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ABSTRACT 

Bartolowits, Matthew David Ph.D., Purdue University, December 2015. Discovery of molecules 

that modulate protein-protein interactions in the context of human proliferating cell nuclear 

antigen-associated processes of DNA replication and damage repair. Major Professor: Vincent Jo 

Davisson.   

 

 

Integral to cell viability is the homotrimeric protein complex Proliferating Cell Nuclear 

Antigen (PCNA) that encircles chromatin-bound DNA and functionally acts as a DNA clamp that 

provides topological sites for recruitment of proteins necessary for DNA replication and damage 

repair. PCNA has critical roles in the survival and proliferation of cells, as disease-associated 

dysregulation of associated functions can have dire effects on genome stability, leading to the 

formation of various malignancies ranging from non-Hodgkin’s lymphoma to skin, laryngeal, 

ocular, prostate and breast cancers. Here, a strategy was explored with PCNA as a drug target that 

may have wider implications for targeting protein-protein interactions (PPIs) as well as for 

fragment-based drug design. A design platform using peptidomimetic small molecules was 

developed that maps ideal surface binding interaction sites at a PPI interface before considering 

detailed conformations of an optimal ligand. A novel in silico multi-fragment, combinatorial 

screening approach was used to guide the selection and subsequent synthesis of tripeptoid ligands, 

which were evaluated in a PCNA-based competitive displacement assay. From the results, some of 

the peptoid-based compounds that were synthesized displayed the ability to disrupt the interaction 

between PCNA and a PIP box-containing peptide. The IC50 values of these compounds had similar 

or improved affinity to that of T2AA, an established inhibitor of PCNA-PIP box interactions. The 

information gained here could be useful for subsequent drug lead candidate identification. 

 As a second goal of this study, the known anti-tumor agent, EGFR antagonist, gefitinib, 

was chemically modified and incorporated into subcellularly-targeted peptoid-peptide hybrid 

complexes. It is hypothesized that targeting this agent into the nucleus of tumor cells can allow for 

bypassing mechanisms of drug resistance observed in various tumor types, particularly triple 



xx 

 

negative breast cancer. Enhanced cellular and nuclear uptake was observed with the drug 

conjugates. Furthermore, some of the compounds demonstrated the ability to selectively 

downregulate STAT3 phosphorylation, while not affecting the phosphorylation of ERK1/2, and 

had enhanced antiproliferative activity in gefitinib-resistant cells. Further studies are needed to 

assess the mechanism of action of these molecules, but they hold promise as agents that can be used 

to treat drug-resistant cancers.  
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1. INTRODUCTION 

DNA is the repository in which genetic information is stored in every living cell, and its structural 

integrity is vital to proper cellular function and survival. At any given time, cells are being exposed 

to exogenous and endogenous agents that cause as many as tens of thousands to one million DNA 

lesions per day [1,2].  If the resulting damage is not repaired, it gives rise to genetic instability, and 

possibly disease [3–9]. Additionally, DNA damage has been observed to be a major factor in 

cellular senescence and aging [10,11]. In response to these damaging events, a complex process is 

initiated that comprises the detection and repair of DNA lesions. These make up what is referred to 

as the DNA damage response (DDR).  

 The DDR as a whole is composed of a number of distinct mechanisms that are activated in 

response to specific types of DNA damage. DNA lesions can arise from numerous sources, with 

examples such as replication errors during DNA synthesis, UV-induced linkages or radiation-

/chemically-induced DNA double strand breaks (DSBs) [6]. Damage induced by exogenous agents 

can result in an unpredictable pattern of DNA lesions, potentially due to decreased efficiencies of 

the DNA repair process, particularly in the context of DNA damaging chemotherapies [6,12]. In 

general, cells that have defective mechanisms of DDR display enhanced sensitivity to DNA-

damaging agents, and these defects can ultimately lead to disease. The major processes of damage 

repair and their associated signaling mechanisms have been extensively studied [6,13–15],  and 

what is becoming clear are the implications for dysregulation of the DDR.  

 A number of human diseases, both inherited and non-inherited, have been associated with 

an accumulation of DNA lesions. Parkinson’s, Huntington’s and Alzheimer’s diseases, in addition 

to ataxia, have been associated with an increased amount of DNA damage in neurons [9,16]. 

Infertility [17,18], metabolic syndrome [19,20] and heritable diseases such as Fragile X, diabetes 

mellitus type 2, Creutzfeldt-Jakob, amyotrophic lateral sclerosis and Leigh syndrome are also 

caused by deficiencies in the DDR [21–23]. Perhaps most notoriously, cancer arises from genome 

instability induced by large numbers of DNA lesions. Correspondingly, the majority of agents 

classified as carcinogens operate by causing DNA damage, many times resulting in mutations that 
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can negatively impact numerous cellular signaling and checkpoint pathways [24]. Individuals can 

also have predispositions to cancer based on inherited defects in gene products involved in the 

DDR, and a patient’s outcome can be further complicated due to these same defects enabling 

neoplastic lesions to progress into malignancy [25,26]. Ultimately, these conditions highlight the 

importance of proper cellular response to inflicted DNA damage, as well as the careful maintenance 

of multiple genome stability pathways.  

 

1.1 Regulation of Protein Repair Complexes at Sites of DNA Damage 

Evoking an appropriate cellular response to DNA damage involves a complex series of events 

including the sensing and recognition of damage, subsequent signaling and repair of those lesions. 

There are various pathways that act to repair various types of exogenous and endogenous agent-

induced damage in humans. The protein MGMT reverts the mutagenic O6-methylguanine lesion 

back to guanine, and is able to prevent mismatch errors during the replication and transcription of 

DNA [27]. When damage occurs that leads to breaks in a single strand of DNA, three major 

mechanisms, base excision, nucleotide excision and mismatch repair, are elicited [28]. These 

mechanisms function by using the opposite intact strand of DNA as a template, removing a 

damaged nucleotide and replacing it with the proper complementary nucleotide. Single strand 

breaks are the most common type of DNA damage that occurs [29], so efficient repair of these 

lesions is essential for cell survival.  

Alternatively, DNA DSBs are particularly troublesome since they can result in 

rearrangements of the genome. DSBs are repaired by three different mechanisms, homologous 

recombination (HR), non-homologous end joining (NHEJ) and microhomology-mediated end 

joining (MMEJ) [6].  HR and NHEJ are the primary repair pathways invoked in mammalian DSB 

repair [30], though MMEJ does occur at relatively reduced levels. NHEJ, in particular, is a versatile 

system that exhibits a high degree of structural tolerance of DNA end substrate configurations. 

Owing to its importance, individuals that lack normally functioning NHEJ are sensitive to ionizing 

radiation, and are also severely immunodeficient [31].  

Separate from the other mechanisms of DDR, translesion synthesis (TLS) is a process of 

DNA damage tolerance that enables DNA replication machinery to replicate past lesions. In 

general, if replication is initiated before a site of DNA damage is repaired, it can lead to the 

replication machinery stalling at the damage locus, ultimately leading to cell death. TLS involves 

the recruitment of specialized DNA polymerases that can bypass the site of the lesion, allowing 
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DNA synthesis to continue [32]. The switching out of regular polymerases for specialized ones is 

mediated, among various other factors [33], by RAD6/18-mediated ubiquitination of Proliferating 

Cell Nuclear Antigen (PCNA) [34]. While this damage tolerance mechanism aids cell survival, due 

to the nature of these specialized polymerases being error prone, undesired consequences, such as 

the formation of cancer, can potentially result, particularly if numerous DNA lesions continue to 

accumulate in a cell’s genome [35].  

 As a protective measure, upon DNA damage cell cycle checkpoints become activated; this 

allows the cell to repair DNA lesions before continuing to divide. Typically, the type of damage is 

recognized and the appropriate signaling pathway is initiated, resulting in the formation of repair 

complexes at sites of lesions [15]. The proteins that initially detect lesions can be classified as 

“sensors”; this class is made up of DNA scaffolds such as the Rad9-Rad1-Hus1 (9-1-1) complex, 

replication protein A (RPA), phosophoinositide-3-kinase (PI3K) members ATM, ATR and DNA-

PK, and the aforementioned PCNA [6]. Each of these recognizes and interacts with a number of 

mediatory proteins; this leads to the transduction of amplified signals towards effectors that affect 

processes such as cell cycle regulation, transcription, DNA repair, chromatin remodeling and 

apoptosis. In this way, the scaffold proteins act as sites of recruitment, forming complexes that 

regulate the essential functions associated with the DDR [15].   

 

1.1.1 Targeting Cancer-Specific Defects in DNA Repair Pathways 

 

The significance of genome maintenance, and subsequent cancer prevention, in the DDR is 

highlighted by the observation that genes that encode components of DNA repair pathways are 

among the most frequently mutated genes in cancer [36]. Studies have shown that as tumorigenesis 

progresses, cancer cells tend to inactivate the DDR and overcome senescence, potentially indicating 

that abrogating portions of DDR signaling pathways is necessary for malignant transformation 

[25,26,37–40]. This likely explains why defects in the DDR are typically seen in human tumors 

and why genomic instability is increasingly being seen as a hallmark of cancer [36,40].   

 Though hundreds of mutations may be present in a given cell’s genome, only a select few 

of these may be necessary to induce carcinogenesis [41]. These “driver” mutations cause some sort 

of key dysregulation in a cell’s growth control, and are the cause of specific cancers being 

‘addicted’ to these oncogenic drivers. With the increase in knowledge of the mutational landscape 

of cancer genomes, function-oriented classification of cancer-associated genes has increased. As a 

result, the ability to classify tumors based on their unique repertoire of DNA repair deficiencies has 
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improved. Targeting these cellular defects has been a goal of drug development against cancer. 

Many current and traditional chemotherapies make use of a single drug to treat a specific type of 

cancer. However, these strategies have not always proven to be effective in the short- or long-term 

due to cellular toxicity and development of resistance [42]. Because mammals have evolved 

complex networks of parallel and overlapping pathways to repair diverse types of genotoxic 

lesions, it is likely that targeting multiple pathways simultaneously is necessary for a robust, 

sustained response to drug therapy.  

 

1.1.1.1 Using Small Molecules to Target Processes of DNA Damage Repair 

 

Three major classes of inhibitors exist that target processes of DNA repair: protein-protein 

interaction (see Table 2.1), DNA-protein interaction and enzyme-based inhibitors [5,43,44]. While 

enzyme inhibition has had success in treating certain diseases, many traditional chemotherapies 

and molecularly-targeted agents including protein kinases inhibitors have not provided sustained 

clinical efficacy by themselves [45–49]. Compounds such as DNA damaging agents often display 

initial benefit in cancer patients, but tumors eventually become resistant to these drugs due to 

various factors, including upregulation of the DDR [50]. As a result, new strategies are being 

explored for the treatment of disease including new rational therapeutic drug combinations [42].  

A potential approach toward overcoming certain cellular mechanisms of drug resistance is 

to simultaneously target multiple pathways associated with DNA replication and damage repair. A 

number of small molecules in pre-clinical or clinical trials have been developed that target DDR-

associated pathways such as cell cycle checkpoints, NHEJ, homologous recombination and base-

excision repair (Table 1.1) [44]. These compounds are typically used in combination with other 

types of chemotherapeutics, and show enhanced sensitization to ionizing radiation, DNA damaging 

agents and growth factor receptor inhibition [44]. Ultimately, this strategy may prove to be far more 

efficacious, and in many cases, necessary in the treatment of cancer. 

 

 1.2 Considerations of Protein Subpockets in Fragment-Based Drug Design 

 

(The following section is reproduced with permission from Bartolowits, M., and Davisson, V.J. 

(2015) [51]; © 2015 John Wiley & Sons A/S. doi: 10.1111/cbdd.12631.) 

 

Fragment-based drug design (FBDD) is an important strategy in both industry and academia for 

the discovery of novel ligands and aids the progression toward lead compounds [52]. It is based on 
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the idea that through the use of low molecular weight chemical fragments, which typically only 

bind weakly to their intended target, higher affinity lead ligands can be obtained by combining or 

‘growing’ these small compounds into larger drug-like molecules. Due to high levels of diversity 

between biological targets, incorporating FBDD as a high-throughput screening tool can have 

significant advantages over traditional higher molecular weight chemical libraries [53]. The 

approach considers factors such as compound availability, ease of synthesis, large chemical space, 

and limits on steric “bulkiness”, which may otherwise preclude many higher molecular weight 

ligands from recognizing non-covalent enthalpically-driven affinity factors (e.g. hydrogen bonding, 

etc.) at a target binding site. Indeed, FBDD can prove to be robust for rational fragment 

identification in the absence of 3D structural data [54]. However, FBDD still faces several 

challenges, such as the general lack of accountability for ligand specificity or selectivity [55,56], 

and the fact that key interactions and geometry of an original fragment hit may need to be changed 

when incorporated into a lead compound [57]. Furthermore, the role of ligand-dependent receptor 

conformations has been largely untested. 

 A number of reviews have discussed recent advances in fragment-based drug design and 

how these tools can be used to improve the lead design process [55,58–65]. Yet, relatively few 

evaluations have appeared which address the importance of small localized environments in a 

protein binding site, and how microenvironments ultimately drive ligand binding and observed 

effects such as drug non-specificity. The field of drug discovery has long struggled with the 

accurate prediction of a drug’s cross-pharmacologic profile [66–69] and side effects. However, 

recent advances offer avenues toward understanding the significance of protein “subpockets”—the 

physical chemical and geometric properties surrounding an individual residue. Traditional methods 

of computational analysis to find binding sites have sought to identify the similarity between 

proteins based on inherent sequence conservation or overall structural similarity. However, the 

localized chemical environments to be sampled by chemical fragment screens are potentially vast. 

Further development of generalized methods for discovery of similar protein-ligand binding sites 

and predicting the interaction profile of molecular fragments remains of high interest [70].  

Recently, multiple methods have been developed that compare proteins based on localized 

environments within binding sites, or the chemical environment around protein-bound ligands 

derived from PDB database crystal structures. These methods take one of two general approaches: 

1) proteins are compared and binding sites organized based on their structural or chemical 

similarities, or 2) data from known ligand-protein interactions are used to identify potentially 

similar sites in other proteins that could bind equivalent chemical fragments. This review aims to 
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provide an overview of the background and emerging computational approaches that can define, 

and take into account, the significance of protein subpockets in the design of new chemical probes 

and pharmaceuticals. Many of these same tools offer methods which can also enhance 

understanding of drug activity. The relevance of new methodological insights to fragment-based 

drug discovery and the implications for lead development when considering factors such as non-

specificity and side effects are also considered.  

 

1.2.1 Protein Fragment Recognition in Drug Design 

 

1.2.1.1  Concept of Shared Subpockets 

 

In many modern cases of structure-based drug discovery, structural information for a target in 

question drives the ligand development process [71,72]. The RCSB protein data bank (PDB) [73] 

currently contains more than 89,000 structures solved by X-ray crystallography, with more than 

10,000 others solved through other means (NMR, electron microscopy, etc.). This knowledge 

database, which continues to expand, is a vital tool for understanding the general structures of target 

proteins and the topology of target ligand binding sites. Among “sibling” members of a protein 

subfamily, binding sites may have a moderate-to-high level of overall similarity, such as the ATP 

binding sites in the large family of protein kinases [74]. Although, even in cases where two 

arbitrarily selected proteins have overall dissimilar ligand-binding sites, they may still bind the 

same chemical fragments if they share similar or equivalent topological features at the subpocket 

level (see Figure 1.1 for an example). This explains why two binding sites with substantially 

different sequences can bind identical chemical fragments, such as the case with the 

trifluoromethyl- and sulfonyl-binding subpockets between isoenzymes of the carbonic anhydrase 

family and cyclooxygenase-2 [75]. Convergent evolution in nature is commonly observed to reveal 

similar enzyme active sites between proteins [76]. Likewise, divergent evolution can result in 

shared ligand binding sites among proteins that have highly dissimilar overall structures [77]. 

Between proteins even of distant origin, similar ligand binding motifs containing conserved 

consecutive residues can be found, indicating that it is quite efficient for nature to reuse localized 

features to bind similar molecules, even when the functional relationships may not be clear. 

The principle of protein subpockets requires definition at the level of individual amino 

acids within a protein. Each residue is surrounded in three dimensions by other amino acid residues, 

water molecules and/or metal ions. The resultant microenvironments create the recognition features 
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Figure 1.1. Shared Subpocket Between Two Structurally Distinct Proteins. The conformation of 

the adenine portion of ACP is conserved between two structurally and sequentially diverse proteins, 

demonstrating a shared subpocket at the binding site (HSP90 N-terminal domain, yellow, PDB ID: 

3T10; Chemotaxis protein CheA, blue, PDB ID: 1I5A). Figure is reproduced with permission: © 

2015 John Wiley & Sons A/S. doi: 10.1111/cbdd.12631. 

 

 

 

for a particular chemical fragment, albeit with likely moderate ranges of affinities. These localized 

environments created by the protein generally define what are termed “subpockets” within a 

binding cavity. Even within the limits of 20 different standard amino acids and the amide backbone, 

a substantial number of distinct subpockets with unique “fingerprints” are possible. These 

subpockets differ by the relative proximity of specific amino acids to each other and distances 

between chemical functional groups. The amount of chemical space covered by chemical fragments 

is vast, but not all of them comprise preferable features for protein binding [78]. Therefore, any 

given chemical fragment is not guaranteed to bind to a protein subpocket across the entire proteome.  

 

1.2.1.2  Fragment Diversity and Protein Interactions 

 

For a chemical fragment to bind with favorable free energy, it must have the appropriate overall 

shape, proper spacing of its chemical functional groups and generally compatible hydrophobic 

features to establish meaningful life-times within a subpocket. How these characteristics overlap 
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with the physiochemical properties associated with the characteristics of drug-like molecules 

warrants consideration. In principle, chemical fragments can represent high diversity in shape and 

chemical features, but only a subset of compounds that could be classified as “fragments” are useful 

for the purposes of screening against biological targets. A study by Zuegg and Cooper [79] analyzed 

more than eight million unique compounds from more than 100 chemical vendors and found that 

only 400,000 of these passed the fragment-like filter for the analysis of drug- and lead-likeness 

based upon “the rule of three” (molecular weight < 300 Da, ClogP < 3, the number of hydrogen 

bond donors and acceptors < 3, and the number of rotatable bonds < 3) [80]. A large number of 

fragments are represented in this subgroup, but there is an argument for ignoring a majority of 

commercially available compounds and enhancing practicality in a fragment-based screening 

platform. Of course, rules often have exceptions, and there is evidence that simply adhering to “the 

rule of three” for the design of a fragment library may preclude compounds that would otherwise 

show up as hits [81].  

To further facilitate the fragment library design process, there are a number of studies that 

have examined the binding preferences of proteins for chemical fragments (Table 1.2). By 

analyzing fragments from lead-like compounds in the PDB [73], Chan et al. found that particular 

types of fragments are more likely to interact with specific amino acid side chains (Asp, Glu, Arg 

and His) and engage in hydrogen bonding interactions [82]. Separately, through the use of a 

developed algorithm, LigFrag-RPM, Wang et al. (2011) mapped the interaction profiles of 315 

unique fragments—derived from 71,798 different PDB ligands—against 20 naturally-occurring 

amino acids, also identifying the preferences of fragment-types for particular amino acids [83]. 

This map could be used to determine whether a given fragment is in a favorable or unfavorable 

environment, and potentially guide the lead chemistry process.  

While this may serve as a quick, efficient way to direct the design of ligand topology, the 

orientations of individual amino acids have to be taken into account. Even when comparing the 

same binding site between two crystal structures of the same protein, the microenvironments in that 

site may differ significantly based on residue orientations, and this can substantially bias docking 

studies. As an example, Cox, B. et al. [84] noted that although co-crystal structures had been 

obtained of the G-protein-coupled receptor (GPCR) CXC-motif chemokine receptor 4 (CXCR4) 

bound to the anti-HIV small molecule IT1t and peptide CVX15 [85], docking of IT1t back into the 

CXCR4:IT1t crystal structure resulted in large RMSD values compared to experimentally solved 

structures. Similarly, docking other small molecule antagonists into the crystal structure gave poses 

that lacked critical interactions identified by site-directed mutagenesis [86,87]. It was observed that 
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 Table 1.2 

Preferential Amino Acid Fragments 

  

Residue Examples of Fragments 
 

Arginine 

                            

Aspartic Acid 

                  

Cysteine 

                  

Glutamic Acid 

                      

Histidine 

                             

Methionine 

                     

Phenylalanine 

                            

Threonine 

                         

Tryptophan 

                               

Tyrosine 

                     
 

 

Examples of chemical fragments that select amino acids interact with. [82,83] 

Table is reproduced with permission: © 2015 John Wiley & Sons A/S. doi: 

10.1111/cbdd.12631. 
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the CXCR4:CVX15 (CVX15: cyclic peptide antagonist) crystal structure produced a result that 

showed agreement between the computational binding pose of another small molecule CXCR4 

inhibitor, AMD11070, and independent site-directed mutagenesis data. When analyzed in more 

detail, the orientations of residues Gln200 and His203 in the interior of the binding pocket differed 

substantially between the two co-crystal structures. Though the same amino acids are present at the 

binding site, changes in side chain orientation can substantially affect predicted binding modes and 

docking scores in virtual-compound screens, and may result in an unacceptably large false negative 

rate, particularly when rigid protein docking approaches are used. Therefore, the most accurate 

representations of protein subpockets must take into account multiple possible rotameric states of 

amino acid side chains if binding site microenvironments are to be generalized as chemical spaces 

represented by single “fingerprints”. This presents a potential problem for many approaches to 

binding site comparison that make use of pre-existing ligand-bound data, since the amino acids that 

make up the microenvironment surrounding a ligand fragment are already conformationally-biased 

in a given crystal structure. 

While particular amino acids are seen to favor certain chemotypes, there exist some types 

of compounds that show relatively limited specificity and can negatively affect fragment-based 

drug screening efforts. These molecules, being related to pan-assay interference compounds, are 

often widely promiscuous in the number and types of interactions with proteins and serve as 

artifacts, yielding false signals across many types of assays [56,88–92]. There are varied reasons 

for the promiscuous nature of these compounds [93,94]; but, they represent a subclass of indirect 

observations of the potential ‘fuzziness’ in protein microenvironments. In essence, these 

compounds own a fragment chemical space that can recognize more general protein features that 

have recurring characteristics which contribute to the high level of promiscuity. When considered 

in this context, protein subpockets cannot always be rigidly defined by a size and shape boundary 

since some chemical functionalities are seen to interact with less well-defined features.   

 

1.2.2 Identifying Subpockets 

 

In reality, defining what constitutes a ‘subpocket’ for fragment screening is not always a clear task. 

A significant number of topological features on a protein could potentially be classified as being 

part of a subpocket if one were to focus on the environment of a single amino acid. A common 

approach for defining pockets is to focus on the proximity of protein atoms or residues to a bound 
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ligand. There have been many studies dealing with the analysis of binding sites, ranging from 

sequence comparisons, to overall binding site structural similarity and pharmacophore 

(“fingerprint”) searching [59,95–105]. Until recently, the majority of the work in the field has 

looked at the relationship between binding sites in the context of an entire defined pocket. 

Traditional computational methods have attempted to reduce the representation of protein surfaces 

in an effort to maximize the speed with which a search query can be performed (for examples, see 

Jordan, et al. (2012) [106] and Xie, L. & Bourne, P.E. (2007) [107]). It is likely that higher degrees 

of accuracy in predicting the similarity of binding sites can be obtained by taking into account more 

in-depth features such as hydrophobicity, aromaticity and hydrogen-bonding capability at the level 

of single amino acids. As a result, attention in the field has turned to studying local areas of protein 

surfaces, with implications for traditional receptor binding sites as well as protein-protein 

interaction interfaces. Table 1.3 highlights many of the currently available programs, methods or 

databases used to screen binding sites; and while there is diversity between each of these, most can 

be generalized into one of two groups: protein topology- and ligand interaction-driven approaches.  

 

1.2.2.1 Using Protein Topology to Search for Binding Sites 

 

A significant number of methods currently exist for comparing protein binding sites [98]. Some of 

these detect locally conserved residue patterns in order to define similar topological features 

between proteins and their probability of containing equivalent interaction sites. These approaches 

can function independently of known ligand-binding data, since the protein structure drives the 

query. A web server such as ProBiS [108] is useful for detecting either global or local similarities 

between proteins and identifying structurally conserved binding sites on proteins of interest. This 

tool takes into account geometric as well as physicochemical properties for aligning the local 

structure of two proteins; a user can decide to compare the entire surface of a protein, or only a 

selected surface patch, against a database of more than 35,000 non-redundant structures. The 

program COFACTOR [109] is able to identify functional sites on a protein as well as predict its 

biological function by comparing the local and global 3D structure of a protein against the large 

BioLiP database [110]. Similarly, the IMAAAGINE web server [111] can be used to define an 

arrangement of 3-8 amino acid residues that are converted into a search pattern to query the PDB 

and identify structural motifs with equivalent localized environments amongst the arrangement of 

amino acids within a defined tolerance distance (default of 1.5Å). These examples demonstrate 
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Table 1.3 

Methods or Tools for Analysis of Binding Site Similarity and Pharmaceutical Discovery 

 

Method or Database Publication or Software URL Description 

   

CatSld [112,113] http://catsid.llnl.gov Searches for matches between 

catalytic sites and proteins 

CavBase (Relibase) 

[114–118] 

http://relibase.ccdc.cam.ac.uk Uses 3D property descriptors to detect 

similarities between protein cavities 

that share little or no sequence 

homology 

COFACTOR [109] http://zhanglab.ccmb.med.umi

ch.edu/COFACTOR 

Structure-based method for biological 

protein function annotation 

CrystalDock [119] http://nbcr.ucsd.edu/data/sw/h

osted/crystaldock/ 

Finds suitable fragments that match 

protein pocket-lining residues 

DoGSiteScorer 

[120–122] 

http://dogsite.zbh.uni-

hamburg.de 

Detects protein subpockets and 

predicts site druggability 

F-SPE-FP-PH3 

[123] 

http://www.ncbi.nlm.nih.gov/

pubmed/20886466 

3D fingerprint descriptors for 

environments surrounding fluorinated 

ligands in the PDB 

FINDSITELHM [124] http://cssb.biology.gatech.edu/

findsitelhm 

Homology modeling approach to 

flexible ligand docking 

FragFEATURE 

[125] 

http://www.ncbi.nlm.nih.gov/

pubmed/24762971 

Predicts small fragments preferred by 

a target protein structure 

GIRAF [126,127] http://pdbj.org/giraf/source/dis

tr.tar.gz 

Searches and flexibly aligns protein 

ligand binding interfaces 

G-LoSA [128] http://pubs.acs.org/doi/abs/10.

1021/ci300178e 

Uses known protein-ligand binding 

site data to predict/design a ligand for 

the target protein 

HOMOLOBIND 

[129] 

http://pibase.janelia.org/homol

obind/ 

Identifies residues that are similar to 

structurally characterized binding site 

IMAAAGINE [111] http://mfrlab.org/grafss/imaaa

gine 

Searches 3D arrangements of amino 

acids in PDB structures 

http://catsid.llnl.gov/
http://zhanglab.ccmb.med.umich.edu/COFACTOR
http://zhanglab.ccmb.med.umich.edu/COFACTOR
http://nbcr.ucsd.edu/data/sw/hosted/crystaldock/
http://nbcr.ucsd.edu/data/sw/hosted/crystaldock/
http://dogsite.zbh.uni-hamburg.de/
http://dogsite.zbh.uni-hamburg.de/
http://www.ncbi.nlm.nih.gov/pubmed/20886466
http://www.ncbi.nlm.nih.gov/pubmed/20886466
http://cssb.biology.gatech.edu/findsitelhm
http://cssb.biology.gatech.edu/findsitelhm
http://pdbj.org/giraf/source/distr.tar.gz
http://pdbj.org/giraf/source/distr.tar.gz
http://mfrlab.org/grafss/imaaagine
http://mfrlab.org/grafss/imaaagine


14 

 

 

Table 1.3 Continued 

 

KRIPO [104] http://www.ncbi.nlm.nih.gov/

pubmed/22830492 

Quantifies subpocket similarities to 

identify bioisosteres  

Med-SuMo [130] http://medit-

pharma.com/index.php?page=

med-sumo  

Locates similar regions on protein 

surfaces that are linked to certain 

chemical function 

Nucleos [131] http://nucleos.bio.uniroma2.it/

nucleos 

Identifies nucleotide-binding sites 

based on nucleotide modularity 

Patch-Surfer [132] http://kiharalab.org/patchsurfe

r2.0/ 

Web tool for predicting binding 

ligands for a protein    

Phosfinder [133] http://phosfinder.bio.uniroma2

.it 

Web server for the prediction of 

phosphate binding sites 

PocketFEATURE 

[134] 

https://simtk.org/home/pocketf

eature 

Uses protein microenvironments to 

identify similar binding sites; method 

is able to recognize distant protein 

relationships 

PocketAlign [135] http://proline.physics.iisc.ernet

.in/pocketalign/ 

Generates structural superpositions of 

binding sites 

PoSSuM [136] http://possum.cbrc.jp/PoSSuM Enables rapid exploration of similar 

binding sites between structurally 

diverse proteins  

PrISE [106] http://prise.cs.iastate.edu/inde

x.py 

Predicts interface residues using local 

surface structural similarity 

ProBiS [108] http://probis.cmm.ki.si Enables structural comparison and 

local alignment of proteins 

PROLIX [137] http://www.ncbi.nlm.nih.gov/

pubmed/22582806 

Mines protein-ligand interactions in 

large structure databases 

RCSB PDB [73] http://www.rcsb.org/pdb/home

/home.do 

Worldwide repository of 3D structural 

information of large biological 

molecules 

SA-Mot [138,139] http://sa-mot.mti.univ-paris-

diderot.fr 

Extracts structural motifs of interest 

from protein loop structures 

http://www.ncbi.nlm.nih.gov/pubmed/22830492
http://www.ncbi.nlm.nih.gov/pubmed/22830492
http://medit-pharma.com/index.php?page=med-sumo
http://medit-pharma.com/index.php?page=med-sumo
http://medit-pharma.com/index.php?page=med-sumo
http://nucleos.bio.uniroma2.it/nucleos
http://nucleos.bio.uniroma2.it/nucleos
http://phosfinder.bio.uniroma2.it/
http://phosfinder.bio.uniroma2.it/
https://simtk.org/home/pocketfeature
https://simtk.org/home/pocketfeature
http://possum.cbrc.jp/PoSSuM
http://probis.cmm.ki.si/
http://www.ncbi.nlm.nih.gov/pubmed/22582806
http://www.ncbi.nlm.nih.gov/pubmed/22582806
http://sa-mot.mti.univ-paris-diderot.fr/
http://sa-mot.mti.univ-paris-diderot.fr/
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Table 1.3 Continued 

 

SCOWLP [140] http://www.scowlp.org Enables individual and comparative 

analysis of protein interactions  

SiteBinder [141] http://ncbr.muni.cz/SiteBinder Allows the superimposition of large 

sets of protein structural motifs 

SiteComp [142] http://sitecomp.sanchezlab.org Compares binding sites, evaluates 

residue contribution to binding and 

identifies sub-sites with distinct 

molecular interaction properties 

SubCav [143] http://www.ncbi.nlm.nih.gov/

pubmed/23327721 

Similarity searching and alignment of 

protein subpockets 

TargetHunter [144] http://www.cbligand.org/Targ

etHunter 

Web-based target prediction tool 

TRAPP [145] http://www.mcm.h-

its.org/trapp/ 

Analyzes binding pocket variation 

along protein motion trajectory and 

assesses the druggability of a target 

TrixP [146] http://www.ncbi.nlm.nih.gov/

pubmed/23390978 

Fast protein binding site comparison 

and function prediction 

Wallach, I. & Lilien, 

R.H. algorithm [147] 

http://bioinformatics.oxfordjo

urnals.org/content/25/12/i296.

full 

Uses pharmacophoric features to 

predict subcavity binding preferences 

http://www.scowlp.org/
http://ncbr.muni.cz/SiteBinder
http://sitecomp.sanchezlab.org/
http://www.ncbi.nlm.nih.gov/pubmed/23327721
http://www.ncbi.nlm.nih.gov/pubmed/23327721
http://www.ncbi.nlm.nih.gov/pubmed/23390978
http://www.ncbi.nlm.nih.gov/pubmed/23390978
http://bioinformatics.oxfordjournals.org/content/25/12/i296.full
http://bioinformatics.oxfordjournals.org/content/25/12/i296.full
http://bioinformatics.oxfordjournals.org/content/25/12/i296.full
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larger-scale (whole-protein) methods of comparison that identify conserved features of binding site 

topologies between proteins. 

While these strategies can prove to be quite effective in certain circumstances, some of 

these ‘globalized’ methods may not be able to recognize distant similarities, particularly in cases 

where the dynamics of a protein allow a ligand to bind at sites that may be very structurally diverse. 

Recent tools have been developed to approach protein comparisons and binding site identification 

by taking a “subpocket-focused” approach. Based on the 3D coordinates of a protein, 

DoGSiteScorer [120–122] is able to detect potential pockets on the surface and split each of them 

into subpockets. The program uses properties such as volume, depth, surface, ellipsoid main axes, 

site lining atoms and residues, as well as functional groups present to calculate the predicted 

pockets. This tool scores each of these pockets for their potential druggability, yielding accuracies 

of 88% when trained and tested against a dataset of 1069 different structures [121].  

Among some of the other methods [135,148–150] used to compare binding sites are 

CavBase [114–118] and PrISE [106]. CavBase derives 3D descriptors that characterize the surface 

properties of a binding cavity. The individual amino acids lining a cavity are analyzed to form 

descriptors of the localized chemical environment. Dummy atoms (“pseudocenters”) are placed on 

the surface, representing the overall chemical property expressed by the surrounding exposed atoms 

in that area. Therefore, cavities described by a series of pseudocenters are compared with a database 

(Relibase [151]) of cavities from PDB protein structures. Similarity is determined through the 

matching of 3D property descriptors (pseudocenters) between the different sites to provide a 

“pharmacophore-esque” search that takes advantage of localized environments within a protein 

binding cavity. Additionally, a new evaluation formalism for entries in Cavbase has recently been 

reported that improves efficiency of large-scale mining for similar protein binding pockets [152]. 

