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ABSTRACT

Barbera, Giovanni. PhD, Purdue University, December 2015. Design of an Embed-
ded Fluorescence Imaging System for Implantable Optical Neural Recording. Major
Professors: George T.C. Chiu, School of Mechanical Engineering and Eugenio Culur-
ciello, Weldon School of Biomedical Engineering.

The brain is the most complex and least understood biological system known to

man. New imaging techniques are providing scientists with an entirely new perspec-

tive on the study of the functional brain at a neural circuit level, enabling in-depth

understanding of both physiological processes and animal models of neurological and

psychiatric diseases which currently lack e↵ective treatments. These new tools come

at the cost of meeting the challenges associated with the miniaturization of the hard-

ware for in vivo recordings

Here we propose a miniaturized wearable device which enables to record neuronal

activations with single cell resolution in rodents for in vivo, long term studies of neural

activity in virtually any region of the brain.

Additionally, we introduce new techniques for processing a new set of data and

mining the relevant information from the recorded neural activity. The proposed

image preprocessing techniques include image registration, automatic cell detection

and calcium transient extraction algorithms designed for real-time hardware imple-

mentation, anticipating the application of single cell neural recordings jointly with

optogenetic stimulation in a feedback control loop.

The new developed tools were applied to the study of the neural activity in the di-

rect and indirect pathways on the dorsal striatum and their role in locomotor activity,

a controversial topic due to the lack of techniques for selectively and independently

study these neural circuits with su�cient detail. Our findings challenge the long

standing classical model for D1 and D2 neurons, showing how neural activity in the
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indirect pathway cannot be explained as inhibitory for locomotor activity. Through

the application of a k-means based clustering algorithm we propose a new model for

the direct and indirect pathway role in locomotion, and demonstrate the remarkable

heterogeneity in striatal D1 and D2 cell populations. The study of acute cocaine

e↵ect as a mean for pharmacologically increase locomotor activity further proved the

diversity in the response of D1 and D2 neurons within the same cell population.

Finally, through the application of machine learning algorithms, we show how

neural activity in the dorsal striatum (particularly D2 neurons) can be used as a

good predictor for behavior in open field tests.
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1. INTRODUCTION

Recent advances in the fields of Bioengineering, Optics and Neuroscience are enabling

scientists to approach the study of the brain at a neuronal circuit level in novel

ways [1–3], o↵ering new tools for untangling the intricate mechanisms relating specific

neural activity patterns with their behaviorally relevant function, with the ultimate

goal of finding more e↵ective solutions to many neurological and psychiatric diseases

which still lack e↵ective treatments.

1.1 Brain Imaging Techniques

Traditionally the main approach adopted for recording and stimulating neural cir-

cuits is through the use of microelecrodes, which are suitable for capturing the high

firing rate (up to kHz), low voltage signals typical of neural action potentials (APs).

Multi-Electrode Arrays (MEAs) however su↵er intrinsic limitations, particularly due

to the inability of electrical recording and stimulation to target a specific family of

neurons, as the electrical signal propagates in a broad region around the electrode in-

sertion site, a↵ecting simultaneously heterogeneous families of neurons. Furthermore,

implanting electrodes in the brain is invasive (it damages the tissue under study), and

the quality of the signal degrades overtime.

Non invasive imaging techniques which allow a full three-dimensional monitoring

of brain metabolism are functional magnetics resonance (fMRI) and positron emission

tomography (PET), however they su↵er from major limitations, as they only provide

indirect measurement of neural activity, they lack in both spatial and temporal reso-

lution, and they required head fixation.
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The development of genetically encodable neural indicators and actuators [4–7] are

laying the basis for novel optical imaging techniques, such as optogenetic stimulation,

voltage sensitive dye imaging (VSDI) and calcium imaging, which are less invasive

in that they do no require penetration of the cell membrane, and yet they provide a

mean of investigating the dynamics of large number of cells down to single neuron,

single action potential resolution.

1.1.1 Voltage Sensitive Dyes

VSDI is a well established technique in Neuroscience [8–10], showing two particu-

larly desirable properties for the study of neural activity: the molecules of the voltage

sensitive dye bind to the external surface of the membrane without penetrating the

cell or altering its function, and the variation in the optical signal generated, which

changes linearly with the area of the membrane of all stained cells [11], has a fast

dynamics, with micron spatial resolution and sub-millisecond precision [12], which

make them suitable for measuring single action potentials [10, 13].

Nonetheless several challenges need to be faced in the recording of the fluorescence

signal: even though the change in membrane voltage are fairly substantial (in the

order of 100mV), the intensity of the electric field decreases exponentially moving

away from the membrane due to the dielectric screening of the surrounding polarized

material [14], thus a displacement of even few nanometers of the voltage sensitive

molecule could have a detrimental e↵ect on the measured change in potential. Also,

VSDs often require a strong light source in order to produce detectable changes in

fluorescence, and this can produce oxygen free radicals which might damage the

membrane and kill the cell. Additionally, most VSD molecules have a charge, and

their placement on the membrane can alter its electrical properties. Even worse,

many VSD can cause pharmacological side e↵ects and can have considerable toxicity

for the neuronal cells [15].
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1.1.2 Calcium Imaging

Calcium sensitive dyes (CSDs) are used to monitor the intracellular calcium

level [10, 16–18], which in neurons is a fundamental messenger related to several

key processes such as action potentials. Since the development of the first calcium

probes [16] there has been an ongoing improvement which led to the first genera-

tions of fluorescent calcium indicators quin-2 [16] and fura-2 [17], which significantly

improved the change in fluorescence and allowed for quantitative measurements of

the intracellular calcium levels. In 1997 protein-based genetically encoded calcium

indicators (GECIs) were introduced [19], allowing the creation of transgenic mice

expressing the indicator in specific cellular subtypes.

Despite some limitations related to the use of calcium dyes (e.g. they are not direct

indicators of action potentials, their dynamics is slower compared with VSDs [13], and

they can act as a bu↵er for intracellular calcium level [20]), calcium imaging is still

widely adopted for in vivo brain imaging: consistent long-term measurements of the

dynamics of wide-field GECIs are reported in [21] and [22] for anesthetized mice.

Laser scanning methods (confocal or two-photon microscopy) are traditionally used

to monitor neuronal activity in deeper regions of the brain [23], but these techniques

are limited to the low bandwidth of the scanning method.

Recent advances in the instrumentation for calcium signals detection led to the

development of miniaturized microscopes for tethered in vivo experiments in behaving

animals using a miniature epifluorescence microscope [24–27] and a miniature MEMS

based two-photon microscope [28]. With the present work we seek to push forward the

scope of feasible in vivo experiments in fully unconstrained behaving animals with

the introduction of a miniaturized, untethered, self-contained and mass-producible

brain imaging system.
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1.1.3 CMOS Image Sensors

The significant improvements in CMOS technology over the last decade [29] are

opening the way to new generations of low power, miniature imagers, already widely

employed in mobile devices and cameras, whose image quality and noise figures are

fast approaching the ones of their larger, power-hungry counterpart, CCD image

sensors. The dramatic improvement in the noise performance of CMOS imagers is

due to the introduction of two main design concepts in the pixel architecture: the

active pixel sensor (APS) [30,31] and the pinned photodiode (PPD) [32, 33].

The APS (Fig. 1.1a) was made possible by advances in microlithography tech-

niques in the early 1990’s, which allowed one or more active elements to be inte-

grated in the pixel, typically 3 � i.e. source follower, reset gate and selection gate �.

The main advantage of this pixel architecture is that the charge of the photodiode

is bu↵ered in the source follower transistor, whose voltage can be read in a non-

destructive way. This introduces multiple benefits compared with the passive pixel

architecture, firstly because the active transfer of the charge from the photodiode to

the source follower transistor significantly reduces the readout time and suppresses

(a) (b)

Figure 1.1. (a) 3T APS. (b) 4T APS with pinned photodiode [33].
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the noise generated in the readout circuit; secondly, it allows to use correlated double

sampling (CDS), which suppresses the reset noise (and reduces fixed pattern noise)

by sampling the charge of the photodiode twice and taking their di↵erence.

The pinned photodiode APS (Fig. 1.1b), also referred to as 4T APS for the

introduction of a fourth transistor, the transfer gate, became de facto the standard

for most pixel architectures as it considerably reduces the dark current compared with

the 3T pixel. The introduction of the transfer gate separates the floating di↵usion

node from the photodiode, allowing for true correlated double sampling and fixed

pattern noise reduction. Pixel is reset by turning on both the reset gate and the

transfer gate, setting both the floating di↵usion and the photodiode to VDD level.

The photodiode starts to integrate the charge as soon as the transfer gate is turned

o↵, separating it from the floating di↵usion node. Then the readout phase starts by

toggling the reset gate on and o↵ to reset the floating di↵usion, whose voltage level

(reset level) is immediately transferred to the source follower and stored in the column

circuit; at this point the photodiode charge (signal plus reset level) is also bu↵ered on

the source follower by turning on the transfer gate and stored in the column circuit.

The di↵erence of these two values give the true signal value, suppressing the reset

noise and reducing the FPN. The use of the pinned photodiode provides a potential

barrier to protect the signal from surface defect noise, lowering significantly the dark

current and enabling a full charge transfer to the floating di↵usion area thus avoid

lag in the image.

1.2 Goals and Contribution

The final goal of this work is to produce a fully working miniature device for in

vivo fluorescence imaging, to be applied, along with novel image processing tools, to

biologically relevant issues. A miniature microscope and a tethered and untethered

data acquisition system were designed and tested with both in vitro and in vivo exper-
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iments, showing capabilities which approach the performance of bench top imaging

systems.

The system has then been used to study neural activity in the dorsal striatum,

and the implementation of novel data analysis and image processing techniques has

allowed to study with unprecedented detail the role of direct and indirect pathway

in locomotor activity. The introduction of a k-means based clustering algorithm

and machine learning methods for neural data analysis have demonstrated for the

first time the functional diversity of neurons in the dorsal striatum, which suggests

an organization in spatially and functionally compact clusters with heterogeneous

activity. These findings challenge the classical rate-based model of the direct and

indirect pathways and indicate the need for an in depth study at a single cell level of

these neural circuits for a better understanding of their joint physiological function

and their role in locomotor activity.
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2. DESIGN OF A MINIATURE HEAD-MOUNTABLE IMAGING SYSTEM

The imaging system consists of a miniature epifluorescence microscope, a CMOS

image sensor, LED light source and data acquisition system. The final goal of this

thesis is to develop a miniaturized wireless system which can be worn by the animal

without any type of constraint and with minimal burden for the rodent. This will

significantly expand the range of possible behavioral experiments, which currently

su↵er major limitations from the device being tethered or too bulky to be worn by

small rodents.

