrated Operations for the Los

Angeles Case Study

In this section, a proof-of-concept is conducted under deterministic conditions as

a preliminary run to show the benefits of integrated operations for the Los Angeles

case study. The intention is to provide evidences that the solution obtained using

the developed methodology without uncertainty is a candidate to save total and

individual of both taxi and flight times without increasing drastically the number of

controller interventions. The optimization setup used for evaluation is first provided

and is followed by the presentation of the results.

4.3.1 Proof-of-Concept Setup

Reference Tra�c Scenario and Aircraft Mix

An analysis of flight records was performed using data from the Bureau Trans-

portation Statistics (BTS) Airline On Time Performance database for LAX in 2012.

The analysis shows that an average of 1, 238 flights operated daily that year. In De-

cember 2012, a total of 36, 334 flights were recorded with specifically 1, 143 flights on

December 4th. This particular day, there were 572 arrivals and 571 departures. A

more detailed analysis demonstrates that 37 flights were scheduled to depart and to

arrive at LAX between 9 : 00AM and 9 : 30AM that day. To construct a realistic

tra�c scenario, flight numbers that operated at LAX on December 4, 2012 between

9 : 00AM and 9 : 30AM are extracted from the BTS Airline On Time Performance

database. In this study case, only the northern airfield is considered, therefore only

flights operating at terminals T1, T2, T3 and TBIT are used to compose a representa-

tive tra�c scenario. The analysis demonstrates that about 14 flights, 8 arrivals and 6

departures, were operating that morning during the 30 minute time period of interest.

Therefore, the tra�c scenario designed for this study is composed of 8 arrivals from

FIM and 6 departures to the North from Runway 24L (RWY). The aircraft types are
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found using the di↵erent flight numbers and the reference schedule scenario is formed

using the corresponding flight schedules.

Table 4.5 presents the reference schedule and details the scheduled departure and

arrival times of the flights. These times are relative to simulation start time and the

flights are listed in chronological order.

Table 4.5. Reference Schedule

Order 0 1 2 3 4 5 6 7

FIM (seconds) 39 446 728 1106 1332 1475 1613 1770

RWY (seconds) 68 165 363 529 1613 1830 NA NA

The constructed reference schedule represents scheduled pushback times for de-

partures (i.e. release times) and reference scheduled gate times for arrivals (i.e. due

dates). For a departure, a reference due date (i.e. scheduled flight time by WPT1)

is computed by adding the unimpeded taxi time and the unimpeded flight time to

the reference pushback time. For an arrival, a reference release time (i.e. scheduled

arrival time by FIM) is computed by subtracting the unimpeded flight time and the

unimpeded taxi time from the reference gate arrival time. For both computations, it

is assumed that no other tra�c is on the surface or in the air.

The corresponding fleet mix used for testing purposes in this work is composed

of 14 aircraft, described in Table 4.6, and is to be scheduled and routed within the

30-minute time period of the reference schedule presented in Table 4.5.

Table 4.6. Aircraft Fleet Mix

Order A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

Weight H L S S L L L L S L H L L L

Operations A A A A A A A A D D D D D D
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Speed and Separation

Along each route, in particular along every waypoint pair-based route segments,

aircraft of all types can travel within a speed range such that v 2 [vmin, vmax]. On

the airport surface, the speed range for all aircraft is set to be [8, 16] kts, whereas in

the air, aircraft speed ranges are di↵erent for departures and arrivals and these are

respectively set to be [180, 250] kts and [280, 350] kts. These air speed ranges are used

for any air route segment. Moreover, aircraft must be separated at any time to avoid

any potential collisions. There are three considered types of separation requirements

that depend on the aircraft situation. First, any pair of aircraft must always be

separated by a minimum distance of 200 meters when moving along the taxiways

according to Roling et al. [4]. Second, minimum inter-operation spacings for wake

separation must be enforced between any two aircraft on the runway. These separation

minima depend on the aircraft weight class and whether aircraft are departures or

arrivals. In this proof-of-concept case study, a single runway is used for both arrivals

and departures. Therefore, there are four di↵erent types of aircraft pairs that can

potentially be formed: DD, AA, DA and AD. The wake vortex separation minima

used in this implementation are obtained from [61, 62]. Finally, all aircraft pairs

that are flying on the same tra�c flow are separated using temporal controls. These

temporal controls are obtained by converting a spacing distance of 4 nautical miles

(nmi) (according to Capozzi et al. [21]) into time via the speed of the leading aircraft

of each pair.

SAA Setup

The proposed methodology is stochastic in nature but deterministic conditions

can also be setup and tested. In this proof-of-concept case study, the spatial and

hybrid separation methods are compared without the presence of uncertainty. The

previously constructed reference schedule is used and the number of scenarios of each

stage in the multi-stage formulation is set to zero (i.e. mr = md = 0). No errors are
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added to the flight times. The problem is implemented as a Mixed Integer Linear

Program (MILP).

4.3.2 Evaluation Criteria and Metrics

Two types of criteria are used to evaluate the performance of the optimization

model proposed to solve the integrated airport surface and terminal airspace opera-

tions problem.

The first criterion is the computational speed and in practice faster algorithms are

preferred. However, the computational speed is a↵ected by the implementation and

tra�c scenarios tested, the programming language chosen, the optimization solver

selected and the machine or server used to run the program.

The second criterion is related to the optimization to evaluate its performance.

The optimization a↵ects both the surface and the air operations. Therefore, di↵er-

ent metrics are defined to evaluate the surface and air solutions, i.e. schedules and

routings, for the considered aircraft set. On one hand, for the surface operations,

total and individual taxi times, runway sequence and departure gate waiting times

are computed. On the other hand, for the air operations, total and individual flight

times, routing options and number of controller interventions are computed.

Overall the optimal solution that encompasses both surface and air characteristics

is selected such that the objective function is the smallest. This translates into a

solution that provides the smallest total travel time and schedule delay.

4.3.3 Benefit Evidences of Integrated Operations

As previously mentioned, this proof-of-concept case study is conducted under

deterministic settings. For baseline comparison, a First-Come-First-Served (FCFS)

algorithm is implemented for both surface and air operations. The metrics previously

defined are used to illustrate the results.
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First-Come-First-Served Comparison Approach

To assess the benefits of optimization, a First-Come-First-Served (FCFS) sched-

uler algorithm is implemented as a baseline case. In this algorithm, aircraft are han-

dled in the order prescribed by the reference schedule such that no delay is permitted

for the first scheduled flight and aircraft are separated using the spatial separation

method. Moreover, it is assumed that the surface and air route assignments of each

aircraft is specified in advance. All aircraft are routed on the surface using the longest

taxiway paths and are routed in the air using indirect routes. The set of constraints

prescribed for this algorithm formulation enforces aircraft separations at all nodes

and all times. The FCFS scheduler generates the runway sequence and the schedules

for all flights at any nodes.

Results

In both FCFS and MILP solutions, all aircraft were successfully routed to their

destinations without any spatial or temporal conflicts. The 30-minute 14-aircraft

tra�c scenario was run in 40 seconds by the FCFS algorithm whereas it took ⇠ 240

seconds for the MILP algorithm.

Surface-Side Results To compare the obtained ground-side results for both FCFS

and MILP formulations, total and individual taxi times are computed. In Table 4.7

total surface times are provided as well as the total surface time reduction enabled

by the MILP over the FCFS formulation.

Table 4.7. Comparison of Total Taxi Times - Proof-of-Concept

FCFS MILP Total Surface Time Reduction

8391s 7728s 7.9%
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To present the individual taxi times of the 14 aircraft considered, Box and Whisker

plots are drawn in Figure 4.4. Box and Whisker plots provides a visual representation

of the surface time range and the surface time median of both FCFS and MILP

solutions.

Figure 4.4. Comparison of Individual Taxi Times - Proof-of-Concept

Figure 4.4 shows that for both arrival and departure surface movements, the MILP

formulation enables taxi time savings. In particular, the taxi time range of departing

flights is reduced. With the MILP formulation, departing flights travel along shortest

taxi routes. Regardless of their starting terminal, the departing flights have more

similar taxi time length among one another with the MILP than with the FCFS

approach. However, a slight increase of arrival taxi time range is computed for the

MILP but the increase is not significant. Additionally, the MILP formulation allows

a taxi time median decrease for both departures and arrivals. For arrivals, although

the taxi time range is slightly increased by the MILP, the taxi time median is reduced.
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The average taxi time values are represented in Figure 4.5. The MILP formulation

reduces 15.6% the average taxi times of departing flights and 4% the average taxi times

of arrival flights.

Figure 4.5. Comparison of Average Taxi Times - Proof-of-Concept

The runway sequence and associated timeline solutions computed by both ap-

proaches are represented in Figure 4.6.

With the MILP formulation, all flights are scheduled earlier than with the FCFS

formulation because aircraft are assigned to travel along shorter for both surface and

air routes. Because of the tra�c load, the makespan of the runway schedule solutions

is the same for both algorithms. However, it can be noticed that in the MILP runway

sequence solution, the departure flights are scheduled earlier than arrival flights com-

pared to the FCFS runway sequence. The aircraft mix of the reference tra�c scenario

does influence the computed runway sequence especially because departure-arrival air-

craft pairs have lower wake vortex separations than arrival-departure aircraft pairs.