Separately, PrISE is able to predict interface residues of protein-protein interactions by defining 

structural elements consisting of a central amino acid residue and its surrounding residues on the 

protein surface. PrISE deconstructs the surface of a query protein into its structural elements and 

compares those to similar elements in a database that contains elucidated structural elements in 

PDB format. Elements are labeled as interface or non-interface based on the characteristics of the 

central residue. The labels are then used to predict whether the central residue of each structural 

element of the query protein is an interface residue. Ultimately, although different, CavBase and 

PrISE are able to use the chemical environment around a specific amino acid residue to predict the 

similarity between sites of interaction on different proteins.  
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For analyzing similarities between binding sites in terms of sub-cavities, the 

PocketFEATURE algorithm [134] takes a modified approach by analyzing “microenvironments” 

to assess overall similarity between proteins for prediction of shared ligands. The method does not 

rely on the sequence or relative pattern of amino acids in a binding site. Instead, Liu & Altman 

define a “microenvironment” as a local, spherical region within a protein structure that may 

encompass amino acid residues that are discontinuous in sequence and structure. A set of 80 

physiochemical properties [153] is calculated over six concentric spherical shells, centered on a 

predefined functional center, with the total radius of the “microenvironment” being 7.5Å. Two sites 

are compared using an adjusted Tanimoto coefficient based on the presence of similar properties. 

Advantageously, this algorithm relies weakly on geometric requirements, instead using biophysical 

and biochemical measurements to characterize a subregion of a binding pocket. This approach 

allows for dynamic conformational changes in both the ligand at a binding site and the pocket itself. 

In this way, the algorithm may most closely align itself with a true subpocket-type search when 

compared to the aforementioned computational methods.  

 

1.2.2.2  Ligand Interaction Approaches to Compare Binding Sites 

 

As opposed to protein structure-driven approaches, ligand-driven approaches utilize known 

interaction data of ligands (small molecules and chemical fragments alike) with proteins to develop 

binding models that can be used to compare binding sites. Traditionally, many of these methods 

analyze the environment surrounding a bound ligand in a protein’s binding site, encoding 

physiochemical and/or geometric features to form a general pharmacophore. These descriptors can 

then be screened against databases of known structures to detect similar sites. A program such as 

G-LoSA [128] uses this general strategy to predict or design a ligand for a target protein given 

known interaction data between ligands and predicted similar binding sites. The region surrounding 

a bound ligand is compared to localized regions in other proteins, and those containing a large set 

of aligned residues are identified. Similarly, GIRAF [126,127] utilizes a database of known ligand-

protein structures to create an index of the geometric features of the surrounding atomic 

environment. Similar ligand-binding sites can then be identified and aligned with the query 

structure, independent of sequence homology, or protein fold. PROLIX [137] uses fingerprints of 

ligand-protein interaction patterns to rapidly mine large crystal structure databases for similar 

patterns. The PoSSuM database [136] enables the rapid exploration of similar binding sites between 

proteins based on physiochemical and geometric similarities, sorted using the neighbor-search 
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algorithm SketchSort [154]. Each of these methods is useful for finding similar binding sites to a 

query protein in a small amount of time based on already-known interaction data, but these 

generally take whole-site approaches as opposed to screening small microenvironments of the 

binding site itself.  

 As with protein topology-driven approaches for binding site analysis, recent methods 

utilizing ligand-bound data are advancing the analysis of subpockets. The web tool Patch-Surfer 

[132] represents a binding pocket as a set of small, localized surface patches. Each of these patches 

is further characterized using 3D Zernike descriptors [155], enabling the identification of 

corresponding regions in pockets on other proteins, even if the overall pocket shapes are different. 

This method is able to compare a queried pocket to known ligand binding pockets, and predicts 

binding ligands for the query. In its most recent version, Patch-Surfer was tested against a large 

dataset of more than 6000 non-redundant pockets, with 2707 different ligands, where it displayed 

better predictive performance than many other currently available methods to predict protein 

pockets. Another program, CrystalDock [119] is able to take a ligand-receptor complex, break the 

ligand into its constituent molecular parts, use the microenvironments surrounding the ligand 

fragments, and perform a geometric comparison to identify similar microenvironments in ligand-

bound PDB structures. This information can be used to predict chemical fragments that would bind 

a site of interest. FragFEATURE [125] has a similar function in that it also compares the structural 

environments within a target protein to those in databases to find statistically preferred fragments 

at a binding site. KRIPO [104] is able to use microenvironment pharmacophore fingerprints to 

identify similar binding sites between proteins, and potential bioisosteric replacements for queried 

molecular fragments. Combining a sub-cavity comparison search with pharmacophoric analysis, 

Wallach and Lilien developed a method [147] to cluster similar binding site sub-cavities to predict 

patterns of binding between proteins that do not share any structural similarity with known systems.  

Taking a modified approach to ligand-driven subpocket analysis, Kalliokoski, T. et al. 

developed SubCav [143], a tool for comparing and aligning protein subpockets. In this method, a 

modified version of the 3D pharmacophore fingerprint descriptor F-SPE-FP-PH3 [123] was used 

to define pharmacophoric features of all protein atoms within 4.5 Å of a bound ligand. These atoms 

were described according to eight different chemical features. Fingerprints composed of 7680 

elements incorporating pharmacophoric features and the three dimensional triangular distances 

between them, were generated for a grouping of subpockets within a binding site. Normalized 

Tanimoto scores were then used to assess the similarity between two fingerprints. Subpockets were 

aligned using the methodology described by Kabsch [156] implemented in BioPython [157]. An 
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advantage of this method is that it can identify similar fragment binding sites independent of protein 

structural or sequence similarity. This focus on local equivalent microenvironments enables more 

comprehensive predictions of the pharmacological selectivity for on- and off-target binding events 

for fragments in ligands.  

 

1.2.3  Shared Subpockets in ATP Binding Sites and Relevance to Ligand Selectivity 

 

A current challenge for small molecule lead development is represented by target site similarities 

within the superfamily of human protein kinases. Major efforts for drug discovery targeting these 

kinases have focused on their ATP binding sites. Although these proteins have evolved distinct 

cellular functions and hence substrates, there exists a significant level of similarity at the ATP 

binding sites. One of the challenges in developing inhibitors to these proteins is the optimization 

of selectivity for one or more related kinases [158]. A study by Anastassiadis, et al. (2011) showed 

that a large proportion of commercially available kinase inhibitors display significant levels of 

cross-reactivity, with some having the ability to inhibit the catalytic activity by more than 50% in 

nearly 30% of all tested kinases [159]. The clinical implications for these observations are not 

always clear, but offers a platform for understanding the role of subpockets in rendering predictable 

inhibitor kinase cross reactivity.  

 Within kinase ATP binding sites, there exists a conserved phenylalanine residue of the 

Asp-Phe-Gly (DFG) motif that is buried in a hydrophobic pocket, which is positioned in a groove 

between the two ‘lobes’ of the kinase. This motif is targeted by type I kinase inhibitors [160,161], 

being generally more promiscuous than type II and III inhibitors, which typically take advantage 

of an allosteric binding site that becomes available upon a structural change of the DFG motif [160–

162]. The idea of a protein subpocket finds significant application here given the large similarities 

in the binding pockets for type I inhibitors. An example can be seen with the JNK3 human kinase, 

where the residues Glu147, Met149 and Val196 form a microenvironment (Figure 1.2c) that 

recognizes shared chemical features between a natural ligand, adenosine monophosphate (AMP) 

[163], and a dihydroanthrapyrazole-based inhibitor [164], though their structures, overall, are quite 

different.  

These binding site subpockets are used advantageously when designing mimics of natural 

ligands as inhibitors, but the similarities in these microenvironments between kinases can also give 

rise to promiscuous chemical landscapes. Staurosporine is a classical ATP-competitive inhibitor 

that is notoriously promiscuous [165], with there already being 48 crystal structures available in  
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the PDB that show it bound to a variety of human kinases. With roughly 32% sequence similarity, 

the TAO2 and serine-threonine kinase 16 (STK16) kinases both bind staurosporine with good 

affinity. The sequence of residues at the ligand binding site differs between the two proteins, but 

TAO2 [166] and STK16 [167] both fold in a way that causes chemically similar amino acids to 

overlap, forming shared subpockets that result in a favorable binding site for the competitive 

inhibitor (Figure 1.2a).  

There are additional proteins in this family that display high levels of promiscuity as well. 

The RET tyrosine kinase has been observed to be significantly inhibited by a variety of competitive 

inhibitors [159]. While many of these ligands have structurally distinct features and vary in size, 

one conserved binding orientation [168] makes use of an overall hydrophobic subpocket 

surrounding Val804, as can be seen in Figure 1.2b. Even though the inhibitors shown in this 

example are not vastly dissimilar, they do demonstrate that when designing ligands, consideration 

of the fact that some proteins recognize more generalized chemical features. This insight is 

especially important when considering kinases as biological targets; but, importantly the example 

is instructive to apply to other protein families as well. Furthermore, documented ligand-kinase 

associations offer many cases to bench mark tests of methodologies to identify and utilize fragment 

subpockets for the desired selectivity or cross-reactivity.  

 

1.2.4 Consideration of Protein Interfaces and Cooperative Interactions 

 

In contrast to the types of ligand interaction sites considered so far, protein-protein interaction (PPI) 

interfaces give fewer clues on a residue by residue basis for what is required for a specific binding 

event. Protein surfaces most often are relatively flat, and the interface at which two proteins engage 

typically makes up a large surface area (1000-2000 Å2) with multiple contact points [169]. Drug 

discovery efforts, particularly in the pharmaceutical industry, traditionally avoided exploring PPIs 

as drug targets, considering them “undruggable” until recent challenges of this classification [170]. 

Within the last decade, research into targeting PPIs as a therapeutic strategy for multiple diseases 

has continued to accelerate. Previous work has shown that not all of the residues at a PPI interface 

are critical for the interaction. In the best studied cases to date, there exist regions of “hot spots” 

that confer most of the binding energy [170]. These “hot spots” are adept at binding protein or 

peptide-esque molecules and have been suitable targets for peptides and a number of mimetic 

compounds [171]. However, the practical utility of the hot spot theory requires additional 

consideration with respect to the design of specific protein ligand interactions.  
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Previous studies have concluded that amino acids such as Ile, Leu, Met, Phe, Trp, Tyr and 

Val appear more frequently at PPI interfaces relative to other amino acids, and their average 

distribution throughout the genome [172,173]. Some residues at interface hot spots form “anchor 

sites”, where they serve as critical recognition features that drive the binding process [174]. In this 

way, these sites are analogous to the previously discussed concept of a subpocket in that the 

localized environment and relative orientation of particular amino acids in anchoring sites are 

important for the recognition of specific chemotypes. The feasibility of targeting anchor sites was 

demonstrated when developing small-molecule PPI inhibitors [173]. The surface of the E3 

ubiquitin-protein ligase MDM2 forms a natural binding groove that the Phe19, Trp23 and Leu25 

residues of p53 favorably bind (Figure 1.3a). Even when visualizing the unbound form of MDM2, 

the pocket where Trp23 of p53 ultimately binds is visible, suggesting that this site is important for 

the recognition and binding of p53. Phe19 and Leu25, upon binding, appear to induce the formation 

of hydrophobic pockets on MDM2 that result in favorable binding environments for the two 

residues. In this case, the recognition features of a subpocket are not necessarily prearranged for a 

meaningful binding event to occur. Rather, a molecular fragment may induce formation of a new 

subpocket with optimal chemical environment for that fragment to bind, when it otherwise would 

not if considered a static system.  

In a similar fashion, proliferating cell nuclear antigen (PCNA) contains a region on its 

surface that recognizes specific chemical features. PCNA acts as a homotrimeric scaffold protein 

that binds many different proteins associated with DNA replication and damage repair [175]. Many 

of these proteins contain a conserved eight-member sequence known as the PCNA-Interacting 

Protein (PIP box) motif [176]. While four out of the eight amino acids in this sequence are highly 

variable, the remaining four residues represent conserved chemical functionalities that are critical 

for proteins to bind at the PIP box-binding site on PCNA (Figure 1.3b). The conserved aromatic 

residues (tyrosine or phenylalanine) in the seventh and eighth positions of the PIP box are part of 

a short 310 helix that binds in a highly flexible [177] hydrophobic pocket on the surface of PCNA. 

This site generally recognizes hydrophobic molecular fragments exemplified by the discovery of a 

small molecule, T2AA, that binds in that pocket and inhibits the interaction of PCNA with other 

PIP box-containing proteins [178]. Upon comparison between the structures of PCNA bound to 

p21 (PDB ID: 1AXC) [179] and T3 (an analogue of T2AA; PDB ID: 3VKX) [178], a subpocket 

formed by Ile128, Tyr133, Tyr250, Pro234 and Val236 binds an aromatic fragment of both T3 and 

p21’s PIP box tyrosine (Figure 1.3c). Furthermore, the inhibitor’s core iodine atoms induce a 

structural widening of the binding pocket, exposing a larger hydrophobic surface, resulting in a  
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Figure 1.3. Protein Interface Hotspots Contain Inducible Microenvironments that Bind Conserved 

Fragments Between Molecule Types. (a) Three residues of p53 (F19, W23 and L25; green sticks) 

become buried in the surface of MDM2 (blue surface), inducing the formation of hydrophobic 

subcavities. Residue W23, in particular, likely acts as an anchoring residue, substantially 

contributing to the binding affinity (PDB ID: 1YCR). (b) Four key residue positions (green sticks) 

in the highly conserved PIP box sequence are essential for the binding of PIP box-containing 

proteins (p21 shown as green loop) to PCNA (orange surface). The fifth, seventh and eighth 

residues in the sequence bind at a surface pocket on PCNA made up of several hydrophobic 

microenvironments (PDB ID: 1AXC). (c) Within the hydrophobic PIP box binding site on PCNA 

(orange surface), the subpocket defined by the relative orientation of I128, Y133, Y250, P234 and 

V236 to one another has affinity for an aromatic ring moiety, with a tyrosine residue (green sticks) 

of p21’s PIP Box sequence (green loop) anchored in the same location as the tyrosine-analogous 

fragment of the small molecule inhibitor T3 [178] (PDB ID: 3VKX, p21 peptide from 1AXC). (d) 

Some receptors exist that themselves accept a variety of structurally diverse substrates, the best 

example being the large family of GPCR olfactory receptor proteins. OR1G1, a member of this 

family, becomes activated upon exposure to numerous diversified odorants [180]. Figure is 

reproduced with permission: © 2015 John Wiley & Sons A/S. doi: 10.1111/cbdd.12631.   
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stably bound planar orientation of the molecule. The ligand-dependence of the subpocket within 

the PIP box binding region is another example of how the plasticity of protein interfaces must be 

taken into consideration.  

Because drug-like compounds are often composed of several segmental fragments, any one 

substructure of a molecule could have affinity for a sub-pocket fingerprint shared between two or 

more proteins. Of course, the observable binding affinity of the drug molecule depends on all of its 

interacting components with a protein; a single interaction within a microenvironment may not be 

nearly sufficient enough to stabilize a specific bound conformation to elicit a pharmacological 

effect. However, protein systems do exist that have evolved to accept a variety of chemical 

structures, whether through flexible binding sites, or weak requirements for a binding event to 

produce a desired effect. The large family of GPCRs that make up the mammalian olfactory system 

is one example. Many individual members of this group become activated upon interaction with a 

plethora of different odorants [180–183] (Figure 1.3d), implicating the existence of ‘fuzzy 

subcavities’ making up interaction sites. Receptor OR1G1, and others like it, thus exhibit flexible 

recognition of general chemotypes, rather than a specific orientation of atoms.  

The aforementioned examples demonstrate that PPI interfaces containing subpockets are 

analogous to those found in traditional small ligand binding sites. However, these characteristics 

indicate the transient aspects of these subpockets and articulate both opportunities and challenges 

for discovery of selective ligands with useful pharmacological effects. Many cases highlight 

limitations of structure-based virtual screening, and improved methods to achieve overall accuracy 

continue to emerge [184–189]. Computational approaches to address the issues of ligand and 

receptor dynamics has been an area of continued advancement [61,184,185,187,190,191]. The 

distinctions are likely that induced-fit and conformational selection play more significant roles in 

formation of subpockets and the resulting affinity of a molecule composed of multiple substructures 

[61,192–194]. These mechanistic principles have recently been exemplified in the formation of 

transient binding sites for protein interface inhibitors where evidence for both local conformational 

selection and induced-fit pathways have been evaluated [192].  

An understanding of how subpockets are influenced by other microenvironments in 

proximity is a general characteristic for consideration in FBDD. When a fragment of a small 

molecule binds in a given subpocket, the binding event can induce structural changes that modulate 

the features of surrounding regions. This means that in a fragment-based screen, suitable binding 

in a particular chemical microenvironment may not occur in the absence of nearby transient binding 

events of other fragments, resulting in false negatives. A recent case study addressed how current 
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FBDD methods are limited in detection of fragments that exhibit cooperative binding [195]. 

However, the deployment of these methods to provide improved accuracy in fragment-based 

screens is less than complete. 

Several computational approaches to meet these limitations are emerging and show 

significant promise for expanding successes. Mahasenan, K.V. & Li, C. were able to develop an 

approach that incorporates multiple protein conformers via ligand-directed modeling [196,197]. 

Substantial improvements for sampling and free energy scores in docking studies can be achieved 

when taking into account multiple fragment-ligands simultaneously [198,199]. Novel inhibitors of 

STAT3 and the IL-6/GP130 protein interface were discovered by considering multiple subpockets, 

and simultaneous ligand screening [200–203]. Type II kinase inhibitors were also developed for 

the MELK kinase by taking into account an induced conformational shift of the protein [204]. 

These examples implicate the importance for ligand-dependent subpockets when using FBDD 

approaches; they may represent a general process that can allow for cooperative binding into 

subpockets. The full extent to which this impacts current drug discovery efforts and computational 

screening methods remains to be fully established, but opens avenues for improvement in the 

utilization of computational and experimental approaches to discover multiple fragment sites at 

protein interfaces. 

 

1.2.5 Summary of Computational Approaches toward FBDD 

 

There are an increasing number of computational tools available to complement experimental 

fragment-based screens and ligand design. Advantages to these approaches are that they enable a 

potential general solution to the challenges of optimal fragment selectivity and linkages but these 

goals remain to be fulfilled. The prediction of protein structure microenvironments and dynamics 

requires consideration and methodological advances are emerging. As previously highlighted, the 

similarities of protein microenvironments between evolutionarily related or convergent proteins 

could argue for increased chances of off-target effects. To the extent that this may be a concern at 

protein interfaces still remains largely unknown [170,205]. However, the potentially unique 

combinations of transient subpockets that arise upon the binding of a ligand may ultimately result 

in higher degrees of selectivity.  

The occurrence of subpockets in unrelated proteins is generally recognized as a potential 

contribution to drug effects; however, an account of these features when selecting specific 

fragments in drug development has been traditionally based upon empirical deduction. 
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Experimental and computational approaches that can account for potential cooperative interactions 

are subjects of considerable importance for structure-based drug design. It is increasingly feasible 

using computational approaches to consider a classification process to stratify both risk and benefit 

of new molecular candidates. These tools can also be applied to molecular fragments and their 

associated libraries. As opposed to promiscuous scaffolds, fragments with high propensity for 

subpocket interactions can be argued to represent important tools for lead identification when 

considered in an appropriate knowledge framework. Whether fragment libraries can be qualified 

on a proteome-wide scale remains a future challenge, but the combinations of experimental and 

computational methods offers increasing promise. 

 

1.3  Research Scope 

 

The number of new drug applications over the past several years has paled in comparison to the 

more than 40 per year that were observed during the late 1990’s. Though the human genome project 

promised to usher in a new era of drug discovery, it has not completely lived up to its lofty goals. 

Indeed, much of protein research still focuses on the 10% of proteins that were already known 

before the mapping of the human genome [206]. Much of the difficulty in finding new drugs may 

be associated with the content of libraries currently used for high-throughput and virtual screening, 

since these libraries tend to be historically biased toward traditional drug targets [207–209]. 

Although much progress has been made in the elucidation of regulatory mechanisms of key 

intracellular processes, such as the DDR, there remains a need to better understand the necessary 

molecular features for conferring selectivity between major regulators of theses pathways.  

 Amongst the redundancies between alternative pathways in the DDR, DNA scaffolds play 

key roles in that they recruit, stabilize and orient other repair-facilitating proteins that make up 

complexes at sites of DNA damage. Due to specific conserved structural features between binding 

partners of DNA scaffolds, it stands to reason that targeting the site of recruitment of these proteins 

on a scaffold could produce a substantial pharmacological response in a given context. Protein-

protein interfaces, however, have proved to be challenging drug targets, and often require unique 

classes of molecules as inhibitors [210]. Additionally, the high cost and often limited diversity of 

high-throughput screening libraries both exist as prohibitory factors in many drug discovery efforts. 

As a result, a method for pairing down the necessary compounds to screen would be beneficial, 

particularly when little is known about a specific target’s ideal drug chemotype.  
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 PCNA serves as an interesting drug target given its importance in DNA replication and 

damage repair. Studies have shown that the scaffold’s PIP Box binding site can be targeted using 

small molecules to modulate its interactions with its natural binding partners. However, SAR 

studies have been unable to significantly improve upon the relatively limited chemotype identified 

that binds at that site. The first goal of this research is the development of a peptoid-based screening 

platform that enables the reduction of cost and time in the initial synthesis of an early-stage 

compound library that can be used to identify generic features of a protein-protein interaction 

antagonist for a given site. This approach is used in the discovery of new inhibitors of PCNA-PIP 

Box protein interactions. Understanding the key interactions that may be driving the propensity for 

ligands to of bind at that site could be useful in creating more drug-like compounds that target 

disease-specific complexes in order to control the progression of cancer.  

 The second goal of this research is to explore the differential modulation of signaling 

pathways based on intracellular compartmentalization of known cancer therapeutics, and whether 

this could serve as a viable strategy for targeting traditionally drug-resistant cancer types. It was 

seen that with nuclear-targeted kinase inhibitors, phosphorylation of intracellular STAT3 was 

preferentially modulated, as opposed to either ERK1/2 or EGFR. Alone, this may not have a 

substantial improved effect over commercial gefitinib, but when used in combination with DNA 

damaging agents or inhibitors of DDR-related processes, it could product a substantial phenotypic 

response in drug-resistant tumor types reliant on abnormal expression or localization of EGFR.   
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2.   PEPTOIDS AS PROBES FOR DISRUPTING PCNA-PROTEIN 

COMPLEXES 

Integral to the majority of biological functions, protein-protein interactions (PPIs) mediate a large 

number of important regulatory pathways. There are estimated to be around 400,000 different PPIs 

within the human proteome [211] that are involved in various processes such as signal transduction, 

cell metabolism, apoptosis, growth, membrane transport and cellular motility. PPIs are regulated 

by various factors ranging from the simple affinity of binding between proteins or other ligands, to 

things such as protein concentration, ligand concentration, presence of ions and covalent 

modification, and these interactions can be classified as being either stable or transient. Over the 

last couple decades, significant research has resulted in large-scale protein interaction networks 

that have allowed a better understanding of pathway functionality, as well as the association 

between genetic variation and disease states [212]. Research is still ongoing to understand how the 

dysregulation of PPI networks leads to the formation of specific diseases, and this ultimately may 

lead to the discovery of a generation of new drugs.  

 Study of the molecular structure of proteins can provide details on the site of interaction 

between different proteins or at the interface between two substructures of the same molecule. 

Assembly of protein complexes can result in the formation of homologous and heterologous 

structures made up of potentially many different macromolecules. In the case of a molecule such 

as PCNA, the protein itself forms a homo-oligomeric structure around chromatin-bound DNA, and 

recruits many other regulatory factors to it that can make up large hetero-oligomeric complexes 

implicated in DNA replication and damage repair [175]. Proteins generally contain structural 

domains that allow for the recognition and interaction with specific amino acid sequences, or other 

structural features, on other proteins. Common examples of these include PDZ, SH2, SH3, SAM, 

LIM and PTB domains [213], and in the context of proteins that interact with PCNA, the PIP Box 

[214] and AlkB homologue 2 PCNA interacting motifs (APIM) [215]. Because these structural 

features are often heavily conserved among different proteins, their importance has long been 

recognized, and some motif recognition factors are viewed as potential targets for therapeutic 

intervention.  
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2.1 Protein-Protein Interactions as Therapeutic Targets 

 

Traditionally, PPIs were seen as being “undruggable” by commercial practitioners, and drug 

discovery efforts avoided these types of targets [216]. Typically, most endeavors comprised the 

design of compounds that mimicked endogenous ligands of enzymes and other proteins [217]. A 

typical protein-protein interface can encompass an area of 1,500-3,000 Ǻ2 with 750-1,500 Ǻ2 of 

buried surface area [170,218], and a binding event between two proteins may involve multiple 

points of contact, also referred to as “hot spots” [219]. Simply blocking one of these points of 

contact may be insufficient to elicit a pharmacological response, though this would be heavily 

context dependent. These features present significant challenges for developing inhibitors of PPIs 

(iPPis), but the technological hurdles associated with PPI targets are becoming less daunting [220].  

 Various strategies are being explored to develop positive therapeutic outcomes for disease 

by targeting PPIs, and these have mostly consisted of peptidomimetic and small molecule-based 

approaches. iPPIs can be generally be classified as either orthosteric inhibitors, directly interfering 

with the protein-protein interface, or allosteric inhibitors, which bind at some distal site and induce 

or prevent some conformational change in the protein that hinders complex formation. Potentially 

ideal inhibitors of macromolecular interactions would be stable peptides or peptidomimetics that 

adopt a defined secondary structure. However, smaller peptides do not tend to form defined 

conformations in solution. As a result, research on using peptides as iPPIs has focused on 

developing analogue mimics of β-turns [221] as well as stabilized α-helical [222] and β-turn 

peptides [223–225], and foldamers [226]. Other major strategies of developing iPPIs have involved 

designing secondary structure and surface mimetics. Each of these approaches shows promise, and 

the number of iPPIs discovered using these methodologies continues to grow, especially where 

inhibition of large surface contact regions is necessary.  

 

2.1.1 Targeting Protein Interfaces with Small Molecules 

 

Similar to the case of more traditional drug targets, such as enzymes, small molecules have been 

used as antagonists of protein-protein interactions. However, predicting a targetable site for 

inhibition at a protein interface is not technically straight forward since all of the amino acids at 

that site do not contribute equally to binding. Typically, only a small subset of the residues 

contributes the majority of free binding energy to binding; these hot spots are defined as a 

significant increase in the free energy of binding (∆∆Gbinding > 1.5 kcal/mol) when a residue is 
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mutated to  alanine [219]. Identified concave hot spot regions are often the subject of investigation 

for their potential druggability, though other factors must be considered when targeting those sites 

[236].  

The major challenge of developing small molecular weight iPPIs, though, has been that 

inhibition of PPIs typically requires coverage of a large number of surface contacts; but for a 

compound to fall under the criteria for Lipinski’s guidelines [237], it may not possess the necessary 

features that would make it a good iPPI. However, it is not clear that these guidelines, which 

normally apply to small molecule-enzyme interactions, should be applicable to protein-protein 

interfaces [238]. Studies have shown that iPPIs have unusual physiochemical properties when 

compared to inhibitors of traditional targets (e.g. enzymes, surface receptors, etc.), such as higher 

molecular weights, higher hydrophobicity and more aromatic rings [239,240]. Furthermore, iPPIs 

typically demonstrate higher degrees of globularity, lower distribution of hydrophilic regions, 

smaller proportions of exposed hydrophilic regions and stronger capacities to bind hydrophobic 

patches at the core of protein-protein interfaces [210]. Due to these factors, conventional methods 

used in drug discovery have proved unsuccessful for the most part in finding small molecule iPPIs, 

but researchers have turned to alternative methods [220,241] that have thus far made progress in 

discovering new inhibitors [238,242], with compounds currently in clinical trials for six different 

targets [205].  

While discovery of new iPPIs seems to be increasing, finding new inhibitors through 

traditional screening methods has been limited by the chemistry available. One of the main 

problems has been that high-throughput screening has often relied on compound libraries that are 

biased toward previous drug discovery efforts (i.e. targeting enzymes and surface receptors), and 

this has hindered the success of these screening efforts with PPIs [208,243–245], whose 

chemotypes are generally not well-represented in current libraries [239,246]. Additionally, drug 

discovery has been focused on a relatively limited number of targets [247–249], which as of 2006 

stood at only 324 [250]. When contrasted with the approximately 400,000 predicted PPIs in humans 

[211], the need for expanding the explored druggable space is clear.    

 

2.2 Proliferating Cell Nuclear Antigen is Crucial for the Processes of DNA Damage 

Repair and Replication 

 

PCNA is a nuclear homotrimeric protein complex that encircles chromatin-bound DNA and acts as 

a processivity factor in DNA damage repair and replication [251]. Functionally, it serves as a DNA 

clamp in archaea and eukaryotes, and is composed of three PCNA molecules that associate to form 
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a tight ring around duplex DNA. It is expressed in the nuclei of cells during the S phase of the cell 

cycle [252], and serves as a topological site of recruitment on DNA for various proteins that are 

necessary for DNA replication or repair, such as DNA polymerase δ [253]. Upon destabilization of 

reservoir PCNA complexes, PCNA is loaded onto DNA in a replication factor C (RFC)-dependent 

manner with subsequent cell cycle inhibition [254,255]. Once bound to chromatin, PCNA mediates 

protein complex formation that is involved in the excision of DNA lesions, and promotes DNA 

synthesis [175,176,256]. A large number of proteins are currently known to interact with PCNA, 

implicating the involvement of PCNA in all facets of the DDR. In additional to being crucial for 

the base excision, mismatch, nucleotide excision and translesion synthesis repair mechanisms, 

PCNA acts as a regulator of cell cycle progression, chromatin remodeling and transcription [256]. 

Its expression is controlled by E2F transcription factor-containing complexes [257], with p53 

playing a major role in helping to decide the ultimate fate of the cell [258]. Altogether, these 

regulatory mechanisms protect the cell from increased levels of genetic instability, and guard 

against uncontrolled proliferation.  

2.2.1 PCNA Phosphorylation Controls Its Stability on Chromatin and is Associated with 

Dysregulation of DNA Mismatch Repair 

 

In order to modulate its functions, PCNA is post-translationally modified by multiple biochemical 

events, each directing a different functional consequence. For example, in the context of DNA 

damage repair, mono-ubiquitination at lysine-164 leads to activation of Rad6-dependent translesion 

synthesis [259]. Extensions of this mono-ubiquitin chain are thought to activate the template switch 

pathway; alternatively, modification by the Small Ubiquitin-like Modifier (SUMO) protein inhibits 

the template switch pathway [259]. Separately, phosphorylation of PCNA at tyrosine 211 (Y211) 

is associated with stabilization of chromatin-bound PCNA, and by extension, subsequent PCNA-

associated functions. Recent observations suggest nuclear-located tyrosine kinases, epidermal 

growth factor receptor (EGFR) and c-Abl, facilitate association of PCNA with chromatin and are 

required for the formation of nuclear foci of PCNA in DNA-damaged cells [260–263].  

PCNA has critical roles in the survival and proliferation of cells, and disease-associated 

dysregulation of associated functions can have dire effects on genome stability [264]. Abnormally 

high levels of PCNA expression are associated with various malignancies, ranging from non-

Hodgkin’s lymphoma to skin, laryngeal, ocular, prostate and breast cancers [265–272]. PCNA has 

also proven to be a useful marker in the detection of increased levels of cellular proliferation and  

overall prognosis in breast cancer patients [273–275]. PCNA Y211 phosphorylation (pY211) levels 
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Figure 2.1.  PCNA Structural Features and PIP Box Binding Site. (a) left: Cartoon representation 

of human PCNA with the interdomain connecting loop (IDCL) and PIP box binding site highlighted 

(PDB ID: 1AXC); right: surface rendering of S. Cerevisiae PCNA bound to DNA (PDB ID: 3K4X). 

(b) The 310-helical structure of the p21 peptide’s (green) PIP box binds in a hydrophobic surface 

patch on PCNA (tan surface; PDB ID: 1AXC). (c) The small molecule antagonist T3 binds in the 

hydrophobic surface patch of the PIP box binding region on PCNA and disrupts the association of 

PCNA with PIP box-containing proteins (PDB ID: 3VKX); the proximity of this “hydrophobic 

binding site” to PCNA residue Y211 is shown (dark orange residue).  
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correlate with disease, such as the observation that elevated levels of pY211 are found in half of all 

human prostate cancers [261], and high levels of Y211 phosphorylation better correlate with poor 

survival of patients with breast cancer than does the total level of PCNA [260].  

As previously alluded to, controlling PCNA-associated processes is extremely important 

for ensuring cell viability and proper growth control. The protein is post-translationally modified 

in different ways at specific times during the cell cycle in response to a variety of cellular events, 

and in this way its activity is tightly controlled. Disruption of these regulated, time-sensitive, 

processes can have profound effects on the cell. A recent study by Ortega, et al. [276] showed that 

high levels of EGFR, such as is seen in multiple cancers, can lead to abnormally high levels of 

PCNA-pY211. The phosphorylation at Y211 alters PCNA’s interaction with mismatch-recognition 

proteins MutSα and MutSβ, and interferes with the PCNA-dependent activation of MutLα 

endonuclease. As a result, DNA mismatch repair becomes inhibited at the initiation step, suggesting 

that PCNA-pY211 facilitates error-prone DNA replication by suppressing the mismatch repair 

function, thus promoting cancer development and progression. Given that phosphorylation at Y211 

is important for the stability of PCNA on chromatin, it can be seen that subtle disruptions of the 

ideal levels of PCNA present in a specific form can have a substantial effect on a cell’s outcome.  