2.1 Microscope

Three di↵erent epifluorescence microscope prototypes were tested (only the third

one is presented here), in order to minimize size and weight, to reduce autofluorescence

and to allow for a more accurate positioning of the optics. The last prototype weights

2.4g and measures 14mmx15mm (on the image sensor side) and 23mm overall height.

Both the top and bottom sides of the microscope are threaded to allow for adjustments

of the GRIN lens and imaging plane. Initial prototypes were 3d printed in RenShape

SL 7820 black resin (25µm precision), but additional coating was necessary to reduce

autofluorescence; the final prototype was manufactured in aluminum with direct metal

laser sintering to eliminate this issue.
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2.1.1 Optical Pathway

The blue light emitted by the LED (Cree XLamp XPEBLU-L1-0000-00Y01, 465nm-

485nm) is focused with the collimating lens, filtered by the excitation filter, which

proved to be necessary after initial testing (Pixelteq CO674-43 bandpass filter, 426nm

± 50nm, 3mmx3mmx1.1mm), and directed to the GRIN lens and the specimen by

the 45� dichroic mirror (Semrock FF495-Di03, 5mmx5mm). The emitted light which

passes through the dichroic mirror is then filtered by the emission filter (Pixelteq

102386376 bandpass filter, 510nm ± 20nm, 3mmx3mmx1.1mm) and focused on the

imaging plane by the achromatic lens (Edmund Optics #63-690). The CAD design

of the microscope and an image of the aluminum prototype are shown in Fig. 2.1.

With a 500µm GRIN lens (NEM-050-06-08-520-DS) the field of view is 160µ.

AA B

Image sensor 
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LED
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Figure 2.1. Third prototype of the microscope. (A) Exploded view showing optics,
light source and imaging sensor. (B) Aluminum version of the assembled microscope.
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2.1.2 Light Source

Light emitting diodes (LEDs) are becoming increasingly popular as light source

for both fluorescence imaging and optogenetic control [34], due to their small size

(scalable down to 5µm), wide range of wavelength, reduced price and ease of integra-

tion in the system. However thermal management is a key parameter that need to be

controlled both for a stable intensity of light delivered to the target and for heating

of the tissue under study (although this is a more serious limitation for injectable

optogenetic probes [35–37]).

Stable light delivery can be obtained trough active cooling of the light source [38],

however this approach introduces additional weight and impediment for the animal,

and it is not viable in a wireless implementation of the imaging system.

2.1.3 Image Sensor

The system presented is intended to be used for two di↵erent fluorescence imaging

techniques: voltage sensitive dye imaging (VSDI) and calcium imaging. The former

has the most stringent requirements for the image sensor in terms of speed, SNR

and dynamic range: single action potential resolution is attainable by recording the

fluorescence response of the dye molecules injected in the brain area under study

to a change in transmembrane voltage [39–41]. Action potentials reflect in typical

change in fluorescence �F/F between .1% and 1%, although recent dyes show an

improvement in performance [42]. Calcium imaging captures a slower dynamics and

is typically used in longer term experiments (minutes to days or weeks of recording),

but it provides larger swings in the fluorescence signal to be measured.

Aptina MT9V022 [43] was chosen for the su�ciently high frame rate (240fps) and

SNR (up to 48dB with 4x raw and column binning), and the flexibility to choose

between a higher resolution (up to 752x480) and a low resolution/high SNR through

on-chip row bin � and o↵-chip column bin. Additionally, it o↵ers a one lane LVDS
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serial communication to stream the 10bit data, and this reduces the total number of

connections to the control board to 10.

A custom made PCB (11mmx11mm, Fig. 2.2a) was designed to host the image

sensor, with a minimum number of discrete components for proper functioning of

the sensor. The performance of the system is evaluated in the final setup that will

be used in the experiments, with the image sensor PCB mounted in the microscope

and connected to a custom made data acquisition system based on the OpalKelly

XEM3010 FPGA board.

The dark current was measured for di↵erent integration times (Fig. 2.2c) both

with and without on-chip 4x row binning (column bin calculated o↵ chip by the

programmable logic), after 90 minute of sensor operation inside the microscope to

stabilize the temperature. Temporal noise and dark signal non uniformity are filtered

by averaging 40 consecutive frames at full resolution and 500 with row and column

bin.

To test the detectability of changes in fluorescence for VSDI recordings, the sensor

was uniformly exposed to a green LED light modulated with a precisely controlled

current source. The minimum detectable light change was 5.5LSB, corresponding to

a �F/F of 0.65%; by averaging patches of pixels this value can be further decreased,

and, with a 4x4 pixel average, changes in intensity of 0.23% could be detected (Fig.

2.2b).

Comparison with state-of-the art miniature fluorescence microscopes is reported

in Table 2.1.

Table 2.1. Comparison of the proposed system with current state of the art miniature
fluorescence imaging systems.

Resolution Pixel size SNR Power Fps Weight Interface
[27] 132x124 - - 2.4 mW 70 11.5 g Wireless
[26] 640x480 5.6µmx5.6µm 47 dB - 36 1.9 g Tethered
[38] 32x32 34µmx74µm 61 dB 12 mW 900 10 g Tethered

This work 752x480 6µmx6µm 48 dB 320 mW 240 2.4 g Wireless
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Figure 2.2. The image sensor. (a) The custom PCB hosting the CMOS sensor. (b)
Detection of 3 positive and 3 negative spikes in light intensity using 4x4 pixel aver-
age, mean value (near saturation) removed. (c) Dark current measured at di↵erent
exposure times. (d) Dark signal non uniformity for di↵erent exposure times. (e) SNR
measured for di↵erent pixel averaging. (f) Sample image taken with the microscope
on a target with 10µm spaced grid.



12

2.2 Data Acquisition System

A tethered image acquisition system, shown in its final version in Fig. 2.3a was

designed to test the performance of the microscope with both in vitro and in vivo

calcium imaging experiments. The design and testing of an untethered, standalone

imaging platform is currently under development, and presented in the section below.

Both systems can be controlled through a graphical user interface which allows to

stream video in real time and change experimental settings such as sensor parameters,

LED intensity or data acquisition mode, as explained below.

The tethered system consists of a custom PCB which hosts the LED driver, voltage

regulators and image sensor interface, and it interfaces with an OpalKelly XEM3010

FPGA board. A USB connection allows real time data acquisition, video streaming

and adjustment of experimental parameters from a host computer through a custom

C++ graphical user interface called NeuView (Fig. 2.3b).

(a) Microscope and data acquisition board (b) The software user interface NeuView.

Figure 2.3. Tethered data acquisition system.

2.2.1 System Architecture and Hardware Modules

All the signals required to run and configure the image sensor and to coordinate the

video stream transfer to the host computer are generated by the Spartan-3 XC3S-1500

FPGA mounted on the XEM3010 board. All the hardware modules are implemented
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in Verilog, compiled under Xilinx ISE and programmed to the FPGA through a USB

2.0 interface. An overview of the system architecture is shown in Fig. 2.4: a 32MB

SDRAM is used as storage for the incoming data from the image sensor, and a custom

PCB is connected to the two 80-pin GPIO headers. The daughter board hosts the

deserializer for the incoming serial data from the sensor, the A/D and D/A converters,

the LED driver, the voltage regulators and a 30-pin connector to communicate with

the external devices. The onboard PLL is used to generate the three main clocks

used by the FPGA to synthesize all the clock frequencies required in the design.

Specifically, the three clock domains used in the FPGA are 100Mhz for the SDRAM

controller, streaming state machine and to synthesize the clocks for I2C, DAC and

ADC, 80Mhz for the data transfer with the host computer and 26.6Mhz for the image

sensor.

Figure 2.4. Architecture of the tethered system NM-T300.

Streaming live images from the image sensor in real time is a requirement for the

system, since before each experiment it is necessary to finely adjust the focusing of the

microscope and check the image quality. To this end a frame transfer control module
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was designed to regulate the image streaming between the FPGA board and the host

computer through the USB 2.0 interface. The steady throughput of this interface is

not su�cient to stream continuously high speed images, thus for the experiments the

data is saved to the onboard SDRAM first and transferred to the host computer upon

conclusion of the experiment.

2.3 Wireless System

The wireless data acquisition system is designed to provide a standalone recording

unit capable of streaming data to the remote host. This would allow to perform novel

studies on freely behaving animals, but it also introduces important constraints in

terms of maximum size and power consumption. One key parameter in coping with

these limitations is the choice of the programmable logic used to control the image

sensor, light source and wireless communication with the host. Implementing the

hardware on FPGA o↵ers several advantages, including low cost, versatility, modu-

larity and not least the possibility of implementing e�cient onboard image processing

algorithms.

Although Xilinx and Altera remain the two main players in the FPGA market,

Microsemi is expanding and after acquiring Actel can now count on their series of low

power FPGAs IGLOO, IGLOO2, IGLOO nano and SmartFusion, which are com-

peting for the lowest power and smallest footprint FPGA on the market. In this

particular design the IGLOO series was chosen as it supports up to 4 LVDS serial

lanes, up to 4 PLL modules for frequency synthesis, Flash*Freeze technology and

reduced size with a 4mmx4mm footprint in its smallest package.

Specifically, the AGL400V5-CSG196 was chosen as it meets the requirements in

terms of minimum number of IOs, serial lane support and PLL module for clock

synthesis. The AGL400 o↵ers several advantages which are particularly desirable

in the design of a miniature, low power device for biomedical applications. The

flash technology allows for non-volatile memory writing, resulting in less components
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required to power up and initialize a standalone system, which is instantly ready at

boot. Flash*Freeze technology o↵ers an ultra low power mode (32µW) which can

be quickly (< 1µ s) entered/exited while still retaining all registers and non-volatile

memory information. The higher density devices (including the CSG196 package)

have 6 usable Clock Conditioning Circuitry (CCC) blocks one of which features a PLL

logic block, and they o↵er good support for multiple clock domains up to 250Mhz.

In the CS196 package there are 143 single ended I/Os and up to 35 di↵erential pairs

(for each di↵erential pair the number of available I/Os decreases by 2). In the current

configuration a total of 94 single ended I/Os and 1 di↵erential pair are used. As for

the memory, AGL400 features 54 1-Kbit blocks of dual port SRAM for a total of 6912

bytes of embedded memory which will be used to implement the FIFOs for saving

the image data to external SDRAM and for wireless data streaming. It also provides

1Kbit of flash non-volatile memory.