To fully satisty the imposed surface separation constraints between aircraft from the

gates to the runway, the tra�c scenario schedule initially provided induces takeo↵
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Figure 4.6. Comparison of Runway Sequences - Proof-of-Concept

delays for departing flights. Figure 4.7 illustrates the computed takeo↵ delays for

both FCFS and MILP.

The surface routing and runway sequence computed under the MILP approach

allow a takeo↵ time delay reduction of 22% for departing flights that was initially

imposed by the tra�c scenario schedule. The MILP formulation produces solutions

with lower taxi times and more direct routings than the FCFS approach. However,

the MILP formulation only releases aircraft on the taxiway system is the taxiway

route is cleared of delay. Therefore, in order to meet the computed takeo↵ slots

at the runway, the MILP formulation induces some departure delays at the gates.

Figure 4.8 represents the average gate waiting time for departing flights out of the

four di↵erent considered terminals.

By routing aircraft on longer taxi routes, the FCFS does not induce any gate delay

times. However, for the MILP solution, a total of 157 seconds of delay is created at

T1 and a total of 74 seconds of delay is created at T2.
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Figure 4.7. Comparison of Takeo↵ Time Delay - Proof-of-Concept

Figure 4.8. Comparison of Gate Waiting Time For Departures - Proof-of-Concept
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Airspace-Side Results To compare the obtained air-side results for both FCFS

and MILP formulations, total and individual flight times are computed. In Table 4.8

total flight times are provided as well as the total flight time reduction enabled by

the MILP over the FCFS formulation.

Table 4.8. Comparison of Total Flight Times - Proof-of-Concept

FCFS MILP Total Flight Time Reduction

6843s 5880s 14%

To present the individual flight times of the 14 aircraft considered, Box and

Whisker plots are drawn in Figure 4.9. Box and Whisker plots provides a visual

representation of the flight time range and the flight time median of both FCFS and

MILP solutions.

Figure 4.9. Comparison of Individual Flight Times - Proof-of-Concept

Figure 4.9 shows that for both arrival and departure flights, the MILP formula-

tion enables flight time savings. The MILP formulation allows flights to fly on direct
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routes. Therefore, the flight time median is reduced for all flights. However, it can be

observed that the savings are higher for departing flights. In particular, the computed

flight time for all departures is decreased from 440s to 315s and no airspeed adjust-

ment is needed. However, in order to satisfy the separation requirements, airspeed

adjustments are imposed to arrival flights which in consequence a↵ects the corre-

sponding flight times and these are not decreased as much. At the shared waypoint

GHART, controller interventions are needed to communicate speed clearances. In

this proof-of-concept, 3 controller interventions are computed.

Integrated Operations Discussion

For both the surface and the air operations, the MILP enables travel time savings

when compared to the FCFS algorithm. The optimal integrated routing that is

computed o↵ers a more e�cient routing which results in a better aircraft sequencing

than the one computed with the FCFS algorithm. Moreover, the computed schedule

allows more e�cient operations that benefits from using shared resources. Results

and associated benefits are however tra�c scenario-dependent. For this particular

proof-of-concept, it is to be noted that the FCFS algorithm did generate takeo↵ time

delays. Thanks to better routing, the MILP formulation was able to reduce the takeo↵

time delay imposed by the schedule tra�c scenario. Additionally, it is observed that

the FCFS did not generate gate delays whereas the MILP approach did. In the FCFS,

the longer surface and air routings covered up for the delays generated by the MILP.

For an airline stand point, delaying aircraft at the gate might not necessarily be good

for meeting the on-time departure D0 metric but the trade-o↵ enabled by traveling

on shorter routes does help reducing fuel consumption. For a FAA surface air tra�c

controller, taxiway congestion are hard to handle. If delaying aircraft at the gate

helps taxiway tra�c to be more fluid, controllers can provide better surface routing

which can help flights in return to meet their take-o↵ runway slot.
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4.4 Data Driven Analysis of Uncertainty Sources

Uncertainty a↵ects flight scheduling on the airport surface and in the terminal

airspace. Uncertainty can be caused by many sources such as perturbations a↵ecting

the boarding process, low visibility conditions on the taxiway system, inaccurate

wind predictions, errors in aircraft dynamics or human factors. A data analysis is

conducted to understand and model the uncertainty sources a↵ecting both the airport

surface and the terminal airspace.

4.4.1 Surface Sources

In this research, it is assumed that on the airport surface, scheduled runway

departure times are impaired by pushback and taxi-out delays and that scheduled

gate arrival times are altered by taxi-in delays. Therefore, an uncertainty analysis

is conducted using 881, 496 data points from the Bureau of Transportation Statistics

(BTS) Airline On-Time Performance Database for LAX and for the year 2012. An

approximation of pushback delay distribution is obtained for departures by comput-

ing pushback delay as the di↵erence between scheduled and actual pushback time.

An approximation of arrival gate delay distribution is obtained by computing the dif-

ference between actual and scheduled arrival gate time. In order to generate schedule

scenarios that will be used as inputs for stage 2 and stage 3, error sources drawn from

these two obtained distributions are respectively added to reference departure release

times and reference arrival due dates. It ensures that the scenario set tested is com-

posed of realistic schedule scenarios perturbed around the reference schedule. The

resulting distributions and associated fits obtained from the BTS data are represented

in Figure 4.10 and Figure 4.11.

The departing time error from the gates can be described by a lognormal dis-

tribution with a mean of 20.4 seconds and a standard deviation of 166.8 seconds.

Airlines are driven by the on-time performance metric D0, so they try to ensure that

aircraft push back before scheduled departure times. However, uncertainty coming
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Figure 4.10. Pushback Delay Distribution

Figure 4.11. Arrival Gate Delay Distribution
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from a delayed boarding processe or a late equipment change does a↵ect the actual

pushback time.

The arrival time error to the gates can be described by a normal distribution with

a mean value of �265.8 seconds and a standard deviation of 708.6 seconds. Airlines

block large chunks of time from departure to arrival to capture and recover from any

delays that can perturb a flight. A late pushback does not necessarily induce a late

arrival.

4.4.2 Air Sources

In the air, error sources drawn from normal distributions are added to both ref-

erence departure due dates and reference arrival release times. It was found in the

literature that normal distributions can be used to represent the uncertainty a↵ect-

ing both arrival and departure flight times. Based on common values used as desired

prediction accuracy in previous work conducted on arrival trajectory [68,69], a mean

of 0 seconds and a standard deviation of 30 seconds are selected for the arrival time

error. For the departure time error, a mean value of 30 seconds and a standard devi-

ation of 90 seconds are setup based on the departure Call For Release, three-minute

time compliance window [70]. Figure 4.12 provides an illustration for the terminal

airspace.

4.5 Sensitivity Analysis and Methodology Performance Assessment for

the Los Angeles Case Study

The proof-of-concept case study previously described was conducted without un-

certainty considerations. Moreover, a data-driven analysis was conducted to compute

the probabilistic distributions of uncertainty sources a↵ecting the airport surface and

the terminal airspace operations. In this section, di↵erent parameter value inputs for

the implementation of the Sample Average Approximation method are investigated.

The goal is to understand how they a↵ect the methodology performance by perform-
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WPT1

Perturbations of 
departure due dates at 

WPT1

Perturbations of arrival 
release times at FIM

Figure 4.12. Error Sources in the Terminal Airspace

ing a sensitivity analysis. The number of scenarios in each stage of the multi-stage

formulation is varied and the impact of uncertainty is analysed. A statistical anal-

ysis is conducted where the hybrid separation method is implemented because the

proof-of-concept experiment results show that greater savings could be obtained if

aircraft fly direct routes. In the preliminary, the statistical bounds are derived for the

problem. Then the computation setup details the values of the parameters tested.

Finally, computation tables and analysis of the statistics are provided. The goal is

to determine the number of scenarios needed to get robust optimal solutions for a

fixed number of repetitions when applying the proposed methodology in reasonable

computation time.
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4.5.1 Statistical Metrics

To solve the stochastic program, the SAA methodology prescribes to solve M

SAA independent problems with mr and md independent samples in each. Denote

respectively as ⌫⇤ and ⌫̂, the optimal objective function of the true problem and of

the SAA problem. For each replication m, m 2 [1,M ], the program computes ⌫̂m and

x̂m that respectively refer to the value of the optimal objective function and to the

solution of the mth replication. According to Ahmed and Shapiro [71] an unbiased

estimator of E[x̂m] can be described by Equation 4.4.

⌫̄M =
1

M

MX

m=1

⌫̂m (4.4)

Because E[⌫̂m]  ⌫⇤ by definition, Equation 4.4 is a statistical lower bound to

⌫ . An estimate of the variance of the lower bound estimator can be expressed in

Equation 4.5.

S⌫̄M =

vuut 1

M(M � 1)

MX

m=1

(⌫̂m � ⌫̄M)2 (4.5)

These formulas are computed in step 2. of the SAA methodology.

To compute statistical upper bounds of ⌫⇤, consider a feasible solution x̂m of

the problem at repetition m. This procedure is applied in step 1.(b).i of the SAA

methodology. To compute an estimate of the true objective value ĝ
0
(x̂m) at point x̂m

for repetition m, one can generate independent samples of size m
0
r and m

0
d compute

the quantity defined in Equation 4.6. In this work, m
0
r and m

0
d are numbers of extra-

scenarios of type r and d and m
0
r = m

0
d.