 

2.2.2 PCNA as a Molecular Drug Target 

 

PCNA has been identified as a potential target for the treatment of certain cancers. Recently, small 

molecule antagonists of PCNA have shown useful pharmacologic effects when used either alone 

or in conjugation with a DNA damaging agent [178,231,233,277]. Additionally, targeting the 

phosphorylation event at Y211 has exhibited pharmacological relevance in breast and prostate 

cancer cell lines, as well as in vivo [261,263]. Correspondingly, rationale for PCNA as a disease 

target has emerged, but the nature of PCNA-protein interactions does not provide a traditional view 

of a drug target and therefore generates motivation for a new approach to modulate PPIs. Perturbing 

the association of PCNA with PIP (PCNA Interacting Protein) box-containing proteins, or 

disrupting Y211 phosphorylation would ultimately impair the cell’s ability to repair or replicate 

DNA. Four major strategies for affecting this system (Table 2.2) include inhibiting the association 

of PCNA with its interaction partners [178,231,278–283], stabilizing the interaction between these 

species [284,285], dysregulate the stability of the PCNA homotrimer [233,234], or disrupting the 

ability of kinases to phosphorylate Y211 on PCNA [261,262,286]. It is hypothesized that a peptide 

or peptidomimetic molecule that is analogous to the PIP Box of known PCNA binding partners  
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 Table 2.2 

Methods for Dysregulating PCNA-Dependent Processes 

  

Method Description References 

  

PIP Box antagonist small molecule or peptide that binds at 

the PCNA PIP box binding site and 

disrupts the association of PCNA with 

partner proteins 

 

[178,231,281–283]ab 

PPI stabilization modifying the interaction of PCNA 

binding partners with PCNA's IDCL can 

stabilize the binding event, dysregulating 

time-dependent PCNA-critical processes 

 

 [284,285]c 

dysregulate stability of 

PCNA homotrimer 

small molecule that binds at the PCNA 

monomer-monomer interface and 

stabilizes PCNA trimers, reducing the 

amount of chromatin-associated PCNA 

 

[233,234]a 

disrupt Y211 

phosphorylation 

hinder tyrosine kinases from 

phosphorylating PCNA residue Y211, 

reducing PCNA’s chromatin stability 

 

[261,262,286]b 

compete with PCNA for 

binding to partner proteins 

 

 

peptide constituting a small region on 

PCNA mimics the protein and acts as a 

competitive inhibitor, reducing the pool 

of available PCNA binding partners 

 

[278–280]b 

 

a small molecule-based 
b peptide based 
c not yet demonstrated as a therapeutic strategy 

 

 

 

 

 

could bind to PCNA with good affinity at the PIP Box binding site. This would be sufficient to 

either block the association of PCNA with other proteins at that site, or the peptide/peptidomimetic 

would act as an adhesive, securing another protein on PCNA. Either method would dysregulate 

PCNA-dependent processes, and could be useful as therapeutic strategies when cell survival 

depends on upregulated levels of DNA damage repair. 

 

2.2.2.1 Targeting the PCNA PIP Box Binding Site 

 

Evidence shows that the majority of proteins that bind to PCNA have a conserved sequence motif 

known as the PCNA Interacting Protein (PIP) Box [214,287–290]. The sequence is composed of 
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eight residues with the sequence QXXφXXΩΩ, with Q being glutamine, X being any amino acid, 

φ being a hydrophobic residue and Ω being aromatic. These proteins bind at a shared site on PCNA, 

the PIP Box binding domain. From this, it can be inferred that this is a critical site for the regulation 

of various processes tied to PCNA. This is supported by observations that deletion of the PIP Box 

within c-Abl disrupts the interaction of PCNA with c-Abl, and ultimately increases the nuclear c-

Abl apoptotic function in DNA-damaged cells [291]. Furthermore, peptides lacking the PIP Box 

motif or specific critical residues within that sequence showed substantial decreases in overall 

binding to PCNA [292–294].    

 Recently, it was demonstrated in vitro that a small molecule could be used to disrupt the 

association of PCNA with a PIP Box-containing peptide [178,231]. When introduced to HeLa and 

U2OS cells, the compound T2AA and some of its synthesized variants were able to decrease cell 

growth and diminish DNA replication and translesion DNA synthesis. An obtained co-crystal 

structure of T3 (additional 3’-iodo substituent, relative to T2AA) and PCNA showed that the small 

molecule bound in the hydrophobic surface pocket of the PIP Box binding site (see Figure 2.1).  

Using a fluorescence polarization assay, the interaction between the POGO Ligase (PL) peptide 

and PCNA could be disrupted with low micromolar IC50 values for a number of variants of T2AA. 

While this discovery provided an important proof of concept, there is still much potential 

improvement to be made with the small molecules’ binding affinities and overall molecular surface 

area covered.   

 

2.3 Peptoids as a Fragment-Based Screening Tool 

 

Peptoids, being analogous to peptides, make up a class of peptidomimetics where side chains are 

appended to the backbone nitrogen atom, rather than the α-carbon. Because of this substitution 

pattern, these poly-N-substituted glycines lack the amide nitrogen which gives rise to many 

secondary structure elements in both peptides and proteins. The use of peptidomimetics is a popular 

approach in certain drug discovery efforts due to the disadvantages associated with peptides such 

as their proneness to proteolytic degradation and poor oral bioavailability [295]. Peptoids, as 

opposed to peptides, have a generally better inherent ability to penetrate cell membranes, have 

higher resistance to proteolysis, are more resistant to solvent, temperature and chemical 

denaturants, and are generally cheaper to produce [296–299]. When synthesized using the sub-

monomer method [300], thousands of commercially-available primary amines could be used for 

incorporation into the backbone. To date, more than 200 different amines have been used as peptoid  
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side chains [306], resulting in substantial chemical diversity at each substitution position. Peptoids 

have been used in a number of different biomedical applications from drugs [307,308] (Table 2.3) 

to synthetic lung surfactants [309], hydrophobic nanosheets [310,311] and antibody biomarkers for 

Alzheimer’s Disease [312]. Peptoid-based small molecule-esque ligands have been discovered that 

target proteins such as vascular endothelial growth factor receptor 2 [313], Src Homology 3 and 

WW domains [314], Karopherins and Tubulin [302].  Additionally, peptoids have been useful as 

antibiotics against both gram-positive and –negative bacteria [315–317]. Due to their versatility in 

numerous applications, they have become a popular screening tool since large combinatorial 

libraries of peptoids, of approximate molecular weights between 450-750 Da, can be created with 

diverse types of chemical substitutions in relatively short fashion.  

 Peptoid screening has proven successful in identifying numerous types of ligands targeting 

many types of protein targets. Many of these efforts make use of trimeric peptoid libraries, which 

are generally small enough to be considered small molecule-like. Using iterative re-synthesis, 

Zuckerman, et al. (1994) created a library of 3500 peptoid trimers that was utilized in the discovery 

of nanomolar ligands for the opiate and α1-adrenergic receptors [318]. Screening of trimeric peptoid 

libraries has also resulted in the discovery of antimicrobial compounds [305] and mimics of the 

Agouti-related protein [319]. Positional scanning techniques have been used to discover 

noncompetitive antagonists of the vanilloid receptor subunit 1 (VR1) [320] as well as inhibitors of 

Karopherins and Tubulin [302]. Moreover, in certain cases, large tripeptoid libraries of more than 

300,000 compounds have been used, and this has resulted in the finding of antagonists of the 

nicotinic acetylcholine [321], melanocortin type 1 (MC1) and gastrin-releasing peptide/bombesin 

receptors [322]. Because of their relative ease of synthesis, short peptoids can be valuable tools in 

the discovery of molecules that may be useful inhibitors in and of themselves, or as screening hits 

that can be further refined into lead drug-like compounds. 

 

2.4 Rationale 

 

Traditional chemotherapies and molecularly-targeted agents including protein kinases inhibitors 

have not provided sustained clinical efficacy [46–49,323]. Selective inhibition of kinases has been 

a major issue, with current inhibitors often showing high levels of cross-kinase inhibition [159]—

though, the pharmacological significance of this promiscuity remains unclear. Targeting upstream 

processes in general has inherent limitations, since the activation of many proteins results in 

propagation (signaling cascades) and redundancy of intracellular signals. As an alternative, 



39 

 

 

targeting certain downstream proteins that function in the nucleus, such as PCNA, could have 

significant advantages as a strategy, particularly when the protein is targeted at the same time as 

other molecular targets, including proteins involved in the DNA damage response or signaling.  

 PCNA is known to interact with more than 200 different proteins that require binding to 

PCNA in order to regulate specific pathways of DNA replication or the DDR. While PCNA has 

been a subject of detailed investigation for more than a decade, there is still much that is not well 

understood. Despite the gaps in knowledge, two types of inhibitors have been discovered that target 

PCNA, as previously discussed in Chapter 1. Though high-throughput screening efforts led to the 

discovery of the thyroxine class of antagonists that target PCNA’s PIP Box binding site [178], 

structure-activity relationship studies were not able to yield substantial improvements to the 

reported IC50 values [231]. Although these inhibitors demonstrate the potential for modulating 

PCNA-protein interactions, it is clear that additional information on the molecular surface features 

of PCNA is necessary in order to design higher affinity ligands.  

A potential approach toward the rational design of inhibitors of PCNA-protein interactions 

would be to use computational and biochemical screening methods to facilitate a fragment based 

drug design effort. For the development of iPPIs, it would be advantageous to use a system where 

molecular mimetics could rapidly map ideal surface binding interactions sites in tandem before 

considering detailed conformations of an optimal drug-like ligand. While this challenge can be met 

with large peptides, the translation to drug-like molecules is not clear. Structures of PIP Box-

containing peptides/proteins in complex with PCNA solved to date indicate the core PIP Box 

recognition sequence is involved in a 310-helix that binds in a hydrophobic surface pocket on 

PCNA. However, small molecule mimics of this topology are not easily defined. It is hypothesized 

that determining the chemical recognition features of PCNA-protein interactions would allow for 

the design of small molecule inhibitors that could be used to target PCNA-associated processes of 

the DDR. While various strategies currently exist for targeting DNA repair pathways, PCNA would 

serve as a novel target in the inhibition of the DNA damage tolerance pathway, post-replication 

repair [324], specifically disrupting RAD6-dependent translesion synthesis as well as the “template 

switch” pathway [259]. The discovery of such an inhibitor would have potential as a sensitizing or 

synergistic agent in the development of new combination therapies for the treatment of disease. 

In this chapter, a versatile chemical platform based on moderate molecular weight peptoids 

(450-1000 Da) will be evaluated and discussed for its application in the future development of 

small molecule protein-protein interaction modulators [325]. This system of computational-driven 

peptoid library design could be applied to other model protein systems where traditional screening 
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methods fail, or little is known about the protein(s) of interest. The advantages of such an approach 

would be a reduction in cost and time by greatly reducing the number of compounds to be 

synthesized, in lieu of creating large (>50,000) ligand libraries. Additionally in this analysis, key 

PCNA-ligand interactions were identified; together with the apparent flexibility of the surface of 

PCNA, this may indicate the adaptability of the protein toward multiple forms of antagonists. This 

chapter will conclude with the discussion of how this information could be used in the design of 

drug-like small molecules that target PCNA.  

 

2.5 Experimental 

 

2.5.1 Methodology 

 

The process toward discovering peptoid-based inhibitors of PCNA-protein interactions was a muti-

step system where PCNA was first interrogated computationally, followed by synthesis and 

subsequent biochemical screening of each peptoid. The details of the methodology follow.  

 

Step 1: Generate focused library of peptoid-based antagonists using computational tools. The PIP 

Box binding site on PCNA was examined in an effort to gain basic information on favorable 

chemical features of potential small molecule inhibitors. First, a set of 20 primary amines was 

selected that represented variation in hydrophobicity, aromaticity, ability to form hydrogen bonds, 

and contained substructures present in clinically available drugs. Many of the amines from this set 

are commercially available, though some require different degrees of synthetic preparation. In 

preparation for virtual screening, the CombiGLIDE application within Maestro (Schrödinger) [326] 

was used to generate a virtual library of trimeric peptoids that contained each of the 20 primary 

amines, plus hydrogen as a potential substituent, in a combinatorial fashion to give 9,261 total 

compounds. The ligands were ionized (along with desalting and tautomeric generation) using Epik 

to generate all possible states within a pH range of 7.0±2.0, and these were minimized using the 

OPLS-2005 force field. 

In general, using a single rigid protein structure for virtual docking tends to produce skewed 

results due to geometric constraints and functional group directionality at the binding site. This is 

exacerbated when taking into account a protein such as PCNA, which has a significant degree of 

plasticity at the PIP Box site [177], since there are likely to be many false negatives when docking 

rigidly. While a flexible docking method such as Schrödinger Maestro’s induced-fit [327] is more  
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Figure 2.2 Development of Initial Virtual Library. (top) 20 commercially and non-commercially 

available primary amines were selected for their variation in hydrophobicity, aromaticity, ability to 

form hydrogen bonds, and/or whether they contained substructures present in clinically available 

drugs. N* indicates the location of the –NH2 group, which is the position of substitution into a 

peptoid backbone (bottom). R1, R2 and R3 indicate the three substitution positions in a resultant 

tripeptoid, and are referred to here as the first, second and third positions, respectively. Hydrogen 

was also considered as a potential substituent (Gly), and would therefore effectively constitute the 

incorporation of a glycine amino acid at wherever hydrogen was to be ‘substituted’.  
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ideal for screening ligands virtually, as there should theoretically be fewer false positives and 

negatives, the considerable amount of computational time required for such a method makes it 

impractical for screening more than a few ligands at a time, especially those will high degrees of 

freedom such as linear peptides and peptoids. To partially compensate for this, instead of a single 

rigid structure of PCNA used for screening, four crystal structures of PCNA bound to four different 

ligands were selected, each having a significant degree of structural divergence surrounding the 

PIP Box binding site. These structures included PCNA complexed to the C-terminal tail of p21 

(PDB ID: 1AXC), PCNA complexed to residues 331-350 of FEN1 (PDB ID: 1U7B), PCNA 

complexed with the T3 ligand (PDB ID: 3VKX) and PCNA complexed with a fragment of DNA 

polymerase η (PDB ID: 2ZVK). 

Each crystal structure of PCNA was prepared using the Protein Preparation Wizard in 

Maestro, with each protein minimized in complex with its respective ligand/peptide using the 

OPLS-2005 force field to an RMSD of 0.30Å. Cubic grid boxes were created using either T3 

(3VKX), or a PIP Box peptide amino acid at the hydrophobic site on PCNA, as the centroid, with 

a length of 30Å. The prepared ligands were flexibly docked into each form of PCNA using the 

standard precision (SP) model in Glide [328],  and the top 10% of the ligand hits from each docking 

run were flexibly re-docked into the respective form of PCNA using the extra precision (XP) Glide 

algorithm, which places harsher penalties on energy of solvation, solvent-exposed surface area and 

buried charge. Upon completion of each docking exercise, the results were compiled for each of 

the top 50 hits in each of the docking runs. The frequency with which a specific side chain was 

present at a particular location along the tripeptoid backbone was tallied for each crystal structure 

of PCNA, and the top 50 hits from each run were compiled into total list of 200 top hits.  

To further explore the use of peptoids as antagonists of PCNA-PIP Box interactions, the 

known PCNA inhibitor, T2AA, was investigated for its use as a peptoid fragment. Functional 

groups on T2AA potentially allow the compound to be incorporated into a peptoid backbone with 

the same basic methodology used for tripeptoid synthesis (i.e. submonomer peptoid synthesis 

[300]). In this way, T2AA could serve as an anchoring residue, potentially helping to direct small 

peptoid molecules to the PIP Box binding site on PCNA. To explore this possibility, a virtual 

combinatorial library was created using the same methodology as previously discussed, with a set 

of 37 peptoid side chains (17 new primary amines in addition to the original set) and two forms of 

T2AA, with defined attachment points at either the primary amine or amide groups on the molecule. 

This library was then systematically screened using the crystal structure of PCNA bound to the T3 

ligand (PDB ID: 3VKX). All ligands were prepared in Maestro using the same previous  
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Figure 2.3 Creation of a Virtual Library Containing T2AA as a Fragment. A list of 37 primary 

amines, along with T2AA, was used to create a combinatorial virtual library of peptoid-based 

compounds. N* indicates the location of the –NH2 group, which is the position of substitution into 

a peptoid backbone. R1 and R2 indicate the two substitution positions in a resultant tripeptoid. 

Blue labels denote new fragments.  
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methodology. The high throughput virtual screening (HTVS) algorithm in Glide was used to screen 

the initial set of compounds. The top 50% best hit compounds were screened again using Glide’s 

SP model, and the top 7,500 hits from the SP screen were docked again using Glides XP model. 

As before, the frequency that a particular side chain was present at a given substitution location on 

the peptoid backbone was tallied for the top 50 hits from the XP screen.  

 

Step 2: Select and Synthesize Set of Tripeptoid Ligands. Based on the results from the virtual 

docking study, particular side chains appeared to be favored at specific positions along the 

tripeptoid backbone (see Figure 2.4). Amines that appeared in approximately 10% or more of the 

top 50 hits at a given position were selected for incorporation via synthesis. Peptoids were 

synthesized using traditional submonomer solid phase practices [300], purified by HPLC and 

characterized by ESI mass spectrometry. Side chains that are not commercially available were 

synthesized in-house using acid-labile protecting groups.  

 

Step 3: Screen Synthesized Tripeptoids Using Fluorescence Polarization (FP). Synthesized 

peptoids were formulated in DMSO at concentrations of 10 mM. Synthesized peptoids were 

initially screened using a fluorescence polarization assay (see Experimental Materials and Methods 

section for details) at concentrations of 1 mM and 250 µM. Ligands that demonstrated sufficient 

ability to disrupt binding between PCNA and the PL peptide were identified, and then further 

characterized by generating dose response curves for each compound to obtain IC50 and Ki values.  

 

Step 4: Computational Analysis of Select Top-Hit Compounds. Peptoids that emerged as hits from 

the fluorescence polarization assay were examined using molecular dynamic (MD) simulations to 

identify key interactions that may be driving their affinity for PCNA. A principal component 

analysis (PCA) of each trajectory was performed and compared to MD trajectories from several 

peptides, as well as T2AA, all of which are known to bind to PCNA.  

 

2.5.2 Experimental Materials and Methods 

 

Reagents and solvents were purchased from Sigma Aldrich unless otherwise noted. Materials were 

repurified via recrystallization or distillation as necessary before use. NMR experiments were 

performed on Bruker (Bruker Corp., Billerica, MA) ARX300 (300 MHz), ARX400 (400 MHz) or 

DRX500 (500 MHz) instruments. Low resolution electrospray ionization (ESI) and atmospheric 
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pressure chemical ionization (APCI) studies were carried out on an Agilent 6320 Ion Trap (Agilent 

Labs, Santa Clara, CA) mass spectrometer. High resolution mass measurements were obtained on 

a LTQ Orbitrap XL mass spectrometer (ThermoScientific Corp.) utilizing electrospray ionization 

(ESI). Molecular masses and sequences of peptides or peptoids were validated on an Applied 

Biosystems (Framingham, MA) MALDI-TOF/TOF 4800 mass analyzer, or Applied Biosystems 

Voyager DE PRO mass spectrometer using either 2,5-dihydroxy benzoic acid or α-cyano-4-

hydroxy cinnamic acid matrices. TLC analyses were performed on Merck aluminum-backed F254 

silica gel plates.  Protein and peptide concentrations were determined by UV absorbance at 280 

nm. Fluorescent peptide concentrations were determined by absorbance at 494 nm. Stock solutions 

of each polypeptoid were made by measuring the dry mass of each in pre-dried, pre-weighed screw-

cap vials, and adding the volume of DMSO necessary to give 10 mM solutions. Stock solutions of 

compounds containing N-terminal 5-carboxyfluorescein were made by measuring the aborbance at 

494 nm, using an extinction coefficient of 79,000 L mol-1 cm-1 and Beer’s Law (A=εbc) to calculate 

concentration. Data analyses and graphical representations were performed in Microsoft Excel, 

GraphPad Prism 6 or OriginPro 2015.  

 

Ligation Independent Cloning of N-terminal His-tag PCNA Construct. Ligation independent 

cloning compatible expression vector pEV-L8 containing an N-terminal His-tag and TEV protease 

recognition site was linearized by digestion with Ssp1 (New England Biolabs), purified by gel 

filtration, and treated with T4 DNA polymerase (Novagen) in the presence of dGTP (New England 

Biolabs) for 30 minutes at 22°C, followed by heat inactivation at 75°C for 20 minutes. The PCNA 

fragment was amplified by PCR from a template plasmid (Genecopeia) using a high-fidelity 

polymerase Platinum Pfx DNA polymerase (Invitrogen). The resulting PCR products were treated 

with T4 DNA polymerase in the presence of dCTP to generate 5’ overhangs necessary for 

annealing. A total of 0.2 pmol of each insert was incubated with 0.01 pmol of pEV-L8 vector in 3 

µL reaction mix at 22°C for 10 minutes followed by addition of 1 µL of 25 mM EDTA at 22°C for 

5 minutes. Annealing reaction products were transformed into X10Gold competent cells 

(Strategene) and plated on LB agar containing 50 µg/mL kanamycin. Individual colonies were 

grown and the constructs were assessed by PCR for insert size and verified by sequencing before 

propagating the plasmid.  

 

Expression and Induction of N-terminal His-tag PCNA. 10 µL aliquots of chemically competent 

BL21 (DE3) E. coli cells (Agilent) were transformed via heat shock with 1 µL of purified plasmid 
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encoding the fusion protein, N-terminal (His)6-PCNA for 30 seconds at 42°C. The cells were then 

immediately placed on ice for 2 min, and 140 µL of SOC medium was added. Transformed cells 

were allowed to grow for 1 hour at 37°C before streaking on a LB agar plate containing 50 µg/mL 

kanamycin. Single isolated colonies were picked and grown at 37°C to an OD of 0.7-1.0 in the 

presence of 50 µg/mL kanamycin. Transformed cells were induced with 0.4 mM IPTG for 4 hours 

at 37°C. Transformed cells were pelleted at 4,000 x g for 20 minutes at 4°C, and stored at -80°C 

until lysis.   

 

Purification of N-terminal His-tagged PCNA. Two pellets of transformed BL21 (DE3) E. coli cells 

were each resuspended in 20 mL of ice-cold lysis buffer (50 mM Tris HCl at pH 8.0, 0.15 mM 

NaCl), lysed by sonication at a 30% amp output for 3 minutes (20 second pulses), and centrifuged 

at 4,000 x g for 20 minutes at 4°C. Each supernatant was decanted and combined. Recombinant 

(His)6-PCNA fusion protein was then purified from the soluble fraction by affinity column 

chromatography using Ni-NTA resin at 4°C. After charging the column resin with the entire soluble 

protein fraction, the column was washed with 20 mM imidazole in Tris buffer at pH 8.0 to remove 

nonspecific binding protein. (His)6-PCNA was then eluted with 10 mL of 1M imidazole in Tris 

buffer at pH 8.0. The eluted protein was diluted two-fold with dialysis buffer (25 mM HEPES at 

pH 7.4, 10% glycerol, 0.01% Triton X-100), DTT and EDTA were added to a final concentration 

of 2 mM, and the entire solution was diluted two-fold with 2 M ammonium sulfate in 25 mM Tris 

buffer at pH 8.0 to give a final (NH4)2SO4 concentration of 1 M. The solution was agitated for 1 

hour at 4°C, and during that time (His)6-PCNA precipitated from solution. The precipitated protein 

was pelleted by centrifugation (5,000 x g for 10 minutes), the supernatant decanted, and the protein 

pellet dissolved into 10 mL of dialysis buffer. The protein concentration was immediately assessed 

via measuring its absorbance at 280 nm (using an extinction coefficient of 16,000 M-1cm-1), and 

the protein solution was diluted as necessary to give a stock concentration of 4 µM. This was then 

dialyzed for 24 hours, swapping the dialysis buffer twice with fresh 25 mM HEPES at pH 7.4, 10% 

glycerol, 0.01% Triton X-100. After dialysis, the protein concentration was re-confirmed by 

measurement of its absorbance at 280 nm. 

 

General Method for Synthesis of Synthetic Peptides. Peptides were synthesized via solid phase 

synthesis using 0.10 mmol of Rink Amide AM or MBHA resin (EMD Millipore). Each synthetic 

step was performed in a glass fritted peptide reaction vessel placed on an orbital shaker. Before the 

addition of Fmoc-protected amino acids (Anaspec), the resin was first swelled with 
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dimethylformamide (DMF) for 30 minutes, and deprotected with a solution 20% piperidine in DMF 

for 30 minutes. Amino acids were coupled using standard peptide synthesis conditions (1 mmol of 

Fmoc-protected amino acid, 2.1 mL of 0.45 M 2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-

tetramethylaminium hexafluorophosphate (HCTU; Anaspec) in DMF and 500 µL of 4M N,N-

diisopropyltheylamine (DIEA) in N-methyl-2-pyrrolidone (NMP)) for one hour at room 

temperature, and were deprotected using 20% piperidine in DMF for 30 minutes at room 

temperature. Between coupling and deprotection steps, the resin was washed with DMF (6x) and 

dichloromethane (DCM) (3x). Reaction progress was monitored using a ninhydrin (Kaiser) test for 

the presence of primary amines. For fluorescent N-terminal labeling using 5-carboxyfluorescein 

(5-FAM; Anaspec), Fmoc-6-aminohexanoic acid was coupled to the completed resin-bound 

peptide and subsequently deprotected, followed by the addition of a solution of 2 equivalents of 5-

FAM, 1.95 equivalents of HCTU and 4 equivalents of DIEA dissolved in 2 mL of DMF, allowing 

the resin to incubate at room temperature overnight in the dark. Peptides were cleaved from resin 

using a solution of trifluoroacetic acid (TFA)/triisopropylsilane (TIS)/water (95:2.5:2.5), 

incubating the resin at room temperature for either 1 hour, or 3 hours in the case of peptides 

containing glutamine, arginine, tryptophan or histidine. They were then precipitated into ice cold 

diethyl ether and collected by centrifugation at 4,000 x g for 10 minutes at 4°C. The peptides were 

purified via HPLC (Beckman Coulter System Gold 166 or 168) using an increasing gradient of 

acetonitrile (ACN)/water with 0.1% TFA (5:95) to (100:0) over 30 minutes on an Agilent 

ZORBAX SB-C18 reverse phase semi-preparative column. Molecular masses and sequences were 

validated via MALDI-TOF/TOF. Purities were determined by HPLC using absorbencies at 219 or 

280 nm.  

 

Synthesis of Fluorescein-labeled POGO Ligase Peptide (FAM-PL). POGO Ligase peptide 

(sequence: SAVLQKKITDYFHPKK) was synthesized by GenScript USA Inc. and provided 

uncleaved on Rink Amide MBHA resin. 0.10 mmol of this resin was transferred to a glass fritted 

peptide reaction vessel and swelled in DMF for 30 minutes, followed by washing with DCM (3x). 

Sufficient deprotection of the final amino acid residue was confirmed by a ninhydrin (Kaiser’s) test 

for primary amines. An aminohexanoic acid linker was added (1 mmol Fmoc-6-Ahx-OH, 2.1 ml 

of 0.45M HCTU, 500 µL of 4M DIEA in NMP; 2 hours at room temperature) to separate the 

fluorescent dye from the peptide sequence. Following subsequent washing of the resin (DMF (6x) 

and DCM (3x)) and Fmoc deprotection (20% piperidine in DMF; 30 minutes at room temperature), 

the resin was again washed (DMF (6x) and DCM (3x)) and then transferred to a glass scintillation 
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vial wrapped in foil. A solution of 75.3 mg of 5-FAM, 80.7 mg of HCTU and 46 mg of DIEA in 2 

mL of DMF was added, and the resin was then placed on an orbital shaker overnight at room 

temperature. After 20 hours of incubation time, the resin was washed with DMF (6x) and DCM 

(3x), dried over vacuum, transferred to a glass scintillation vial and cleaved from resin using a 

solution of trifluoroacetic acid (TFA)/triisopropylsilane (TIS)/water (95:2.5:2.5) for 3 hours at 

room temperature in the dark. The 5-FAM-labeled POGO ligase peptide (FAM-PL) was then 

precipitated into ice cold diethyl ether and collected by centrifugation at 4,000 x g for 10 minutes 

at 4°C. It was purified via HPLC (Beckman Coulter System Gold 168) using an increasing gradient 

of acetonitrile/water with 0.1% TFA (5:95) to (100:0) over 30 minutes. The molecular mass and 

sequence were validated via MALDI-TOF/TOF. Purity was determined by HPLC using 

absorbencies at 219 and 280 nm. HRMS (LCMS): calculated mass (C116H164N25O29) [M-H]1-: 

2372.6980, mass found m/z: 2372.7221 [M-H]1-. 

 

General Method for Synthesis of Peptoid Trimers. Trimeric peptoids were synthesized using an 

adapted procedure for submonomer [300] peptoid synthesis. Briefly, 0.05 mmol of Rink Amide 

AM or MBHA resin was transferred to a 25 mL glass fritted peptide reaction vessel and was swelled 

with DMF for 30 minutes. The resin was then deprotected using two 2.5 mL portions of 20% 

piperidine in DMF with incubation times of 15 minutes for each addition at room temperature. 

Following washing of the resin with DMF (6x) and DCM (3x), deprotection was confirmed by a 

ninhydrin (Kaiser’s) test for primary amines. A solution of 1.5 mL of 1 M bromoacetic acid (30 

equiv.) in DMF and 230 µL (29.4 equiv.) of N,N’-diisopropylcarbodiimide (DIC) was added, and 

the resin was placed on an orbital shaker for 1 hour at 37°C. At that time, the resin was washed 

with DMF (6x) and DCM (3x), and a solution of 1 M respective primary amine (2 M for 

commercially available primary amines) in DMF was added, with incubation on an orbital shaker 

for 2 hours at 37°C. These steps were repeated with washing steps in-between to produce the 

desired peptoid sequence. For the coupling of T2AA, peptoids were first synthesized up to the final 

bromoacetic acid addition. A solution of 500 mg (19.5 equiv.) of T2AA and 34 µL (39 equiv.) of 

DIEA in 2.5 mL of DMF was added, and the resin was incubated overnight at room temperature 

on an orbital shaker. Peptoids were cleaved from resin using a solution of TFA/TIS/water 

(95:2.5:2.5), incubating the resin at room temperature for either 1 hour, or 3 hours in the case of 

peptoids containing NArg, NEal or NBal side chains. TFA was removed with a steady stream of 

blowing air, and the remaining residue was dissolved in ACN/H2O (50:50) with 0.1% TFA, frozen 

and lyophilized. The peptoids were purified via HPLC (Beckman Coulter System Gold 166 or 168) 
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using an increasing gradient of ACN/H2O with 0.1% TFA (5:95) to (100:0) over 30 minutes on an 

Agilent ZORBAX SB-C18 reverse phase semi-preparative column. Molecular masses were 

validated via low resolution ESI or APCI experiments, and exact masses were obtained by high 

resolution ESI or MALDI.   

 

Fluorescence Polarization Z’-Factor Analysis. 10 µL of 20 nM FAM-PL in FP binding buffer (25 

mM HEPES at pH 7.4, 10% glycerol, 0.01% Triton X-100) was combined with either 10 µL of 200 

nM recombinant (His)6-PCNA protein in binding buffer or 10 µL of binding buffer in each of 48 

wells on a ProxiPlate-384 F Plus (PerkinElmer) low volume, black, opaque plate (24 replicates for 

each set). The plate was allowed to incubate at room temperature in the dark for 30 minutes prior 

to fluorescent measurement. Fluorescence polarization and resultant anisotropy were measured on 

a BioTek Synergy 4 Multi-Detection Microplate Reader using an excitation filter of 485 nm and an 

emission filter of 530 nm, each with a 20 nm band-pass. The average of each control set was 

calculated along with the standard deviation. The Z’-factor was calculated using equation 2.1,  

 

 
𝑍′ = 1 −  

3𝜎+ + 3𝜎−

|µ− − µ+|
  (2.1) 

 

where σ+ is the standard deviation of the positive control (FAM-PL peptide in the presence of 

PCNA protein), σ- is the standard deviation of the negative control (FAM-PL peptide in the absence 

of PCNA protein), and µ+ and µ- are the mean anisotropy values of the positive and negative 

controls, respectively.  

 

Fluorescence Polarization Binding Assay. Increasing amounts of recombinant (His)6-PCNA 

protein were prepared in FP binding buffer (25 mM HEPES at pH 7.4, 10% glycerol, 0.01% Triton 

X-100), with an 11-step 2-fold dilution series, and a top concentration of 30 µM. 10 µL of each 

solution was combined with 10 µL of 20 nM FAM-PL peptide formulated in FP binding buffer in 

a single well of a ProxiPlate-384 F Plus low volume, black, opaque plate. Each concentration of 

protein was plated in a replicate of four, and the plate was allowed to incubate at room temperature 

in the dark for 30 minutes prior to fluorescent measurement. Fluorescence polarization and resultant 

anisotropy were measured on a BioTek Synergy 4 Multi-Detection Microplate Reader using an 

excitation filter of 485 nm and an emission filter of 530 nm, each with a 20 nm band-pass. The 
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parallel and perpendicular intensity values for each sample (n=4) were used to calculate fractional 

occupancy (FO) of the FAM-PL peptide bound to monomeric PCNA using equation 2.2.  

 

 

 
𝑓𝑏 =  

𝑟 − 𝑟𝑓

(𝑟𝑏 − 𝑟)𝑄 + 𝑟 − 𝑟𝑓
 (2.2) 

 

where 

 𝑄 =  
𝑞𝑏

𝑞𝑓
 

𝑞𝑓 = ∥𝑓 +  2 ∙⊥𝑓 

𝑞𝑏 = ∥𝑏 +  2 ∙⊥𝑏 

 

 

 

 

and fb is the fraction of FAM-PL bound to PCNA,  r is the observed anisotropy value, rf is the 

anisotropy of free un-bound FAM-PL peptide, rb is the anisotropy of FAM-PL peptide saturated 

with PCNA protein, Q is the ratio of quantum yield of bound (qb) to free (qf) FAM-PL peptide, ∥f 

and ∥b are the parallel intensities of free un-bound and saturated FAM-PL peptide, respectively, 

and ⊥f and ⊥b are the perpendicular intensities of free un-bound and saturated FAM-PL peptide, 

respectively.   