2.3.1 System Architecture

Although IGLOO FPGAs o↵er good debugging capabilities, the need to have easy

access to all the relevant signals and to be able to quickly program and communicate

with the board requires the the design of a prototyping board for testing and debug-

ging, which will then be miniaturized. The estimated size of the miniature system

is 15mmx25mm with the components arranged in two stacked 4 layer PCBs. The

system architecture, shown in Fig. 2.5, includes the following elements:

• FPGA: The AGL400V5-CSG196 is the only control logic and regulates the

data transfer between the camera, the external SDRAM, SDCard and wireless

interface.

• External SDRAM: 16MB external SDRAM to store experimental data.

• SDCard: used to save the external SDRAM content after each experiment, or

to save each frame in long capture (low fps) mode.
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Figure 2.5. Architecture of the prototyping board NM-WSP.

• Programming connector: It interfaces with the FlashPro4 programmer to quickly

upload the synthesized program into the FPGA.

• Wireless interface: implemented on the CC3000 module.

• Deserializer: used to convert the 10-bit serial data from the image sensor. In

the prototype board both serial and parallel data are available to the FPGA for

testing purpose, whereas only the serial interface will be present in the miniature

system.

• Image sensor interface: allows to transfer data and power the image sensor

module through the 10-pin Omnetics connector.

• GPIO header: a connector to easily access 60 GPIOs from the device (prototype

PCB only)
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• JTAG header: a 10-pin JTAG header is used to program the device through

the FlashPro4 programmer.

• LED/buttons: 8 LEDs and 4 pushbuttons are used for debugging purpose and

to reset the device and the wifi interface (prototype PCB only).

2.3.2 Power

Power consumption is one of the key factors in the design of the board, as the

resources in the final design will be limited due to restrictions in weight and size

of the device. The NM-WSP board can be powered either through an external 5V

power source or with a 5V battery. The input can be selected through the jumper

JP1 on the board. The 5V power source is regulated with an LTC3533 DC/DC

converter, which has better e�ciency than linear regulators (above 94% during normal

device operation at 200mA). The LTC3533 switching frequency is set to 1Mhz, and

it provides regulated 3.3V delivered to the camera module, wi-fi module, AD/DA

converters, FPGA banks and deserializer. The schematic for the DC/DC voltage

converter is shown in Fig. 2.6.

Figure 2.6. Schematic of the DC/DC voltage regulator.
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The core voltage for the AGL400 can be either 1.2V (lower power consumption)

or 1.5V (better performance). However during the programming of the device the

core power needs to be 1.5V. For this reason, in order to avoid the introduction of

additional power switching elements, it was chosen the model with 1.5V core voltage,

which is delivered to the device through a LT3080 linear regulator. The use of a

linear regulator as opposed to a switching regulator is justified by the limited amount

of current on the voltage rail (only drawn by the FPGA). The power dissipation is

marginal in this case, and the choice of a liner regulator allows a simpler design and

less PCB components.

2.3.3 FPGA Routing

IGLOO FPGAs use 4 di↵erent routing architectures: ultra-fast local resources,

e�cient long-line resources, high speed very long line resources and VersaNet global

networks. VersaNet should be used to route clocks, resets and any global line which

requires low skew or high fan-out.

IGLOO devices provide 54 global pins (3x3 per quadrant/chip location) to access

18 global networks (3x4 regional for each quadrant and 6 global), which are used in

the design to drive clocks and reset signals. There are two types of global networks:

chip global networks, which can be accessed by VersaTiles anywhere on the device

(name starting with GC, GF, respectively, East and West), and quadrant global net-

works (name starting with GA, GB, GD and GE, respectively, NorthWest, NorthEast,

SouthEast, SouthWest), which can only drive the signal inside their own quadrant.

Each global input bu↵er can be driven either by 3 hardwired connection for the

single-ended I/O or by 2 dedicated di↵erential I/O (which need to connect to Gxy0

and Gxy1) and a single-ended connection on Gxy2, or by an internal clock signal.

The three global input pins to the northwest quadrant is shown in Fig. 2.7. Any

of the three I/Os can be connected to a global network in single-ended configuration

(and the remaining two can be regular I/O), but only 0 and 1 can be used for LVDS
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Figure 2.7. Global input pins for the same clock source A in the northwest quadrant.

and LVPECL, and the remaining third can be used as regular I/O. Th unused global

pins are automatically configured as inputs with pull-up resistors if they are not used

are regular I/Os.

In order to source an external clock the first option is to hardwire the clock to

a global input (and the multiplexer tree shown above). If a CLKBUF macro is

initiated, the clock input can be placed in any of the dedicated global input pin.

However the choice of the pin location will determine whether the clock will use a

chip global network (GC, GF locations) or a quadrant global network (GA, GB, GD,

GE). Alternatively, also regular I/Os and internal signals are allowed to access global

networks through the CLKINT macro or through a promotion of the signal to the

global network in the PDC (this however could create layout issues). Similarly, global

signal can be demoted to regular nets in PDC.

It is also possible to assign a clock to a spine (also called local network) through

PDC or MVN. In this case the clock is automatically demoted to a regular net before

being sent to the local network.



20

When using Synplify in the design synthesis no more than 6 global bu↵ers are

inserted in the net list by default, all of them in the chip network. Automatic assign-

ment however can be overwritten using PDC and assigning manually global nets.

When using the PLL (located in the GF global net) only two of the three global

resources can be used in that net. It is also possible to restrict a global network to a

particular area of the chip, by restricting it from reaching into the scope of a spine.

2.3.4 Clocking Resources

In AGL400 there are 6 Clock Conditioning Circuitries (CCCs) � located at the

four chip corners and in the middle of the east and west chip sides� used to implement

frequency multiplication/division, phase shift and delay operations. Each CCC can

implement up to three independent global bu↵ers, or a PLL function with up to three

global outputs. It is possible to configure each CCC either through flash configuration

with the programming bitstream or through an asynchronous shift register interface

which can be dynamically changed during device operation. The first mode will be

used in the current design, as there is no need to dynamically change global clock

networks. Each CCC provides three global routing networks (GLA, GLB, GLC),

whose location can be chosen between the three I/O in the same CCC location. The

CCCs in the 4 quadrant global networks only drive signals in their own quadrant

(which spans a quarter of the chip area), whereas the CCCs in the middle west and

east sides of the chip can drive the clock anywhere on the chip.

A global bu↵er can be placed in any of the GLA, GLB or GLC locations. Each

global bu↵er can be driven by:

• 3 single ended I/Os

• 2 di↵erential I/Os

• The FPGA core



21

If an internal signal needs to drive a global network, the CLKINT macro is used

to connect the signal to the routed clock input of the network’s MUX tree. It is

also possible to connect directly a global I/O or an internal signal to a global quad-

rant/network through the macros CLKBUF, CLKBUF LVPEC/LVDS and CLKINT.

These macros do not use the PLL and do not provide clock delay functionality. If a

programmable delay is required, the clock can be routed to the programmable delay

core (3 in each of the CCC blocks) through these CLKDLY macro before connecting

to the global/quadrant network. This macro does not use the PLL, but it generates

an output clock with a phase shift which depends on the user defined delay value.

CLKDLY can be driven by a INBUF macro, directly from the FPGA core, or by

an I/O routed through the FPGA regular fabric (this requires the use of the macro

PLLINT). It is possible to use up to three CLKDLY macros with independent clock

frequency and delay in a CCC where the PLL is absent or not used. In the GF loca-

tion, when the PLL is used and outputs to a single global network, the two remaining

global clock networks can be connected either to two global inputs or to two CLKDLY

macros.

In cases where frequency synthesis is required, the PLL (only present in the GF

location) can be used to generate up to three global clocks, which can be then con-

nected to global networks. The PLL macro provides 5 derived clocks (three indepen-

dent global output clocks and two core outputs to local routing networks1) form a

single reference clock. The clock input can be from a global input pin, from a regular

I/O pin or from the FPGA core. In the current design the 20Mhz external oscillator

is used as a clock input hardwired to the global input pin GFA0 on pin G2 (acceptable

input clock frequencies range from 1.5Mhz to 350Mhz). To prevent toggling of the

PLL outputs during power up the POWERDOWN signal of the PLL macro should

be held low.
1
The global output clocks are named GLA, GLB and GLC; the core output YB and YC are identical

to GLB and GLC, respectively, except for a higher selectable final delay.
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If the external feedback is implemented, the PLL core must receive the EXTFB

from an INBUF macro located at the same location of the PLL. All the PLL param-

eters such as delays and shift values can be set by the user through SmartGen.

The input to any of the CCC blocks or global/quadrant global networks can be

chosen to be at any of the three global input pad locations: if the input is single

ended, any of the three global input pad (first, second or fourth) can be used, and

the other three are assigned to regular I/Os; if di↵erential input is used, it is assigned

to the first and second input, and the third is assigned to a regular I/O. However

a global I/O pad does not need to feed a global network, it can also be assigned to

regular I/O. If the input to a CLKDLY block is hardwired to a global pin, any of the

9 pins for each specific location can be chosen; in the case of PLL input however (only

available in location GF), only one of the three global pin locations GFA0, GFA1 or

GFA2 can be used. Alternatively, the clock can be sourced from any regular I/O pin

on the device (referred to as external I/O clock sourcing), providing great flexibility

in selecting the clock location, but at the cost of introducing additional delay, as the

signal does not connect directly to the CCC reference clock input. Finally, the clock

can be sourced internally from the FPGA core, by instantiating the routed signal

with a PLLINT macro before connecting to the CCC clock input.

2.3.5 PCB Layout

For debugging purpose, power measurement and initial testing, a 110mmx80mm

4 layer PCB was designed around the IGLOO AGL400 FPGA (Fig. 2.8). The main

connections for interfacing with the prototype board are shown in Fig. 2.9: the system

can be powered either through a 5V adapter or from a battery, and the data from the

camera can be routed either through the onboard 10-bit deserializer or directly to the

FPGA through the LVDS serial lane. Two 40-pin connectors provide access to most of

the internal signals for debugging and testing, and a USB/UART module is available

for communicating with the FPGA from a host computer. A JTAG connector is used
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Figure 2.8. Outline of the 4 layer PCB used as testing and debugging platform for
the IGLOO AGL400.

either for regular debugging or to program the FPGA through the Actel FlashPro4

Programmer. Additionally, the board hosts the SDRAM module, wifi interface (TI

CC3000), LED driver and control circuit, 4 pushbuttons and 8 LEDs for debugging

purpose as well as several test points for probing power rails and signals of interest.

The PCB prototype is shown in Fig. 2.10.

The .5mm pitch of the BGA grid used in the FPGA CSG196 package requires

some stringent tolerances for the PCB printing, reported in Table 2.2.