ĝ
0
(x̂m) = f1(x̂

m) +
m

0
rX

n=1

pnr

⇣
f2(x̂

m, ⇠r) +

m
0
dX

n=1

pnd
(f3(x̂

m, ⇠d))
⌘

(4.6)

An estimate of the variance of the upper bound estimator can be expressed in

Equation 4.7.
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Sĝ0 (x̂m) =

vuut 1

m0
r(m

0
r � 1)

m0
rX

n=1

(ĝ(x)� ĝ0(x̂m))2 (4.7)

Finally, to characterize the di↵erences between upper and lower bounds, the op-

timality gap is computed for each repetition in step 3 of the SAA methodology al-

gorithm along with the estimated variance. For each solution x̂m, m = [1,M ] both

quantities can be expressed in Equation 4.8 and Equation 4.9.

ĝ
0
(x̂m)� ⌫̄M (4.8)

S2
⌫̄M + S2

ĝ0 (x̂m)
(4.9)

4.5.2 Performance Assessment Computation Setup

In this section, a computation setup is defined to compute the statistical bounds

previously derived in four di↵erent cases. The number of repetitions is fixed toM = 50

and the number of extra-scenarios m
0
r and m

0
d are fixed to 10, 000. Each test case

explores a di↵erent number of scenarios mr and md such that mr = md. Table 4.9

summarizes the values of tested parameters.

Table 4.9. Computation Setup

Parameters Case 1 Case 2 Case 3 Case 4

M 50 50 50 50

mr = md 10 100 1,000 10,000

m
0
r = m

0
d 10,000 10,000 10,000 10,000

The optimization is performed on the Los Angeles terminal airspace proof-of-

concept case study with stochastic settings where the hybrid separation is imple-

mented to separate the set of 14 aircraft. To save computation time, multi-threading
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is implemented. Because all repetitions are independent from one another, one thread

is assigned to one-repetition computations.

4.5.3 Performance Assessment Computation Results

For each case, the SAA methodology described in the previous section is applied,

statistical bounds are computed at each repetition and respective case computation

times are recorded. In order to compare the di↵erent test cases and show the e↵ect

of increasing the number of scenarios (mr = md) on the results, a Box and Whisker

plot is drawn to represent the objective variance distribution of the results of each

test case. The resulting plot is presented in Figure 4.13. For all box plots, the box

extends from lower to upper quartile value of the objective variance with a line at

median. The bottom and top horizontal lines represent the whiskers and they extend

the box to show the range of the data from minimum to maximum.

Figure 4.13. Objective Variance Distributions
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Two main observations can be drawn from Figure 4.13. First, the visible data

spread, i.e. objective variance spread, between maximum and minimum decreases as

the number of scenarios increases. It is 84 seconds when the number of scenarios is

set to 10 whereas it is 13 seconds when the number of scenarios is set to 10, 000 and

neglecting the outliers. Second, the median decreases from 186s to 166s when the

number of scenarios increases from 10 to 10, 000. Therefore, Figure 4.13 shows that

results are more robust for larger numbers of scenarios.

Additionally, Table 5.2 presents the computation times of the three di↵erent test

cases.

Table 4.10. Computation Times

Case 1 Case 2 Case 3 Case 4

Computation Times (seconds) 127.89 251.34 1296.57 12498.85

Case 1 with 10 scenarios is the fastest to run (⇠ 2.1 min) whereas case 4 with

10, 000 scenarios is the longest to run (⇠ 206.8 min). Although Figure 4.13 shows

that case 4 has the least dispersed results, it takes about 206.8 minutes (⇠ 3.45 h) to

run, whereas for case 2 and case 3 it respectively takes 4.2 minutes and 21.6 minutes

to run. From case 2 to case 3, increasing the number of scenarios from 100 to 1, 000

enables a 2.78% median decrease of the objective variance at a 5x computational cost

increase. From case 2 to case 4, increasing the number of scenarios from 100 to 10, 000

enables a 7.78% median decrease of the objective variance at a 49x computational

cost increase. Therefore for this computation experiment, case 2 is the best setup

and presents a good compromise between variance result and computation time.

Case 2 spread is about 50 seconds, this tends to cost uncertainty of results from

previous section. Table 4.11 presents detailed statistics computations of test case 2

when applying the SAA methodology. For simplicity and illustration purposes, results

corresponding to a few repetitions, i.e. 0th, 10th, 20th, 40th, and 49th, are provided.

In this table, the first column is the repetition number, the second column is the
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estimated upper bound of the objective function with estimated variance displayed

in column three. Column four is the estimated lower bound of the objective function,

column five displays the estimated optimality gap along with its variance in column

six. The two last quantities underneath the table correspond to the overall repetition

lower bound of the objective and its associated variance.

Table 4.11. SAA Detailed Statistical Results For Case 2

m ĝ
0
(x̂m) S2

ĝ0 (x̂m)
⌫̂m
N Gap Var

0 19957.5 141.4 19859.9 66.2 200.6

10 19916.5 108.5 19810.4 115.7 167.7

20 19902.7 109.9 19829.6 96.6 169.1

40 19899.5 119.2 19830.4 95.8 178.4

49 19893.4 127.9 19807.9 118.3 187.2

⌫̄M = 19826.2

S2
⌫̄M = 59.2

4.5.4 Performance Assessment Analysis

The results of the statistical bounds computations show that using large numbers

of scenarios produces more robust results but at the expense of large computation

times. However, it was found that decent robustness could be found in reasonable

computation time for the reference schedule and stochastic settings considered. In

particular for the proof-of-concept case study, robust solutions can be computed when

the number of scenarios is set to 100. According to variance results of this section,

fixing the number of scenarios to 100 for both stage 2 and stage 3 for the Los Angeles

case study can be qualified as a good trade-o↵ between providing robust results and

computation time.
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5. Simulations of Increasing Tra�c Density for Integrated

Operations in the Presence of Uncertainty

In this chapter, simulations of increasing tra�c density are performed for integrated

operations in the presence of uncertainty. In previous chapter, evidences of integrated

operation benefits over First-Come-First-Served operations were demonstrated. The

intention of this chapter is to test the proposed methodology on di↵erent tra�c load

scenarios and understand the associated computed solutions. Two simulation studies

are conducted. In Section 5.1, the first study only focuses on integrated terminal

airspace operations whereas in Section 5.2, the second study extends the considered

integrated operations to the airport surface.

Simulation - Sample Average Approximation Parameters Setup To evalu-

ate the simulation results in the following two sections, the spatial and hybrid sep-

aration methods are compared under deterministic and stochastic conditions. Using

the results obtained from the methodology sensitivity analysis presented in previ-

ous chapter, Table 5.1 is used to parameterize the methodology for the two di↵erent

uncertainty conditions. The deterministic case is used as a baseline solution for com-

parison.

Table 5.1. Uncertainty Experiment Parameters Setup

XXXXXXXXXXXXXXXXXX
Parameters

Conditions
Deterministic Stochastic

M 1 50

mr 0 100

md 0 100
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5.1 Integrated Arrivals and Departures

In this section, the integration of arrival and departure operations is considered.

Di↵erent tra�c load scenarios applied to the Los Angeles terminal airspace are created

in which the number of aircraft is varied. Simulations are run on light, medium, large

and heavy tra�c scenarios. The simulations setup is first described, the metrics used

for comparison are then defined and finally the results are presented.

5.1.1 Simulations Setup

The simulations setup describes the tra�c scenarios and aircraft mix considered,

the flight schedule generation and the sources of uncertainty modeled in the terminal

airspace.

Tra�c Scenarios and Aircraft Mix

Four tra�c load scenarios characterized by di↵erent numbers of aircraft are consid-

ered to test the methodology over a scheduling window of 30 minutes. The scenarios

with 10, 20, 30 and 40 aircraft represent light, medium, large and heavy tra�c con-

ditions. All reference schedules are randomly created for a 30-minute time period.

The following table summarises the di↵erent tra�c demand scenarios as well as the

aircraft types, i.e weight classes and operations, used in each scenario.

Table 5.2. Tra�c Scenarios and Aircraft Types Used in Simulations

Number of Aircraft Weights Operations

10 1S + 8L + 1H 6A + 4D

20 2S + 15L + 3H 12A + 8D

30 5S + 22L + 3H 17A + 13D

40 3S + 31L + 6H 24A + 16D
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Schedule Generation and Uncertainty Considerations

For each tra�c load simulation, release time and due date schedules are generated

by respectively adding error sources drawn from normal distributions to both reference

arrival and departure schedules. As presented in the previous chapter, to generate

release time schedules, the arrival time error at FIM can be described by a normal

distribution with a mean of 0 seconds and a standard deviation of 30 seconds whereas

the departure time error at the runway can be described by a normal distribution

with a mean value of 30 seconds and a standard deviation of 90 seconds. Moreover,

to generate due date schedules, departure and arrival time errors following normal

distributions are respectively added to flight times at WPT1 and the runway. For the

departure time error, a normal distribution with a mean of 0 seconds and standard

deviation of 15 is selected whereas for the arrival time error, a normal distribution

with with a mean of 0 seconds and standard deviation of 5 seconds is selected.