 

FO values were analyzed using non-linear regression statistics in OriginPro 2015, representing 

them as the mean ± standard error of the mean (Y), and plotting them as a function of the monomeric 

PCNA protein concentration (X). From this, equation 2.3 was used to obtain a dissociation constant 

(Kd) for FAM-PL.  

 

 
𝑌 =  𝑌𝑚𝑎𝑥  ∙  

𝑋𝑛

𝐾𝑑
𝑛 + 𝑋𝑛

  (2.3) 

 

where n is the Hill slope.  

 

Fluorescence Polarization Competition Assay. Solutions of competitive ligand were formulated 

from DMSO stocks (10 mM for tripeptoids, 20 mM for T2AA) into FP binding buffer (25 mM 

HEPES at pH 7.4, 10% glycerol, 0.01% Triton X-100) at appropriate 2X concentrations, relative 

to the desired effective screening concentration. 10 µL of each competitive ligand was combined 
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with 5 µL of 4 µM recombinant (His)6-PCNA protein in binding buffer and 5 µL of 40 nM FAM-

PL in binding buffer into each well of a ProxiPlate-384 F Plus low volume, black, opaque plate, in 

replicates of four. DMSO at an equivalent concentration in binding buffer to the concentration of 

DMSO in the competitive ligand sample was used as a negative control; T2AA at 250 µM was used 

as a positive control. The plate was allowed to incubate at room temperature in the dark for 30 

minutes prior to fluorescent measurement. Fluorescence polarization and resultant anisotropy were 

measured on a BioTek Synergy 4 Multi-Detection Microplate Reader using an excitation filter of 

485 nm and an emission filter of 530 nm, each with a 20 nm band-pass. Anisotropy values were 

converted to fractional occupancy using equation 2.2, and IC50 values were calculated by fitting the 

data to equation 2.4.  

 

 
𝑌 = 𝑌𝑚𝑖𝑛 +  

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛

1 + 10(log 𝐼𝐶50−𝑋)𝑛
  (2.4) 

 

where n is the Hill slope. 

 

Inhibition constants (Ki) for the competitive ligands were determined using equation 2.5, which is 

a modified form of the Cheng-Prusoff equation, previously reported for fluorescence polarization 

assays [329]. 

 

 
𝐾𝑖 =  

[𝐼]50

(
[𝐿]50

𝐾𝑑
+

[𝑃]0
𝐾𝑑

+ 1)
  

(2.5) 

 

where [I]50 is the concentration of each competitive peptoid at 50% inhibition, [L]50 is the 

concentration of the FITC-PL peptide at 50% inhibition, [P]0 is the concentration of monomeric 

PCNA protein at 0% inhibition, and Kd is the dissociation constant calculated from equation 2.3.  

 

Molecular Dynamic Simulations. In preparation for molecular dynamic simulations, selected hit 

peptoids were flexibly docked into the PIP Box binding site of the co-crystal structure of PCNA-

Pogo Ligase (PL) peptide (PDB ID: 1VYJ), with the peptide itself removed, using Schrödinger 

Glide’s induced-fit docking model. The PCNA crystal structure was prepared using the Protein 

Preparation Wizard in Maestro, with PCNA minimized in complex with the PL peptide using the 

OPLS-2005 force field to an RMSD of 0.30Å. PCNA-peptoid complexes were solvated in 
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Schrödinger’s Desmond [330] using the TI3P water model in the presence of 0.15 M sodium 

chloride buffer to generate orthorhombic water boxes that contained a 10 Å buffer region. Each 

system was then minimized with the OPLS-2005 force field to an RMSD of 0.30Å. 

The molecular dynamic simulations were performed in the same way as described in 

Pedley, et al. (2014) [177], using Desmond and the OPLS-2005 force field. In summary, long-

range electrostatic interactions were determined using a smooth particle mesh Ewald method with 

a grid spacing of 0.8 Å. For non-bonded van der Waals interactions, a cut off of 9.0 Å was set. All 

simulations were performed for 5.0 ns, except in cases where simulations did not fully converge 

after 5.0 ns (simulations were extended by 2.5 ns in those situations), using the Desmond NPT 

method with a six step slow relaxation protocol prior to the molecular dynamics run: (i) 2000 step 

limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) minimization with a loose 

convergence restraint of 50 kcal/mol/Å; (ii) 2000 step L-BFGS minimization with a convergence 

constraint of 5 kcal/mol/Å; (iii) a 12 ps Berendsen NVT simulation at a temperature of 10 K with 

restraints on solute heavy atoms; (iv) a 12 ps Berendsen NPT ensemble at a temperature of 10 K 

and pressure at 1.01325 bar with restraints on solute heavy atoms; (v) a 24 ps Berendsen NPT 

ensemble at a temperature of 300 K and a pressure at 1.01325 bar with restraints on solute heavy 

atoms; (vi) a 24 ps Berendsen NPT ensemble at a temperature of 300 K and a pressure at 1.01325 

bar with restraints on residues beyond 15 Å of the restrained ligand. The 5.0 ns molecular dynamic 

simulation run was performed using NPT ensemble. Temperature of the simulation was kept at 300 

K using a Nosé-Hoover thermostat. Pressure was maintained at 1.01325 bar using the Martyna-

Tobias-Klein method. Energy and trajectory data was recorded at every 1.2 ps and 5.0 ps, 

respectively. 

 Upon completion of each simulation, PCNA trajectory data were processed in VMD [331] 

after removal of each peptoid ligand. For each trajectory, the protein backbone Cα atoms were 

aligned to the first frame of the simulation to generate RMSD and Cα fluctuations (RMSF) values. 

Simulations were determined to be converged once RMSD values had stabilized (average slope of 

the RMSD curve over the period of the final 0.5-1.0 ns ≈ 0). In preparation for principal component 

analysis, trajectories for each PCNA-peptoid system were overlaid using the alignment tools in 

VMD. Additionally, trajectories previously generated from Pedley, et al. (2014), including the 

systems where PCNA is in complex with the Polymerase δ, PL, p85α, p21, Apo, Akt or Abl 

peptides, were overlaid with the PCNA-peptoid trajectories for purposes of comparative analysis. 

Principal component analyses were performed using the Bio3D package [332] in R to analyze the 

conformational differences between the aligned trajectories over the period of the final 0.5 ns for 
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each simulation (100 snapshots per PCNA-ligand system). The first two orthogonal eigenvectors 

(principal components—PC1 and PC2) were plotted on the same set of axes. Average trajectory 

coordinates for the final 50 frames of each simulation were performed in VMD to generate average 

overall conformations of PCNA in complex with each peptoid.  

 

2.5.3 Synthesis of Non-Commercially Available Primary Amines and T2AA 

 

 

Scheme 2.1 

Synthesis of NArg 

 

Synthesis of N-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)-1H-pyrazole-1-

carboximidamide (1). 16.16 g (55.96 mmol) of 2,2,5,7,8-pentamethylchroman-6-sulfonyl chloride 

(Combi-Blocks, San Diego, CA) was dissolved in dioxane (200 mL), and 9.07 g (61.88 mmol) of 

1H-pyrazole-1-carboxamidine HCl dissolved in dioxane (200 mL) was added to the solution 

followed by 22 mL (2 eq.) of DIEA. The reaction mixture was stirred at room temperature for 48 

hours, at which time all of the 1H-pyrazole-1-carboxamidine HCl had been consumed as confirmed 

via TLC. The dioxane was evaporated in vacuo and the remaining brown oil was redissolved into 

200 mL DCM. The organic layer was washed with water (3 x 200 mL) and brine (200 mL). The 

organic layer was mostly evaporated in vacuo, and the remaining mixture was poured over wet 

silica gel to remove the polar impurity that appeared via TLC under conditions of ethyl 

acetate/hexane (25:75), but could not be removed with liquid-phase extraction. After flushing the 

silica gel through with ethyl acetate/hexanes (25:75), the filtrate was evaporated, and the resulting 

solid was recrystallized from ethanol to give 13.17 g (64.9% yield) of 1 as a white crystalline solid. 

1H NMR (500 MHz, CDCl3) δ 8.21 (dd, J = 2.8, 0.7 Hz, 1H), 7.67 (dd, J = 1.6, 0.7 Hz, 1H), 6.40 

(dd, J = 2.9, 1.6 Hz, 1H), 2.98 (s, 2H), 2.62 (s, 3H), 2.56 (s, 3H), 2.11 (s, 3H), 1.47 (s, 6H). 13C 

NMR (126 MHz, CDCl3) δ 12.34, 17.86, 19.16, 28.48, 42.99, 86.67, 109.47, 117.74, 124.83, 

128.92, 130.88, 132.98, 139.13, 143.44, 148.66, 159.41. 

 

Synthesis of N-(N-(3-aminopropyl)carbamimidoyl)-2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-

5-sulfonamide (2 ; “NArg”). 5.88 g (17.5 mmol) of 1 was dissolved into DCM (100 mL) and was 
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added dropwise to 6.75 g (91.1 mmol; 5.2 equiv.) of 1,3-diaminopropane dispersed in DCM (100 

mL) at room temperature while stirring. The reaction was allowed to stir for 24 hours, at which 

time TLC showed that all of 1 had been consumed. The reaction mixture was washed with water 

(3 x 100 mL) and brine (100 mL), the organic layer was dried over sodium sulfate, and the organics 

were evaporated in vacuo to give an off-white solid. The product was recrystallized using ethyl 

acetate/hexanes to give 3.57 g (59.7% yield) of 2 as a white solid. 1H NMR (500 MHz, CDCl3) δ 

3.30 (t, J = 6.09 Hz, 2H), 3.25 (q, J = 6.20 Hz, 1H, NH), 3.20 (q, J = 6.65 Hz, 1H, NH), 2.93 (s, 

2H), 2.88 (t, J = 7.63 Hz, 2H), 2.54 (s, 3H), 2.47 (s, 3H), 2.07 (s, 3H), 1.82 – 1.70 (m, 2H), 1.66 (t, 

J = 6.66 Hz, 1H, NH), 1.45 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 158.71, 138.15, 132.32, 132.12, 

124.62, 117.50, 109.22, 86.35, 43.10, 39.78, 37.98, 28.50, 19.23, 17.85, 12.39. HRMS (ESI): 

calculated mass (C17H29N4O3S) [M+H]1+: 369.1961, mass found m/z: 369.1980 [M+H]1+.  

 

 

 

Scheme 2.2 

Synthesis of NBal 

 

Synthesis of 2,2,2-trifluoro-N-(4-(hydroxymethyl)benzyl)acetamide (3). 20.0 g (132 mmol) of 4-

(aminomethyl)benzoic acid was dispersed in 100 mL of anhydrous THF, and 350 mL (2.65 equiv.) 

of 1 M borane-THF in THF was added dropwise. The reaction mixture was heated to reflux for 

eight hours, and then allowed to cool to room temperature. 100 mL of MeOH was added to quench 

the remaining borane-THF, and the reaction was stirred for an additional 15 minutes. The reaction 

solution was filtered over celite and evaporated in vacuo to give a light yellow solid. 250 mL of 

DCM was then added to the reaction flask containing the crude intermediate product, followed by 

37 mL (2 equiv.) of triethylamine. The reaction was cooled to 0°C, 21 mL (1.1 equiv.) of 

trifluoroacetic anhydride was added dropwise and the reaction was allowed to stir overnight, 

allowing it to gradually reach room temperature. After 22 hours of reaction time, all of the starting 
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material had been consumed as evidenced by TLC. 250 mL of water was added to the reaction and 

the organic layer was separated. The aqueous layer was extracted once more with 250 mL of DCM, 

the combined organics were washed with water (100 mL), and were dried over sodium sulfate, 

filtered and evaporated in vacuo to give a thick yellow oil. This oil was purified via automated flash 

chromatography (EPCLC W-Prep 2XY, Yamazen Corp., Yodogawa-Ku Osaka, Japan) using 

DCM/MeOH as the eluents. The fractions containing the desired product were combined and 

evaporated to give 15.87 g (51.44% yield for both steps) of 3 as a white solid. 1H NMR (300 MHz, 

CDCl3) δ 7.34 (d, J = 8.17 Hz, 2H), 7.26 (d, J = 8.16 Hz, 2H), 6.86 (s, br, 1H), 4.66 (s, 2H), 4.49 

(d, J = 5.86 Hz, 2H), 2.02 (s, 1H). 

 

Synthesis of N-(4-(((tert-butyldimethylsilyl)oxy)methyl)benzyl)-2,2,2-trifluoroacetamide (4). 15.68 

g (67.24 mmol) of 3 was dissolved in DMF (200 mL), followed by the addition of 9.17 g (2 equiv.) 

of imidazole and 11.29 g (1.11 equiv.) of tert-butyl dimethylchlorosilane. The reaction was allowed 

to stir overnight at room temperature. After 20 hours of reaction time, the reaction mixture was 

evaporated in vacuo to half of its original volume. 100 mL of water was added, and the solution 

was extracted with ethyl acetate (2 x 200 mL), the combined organics washed with water (200 mL) 

and brine (100 mL), dried over sodium sulfate, filtered and evaporated to give clear, yellow oil. 

This oil was purified via automated flash chromatography (EPCLC W-Prep 2XY, Yamazen Corp.) 

using ethyl acetate/hexanes as the eluents. The fractions containing the desired product were 

combined and evaporated to give 20.9 g (89.5% yield) of 4 as a white solid. 1H NMR (300 MHz, 

CDCl3) δ 7.34 (d, J = 8.26 Hz, 2H), 7.25 (d, J = 8.17 Hz, 2H), 6.83 (s, br, 1H), 4.74 (s, 2H), 4.49 

(d, J = 5.80 Hz, 2H), 0.95 (s, 9H), 0.11 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 157.52, 141.83, 

134.51, 128.03, 126.72, 117.90, 64.65, 43.81, 26.04, 18.53, -5.17. 

 

Synthesis of (4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)methanamine (5; “NBal”). 20.8 g 

(59.9 mmol) of 4 was dissolved in methanol (100 mL), followed by the addition of a 2 M aqueous 

solution of potassium carbonate (27.1 g in 100 mL water). The reaction was heated to reflux for 

seven hours, and then allowed to cool to room temperature. Methanol was evaporated from the 

reaction mixture in vacuo, the remaining aqueous solution was transferred to a separatory funnel, 

and was extracted with DCM (2 x 400 mL). The combined organics were washed with water (100 

mL), dried over sodium sulfate, filtered and evaporated in vacuo to give a yellow oil. The crude 

product was purified via automated flash chromatography (EPCLC W-Prep 2XY, Yamazen Corp.) 

with an increasing gradient of MeOH:DCM w/ 1% TEA. The fractions containing the desired 
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material were combined and evaporated to give 12.35 g (82.0% yield) of 5 as a clear oil, which 

solidified upon storage at -20°C. 1H NMR (500 MHz, CDCl3) δ 7.28 (d, J = 8.58 Hz, 2H), 7.25 (d, 

J = 8.14 Hz, 2H), 4.72 (s, 2H), 4.43 (s, br, 1H), 3.81 (s, 2H), 0.95 (s, 9H), 0.10 (s, 6H). 13C NMR 

(126 MHz, CDCl3) δ 141.85, 139.83, 126.87, 126.18, 64.70, 46.16, 29.35, 25.90, -5.29. HRMS 

(ESI): calculated mass (C17H27NOSi) [M+H]1+: 252.1784, mass found m/z: 252.1785 [M+H]1+. 

 

 

Scheme 2.3 

Synthesis of NBza 

 

Synthesis of 4-((2,2,2-trifluoroacetamido)methyl)benzoic acid (6). 21.16 g (140 mmol) of 4-

(aminomethyl) benzoic acid was suspended in 450 mL of dichloromethane, followed by 42.0 mL 

(301 mmol) of triethylamine. The reaction was then cooled in an ice bath, and 60.44 g (2.06 eq.) of 

trifluoroacetic anhydride in 50 mL of dichloromethane was added dropwise over the course of 1 

hour. The reaction was stirred for an additional three hours while being allowed to gradually warm 

to room temperature. 500 mL of aqueous saturated sodium bicarbonate solution was then slowly 

added to the reaction mixture in portions, and the solution was acidified with 4N HCl (pH < 3). The 

resultant precipitate was collected via filtration, and the filter cake was washed three times with 

water and twice with ice-cold ether. The solid was dissolved in ethyl acetate, dried over sodium 

sulfate, filtered, transferred to a round bottom flask and evaporated to give an off-white solid. The 

product was recrystallized from ethyl acetate/hexanes three times to give 24.63 g (71.19% yield) 

of 6 as a white solid. 1H NMR (300 MHz, DMSO) δ 10.15 (t, J = 5.91 Hz, 1H), 8.13 (d, J = 8.36 

Hz, 2H), 7.51 (d, J = 8.38 Hz, 2H), 4.52 (d, J = 5.97 Hz, 2H). 13C NMR (75 MHz, DMSO) δ 167.97, 

162.96, 145.92, 131.66, 130.49, 128.91, 127.95, 43.27. 

 

Synthesis of tert-butyl 4-((2,2,2-trifluoroacetamido)methyl)benzoate (7). 12.55 g (50.77 mmol) of 

6 was dissolved in anhydrous THF (150 mL), and 135 mL of t-butanol and 6.20 g (50.75 mmol) 

DMAP were added. The reaction was cooled to 0°C under argon, and 29.2 g (152 mmol) of EDCI 

was added followed by an additional 50 mL of anhydrous THF to wash down the insides of the 

reaction flask. The reaction was sealed and stirred under argon overnight, allowing it to gradually 

reach room temperature. After 16 hours of reaction time, 200 mL of water was added to the reaction 
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and the organics were evaporated in vacuo. The aqeuous solution was extracted with DCM (2 x 

200 mL), and the subsequent combined organics were washed with 5% HCl (2 x 200 mL), 200 mL 

of water and 200 mL of brine. The organic layer was dried over sodium sulfate and evaporated to 

give a yellow oil. The product was purified using normal phase flash chromatography (EPCLC W-

Prep 2XY, Yamazen Corp.) with an increasing gradient of ethyl acetate/hexanes (10:90 to 100:0 

over 60 minutes). The fractions containing the desired product were combined and evaporated to 

give 10.78 g (70.0% yield) of 7 as a white solid. 1H NMR (300 MHz, DMSO) δ 1.53 (s, 9H), 4.46 

(d, J = 5.94 Hz, 2H), 7.39 (dt, J = 1.78, 8.33 Hz, 2H), 7.89 (dt, J = 1.83, 8.33 Hz, 2H), 10.09 (t, J = 

6.11 Hz, 1H). 13C NMR (75 MHz, DMSO) δ 27.75, 42.36, 80.63, 116.22, 127.40, 129.31, 130.45, 

142.54, 156.56, 164.70. 

 

Synthesis of tert-butyl 4-(aminomethyl)benzoate (8; “NBza”). 10.75 g (35.5 mmol) of 7 was 

dissolved in methanol (45 mL), and 12.25 g (2.5 eq.) of potassium carbonate dissolved in water (45 

mL) was added in one portion. The reaction was sealed and stirred overnight at room temperature. 

After 18 hours of reaction time, methanol was evaporated from the reaction mixture and the 

remaining aqueous solution was adjusted to pH > 10 with 4N NaOH. The aqueous layer was 

extracted with DCM (3 x 200 mL), the combined organics washed with water (50 mL) and brine 

(50 mL), and the organic layer dried over sodium sulfate. The organics were evaporated to give 

7.10 g (96.7% yield) of 8 as a clear oil. 1H NMR (300 MHz, CDCl3) δ 7.91 (d, J = 8.30 Hz, 2H), 

7.31 (d, J = 8.32 Hz, 2H), 3.86 (s, 2H), 1.69 (s, 1H), 1.55 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 

165.57, 147.58, 130.47, 129.60, 126.71, 80.76, 46.02, 28.12. HRMS (ESI): calculated mass 

(C12H18NO2) [M+H]1+: 208.1338, mass found m/z: 208.1334 [M+H]1+. 

 

 

 

Synthesis of 2-((tert-butyldimethylsilyl)oxy)ethan-1-amine (9; “NEal”). 6.11 g (100 mmol) of 

ethanolamine and 13.62 g (2 equiv.) of imidazole were dissolved in DCM (100 mL) in a 500 mL 

round bottom flask. 15.83 g (105 mmol) of tert-butyldimethylchlorosilane dissolved in DCM (50 

mL) was added dropwise over the course of 20 minutes, and the reaction mixture was stirred for 

one hour at room temperature. At that time, all of the starting material had been consumed as 
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confirmed by TLC; 100 mL of water was added and the layers were separated. The aqueous layer 

was extracted twice with DCM (2 x 100 mL), and the combined organics washed with water (50 

mL), dried over sodium sulfate and evaporated to give 13.68 g (77.9% yield) of 9 as a clear oil. 1H 

NMR (300 MHz, CDCl3) δ 3.57 (t, J = 5.36 Hz, 2H), 2.71 (t, J = 5.25 Hz, 2H), 2.08 (s, 2H, NH2), 

0.84 (s, 9H), 0.00 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 65.13, 44.27, 25.96, 18.35, -5.27. HRMS 

(ESI) calculated mass (C9H22NOSi) [M+H]1+: 188.1471, mass found m/z: 188.1495 [M+H]1+. 

 

 

 

Synthesis of tert-butyl (4-aminobutyl)carbamate (10; “NLys”). 50.02 g (567.4 mmol) of 1,4-

diaminobutane was dissolved in chloroform (600 mL) and was cooled to 0°C. 13.17 g (6.03 mmol) 

of di-tert-butyl dicarbonate dissolved in chloroform (300 mL) was added drop-wise over the course 

of two hours and the reaction was stirred overnight, allowing it to reach room temperature. After 

21 hours of reaction time, the entire reaction mixture was transferred to a separatory funnel and 

was washed with water (8 x 200 mL), dried over sodium sulfate and evaporated in vacuo to give 

10.71 g (94.3% yield) of 10 as a clear oil. 1H NMR (300 MHz, CDCl3) δ 4.84 (s, 1H), 3.04 (t, 2H), 

2.64 (t, J = 6.7 Hz, 2H), 1.46 – 1.38 (m, 4H), 1.37 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 155.93, 

78.82, 41.70, 40.30, 30.77, 28.32, 27.37. HRMS (ESI) calculated mass (C9H21N2O2) [M+H]1+: 

189.1603, mass found m/z: 189.1601 [M+H]1+. 

 

 

Scheme 2.4 

Synthesis of NTrp 

 

Synthesis of N-(2-(1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide (11). 19.99 g (124.8 mmol) of 

tryptamine was dissolved in DCM (300 mL) followed by the addition of 11.1 mL (1.1 equiv.) of 

pyridine. This solution was cooled to 0°C and 19.4 mL (1.1 equiv.) of trifluoroacetic anhydride 



59 

 

 

was added dropwise. After 22 hours of reaction time, all of the starting material had been consumed, 

as evidenced by TLC; the reaction mixture was washed with 2N HCl (3 x 250 mL), water (100 mL) 

and brine (100 mL), dried over sodium sulfate and evaporated to give a brown solid. This solid was 

dissolved in a mixture of acetone and DCM and was absorbed onto silica gel. This was dry loaded 

into an empty flash column, and the product was purified via normal phase flash chromatography 

(EPCLC W-Prep 2XY, Yamazen Corp.) using an increasing solvent gradient of ethyl 

acetate/hexanes (20:80 to 100:0 over 60 minutes). The fractions containing the desired product 

were combined and evaporated to give 24.1 g (75.3% yield) of 11 as a white solid. 1H NMR (300 

MHz, DMSO) δ 10.86 (s, 1H, NH), 9.55 (t, J = 5.56 Hz, 1H), 7.53 (d, J = 7.72 Hz, 1H), 7.34 (dd, 

J = 1.05, 7.99 Hz, 1H), 7.16 (d, J = 2.35 Hz, 1H), 7.07 (td, J = 1.25, 7.55, 8.09 Hz, 1H), 6.98 (ddd, 

J = 1.13, 7.10, 7.90 Hz, 1H), 3.45 (q, J = 6.82 Hz, 2H). 

 

Synthesis of tert-butyl 3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indole-1-carboxylate (12). 24.0 g 

(93.7 mmol) of 11 was dissolved in THF (200 mL), followed by 30.76 g (1.5 equiv.) of di-tert-

butyl dicarbonate with an additional 50 mL of THF to wash down the sides of the flask. 0.59 g 

(0.052 equiv.) of DMAP was then added and the reaction was heated to 40°C for two hours. At that 

time, TLC showed that all of the starting material had been consumed, so 250 mL of DCM was 

added to the reaction and the organic solution was washed with water (2 x 100 mL), dried over 

sodium sulfate and evaporated in vacuo to give a viscous brown oil. The product was purified via 

normal phase flash chromatography (EPCLC W-Prep 2XY, Yamazen Corp.) using an increasing 

gradient of ethyl acetate/hexanes (10:90 to 100:0 over 100 minutes). The fractions containing the 

desired product were combined and evaporated in vacuo to give 17.27 g (51.7% yield) of 12 as a 

white solid. 1H NMR (300 MHz, DMSO) δ 9.57 (t, J = 5.78 Hz, 1H), 8.05 (d, J = 8.20 Hz, 1H), 

7.62 (d, J = 7.48 Hz, 1H), 7.50 (s, 1H), 7.33 (td, J = 1.39, 7.77, 8.28 Hz, 1H), 7.25 (td, J = 1.17, 

7.44 Hz, 1H), 3.49 (q, J = 6.72 Hz, 2H), 2.91 (t, J = 6.98 Hz, 2H), 1.61 (s, 9H). 13C NMR (75 MHz, 

DMSO) δ 156.51, 156.03, 149.02, 134.78, 130.13, 124.42, 123.18, 122.52, 119.07, 117.40, 114.74, 

83.48, 39.07, 27.67, 23.53. 

 

Synthesis of tert-butyl 3-(2-aminoethyl)-1H-indole-1-carboxylate (13; “NTrp”). 17.20 g (48.27 

mmol) of 12 was dissolved in methanol (60 mL) followed by the addition of 16.75 g (2.511 equiv.) 

of potassium carbonate dissolved in water (60 mL). The reaction flask was covered and the reaction 

was allowed to stir overnight at room temperature. After 16 hours of reaction time, little progress 

was seen with the reaction, so it was heated to reflux for seven hours. At that time, TLC showed 
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that all starting material had been consumed. Methanol was evaporated in vacuo, and the remaining 

aqueous solution was adjusted to pH >10 with 4N NaOH. The product was extracted with DCM (3 

x 200 mL), and the combined organics were washed with water (100 mL) and brine (100 mL), dried 

over sodium sulfate, filtered and evaporated in vacuo to give 7.05 g (56.1% yield) of 13 as a yellow 

oil. 1H NMR (300 MHz, CDCl3) δ 7.60 – 7.46 (m, 1H), 7.46 – 7.36 (m, 1H), 7.34 – 7.17 (m, 3H), 

3.54 (t, J = 7.74 Hz, 2H), 3.03 (t, J = 7.11 Hz, 2H), 1.66 (s, 9H), 1.64 (s, 2H, NH2). 13C NMR (75 

MHz, CDCl3) δ 167.81, 135.55, 130.74, 124.17, 123.05, 122.72, 122.26, 118.98, 115.15, 83.27, 

51.28, 28.17, 26.50. LRMS (ESI) calculated mass (C15H21N2O2) [M+H]1+: 261.1, mass found m/z: 

261.1. 

 

 

 

Synthesis of (4-(tert-butoxy)phenyl)methanamine (14; “NTyr”). 175 mL of 1 M (175 mmol; 2.6 

eq.) lithium aluminum hydride in THF was added to a round bottom flask with a stir bar and was 

cooled to 0°C. A solution of 11.83 g (67.5 mmol) of 4-(tert-butoxy)benzonitrile in 50 mL of 

anhydrous THF was added to the stirring solution dropwise over the course of 30 minutes. The 

reaction was then fitted with a reflux condenser and was heated to reflux for six hours, followed by 

stirring overnight under argon, allowing the reaction to cool to room temperature. After 22 hours 

of total reaction time, the reaction mixture was cooled to 0°C and was quenched with 7 mL of 

water, followed by 6 mL of 15% NaOH (aq) and an additional 17 mL of water. The resulting 

emulsion was filtered over celite, with the filter cake being washed with methanol (2 x 50 mL) and 

DCM (2 x 50 mL). The filtrate was evaporated, and the resulting dark yellow oil was dissolved into 

75 mL of water. The solution was transferred to a separatory funnel and was extracted with ethyl 

acetate (4 x 150 mL). The combined extractions were washed with water (100 mL) and brine (100 

mL), dried over sodium sulfate, and evaporated in vacuo to give a dark yellow oil. The oil was 

separated using basic alumina chromatography and a solvent system of ethyl acetate/hexanes 

(20:80 to 50:50). The fractions containing the product (as evidenced by TLC) were combined and 

evaporated to give 5.71 g (47.2% yield) of 14 as a clear oil. 1H NMR (300 MHz, CDCl3) δ 7.19 

(dd, J = 2.26, 6.46 Hz, 2H), 6.94 (dd, J = 2.32, 6.46 Hz, 2H), 4.38 (s, 2H), 1.31 (s, 9H). 13C NMR 

(75 MHz, CDCl3) δ 153.80, 135.32, 128.26, 124.27, 78.17, 54.93, 28.75. LRMS (EI) calculated 

mass (C11H17NO): 179.26, mass found m/z: 179. 
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Synthesis of (S)-4-(4-(2-amino-3-hydroxypropyl)-2,6-diiodophenoxy)phenol (15; “T2AA”). 7.55 

mL of 1 M (15.1 mmol) lithium borohydride in THF was added to a 50 mL round bottom flask 

followed by 5.2 mL of anhydrous THF and 5 mL of anhydrous dioxane. The solution was cooled 

to 0°C under argon, and 3.85 mL (30.3 mmol) of chlorotrimethylsilane was slowly added. The 

resulting solution was stirred for 15 minutes at 0°C, and 0.90 g (1.71 mmol) of 3,5-diiodo-L-

thyronine (Combi-Blocks) was added in one portion with the aid of an additional 5.2 mL of 

anhydrous THF and 5 mL of anhydrous dioxane. The flask was sealed and the reaction was stirred 

overnight under argon while being allowed to slowly warm to room temperature. After 18 hours of 

reaction time, the reaction was poured into 25 mL of ice-water, adjusted to pH >9 with 4 N NaOH 

and was extracted with ethyl acetate (3 x 50 mL). The combined organic extractions were dried 

over sodium sulfate, filtered and evaporated to give a light brown solid. This solid was dissolved 

in a mixture of ACN/H2O (75:25) and was purified on an Agilent ZORBAX SB-C18 reverse phase 

semi-preparative column on a System Gold 166 (Beckman Coulter) HPLC system, using a gradient 

of ACN (0.1% TFA)/H2O (0.1% TFA) 0:100 to 100:0 over 30 minutes with detection at 254 nm. 

The fractions containing the purified product were combined, frozen and lyophilized to give 460 

mg (52.5% yield) of 15 as a fluffy white solid. 1H NMR (300 MHz, DMSO) δ 9.12 (s, 1H), 7.84 

(s, 5H), 6.68 (dt, J = 2.30, 3.84, 9.08 Hz, 2H), 6.54 (dt, J = 2.30, 3.61, 8.98 Hz, 2H), 5.39 (t, J = 

4.49 Hz, 1H), 3.56 (dd, J = 4.86, 7.97 Hz, 1H), 3.40 (dq, J = 5.48, 9.94 Hz, 2H), 2.87 – 2.69 (m, 

2H), 2.07 (s, 1H). 13C NMR (126 MHz, DMSO) δ 152.65, 152.26, 148.83, 140.67, 137.48, 115.86, 

115.82, 92.48, 60.07, 53.27, 40.02, 39.85, 39.78, 39.69, 39.52, 39.35, 39.19, 39.02, 33.06. HRMS 

(ESI) calculated mass (C15H16I2NO3) [M+H]1+: 511.9220, mass found m/z: 511.9678 [M+H]1+. 

 

2.6 Results 

 

Various applications for trimeric peptoids have already been developed [302,305,318–322,333]. 

Three key regions at the PIP Box binding site are important for the recognition and binding of PIP 

Box-containing peptides/proteins [177]. It was predicted that tripeptoids would be sufficient in size 

to block these key areas. Furthermore, they fall within the general mass range of other inhibitors of 
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PPIs, and they are small enough to enhance the ease of synthesis while lowering the cost and time 

to completion. The general approach taken in this project represents a situation in which resources 

are limited in both materials and time, and should be applicable to other situations where rapid 

reduction of the size of a library to be synthesized is desired. In this way, this approach provides a 

unique pathway to fragment-based drug discovery as multiple fragments are “tied” together in the 

peptoid backbone, and are thus simultaneously screened together.   

 

2.6.1 Preferences for Fragments along the Peptoid Backbone  

 

As outlined in section 2.5.1, computational screens were used to drive the synthetic approach for 

peptoid library creation. From the results of the screens, as expected, slightly different results were 

observed for each crystal structure of PCNA (Appendix A, Figure A.1), and different results were 

seen for each substitution position along the peptoid backbone (Figure 2.5). The 1st (N-terminal) 

position generally showed a relatively limited preference for a set of several peptoid side chains 

including NLys, NArg, NTyr, NGln, NEba and NBal. Six fragments were present in the 1st position 

in at least 7% of the top hit list, which itself consisted of 200 compounds that were compiled from 

the top 50 hits for each of the four PCNA crystal structures that were screened. The two fragments  

 

 

Figure 2.4. Tripeptoids Dock at the PCNA PIP Box Binding Site. The combinatorial tripeptoid 

library was screened against four crystal structures of PCNA. The top hit of the screen against 

structure 3VKX (PCNA bound to T3) is shown above. The hydrophobic site is displayed in orange, 

and the PIP Box glutamine binding site is displayed in blue.  
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Figure 2.5. Percentage that Amine Fragments in the Initial Library Appeared in the Tripeptoid 

Backbone. The top 50 hits from docking with each of the four PCNA crystal structures were 

selected and compiled into a total group of 200 compounds; the number of times a specific amine 

fragment was present at a particular position along the peptoid backbone was tallied. The fragments 

are represented above as the percentage of the number of times that fragment was present in that 

position, among the full list of 200 compounds. “1st”, “2nd” and “3rd” positions are as defined in 

Figure 2.2.  
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that stood out most significantly were NLys and NArg, each of which were present in over 20% of 

the top hit list. Similar to the 1st position, the 2nd position did not show strong preference for a 

limited number of fragments—rather, ten different fragments were present in the 2nd position in at 

least 5% of the top hit list, though NArg did stand out with it being present in 15% of the top hits. 