2.4 Software Interface

A C++ graphical user interface, called NeuView, was written to provide the user

access to the image sensor control parameters. A screenshot of the streaming view

is shown in Fig. 2.3b. The software is designed to provide a common framework for
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Figure 2.9. 3D render showing the component side of the IGLOO AGL400 PCB and
its main connections.

Table 2.2. Minimum specification required for PCB fabrication.

Number of layers 4
Panel size 5”x3.1”
Minimum plated hole drill size 0.006”
Minimum pad diameter to hole size 0.004”
Minimum track size inner layers 0.00275”
Minimum track size outer layers 0.00275
Minimum pads/tracks spacings 0.004
Number of vias 350
Number of drilled holes 450

di↵erent experimental setups, and it can be used both for the tethered and for the

wireless system.

In the tethered setup the data is streamed from the OpalKelly board through the

USB port in two di↵erent modes:
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Figure 2.10. The prototype NM-WSP board.

• Continuous streaming. Each frame is continuously saved by the programmable

logic which uses the onboard SDRAM as a circular bu↵er. The address of the

beginning of the last full frame is constantly refreshed, and and when the host

is ready for receiving a frame it initiates the transfer; once the full frame is

transferred to the host it is sent to the unpacker which interprets the data and

displays it on screen, and another transaction can be initiated. The achievable

throughput is 1MB/s, and this data transfer method can be used either for

streaming only (in which case the frame on the host SDRAM is constantly

overwritten), or for recording: in this case every frame received is saved to the

host ram or alternatively, for long experiments which require more than 2GB

of data, directly to disk.

• Consecutive frames. When higher throughput is required for the experiment (in

the case of VSDI for example), it is possible to fill the onboard SDRAM with
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consecutive frames and subsequently transfer the entire SDRAM content to the

host. This guarantees that no frame is dropped even at hight frame rates.

In the wireless implementation the frames can be routed by the slave (device side)

to the onboard SDRAM, to the onboard SDCard or directly to the master (host

side) through the CC3000 wifi interface, for which a common hardware module was

written both for the master and the slave (Fig. 2.11). After device initialization

a mask command is sent to the device in order to mask unsolicited events such as

ping or keep alive, which would send the module into an error state. Then if the

smart config button is held down the system enters in a configuration mode to set

the connection parameters such as Access Point (AP) and IP address (this is a one

time only configuration process). After reboot the device will try to automatically

connect to the AP.

The wireless communication is implemented with the UDP protocol, as it intro-

duces the least amount of overhead to each packet transmission, thus optimizing the

transfer speed. However the absence of handshaking between transmitter and receiver

requires the implementation of a protocol to regulate the data transfer and packet

loss. This is done on the receiver (master) side by monitoring the control bits of

the data packet. Each packet is 1463 bits wide, including a header which includes

frame number and packet number inside the same frame, 1450 bytes of pixel data

(725 16-bit consecutive raw pixel values) and a 3 byte end of data code.

The wifi system has been initially tested on a Spartan6 based Xula2 FPGA board

(Xess Corp.) for continuos streaming and it was possible to reach a steady transfer

speed of 220kB/s.

2.5 System Performance

The full system has been tested and validated both in vitro and in vivo, demon-

strating the concrete benefits of its application to the study of neuronal circuits.
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Figure 2.11. State machine for the wifi communication: the slave (device side) streams
the data to the master (host side).

The results are expected to be qualitatively identical for the wireless system, as the

imaging interface will be the same.

2.5.1 In Vitro Testing

The optimization process for the microscope led to the design of three di↵erent

generations, each one addressing specific issues: in the first generation the material

chosen could not guarantee an acceptable precision and was not suitable for the

accurate alignment of the optics. Furthermore, a better focusing mechanism for the

gradient index (GRIN) lens was needed.
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Figure 2.12. Microscope prototypes. (a) Image of a 1951 USAF target taken with the
second generation microscope. (b) CAD model of the first prototype. (c) Aluminum
focusing mechanism for the GRIN lens installed in the second generation microscope.
(d) Fully assembled first generation microscope.

With the second generation an aluminum focusing mechanism was introduced on

the objective side of the microscope (shown in Fig. 2.12c), and better alignment of

the optics enabled to focus and capture images of a target (Fig. 2.12a). However

the correct lens placement was challenged by the shape of the body, which did not

allow easy access to certain areas inside the body. Another major concern was the

autofluorescence of the black resin, which produced a high background fluorescence,

as can be seen from the images of a Thy-1 YFPH mouse brain slice (Fig. 2.13).

Additionally, at high intensities, light leakages were recorded through the micro-

scope body, and the introduction of an excitation filter became necessary due to the

wavelength shift in the high power LED.

The third prototype solved all these issue, and with calcium indicators it was able

to produce in vitro results whose quality is approaching the one of benchtop imaging

systems.
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(a) Witout GRIN objective lens. (b) With GRIN objective lens.

Figure 2.13. Two images of a Thy-1 YFPH mouse brain slice, taken with the second
generation microscope. Background fluorescence and light leakages from the body
were issues to be solved.

Fig. 2.14 shows two images acquired from a brain slice of a Thy-1 YFPH mouse

with third generation microscope.

Figure 2.14. Two images of Thy-1 YFPH mouse brain slice taken with the third
generation microscope. Both the cell body and proximal dendrites could be easily
visualized using the miniature microscope, demonstrating that the miniature micro-
scope allows acquisition of biological relevant fluorescent signals from brain tissues.
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2.5.2 In Vivo Testing

After obtaining satisfactory results from testing the microscope in vitro, the teth-

ered system was tested on freely moving transgenic mice expressing the calcium indi-

cator GCaMP6. Three weeks after the GRIN lens implant it was possible to record

and clearly identify neuronal action potentials as reported by the genetic calcium

indicator. A time sequence of the experiment is reported in Fig. 2.15. Single cells

can be identified and the local fluoresce quantified according to the labeling of Fig.

2.16. The time series of the recorded signal for each cell location are shown in Fig.

2.17.
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Figure 2.15. Time sequence of a 100s in vivo recording of a GCaMP6 stained neurons
in the dorsal striatum of a freely moving mouse, 3 weeks after GRIN lens implant.
Single action potentials with di↵erent temporal patterns can be clearly identified
across the frames.
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Figure 2.16. Neuron labeling for the in vivo experiment. Cell locations are identified in
the image by taking the di↵erence between the maximum and average pixel intensity
across the frames, at a single pixel level.
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Figure 2.17. Time series of the fluorescent signal recorded for the di↵erent cell loca-
tions as labeled in Fig. 2.16. From each signal is removed the average background
value of a 100x100 square pixel region centered at the centroid of the cell.
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3. METHODS FOR CALCIUM IMAGING DATA ANALYSIS

In vivo wide field calcium imaging o↵ers an unprecedented insight into the functioning

of intact neuronal circuits, however it also poses several challenges which need to

be addressed for a correct interpretation of the neural activity information and the

understanding of its underlying biological principles and implications.

A crucial step in the interpretation of a neuronal population’s activity is the

preprocessing of the raw data and the extraction of individual cells’ calcium traces,

that is all the calculation involved in the extraction of the individual calcium traces

from the raw image sequence.

In this section we present the state of the art of the data processing techniques in

calcium imaging and propose new tools for the analysis and interpretation of neuronal

activity at a population and single cell level. This chapter is structured as follows:

the first section introduces the techniques commonly used for preprocessing the raw

images, including image registration, cell detection and calcium trace extraction.

Then an optimized algorithm for real time implementation is presented along with

experimental data.

In the second part of this chapter the most common clustering methods are dis-

cussed, with particular focus on k-means algorithm, experimental clustering valida-

tion procedures and their application to calcium traces analysis.

Next, the relation between neural activity and behavior is explored, through the

adaptation of machine learning algorithms and statistical methods to neural activity

data analysis to decode behavioral states and variables and examine their relation

with neuronal activity events and patterns.
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Finally, we consider the study of neural synchronization as a tool for assessing

network properties and connectivity.

3.1 Preprocessing

Preprocessing of the raw image sequences includes all the steps necessary to con-

vert the raw data recorded from the microscope into a set of time sequences associated

with single cell calcium transients. Three main steps are involved: image registration,

automatic cell detection and calcium trace extraction.

3.1.1 Image Registration

Recording of neural activity with calcium imaging and voltage sensitive dyes often

su↵er from linear transformations of the images within the same set of data or across

di↵erent experiments, mainly due to motion artifacts and variations in the imaging

system position. Since in most imaging systems the microscope can be mounted

with high angular precision, we will focus on lateral displacements only. Due to the

large amount of data collected in optical neural recordings, it is necessary to use

an automated algorithm which can provide a common spatial frame of reference for

analyzing and correlating neural activity.

A comprehensive list of the main criteria for the classification of medical image

registration algorithms are well discussed in [44]. The most important parameter to

consider for choosing the proper image registration algorithm is the type of transfor-

mations which the images undergo. Due to the nature of the images produced with

the system under study, in the present work we focus on the correction small rigid

transformation, specifically small lateral displacements.

The primary statistical tool used as a metric of comparison between images or

between similar features within images is cross-correlation [45]. Given a pair of images
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T and I (where T could be a sub-portion of the image), their normalized cross-

correlation can be written as:

C(u, v) =

P
x

P
y (T (x, y)� µT )(I(x� u, y � v)� µI)qP

x

P
y (I(x� u, y � v)� µI)2

P
x

P
y (T (x, y)� µT )2

=
Cov(I, T )

� + I�T

(3.1)

It is important to notice that due to the sensitivity of cross correlation to changes

in light intensity and exposure conditions, a normalization is required, and this often

accomplished by subtracting the mean from both images and dividing by their stan-

dard deviation. The cross-correlation function C(u, v) will have a peak in the (u, v)

location corresponding to the spatial translation between the two images I and T .

One of the main drawbacks of this approach is the number of computations re-

quired, since all possible combinations of x and y translations for the given domain

need to be computed. This makes cross-correlation based algorithms suitable for

small rigid or a�ne transformations only, and in general not convenient for being

implemented in hardware for real time applications. Furthermore, the dependency

on local lighting conditions (such as the simultaneous activation of a cell population,

or the contribution of background activity from out of plane neurons), makes this

approach not well suited for our purpose.

Frequency based image registration techniques [44, 46–48], on the other hand,

o↵er excellent rejection of frequency-dependent and correlated noise, and they can

be e�ciently implemented in hardware through FFT. The main link between space

and frequency domain transformation analysis is the Correlation Theorem, according

to which the Fourier Transform of the correlation of two images is the product of

the Fourier Transform of the first image and the complex conjugate of the Fourier

Transform of the second.