5.1.2 Comparison Metrics

For all tra�c load simulation result evaluations, the spatial and hybrid separation

methods are compared under deterministic and stochastic conditions. To compare

the obtained results under deterministic and stochastic conditions, the total and

individual flight times are computed for both spatial and hybrid separation methods.

For the deterministic settings, flight times are provided for baseline reference. For the

stochastic settings, Box and Whisker plots are used to represent the flight time range

that is computed for all repetitions. Additionally for each tra�c scenario, the average

takeo↵ time delay is computed under both uncertainty settings and the percentage

of shifted flights in runway sequencing compared to the initial runway sequence given

by the solution under deterministic settings is provided for the optimal repetition.
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5.1.3 Results

All tra�c load scenarios that were simulated were scheduled over a 30-minute time

window and respective reference schedules were created accordingly. It is to be noted

that the large and heavy tra�c scenarios represent very dense conditions for a single

runway to support mixed operations. The heavy simulation pushes the boundary of

the air operations that uses a single runway.

Comparison of Individual and Total Flight Times

Deterministic Conditions The total flight times of each tra�c load scenario are

first computed under the deterministic settings. Table 5.3 presents the results for

both separation methods.

Table 5.3. Comparison of Total Flight Times - Deterministic

Tra�c Load Spatial Hybrid Total Flight Time Reduction

Light 4957s 4066s 18%

Medium 10046s 8188s 18.5%

Large 15300s 12446s 18.7%

Heavy 22385s 18314s 18.2%

For all tra�c loads under the deterministic settings, the hybrid spatial separation

method enables total flight time reductions in the range of 18% compared to the

spatial separation method. The maximum reduction is obtained for the large tra�c

scenario. When the hybrid separation method is implemented, all aircraft are routed

on the more direct routings.

When looking at the individual flight times of each tra�c load scenario, the hybrid

separation method reduces individual flight times of both departures and arrivals.

The following set of figures illustrates the results for both separation methods with
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Figure 5.7(a) and Figure 5.7(b) respectively showing the results computed with the

spatial and the hybrid separation method.

For each separation method, the denser the tra�c load scenario, the longer the

computed individual flight times. Simulating dense tra�c load conditions in a tight

time window invokes scheduling and routing a large number of aircraft under timing

constraints. In order to meet the schedule constraints and satisfy the separation

requirements, aircraft are not assigned maximum allowable air speeds on all route

segments flown.

Moreover, in order to compare the individual flight time results computed with

the two di↵erent separation methods, Table 5.4 presents the individual flight time

reduction enabled by the hybrid separation method when compared to the spatial

separation method.

Table 5.4. Comparison of Individual Flight Time Reductions - Deterministic

Tra�c Load Individual Flight Time Reduction

Light Arrivals: up to 81s - Departures: up to 125s

Medium Arrivals: up to 110s - Departures: up to 141s

Large Arrivals: up to 156s - Departures: up to 165s

Heavy Arrivals: up to 189s - Departures: up to 236s

Overall, for all tra�c loads under the deterministic settings, the hybrid separation

enables greater individual flight time reductions for departures than for arrivals. Ad-

ditionally, the denser the tra�c load scenario, the more individual flight time savings

obtained. In relative proportions, the direct departing route is shorter with respect

to the indirect departing route than the direct arrival route is with respect to the

indirect arrival route.

Stochastic Conditions In the stochastic case, Figure 5.2 shows the individual

flight time ranges computed for all repetitions. Results computed under the spatial



71

(a) Spatial Separation Method

(b) Hybrid Separation Method

Figure 5.1. Comparison of Individual Flight Time Range (sec) - Deterministic
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and the hybrid separation methods are respectively displayed in Figure 5.8(a) and

Figure 5.8(b).

A similar comment than under the deterministic conditions can be made for the

stochastic conditions when comparing the results of each separation method. The

denser the tra�c load scenario, the longer individual flight times computed. More-

over, Figure 5.2 demonstrates that for all tra�c load scenarios even with the presence

of uncertainty, the hybrid separation method allows flight time savings for both ar-

rivals and departures when compared to the spatial separation method, in particular

flight time medians are reduced. Additionally, the flight time values computed for

departures are less dispersed with the hybrid separation method as with the spa-

tial separation method. For the heavy tra�c load scenario, the hybrid separation

methods allows the flight time medians to be reduced but the flight time ranges of

both arrivals and departures remain dispersed. This observation suggests that when

the tra�c load scenario is too dense, individual flight time benefits from the hybrid

separation method are more limited than for less dense tra�c load scenarios.

For the optimal repetition, the computed total flight time reductions enabled

by the hybrid separation method for each tra�c load scenario are summarised in

Table 5.5.

Table 5.5. Comparison of Total Flight Times - Stochastic, Optimal Repetition

Tra�c Load Spatial Hybrid Total Flight Time Reduction

Light 4912s 4099s 16.6%

Medium 9870s 8210s 16.8%

Large 14868s 12273s 17.5%

Heavy 22216s 18245s 17.9%

For all tra�c loads under the stochastic settings, the hybrid spatial separation

method enables total flight time reductions in the range of 16.5% to 17.9% compared

to the spatial separation method. The maximum total flight time reduction is ob-
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(a) Spatial Separation Method

(b) Hybrid Separation Method

Figure 5.2. Comparison of Individual Flight Time Range (sec) - Stochastic
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tained for the heavy tra�c load scenario. When the hybrid separation method is

implemented, all aircraft are routed on the more direct routings.

Moreover, in order to compare the individual flight time results computed with

the two di↵erent separation methods, Table 5.6 presents the individual flight time

reductions enabled by the hybrid separation method when compared to the spatial

separation method.

Table 5.6. Comparison of Individual Flight Time Reductions -
Stochastic, Optimal Repetition

Tra�c Load Individual Flight Time Reduction

Light Arrivals: up to 57s - Departures: up to 125s

Medium Arrivals: up to 85s - Departures: up to 125s

Large Heavy Arrivals: up to 146s - Departures: up to 155s

Heavy Arrivals: up to 189s - Departures: up to 288s

For all tra�c loads under the stochastic settings, similar to the deterministic con-

ditions, the hybrid separation method enables greater individual flight time reductions

for departures than for arrivals. The denser the tra�c scenario, the more flight time

savings obtained.

Comparison of Uncertainty Conditions When comparing the results obtained

under deterministic and stochastic settings, both uncertainty conditions enable total

and individual flight time reductions when the hybrid separation method is imple-

mented. Routing aircraft using the more direct routes definitely induces total and

individual flight time savings.

Total flight times of all tra�c load scenarios are more reduced by the hybrid sep-

aration strategy under the deterministic settings than under the stochastic settings.

However, the presence of uncertainty does not degrade the benefits obtained from

routing aircraft on the more direct routes. Moreover under both uncertainty condi-

tions and for all tra�c load scenarios, the hybrid separation method induces more



75

individual flight times savings for departures than for arrivals. This is mainly due

to the greater route length reduction obtained for departure routes than for arrival

routes. Additionally, regardless of the uncertainty settings, the denser the tra�c load

scenario, the more flight time savings obtained and this simply reflects the increased

number of aircraft.

Comparison of Departure Takeo↵ Delay

For the medium, large and heavy tra�c load scenarios, when comparing the total

flight times for the spatial separation method under both uncertainty conditions, it is

worth mentioning that the respective reference schedules that were generated for these

scenarios induced departure flight delays due to insu�cient flight separation even for

the deterministic simulation. Therefore, averaged takeo↵ delay of departing flights

are computed under the stochastic settings. Figure 5.3 illustrates the results for all

tra�c load scenarios and for all repetitions. The marker indicates the average value

for departures in the optimal repetition. The takeo↵ delay is defined as the estimated,

i.e. computed, takeo↵ time minus the earliest departure release time generated in each

release time schedule scenario.

For both separation methods, takeo↵ delays are obtained from runway scheduling

because of flight time uncertainty in order to ensure separation requirements. In the

hybrid separation method, the extra takeo↵ delay from runway scheduling arises from

the additional separation requirements needed between takeo↵s induced by the shared

waypoints allowance. For all tra�c load scenarios, the computed average takeo↵ time

delay is less when flights are assigned to indirect routes, i.e. spatial separation method,

than when flights are allowed to fly more direct routes, i.e. hybrid separation method.

For all tra�c load tra�c scenarios except the heavy one, the average takeo↵ time delay

computed for the optimal repetition, is less than the average takeo↵ time delay for all

repetitions. This is the second limitation observed in the hybrid separation method

when the tra�c scenario is too dense.
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Figure 5.3. Comparison of Tra�c Scenario - Departures Takeo↵ Delay - Stochastic

Comparison of Runway Position Change

Furthermore, in the stochastic simulation, some flights might not be able to meet

the initial assigned takeo↵ slots by the deterministic simulation due to flight time

uncertainty. Figure 5.4 illustrates for all tra�c load scenarios and for the optimal

repetition, the percentage of position changes from the initial runway sequencing

provided by the simulation under deterministic conditions relative to the earliest

runway arrival times, i.e. release times for departures and due dates for arrivals. In

this work, no limit was enforced to the maximum number of position changes.