In contrast to the first two positions, the 3rd position in the peptoid backbone showed significant 

preference for particular side chains, notably aromatic groups that contained functionalities that 

allow for hydrogen bonding with protein amino acids. NBal especially stood out as 43% of all of 

the top hit compounds contained that fragment in the 3rd position.  

 Given that there were 21 possible substituents at each of the three backbone positions, there 

would theoretically be 9,261 total possible tripeptoids. With limited resources, this number of 

compounds may be impossible to synthesize, and may present a non-trivial cost. If a cutoff was set 

to where only fragments that appeared in 5% or more of the top hits at a given position were 

considered, for example, the total list of compounds would be narrowed to just 240 (6 in the 1st 

position x 10 in the 2nd position x 4 in the 3rd position). In principle, an even shorter total list of 

compounds could be produced if the percentage cutoff for significance is raised (e.g. considering 

only the fragments that appear in 10% or more of the top hits at a given position), and that was the 

general strategy pursued here where less than 100 ligands were actually synthesized. 

 

2.6.2 Virtual Incorporation of Second Generation Tripeptoid Ligands 

 

As previously discussed, the small molecules T3 and T2AA have been demonstrated to physically 

bind in the hydrophobic pocket of the PIP Box binding site [178,231]. Both compounds contain a 

primary amine, as well as a carboxylic acid, potentially allowing them to be incorporated into a 

peptoid backbone using submonomer peptoid synthesis. In doing this, either could serve as an 

anchoring residue, helping to direct small peptoid molecules to the PIP Box binding site on PCNA. 

Due to the enhanced thyroid activity and low solubility of T3, T2AA was selected as a better 

candidate for investigation. Using T2AA as a fragment, a virtual combinatorial library was created 

and virtually screened using similar methodology as described in section 2.5.1, with a larger set of 

37 primary amine fragments and two forms of T2AA, itself having defined attachment points at 

either the primary amine (NT2AA) or carboxylic acid group (CT2AA). Due to the significant 

conformational difference in the PIP Box binding site between the co-crystal structures of PCNA-

T3 and PCNA-peptides, only the structure of PCNA bound to T3 was used (PDB ID: 3VKX) since 

the hydrophobic pocket on PCNA would be able to accommodate the potential binding of T2AA. 
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Figure 2.6. Percentage that Fragments Including T2AA Appeared in the Tripeptoid Backbone. The 

top 50 hits from docking were selected and the number of times a specific amine fragment was 

present at a particular position along the peptoid backbone was tallied. The fragments are 

represented above as the percentage of the number of times that fragment was present in that 

position, among the full list of 200 compounds. “1st”, “2nd” and “3rd” positions are as defined in 

Figure 2.2.  
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From the results (Figure 2.6), the 1st and 2nd positions along the peptoid backbone showed 

strong preference for a small set of possible side chains, with T2AA, containing the amine 

attachment point in the first position, and ethyl alcohol being by far the most favored in the second  

position. It must be noted that overall, tripeptoids containing T2AA as a side chain docked with 

much more favorable scores than peptoids that did not contain T2AA; though, based on the crystal 

structure used for docking (PDB ID: 3VKX), PCNA was conformationally biased towards ligands 

that took the shape of T3. In contrast, the third position did not show much preference for particular 

side chains. This was presumably because, according to the docked structures, fragments in the 

third position tended to be quite flexible and picked up a variety of interactions in the region 

proximal to the PIP Box glutamine binding site. As a result, none of the third position fragments 

individually picked up substantial stabilizing interactions with PCNA. Since NT2AA was the most 

frequent fragment at the first position, it was decided that the most technically straightforward 

approach would be for all second generation peptoids to have T2AA in the first position. This 

would substantially increase the ease of synthesis since T2AA could be attached at the N-terminal 

end of a resin-bound synthetic peptoid without the need for chemical protecting groups.  

 

 

 

 

Figure 2.7. Second Generation Peptoid Ligands Dock at the PCNA PIP Box Binding Site. The 

combinatorial tripeptoid library containing T2AA as a fragment was screened against the crystal 

structure of PCNA bound to T3 (PDB ID: 3VKX). The top hit from the screen is shown above with 

the T2AA fragment binding in the hydrophobic pocket site on the surface of the protein. 
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2.6.3 In Vitro Screening of Synthesized Tripeptoids 

 

Fragments that appeared in approximately at least 5% of each position on the tripeptoid backbone 

were selected for incorporation. Among the top hit side chains were multiple that were not 

commercially available, including NArg, NBal, NBza, NEba, NEal, NGln, NLys and NTyr. 

Fragments that required protecting groups are shown in Appendix A, Figure A.5. Synthesis of NEba 

and NGln with acid-labile protecting groups proved to be unexpectedly technically difficult, and to 

avoid significant costs associated with further attempts at re-synthesis, focus was placed on 

synthesizing tripeptoids containing the other top hit fragments. The total list of synthesized peptoids 

can be found in Table A.2 of Appendix A. Some ligands were also synthesized that were not 

predicted to be good biochemical hits for purposes of comparison to compounds that were predicted 

to be PCNA-PIP Box antagonists.  

 Upon synthesis and purification, peptoids were screened in a fluorescence polarization 

assay to find ligands that disrupted the interaction between His-tagged PCNA and FAM-PL. In the 

design of the FP assay, the conditions from Pedley et al. [177] were used as a starting point. 

However, customized conditions were needed given that the dynamic range between bound and 

unbound FAM-PL using 10 nM peptide and 100 nM PCNA was small, though a Z’-factor analysis 

[334] indicated the variability was small enough to quantitatively determine differences between 

bound and unbound peptide (Appendix A, Figure A.2). To find a balance of PCNA to FAM-PL 

that would produce a substantial dynamic range, and to determine the peptide’s Kd value, increasing 

amounts of recombinant PCNA was added to a fixed concentration of the FAM-PL peptide (5 nM) 

in a two-fold dose-response fashion (Appendix A, Figure A.3). Statistical analysis by non-linear 

regression indicated that the dissociation constant for the peptide was 107 nM, which is similar to 

what has been previously reported [335]. Because more than 80% of the peptide was bound at a 

PCNA concentration of 1 µM, that concentration of protein was selected for use in subsequent 

displacement assays. Ultimately, the protein being in that level of excess should greatly enhance 

the dynamic range of the assay, and would thus increase the robustness in determining which 

compounds are actually hits in disrupting the binding between PCNA and the PL peptide. After 

developing conditions under which synthesized peptoids would be screened, 69 of the initially 

synthesized compounds were screened by FP at concentrations of 1 mM and 250 µM to find any 

general hits (Figure 2.8). T2AA was selected as the positive control since it is known to disrupt the 

interaction between FAM-PL and PCNA, and would be the basis for comparison against the ligands 

in this study.
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Figure 2.8. Initial Tripeptoid FP Screen. Many of the synthesized tripeptoids were screened using 

fluorescence polarization at initial concentrations of 1 mM and 250 µM for their ability to disrupt 

the binding between PCNA and FAM-PL. 1 mM T2AA serves as the positive control, and DMSO 

(at the same concentration ratio of DMSO:binding buffer as the screened ligands, but with no 

compound) serves as the negative control for binding disruption. FAM-PL and PCNA were at 5 

nM and 1 µM, respectively. Error bars represent standard error of the mean, and dotted lines around 

the controls represent the 95% confidence interval (α=0.05) for each. Lower anisotropy values 

indicate disrupted binding of PCNA-PL. The full list of peptoids screened in this assay, listed by 

peptoid number, can be found in Appendix A, Table A.3. 

 

 

  From the initial screen, five ligands—NLys-NPip-NBal, NLys-NTyr-NBal, NBal-NLys-

NTyr, T2AA-NEal-NPip and T2AA-Gly-NPip—were identified that were able to disrupt the 

binding between PCNA and FAM-PL at 250 µM with comparable activity to the positive control, 

T2AA. Series of two-fold dilutions of each hit (Figure 2.9) were performed to generate dose 

response curves. Following the screen of the initial set of compounds, additional peptoid-based 

ligands were synthesized that contained variations on the structure of the hits to see if inhibitory 

nature of these ligands could be improved. One new fragment, NMba (see Appendix A, Figure 

A.4), was selected to try in place of NBal due to its similarity in size and shape, but with the ability 

to donate an additional hydrogen bond. Dose response curves were generated for these new ligands 

as well (Figure 2.9). IC50 values were determined for each peptoid hit by performing non-linear 

regression fits of each dose response curve using equation 2.4. Ki values were calculated 
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Table 2.4 

Hit Compound IC50 and Ki Values Measured by Fluorescence Polarization 

  

Compound Name IC50  (µM) * Ki  (µM) *† 
  

T2AA 1.34 ± 0.33 1.27 ± 0.29 

Gly-NPip-NBal 7.74 ± 3.41 6.84 ± 2.20 

NBal-NLys-NTyr > 600  > 900 

NLys-NPip-NBal 1.94 ± 0.51 1.78 ± 0.44 

NLys-NPip-NMba 12.93 ± 1.97 12.16 ± 1.71 

NLys-NTyr-NBal ~ 165 ~ 200 

NMba-NPip-NBal 11.69 ± 2.55 10.49 ± 1.93 

T2AA-Asn 7.20 ± 2.74 7.23 ± 3.69 

T2AA-Gln 3.52 ± 1.65 3.32 ± 1.37 

T2AA-Gly 2.91 ± 0.91 2.70 ± 1.08 

T2AA-Gly-NBal 5.66 ± 1.67 5.38 ± 1.98 

T2AA-Gly-NPip 16.17 ± 3.71 15.10 ± 3.04 

T2AA-NEal-Gly 1.17 ± 0.37 1.08 ± 0.39 

T2AA-NEal-NMba 1.18 ± 0.24 0.833 ± 0.439 

T2AA-NEal-NPip 1.82 ± 0.37 1.73 ± 0.38 

T2AA-NEal-NTyr 0.482 ± 0.328 0.521 ± 0.209 

T2AA-NPip-NLys 6.13 ± 2.84 6.53 ± 1.92 
   

 

*  Values are represented as the 95% confidence interval around the mean  
†  Calculated using equation 2.5 

(Structures of T2AA-containing ligands can be found in Appendix A, Figure A.7) 
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from the resultant IC50 values using equation 2.5 (Table 2.4). As a control experiment, individual 

fragments that make up the top hits, including NGln, NLys, NPip, NTyr, NBal, NBza and NEal, 

were screened in the FP assay to determine whether they were individually capable of disrupting 

PCNA-PL peptide binding (Appendix A, Figure A.6). However, none of the fragments showed any 

evidence of inhibition.  

 

2.6.4 Identification of Molecular Recognition Features of PCNA for Peptoid Ligands 

 

In an effort to understand better the molecular features that may be driving the affinity of the 

peptoids for PCNA, molecular dynamics simulations (MDs) were performed with each of the top 

five initial hits—NLys-NPip-NBal, NLys-NTyr-NBal, NBal-NLys-NTyr, T2AA-NEal-NPip and 

T2AA-Gly-NPip—in complex with PCNA. As discussed in section 2.5.2, each ligand was first 

docked into the co-crystal structure of PCNA and PL-peptide (PDB ID: 1VYJ; Appendix A, Figure 

A.8), with the peptide removed, using the Glide induced-fit model in Maestro. This was done to 

give approximate starting points for the MDs, as well as to ensure that there were no conflicts on 

an atomic scale due to Van der Waals clashing or unfavorable ionic contacts. Each simulation was 

run on a 5.0 ns scale, or until it converged, as judged by the change in protein Cα and side chain 

RMSD over time (see Appendix A, Figures A.9-A.13). Upon completion, simulation trajectories 

were first aligned to the first frame of their own simulation, and then the simulations were aligned 

to one another based on the position of their Cα atoms using VMD. The final fifty frames for each 

MD were averaged to give an average final structure for each PCNA-ligand complex (Figure 2.10).  

Upon analysis, it was clear that each of the resulting complexes differed significantly from the co-

crystal structure of PCNA-PL. It has been previously reported that PCNA is quite flexible and can 

adopt a variety of conformations to optimize ligand binding [177]. The results here suggest that 

this principle is conserved given the large differences in the PIP Box binding region on the protein 

between each MD. Regions on PCNA that appeared to drive the conformational difference between 

each structure most substantially were between residues 80-86, 93-97, 104-111, 117-136, 162-166, 

172-177, 181-194 and 251-257 (Appendix A, Figure A.14). Perhaps unsurprisingly, each of these 

regions was found in either a β-turn or unordered loop structure, owing to the natural flexibility of 

these secondary structure protein moieties. The PIP Box binding site itself is surrounded by four 

distinct flexible regions comprised of β-turn residues 40-46, the disordered interdomain connecting 

loop residues 117-136, β-turn residues 229-235 and disordered loop residues 251-257. It would 

make sense that some of the most significant drivers of PCNA conformational change would be 
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found in these regions.. Of the protein residues that looked to be the most important for direct 

interaction with each peptoid ligand, His44, Pro129, Pro234, Ala252, Pro253 and Ile255 each 

interacted with each peptoid ligand to various significant degrees in each of the MDs (Appendix 

A, Figure A.15). Almost all of the significant contacts were shared with T2AA and the PL peptide, 

indicating that the inhibitors occupy many of the ‘anchoring’ contacts between PCNA and PL, 

enhancing their antagonistic activity.  

 

 

 

 

 

 

Figure 2.11. Principle Component Analysis of PCNA Topology Variance. The final 100 frames of 

each PCNA-ligand MD trajectory were aligned based on the position of the PCNA Cα backbone 

atoms. A principle component analysis of the aligned trajectories shows differential clustering of 

PCNA conformations (residues 1-257) when in complex with either a peptoid-based ligand or a 

PIP Box-containing peptide. Principle components 1-3 (PC1, PC2 and PC3) for each structure were 

clustered and plotted along with the proportion of variance for each principle component.   
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To further visualize the differences between each MD output structure, a principal 

component analysis (PCA) of the trajectory snapshots for the Cα atoms of each PCNA-ligand 

complex was performed (Figure 2.11). In addition to the outputs from the MDs performed here, 

trajectories of PCNA bound to various known binding peptides, as used in the study by Pedley, et 

al. 2014 [177], were included in the PCA for comparison. In this additional set were trajectories of  

PCNA in complex with the DNA polymerase δ, PL, p85-α, p21, Apo, Akt or Abl peptide. In a 

PCA, the principle components, which are themselves orthogonal eigenvectors, describe the axes 

of maximal variance of the distribution of structures. The percentage of variance of the fluctuation 

of protein atom position in each dimension is characterized by a corresponding eigenvalue. By 

clustering structures in principle component space, one can focus on the relationships between 

different structures in terms of their major structural displacements. In the context of this work, 

clustering along principle components 1, 2 and 3 allows for the comparison of the significant 

structural differences between each conformation of PCNA that covers more than 50% of their 

conformational variance (Figure 2.11, bottom right panel).  

From the results of the clustering analysis, as predicted, the PCA indicated distinct 

differences in the topology of the PCNA-ligand interaction sites. Of all the structures, PCNA-T2AA 

was the most different from the rest, likely due to the fact that the inhibitor is much smaller than 

the peptoid-based compounds and does not project outside of the hydrophobic pocket. Although 

the structures were mostly separated from one another, there were some similarities in the 

eigenvectors. For example, though PCNA-PL and PCNA-NLys-NPip-NBal were well separated in 

clustering space, they both had nearly equivalent second principle components. Likewise, the 

population distribution of PCNA-PL and PCNA-T2AA had nearly equivalent first principle 

components. This would indicate that these conformations are very similar in certain dimensions. 

The potential implications for predicting inhibitory efficiency from this PCA are not yet clear, but 

this information could be useful for understanding how a ligand interacts with PCNA and how it 

could be grouped with other similar compounds.   

 Analysis of the molecular dynamic simulations indicates that the peptoid inhibitors are 

active due to their ability to disrupt key interactions between PCNA and the PL peptide (Figure 

2.12). While in the most general sense they provide a geometric hindrance to PIP Box binding, it 

is also significant that these compounds prevent PCNA from forming important contacts with PIP 

Box residues. Computational results from Pedley, et al. (2014) suggest that the conserved amino 

acids of the PIP Box—glutamine in position 1, a hydrophobic residue in position 4 and aromatic 

residues in positions 7 and 8—act as anchoring residues that drive conformational stability of the 
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complex between PCNA and PIP Box containing peptides/proteins. Disrupting these points of 

contact would substantially weaken their interaction, and would effectively abolish binding.  

 

2.6.5 Analysis of the Diversity and Chemical Classification of Peptoid Inhibitors 

 

The original goal of the design of the tripeptoid library was to incorporate a set of fragments that 

was reasonably chemically diverse so as to cover a sufficient screening space. To measure the 

degree of dissimilarity, a clustering analysis was performed using Canvas [336] in Maestro (Figure 

2.13) with the molecules shown in Figure 2.3, with the exception of the two variants of T2AA. 

Fragments were first minimized using the OPLS2005 force field, and similarity was determined 

with 64-bit precision in a linear fashion based on ring size (if present), aromaticity, hydrogen bond 

donor/acceptor, ionization potential, whether terminal (in reference to functional group placement),  

 

 

 

 

 

Figure 2.13. Similarity Clustering Analysis of Peptoid Ligands. A similarity clustering analysis 

was performed for primary amine peptoid fragments using Canvas in the Schrödinger software 

suite. Fragments were sorted and compared based on chemical features such as aromaticity, 

ionization potential and the ability to form hydrogen bonds. Similarity is represented by a color 

gradient with dark red being most similar, and dark blue being least.  
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whether halogen and bond order. The Tanimoto similarity metric was used with an average linkage 

method to calculate clustering. The clustering analysis indicated that there was a reasonable 

separation in the chemical space, with there only being two small groupings of relative similarity. 

This was due to the fact that a number of fragments contained a single aromatic ring, and a grouping 

of others were linear. While there was a larger degree of diversity that could have been achieved, 

this set of peptoid starting materials looked to be sufficient as a proof of concept for this study. 

 As discussed, inhibitors of protein-protein interactions have characteristics that distinguish 

themselves from other traditional inhibitors in that they display such features as higher molecular 

weight, higher hydrophobicity and a larger number of aromatic rings [239,240]. iPPIs also 

demonstrate higher degrees of globularity, lower distribution of hydrophilic regions, smaller 

proportions of exposed hydrophilic regions and stronger capacities to bind hydrophobic patches at 

the core of protein-protein interfaces as compared to inhibitors of classical targets such as enzymes 

[210]. Though peptoid-like molecules have been demonstrated to disrupt PPIs (Table 2.3), it was 

not clear whether the library of compounds generated for this study would be predicted to be 

classified as iPPIs prima facie. All of the fragments shown in Figure 2.3, including both variants 

of T2AA, but not NVal due to its accidental omission, were used to create a combinatorial set of 

tripeptoids in Schrödinger as before to give 54,862 total ligands.  

The peptoids were characterized by implementing a Bayesian classifier method based on 

the original findings by Morelli, X. et al (2011) [240]. The Bayesian categorization model is a 

simple probabilistic classification model that is based on Bayes' theorem: 

 

 

 
𝑃(ℎ|𝑑) =  

𝑃(𝑑|ℎ)𝑃(ℎ)

𝑃(𝑑)
 (2.6) 

 

where h is the hypothesis or model, d is the observed data, P(h) is the prior belief (probability of 

hypothesis h before observing any data), P(d) is the data evidence (marginal probability of the 

data), P(d|h) is the likelihood (probability of data d if hypothesis h is true) and P(h|d) is the 

posterior probability (probability of hypothesis h being true given the observed data d). 

 

Bayesian statistics not only considers the likelihood of a model, it also takes into consideration the 

complexity of the model. As a result, it automatically picks the simplest model that can explain the 

observed data, and thus prevents overfitting. In this implementation of the Bayesian modeling, the 
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learned models are created with a learn-by-example paradigm: the sample data that is of interest 

(good) is marked, and then the system learns to distinguish them from background data. No tuning 

parameters are required beyond the selection of the input descriptors from which to learn. The 

learning process generates a large set of Boolean features from the input descriptors. It then collects 

the frequency of occurrence of each feature in the good subset and in all data samples. To apply 

the model to a particular sample, the features of the sample are generated, and a weight is calculated 

for each feature using a Laplacian-adjusted probability estimate. The weights are summed to 

provide a probability estimate, which is a relative predictor of the likelihood of that sample being 

from the good subset. Ultimately, Bayesian categorization was used because it can process large 

amounts of data, learns fast, and is tolerant of random noise [337–339]. The Laplacian-corrected 

estimator is used to adjust the uncorrected probability estimate of a feature to account for the 

different sampling frequencies of different features. The derivation is given below: 

 

 Assume that N samples are available for training, of which, M are active. An estimate of 

the baseline probability of a randomly chosen sample being active, P(Active), is M/N.  

 Next, assume that feature F is contained in B samples, and that A of those samples are 

active. The uncorrected estimate of activity P(Active|F) is A/B. As B becomes small, this 

estimator tends to be less reliable. For example, if A = 1 and B = 1, P(Active|F) would be 

1 (active), which seems overconfident for a feature that has been seen once. Most likely, 

the estimator is poor because the feature is not sampled adequately, and further sampling 

of that feature would improve the estimate.  

 It is possible to estimate the effect of further sampling by assuming that the vast majority 

of features have no relationship with activity. That is, if, for most 

features, Fi, P(Active|Fi) is expected to be equal to the baseline probability P(Active).  

 If feature K is sampled additional times, P(Active)*K of those new samples are expected to 

be active. This provides the information needed to estimate the corrective effect 

of K additional samples: Pcorr(Active|F) = (A + P(Active)*K)/(B + K).  

 For K = 1/P(Active), this is the Laplacian correction. This stabilizes the estimator: as the 

number of samples, B, containing a feature approaches zero, the feature's probability 

contribution converges to P(Active), which is the expected value for most features. 

 The final step is to make the estimator a relative estimate by dividing by P(Active): 

Pfinal(Active|F) = Pcorr(Active|F)/P(Active) 
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 For most features, logPfinal ~ 0. For features more common in actives, logPfinal > 0. For 

features less common in actives, logPfinal < 0. The completed estimate for a particular 

sample is derived by adding together the logPfinal values for all the features present in that 

sample. 

 

 To perform the Bayesian classification, the 2P2I Hunter data set [240,340,341], which is a 

library of molecules that contains 40 known iPPIs and 1018 small molecules that are not inhibitors 

of PPIs, was first obtained. All 1058 compounds in that set were converted from 2D to 3D and 

minimized using the Accelrys Discovery Studio 4.1 Visualizer [342]. Next, four descriptors were 

calculated for each compound—globularity, CW2, EDmin3 and IW4 (for viewing the data, see the 

file “2P2I Hunter Active Decoys” on the attached DVD at the end of the thesis). These descriptors 

measure the following factors in a respective manner: 1) three-dimensional shape globularity; 2) 

ratio between the surface of the hydrophilic regions calculated at −0.5 kcal/mol and the total 

molecular surface (it is proportional to the concentration of hydrophilic regions [involved in weak 

potential polar interactions] compared to the total surface area); 3) third lowest local minimum of 

the interaction energy (in kcal/mol) of a dry probe (it measures the potential interaction energy of 

the ligand with a hydrophobic object); 4) unbalance between the center of mass of a molecule and 

the barycenter of its hydrophilic (IW) interacting regions (a high integy moment is a clear 

concentration of hydrophilic interacting regions at one extremity of the compound).  

In calculating the Bayesian cutoff, each sample was left out one at a time, and a model built 

using the results of the samples, with that model used to predict the left-out sample. Once all the 

samples had predictions, a ROC plot was generated, and the area under the curve (ROC AUC) 

calculated (Appendix A, Figure A.16). Best Split was determined by picking the split that 

minimized the sum of the percent misclassified for category members and for category 

nonmembers, using the cross-validated score for each sample. Using that split, a contingency table 

was constructed, containing the number of true positives, false negatives, false positives and true 

negatives. Based on the resulting calculated cutoff of -0.188, 38 out of the 40 iPPIs as well as 244 

out of the 1018 non-iPPIs were predicted to be true iPPIs (file “Bayesian Result on Decoy Set” on 

attached DVD). With a more than 80% success rate at identifying true positives and negatives, it 

was determined that the model was satisfactorily accurate.  

 Next, this same model was applied to the library of tripeptoid ligands, and the same four 

descriptors were calculated for each molecule—globularity, CW2, EDmin3 and IW4. When 
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Table 2.5 

Peptoid Descriptor Statistics from Bayesian Model 
 

Statistic Globularity CW2 EDmin3 IW4 
 

Mean 0.123096 2.19173 -2.62519 1.99723 

Median 0.11273 2.204385 -2.59537 1.91726 

Minimum 0.027005 1.58044 -4.37756 0.059068 

Maximum 0.654219 2.76792 -1.89029 6.11639 

Skew 1.691743 -0.33117 -0.6282 0.488549 
 

 

 

Table 2.6 

iPPI Descriptor Statistics from Bayesian Model 
 

Statistic Globularity CW2 EDmin3 IW4 
 

Mean 0.11331 1.953635 -2.84006 2.699039 

Median 0.079983 1.92631 -2.81911 2.54485 

Minimum 0.013987 1.54225 -3.30688 0.525021 

Maximum 0.45662 2.37198 -2.4452 5.5549 

Skew 1.613415 0.248895 -0.48162 0.282107 
 

 

 

Table 2.7 

Non-iPPI Descriptor Statistics from Bayesian Model 
 

Statistic Globularity CW2 EDmin3 IW4 
 

Mean 0.055457 2.082103 -2.48144 2.579951 

Median 0.037349 2.05015 -2.45079 2.440295 

Minimum 0 1.26745 -3.51407 0 

Maximum 0.356383 3.04432 -1.70217 8.53636 

Skew 1.820263 0.377792 -0.55035 0.525307 
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considering the entire set of the tripeptoids, both those that are predicted to be iPPIs and those that 

are not, the statistics for the distribution of descriptor scores (Table 2.5; see Appendix A, Figure 

A.17 for population distributions for each descriptor) indicate that those molecules are much more 

similar in globularity to other known iPPIs (Table 2.6) than non-iPPIs (Table 2.7). For CW2, the 

tripeptoids had a higher score than either iPPIs or non-iPPIs, likely due to the fact that these 

peptoids, on average, have more exposed hydrophilic regions than what would be expected for 

classical drugs. The peptoids were not able to be strongly associated with either iPPIs or non-iPPIs  

 

 

Figure 2.14. Ligand Classification Based On Principle Component Analysis of Descriptors. A 

principle component analysis of the four descriptors, globularity, CW2, EDmin3 and IW4, was 

performed on the combined set of iPPIs and non-iPPIs from the 2P2I Hunter collection and 100 

randomly selected tripeptoids that were predicted to be iPPIs. Red spheres indicate known non-

iPPIs, green spheres indicate known iPPIs, and blue spheres indicate peptoids.   
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based on the EDmin3 descriptor, though there was very little separation between all three 

populations. As a result, EDmin3 was not determined to be a good distinguishing factor in this 

analysis. As might be anticipated based on the necessary number of hydrogen bond donors and 

acceptors in the tripeptoid backbone, the average score of the final descriptor, IW4, was 

significantly lower than both iPPIs and non-iPPIs since hydrophilic regions are generally more 

spread out over an entire ligand, rather than being concentrated at one end. 

Though these tripeptoids as an entire set may not be predicted to be classified as iPPIs 

based on all factors taken together, aside from simply globularity, many of the ligands in the set 

did adhere to the characteristics that would define them as inhibitors of protein-protein interactions. 

From the analysis, 20,697 of the 54,862 peptoids were predicted to be iPPIs (results shown in the 

file “Bayesian Classifier on Tripeptoid Set” on the attached DVD). One hundred of the peptoids 

predicted as iPPIs by the Bayesian classifier were randomly selected from the set of 20,697, and 

were combined with all 1058 compounds in the 2P2I Hunter set (file “2P2I and 100 Predicted 

Peptoid iPPIs_combined” on the attached DVD). A principle component analysis of the descriptors 

was performed in order to visualize the similarity/dissimilarity between tripeptoids and known 

iPPIs/non-iPPIs. As can be seen in Figure 2.14, the differences between the three populations are 

not obvious at face value, and in fact the principle component analysis did not reveal a substantial 

separation between each of the three populations. As a result, the descriptors—globularity, CW2, 

EDmin3 and IW4—were determined to be the better gauge of assessing whether a queried molecule 

can be considered an iPPI.  

 

Table 2.8 

Descriptor Statistics for Experimentally Identified Peptoid Inhibitors 

 

Peptoid Inhibitor Globularity CW2 EDmin3 IW4 
Bayesian 

Value * 
 

NLys-NPip-NBal 0.195329 2.31062 -3.01837 1.61068 0.207156 

T2AA-NEal-NPip 0.130552 2.29504 -2.8844 3.57786 0.471927 
 

 

* Calculated output of the Bayesian classification model; values above -0.188 are predicted to 

be iPPIs 

 

 

Two of the experimentally confirmed inhibitors of PCNA-PIP Box interactions, NLys-NPip-NBal 

and T2AA-NEal-NPip, were selected and assessed using the Bayesian classification model (file 

“Bayesian Classifier on Active Peptoids” on attached DVD) for the four main descriptors (Table 
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2.8). From the results, both peptoid-based inhibitors were predicted to be iPPIs, which is promising 

for their potential use in the development of next-generation lead compounds for disrupting PCNA-

protein interactions. 

   

2.7 Discussion 

 

Fragment-based drug discovery (FBDD) is a popular method of hit discovery and/or lead 

development in both academia and industry due to its distinct advantages over traditional higher 

molecular weight chemical libraries [53]. Multiple fragments can be screened simultaneously 

against a single protein target, which greatly increases the throughput of a screening assay. This 

would be useful in situations where one would be searching for fragments that could enhance the 

inhibitory effect of a single fragment that has already been identified for a given site. Findings 

ligands that enhance the inhibition could provide clues as to what chemical features may be 

combined to form a single, larger molecule that binds with high affinity. However, when little is 

known about the target site of interest, including more than one fragment at a time in a screen can 

be problematic since there is typically no information on the fragments’ connectivity to one another. 

It would be necessary to obtain an NMR or crystal structure of them in complex with their target 

in order to elucidate how the fragments might be interacting with the protein at the binding site, as 

well as their spatial proximity/orientation to one another. This is not always easy or even feasible 

to perform based on the nature of the protein itself and the actual affinity of each fragment. 

Therefore, having a way to know the relative positions of each small ligand to one another ahead 

of time would be advantageous since favorable chemical features could theoretically be 

incorporated into a larger molecule much more quickly.  

 As an alternative to traditional FBDD methodology, this study demonstrated that multiple 

individual fragments could be tied together in a single peptoid-based backbone and be screened 

both in silico and in vitro to find inhibitors of PCNA-PIP Box interactions. Though much attention 

in the field of drug discovery is being paid to developing new inhibitors of protein-protein 

interactions, PCNA itself would not be considered an easy drug target, and most research efforts 

would shy away from it. PCNA does not have a traditional small molecule binding site, nor does it 

have any visible deep binding clefts that would make targeting that site with a ligand obvious. Even 

when compared to other protein-protein interfaces, such as the contact surface between MDM2 and 

p53, there is not a clear binding groove—instead there is a shallow, relatively small surface pocket 

where only a couple amino acids bind from PIP Box-containing proteins. However, other studies 
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[178,231], in addition to this one, have been able to identify small molecules that are able to bind 

at that site with enough affinity to disrupt the binding between PCNA and a PIP Box-containing 

peptide. The next step in developing high affinity ligands for PCNA would be to expand upon the 

chemical information gained from the tripeptoids that showed up as hits in experimental screens, 

to create next generation ligands that take advantage of the molecular contacts identified in the 

molecular dynamic simulations. This is discussed further in Chapter 4, section 4.1.  

 In addition to identifying inhibitors of PCNA, the other major goal of this research was to 

develop a platform where a combinatorial screening library composed of ligands containing 

multiple fragments could be quickly narrowed using computational analysis, ultimately saving time 

and money in subsequent physical synthesis and experimental screening. Previous studies have 

utilized peptoid-based libraries for identifying inhibitors, including tripeptoids [302,305,318–

322,333]. However, in many of those cases there was information already available on potential 

ligands to fit the respective site of interest, which naturally narrows the number of molecular 

variants to be made, and in other cases entire expansive chemical libraries were synthesized and 

screened against their target(s). While the latter method can be effective for finding good hits, it 

can be quite time consuming and expensive to synthesize tens of thousands or more compounds.  

 The approach developed here has the potential to be applied to numerous protein targets 

where an ideal ligand would need a higher degree of globularity and would have to cover a 

relatively large surface area. Although this method offers some potential versatility in screening 

against different proteins, there are some natural drawbacks to the ligands. Due to the nature of the 

peptoid backbone, and the way in which these compounds are cleaved from resin, there are amine 

and carbonyl groups that are necessarily present, which may result in unfavorable interactions with 

the target binding site, depending on the orientation of the ligand. Additionally, and perhaps most 

significantly, because the individual peptoid side chains are tied together into a single backbone, 

their degrees of freedom are substantially restricted, and this can mean that an individual fragment 

may not be able to orient itself in the proper way to fully optimize a binding interaction. 

Furthermore, because the entire library here consisted of peptoid trimers, a particular ligand may 

maintain favorable interactions between only two of its side chains and the protein; forcing the 

presence of the third side chain may curtail the overall binding affinity of the total ligand if the 

individual interaction between that third fragment and the protein is unfavorable. There potentially 

are also situations where to disrupt a particular protein-protein interaction, three peptoid residues 

would be insufficient—four or more may be needed. These are all common dilemmas that are faced 

with FBDD and/or drug screening efforts in that one must always be concerned with the chemical 
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content and diversity of the compounds in the screening library. In that regard, this approach is not 

unusual, but it does place limits on how this method can be used. Promisingly, the classification 

analysis of peptoids that were experimental hits predicted them to be iPPIs. It is possible that ligand 

selection can be further narrowed in the future by applying an additional filter based on whether 

each compound is predicted to be an iPPI, but it may not be necessary for a peptoid to be classified 

as an iPPI for it to efficiently inhibit a protein-protein interaction.    