Fourier methods can be divided into three categories: phase correlation, cross

power spectrum and power cepstrum methods.
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The phase correlation method [49] is based on the Fourier Shift Theorem: consider

two images f1 and f2, and let f2 be a translation of f1 by (x0, y0), that is:

f2(x, y) = f1(x� x0, y � y0), (3.2)

and let F1(!x,!y) = F(f1(x, y)) and F2(!x,!y) = F(f2(x, y)) be their Fourier trans-

forms. Then, for the Shift Theorem:

F2(!x,!y) = F1(!x,!y)e
�j(!

x

x0x+!
y

y0)
, (3.3)

or, in terms of their normalized cross power spectrum:

F2(!x,!y)F ⇤
1 (!x,!y)

|F2(!x,!y)F ⇤
1 (!x,!y)|

= e

�j(!
x

x0+!
y

y0)
. (3.4)

In principle, the inverse Fourier transform of the cross power spectrum is then the

Dirac delta centered in (x0, y0):

F�1
�
e

�j(!
x

x0+!
y

y0)
�
= �(x0, y0). (3.5)

A remarkable property of this method is that the phase of the cross power spectrum

is not sensitive to noise associated with a narrow frequency band (such as slow spatial

changes in intensity)1. Furthermore, it is independent of any type of gain or multi-

plication factor, including blurring kernels, which are simplified by the normalization

term in Equation (3.4).

In reality, the images to be analyzed are discrete downsampled representations of

f1 and f2, and these results are only valid for integer values of image shifts x0 and

y0. Although the average cell diameter in the dorsal striatum is 20 µm (which corre-

sponds to a minimum of 8 pixels using a wide field 1mm GRIN lens), image-to-image

1
White noise on the other hand would introduce inaccuracies in the peak location, as the entire

frequency spectrum is a↵ected.
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Figure 3.1. The peak of the interpolated inverse Fourier Transform of the cross cor-
relation function between two sequential frames.

registration to the nearest pixel would not allow su�cient precision to accurately

identify the neurons over long periods of time.

The raw image data often does not include automatically recognizable features

(e.g. blood vessels or labeled cells), and the dominant low frequency components of

the image do not contribute to identify small phase di↵erences in the cross-correlation.

The most common preprocessing technique used to highlight cell activity is to subtract

the background (or the average single pixel value) from each frame. However after

such operation two frames taken only few hundreds of milliseconds apart can be

too di↵erent to provide detectable peaks in their cross-correlation function. For this

reason we chose to calculate the relative displacement between sequential images,
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which requires robustness and sub-pixel accuracy. The incremental sub-pixel image

shift is then integrated across all frames and rounded to the nearest integer.

The most natural and common extension of the phase correlation method to sub-

pixel precision image registration is through interpolation of the cross correlation

function [50,51]: this is done by interpolating with a cubic spline the inverse transform

of the cross correlation function as calculated in Equation (3.4). A typical peak of

the interpolated function is shown in Fig. 3.1.

A typical pair of sequential frames before and after preprocessing is shown in Fig.

3.2.

3.1.2 Automatic Cell Detection

In the present work we focus on the study of D1 and D2 neurons in the dorsal

striatum. The overall uniformity and consistency in shape of the observed neurons

suggests to apply a selective filter matching the average cell size. Current state of

the art approaches to identify active regions according to their spatial and temporal

correlation use ICA or PCA analysis (or a combination of both). This approach

however is computationally expansive and therefore its scope is limited to an o↵-

line data analysis. The proposed method aims at a providing a computationally

e�cient way of dynamic identification of firing cells with the ultimate goal of real-

time hardware implementation on FPGA. The development of such an algorithm

would not only reduce the computational time associated with data analysis but most

importantly it would enable real-time feedback control for application of optogenetic

neural stimulation.

The nature of calcium images makes it di�cult to formulate a generic procedure

for cell identification robust to changes in cell size, light intensity, background illumi-

nation, light scattering in the brain tissue, and other sources of noise. The measured

light intensity, even in frames belonging to the same experimental dataset, can be

heterogeneous and of di�cult interpretation.
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Figure 3.2. Two sequential images as captured by the image sensor (top row), after
background subtraction (middle row) and and after bandpass filtering (bottom row).
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Figure 3.3. Workflow of the cell identification algorithm. After background subtrac-
tion and gaussian filtering for high frequency noise removal, the x- and y- gradient
components are calculated in parallel; a threshold is then used to detect positive and
negative peaks, and a spatial filter is applied to detect specific patterns. The resulting
possible cell locations are then spatially (x- y-) and temporally matched to create the
instantaneous map of the identified cells, which is finally incorporated into the overall
cell map.

The proposed cell identification algorithm is outlined in Fig. 3.3 and applied

sequentially to each frame, constructing a dynamic neuronal map as more cells are

activated. This approach allows to identify neurons even if they are only activated

once during the entire experiment, but the importance of robustness to noise (espe-

cially against false positives and stability of the image) is crucial.

First the background is removed from each frame by subtracting the minimum

value of each pixel calculated across the first 300 frames. This helps to identify neural

activity and reduces fixed pattern noise. The frame is then filtered with 3x3 gaussian

filter to reduce high frequency noise before derivation. The gradient components are

then calculated separately, by computing the image derivative row-wise and column-

wise. A threshold is applied to each component of the gradient to identify positive
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and negative changes in light intensity: the edges of a cell are typically characterized

by the sequence of a positive and a negative peak in the spatial derivative of the light

intensity, as shown in Fig.3.5 below. The proposed cell identification algorithm scans

rows and columns for matching such a pattern. The identified cell are then cross-

compared between the x-, y- and temporal component for improving the accuracy.

FIg. 3.4 shows typical line and column pixel values observed in the raw data (after

background subtraction): using solely the pixel intensity information would not yield

reliable information about the cell size and position, mainly due to the issues related

with changes in background fluorescence, out of plane cell activity, and simultaneous

activation of entire populations of neurons. A more distinct pattern emerges from
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Figure 3.4. (a) Raw image after background subtraction, highlighting selected row
and column in red. (b) Pixel values for selected row (blue) and column (red).

the analysis of the spatial derivative of the pixel intensity (as shown in Fig. 3.5): for

each active neuron a clear positive spike followed by a negative spike in both gradient

components can be detected. The width of the window used to match the pattern

determines the tolerance of the cell size, and should be set according to the expected

neuronal density and average size.

The result of this incremental neuronal map is shown in Fig. 3.6 The underlying

idea could also be implemented using spatial convolution to match more complex cell
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Figure 3.5. X- (left) and Y- (right) components of the gradient of the pixel intensity
values for the considered line and column.

Figure 3.6. Output from the cell identification algorithm: the green mask represents
a positive match of the neuronal pattern in the x and y gradient and in the time
sequence.
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shapes, however this choice would impact the performance in terms of computational

cost, and did not show substantial improvement in the accuracy of the algorithm for

the dataset under study.

3.1.3 Calcium Traces Calculation

Once the map of all active cells is available, individual calcium traces can be

calculated. Due to the nature of epifluorescence imaging, background fluorescence

is inevitable and needs to be accounted for when extracting the individual calcium

traces.

A commonly adopted method for extracting neural activity information is the one

proposed in [52]: after defining a ROI, the neural activity is expressed as the ratio

between the average subtracted mean intensity of the ROI �F and the local baseline

fluorescence baseline F , defined as the temporal average (or minimum value) in the

ROI across all frames. Further temporal filtering is typically applied to smooth the

fluorescence trace with a cuto↵ frequency of 5-10Hz.

The subtraction of temporal average, although it can be an e↵ective way to re-

duce slow drifting of the overall baseline activity, is not e↵ective in eliminating the

contribution from the fluorescence signal generated by out of plane neurons, due to

their similar temporal dynamics.

Additionally, any kind of temporal filtering will a↵ect the calcium transient shape

and rise time, which is particularly undesirable when studying network synchrony

and simultaneous neural activations.

To overcome these limitations we propose a new method which simultaneously

reduces the contributions from the baseline shifting and out of plane neural activity

without applying any temporal filtering.

First, the ROI is chosen as the smallest circular region enclosing the cell body only

(this hypothesis only holds in the case where the fluorescence protein is expressed in

the soma, and there is no interested in capturing neural activity along the axons).



45

In the case of medium spiny neurons in the dorsal striatum, the diameter of the

ROI was set to 20 µm, which was enough to encircle the somas of all the detected

active neurons. The average activity in the soma is then calculated for each time

instant as the average pixel value for each pixel in the ROI. Using the maximum

value instead of the average pixel value of the ROI could improve the robustness to

the precision of the cell localization algorithm, but it also introduces high sensitivity

to contamination from neighboring cells, and this should be avoided in the case of

densely populated regions. Similarly, the reference fluorescence is calculated as the

average of the minimum pixel values for the N pixels in the ROI:

F =
1

N

NX

i=1

min fi(t). (3.6)

Next, an annular region is defined as the intersection between the ROI and a larger

circle of radius R centered on the cell body, as shown in the inset of Fig. 3.7. The

small radius is set to be the same size or few µm larger than the ROI radius, and

R is set to 33 µm, although variations on the choice of R did not show significant

di↵erences in the resulting calcium traces.

For each time point the average pixel value across the background subtracted

M pixels belonging to the annular region is used as a measure of the background

fluorescence Fback and subtracted from the average cell body activity in the calculation

of the fluorescence trace:

�F = FROI � F � Fback, (3.7)

and the total calcium trace is expressed as �F/F . This prevents the activity of

individual cells on the annular region to a↵ect the calcium trace calculation while

removing contributions from background fluctuations and out of plane cell activations.

Finally the temporal average of the each calcium trace is calculated excluding any

fluctuations above and below twice the RMS value of each 5 minute experiment (typ-

ically constituted by the calcium transients), and this temporal average is subtracted

from each trace.
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Figure 3.7. a, detail of the field of view in two separate time instants t1 and t2,
highlighting two di↵erent cells and, in the inset, their respective ROI and reference
annular region. b, the calcium traces �F/F for the two highlighted neurons as
calculated with the proposed algorithm (solid lines), and the average FROI/F .

3.1.4 Decoding Action Potentials

In calcium imaging recordings the dynamics of calcium transients are typically

one order of magnitude slower than the underlying AP spikes, however as this imag-

ing technique is becoming more powerful in neural ensemble connectivity analysis,

several decoding methods have been proposed to reconstruct with di↵erent levels of

accuracy and complexity the underlying APs dynamics. The simplest way to infer

the underlying action potentials from the calcium trace is by thresholding the time

derivative of the �F/F trace, which has been proven to be a reliable method for

detecting APs up to 50Hz in neocortical brain slices [53].