Under the stochastic settings and for the optimal repetition, runway position

changes are observed for both separation methods except for the light tra�c load sce-

nario under the hybrid separation method. Moreover, for the light and medium tra�c

load stochastic simulations, minimizing delays induces more runway position changes

when flights are assigned to indirect routes, i.e. spatial separation method, than when

flights are allowed to fly more direct routes, i.e. hybrid separation method. For the
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Figure 5.4. Comparison of Tra�c Scenario - Runway Order Changes
- Stochastic, Optimal Repetition

light and the medium tra�c load scenarios, a less work-demanding runway sequencing

is found when routes share waypoints because the flights are less independent from

one another. This observation clearly shows that a compromise between minimum

delay and optimal runway sequence is computed by the optimization. For the large

and heavy tra�c load scenarios, minimizing delays induces more runway position

changes when flights are assigned to direct routes than when flights are constrained

to fly the current operated routes. However the di↵erence is not really significant. In

the heaviest tra�c simulations, the hybrid separation enables significant flight time

reductions but creates more takeo↵ delays and additional runway change positions.

This is the third limitation observed in the hybrid separation method when the tra�c

scenario is too dense.
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5.1.4 Scenarios Comparison

Overall, when allowing more direct routes to be flown and enforcing the hybrid

separation method, total and individual flight times are significantly reduced for both

arrivals and departures even in the presence of uncertainty. Because runway 24L is

used for mixed operations, some delays occur at the runway. For all tra�c scenarios,

both separation methods introduce takeo↵ delays for departing flights. For the hy-

brid separation method, extra takeo↵ delay from runway scheduling arises from the

additional separation requirements needed between takeo↵s induced by the shared

waypoints allowance. With such additional delay, some flights might miss their run-

way takeo↵ slots potentially inducing runway position shifting.

All tra�c scenarios introduce more takeo↵ time delay when flights are assigned

to direct routes than when they are assigned to indirect routes. The values that were

computed are definitely a function of the fleet mix characteristics in the tested tra�c

load scenarios. Because more heavy type aircraft were considered in proportion in

the largest tra�c load scenarios than in the light tra�c load scenario, longer runway

separation times were computed.

Additionally for both separation methods in the stochastic case, the denser the

tested tra�c load scenario, the more runway position shifts occurred. The medium,

large and heavy tra�c load scenarios have more aircraft-type runway-sequences than

the light tra�c load scenario that potentially can lead to lower delays when compared

to the initial runway sequence provided by the deterministic simulation of each tra�c

load scenario. Therefore, the percentage of runway positions shifting is higher for

denser tra�c load scenarios. Moreover, for both the light and medium tra�c load

scenarios, the hybrid separation method induced less runway position changes than

the spatial separation method. However for the large and heavy tra�c load scenarios,

the opposite occurred. There are limitations to the benefit of assigning aircraft to

direct routes when the demand is high and scheduling time period is tight. For all
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tra�c load scenarios, the optimization tried to find a balance between total delays

and runway sequence.

Due to overall limited performance computed from the heavy tra�c load scenario,

the simulations that are presented in the next section are limited to the light, medium

and large tra�c load scenarios.

5.2 Integrated Arrival, Departure and Surface Operations

In this section, the integration of arrival and departure operations is extended

to the airport surface operations. The previously created tra�c load scenarios that

consider various numbers of aircraft are modified to include the assigned terminal

information. Excluding the heavy tra�c load scenario, the light, medium and large

tra�c load scenarios are applied to the combined models of the Los Angeles Interna-

tional Airport (LAX) and the Los Angeles terminal airspace. Similarly to the previous

section, the simulations setup is first described, the metrics used for comparison are

then defined and the results are presented.

5.2.1 Simulations Setup

The simulations setup for integrated surface and air operations is similar to the

simulation setup for integrated air operations. Information about the assigned ter-

minals of each aircraft in the di↵erent tra�c scenarios is provided along with the

schedule generation for the surface operations and the sources of uncertainty on the

airport surface.

Tra�c Scenarios, Aircraft Mix and Terminals

The previously created three tra�c load scenarios characterised by small, medium

and large numbers of aircraft, are considered to test the methodology over a flight

scheduling window of 30 minutes. Because the simulations are extended to the surface
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operations, the 30-minute scheduling window is extended to 45 minutes. The following

Table 5.7 summarises the di↵erent tra�c demand scenarios considered as well as the

aircraft types used in each scenario and the terminal assigned to each aircraft. It is

to be noted that heavy aircraft types denoted by H are only assigned to depart and

arrive from/to the international terminal TBIT .

Table 5.7. Tra�c Scenarios, Aircraft Types and Assigned Terminals
Used in Simulations

Number of Aircraft Weights Operations Terminals

10 1S + 8L + 1H 6A + 4D 2T1 + 4T2 + 3T3 + 1TBIT

20 2S + 15L + 3H 12A + 8D 6T1 + 6T2 + 5T3 + 3TBIT

30 5S + 22L + 3H 17A + 13D 10T1 + 9T2 + 8T3 + 3TBIT

Schedule Generation and Uncertainty Considerations

For each tra�c load simulation, a reference schedule is randomly created for a

45-minute time period. Moreover, for each tra�c load simulation, release time and

due date schedules are generated by respectively adding error sources drawn from

probabilistic distributions to both reference arrival and departure time schedules.

For integrated air and ground operations, surface release time schedules from the

departing terminals are generated for departures whereas air release time schedules

from fix FIM are generated for arrivals. Moreover, surface due date schedules are

generated for arrivals to the arrival terminals whereas air due date schedules are

generated for departures at waypoint WPT1.

As presented in the previous chapter, to generate the surface schedules at the

terminals, the departing time error from the gates can be described by a lognormal

distribution with a mean of 20.4 seconds and a standard deviation of 166.8 seconds

whereas the arrival time error to the gates can be described by a normal distribu-

tion with a mean value of �265.8 seconds and a standard deviation of 708.6 seconds.
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Moreover, to generate air schedules, departure and arrival time errors following nor-

mal distributions are respectively added to flight times at WPT1 and at FIM. For

the departure time error, a normal distribution with a mean of 0 seconds and stan-

dard deviation of 15 seconds is selected whereas for the arrival time error, a normal

distribution with with a mean of 0 seconds and standard deviation of 30 seconds is

selected.

5.2.2 Comparison Metrics

To evaluate the results of the di↵erent tra�c load simulations, the spatial and hy-

brid separation methods are compared under deterministic and stochastic conditions.

To compare the obtained results under both uncertainty conditions, the total and

individual traveling times are computed separately for the surface and the air and

for both spatial and hybrid separation methods. For the deterministic settings, sur-

face and flight times are provided for baseline reference. For the stochastic settings,

Box and Whisker plots are used to represent the surface and flight time ranges that

are computed for all repetitions. Additionally, the obtained runway sequences and

schedules are compared. Finally, the average takeo↵ time delay is computed under

both uncertainty conditions and the percentage of shifted flights in runway sequenc-

ing compared to the initial runway sequence given by the solution under deterministic

settings is provided for the optimal repetition.

5.2.3 Results

All tra�c load scenarios that were simulated were scheduled over a 45-minute time

window and respective reference schedules were created accordingly. It is to be noted

that the large tra�c scenario represents very dense conditions for a single runway to

support mixed operations.
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Comparison of Traveling Times and Routings

The traveling times are composed of surface and flight times. For each tra�c

load scenario, traveling times are computed under both deterministic and stochastic

conditions and are compared for both the spatial and the hybrid separation methods.

Surface times correspond to periods of time for which aircraft are moving on the

airport taxiway system.

Surface Times For the surface results, total and individual surface time ranges are

presented for departures and arrivals.

Deterministic Conditions Total surface times of each tra�c load scenario

are first computed under the deterministic settings. Table 5.8 presents the results for

both separation methods.

Table 5.8. Comparison of Total Surface Times - Deterministic

Tra�c Load Spatial Hybrid Total Surface Time Reduction

Light 5427s 5427s 0%

Medium 11465s 11275s 1.7%

Large 17185s 16421s 4.4%

For all tra�c loads except the light scenario, the hybrid spatial separation method

enables total surface time reductions in the range of 1.7% to 4.4% compared to the spa-

tial separation method when the simulations are run under the deterministic settings.

For the light load scenario, the number of aircraft is too small for the optimization

to find any added surface traveling benefits from the hybrid separation method over

the spatial separation method.

Because the aircraft surface movements simulated in all scenarios start and finish

at di↵erent terminals, the computed surface times of each aircraft are naturally di↵er-

ent. When looking at the individual aircraft surface times of each tra�c load scenario,
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the hybrid separation method reduces individual surface times of both departures and

arrivals except for the light tra�c scenario. The following set of figures illustrates

the results for both separation methods with Figure 5.5(a) and Figure 5.5(b) respec-

tively showing the results computed with the spatial and with the hybrid separation

method. Box and Whisker plots are used to represent the computed surface time

ranges, from the minimum computed value to the maximum computed value. The

surface time median of each scenario is illustrated by the horizontal line in each box.

For each separation method, the denser the tra�c load scenario, the longer the

computed individual aircraft surface times. Simulating dense tra�c load conditions in

a tight time window invokes scheduling and routing a large number of aircraft on the

airport surface under timing constraints. In order to meet the schedule constraints and

satisfy the separation requirements on the taxiway system and on the runway, aircraft

are not assigned maximum allowable taxi speeds on all taxiway segments traveled.

This is illustrated by representing the di↵erent computed surface time ranges by boxes

of di↵erent heights in Figure 5.5.