 It is not yet clear whether in the context of PCNA-protein complex formation, directly 

targeting PCNA alone would be sufficient to result in an efficacious treatment option. There is 

some evidence that PCNA is implicated in some way with every pathway of DNA damage repair 

given that key proteins in each of those pathways have PIP Boxes. However, many mechanisms in 

cells are redundant and are capable of compensating for the loss of a single pathway regulator. It 

may be that targeting PCNA will have utility only when other synthetically lethal [343] drugs are 

present that target compensatory proteins for the processes of DNA replication and damage repair. 

Additionally, it is not yet understood how the flexibility of PCNA would influence the efficacy of 

a single drug targeting the PIP Box binding site. In addition to the study by Pedley, et al. [177], the 

MD simulations performed in this work demonstrate that PCNA can adopt very different 

conformations, depending on the ligand that is bound to it. The question remains as to whether a 

given ligand would better inhibit the interaction between one PCNA-protein complex or another. 

Due to the diversity in the binding partners of PCNA, it is possible that there are multiple binding 

sites on PCNA; this is supported by the discovery of two different conserved PCNA-binding 

sequence motifs in addition to the PIP Box: the KA Box and APIM [215,344]. Each of these 

different motifs has been implicated in the ultimate function of complexes and the regulation of a 

particular biological response. It may be that a ligand binding to PCNA at one site produces an 

allosteric effect that would affect PCNA-protein complexes at other sites. The functional 

consequences of this are not clear, but it could mean that attempting to stabilize a specific 

conformation of PCNA to achieve a singular response is much more complicated than anticipated.   
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3. NUCLEAR TARGETING OF KNOWN CANCER THERAPEUTICS 

More than 500 genes coding for protein kinases have already been identified in the human genome, 

and over 150 of these have been shown to be involved in the onset and progression of many 

cardiovascular, neurodegenerative and inflammatory diseases, as well as cancer [345,346]. As one 

of four members of the HER receptor tyrosine kinase family [347], epidermal growth factor 

receptor (EGFR) serves as one of the most studied receptor targets in the fields of oncology and 

drug development. It exists on the cell surface and becomes activated by the binding of one of its 

various specific ligands. The activation of EGFR leads to the initiation of growth-promoting 

signaling cascades that result in cellular activities such as DNA synthesis and proliferation.  

 A number of studies have focused on the link between EGFR expression and 

tumorigenesis. Evidence strongly suggests that dysregulated EGFR expression and signaling plays 

a major role in the onset and progression of various human cancers including head and neck 

squamous cell carcinoma, lung, breast, colon, anal, pancreatic, ovarian, bladder and oesophageal 

[348–353], while levels of the protein can be used as a prognosticator of patient outcome in certain 

cancers [354]. This knowledge has resulted in a significant effort over the last few decades to target 

EGFR as a therapeutic strategy for cancer. The tyrosine kinase inhibitors (TKIs) that have emerged 

from this body of work have seen some success in the treatment of disease, but a number of 

significant problems have limited their range of use.    

Ample evidence exists for the utility of TKIs in both experimental and clinical practice. 

The majority of small molecule TKIs explored to date act as competitive antagonists at the ATP 

binding site and use a substituted quinoxaline scaffold [355]. Targeted therapies intended to inhibit 

kinases have suffered from a lack of long-term effectiveness in patients [356], and achieving high 

levels of specificity with kinase inhibitors has been difficult [159,357–362]. While the implications 

for non-specificity of these drugs is not yet completely understood, this can ultimately result in 

complications including a plethora of negative side effects and cardiotoxicity [363]. At the same 

time, clinical benefit is often limited to only a fraction of treated patients, with factors related to 

the genome of individual tumors contributing significantly to the observed responses [364], and 
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acquired resistance to these drugs is a common occurrence in patients undergoing cancer therapy 

[48,49,365–370]. In fact, all patients with colorectal, pancreatic, metastatic lung or head and neck 

cancers that initially benefit from therapies that target EGFR eventually develop resistance to those 

treatments, with a median progression-free survival time of less than one year [49].  

Various intracellular kinases have been seen to translocate to the nucleus of cells through 

endocytosis [371–382]. While the reasons for this are still unclear, EGFR/ErbB1 translocation to 

the nucleus has been shown to promote cellular proliferation [377], and the phosphorylation state 

of nuclear-located c-Src is correlated with patient outcome in ER-positive breast cancer [374]. 

Their overall role in resistant or poorly responsive tumor phenotypes is not yet completely 

understood, but it is possible that targeting the nuclear-localized forms of these kinases could have 

a pronounced and/or alternative effect relative to their normally targeted state. In any case, these 

issues demonstrate the need for developing new therapeutics to overcome many limitations 

associated with TKIs. 

 

3.1  Targeting Mechanisms of Developed Resistance to Drug Therapies 

  

There is evidence that an increase in the activity of ATP-dependent efflux pumps can reduce the 

intracellular concentration of drugs, and this is correlated with acquired resistance of various 

therapeutics such as imatinib (Gleevec), gefitinib (Iressa), doxorubicin (Adriamycin), daunorubicin 

(Cerubidine), vinblastine, vincristine (Oncovin) and paclitaxel (Taxol) [365,383,384]. 

Additionally, a reduction in drug importation can lead to drug resistance [365,385,386]. More than 

100 different mutations have been described that affect more than 70 amino acids, resulting in 

different molecular mechanisms of resistance acquisition [387]. The most common mechanism of 

developed resistance to TKI therapy is the presence of point mutations within the kinase domain. 

Some of these mutations result in significant conformational changes at the binding site, inhibiting 

the binding of TKIs due to steric hindrance. Other mutations may cause ATP to preferentially bind 

the receptor, resulting in it outcompeting the inhibitors. In either case, these mutations impair the 

apparent affinity of TKIs to these kinases, rendering this type of treatment ultimately ineffective.  

 There are examples abound of these types of mutations in various types of cancers. Some 

examples are LYN D189Y in ER+ metastatic breast cancer [388], BCR-ABL T315I in chronic 

myeloid leukemia [389], and KIT T670I in gastrointestinal stromal tumors [390]. In the case of 

EGFR-mutant lung cancer, about 70-80% of these tumors contain a somatic mutation in the kinase 

domain that responds to gefitinib. It has been seen that the drug binds EGFR 20-fold more tightly, 
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compared to the wild-type protein, when it contains the L858R mutation—this produces a 

substantial initial patient response [391]. However, all of these patients develop resistance to 

gefitinib after a median period of 10-16 months. The most commonly observed causative 

mechanism is the T790M “gatekeeper” mutation, which is seen in approximately 60% of patients 

that develop TKI resistance [392]. Yet, secondary kinase mutations are a common occurrence in 

various other cancers that display oncogenic addiction, and targeting this single mutation in and of 

itself may not prove to be effective in staving off further development of resistance.  

 In reality, resistance to TKI therapies likely occurs through multiple interacting pathways. 

The explosion of knowledge surrounding gene networks has demonstrated that central nodes of 

specific gene interaction clusters undergo significant amounts of cross-talk with other nodes. This 

is especially true of intracellular signaling cascades which rely on phosphorylative transfer, for 

example. Disrupting the activity of a single enzyme or protein may not have a significant impact 

on cellular function/viability since there can be compensatory parallel networks that can make up 

for that loss. This can be accomplished by activating shared downstream targets (demonstrating 

biochemical redundancy) [393], or by having other cellular functions cover for the initial loss (e.g. 

multiple mechanisms of DNA damage repair). As an example, in the case of PARP1, the protein 

typically has an important functional role in repair of single-stranded DNA breaks (SSBs), but can 

also function in non-homologous end joining of double stranded breaks (DSBs) when Ku proteins 

are lost [394], and homologous repair through interaction with MRE11 and ATM [395,396]. In the 

absence of PARP1, SSB repair is impaired and DSBs subsequently tend to accumulate, but PARP1-

/- mice remain viable and fertile, likely due to the compensating effect of PARP2 [397]. Only when 

BRCA1/2 function is impaired does the organism lose viability. The BRCA1/2 proteins are 

important for homologous recombination DSB repair, and studies have demonstrated the 

synthetically lethal relationship between PARP1 and BRCA1/2 [398]. Compensatory relationships 

between genes have long been studied [399], and the strategy of targeting synthetically lethal 

proteins has become an interesting approach to treating specific types of cancer [292,400–402].    

 However, while pursuing synthetic lethality as a therapeutic strategy shows promise, these 

new drugs show variable clinical benefit in patient populations in both single-agent and 

combination therapies, and often are associated with dose limited toxicities such as 

myelosuppresion [398]. Furthermore, there still exist the problems of downstream effector targets 

being activated by alternative mechanisms that become upregulated in response to an intracellular 

drug-induced insult, as well as the promotion of protein isoform development, which itself can 

render a particular drug ineffective. These are contributing factors as to why no anti-RAS 
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therapeutic has been clinically approved, for example [403,404]. The field has recognized these 

issues, and ongoing research aims to improve our understanding of targeting downstream effectors. 

What actually defines a “downstream” target is very context dependent, and not all effectors may 

serve as efficient drug targets themselves, but the role of these proteins in the development of 

resistance to targeted therapies is being explored for proteins such as EGFR [405–409].  

 In addition to EGFR’s role as an initiator of phosphorylation signaling cascades, it 

functions as a transcription factor and enhancer of cellular proliferation in the nucleus 

[260,373,410–412], where it can directly phosphorylate targets such as proliferating cell nuclear 

antigen (PCNA), enhancing cellular growth [260,276]. Levels of nuclear EGFR (nEGFR) are also 

used as a prognostic factor in various cancers [413–415], and its subcellular nuclear distribution 

has been associated with acquired resistance to cetuximab in non-small cell lung cancer [416], and 

gefitinib in triple negative breast cancer and epithelial carcinoma [384,412,417]. The total 

mechanistic role of nEGFR in the progression of disease and development of drug resistance is not 

completely understood, but it has been proposed that nuclear translocation of the protein allows it 

to bypass typical downstream effectors, acting directly on the eventual downstream signal 

recipients [286,418]. This would have obvious implications for the development of resistance since 

TKI therapies may depend on their targets being accessible at the cell surface, or in the cytoplasm, 

and cells that upregulate the nuclear import of receptors may be removing these proteins from the 

targetable pool.  

 

3.1.1  Subcellular Targeting as a Therapeutic Strategy 

 

Traditionally, the pharmaceutical industry has focused on optimizing general molecular parameters 

such as molecular weight, logP, and capacity to participate in hydrogen bonding as a way to balance 

target specificity and bioavailability [419]. Upon reaching the organ or tissue of interest, a drug 

will bind to its target molecule, given that this target is located at the cell surface. However, if the 

target is located in an intracellular compartment, the drug may not be able to efficiently reach its 

target, impeding the activity of the drug itself. Practitioners have turned to addressing this issue by 

designing more membrane-permeable variants, but these may also have their own set of problems 

related to non-specificity if the drug is able to freely diffuse throughout the cell. To address these 

crucial obstacles, various methods have been developed to subcellularly target drugs to specific 

regions within the cell where the drug target of interest exists [420]. 
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A diverse number of drug types such as pepducins, antitumor drugs, antioxidants, Shiga 

holotoxin and cholesterol drugs have been targeted to different subcellular compartments including 

the cell membrane, early/late endosomes, endoplasmic reticulum, Golgi, cytosol, mitochondria and 

nucleus [420]. There are multiple methods through which these have been achieved, ranging from 

things such as myristoylation and palmitoylation, to the use of lipophilic cations, drug-

encapsulating nanoparticles and cell-penetrating peptides [420]. The nucleus itself is an interesting 

target given that it contains many cancer-related proteins involved in processes such as DNA 

replication and damage repair. Strategies for targeting molecules to the nucleus arose from 

observations of the mechanisms of action of various DNA viruses; in fact, viruses themselves have 

been used as delivery vehicles for gene therapy [421,422], but issues with lack of specificity, 

toxicity and immune response have limited their range of use. Instead, alternative delivery methods 

are being explored that lack pathogenic components, but make use of specific viral machinery such 

as peptide-based sequences.  

 

3.1.1.1 Peptides and Peptoids as Cellular Uptake or Nuclear Targeting Sequences 

 

Nuclear localization sequences (NLSs), often consisting of, but not limited to, short peptides 

derived from viruses such as Human Immunodeficiency Virus 1 or Simian vacuolating virus 40 

[423–428], have been used to target various types of molecules to the nucleus of cells. These 

peptides can be attached to other molecules that range in size from small, drug-like molecules 

(MW<500) to mesoporous silica nanoparticles that act as high-payload drug delivery transporters; 

this has been shown to increase the efficiency of drug delivery and improves the respective desired 

effect [420,429–431]. These peptidic regions can also be more broadly characterized as “cell 

penetrating peptides” (CPPs). CPPs tend to be either amphipathic or contain arginine-rich stretches 

that enhance cellular uptake through proposed mechanisms of cytoskeletal remodeling and actin-

encapsulated vesicle endocytosis [432], or through clathrin and dynamin in the case of 

polyarginine,[433] though this has been disputed [434]. Other various forms of molecules exist that 

enhance cellular uptake such as β-peptides [435], homochiral cyclic peptides [436] and peptoids.  

 As discussed in Chapter 2, advantages that peptoids have over peptides are their generally 

better inherent ability to penetrate cell membranes, higher resistance to proteolysis, resistance to 

solvent, temperature and chemical denaturants, and generally cheaper cost to produce [296–299]. 

The two most commonly used kinds of peptoids for enhancing cellular uptake are amino- and 

guanidinium-based, containing between five and nine residues [437–439].  Guanidinium-peptoids 
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are often taken into cells at a higher rate than amino-peptoids, and amino-peptoids are typically 

localized to the cytoplasm, whereas guanidinium-peptoids are trafficked to the nucleus [437]. Both 

types are characterized by multiple positively charged residues, but the fact that they are sorted 

differently indicates that their uptake kinetics and subcellular destination are dependent on the 

chemical nature of the side chains themselves. Similar to these molecules, polyarginine, -lysine and 

-histidine peptides have been used to enhance cellular uptake as well. Among these, polyarginine 

shows a much higher efficiency for uptake than polylysine or –histidine [299,444]. Furthermore, it 

has been observed that a D-amino acid variant of polyarginine is more effective than the L- form 

at being taken into cells [299]. Ultimately, however, none of these peptidic polycationic molecules 

are as effective at enhancing cellular uptake as polyguanidinium-based peptoids [299]. 

 

3.2 Rationale 

 

The use of peptide and peptoid-based carriers has long been proposed to enhance the uptake and 

subcellular targeting of a host of molecular agents [420].  Studies have also shown that peptides 

tagged with NLSs are able to more effectively act on their target. The utility of this strategy has 

been established for peptides, proteins, oligonucleotides and nanoparticles alike, and is currently 

being further explored for use in disease therapeutics. Interestingly, this approach has also been 

validated for the targeting of small drug-like molecules. Hodoniczky, J. et al. demonstrated that the 

antiproliferative effect of the antiandrogen drug, bicalutamide, was greatly enhanced when the drug 

was conjugated to a peptide consisting of the cell permeable penetratin and nuclear localizing SV40 

sequences [429]. Albeit, not all drugs may be amenable to incorporation through attachment via 

disulfide or thio-ether linkages, as with that compound, but it provides an important example of the 

effect of this strategy.  

Subcellular drug targeting could potentially have broad applications for various disease 

types, particularly in cases where the target of interest resides in cellular compartments such as the 

nucleus. Because upregulated nuclear distribution of EGFR is associated with resistance to cancer 

therapies [48,49,384,412,416–418], it may serve as a prime subject for this approach [445]. A 

recent study demonstrated that a peptide derived from PCNA, which was tagged with TAT and 

binds to EGFR, was able to disrupt phosphorylation at PCNA residue Tyr 211, and subsequently 

inhibited the growth of human breast cancers cells both in vitro and in vivo [286]. The implicated 

reason for this is that nEGFR has been shown to bind to and directly phosphorylate PCNA to control 

its stability on chromatin [260,261]. Targeting it to the nucleus with TAT enables it to compete 
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with PCNA for binding to nEGFR, suppressing the phosphorylation of PCNA and resulting in a 

loss of PCNA stability on chromatin—potentially restoring DNA damage mismatch repair 

[276,446]. Used in a combination therapeutic regimen, this method of targeting nuclear proteins 

that are implicated in vital cell survival functions may prove to be very effective in the treatment 

of disease. 

It is important to note, as was demonstrated by the bicalutamide [429] and peptoid-based 

[438] studies, the presence of a cell penetrating sequence alone may be insufficient in enhancing 

the specific localization of a compound into the cell, and may instead lead to a general cytosolic or 

vesicular distribution. The addition of a NLS instead upregulates nuclear uptake and can 

substantially improve a drug’s activity. However, the question of whether simply enhancing 

cellular uptake or specifically targeting a molecule to the nucleus is more effective is very 

mechanism dependent, and will completely depend on the therapeutic context. Regardless, being 

able to direct the nuclear uptake of an inhibitor may prove to be a solution to acquired drug 

resistance, given that it would bypass “downstream” effector proteins, and would avoid issues 

associated with receptors being taken in to the nucleus [429]. In this study, a strategy was explored 

to determine whether, through the incorporation of either a NLS, CPPo or both, gefitinib’s activity 

or mechanism of action could be modulated in triple negative breast cancer cell models and murine 

tumor cells that irregularly express EGFR. To our knowledge, this study reports for the first time 

the targeting of a commercially available TKI to the nucleus of cells, and the subsequent enhanced 

effects, demonstrating a useful strategy for the targeting of traditionally drug-resistant cancer types.    

 

3.3 Experimental 

 

3.3.1 Methodology 

 

A series of peptoid-based conjugates were synthesized using the methodology outlined in Scheme 

3.1. These molecules consist of either amino- (NLys) or guanidinium- (NArg) based polycationic 

cell-penetrating peptoid (CPPo) sequences, with half of the total set also containing a peptide-based 

SV40 nuclear localization sequence. With the exception of negative controls that contained no drug, 

the conjugates were N-terminally tagged with either piperazinyl gefinitib (synthesis outlined in 

Scheme 3.2) or 5-FAM. The CPPo, NLS and drug/dye were each separated by a 6-carbon spacer. 

The CPPo sequences were synthesized using submonomer peptoid synthesis [300] due to the 
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relatively low cost of reagents, and ease of synthesis. The NLS was synthesized, and piperazinyl 

gefitinib/5-FAM coupled, using standard peptide coupling procedures. 

 

3.3.2 Experimental Materials and Methods 

 

All chemical reagents and solvents were purchased from Sigma Aldrich, Combi-Blocks Inc. or 

Fisher Scientific, unless noted otherwise. Materials were repurified via recrystallization or 

distillation as necessary before use. NMR experiments were performed on Bruker (Bruker Corp., 

Billerica, MA) ARX300 (300 MHz), ARX400 (400 MHz) or DRX500 (500 MHz) instruments. All 

1H chemical shifts (δ) are relative to residual protic solvent (CHCl3: δ 7.26, DMSO-d6: δ 2.50, 

CD3OD: δ 3.31 ppm), and all 13C chemical shifts (δ) are relative to the solvent (CDCl3: δ 77.23, 

DMSO-d6: δ 39.52, CD3OD: δ 49.00 ppm). Low resolution electrospray ionization (ESI) and 

atmospheric pressure chemical ionization (APCI) studies were carried out on an Agilent 6320 Ion 

Trap (Agilent Labs, Santa Clara, CA) mass spectrometer. High resolution mass measurements were 

obtained on a LTQ Orbitrap XL mass spectrometer (ThermoScientific Corp.) utilizing electrospray 

ionization (ESI). Molecular masses and sequences of peptides or peptoids were validated on an 

Applied Biosystems (Framingham, MA) MALDI-TOF/TOF 4800 mass analyzer, or Applied 

Biosystems Voyager DE PRO mass spectrometer using either 2,5-dihydroxy benzoic acid or α-

cyano-4-hydroxy cinnamic acid matrices.  TLC analyses were performed on Merck aluminum-

backed F254 silica gel plates. Stock solutions of each non-dye-containing compound were made 

by measuring the dry mass of each in pre-dried, pre-weighed screw-cap vials, and adding the 

volume of DMSO necessary to give 10 mM solutions. For mass measurements, molecular weights 

were calculated based on their TFA salt form. Stock solutions of compounds containing N-terminal 

5-carboxyfluorescein were made by measuring the aborbance at 494 nm, using an extinction 

coefficient of 79,000 L mol-1 cm-1 and Beer’s Law (A=εbc) to calculate concentration. Data 

analyses and graphical representations were performed in Microsoft Excel, GraphPad Prism 6 or 

OriginPro 2015. Characterization of synthesized materials is outlined in Appendix B, Table B.2. 

 

General Method for the Synthesis of Conjugate Peptoid Segments. The peptoid portion of each 

molecule was synthesized using an adapted procedure for submonomer [300] peptoid synthesis. 

Briefly, 0.100 mmol of H-Rink Amide-ChemMatrix resin (PCAS Biomatrix Inc., Quebec, Canada; 

loading: 0.51 mmol/g) was transferred to a 25 mL glass fritted peptide reaction vessel and was 

swelled with DMF for 30 minutes. The resin was then deprotected using two 2.5 mL portions of 
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20% piperidine in DMF with incubation times of 15 minutes for each addition at room temperature.  

Following washing of the resin with DMF (6x) and DCM (3x), deprotection was confirmed by a 

ninhydrin (Kaiser’s) test for primary amines. A solution of 1.5 mL of 1M bromoacetic acid (30 

equiv.) in DMF and 230 µL (29.4 equiv.) of N,N’-diisopropylcarbodiimide (DIC) was added, and 

the resin was placed on an orbital shaker for 1 hour at 37°C. At that time, the resin was washed 

with DMF (6x) and DCM (3x), and a solution of 1M respective primary amine in DMF was added, 

with incubation on an orbital shaker for 2 hours at 37°C. These steps were repeated with washing 

steps in-between to produce the desired peptoid sequence. Following the addition of the final 

primary amine, a six-carbon linker (aminohexanoic acid) was coupled to the N-terminus as a spacer 

between the peptoid and peptide portions of each conjugate. Fmoc-6-aminohexanoic acid was 

coupled using standard peptide coupling conditions (89 mg (2.5 equiv.) Fmoc-6-Ahx-OH, 103 mg 

(2.49 equiv.) HCTU and 65 mg (5 equiv.) DIEA dissolved up to 2.5 mL with DMF), with incubation 

on an orbital shaker at room temperature for 16 hours. The resin was Fmoc-deprotected using two 

2.5 mL portions of 20% piperidine in DMF with incubation times of 15 minutes for each addition 

at room temperature.  

 

General Method for the Synthesis of Conjugate Peptide Segments. The peptide segment of each 

hybrid was constructed using standard solid phase peptide synthesis conditions and Fmoc-protected 

amino acids (Anaspec Inc.). Amino acids were coupled by incubating the resin with a solution of 

2.1 mL 0.45M HCTU (O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate) in DMF (9.45 equiv.), 500 µL 4M N,N-diisopropylethylamine in NMP (20 

equiv.), and 1 mmol (10 equiv.) of each respective amino acid on an orbital shaker for one hour 

(incubation time for arginine was extended to two hours) at room temperature. Fmoc deprotection, 

subsequent to each amino acid coupling, was performed using two portions of 20% piperidine in 

DMF with incubations on an orbital shaker at room temperature, 20 minutes for each addition. For 

difficult deprotections, in-between the two additions of piperidine was added 2.5 mL of 3% w/v 

1,8-Diazabicyclo[5.4.0]undec-7-ene in 20% piperidine/DMF. This was heated to 45°C for three 

minutes, and the resin was promptly washed with DMF (6x) and DCM (3x). Fmoc-amino acid 

couplings and Fmoc-deprotection steps were alternated with washing steps (DMF (6x) and DCM 

(3x)) in-between to produce the desired peptide sequence. Following the addition of the final amino 

acid, and subsequent Fmoc-deprotection, a six-carbon linker (aminohexanoic acid) was coupled to 

the N-terminus as a spacer between the peptide and piperazinyl gefitinib or 5-carboxyfluorescein. 

Fmoc-6-aminohexanoic acid was coupled using standard peptide coupling conditions (89 mg (2.5 



98 

 

 

equiv.) Fmoc-6-Ahx-OH, 103 mg (2.49 equiv.) HCTU and 65 mg (5 equiv.) DIEA dissolved up to 

2.5 mL with DMF), with incubation on an orbital shaker at room temperature for 16 hours. The 

resin was Fmoc-deprotected using two 2.5 mL portions of 20% piperidine in DMF with incubation 

times of 15 minutes for each addition at room temperature. FAM-TAT was synthesized using 

standard peptide synthesis conditions outlined in Chapter 2.  

 

Coupling of Piperazinyl Gefitinib or 5-Carboxyfluorescein to Conjugates. Piperazinyl gefitinib and 

5-carboxyfluorescein were coupled using standard solid phase peptide synthesis conditions. 63 mg 

(0.125 mmol ; 1.25 equiv.) piperazinyl gefitinib and 51 mg (0.1249 mmol) of HCTU were dissolved 

in 2.5 mL of DMF, followed by 32 mg (0.25 mmol; 2.5 equiv.) of DIEA. The resin was then 

incubated with this solution on an orbital shaker overnight at room temperature. For the coupling 

of 5-carboxyfluorescein, a solution of 75.3 mg of 5-FAM, 80.7 mg of HCTU and 46 mg of DIEA 

in 2 mL of DMF was added, and the resin was then placed on an orbital shaker overnight, in the 

dark, at room temperature. After the coupling of either compound, the resin was washed with DMF 

(6x) and DCM (3x), dried under high vacuum (< 1 mm Hg) and stored at -20°C until cleavage.  

 

General Method for the Cleavage and Purification of Drug Conjugates. Resin-bound compounds 

were cleaved from resin using a solution of trifluoroacetic acid (TFA)/triisopropylsilane 

(TIS)/water (95:2.5:2.5), incubating the resin at room temperature for 3 hours. They were then 

precipitated into ice cold diethyl ether and collected by centrifugation at 4,000 x g for 10 minutes 

at 4°C. The peptides were purified via HPLC (Beckman Coulter System Gold 166 or 168) using an 

increasing gradient of acetonitrile (ACN)/water with 0.1% TFA (5:95) to (100:0) over 30 minutes 

on an Agilent ZORBAX SB-C18 reverse phase semi-preparative column. Molecular masses and 

sequences were validated via MALDI-TOF/TOF (Applied Biosystems 4700 Proteomics Analyzer 

196). Purities were determined by HPLC using absorbencies at 219 or 280 nm.  

 

Methods Performed by Others (See Acknowledgements for Exact Roles)  

 

Probing Phosphorylation Status by Western Blot. Cells were seeded in a 24-well plate, and grown 

overnight in complete media (DMEM + 10% FBS, penicillin/streptomycin, insulin). The next 

morning, the media was removed and replaced with serum-free media with inhibitors (1 µM in 

DMSO). The cells were incubated for 6 hours, and EGF (25 ng/mL) was added. The cells were 

incubated for 30 minutes, then the media was removed and lysis buffer was added (RIPA + PPIs, 
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NaVO4, NaF, beta-glycerophosphate). After lysis, the insoluble fraction was removed, and the 

protein concentration was normalized via a bicinchoninic acid assay. The lysates were separated 

by PAGE and transferred to a PVDF membrane. The membranes were incubated with primary 

antibody (pERK, pEGFR, pSTAT3, beta-tubulin) overnight at 4°C, then incubated with HRP-

conjugated secondary antibody for one hour at room temperature. The membranes were stripped 

and re-probed if necessary (total-STAT3). 

 

Fluorescent Imaging of Peptoid Conjugates. NME cells were seeded on a 12-well plate, and grown 

overnight in complete media (DMEM + 10% FBS, penicillin/streptomycin, insulin). FAM-NArg 

or FAM-SV40-NArg were added at a 10 µM concentration in PBS, and the cells were incubated 

with the compounds for one hour at room temperature. Cells were then washed with PBS, fixed 

with 4% formaldehyde in PBS, washed again with PBS, and the nuclei stained with DAPI in PBS. 

Cells were imaged using the Nikon A1R-MP confocal microscope in the Purdue Bioscience 

Imaging Facility. 

 

MTT Proliferation Assay. MDA-MB-231 and -468 cell proliferation was measured using the MTT 

(3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell proliferation reagent. Cells 

were grown in DMEM (phenol-red free) supplemented with 10% FBS, 1% penicillin/streptomycin 

at 37°C with 5% CO2. They were then plated on flat bottom 96-well plates at a density of 1 x 104 

cells per 100 µL per well. Cells were allowed to attach for 4 hours and were then treated with 5 

concentrations of each compound for 72 hours. 10 µL of MTT (5 mg/mL in DMEM phenol-red 

free media) was added to each well at a final concentration of (0.5 mg/mL) for 4 hours at 37°C. 

After the period of incubation, 100 µL of solubilization solution (10% Triton-X 100, acidic 

isopropanol (0.1N HCl)) was added and the plates were sealed and stored from light for 3 days. 

Absorbance was read at 570 nm and the percent cell growth was normalized by comparison to a 

day zero control plate with no drug for each respective cell line. The day zero plate standardized 

0% and 100% cell viability, with columns plated in triplicates with either 100 µL of DMEM alone, 

or  1 x 104 cells in 100 µL of DMEM. No inhibitors were added; instead, 10 µL of MTT reagent 

was added to each well after cells were allowed to attach for 4 hours. At the end 4 hours, 100 µL 

of solubilization solution was added to the plate, and was it sealed and stored in the dark for 3 days.  

 

Three-Dimensional (3D) Organotypic Growth Assay. 96-well plates were coated with Cultrex (50 

μL/well) and cells were resuspended in DMEM supplemented with 10% FBS and 4% Cultrex (150 
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μL/well). Luciferase-expressing cells were seeded at a density of 1 × 103 cells/well. Media 

containing the indicated inhibitors and/or EGF was replaced every 4 days and organoid outgrowth 

was detected by the addition of D-luciferin potassium salt (Gold Biotechnology) to induce 

bioluminescence, which was quantified using a GloMax-Multi detection system (Promega). 

 

Murine Cell Lines. Normal mammary epithelial (NME) cells were constructed from NMuMG cells 

as previously described to overexpress EGFR [447]. These cells were then treated with 

transforming growth factor beta (TGF-β) to induce metastasis, and were grafted into a murine 

mammary fat pad. TGF-β-treated NME tumor cells that underwent metastasis were subcultured 

from the lungs of mice—these cells displayed significantly enhanced primary tumor formation, 

postsurgical recurrence and spontaneous pulmonary metastasis upon secondary mammary fat pad 

engraftment. These subcultured cells were termed NME lung metastatic (LM1) [448]. Both cell 

lines were cultured in DMEM + 10% FBS, penicillin/streptomycin, and insulin.  

 

3.3.3 Synthesis of Primary Amines and Piperazinyl Gefinitib 

 

Synthesis of “NArg” and “NLys” were performed in the same way as described previously in 

Chapter two (see compounds 1, 2 and 10).  

 

Synthesis of 6-Hydroxy-7-methoxyquinazolin-4(3H)-one (15): 6.23 g (30.2 mmol) of 6,7-

dimethoxyquinazolin-4(3H)-one, 5.40 g (36.2 mmol) of L-methionine and 42.6 mL (21.7 equiv.) 

of methanesulfonic acid were added to a round bottom flask with stirring. The solution was heated 

to 115°C and was stirred for 6 hours. The reaction mixture was poured onto crushed ice, and the 

pH was slowly adjusted upwards with 40% NaOH, until a pH of 7. The white precipitate that 

formed was filtered off and was washed with water, cold MeOH and diethyl ether. The solid was 

dried overnight under high vacuum (< 1 mm Hg) to produce 5.54 g (95.4% yield) of 15 as a white 

solid, which was used in the next step without any further purification. 1H NMR (300 MHz, DMSO) 

δ 11.94 (s, 1H), 9.80 (s, 1H), 7.91 (s, 1H), 7.36 (s, 1H), 7.09 (s, 1H), 3.90 (s, 3H). 

 

Synthesis of 7-Methoxy-4-oxo-3,4-dihydroquinazolin-6-yl acetate (16): 4.50 g (23.4 mmol) of 15, 

28 mL (12.7 equiv.) of acetic anhydride and 28 mg (0.01 equiv.) of DMAP were added to a round 

bottom flask with stirring. Upon filling the flask with argon, 5.6 mL (2.97 equiv.) of anhydrous 

pyridine was added to the reaction mixture. The reaction became very viscous to the point of not  
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stirring, so another 10 mL of acetic anhydride was added to the flask. The reaction was heated to 

100-110°C and was stirred for 4 hours, at which point it was then poured onto crushed ice and 

stirred vigorously for 30 minutes. The resulting white solid was collected via filtration and washed 

with water, cold MeOH and small amounts of diethyl ether. The solid was dried under high vacuum 

(< 1 mm Hg) overnight to give 3.07 g (56% yield) of 16 as a white solid, which was used in the 

next reaction without further purification. 1H NMR (300 MHz, DMSO) δ 12.21 (s, 1 H), 8.09 (s, 

1H), 7.75 (s, 1H), 7.27 (s, 1H), 3.91 (s, 3H), 2.30 (s, 3H). 

 

Synthesis of 4-Chloro-7-methoxyquinazolin-6-yl acetate (17): 3.80 g (16.2 mmol) of 16 and 8.6 mL  

(49.4 mmol)  of  DIEA  were  combined in a round  bottom  flask  with stirring, and 2.27 mL (24.4 

mmol) of phosphoryl chloride was added slowly. The reaction was heated to 80°C and stirred for 

3.5 hours, after which the solvent and excess reagent were removed by roto-vap. The resulting 

brown residue was used directly in the next reaction without purification or further 

characterization.  