A typical �F/F calcium trace is characterized by a series of fast rising, slowly de-

caying transients over a constant baseline (Fig. 3.8). These transients are described

to a good approximation as a simple convolution. With higher sampling rates it has
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Figure 3.8. Typical transient observed in a fluorescence trace.

been proved by direct comparison of 2-photon calcium imaging and electrophysiolog-

ical recordings that single APs up to 20Hz can be inferred from the fluorescent trace

by iteratively “peeling” o↵ single AP-evoked transients from the calcium signal [54].

3.2 Cell Clustering

One of the main advantages of calcium imaging over electrophysiological record-

ings is the ability to clearly distinguish and chronically track the activity of a large

number of targeted neurons (several hundreds to a few thousands). This is reflected

in the generation of very large datasets from which to mine qualitative information

about neuronal circuit dynamics, cell-to-cell interaction and behavioral correlation.

An important step in assessing the recorded neural activity at a population level is

to ask whether neuronal ensembles can be functionally clustered together according to

some statistical parameters such as pairwise neural activity correlation, synchronous

activation or correlation with behavioral data.

One of the most popular clustering techniques used in machine learning is the

k-means algorithm [55–57] which has been applied to functional cell clustering in

[58] and [59], showing in both cases a strong correspondence between functional and

spatial clustering.
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3.2.1 k-means Clustering

The most popular unsupervised partitional clustering algorithm in machine learn-

ing is k-means clustering. In the basic k-means algorithm [55, 56], given a dataset

D of N M-dimensional observations D = {x1, . . . ,xN} and an arbitrary number of

clusters k, each element of the dataset is iteratively assigned to the cluster ci that

minimizes an objective function J , which is typically the sum of squared distances of

each data point to the assigned cluster:

J =
NX

n=1

KX

k=1

rnkkxn � µkk2, (3.8)

where rnk assigns to each data point the closer centroid. After setting the number of

clusters K, the initial centroids µk, k 2 {1, . . . , K} and the objective function J , the

EM steps are performed iteratively, until some stopping criterion is met:

• Expectation step: data points are reassigned to the cluster with the closer cen-

troid.

• Maximization step: cluster centroids µk are recalculated as the mean of all data

points xn belonging to cluster k.

The steps of the basic k-means algorithm are outlined below, and a graphical repre-

sentation of the algorithm is shown in Fig. 3.9.

Algorithm 1 k-means

1: Randomly initialize cluster centroids µk

2: repeat
3: Assign elements to closest cluster:

ci = {j : d(xj,µi)  d(xj,µl), l 6= i, j = 1, . . . , N}
4: Update cluster centroids:

µi =
1

|ci|
P

j2c
i

xj, 8i
5: until Convergence
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Figure 3.9. Illustration of three steps of the k-means algorithm applied to a two-
dimensional dataset of 60 points. At each step the centroids are recalculated as the
mean of all the members of their cluster.

Two key parameters in the k-means algorithm are the number of clusters k and the

initial assignment of the centroids µk. Di↵erent configurations of the initial centroid

positions can lead to di↵erent local minima of the cost function J, thus to di↵erent

sub-optimal partitioning of the same input dataset D. An e�cient way of seeding

the initial centroid positions is through the k-means++ D

2 weighting [60] algorithm,

in which the centroids are initially placed sequentially with probability weighted on

the squared distance from the closest previously chosen centroid (as opposed to the

standard uniform distribution of the regular k-means). E�cient seeding and pre-

processing of the data, such as whitening, has also been shown to have significant

impact on the clustering results and convergence time [61].

In the analysis of calcium traces from large cell populations, we implemented

a modified version of the k-means algorithm to group together functionally similar

neuronal ensembles and analyze their overall activity, spatial distribution, behavioral

correlation and activity change as an e↵ect of acute cocaine injection.

Despite the deterministic nature of the k-means algorithm, the same dataset could

yield di↵erent sub-optimum clustering solutions at each run due to the specific ran-

dom initial seeding. This problem is typically addressed by iteratively applying the

algorithm to the same dataset and choosing the best clustering solution, according
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to the specific cost function used or a clustering evaluation index such as the Dunn’s

index or the silhouette function. The other main source of variability in the outcome

of the k-means algorithm is the a priori choice of the number of clusters k. To address

both issues we propose a modified meta-k-means algorithm [58], which improves the

robustness to initial seeding and choice of k by iteratively applying the k-means algo-

rithm both within the same dataset and across di↵erent randomly sampled datasets

corresponding to the same experimental conditions.

3.2.2 Meta k-means

The idea behind the meta-k-means algorithm [58] is to use a two-step process to

first find a set of clustering patterns which minimizes the cost function for the entire

dataset (based on some specific initial conditions), and then merge these clusters

together, based on the total occurrences of pairwise matching and the minimization

of a clustering index.

Specifically, after running the k-means 1000 times on the entire dataset with

di↵erent initial conditions seeded with k-means++ [60], a co-occurence matrix is

constructed filling each entry with the total number of times two cells are clustered

Algorithm 2 Meta k-means

1: for i=1:1000 do
2: Initialize cluster centroids µk with k-means++
3: repeat
4: Assign elements to closest cluster:

ci = {j : d(xj,µi)  d(xj,µl), l 6= i, j = 1, . . . , N}
5: Update cluster centroids:

µi =
1

|ci|
P

j2c
i

xj, 8i
6: until Convergence
7: end for
8: Generate co-occurence matrix and create meta-clusters
9: repeat
10: Merge two most similar clusters
11: until DI(k + 1) > DI(k)
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together. Elements which are clustered together more than 80% of the times are

grouped in meta-clusters, and the two most similar meta clusters are merged together

until this operation does not further increase the Dunn’s index of the clustering

scheme.

Several limitations a↵ect the applicability of this algorithm to a generic neural

activity dataset: the main issue is the repeatability of the output clustering scheme

for subsets of the same experimental dataset. The robustness of the clustering out-

come for di↵erent subsamples of neural activity traces should be one of the key cluster

quality measures, as cluster consistency is a fundamental requisite and justification

for drawing any biologically relevant conclusion on groups of cells with similar activ-

ity. Even though the meta k-means shows good repeatability on the same dataset

(Fig. 3.10a and Tab. 3.1), the co-occurence matrices associated with neural traces

from di↵erent imaging sessions were significantly di↵erent, resulting in di↵erent final

clustering schemes (Fig. 3.10b and Tab. 3.1).

Figure 3.10. Distribution of the error for the meta k-means algorithm: the histograms
show the distribution of the di↵erence in absolute value (expressed in percentage) for
every cell pairing of a representative D2 mouse within the same day (a) and across
di↵erent days (b). The long tail in the inter-day distribution of the error indicates that
the clustering algorithm finds similarity related to contingent experimental condition
more than a partitioning scheme of general validity.

Another issue that arises in the application of the meta k-means algorithm to a

generic dataset is the choice of k: in [58] was arbitrarily set to 3, whereas in [59]
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Table 3.1. Mean and standard deviation (in percentage) of the absolute di↵erence in
each element of the co-occurence matrix generated with the meta k-means algorithm
comparing the recordings in 5 di↵erent days: although the variation within the same
dataset (diagonal terms) is less than 1% in average, the large di↵erence in the co-
occurrence matrix across di↵erent days suggests that this clustering approach is not
suitable for finding common functional traits on the single cell activity which are not
dependent on the contingent experimental conditions.

D1 D2 D3 D4 D5
D1 0.99 ± 1.11 22.61 ± 24.34 20.04 ± 23.76 19.17 ± 21.11 20.56 ± 24.10
D2 22.61 ± 24.34 0.70 ± 0.83 22.73 ± 25.91 22.17 ± 23.31 22.35 ± 24.49
D3 20.04 ± 23.76 22.73 ± 25.91 0.90 ± 0.98 17.16 ± 19.49 19.48 ± 23.26
D4 19.17 ± 21.11 22.17 ± 23.31 17.16 ± 19.49 0.89 ± 1.09 18.46 ± 19.77
D5 20.56 ± 24.10 22.35 ± 24.48 19.48 ± 23.26 18.46 ± 19.77 0.81 ± 0.97

k = 4 produced more consistent results. However it is not clear what could be a good

criterion for the choice of general validity.

Finally, the value of the threshold T for the co-occurence matrix also has a sig-

nificant impact in the final clustering organization, not only in terms of number of

elements that are left out of the meta-clusters, but also in terms of partitioning

scheme. Its dependence on k makes its choice even more problematic, as setting it to

an arbitrary percentage (the approach followed in [58]) would not be a robust solution

for any dataset.

In the proposed algorithm we address these three issue proposing a solution which

o↵ers more consistent clustering both within the same dataset and across di↵erent

experimental conditions (e.g. di↵erent mouse or cell types).

3.2.3 Proposed Algorithm

To improve the consistency across di↵erent datasets (e.g. single imaging session

or single daily session), we chose a di↵erent approach by iteratively applying k-means

algorithm to randomly sampled subsets of the dataset.
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The cell clustering process presented here is comprised of two main steps: first

the full dataset D 2 RN⇥M is segmented into 1000 subsequences of dimension RP⇥M

with P = 300, corresponding to 30 s sequences of the neural activity for M cells. For

each sequence the best clustering which minimizes the correlation between the cal-

cium traces of each of the M neurons and the cluster centroid is found by iteratively

applying the k-means++ algorithm for 100 di↵erent random seedings, and selecting

the clustering solution which minimizes the cost function. This results in the gener-

ation of 1000 di↵erent clustering schemes from separate sequences within the same

large dataset, which are used to create the pairwise co-occurrence map representing

the percentage of times two cells are grouped in the same cluster. The proposed

algorithm is summarized below.

Algorithm 3 Proposed algorithm

1: for i=1:1000 do
2: Select sample from dataset
3: for j=1:100 do
4: Initialize cluster centroids µk with k-means++
5: repeat
6: Assign elements to closest cluster:

ci = {j : d(xj,µi)  d(xj,µl), l 6= i, j = 1, . . . , N}
7: Update cluster centroids:

µi =
1

|ci|
P

j2c
i

xj, 8i
8: until Convergence
9: end for
10: end for
11: Generate co-occurence matrix
12: Calculate optimal threshold T and generate meta clusters

The e↵ects of the dataset dimensionality reduction and the application of the

meta k-means to sub-sequences of the entire dataset are a significant improvement

in the inter-dataset cluster consistency (e.g. same experimental conditions across

di↵erent days), which ultimately leads to a more robust clustering scheme. Despite a

slight increase in the variability of the intra-dataset co-occurence matrix (Fig. 3.11a

and Tab. 3.2, diagonal terms), the large inter-dataset variability observed with the
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meta k-means is considerably reduced (Fig. 3.11b and Tab. 3.2, o↵-diagonal terms),

resulting ultimately in the generation of more reliable meta clusters.