Moreover, in order to compare the individual aircraft surface time results com-

puted using the two di↵erent separation methods, Table 5.9 presents the individual

aircraft surface time reduction enabled by the hybrid separation method when com-

pared to the spatial separation method.

Table 5.9. Comparison of Individual Surface Time Reductions - Deterministic

Tra�c Load Individual Surface Time Reduction

Light Arrivals: up to 0s - Departures: up to 0s

Medium Arrivals: up to 0s - Departures: up to 50s

Large Arrivals: up to 34.7s - Departures: up to 68.4s

Overall, for all tra�c loads under the deterministic settings except for the light

tra�c load, the hybrid separation enables greater individual aircraft surface time

reductions for departures than for arrivals. For the medium tra�c load scenario, the
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(a) Spatial Separation Method

(b) Hybrid Separation Method

Figure 5.5. Comparison of Individual Surface Time Ranges (sec) - Deterministic
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arrival surface times are the same under both spatial and hybrid separation method

whereas surface times of departing flights are improved. It can be observed from

Table 5.9 that the denser the tra�c load scenario, the more individual aircraft surface

time savings obtained.

Stochastic Conditions The surface times are then computed under the stochas-

tic settings for all tra�c load scenarios. Figure 5.6 presents the surface time ranges

computed for all repetitions. Results computed under the spatial and the hybrid sep-

aration methods are respectively displayed in Figure 5.6(a) and Figure 5.6(b). Box

and Whisker plots are used to represent the computed surface time ranges, from the

minimum computed value to the maximum computed value for all repetitions. The

surface time median of each scenario is illustrated by the horizontal line in each box.

A similar comment than under the deterministic conditions can be made for the

stochastic conditions when comparing the results of each separation method. The

denser the tra�c load scenario, the longer individual aircraft surface times computed.

Moreover, Figure 5.6 demonstrates that for all tra�c load scenarios even with the

presence of uncertainty, the hybrid separation method allows aircraft surface time

savings for both arrivals and departures when compared to the spatial separation

method, in particular aircraft surface time medians are reduced. Additionally, the

aircraft surface time values computed for departures are less dispersed with the hybrid

separation method as with the spatial separation method. For the medium and

large tra�c load scenarios, the hybrid separation methods allows the aircraft surface

time medians to be reduced but the aircraft surface time ranges of both arrivals

and departures remain dispersed. This observation suggests that when the tra�c

load scenario is too dense, individual aircraft surface time benefits from the hybrid

separation method are more limited than for less dense tra�c load scenarios.

For the optimal repetition, the computed total aircraft surface time reductions

enabled by the hybrid separation method for each tra�c load scenario are summarised

in Table 5.10.
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(a) Spatial Separation Method

(b) Hybrid Separation Method

Figure 5.6. Comparison of Surface Time Ranges (sec) - Stochastic
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Table 5.10. Comparison of Total Surface Times - Stochastic, Optimal Repetition

Tra�c Load Spatial Hybrid Total Surface Time Reduction

Light 5427s 5427s 0%

Medium 11279s 11210s 0.6%

Large 16766s 16393s 2.2%

For all tra�c loads under the stochastic settings except the light tra�c scenario,

the hybrid spatial separation method enables total aircraft surface time reductions in

the range of 0.6% to 2.2% compared to the spatial separation method. For the light

load scenario, the number of aircraft is too small for the optimization to find any

added surface traveling benefits from the hybrid separation method over the spatial

separation method.

Moreover, in order to compare the individual aircraft surface time results com-

puted with the two di↵erent separation methods, Table 5.11 presents the individual

aircraft surface time reductions enabled by the hybrid separation method when com-

pared to the spatial separation method.

Table 5.11. Comparison of Individual Surface Time Reductions -
Stochastic, Optimal Repetition

Tra�c Load Individual Surface Time Reduction

Light Arrivals: up to 0s - Departures: up to 0s

Medium Arrivals: up to 29.8s - Departures: up to 24.7s

Large Arrivals: up to 91.3s - Departures: up to 29.4s

For all tra�c loads under the stochastic settings, similar to the deterministic con-

ditions, the hybrid separation method enables individual aircraft surface time savings

except for the light tra�c scenario. Contrarily to the results under the deterministic

conditions, greater individual aircraft surface time reductions are obtained for arrivals
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than for departures. Additionally, it can be observed from Table 5.11, the denser the

tra�c scenario, the more surface time savings obtained.

Air Times For the air results, total and individual flight times are presented along

with the selected flight routings for departures and arrivals.

Deterministic Conditions The total air traveling times of each tra�c load

scenario are first computed under the deterministic settings. Table 5.12 presents the

results for both separation methods.

Table 5.12. Comparison of Total Flight Times - Deterministic

Tra�c Load Spatial Hybrid Total Flight Time Reduction

Light 4965s 4184s 15.7%

Medium 10268s 8634s 16.2%

Large 16260s 13469s 17.2%

For all tra�c loads, the hybrid separation method enables total flight time re-

ductions in the range of ⇠16.3% compared to the spatial separation method when

the simulations are run under the deterministic settings. For all tra�c scenarios,

the optimization using the hybrid separation method is able to reduce total flight

times thanks to a better selected routing. All flights were routed on the more direct

routings.

When looking at the individual aircraft flight times of each tra�c load scenario,

the hybrid separation method reduces individual flight times of both departures and

arrivals. The following set of figures illustrates the results for both separation methods

with Figure 5.7(a) and Figure 5.7(b) respectively showing the results computed with

the spatial and the hybrid separation method. Box and Whisker plots are used to

represent the computed flight time ranges, from the minimum computed value to the

maximum computed value. The flight time median of each scenario is illustrated by

the horizontal line in each box.
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(a) Spatial Separation Method

(b) Hybrid Separation Method

Figure 5.7. Comparison of Individual Flight Time Ranges (sec) - Deterministic
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For each separation method, the denser the tra�c load scenario, the longer the

computed individual aircraft flight times. Simulating dense tra�c load conditions in

a tight time window invokes scheduling and routing a large number of aircraft under

timing constraints. In order to meet the schedule constraints and satisfy the separa-

tion requirements, aircraft are not assigned maximum allowable air speeds on all air

segments flown. This is illustrated by the larger height box dimensions for individual

flight times of arrival flights in each tra�c load scenario box plot representations.

When observing the results of departure flights, the hybrid separation method en-

ables about the same flight time reduction regardless of the tra�c load simulated.

The individual flight times for departures are congregated around the departure flight

time median.

Additionally, in order to compare the individual flight time results computed with

the two di↵erent separation methods, Table 5.13 presents the individual flight time

reductions enabled by the hybrid separation method when compared to the spatial

separation method.

Table 5.13. Comparison of Individual Flight Time Reductions - Deterministic

Tra�c Load Individual Flight Time Reduction

Light Arrivals: up to 92.4s - Departures: up to 125.4s

Medium Arrivals: up to 151.7s - Departures: up to 125.4s

Large Arrivals: up to 142.6s - Departures: up to 125.4s

Overall, for all tra�c loads under the deterministic settings, the hybrid separation

enables individual aircraft flight time savings for departure and arrival flights. In

particular, greater individual flight time reductions are obtained for departures than

for arrivals. Additionally, the denser the tra�c load scenario, the more individual

flight time savings obtained. It can be observed that no matter the tra�c load scenario

considered, the maximum individual flight time savings obtained for departing flights

is the same amount of about two minutes.
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Stochastic Conditions The air traveling times are then computed under the

stochastic settings for all tra�c load scenarios. Figure 5.8 presents the air time ranges

computed for all repetitions. Results computed under the spatial and the hybrid

separation methods are respectively displayed in Figure 5.8(a) and Figure 5.8(b).

Box and Whisker plots are used to represent the computed flight time ranges, from

the minimum computed value to the maximum computed value for all repetitions.

The flight time median of each scenario is illustrated by the horizontal line in each

box.

A similar comment than under the deterministic conditions can be made for the

stochastic conditions when comparing the results of each separation method. The

denser the tra�c load scenario, the longer individual aircraft flight times computed.

Moreover, Figure 5.8 demonstrates that for all tra�c load scenarios even with the

presence of uncertainty, the hybrid separation method allows flight time savings for

both arrivals and departures when compared to the spatial separation method, in par-

ticular flight time medians are reduced. Additionally, the flight time values computed

for departures are less dispersed with the hybrid separation method as with the spa-

tial separation method. For the medium and large tra�c load scenarios, the hybrid

separation methods allows the flight time medians to be reduced but the flight time

ranges of both arrivals and departures remain dispersed. This observation suggests

that when the tra�c load scenario is too dense, individual aircraft flight time benefits

from the hybrid separation method are more limited than for less dense tra�c load

scenarios.

For the optimal repetition, the computed total aircraft flight time reductions en-

abled by the hybrid separation method for each tra�c load scenario are summarised

in Table 5.14.

For all tra�c loads under the stochastic settings, the hybrid separation method

enables total aircraft flight time reductions in the range of ⇠17% compared to the

spatial separation method. For all tra�c scenarios, the optimization using the hybrid

separation method is able to reduce total aircraft flight times thanks to a better
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(a) Spatial Separation Method

(b) Hybrid Separation Method

Figure 5.8. Comparison of Individual Flight Time Ranges (sec) - Stochastic
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Table 5.14. Comparison of Total Flight Times - Stochastic, Optimal Repetition

Tra�c Load Spatial Hybrid Total Flight Time Reduction

Light 4920s 4084s 17%

Medium 10060s 8324s 17.3%

Large 16156s 13311s 16.7%

selected routing even when schedules are a↵ected by the presence of uncertainties.