 

Synthesis of 4-[(3-Chloro-4-fluorophenyl)amino]-7-methoxyquinazolin-6-yl acetate (18): The 

crude product 17 was immediately resuspended in isopropanol (32 mL), and 2.60 g (17.9 mmol) of 

3-chloro-4-fluoroaniline was added with stirring under argon. The reaction flask was fitted with a 

reflux condenser, and the reaction was heated to reflux for 6 hours under argon. The reaction 

mixture was cooled to room temperature, and the precipitated product was filtered and washed with 

water, MeOH and cold diethyl ether. The product was dried overnight at reduced pressure to afford 

4.57 g (77.9% yield for both steps) of 18 as an off-white powder. 1H NMR (300 MHz, DMSO) δ 

11.51 (s, br, 1H), 8.94 (s, 1H), 8.77 (s, 1H), 8.01-8.09 (m, 1H), 7.70-7.78 (m, 1H), 7.48-7.55 (m, 

2H), 4.00 (s, 3 H), 2.38 (s, 3H).  

 

Synthesis of 4-[(3-Chloro-4-fluorophenyl)amino]-7-methoxyquinazolin-6-ol (19). 4.57 g (12.6 

mmol) of 18 was dispersed in a mixture of MeOH (300 mL) and H2O (300 mL) at room temperature 

with stirring. 1.01 g (42.2 mmol) of LiOH was added and the reaction was stirred at room 

temperature for 45 minutes. The reaction mixture was neutralized to a pH of 7 with the addition of 

10% acetic acid, and the resulting precipitate was collected by filtration, washed with water, MeOH 

and cold diethyl ether. The product was placed under high vacuum (< 1 mm Hg) to remove all 

traces of solvent, giving 3.38 g (83.7% yield) of 19 as a white solid. 1H NMR (300 MHz, DMSO) 
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δ 9.79 (s, 1H), 9.47 (s, 1H), 8.45 (s, 1H), 8.13-8.20 (m, 1H), 7.70-7.85 (m, 2H), 7.38 (t, J = 10.2 

Hz, 1H), 7.19 (s, 1H), 3.96 (s, 3H). 

 

Synthesis of Ethyl 2-(4-(3-chloropropyl)piperazin-1-yl)acetate (20). 3.44 g (21.9 mmol; 1.5 equiv.) 

of 1-bromo-3-chloropropane was added to 2.51 g (14.6 mmol) of ethyl 2-(piperazin-1-yl)acetate in 

acetonitrile (90 mL) at room temperature with stirring. 4.1 mL (2 equiv.) of triethylamine was 

added dropwise, and the reaction mixture was stirred at room temperature for 48 hours. At that 

time, TLC showed that all of the starting material had been consumed, so the solvent was 

evaporated in vacuo and the crude material purified by normal phase flash chromatography 

(EPCLC W-Prep 2XY, Yamazen Corp.) using DCM/MeOH as the eluents. The the fractions 

containing isolated product were combined and evaporated to give 1.9 g (52.4% yield) of 20 as a 

light yellow oil. 1H NMR (300 MHz, CDCl3) δ = 4.14 (q, 2 H, J = 7.2 Hz), 3.55 (t, 2 H, J = 6.6 

Hz), 3.17 (s, 2 H), 2.40-2.69 (m, 10 H), 1.88-1.97 (m, 2 H), 1.23 (t, 3 H, J = 7.2 Hz); 13C NMR (75 

MHz, CDCl3) δ = 170.35, 60.76, 59.56, 55.47, 53.01, 43.27, 29.83, 14.38. 

 

Synthesis of Ethyl 2-(4-(3-((4-((3-chloro-4-fluorophenyl)amino)-7-methoxyquinazolin-6-

yl)oxy)propyl)piperazin-1-yl)acetate (21). To a solution of 1.22 g (3.8 mmol) of 19 in 30 mL of 

DMF were added 1.89 g (2 equiv.) of 20, 1.06 g (2 equiv.) of K2CO3 and 1.72 g (3 equiv.) of sodium 

iodide. The reaction mixture was warmed to 60°C and was stirred for 96 hours. The solution was 

then transferred to a separatory funnel, and the product was extracted with DCM (4 x 100 mL). The 

combined organic layers were washed with water (2 x 100 mL) and brine (100 mL), dried over 

anhydrous Na2SO4 and then evaporated to dryness. The crude product was separated using normal 

phase flash chromatography (EPCLC W-Prep 2XY, Yamazen Corp.) with DCM/MeOH as eluents. 

The fractions containing the desired compound were combined and evaporated to give 1.30 g (64% 

yield) of 21 as a white solid. mp > 206°C (decomposes). 1H NMR (300 MHz, CDCl3) δ = 8.74 (s, 

1 H), 8.66 (s, 1 H), 7.89 (dd, 1 H, J = 6.3, 2.4 Hz), 7.55-7.60 (m, 1 H), 7.45 (s, 1 H), 7.16 (s, 1 H), 

7.08 (t, J = 8.7 Hz, 1 H), 4.17 (q, 2 H, J = 6.9 Hz), 3.98 (t, 2 H, J = 6.6 Hz), 3.87 (s, 3 H), 3.18 (s, 

2 H), 2.40-2.69 (m, 10 H), 1.93-2.00 (m, 2 H), 1.27 (t, 3 H, J = 6.9 Hz); 13C NMR (75 MHz, CDCl3) 

δ = 170.56, 156.70, 155.18, 154.63 (d, J = 247.83 Hz), 153.46, 148.92, 147.31, 135.71, 124.31, 

121.97 (d, J = 6.2 Hz), 120.81 (d, J = 18.4 Hz), 116.48  (d, J = 21.7 Hz), 109.32, 107.38, 101.84, 

67.64, 60.83, 59.30, 56.17, 54.77, 52.82, 52.72, 26.08, 14.31. 19F NMR (282 MHz, CDCl3) δ -

94.94. HRMS (ESI) Calculated mass (C26H32ClFN5O4) [M+H]1+: 532.2127, mass found m/z: 

532.2128 [M+H]1+. IR: ṽ = 3289, 2940, 2821, 1743, 1624, 1579, 1526, 1500, 1472, 1428, 1397, 
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1354, 1337, 1216, 1172, 1141, 1069, 1032, 1011, 931, 858, 821, 794 cm-1. UV/Vis: λmax = 246, 331 

nm. 

 

Synthesis of 2-(4-(3-((4-((3-chloro-4-fluorophenyl)amino)-7-methoxyquinazolin-6-

yl)oxy)propyl)piperazin-1-yl)acetic acid (22; “piperazinyl gefitinib”). 1.30 g (2.44 mmol) of 21 

was dispersed in 200 mL of 0.2 M LiOH (i-PrOH/H2O (1.2/1)), and the reaction mixture was stirred 

at room temperature in the dark. After 7.5 hours, the i-PrOH was evaporated in vacuo, and 10% 

HOAc was added dropwise to adjust the pH of the water layer to 5. A pale-white solid precipitated 

during that time, and the solid was filtered, washed with water, MeOH and diethyl ether. The solid 

was dried overnight under high vacuum (< 1 mm Hg) to remove residual water to afford 1.13 g 

(92% yield) of 22 as a white solid. mp > 201°C (decomposes). 1H NMR (300 MHz, DMSO) δ 9.61 

(s, 1H), 8.50 (s, 1H), 8.12 (dd, J = 2.57, 6.84 Hz, 1H), 7.88 – 7.71 (m, 2H), 7.44 (t, J = 9.11 Hz, 

1H), 7.20 (s, 1H), 4.17 (t, J = 6.12 Hz, 2H), 3.94 (s, 3H), 3.16 (s, 2H), 2.81 – 2.58 (m, 4H), 2.08 – 

1.88 (m, 2H). 13C NMR (75 MHz, DMSO) δ 169.90, 160.71, 156.04, 154.51, 152.63, 148.35, 

146.99, 136.88, 123.51, 122.40, 118.89, 116.67, 116.38, 108.81, 107.30, 102.52, 67.11, 58.72, 

55.89, 54.30, 51.90, 26.16. 19F NMR (282 MHz, CDCl3) δ -120.13. HRMS (ESI) Calculated mass 

(C24H27ClFN5O4): 504.1814, mass found m/z: 504.1838 [M+H]1+. IR: ṽ = 3368, 2952, 2838, 1625, 

1581, 1500, 1473, 1429, 1400, 1247, 1234, 1218, 1144, 1004, 855 cm-1. UV/Vis: λmax = 249, 331 

nm. 

 

3.4 Results 

 

Peptoid monomers, NLys and NArg, were prepared from 1,4-diaminobutane and 1,3-

diaminopropane, respectively, as described in Chapter 2, section 2.4.2 Experimental Materials and 

Methods. These peptoids were selected based on previous evidence that they enhance cellular 

and/or nuclear uptake, and were superior to L- or D-peptide sequences. Previous work indicates 

that the number of residues in polycationic peptoids affects their uptake, with longer sequences 

being taken into cells more rapidly [438]. To confirm this visually, two poly-lysine peptoids were 

synthesized that contained either seven or nine residues. These were each N-terminally tagged with 

FAM, separated by an aminohexanoic acid linker. MBA-MB-231 triple negative breast cancer cells 

were then exposed to the 7-mer, 9-mer, FAM-tagged TAT peptide (sequence: GRKKRRQRRRPQ) 

or FAM alone for three hours, fixed with paraformaldehyde and analyzed by confocal microscopy 

(Figure 3.1). From the results, there was little indication that FAM alone was able to enter cells. 
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Both the TAT sequence and peptoid sequences demonstrated enhanced cellular uptake, and 

increasing the peptoid length from seven to nine residues appeared to increase the amount of 

fluorescent compound taken up, as anticipated. Interestingly, the TAT sequence did not display 

 

 

 

Figure 3.1. Enhanced Uptake of 5-Carboxyfluorescein Using a NLS or CPPo. MDA-MB-231 cells 

were incubated with 10 µM (a) 5-carboxyfluorescein (FAM), (b) FAM-labeled TAT peptide, (c) 

FAM-labeled NLys7 peptoid or (d) FAM-labeled NLys9 peptoid for 3 hours. Cells were then fixed, 

stained with Hoechst 33342 and fluorescently imaged using confocal microscopy at 407 nm and 

488 nm. Images generated by Jennifer Sturgis, Purdue University College of Veterinary Medicine. 

 

 

much evidence of enhancing the nuclear localization of the dye, and the nine-member NLys peptoid 

showed an equal or better proclivity for inducing cellular entry when compared to TAT. This may 

not be surprising, though, given that the efficiency of uptake of CPPs can differ between cell lines 

[449]. Concordant with previous studies, NLys peptoid entry was characterized by a punctate 

intracellular distribution, being present inside vesicles. Because the amino-based peptoids did not 

show any evidence of nuclear uptake, it was decided to pursue the use of poly-arginine peptoids, 
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Figure 3.3. NArg-Peptoid Conjugates Enhance Nuclear Uptake. Normal Mammary Epithelial 

(NME) cells were incubated with either 10 µM FAM-NArg or FAM-SV40-NArg for one hour, 

fixed and stained with DAPI. The cells were then imaged by confocal microscopy. (a) FAM-NArg 

at 20X magnification (bars = 200 µm); (b) FAM-SV40-NArg at 20X magnification (bars = 200 

µm); (c) FAM-SV40-NArg at 40X magnification (bars = 100 µm). Images generated by Wells 

Brown, Purdue University College of Pharmacy. 

 

 

given that they should theoretically increase the nuclear distribution of a tagged molecule [437]. 

Based on the observations of peptoid length-dependence on the efficiency of cellular entry, 

guanidinium-based compounds were also synthesized with a length of nine residues (Figure 3.2a).  

With the goal of further enhancing nuclear uptake, peptoids were also synthesized 

containing the NLS from the simian virus 40 large T antigen (sequence: PKKKRKV). This 

sequence, which is naturally found on the surface of certain proteins, promotes nuclear transport 

through its recognition by importins, taking it through the nuclear pore complex [450]. The SV40 

sequence was selected due to its relative ease of synthesis when compared to TAT. Following the 
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submonomer synthesis [300] of each respective CPPo on Rink-amide resin, the NLS was assembled 

using basic Fmoc-based peptide synthesis conditions. The NLS and CPPo were separated by a six-

carbon linker; an additional six-carbon spacer was placed on the N-terminus of the NLS, to which 

either piperazinyl gefitinib (Pip Gef) or FAM would be attached (Figure 3.2b). To examine the 

cellular distribution of the FAM-conjugated NArg9-containing molecules, normal mammary 

epithelial (NME) cells, which were engineered to express elevated levels of EGFR, were exposed 

to either FAM-NArg or FAM-SV40-NArg (Figure 3.3). Both FAM-NArg and FAM-SV40-NArg 

were efficiently taken into the epithelial cells. From the results of imaging, FAM-NArg was 

distributed inside the cytoplasm (Figure 3.3a), but the addition of the SV40 sequence seemed to 

enhance the nuclear, and overall, uptake of these compounds, as expected (Figures 3.3b & c). 

 

3.4.1 NLys-Based Conjugates Enhance the Anti-Proliferative Effect of Gefitinib in 

Resistant Cells 
 

Although Pip Gef is nearly identical to commercial gefitinib, with the exception of a piperazinyl 

acetate moiety in place of the morpholino group, minor changes to its structure could have 

substantial consequences for its affinity for EGFR, or could cause other issues due to changes in its 

cellular uptake or solubility. To assess the two compounds for any difference in activity, 

commercial gefitinib and Pip Gef were compared in 3D cell cultures of NME and LM1 cells (Figure 

3.4). In both cells lines, gefitinib efficiently downregulated cell growth. In NME cells, PIP Gef did 

not show as much of an antiproliferative effect, though at 10 µM the effect was similar to that of 

gefitinib. In LM1 cells, however, the difference between gefitinib and Pip Gef was substantial, with 

Pip Gef having comparable activity to the DMSO control. Because of the reduced potency of Pip 

Gef, the next step was to assess whether incorporating the drug into a peptide-peptoid conjugate 

could improve the observed activity. Due to the relative ease of synthesis and reduced cost of NLys-

based peptoids as opposed to NArg, Gef-NLys and Gef-SV40-NLys were assessed for their ability 

to negatively impact the growth of the tumor-based cell lines MDA-MB-231 and MDA-MB-468. 

Both the 231 and 468 cell lines are derived from mammary gland/breast tissue that has 

metastasized, and are classified as models for triple negative breast cancer (do not express estrogen 

receptor, progesterone receptor or Her2/neu). Each line overexpresses EGFR [451,452], and 

although 231 and 468 cells are relatively insensitive to gefitinib monotherapy when compared to 

other breast cancer lines, MDA-MB-231 is especially resistant to the drug, displaying two-fold or 

lower sensitivity than other triple negative cell types [453]. Furthermore, they show enhanced 

resistance to other anti-tumor drugs including erlotinib, cetuximab, carboplatin, doxorubicin and 

docetaxel. As anticipated, gefitinib had little effect on the growth of MDA-MB-231 cells, while 
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PIP Gef had no measurable activity after three days, even at concentrations up to 50 µM (Figure 

3.5). However, when PIP Gef was coupled to either NLys or SV40-NLys, a significant decrease in 

cell growth was observed. At the same time, NLys and SV40-NLys peptoid sequences with no drug 

conjugate (Ahx-NLys and Ahx-SV40-NLys, respectively) did not show any antiproliferative 

activity (data not shown). In MDA-MB-468 cells, Gef-NLys and Gef-SV40-NLys also negatively 

impacted growth—Gef-NLys had comparable activity to Pip Gef, though all of the test compounds 

were inferior to gefitinib, with the apparent exception of Gef-SV40-NLys at a concentration of 50 

µM. Given that NLys-based compounds do not appear to get taken into the nucleus (Figure 3.3), 

the ability of the peptoids to improve the potency of gefitinib in resistant cells may be due to 

enhanced cellular uptake, though it is not yet mechanistically clear why some cell lines would be 

more sensitive to this effect than others. 

 

3.4.2 Drug-Peptoid Conjugates Alter the Phosphorylation Status of STAT3 

 

Because the peptoid conjugates demonstrated that they are taken into cells, and that they produce 

a phenotypic growth effect, the next step was to examine the effect of gefitinib-tagged conjugates 

on EGFR as well as downstream intracellular proteins. The phosphorylation statuses of EGFR, 

extracellular-signal-regulated kinases 1/2 (ERK1/2) and signal transducer and activator of 

transcription 3 (STAT3) were probed to observe the effect of the conjugates on signaling pathways 

known to be activated in part by EGFR. ERK proteins exist within the family of classical MAP 

kinases, and are involved in various intracellular signaling processes that regulate mitosis, meiosis 

and postmitotic events in cells. They are activated by a plethora of upstream stimuli, including 

growth factors, ligands for heterotrimeric GPCRs, cytokines, mitogens and carcinogens [454]. ERK 

is naturally located in the cytoplasm, where it can translocate to the nucleus upon phosphorylative 

activation. STAT3, on the other hand, which is a transcription factor that is activated in response 

to various cytokines and growth factors, is able to translocate into and out of the nucleus 

independently of phosphorylation, and maintains a prominent nuclear presence [455,456]. 

Furthermore, evidence exists that STAT3 physically interacts with nuclear EGFR, leading to the 

activation of its transcriptional control [457,458].   

 To observe the effect of the conjugates on EGFR, ERK1/2 and STAT3, two murine tumor 

cells lines, termed NME and LM1, were exposed to either gefitinib or erlotinib (Tarceva), or one 

of the test compounds. As previously discussed, NME cells overexpress EGFR in the whole cell; 

in LM1 cells, however, the level of EGFR is near normal, but the protein is disproportionally 
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located in the nucleus, as opposed to the rest of the cell (see Appendix B, Figure B.1). In the NME 

line, cell lysates were probed for the phosphorylation status of EGFR (p-EGFR), STAT3 (p-

STAT3) and ERK1/2 (p-ERK1/2), with the total level of STAT3 (t-STAT3) used as both a loading 

and internal control (Figure 3.6 (top)). Erlotinib and gefitinib, both clinically established inhibitors 

of EGFR, abrogated the phosphorylation of EGFR and STAT3; both antagonists had a negative 

effect on ERK1/2 phosphorylation, with gefitinib nearly completely abolishing it. Pip Gef had 

relatively little effect on the phosphorylation of EGFR, and no noticeable effect on STAT3 or 

ERK1/2. It was also observed that attaching the SV40 nuclear targeting sequence to Pip Gef seemed 

to hurt the activity of the drug. Interestingly, the NLys- and NArg-based drug conjugates had a 

more profound effect on STAT3 phosphorylation than on EGFR, and each of the conjugates did 

not have a measurable effect on ERK1/2. Of the compounds, Gef-SV40-NArg had the overall most 

significant impact. LM1 cell lysates were also probed for p-STAT3 and p-ERK1/2 (Figure 3.6 

(bottom)), and as with the other cell line, NLys- and NArg-based drug conjugates disrupted 

phosphorylation of STAT3, but had little effect on ERK1/2. 

 Because murine cells lines showed a differential effect of the compounds on STAT3 and 

ERK1/2, the human cell line MDA-MB-468, derived from a mammary gland adenocarcinoma, was 

investigated (Figure 3.7). As was seen with the NME and LM1 lines, the NLys- and NArg-based 

compounds decreased the levels of p-STAT3, but did not affect p-ERK1/2. Moreover, Gef-SV40-

NArg was again the most potent compound. To assess the distribution of phosphorylated STAT3 

in the cell, MDA-MB-468 cells were cultured in the presence of EGF or bovine serum albumin 

(BSA), and were imaged using immunofluorescence (Figure 3.8). t-STAT3 showed distribution 

throughout the entire cell, both inside and outside the nucleus. When the cells were treated with 

DMSO, p-STAT3 appeared to be restricted to the nucleus; but on exposure to Gef-SV40-NArg, the 

cells showed little to no trace of STAT3 phosphorylation. Overall, it was not clear from the results 

of the previous assays why Gef-SV40-NLys had little to no effect on EGFR, STAT3 and ERK1/2. 

A potential explanation could be the aggregation or formation of unanticipated secondary/tertiary 

structures in solution, but this issue was not pursued any further.   

 

3.4.3 NArg-Based Compounds Disrupt STAT3 Phosphorylation in a Dose-Dependent 

Manner  

 

Based on the results from the Western blots, Gef-NArg and Gef-SV40-NArg were the most 

effective compounds at disrupting STAT3 phosphorylation. Given that commercial gefitinib 

effectively downregulated p-STAT3 as well as p-ERK1/2, it was investigated whether the NArg- 
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Figure 3.8. Gef-SV40-NArg Disrupts Nuclear Accumulation of Phosphorylated STAT3. MDA-

MB-468 cells were seeded onto glass coverslips and cultured overnight in the presence of DMSO 

or Gef-SV40-NArg (1 µM), and BSA or EGF. The coverslips were washed with PBS, the cells 

fixed with PBS plus 4% formaldehyde for 20 minutes at room temperature, and then the cells 

permeabilized with PBS plus 0.1% Triton X-100 for 20 minutes at room temperature. The cells 

were washed with PBS, followed by PBS plus 2% BSA, and were incubated overnight at 4°C with 

primary antibody (anti-STAT3 or –p-STAT3) in PBS plus 2% BSA. After incubation, the cells 

were washed and again incubated for one hour at room temperature with secondary antibody 

(donkey anti-mouse Alexa Fluor® 488) in PBS plus 2% BSA. The cells were washed with PBS plus 

2% BSA, PBS alone, followed by incubation with DAPI in PBS for 5 minutes at room temp. The 

cells were washed in PBS three more times, then mounted to a glass slide using Prolong Gold anti-

fade reagent. Images were acquired using a Nikon A1R-MP confocal microscope. Images 

generated by Wells Brown, Purdue University College of Pharmacy. 
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based drug conjugates would effect ERK1/2 phosphorylation when the concentration of each 

compound was increased. NME and LM1 cells were exposed to two-fold increasing concentrations 

of Gef-SV40-NArg up to 10 µM (Figure 3.9a). In each line, the level of p-STAT3 decreased in a 

dose-dependent manner, while p-ERK1/2 was not affected. The results also indicated that in LM1 

cells, which have upregulated levels of nuclear EGFR, p-STAT3 was more sensitive to modulation 

upon exposure to the drug conjugate than in NME cells. A densitometry analysis of the amount of 

p-STAT3, normalized to the amount of total STAT3 in each cell line, further demonstrated the 

higher sensitivity of LM1 cells to Gef-SV40-NArg (Figure 3.9b).  

 In the previous set of experiments, at 1 µM gefitinib eliminated the phosphorylation of 

STAT3 and ERK1/2. However, it was unknown whether p-STAT3 would be fully abrogated before  

p-ERK1/2 levels were affected at lower concentrations. To investigate this possibility, MDA-MB-

468 cells were exposed to Gef-NArg, Gef-SV40-NArg or gefitinib in a two-fold series of 

concentrations up to 1 µM for gefitinib, or 5 µM for each peptoid conjugate (Figure 3.10). From 

the results, it was seen that gefitinib nearly eliminated p-STAT3 at a concentration of approximately 

125 nM, and increasing gefitinib four-fold to 0.5 µM abrogated p-ERK1/2. Gef-NArg and Gef-

SV40-NArg both disrupted p-STAT3, with the latter abolishing the protein’s phosphorylation at 

between 150 and 300 nM. However, even when the concentration of Gef-SV40-NArg was 

increased more than ten-fold to 5 µM, there was no evidence of p-ERK1/2 being affected. This 

could suggest that gefitinib and the peptoid-drug conjugates are acting through different 

mechanisms. If the difference in STAT3 phosphorylation between gefitinib and Gef-SV40-NArg 

was simply due to the differential affinity of the two compounds for EGFR, it would be expected 

that as the concentration of the NArg-based ligand continued to be increased, levels of p-ERK1/2 

would eventually begin to decrease. In effect, a dose response curve of the peptoid compounds 

would be shifted to the right, relative to gefitinib. However, this was not observed, as gefitinib 

inhibited p-ERK1/2 at four times the concentration of p-STAT3 inhibition, but Gef-SV40-NArg, 

the most potent drug conjugate, did not inhibit p-ERK1/2 at even more than ten times the 

concentration of p-STAT3 abrogation. 

 

3.4.4 Drug-Peptoid Conjugates Downregulate EGFR-Dependent, but not JAK-Dependent 

STAT3 Phosphorylation 

 

As discussed, STAT3 is a transcriptional activator that can translocate into and out of the nucleus, 

where it mediates the expression of a variety of genes. In a canonical sense, STAT3 is most often 

associated with activation by Janus Kinase 1 (JAK1), but it can also be activated through either 
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Figure 3.10. Dose Response of NArg-Based Drug Conjugates in MDA-MB-468 Cells. 468 cells 

were exposed to increasing concentrations of gefitinib, Gef-NArg or Gef-SV40-NArg in the 

presence of EGF (25 ng/mL). Cell lysates were probed for p-STAT3 (Y705), t-STAT3, p-ERK1/2 

and β-tubulin. Data generated by Wells Brown, Purdue University College of Pharmacy. 
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Figure 3.11. Drug-Peptoid Conjugates Downregulate EGFR-Dependent Phosphorylation of 

STAT3. MDA-MB-468 Cells were cultured in the presence of either EGF (25 ng/mL) or IL-6 (20 

ng/mL), followed by exposure to 1 µM Gef-NArg, Gef-SV40-NArg, gefitinib or the JAK1 inhibitor 

ruxolitinib. Cell lysates were probed for p-STAT3 (Y705), t-STAT3, p-ERK1/2 and β-tubulin. Data 

generated by Wells Brown, Purdue University College of Pharmacy. 

 

 

direct interaction with EGFR or downstream pathways of EGFR [457–460]. To investigate whether 

the drug-peptoid conjugates were affecting JAK-dependent STAT3 phosphorylation, MDA-MB-

468 cells were exposed to either EGF or IL-6 to activate EGFR- or JAK-dependent signaling 

cascades, respectively. Gef-NArg, Gef-SV40-NArg, gefitinib and the JAK1 inhibitor ruxolitinib 

were added to determine the effect on levels of p-STAT3 and p-ERK1/2 (Figure 3.11). As before, 

in the presence of EGF Gef-NArg, Gef-SV40-NArg and gefitinib disrupted the phosphorylation of 

STAT3, while only gefitinib affected the levels of p-ERK1/2. Conversely, in the presence of IL-6, 

none of the compounds had an effect on p-STAT3, with the exception of ruxolitinib. Additionally, 

IL-6 exposure did not result in ERK1/2 phosphorylation, indicating that STAT3 and ERK1/2 do 

not associate with one another under the conditions of interleukin-induced JAK activation.  

 

3.4.5 Gef-SV40-NArg Has Strong Potential for Oral Absorption 

 

To investigate whether the drug conjugates might make good drugs in and of themselves, a 

permeability study was performed with Gef-SV40-NArg to see if it was able to be absorbed through 

the gastrointestinal tract. Caco-2 epithelial colorectal adenocarcinoma cells were cultured in 

DMEM and plated as a single layer in Corning 12-well 0.4 μm polyester Transwell filter supports 

(see Appendix B for experimental methodology). In order to ensure an adequate acceptor 
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compartment concentration, the ligand concentration was kept well over 100-fold higher than the 

limit of detection. Gef-SV40-NArg permeability was measured with an initial concentration of 100 

μM in 1% DMSO/HBSS in triplicate samples. All samples gave an area under the curve well above 

background, and future studies could likely be conducted over a shorter time scale or up to 10-fold 

lower concentration. A significant lag period of between 30 and 60 minutes was seen; however, 

linearity was stable after 60 minutes. This lag could be caused by slow permeation and equilibration 

across the cell monolayer, but a jump in dC/dt slope can also be indicative of cell toxicity. It should 

be noted that while Caco-2 cells are immortalized, they are contact-inhibited, and monolayers are 

fully differentiated and no longer dividing at the time of study. Permeability results for Gef-SV40-

NArg are shown below: 

 

 

 

Table 3.3 

Permeability of Gef-SV40-NArg in 

Caco-2 Cells 

 
 

Triplicate 1 6.72 x 10-6  * 

Triplicate 2 6.29 x 10-6  * 

Triplicate 3 5.98 x 10-6  * 

Average 6.33 x 10-6 

Deviation 3.68 x 10-7 
 

 

* Values are reported as the 

permeability across the cell 

monolayer in cm/s 

 

(Experiment performed by Christopher Kulczar, Purdue University College of Pharmacy) 

 

 

 

In the assay, the mass balance for the drug conjugate was nearly 100%, indicating that the 

compound remained stable throughout the experiment. Based on the results, it was concluded that 

the permeability rates were considered to be in the middle range, suggesting that the drug conjugate 

would have reasonable absorption through the gastrointestinal tract when ingested orally.  
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3.5 Discussion 

 

This study establishes a strategy for subcellularly targeting a small molecule that aims to inhibit 

receptors at the level of the nucleus. The direction of molecules to intracellular compartments has 

been studied for at least a couple decades, but this work reports, to our knowledge, the first instance 

of incorporating a tyrosine kinase inhibitor into a NLS or CPPo. This same approach is versatile in 

that it could theoretically be used to target numerous small molecules that are agonists/antagonists 

of various protein targets. Both the peptide and peptoid portions of these compounds are 

synthesized without much difficulty, and chemical modification of the small molecules would 

allow for facile conjugation to the sequences using basic conditions for solid-phase peptide 

synthesis.  

The NLS and CPPo sequences used in this work were selected based on their success in 

trafficking small molecule fluorescent dyes into the cell [437–439]. The design of these compounds 

to simultaneously contain both the peptide-based NLS and peptoid-based CPPo proved to enhance 

their cellular uptake and activity, but the physical structure of the drug conjugates, as a whole, may 

not be ideal for every situation. While the six-methylene linkers provide spatial separation of 

approximately 10 Å between the drug and peptide/peptoid portion of these molecules, it is possible 

that the targeting sequence still destabilizes the binding of the small molecule to its target due to 

steric clashing between the sequence and the protein. Other methods of attachment could be 

explored such as either disulfide or thioether-based covalent linkages [429], which could become 

reduced upon cellular uptake, releasing the drug. This, however, may not be an ideal alternative for 

targeting the nucleus since the constrained timeframe of cellular machinery transporting the ligands 

to the nucleus would necessitate a non-labile linker.  

 A major finding of this work is the observation that the drug conjugates downregulate 

phosphorylation of STAT3, but do not affect ERK1/2, whereas commercial gefitinib abrogates p-

ERK1/2 as cells are exposed to increasing concentrations of the drug. Both ERK1/2 and STAT3 

can be found downstream of EGFR, but the involvement of each in cellular processes is quite 

different (see Figure 3.12). ERK1 and ERK2, also referred to as MAPK3 and MAPK1, respectively, 

are both part of the well-studied MAPK/ERK pathway that acts as a mediator of signal transduction 

from the surface of cells to the nucleus. ERK1/2 are found in the cytoplasm until they become 

activated, upon which they dimerize and pass into the nucleus. STAT3, on the other hand, can be 

found in both the cytoplasm and nucleus, as it can translocate back and forth independent of its 

phosphorylation [455,456]. In order to perform its role as a transcriptional factor, it becomes 
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Figure 3.12. Cytoplasmic and Nuclear Modes of EGFR Signaling. Signaling originating from 

EGFR propagates through the cell via two major pathways—one occurring in the cytoplasm, and 

the other in the nucleus. Upon EGFR activation at the cell surface, EGFR either: 1) activates 

downstream signaling proteins such as PI-3K, PLC-γ, one of the STATs, or RAS; these 

subsequently activate further downstream proteins, causing a signal cascade that eventually reaches 

targets in the nucleus, activating various cellular growth- or survival-related processes. 2) 

translocates to the nucleus where it binds with and activates proteins that then lead to the initiation 

of cellular responses such as checkpoint regulation, proliferation and DNA repair.   
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activated though phosphorylation at residue Y705 in response to a number of cytokines and growth 

factors, and has been identified as one of the two most important members of the STAT protein 

family for cancer progression [461–463]. Unlike ERK1/2, there is evidence that STAT3 physically 

associates and colocalizes with EGFR in the cell nucleus following EGF stimulation [457]. This is 

a compelling observation since it would imply that it is possible that the drug conjugates 

downregulate STAT3 in the nucleus of each of the cell lines.  

Interestingly, in the context of downregulating STAT3 phosphorylation, LM1 cells 

displayed a higher sensitivity to Gef-SV40-NArg than did NME cells (Figure 3.9). As previously 

mentioned, as opposed to what is seen in NME cells, EGFR is upregulated in the nucleus of LM1 

cells (Appendix B, Figure B.1), though the overall whole-cell expression level of the receptor is 

comparable to wild-type cells. This could provide an explanation for the enhanced sensitivity to 

downregulation of p-STAT3, but some investigation is still needed. As of yet, there is still no proof 

of direct inhibition of STAT3 activation by EGFR in the nucleus, though the evidence presented 

here could suggest that is occurring. Future experiments involving alternative subcellular tags or 

nuclear separation could help to answer that question.  

Ultimately, the discovery of ligands that preferentially downregulate signaling proteins 

downstream of EGFR could have important implications for the treatment of certain cancers. 

STAT3 is an important signaling mediator in malignant disease, and it has been seen to be 

persistently activated in 22-65% of all non-small cell lung cancers [464–466]. Previous studies 

have demonstrated that suppressing signaling from EGFR-STAT3 [467], as well as STAT3 

signaling in general [468–472], can result in tumor cell apoptosis in breast, melanoma, leukemia, 

myeloma and lung cancer types. Because constitutive IL-6R/JAK1/STAT3 signaling has been 

proposed as a major mechanism of resistance for EGFR-TKIs [473], using the nuclear-targeted 

conjugates in combination with a IL-6R/JAK1 pathway inhibitor could be an effective treatment 

for patients with TKI-resistant cancer [474]. Together with the observations that the gefitinib-

conjugated molecules curtail the growth of gefitinib-resistant cells more efficiently than 

commercial gefitinib, and that they hold the potential for good absorptivity through oral 

administration, demonstrating that these compounds are able to efficiently target specific segments 

of signaling pathways could substantially increase their value as therapeutics for disease.