Figure 3.11. Distribution of the error for the proposed algorithm: the histograms
show the distribution of the di↵erence in absolute value (expressed in percentage) for
every cell pairing of a representative D2 mouse within the same day (a) and across
di↵erent days (b). The long tail in the inter-day distribution of the error indicates that
the clustering algorithm finds similarity related to contingent experimental condition
more than a partitioning scheme of general validity.

Table 3.2. Mean and standard deviation (in percentage) of the absolute di↵erence in
each element of the co-occurence matrix generated with the proposed algorithm, com-
paring the recordings in 5 di↵erent days: compared to the meta k-means algorithm
(Tab. 3.1), the clustering consistency across di↵erent datasets (o↵ diagonal terms) is
significantly improved.

D1 D2 D3 D4 D5
D1 1.53 ± 1.17 6.94 ± 5.28 7.15 ± 5.49 7.44 ± 5.75 7.24 ± 5.54
D1 6.94 ± 5.28 1.60 ± 1.21 7.55 ± 5.78 7.81 ± 5.96 7.34 ± 5.67
D3 7.15 ± 5.49 7.55 ± 5.78 1.55 ± 1.19 7.21 ± 5.64 7.04 ± 5.40
D4 7.44 ± 5.75 7.81 ± 5.96 7.21 ± 5.64 1.57 ± 1.21 7.33 ± 5.60
D5 7.24 ± 5.54 7.34 ± 5.67 7.04 ± 5.40 7.33 ± 5.60 1.52 ± 1.16

The minimization/maximization of some clustering index (such as the Dunn’s

index) as a mean to find the optimal k is an option only when very clear separation

between cluster exists, which is typically the case only for synthetic datasets. In

the case of neural activity analysis, one could not expect such a clear functional
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demarcation between groups of neurons, and the local maxima/minima as a function

of k would be too broad and sensitive to contingent aspects of the dataset be a reliable

indicator of the optimal number of clusters (Fig. 3.12).

Figure 3.12. Dunn index and Davies-Bouldin index fail to recognize the number of
clusters which best explain neural activity data. The low inter-cluster separation
in real datasets results in broad peaks which cannot be reliably used to detect the
optimal k⇤. Error bars represent SD, N=20.

Before discussing di↵erent approaches in the choice of the number of clusters k

it should be noted that a neuron cluster as defined here does not necessarily corre-

spond to identifiable common anatomical or structural characteristics. In fact in this

work neuronal clustering is solely based on the statistical description of single cell’s

neural activity, which is also the metric used to evaluate the clustering accuracy and

compactness.

A typical choice when no a priori information is available is to set k =
p
M . For

the dataset under study, even though the choice of a low value for k (< 5) could in

some cases result in an irregular clustering (typically few large clusters or too many

unclustered cells), the variability of the final clustering scheme was quite robust to

the choice of k for values around k =
p
M , where the Rand index between di↵erent

outcomes of the proposed clustering algorithm plateaus at its maximum value (Fig.

3.13).
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Figure 3.13. Average Rand index for the outcome of the proposed algorithm for dif-
ferent initial number of clusters k: the choice k =

p
M was found to consistently yield

similar results, where variations of k did not significantly impact the final clustering
outcome. Error bars represent SEM, N=10.

The e↵ect of T on the final clustering structure can be seen in Fig. 3.14a. Low

values of T create one single meta-cluster with no unclustered cell (cells that are not

consistently clustered with any other cell a su�cient number of times). As T increases

so does the number of meta-clusters and unclustered cells (Fig. 3.14c), as well as the

number of small clusters (with less than 3 neurons). Given the influence of T in the

final clustering structure, it is important to establish heuristic methods to produce

a clustering scheme that is consistent and robust to the choice of parameters and

experimental conditions.

In our study we found that the choice T = argmaxT2[01]
TC

NC

yields the most

consistent results: the threshold index is chosen in order to maximize the total number

of clusters TC and penalize the number of unclustered cells NC.

The application of the proposed algorithm to the recorded neural dataset showed a

significant overall improvement in consistency across di↵erent experiments (Fig 3.15),

indicating better robustness to contingent experimental conditions. The adaptation

of the meta k-means algorithm to the specific dataset under study produces more

consistent clustering schemes when applied to the same dataset but considerably dif-

ferent partitioning schemes when applied to di↵erent dataset in similar experimental
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Figure 3.14. The e↵ect of threshold T on clustering. a, 12 di↵erent clustering schemes
generated with the 12 values of T highlighted by the dotted vertical lines in c. b,
average pairwise correlation coe�cient (left) and co-occurrence map (right), where
each entry (i, j) represents the number of times cells i and j are clustered together.
This co-occurrence map, as a result of the criterion used for the cluster update,
resembles the average correlation matrix of the dataset. c, total number of clusters
and small (less than 3 elements) clusters (top) and percentage of unclustered cells
(bottom) as a function of the threshold T.
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Figure 3.15. Comparison of the final clustering scheme of the proposed algorithm
with the meta k-means. a, average Rand index for di↵erent runs of the clustering
algorithm within the same dataset (diagonal terms) and across 5 di↵erent days (o↵-
diagonal terms). Despite the high indices within the same dataset, the meta k-means
algorithm has poor consistency for di↵erent datasets, indicating that it can only
capture dataset-specific functional features of the neurons, but it fails to group cells
according to a more general statistical description of the calcium traces. b, direct
comparison of the average intra-dataset and inter-dataset Rand indices, showing a
significant improvement in the overall consistency of the final clustering structure.

conditions, e.g., di↵erent days or imaging sessions. The reduction in dataset dimen-

sionality and application of k-means to random samples of the full dataset avoids

these type of overfitting of a specific dataset, capturing a more general statistical

relation between single cell calcium traces.

The use of cell clustering is a way to simplify the analysis of neural activity of large

cell populations and their e↵ect on specific behaviors, based on the hypothesis that

cells with similar calcium transients and highly correlated activity can be grouped

together for reducing the data dimensionality. Under these circumstances, if there

is no consistency between di↵erent datasets in similar experimental conditions, the

validity of any biologically relevant conclusion derived from the considered clustering

scheme is debatable. The proposed algorithm proved to be able to partition neurons



59

according to general statistical features which hold valid across all the considered

imaging sessions, providing confidence to the faithfulness of the results derived from

this type of analysis.

3.2.4 Cluster Validation

A crucial issue in clustering is how to evaluate the outcome of a specific clustering

technique, or how to assess the e↵ect of a parameter change � most importantly the

number of clusters k � on the outcome of the clustering algorithm under study. This

will ultimately define the quality and reliability of the data interpretation suggested

by the chosen algorithm. In this section we discuss and compare the main cluster

validation techniques, both in a general context and restricting the analysis to the

case of neuronal functional clustering, by testing the proposed clustering method on

both on synthetic datasets and real neural activity traces.

Cluster validity methods can be divided into three categories, depending whether

they are based on external criteria, if the clustering results are compared to a reference

dataset whose structure and partitioning are known, internal criteria, if the clustering

assessment relies on quality measures calculated on the considered dataset only, or

relative criteria, if di↵erent results are compared for di↵erent sets of parameters or

clustering schemes [62, 63].

Although all three methods can be equally useful in assessing the clustering qual-

ity of a specific algorithm, some caution needs to be used especially when dealing

with internal validation techniques, as the value of an index calculated on a single

dataset might not translate in an absolute clustering quality measure in terms of data

interpretation. In the present work we use both external validation techniques on a

well defined synthetic dataset and internal validation methods on the real calcium

traces for assessing the quality of the proposed clustering technique.

The fundamental assumption underlying most clustering validation methods is

that elements belonging to the same cluster should have similar characteristics (ac-
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cording to some chosen metric), and elements belonging to di↵erent clusters should

be dissimilar. The quality of clustering is typically expressed through an index which

penalizes inter-cluster similarities and promotes intra-cluster homogeneity, measured

with the same metric used in the cluster generation algorithm. A typical procedure

for finding the optimal number of clusters K⇤ is to plot the index as a function of the

number of clusters and find local or global maxima or minima (depending on the spe-

cific index used). Some indices are independent of the number of clusters, but others

show a trend (increasing or decreasing) as the number of clusters varies. In this case

K

⇤ can be found as a local minimum/maximum or knee on the index function. If no

clear deviation from the trend exists it is possible that the underlying data does not

present any well separated clusters.

Below are presented the most common clustering validation techniques and indices

used in external, internal and relative criteria based methods.

Hubert’s � Statistic. A common method for comparing clustering schemes in both

external and internal criteria validation is the Hubert’s � statistic, which compares

the matrices X and Y as follows:

� =
1

M

N�1X

i=1

NX

j=i+1

X(i, j)Y (i, j), (3.9)

where M = N(N�1)/2 is the total number of pairwise connections between neurons.

When used with external validation methods, theX and Y matrices under comparison

are the proximity matrix and the reference partition matrix for the dataset2. In the

case of internal validation (i.e. when no reference partition matrix is available), the

Hubert’s � statistic typically correlates the proximity matrix of the dataset with a

matrix containing the distances between the clusters datapoints i and j belong to. A

2
In a partition matrix the ij-th element is 1 if datapoints i and j belong to the same partition, 0

otherwise.
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high value of � denotes compact clusters, thus when using this metric to evaluate the

optimal number of clusters K⇤ the index should be maximized.

Similarly, the normalized Hubert’s � statistic, restricted to the range of ±1, is

defined as

�̄ =
1

M

N�1X

i=1

NX

j=i+1

(X(i, j)� µX)(Y (i, j)� µY )

�X�Y

, (3.10)

where µX , µY and �X , �Y are, respectively, the sample mean and standard deviation

of matrices X and Y .

Silhouette Method. Silhouettes are a graphical method to compare the average

within-cluster dissimilarity versus the average between-cluster dissimilarity. This

method was first introduced in [64], and its usefulness relies on the fact that the

underlying clusters are known to be clearly separated.