For the optimal repetition, the direct routing is selected for all flights in all tra�c

load scenarios.

Moreover, in order to compare the individual aircraft flight time results computed

with the two di↵erent separation methods, Table 5.11 presents the individual flight

time reductions enabled by the hybrid separation method when compared to the

spatial separation method.

Table 5.15. Comparison of Individual Flight Time Reductions -
Stochastic, Optimal Repetition

Tra�c Load Individual Flight Time Reduction

Light Arrivals: up to 57.4s - Departures: up to 125.4s

Medium Arrivals: up to 87.8s - Departures: up to 125.4s

Large Arrivals: up to 124.8s - Departures: up to 125.4s

For all tra�c loads under the stochastic settings, similar to the deterministic

conditions, the hybrid separation method enables greater individual flight time re-

ductions for departures than for arrivals. The denser the tra�c scenario, the more

aircraft flight time savings obtained.
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Comparison of Departure Takeo↵ Delay

For the medium and large tra�c load scenarios, when comparing the total travel-

ing times when the spatial separation method is implemented under both uncertainty

conditions, it is worth mentioning that the respective reference schedules that were

generated for these scenarios induced departure flight delays due to insu�cient flight

separation even for the deterministic simulation. Therefore, averaged takeo↵ delay

of departing flights are computed under the stochastic settings. The results for all

tra�c load scenarios are illustrated in Figure 5.9 for all repetitions. The marker in-

dicates the average value for departures in the optimal repetition. The takeo↵ delay

is defined as the estimated, i.e. computed, takeo↵ time minus the earliest departure

release time generated in each release time schedule scenario.

Figure 5.9. Comparison of Tra�c Scenario - Departures Takeo↵ Delay
(sec) - Stochastic

For both separation methods, takeo↵ delays are obtained from runway scheduling

because of both surface and flight time uncertainty in order to ensure separation re-
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quirements at all time at every surface and air waypoints. In the hybrid separation

method, the extra takeo↵ delay from runway scheduling arises from the additional

separation requirements needed between takeo↵s induced by the shared waypoints al-

lowance. For all tra�c load scenarios, the computed average takeo↵ time delay is less

when aircraft are separated using the spatial separation method than when aircraft

are separated using the hybrid separation method. For the optimal repetition, aver-

age takeo↵ time delay up to 22.4s, 1min and 4.5 min are respectively computed for

the light, medium and large tra�c load scenarios. Additionally, the hybrid separation

method respectively induces a 19.8%, 16.4% and 29.5% takeo↵ time delay increase

for the light, medium and large tra�c load scenarios when compared to the results

computed with the spatial separation method for the optimal repetition. Therefore,

the denser the tra�c scenario, the more departure takeo↵ time delay obtained. More-

over, for all tra�c load tra�c scenarios, the average takeo↵ time delay computed for

the optimal repetition, is equal of more than the average takeo↵ time delay for all

repetitions. This shows that for all tra�c load scenarios, the solution provided by

the optimal repetition, i.e. smallest objective value, represent results that are opti-

mal for the entire set of flights considered in each tra�c load scenario and individual

departing flights might be penalized in terms of departure delays.

Comparison of Runway Sequences and Schedules

The spatial and hybrid separation methods a↵ect the aircraft routing in each

tra�c load scenario regardless of the uncertainty conditions. When uncertainty is

introduced in the stochastic simulation, both surface and air operation schedules are

a↵ected furthermore and some flights might not be able to meet the initial takeo↵

slots assigned by the deterministic simulation. Therefore, di↵erent runway sequences

and schedules are obtained when using the spatial and hybrid separation methods and

when computed under the di↵erent uncertainty conditions. Each resulting tra�c load
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scenario runway sequence and schedule are compared separately for both separation

methods and the computed timelines are presented for both uncertainty conditions.

Light Scenario The light tra�c scenario consists of scheduling and routing 10

aircraft in a 45-minute scheduling time window. Clearly, the fleet mix is small enough

that the generated reference schedule scenario is not too tight. The runway sequences

and schedules are computed for both the spatial and the hybrid separation method

and the results are displayed under both deterministic and stochastic conditions in

Figure 5.10.

When the runway timeline is computed for the deterministic conditions, it can be

observed in Figure 5.10(a) that although the aircraft runway sequence is not changed,

the hybrid separation method enables a tighter runway schedule. When the hybrid

separation method is used, arrival flights can land earlier which can potentially induce

a more e�cient runway usage. The same observation can be made in Figure 5.10(b)

when the runway timeline is computed under the stochastic conditions for the optimal

repetition.

The results for the light scenario demonstrate that the tra�c load is too low to find

significant benefits from the hybrid separation method at the runway threshold under

both uncertainty conditions. However when the hybrid separation is implemented, a

slight timeline make-span decrease is computed.

Medium Scenario The medium tra�c scenario consists of scheduling and routing

20 aircraft in a 45-minute scheduling time window. The medium scenario represents a

⇠42% tra�c load increase when compared to regular tra�c load operations on runway

24L at LAX for such scheduling time window. The runway sequences and schedules

are computed for both the spatial and the hybrid separation method and the results

are displayed under both deterministic and stochastic conditions in Figure 5.11.

For both uncertainty conditions, Figure 5.11(a) and Figure 5.11(b) illustrates that

the runway timelines computed with the hybrid separation method is more tight than
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(a) Deterministic Conditions

(b) Stochastic Conditions - Optimal Repetition

Figure 5.10. Light Tra�c Scenario - Comparison of Runway Sequence
and Schedule (sec)
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with the spatial separation method. This enables a more condense runway usage that

can potentially receive more flights in the same scheduling time window.

Additionally, when the runway sequences and schedules computed for both sep-

aration methods are compared for the deterministic conditions, it can be observed

that when the hybrid separation method is implemented, one departure flight is be-

ing shifted to an earlier departure slot than when the spatial separation method is

implemented. For the stochastic conditions and in particular the optimal repetition,

two runway sequence changes can be observed that a↵ect two departure flights and

these are being scheduled to depart later than with the spatial separation method.

The results for the medium scenario demonstrate that the when the hybrid sep-

aration method is implemented, the make-span of the runway timeline is decreased

because a more optimal runway sequence can be found.

Large Scenario The large tra�c scenario consists of scheduling and routing 30

aircraft in a 45-minute scheduling time window. The medium scenario represents

a ⇠114% tra�c load increase when compared to regular tra�c load operations on

runway 24L at LAX for such scheduling time window. The runway sequences and

schedules are computed for both the spatial and the hybrid separation method and

the results are displayed under both deterministic and stochastic conditions in Fig-

ure 5.12.

For both uncertainty conditions, the hybrid separation method induces runway

sequence changes and this can be observed in Figure 5.12(a) and Figure 5.12(b).

Regardless of the uncertainty conditions, the computed runway timelines are tighter

when the hybrid separation method is implemented than when the spatial separation

method is implemented. When comparing the separation methods for the stochastic

condition in the optimal repetition, it can be observed that because arrival flights are

scheduled to land earlier with the hybrid separation method than with the spatial

separation method, two departing flights have their take-o↵ times significantly af-

fected. When looking closer to the details of those two departing flights, it was found
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(a) Deterministic Conditions

(b) Stochastic Conditions - Optimal Repetition

Figure 5.11. Medium Tra�c Scenario - Comparison of Runway Se-
quence and Schedule (sec)
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that they were a small and a heavy aircraft. Because of uncertainty and because of

an open slot in between two arrivals, the optimization rescheduled the heavy aircraft

to depart earlier with the hybrid separation than with the spatial separation in order

to satisfy the wake vortex temporal separations on the runway without disrupting

already scheduled flights. However, the small aircraft was rescheduled to depart later

with the hybrid than with the spatial separation method.

As for the medium scenario, the results for the large scenario demonstrate that

the when the hybrid separation method is implemented, the make-span of the runway

timeline is decreased because a more optimal runway sequence can be found. However,

the optimal sequence does a↵ect more significantly the schedule of a few departing

flights.

Runway Position Change of Departure Flights For all tested tra�c load sce-

narios except the light one, the hybrid separation method induces runway sequence

changes of arrival and departure flights. It was shown in the large tra�c scenario that

under stochastic conditions, departing flight schedules might be more impacted than

arrival flight schedules. In Figure 5.13, the percentage of runway position changes

from the initial runway sequencing provided by the simulation under deterministic

conditions is provided for departure flights under the stochastic settings for the opti-

mal repetition. The results are compared for all tra�c load scenarios. In this work,

no limit was enforced to the maximum number of position changes.