124 

 

 

4. FUTURE DIRECTIONS 

The search for new therapeutics to treat human disease is constant. Although there is a steady 

stream of new drug applications in the United States every year, the total number of these 

applications pales in comparison to that seen just a decade and a half ago. Due to the ballooning 

costs associated with the research and development of a new drug, which are further exacerbated 

by the tremendous subsequent investment necessary to take the drug to market, many entities have 

scaled back drug discovery efforts and generally focus on ‘safer’ targets. This unfortunately results 

in the vast majority of research focusing on a relatively small set of proteins [206], and the 

chemotypes present in many libraries used for high-throughput screening tend to be biased toward 

traditional drug targets such as receptor tyrosine kinases and enzymes [207–209]. The work 

presented here represents two unique strategies that diverge from prototypical drug discovery 

efforts in that they aim to provide new avenues for the discovery of new drug chemotypes. 

Ultimately, the initial discovery of compounds that inhibit PCNA-protein interactions or target 

subcellularly-located protein receptors lays a foundation for future work that could result in second 

or third generation compounds that are much improved, and could see broader application in the 

research & development or clinical spaces.  

 

4.1 Using Chemical Information from Peptoid Hits to Develop More Drug-Like 

Inhibitors  

 

In the analysis of the peptoids that inhibited the interaction between PCNA and the PL peptide, 

there were similar chemical features that were shared between the top hits. A general weakness of 

these compounds is that they each have many rotational degrees of freedom, which, among other 

features, does not make them ideal lead drug candidates. It would be advantageous if the features 

that contributed to the ligands’ individual affinities could be conserved, but incorporated into a 

more rigid drug-like structure (Figure 4.1). Chemistry currently exists that allows for the 

rigidification of peptoid structures on resin by causing ring closure of a portion of the peptoid’s 

backbone. This could be used, as an example, in the pursuit of next-generation lead molecules. 
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Figure 4.1. Shared Chemical Features Between Peptoid Hits Can Be Incorporated into Lead 

Compounds. (top) The average output positions of NLys-NPip-NBal (green sticks) and T2AA-

NEal-NPip (blue sticks) from their respective MD simulations with PCNA are shown overlaid. 

(bottom) Overlapping chemical features between the two ligands are color coded in blue, pink, red 

or green, and these can be incorporated into a more rigid, drug-like scaffold to create next-

generation lead molecules.   
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 Along with combining chemical features to make better lead antagonists, the peptoid side 

chain library could be expanded to include fragments that have been used in other various studies 

[302,305,312,318,320,475], as well as different chemotypes in general. With the additional 46 

fragments shown in Figure 4.2, the total combinatorial library of tripeptoids would increase to more 

than 570,000 compounds, and more than 585,000 when T2AA is included as a potential substituent  

 

 

 

 

 

Figure 4.2. Set of Fragments for Incorporation into Future Virtual Libraries. In order to expand the 

chemical space covered by tripeptoid-based screening, peptoid fragments previously used in other 

studies can be incorporated into the virtual screening library.  
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in the first position. Given that their features are distinct from inhibitors of classical targets, and 

that they typically share certain properties with other members of their own class of compounds, it 

is likely that inhibitors of protein-protein interactions will not cover extensive chemical space. 

However, protein interaction surfaces can be quite diverse from one another, with substantial 

differences in polar and nonpolar surface area as well as size and depth of surface pockets. Covering 

a much larger fragment space for the purposes of using tripeptoids as a base for screening would 

be beneficial in this case giving that it would, of course, greatly increase the probability of 

discovering hit ligands.  

 As a logical next step following biochemical validation of tripeptoids, the best hits would 

be tested in human cell lines to determine whether they elicit a quantifiable growth phenotype. 

Abnormal regulation of PCNA levels, as well as post-translational modification of the protein 

complex, has been observed in a number of malignant cell types, particularly breast and prostate 

cancers [260,261]. As a result, cell lines such as MDA-MB-231 (breast), MDA-MB-468 (breast), 

LNCaP (prostate), PC3 (prostate) and DU145 (prostate) would likely be used as the models for 

testing. Demonstrating that the tripeptoid ligands can inhibit the growth of tumor-derived cells 

would be an important validation of this study’s general approach toward discovering inhibitors of 

protein-protein interactions. However, a major factor that is not taken into consideration in the 

computational or biochemical testing processes is the ability for these compounds to efficiently 

cross a cell membrane and/or be taken up via pinocytosis. It may be that the tripeptoids synthesized 

for this study do not have favorable features for allowing them to efficiently be taken into cells, but 

this has not yet been fully assessed.  

 Other future studies would aim to further investigate the mechanism of action of the 

tripeptoid antagonists, as well as gauge their in vivo activity. The ability of these compounds to 

affect DNA translesion synthesis (TLS) could be assessed using published methodology [178], 

where, in the presence of PCNA antagonist, nuclear excision repair-resistant cells would be 

transfected with plasmid DNA containing an intrastrand cisplatin cross-link in a coding region of 

the lacZ gene, and another plasmid lacking the cross-link would serve as a control. Following a 

period of incubation, replicated plasmid would be recovered and analyzed for TLS via E. Coli 

transformation/colony selection. DNA damage response would be further monitored through the 

use of tumor cell lines incubated with antagonist, cisplatin, or both. Cells would be stained using 

γH2AX, a biomarker for double-stranded DNA breaks [476], and analyzed with flow cytometry. 

In parallel to those studies, questions of whether blocking the PIP Box binding site could have an 

effect on PCNA post-translational modification (PTM), and whether levels of PTM have an effect 
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on binding affinity at the PIP Box site could also be pursued. These are interesting questions since 

the plasticity of PCNA [177] may accommodate for a larger variety ligands that bind at the PIP 

Box site, and this could have ‘long-range’ effects on the opposing face of the protein complex that 

directly affects levels of PTM—thus potentially having an effect on overall levels of DNA damage 

repair. Furthermore, demonstrating that PCNA ubiquitination has an effect on the affinity of ligands 

to bind at the PIP Box binding site could have huge benefits for drug-target specificity. 

 In further validation of tripeptoid-based inhibitors as potential drug candidates, top lead 

molecules could be further evaluated for their pharmacological properties in early ADME/tox 

profile assays. Prior to any in vivo efficacy testing, acute toxicity studies can be executed on all 

compounds deemed as leads for in vivo testing. Pharmacokinetic studies can also be pursued in 

rodent models. Ultimately, experimental data obtained from the tripeptoid molecules could be used 

in the design of compound formulations that enable the drug properties and hypothesis testing to 

be conducted with new tripeptoid molecular entities. Additionally, it is possible that due to the 

homotrimeric nature of PCNA, a nanotechnology-esque approach could be utilized where three PIP 

Box antagonists are linked together to inhibit all three binding sites on PCNA simultaneously 

(Figure 4.3)—thus greatly enhancing the specificity and potency of these compounds.  

 

4.2. Further Assessment of the Nuclear Effect of Subcellularly-Targeted Gefitinib, and 

Exploring the Localization of Alternative Small Molecule Inhibitors 

 

The study outlined in Chapter 3 showed the feasibility of incorporating the known tyrosine kinase 

inhibitor, gefitinib, into a peptoid-based sequence in an effort to target it to the nucleus of cancer 

cells. The results indicated that as opposed to commercial gefitinib, these peptoid-based conjugates 

were able to downregulate the phosphorylation of STAT3 while not affecting the phosphorylation 

of ERK1/2. Fluorescently-tagged variants of the conjugates were able to be taken up into cells, and 

FAM-SV40-NArg in particular was taken into the nucleus; however, direct evidence of the 

gefitinib-tagged molecules in the nucleus would be important to establish. The next major piece of 

evidence for the justification of the use of these compounds would be showing that they have a 

strong growth phenotype. A two-dimensional MTT assay was performed using Gef-NLys and Gef-

SV40-NLys, but the experiment would need to be performed with the NArg-based ligands, 

especially given that there was evidence of them being more effective in the disruption of p-STAT3, 

as well as having enhanced cellular and nuclear uptake. In three-dimensional cell growth studies 

using NME and LM1 cell lines, the peptoid-based conjugates did not show much evidence of 

growth inhibition over a four week study (data not shown). However, when T2AA, which has been 
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Figure 4.3. Simultaneous Targeting of the Three PIP Box Binding Sites on PCNA. Attaching three 

of the same PIP Box antagonists, such as T2AA-NEal-NPip (shown here), together with a 

polypropylene glycol linker could allow for the simultaneous targeting of all three PIP Box binding 

sites of PCNA upon the formation of the protein homotrimer. PCNA is shown as a gray surface, 

while the trimeric antagonist is shown as yellow sticks.  
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seen to disrupt cell proliferation in the U2OS bone osteocarcinoma cell line, was introduced to both 

NMEs and LM1s in the same 3D assay, an enhancement of growth was observed. As a result, there 

are likely multiple factors that affect the sensitivity of these cell lines to different types of inhibitors, 

and so a proper model system would need to be developed. 

 To further validate the activity of the inhibitors in the nucleus, a number of different 

experiments could be performed. In contrast to the nuclear localization sequence that was used in 

this study to target the molecules to the nucleus of cells, a nuclear exclusion signal could be 

incorporated, which would instead target the compounds for export from the nucleus into the 

cytoplasm [477–479]. The phosphorylation statuses of STAT3 and ERK1/2, as well as potential 

growth phenotype data, could be compared between the two classes of compounds to see if the 

targeting sequence has a true effect. Separately, it was established here that inhibition of STAT3 

phosphorylation by the peptoid antagonists was dependent on EGF stimulation. While this would 

make sense at face value given that the ligands should be inhibitors of EGFR, the downstream 

mechanisms of this inhibition are not yet completely understood. As of yet, it has not been proven 

whether the observed effect on p-STAT3 in NME, LM1 and MDA-MB-468 cells is due to the direct 

interaction of STAT3 with nuclear EGFR, or if there is simply inhibition occurring at the cell 

surface, and the downstream signal originating from EGFR gets disrupted. This would be a point 

of emphasis in elucidating the mechanism of action of the gefitinib-peptoid conjugates in the 

disruption of p-STAT3. Furthermore, the functional consequence of abrogating STAT3 

phosphorylation would need to be assessed. The protein naturally acts as transcription activator 

upon its phosphorylation, and in cancer types dependent on altered EGFR-STAT3 signaling, 

abolishing STAT3 phosphorylation may prove to be an effective strategy for inhibiting 

tumorigeneses [467].  

It is not yet known whether the peptoid/peptide sequences have a negative impact on the 

drug binding to its target. While a six-member methylene linker was used to separate the drug from 

the peptide or peptoid portion of these conjugate molecules, if the ligands are not subjected to 

intracellular proteolysis, which may subsequently cause the drug to be released from the targeting 

sequence, the drug binding to its protein receptor would necessitate the remainder of the molecule 

(including the peptide and peptoid portions) to either wrap around the surface of the protein, or 

project freely out into solution. It is likely that there are non-zero penalties to solvation and de-

solvation energies, as well as potentially added steric clashes between these molecules and the 

receptor, as opposed to the commercial drug alone. Therefore, it may be beneficial to design a 

method for the drug to be released from the peptide/peptoid targeting sequence within the cell. One
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idea is to use a reducible linker that involves a disulfide bond (Figure 4.4). This is a strategy 

currently used in the design of vintafolide, an anticancer drug currently in Phase IIb clinical trials 

for the treatment of non-small-cell lung carcinoma. Variants of this spacer could be designed so as 

to be able to attach a desired drug to either the N- or C-terminus of a targeting sequence.  

 In addition to gefitinib, other protein kinase inhibitors could be explored for their potential 

for incorporation into peptide/peptoid-conjugates. In this way, the subcellular targeting strategy can 

be pursued against alternative receptors. For example, Figure 4.5 shows other potentially 

modifiable kinase inhibitors such as erlotinib, imatinib, dasatinib, crizotinib and lapatinib, which 

are antagonists of EGFR, BCR-Abl, BCR-Abl, ALK/ROS1 or HER2/neu/EGFR, respectively. In 

the original design of piperazinyl gefitinib, the morpholino group was chosen as the site for 

modification since it is in a portion of the molecule that is easily substituted, and it projects out into 

solution, away from the interior of the binding pocket on EGFR (see PDB ID: 2ITY). The 

modifications proposed in Figure 4.5 were selected for the same reason, where in each case the 

location of substitution projects outward from the interior of the binding pocket. In addition to 

exploring other kinase inhibitors, alternative targeting sequences could be pursued. For example, 

instead of the SV40 nuclear localization sequence, TAT may be used. Other subcellular 

compartments could be targeted in the future as well, where drug-conjugates could be directed to 

the nucleolus [480], mitochondria [481] or peroxisomes [482], or could be targeted for secretion or 

retention in the endoplasmic reticulum [483,484]. This could prove to be a versatile strategy for 

increasing the intracellular concentration of a drug molecule in a desired compartment of interest.  

 In further investigation of the significance of the nuclear-targeted ligands, future work 

could be done to determine whether a possible connection to the processes of DNA damage repair 

exists. nEGFR plays a very important role in DNA repair pathway activation, and previous studies 

have shown increased localization of EGFR to the nucleus after ionizing radiation (IR) [485–487].  

Additionally, nEGFR’s direct interactions with PCNA and DNA-PK are both heavily implicated in 

DNA repair [276,446,485,487,488]. Along with the previously discussed importance of PCNA and 

its relation to the MMR repair pathway, DNA-PK is an essential protein to both the HR and NHEJ 

repair pathways that address double strand breaks, and it becomes activated by phosphorylation by 

EGFR allowing it to carry out its function in either pathway. The increased levels of 

phosphorylation of PCNA and DNA-PK in various cancer types could explain in part the high 

resistance to genotoxic agents, such as cisplatin, and IR. The loss of phosphorylation of PCNA 

would decrease both the amount of active PCNA and the amount that is bound to chromatin; both 

of these effects have been implicated in cell cycle progression.  The loss of active DNA-PK would
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Figure 4.5. Variants of Protein Kinase Inhibitors Can Be Incorporated into a Peptide/Peptoid. 

Similar to gefitinib in this study, other protein kinase inhibitors can be modified so as to be able to 

conjugate them to a peptide or peptoid. Here, the linkages are analogous to the one used for 

gefitinib, with a six-member methylene spacer separating the drug from the targeting sequence. 
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see wide reaching effects given that it has many interactors, but much of the DNA repair aspects 

of DNA-PK can be supplemented by PARP1, which can also activate NHEJ pathway independent 

of DNA-PK [489]. It is possible that the addition of a PARP1 inhibitor along with gefitinib could 

cause a synthetic lethal relationship by inhibiting the alternate NHEJ pathway [490,491] in addition 

to downregulating the phosphorylation of PCNA, which itself has been strongly correlated with 

enhanced tumorigenesis [260,261].  In effect, both double strand break repair pathways could be 

inhibited, and this could be further supplemented by the inhibition of PCNA-dependent 

[175,176,256] repair mechanisms. Ultimately, this could prove to be an effective treatment for 

multiple forms of cancer.  
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A. Characterization of PCNA Peptoid Inhibitors 

 

 

 

 

 

 

Table A.1 

PCNA Crystal Structures Used for Computational Screening 

  

PDB ID† Description 

 

1AXC Structure of the C-terminal region of 

p21(WAF1/CIP1) complexed with human PCNA 

3VKX PCNA complexed with the small molecule 

antagonist T3 at the PIP Box binding site 

1U7B Structure of human PCNA in complex with a 

peptide derived from residues 331-350 of flap 

endonuclease-1 (FEN1) 

2ZVK Structure of human PCNA in complex with a 

fragment of DNA polymerase eta 

 

† All crystal structures were obtained from the RCSB Protein Data Bank      

(http://www.rcsb.org/pdb/home/home.do)  
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Figure A.1. Initial Peptoid Fragment Tally by PCNA Crystal Structure. The initial amine fragment 

library consisting of 20 primary amines as well as hydrogen as a substituent (Gly) was screened 

against four different crystal structures of PCNA—PDB IDs: 1AXC, 3VKX, 1U7B and 2ZVK. The 

number of times a particular fragment appeared in a specific substitution position on the peptoid 

backbone, in the top 50 hits for each crystal structure, was tallied.  Each structure displayed slightly 

different results. “1st”, “2nd” and “3rd” positions are as defined in Figure 2.2.  
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Table A.2 

Characterization of Screened Tripeptoids 

 

Peptoid Sequence a 
Calculated Mass 

[M+H]1+ 

Observed Mass b 

(m/z) 
% Yield c 

    

Gly-NPip-NBal 443.1931 443.5391 7.19% 

NAem-NArg-NPip 535.2948 535.2581 47.49% 

NAem-NArg-NTyr 507.2999 507.3044 22.44% 

NAem-NEal-NBal 466.2621 466.2658 15.51% 

NAem-NLys-NPip 507.2887 507.3019 32.08% 

NAem-NLys-NTyr 479.2938 479.2624 33.93% 

NAem-NPip-NBal 556.2772 556.2767 22.40% 

NAem-NPip-NBza 570.2520 570.2553 34.71% 

NAem-NPip-NPip 570.2520 570.3911 73.95% 

NAem-NPip-NTyr 542.2570 542.2764 50.28% 

NAem-NTyr-NPip 542.2615 542.3094 40.60% 

NAem-NTyr-NTyr 514.2621 514.3411 7.16% 

NArg-NArg-NPip 521.2904 521.4318 32.30% 

NArg-NIle-NBal 464.2986 464.2994 9.40% 

NArg-NLys-NBza 493.2843 493.2887 32.32% 

NArg-NLys-NPip 493.2843 493.5698 34.09% 

NArg-NPip-NBal 542.2683 542.2703 29.86% 

NArg-NPip-NBza 556.2475 556.1994 13.39% 

NArg-NPip-NPip 556.2475 556.2516 8.29% 

NArg-NPip-NTyr 528.2526 528.2560 3.31% 

NArg-NTyr-NBal 514.2778 514.2761 10.11% 

NArg-NTyr-NTyr 500.2577 500.2616 13.73% 

NBal-NArg-NBal 528.2890 528.2910 12.43% 

NBal-NEal-NBza 487.2193 487.2186 29.94% 

NBal-NLys-NPip 514.2621 514.2656 29.10% 

NBal-NLys-NTyr 486.2672 486.3338 10.92% 

NBal-NPip-NBal 563.2462 563.1897 5.32% 

NBal-NPip-NBza 577.2254 577.2296 19.10% 
 

a N-substituted side chains listed from N-terminus to most C-terminal  
b as determined by high resolution electrospray ionization or MALDI-TOF 
c based on dry mass recovery after HPLC purification   
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Table A.2 Continued 

 
   

NBal-NPip-NTyr 549.2305 549.2338 46.74% 

NBal-NTyr-NBal 535.2512 535.2536 12.01% 

NBal-NTyr-NPip 549.2350 549.2787 26.26% 

NBza-NArg-NBal 542.2683 542.2712 20.25% 

NBza-NArg-NPip 556.2475 556.2506 49.91% 

NBza-NLys-NBza 528.2414 528.2452 23.80% 

NBza-NLys-NPip 528.2414 528.2443 49.19% 

NBza-NLys-NTyr 500.2465 500.2509 27.46% 

NBza-NPip-NBal 577.2254 577.2283 14.47% 

NBza-NPip-NBza 591.2047 591.2075 14.18% 

NBza-NTyr-NBal 549.2305 549.2157 10.93% 

NBza-NTyr-NPip 563.2098 563.4002 17.49% 

NEal-NEal-NBza 411.1836 411.3020 10.34% 

NEal-NEal-NPip 411.1836 411.1878 22.09% 

NEal-NEal-NTrp 420.2203 420.2237 28.15% 

NEal-NLys-NPip 438.2308 438.2353 33.02% 

NEal-NPip-NBza 501.1941 501.1979 1.71% 

NEal-NPip-NPip 501.1941 501.1972 37.39% 

NEal-NPip-NTrp 510.2353 510.2364 11.03% 

NLys-NArg-NPip 493.2843 493.4769 29.45% 

NLys-NBal-NPip 514.2621 514.2684 35.56% 

NLys-NEal-NBza 438.2308 438.2353 7.50% 

NLys-NEal-NPip 438.2308 438.2351 34.86% 

NLys-NIle-NBal 437.2958 437.4813 0.82% 

NLys-NLys-NPip 465.2781 465.5013 28.13% 

NLys-NPip-NBal 514.2621 514.2656 8.62% 

NLys-NPip-NBza 528.2414 528.3454 36.49% 

NLys-NPip-NMba 513.2826 513.6709 6.75% 

NLys-NPip-NPip 528.2414 528.3143 27.24% 

NLys-NTyr-NBal 486.2672 486.2708 20.16% 

NLys-NTyr-NBza 500.2465 500.2403 21.69% 

NLys-NTyr-NPip 500.2465 500.2713 10.44% 

NMba-NPip-NBal 562.2666 562.6433 23.68% 
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Table A.2 Continued 

 
   

NPip-NPip-NPip 591.2047 591.8057 3.97% 

NTyr-NArg-NBal 514.2734 514.3009 11.59% 

NTyr-NArg-NPip 528.2526 528.3313 3.44% 

NTyr-NEal-NBal 459.2199 459.2245 16.40% 

NTyr-NIle-NBal 471.2563 471.3852 12.99% 

NTyr-NLys-NPip 500.2509 500.2503 47.78% 

NTyr-NLys-NTyr 472.2516 472.1906 4.57% 

NTyr-NPip-NBal 549.2350 549.6621 0.75% 

NTyr-NPip-NBza 563.2098 563.2132 27.46% 

NTyr-NPip-NPip 563.2098 563.2128 23.04% 

NTyr-NPip-NTyr 535.2193 535.2186 45.90% 

NTyr-NTyr-NPip 535.2149 535.2551 23.10% 

T2AA-Asn 682.9864 682.9854 5.78% 

T2AA-Gln 697.0021 697.0003 8.15% 

T2AA-Gly 625.9649 625.9629 0.81% 

T2AA-Gly-NBal 803.0439 803.0422 9.83% 

T2AA-Gly-NPip 817.0232 817.0266 4.51% 

T2AA-NEal-Gly 727.0126 727.0109 3.81% 

T2AA-NEal-NBal 847.0701 847.0695 1.67% 

T2AA-NEal-NMba 846.0861 846.8161 13.13% 

T2AA-NEal-NPip 861.0450 861.0513 5.95% 

T2AA-NEal-NTyr 833.0545 833.0562 15.00% 

T2AA-NPip-NLys 888.0967 888.0983 9.41% 

T2AA-NPip-NPip 951.0560 951.0586 4.95% 
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Figure A.2. Z’-Factor Analysis. Polarization values for 24 replicate samples of both positive and 

negative controls were used to evaluate the quality of the assay platform. 10 nM FAM-PL and 100 

nM PCNA served as the positive control, while 10 nM FAM-PL in binding buffer served as the 

negative control. Dashed lines indicate the mean value of each set of controls, and dotted lines 

indicate the 95% prediction interval.  

 

 

 

 

Figure A.3. PCNA Titration for Determining Affinity of FAM-PL. Increasing amounts of 

recombinant PCNA were added to a fixed concentration of the FAM-PL peptide (5 nM) in binding 

buffer. The data were fit to Equation 2.3 was used to determine the Kd value for the peptide (here, 

the calculated affinity was 107 nM).  
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Table A.3 

Peptoid Number from Initial Tripeptoid FP Screen (Figure 2.8) 

 

Peptoid Sequence 

(1st – 3rd Position) 
Peptoid Number 

  

NAem-NArg-NPip 1 

NAem-NArg-NTyr 2 

NAem-NEal-NBal 3 

NAem-NLys-NPip 4 

NAem-NLys-NTyr 5 

NAem-NPip-NBza 6 

NAem-NPip-NPip 7 

NAem-NPip-NTyr 8 

NAem-NTyr-NPip 9 

NAem-NTyr-NTyr 10 

NArg-NArg-NPip 11 

NArg-NLys-NBza 12 

NArg-NLys-NPip 13 

NArg-NPip-NBal 14 

NArg-NPip-NBza 15 

NArg-NPip-NPip 16 

NArg-NPip-NTyr 17 

NArg-NTyr-NTyr 18 

NBal-NArg-NBal 19 

NBal-NEal-NBza 20 

NBal-NLys-NPip 21 

NBal-NLys-NTyr 22 

NBal-NPip-NBal 23 

NBal-NPip-NBza 24 

NBal-NPip-NTyr 25 

NBal-NTyr-NBal 26 

NBal-NTyr-NPip 27 

NBza-NArg-NBal 28 

NBza-NArg-NPip 29 

NBza-NLys-NBza 30 
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Table A.3 Continued 

 

NBza-NLys-NPip 31 

NBza-NLys-NTyr 32 

NBza-NPip-NBal 33 

NBza-NPip-NBza 34 

NBza-NPip-NTyr 35 

NBza-NTyr-NBal 36 

NBza-NTyr-NPip 37 

NEal-NEal-NBza 38 

NEal-NEal-NPip 39 

NEal-NLys-NPip 40 

NEal-NPip-NBza 41 

NEal-NPip-NPip 42 

NLys-NArg-NPip 43 

NLys-NBal-NPip 44 

NLys-NEal-NBza 45 

NLys-NEal-NPip 46 

NLys-NLys-NPip 47 

NLys-NPip-NBal 48 

NLys-NPip-NBza 49 

NLys-NPip-NPip 50 

NLys-NTyr-NBal 51 

NLys-NTyr-NBza 52 

NLys-NTyr-NPip 53 

NPip-NPip-NPip 54 

NTyr-NArg-NBal 55 

NTyr-NArg-NPip 56 

NTyr-NEal-NBal 57 

NTyr-NIle-NBal 58 

NTyr-NLys-NBza 59 

NTyr-NLys-NPip 60 

NTyr-NLys-NPip 61 

NTyr-NLys-NTyr 62 

NTyr-NPip-NBza 63 
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Table A.3 Continued 

 

NTyr-NPip-NPip 64 

NTyr-NPip-NTyr 65 

NTyr-NTyr-NBza 66 

NTyr-NTyr-NPip 67 

T2AA-NEal-NPip 68 

T2AA-Gly-NPip 69 
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Figure A.4. Chemical Structure of NMba. After initial results from experimental screening, the 

fragment NMba was selected for incorporation into peptoids as a substitute for NBal due to its 

structural similarity, but ability to form an additional hydrogen bond. The fragment was purchased 

as a Boc-protected amine (left), but the side chain becomes exposed upon incorporation into a 

tripeptoid and subsequent cleavage with trifluoroacetic acid (right). N* denotes a peptoid backbone 

nitrogen.  
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Figure A.5. Necessary Protecting Groups on Peptoid Fragments. Some of the fragments selected 

for incorporation into either the virtual or synthetic libraries require protecting groups on reactive 

species. N* indicates the location of the –NH2 group, which is the position of substitution into a 

peptoid backbone. 
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Figure A.7. Structure of T2AA-Conjugates. For second generation peptoid inhibitors of PCNA, 

T2AA was coupled to the N-terminus of peptoids or peptides anchored on solid phase resin to 

generate the molecules shown above.   
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Figure A.16. Enrichment Plot for Bayesian Model Prediction of the 2P2I Hunter Compound Set. A 

leave-one-out cross-validation of the Bayesian model for the 1058-ligand 2P2I Hunter set was 

performed, an enrichment plot was generated, and the percentages of true category members 

captured at particular cutoff percentages were listed. From this, a best split value was calculated as 

-0.188 for the Bayesian score.  
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Figure A.17. Distribution of Peptoid Descriptor Statistics. After characterizing each peptoid from 

the virtual library of 38 fragments (36 side chains and two variants of T2AA that can be 

incorporated into a peptoid backbone), four descriptors for each ligand were calculated—

globularity, CW2, EDmin3 and IW4. Histograms showing the distribution of scores for each 

descriptor amongst the entire set of peptoids are shown. 
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B. Supplementary Information for Nuclear-Targeted Therapeutics and Cell Lines 

Supplementary Materials and Methods  

 

Imaging of NME and LM1 Cells by Immunofluorescence. Cells were seeded onto glass coverslips 

and cultured overnight. The coverslips were washed with PBS, the cells fixed with PBS plus 4% 

formaldehyde for 20 minutes at room temperature, and then the cells permeabilized with PBS plus 

0.1% Triton X-100 for 20 minutes at room temperature. The cells were washed with PBS, followed 

by PBS plus 2% BSA, and were incubated overnight at 4°C with primary antibody (anti-EGFR) in 

PBS plus 2% BSA. After incubation, the cells were washed and again incubated for one hour at 

room temperature with secondary antibody (donkey anti-mouse Alexa Fluor® 488) in PBS plus 2% 

BSA. The cells were washed with PBS plus 2% BSA, PBS alone, followed by incubation with 

DAPI and phalloidin (Alexa Fluor® 594) in PBS for 5 minutes at room temp. The cells were washed 

in PBS three more times, then mounted to a glass slide using Prolong Gold anti-fade reagent. 

Images were acquired using the Nikon A1R-MP confocal microscope in the Purdue Bioscience 

Imaging Facility. 

 

Assessing Oral Absorptivity of Gef-SV40-NArg with Caco-2 Cells. Caco-2 Cells were obtained 

from ATCC (Manassas, VA). Dulbecco’s Modified Eagle’s Medium (DMEM), Fetal Bovine 

Serum (FBS), Penicillin/Streptomycin (P/S), Non-Essential Amino Acids (NEAA), L-Glutamine, 

Hank’s Balanced Salt Solution (HBSS), Phosphate Buffered Saline (PBS), Trypsin-EDTA, Type I 

rat tail collagen, culture flasks, Corning 12-well 0.4 μm polyester Transwell filter supports, and all 

other supplies were purchased form Sigma-Aldrich (St. Louis, MO). Caco-2 cells were cultured in 

DMEM supplemented with 10% FBS, 1X P/S, 1X NEAA, and 2mM L-Glutamine in T-75 flasks 

at 37oC in 5% CO2
 and 90% RH. Media was changed every other day. Cells were passaged at a 

ratio between 1:3 and 1:5 at 80-90% confluence. Cells were grown for at least 2 weeks after 

removing from cryopreservation before studies were conducted.  

Permeability studies were conducted in triplicate on Corning 12-well 0.4 μm polyester 

Transwell filter supports. Transwells were pre-treated with 65 μL of 1 mg/mL Type I rat tail 

collagen in 60% ethanol. Transwells were left overnight to evaporate ethanol prior to plating.  

Passage 41 Caco-2’s were plated at a density of 70,000 cells/cm2. After plating, media was changed 

every other day for 28 days. To ensure monolayer integrity, TEER was measured with a WPI Inc. 
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EVOMX Volt-Ohm meter. All Transwells were above 400 ohm*cm2. Prior to studies, cells were 

washed twice with PBS and then equilibrated for 30 minutes in HBSS, pH 7.4. After equilibration, 

HBSS was removed and 0.5 mL of drug solutions were added to the apical chamber. Transwells 

were then moved into well plates with 1.5 mL of pre-warmed HBSS. 200 μL samples were removed 

from the basolateral compartment at 30, 60, 90, 120, 150, and 180 minute time points. After each 

sample, 200 μL of HBSS was added to replace sample volume. Apparent permeability coefficients 

were determined using the following equation: 

 

 

𝑃𝑎𝑝𝑝 =
𝑉𝐴 ∗ (𝑑𝐶

𝑑𝑡⁄ )

𝑆𝐴 ∗ 𝐶0 ∗ 60
 (B.1) 

 

where Papp is the apparent permeability, VA is the volume of the acceptor compartment, dC/dt is the 

change in basolateral compartment concentration over time, SA is the Transwell surface area, C0 is 

the initial donor concentration, and 60 is a unit conversion from minutes to seconds. 

 

The analysis was conducted on an Agilent 1100 HPLC with an Agilent Zorbax Eclipse XBD-C18 

Column, 5 μm, 4.6 mm x 150 mm. Samples were kept in the autosampler at 4oC. A gradient method 

was used and is shown below where A is water with 0.1% Trifluroacetic acid filtered through 0.22 

μm nylon filters, and B is Chromsolv Acetonitrile with 0.1% Trifluoroacetic acid.   

 

Table B.1. Solvent Gradient for HPLC Method 

Time (min) %A %B 

0 90 10 

9 10 90 

10 10 90 

12 90 10 

15 90 10 

 

Flow was set to 1 mL/min with a column temperature of 40°C. Gef-SV40-NArg was measured at 

345 nm.  The retention time for the compound was 5.1 minutes. C0 and Donort-180 samples were 

injected at 5 μL, while time point samples were 100 μL injections. 
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Figure B.1. Localization of EGFR in NME and LM1 Cell Lines. Both cell lines were subjected to 

analysis by immunofluorescence using a monoclonal antibody to detect EGFR. After 

immunostaining, cells were stained with both DAPI and phalloidin (Alexa Fluor® 594) to detect 

nuclei and actin, respectively. NME cells display upregulated whole-cell EGFR expression, while 

LM1 cells show EGFR mostly localized to the nucleus. Images generated by Wells Brown, Purdue 

University College of Pharmacy. 
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Table B.2 

Characterization of Subcellularly-Targeted Peptoid- or Peptide-Based Conjugates 

 

Peptoid- or Peptide-Based 

Conjugate a 

Calculated Mass 

[M+H]1+ 

Observed Mass c 

(m/z) 
% Yield d 

 

Ahx-NArg 1534.0128  b 1534.4058  b 1.11 % 

Ahx-SV40-NArg 2513.7174  b 2513.8523  b 1.29 % 

FAM-NArg 1893.0684  b 1893.5849  b 0.45 % 

FAM-NLys(7) 1383.8153  b 1383.9733  b 2.76 % 

FAM-NLys(9) 1640.0053  b 1640.2131  b 2.11 % 

FAM-SV40-NArg 2871.4355  b 2871.0960  b 1.15 % 

FAM-TAT 2091.3680  b 2091.5021  b 3.46 % 

Gef-NArg 2021.8010 2022.7603 2.62 % 

Gef-NLys 1770.6882 1770.5853 0.34 % 

Gef-SV40 1482.2582 1482.3820 3.61 % 

Gef-SV40-NArg 2999.0735 2999.4851 0.47 % 

Gef-SV40-NLys 2748.9687 2748.9822 3.20 % 
 

 

a naming conventions outlined in Chapter 3  
b calculated/detected as negative ion [M-H]1- 

c as determined by MALDI-TOF 
d based on dry mass recovery after HPLC purification   
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