Except for the light tra�c load scenario, Figure 5.13 shows that the heavier tra�c

load scenario, the more runway position changes. Moreover, it can be observed that

when the hybrid separation method is implemented, less runway position changes

occur than when the spatial separation method is implemented. Although there

is only 5% runway position changes in the medium tra�c load scenario when the

hybrid separation method is used, the number of runway position changes increases

to 26.7% in the large tra�c scenario. However under the spatial separation method,

the number of runway position changes does not increase that much but still remains
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(a) Deterministic Conditions

(b) Stochastic Conditions - Optimal Repetition

Figure 5.12. Large Tra�c Scenario - Comparison of Runway Sequence
and Schedule (sec)
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Figure 5.13. Comparison of Tra�c Scenario - Runway Position Shift-
ing of Departure Flights - Stochastic

larger than for the hybrid separation method. Therefore, it can be concluded that

in the presence of uncertainty, the hybrid separation method enables less runway

position changes than the spatial separation method when compared to the original

runway sequence computed under the deterministic settings. However, for large tra�c

loads, the hybrid separation method might continue to increase preventing from any

added benefits.

Scenarios Comparison

Overall, the hybrid separation method enables total and individual traveling time

savings regardless of the considered uncertainty conditions. Except for the light tra�c

load scenario, the computed results show that both total and individual surface and

air times are reduced when more direct routes are allowed to be travelled even in the

presence of uncertainty. The surface time savings are in the range of 4% whereas
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the air time savings are in the range of 17%. Because runway 24L is used for mixed

operations, some delays occur at the runway. For all tra�c scenarios, both separation

methods introduce takeo↵ delays for departing flights. For both separation methods,

takeo↵ delays are obtained from runway scheduling because of both surface and flight

time uncertainty in order to ensure separation requirements at all time at every surface

and air waypoints. With such additional delay, some flights might miss their runway

takeo↵ slots potentially inducing runway position shifting.

All tra�c scenarios introduce more takeo↵ time delay when the hybrid separation

method is enforced than when the spatial separation method is enforced. The denser

tra�c scenario, the more traveling time savings but at the price of more takeo↵ time

delay. Additionally, for all tested tra�c load scenarios except the light one, although

the hybrid separation method induced runway sequence changes of arrival and de-

parture flights, the computed runway timelines were more tight. The values that

were computed are definitely a function of the fleet mix characteristics in the tested

tra�c load scenarios. Because more large and heavy type aircraft were considered in

proportion in the largest tra�c load scenarios than in the light tra�c load scenario,

longer runway separation times were computed.

Furthermore for both separation methods in the stochastic case, the denser the

tested tra�c load scenario, the more runway position shifts occurred. The medium

and large tra�c load scenarios have more aircraft-type runway-sequences than the

light tra�c load scenario that potentially can lead to lower delays when compared to

the initial runway sequence provided by the deterministic simulation of each tra�c

load scenario. Therefore, the percentage of runway positions shifting is higher for

denser tra�c load scenarios. Moreover, for all tra�c load scenarios except the large

one, the hybrid separation method induced less runway position changes than the

spatial separation method. However for the percentage of runway position shifting

increased significantly for the large tra�c load scenarios. There are limitations to the

benefit of assigning aircraft to direct routes when the demand is high and scheduling
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time period is tight. For all tra�c load scenarios, the optimization tried to find a

balance between total delays and runway sequence.
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6. Conclusions and Future Research

This chapter concludes the dissertation and provides an overview of the work accom-

plished in this research to tackle the research questions defined in the introduction. A

summary is provided in Section 6.1 and concluding remarks and directions for future

research are formulated in Section 6.2.

6.1 Summary

This work contributes to stochastic scheduling optimization in the field of air

tra�c management. To address ine�ciencies of both surface and air procedures and

support improved operational e�ciency, this research integrates surface, departure

and arrival operations. An alternative method to past research is presented in this

dissertation to simultaneously solve the integrated arrival and departure routing and

scheduling problem with the integrated taxiway and runway routing and scheduling

problem. It computes optimal surface and air routings and schedules in the presence

of uncertainty.

To accomplish the objective of this work, a scheduler is built to compute schedules

for airport surface and terminal airspace waypoints that are shared by both arrivals

and departures. Inspired from manufacturing operations, the scheduler is based on a

machine job-shop scheduling problem formulation in which probabilistic release and

probabilistic due dates are investigated. To manage integrated surface and terminal

airspace operations, a time-based separation strategy is implemented through the use

of speed varying constraints. To separate aircraft at the runway, wake vortex sepa-

ration requirements are enforced at all times. A multi-stage stochastic programming

approach is used to solve the problem and solutions are obtained by solving several

sample average approximation problems.
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A proof-of-concept is conducted under deterministic conditions for a set of fourteen

aircraft traveling in a model of the Los Angeles International Airport and surround-

ing terminal airspace. The results show clear benefits from integrated operations over

First-Come-First-Served operations. Scheduling and routing solutions show that al-

lowing aircraft to share waypoints and fly more direct routes may allow greater flight

time savings when compared to solutions obtained with a First-Come-First-Served

method. Additionally, better operation synchronisations are enabled by integrated

operations between the ground, the runway and the air which can potentially limit

long taxiway routing and aircraft departing queues.

To integrate realistically the e↵ects of uncertainty on flight time schedules, a data-

driven analysis is conducted to compute the probabilistic distributions of uncertainty

sources a↵ecting both the airport surface and the terminal airspace operations. Addi-

tionally, because the methodology computes approximate solutions and to assess the

methodology performance, a sensitivity-statistical analysis is conducted to demon-

strate that the proposed methodology does not require more than 100 scenarios to

produce robust results. Using such result, simulations of increasing tra�c are per-

formed in the presence of uncertainty. A multi-threading method is implemented to

help save computation time. To compare the optimization results and show the ben-

efits of integrated operations, two separation methods are implemented. The spatial

separation strategy enforces aircraft to travel on indirect routes whereas the hybrid

separation strategy allows aircraft to travel on direct routes.

For the integrated arrival and departure simulations, it is found that for all tra�c

loads tested, the hybrid separation method enables great flight time savings compared

to the spatial separation method. However, assigning aircraft to more direct routes

induces extra takeo↵ delays for departing flights. Such additional delays prevent some

flight, both arrival and departure, from meeting their initially assigned runway slots

engendering runway position changes. For all tra�c scenarios, the optimization is

able to find an optimal balance between total delays and number of runway position

shifting. For the heavy tra�c scenario, a limitation is found to the benefit of hybrid
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separation method compared to spatial separation method. In fact, although reduced

flight times are computed, greater takeo↵ delays and runway position shifting are

found when scheduling a set of 40 aircraft in a 30-minute time window on a single

runway. Therefore, scenarios that consider 40 aircraft were not considered in the

subsequent simulations and the maximum cap was fixed to 30 aircraft.

For the integrated air and surface operation simulations, the scheduling time win-

dow was extended to 45 minute to consider the aircraft movements on the airport

surface. For all tra�c loads tested, the hybrid separation method enables great trav-

eling time savings compared to the spatial separation method. Both surface and air

times are reduced when the hybrid separation method is implemented with signifi-

cantly larger flight time reductions than taxi time reductions. However as for the

integrated air operations, assigning aircraft to travel on more direct routes induces

extra takeo↵ delays at the runway for departing flights. Some flights are not able

to meet their initially assigned runway takeo↵ slot and runway position changes are

created. The runway position shifting enables a better runway sequencing at the price

of additional delays. Some limitations to the benefits of hybrid separation were found

when trying to schedule and route the flights of the large scenario set.

The results of both integrated operation simulations are showing great potential

for supporting the e�ciency of surface and air tra�c management. Even with the

integration of surface operations, significant traveling time savings were computed in

the integrated air and surface operation simulations. Adopting a temporal control

separation strategy and allowing waypoints to be shared on the airport surface and

in the terminal airspace o↵er traveling time savings in conjunction with safe aircraft

separation at all times. The simulations under uncertainty allow more understanding

on how operations can be a↵ected not just in the ramping area but up to runway.

By using such tool, more anticipation can be made on operations and the airlines can

benefit from it to improve their schedule performance.
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6.2 Directions for Future Research

This research o↵ers a large spectrum of problematics to be solved in future re-

search e↵orts. With the identical goal of improving the e�ciency of surface and air

operations, di↵erent directions can be followed to explore di↵erent solution options.

In the simulation of integrated surface and air operations, surface times were not

significantly reduced when the hybrid separation method was implemented. There-

fore, research focusing on surface operations, displacements and routings on the air-

port surface represent a first direction for future research.

Additionally, the expansion of the integrated air operations optimization formu-

lation to the surface operations was derived as a direct extension in a single loop of

optimization. The interactions between terminal airspace flows and airport taxiway

displacements connect at the runway threshold. Could the optimization of surface

and air operations be implemented and solved in two di↵erent loops of optimization

with hard constraints at the runway?

Moreover, the developed formulation was applied to optimize schedules and rout-

ings in a Los Angeles case study. Assumptions were made in the modeling of the Los

Angeles International Airport and surrounding terminal airspace. Arrival and depar-

ture flows were selected amongst others and gates were assumed to be pre-assigned.

A direction for future research is to gradually extend the formulation to capture

more terminal airspace tra�c flows and model more surface resources of the Los

Angeles International Airport. The consideration of gate occupancy related timing

forms another extension for future research. Additionally, because the study focused

on managing and scheduling departures and arrivals in the terminal airspace, the

formulation considered runway threshold, final approach fix and meter fixes in the

TRACON (Terminal Radar Approach Control). A direction for future research is to

integrate schedules from the Center prior to handing-o↵ arriving aircraft at the meter

fix to the TRACON.
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