The typical metric used for assessing the dissimilarity between a datapoint i and

any other data point belonging to the same cluster � a(i) � or to a di↵erent cluster �

b(i) � is the Euclidean distance. After defining the average intra-cluster dissimilarity

a(i) for every element i as the average distance between i and every other element

belonging to the same cluster A, and the average inter-cluster dissimilarity b(i) for

every element i as the minimum average distance of i with all the elements of the

closer cluster C with C 6= A, the silhouette value for i can be calculated as

s(i) =
b(i)� a(i)

max {b(i), a(i)} , (3.11)

resulting in a value ranging from �1, for data points which are in average much closer

to the closer cluster than the cluster they have been assigned to (and thus likely to

have been misclassified), to 1, for data points which are in average much closer to the
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elements of their own cluster than the elements of the closest cluster. The silhouette

index is defined as the average of s(i) for all the points N in the dataset:

SI =
1

N

NX

i=1

s(i). (3.12)

Dunn’s Index. Dunn’s index, introduced in [65] as a clustering quality metric for

compact and well separated clusters, is defined as:

DI = min
1iK

8
<

: min
i+1jK,j 6=i

8
<

:
�(Ci, Cj)

max
1kK

�(Ck)

9
=

;

9
=

; , (3.13)

where the set distance between cluster Ci and Cj is the distance between the two

closest elements belonging to cluster Ci and Cj:

�(Ci, Cj) ⌘ min
x2C

i

,y2C
j

d(x,y), (3.14)

and the diameter of cluster k is the distance between the two farthermost elements

in cluster Ck:

�(Ck) ⌘ max
x,y2C

k

d(x,y). (3.15)

In the most general form any metric can be chosen to express the distance d(x,y), as

long as it is consistent with the metric used in the cluster generation algorithm.

Based on Equation (3.13) it is clear that low intra-cluster variance and large

inter-cluster distance translate into large values of the Dunn’s index, and since the

number of clusters does not a↵ect the index, the value of k corresponding to the

global maximum is the number of clusters which best describes the dataset under

study. As is the case for most of the internal criterion indices, the computational

burden associated with the calculation of the Dunn’s index is considerable, especially

when considered in the setting of a statistical analysis, such as for the case of finding
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optimal clustering parameters using relative criteria validation methods. Another

important aspect to consider when using the Dunn’s index is the intrinsic sensitivity

to noise which is due to the worst case scenario nature of such index: in the case

of outliers or noisy measurements, the denominator in Equation (3.13) can grow

excessively large, providing an inaccurate measure and underestimating the overall

cluster quality.

In order to improve its robustness to noise, several variants of the Dunn’s index

have been proposed [66], by applying di↵erent definitions of the set distance and

cluster diameter: in its original form of Equation (3.14), the set distance �(Ci, Cj) is

defined as the single link interpretation of inter-cluster separation (i.e. the distance

between the two closest members of Ci and Cj). The other two variants of cluster

separation measure are the complete linkage, which considers the distance between

the farthermost members of Ci and Cj with similar computational cost, and the

average linkage, which measures the average centroid to centroid distance at a reduced

computational expense. Similarly, the single measure used for the cluster diameter

in the original form of the index can be replaced by the average of all the cluster

member-to-member distances or cluster member-to-centroid distances to reduce the

e↵ect of noisy datapoints on the overall index value.

Davies-Bouldin Index. The Davies-Bouldin index [67] expresses the ratio of a

within-cluster dispersion measure Si for cluster i over an inter-cluster separation mea-

sure Mi,j between clusters i and j. These two measures can be written, in the most

general form, as:

Si =

(
1

Ti

T
iX

j=1

|xj � Ai|q
)1/q

(3.16)

and

Mij =

(
nX

k=1

|aki � akj|p
)1/p

, (3.17)
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where Ti is the size of cluster Ci, xj is one of n�dimensional elements of cluster Ci, Ai

is its centroid, and aki is the k�th component of the n�dimensional centroid of cluster

Ci. In the case of p = 2, Mij becomes the Euclidean distance between cluster Ci and

Cj. For q = 1 the intra-cluster dispersion measure becomes the average Euclidean

distance between all elements of a cluster and its centroid. The quality of clustering

is then measured for every pair of clusters as

Rij =
Si + Sj

Mij

, (3.18)

and the Davies-Bouldin index is defined as the average of this cluster similarity mea-

sure calculated for every cluster with its most similar cluster:

DB =
1

K

KX

i=1

max
i 6=j

Rij. (3.19)

Therefore a lower index value indicates better cluster separation. It is important to

notice how this definition of intra-cluster dispersion measure yields a zero value in

the particular case of single element clusters. Thus the Davies-Bouldin index reaches

its global minimum at zero in the undesirable scenario of all clusters containing at

most one element of the dataset.

Maulik-Bandyopadhyay Index. Also referred to as the I index, the Maulik-

Bandyopadhyay index [68] is the product of three terms and defined as:

MB(K) =

✓
1

K

· E1

EK

·DK

◆p

, (3.20)

where the first term
1

K

penalizes a large number of clusters K, the second term is the

ratio betweenE1 (which is constant across di↵erent K) and the intra-cluster variance

EK , and the last term measures the cluster separation. The power p is typically set
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to 2. The intra-cluster distance EK an the inter-cluster separation DK are defined,

respectively, as

EK =
KX

k=1

NX

j=1

ukjkxj � Akk (3.21)

and

DK =
K

max
i,j=1

kAi � Ajk (3.22)

where, following the same convention used above, N is the total number of points in

the dataset, ukj is the kj-th element of the partition matrix U(K) 2 RK⇥N , xj is the

j-th element of the dataset and Ak is the centroid of cluster k.

Matching Measures. Based on the pair-wise matching definitions of true positive

(TP), true negative (TN), false positive (FP) and false negative (FN), the following

validity index are defined for external validation methods:

Jaccard coe�cient. It measures the true positive ratio ignoring true negatives, and

its maximum and ideal value (when there are no false positive or false negatives) is

1:

JC =
TP

TP + FN + FP

. (3.23)

Rand statistic. Similar to the Jaccard index but it considers the ratio of true posi-

tives and true negatives over all possible pairings of the N datapoints. It reaches its

maximum at 1 only in the case of perfect clustering:

RC =
TP + TN

M

. (3.24)

Fowlkes-Mallows index. Originally proposed as a hierarchical clustering validation

method, it can be extended to non-hierarchical clustering techniques in the general

form:

FM =

r
TP

TP + FP

· TP

TP + FN

, (3.25)
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which represents the geometric mean of precision (the ratio of the true positives over

the total number of pairwise combinations in the same cluster) and recall (the ratio

of the true positives over the total number of pairwise combinations in the same

partition).

In presence of noisy data the Fowlkes-Mallows index provides more accurate results

compared to the previous two coe�cients.

3.3 Activity Synchronization and Population-Level Analysis

The study of pairwise correlation of calcium traces gives some insight on the level of

interconnection of individual neurons, (i.e. how likely are two neurons to be active at

the same time), however it fails to capture the degree of synchronization of neuronal

ensembles, which can be used as an important parameter to characterize neuronal

circuits anatomy and functional connections. In this section we discuss alternative

methods to quantify the neuron to neuron interaction at a population level based

on the activity synchronization, and compare the results with the correlation-based

methods presented above.

3.3.1 Calculating Neural Coactivations

The single calcium traces (derived from the raw images as described in section

3.1.3) are converted to a binary matrix where each calcium transient is represented

by a single datapoint located at the crossing of the 5% �F/F threshold. The choice

for this value is based on three times the average RMS of all calcium traces baselines

(see section 4.1.2 for details). In order to compensate for the ±1 frame uncertainty in

the onset of the calcium transient, each event is represented in the binary sequence

as a 300 ms pulse centered on the threshold crossing point. In pairwise cell analysis,

two events are considered to be simultaneous if they overlap during at least on time

instant. A typical binary matrix showing neuronal coactivations is presented in Fig.
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3.16, top row. As expected, there is a clear correlation between the average neural

activity and the number of cells active simultaneously (Fig. 3.16, middle row).

For a statistical analysis of the degree of synchronization between all the cells in the

field of view it is desirable to have a reference statistic to compare against, typically

derived from the assumption of independent neuronal activations. In [69] and [70]

the authors use Monte Carlo simulations to reject the hypothesis of independent

spontaneous activity in the cortical region. Examples of natural test statistics which

can be used to describe the level of neuronal synchronization include the total number

of pairwise simultaneous activations, the maximum number of activations during a

specific time interval �T (typically set to the length of each experiment, �T = 300

s), the ratio Ti/�T , where Ti is the total time of inactivity, or T1/�T , where T1 is

the time during which a minimum number of cells Ns is simultaneously active.

Figure 3.16. Activity synchronization analysis. Top row : binary representation of
single calcium transient events for a sample D2 mouse. Middle row : total number of
pairwise synchronous neural activations. Bottom row : average fluorescence trace for
the 312 neurons in the field of view.
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A critical issue in analyzing calcium imaging data is the extremely low rate of

calcium events per cell (0.6834 ± 0.9220 activations per minute for D1 cells, 1.0849

± 1.1399 for D2 cells) which makes statistical analysis of neuronal activity at a single

cell level particularly challenging even for large datasets.

To address these issues, the data was filtered in order to exclude from the analysis

cells with minimal firing rate (less than 3 every 15 minutes) and spurious simulta-

neous activations patterns which could be ascribed to multiple events just randomly

occurring at the same time.
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4. IN VIVO IMAGING: THE ROLE OF STRIATAL NEURONAL CIRCUITS

IN LOCOMOTOR ACTIVITY

In this chapter we apply the imaging system developed alongside the data analysis

techniques presented in the previous chapter to perform a functional study of the

dorsal striatum neuronal circuit in the mouse brain.

The striatum is the input structure to the basal ganglia, a group of subcortical

nuclei which includes also the globus pallidus, the subtalamic nucleus (STN) and

the substantia nigra pars compacta (SNc) and pars reticulata (SNr) (Fig. 4.1). It

integrates information from di↵erent cortical areas and subcortical regions and plays

the medial striatal border, caused a similar phe-
nomenon in dogs (137). In the 1940s, Mettler care-
fully characterized this phenomenon, terming it
“cursive hyperkinesia,” and describing bilateral
striatal lesions that would cause animals to run
forward without regard to obstacles or walls in
their paths (124 –126). Similar phenomena were
seen in subsequent animal experiments (41, 85)
and in parkinsonian patients who have been de-
scribed at times as unable to stop running, sending
themselves “headlong” into walls and furniture
(117). James Parkinson described such a patient in
“An Essay on the Shaking Palsy” who exhibited “an
inability for motion, except in a running pace,” and
required the support of an attendant who ran in
front of him to prevent him from falling (144, 145).
Other findings from the same period differed from
these, however, reporting little effect or decreases
in movement following striatal lesions (42, 68, 90,
127, 196). The likely explanation for these discrep-
ancies rests in differences in size or location of the
lesions, or differential damage to neighboring
structures such as the overlying cortex, which were
not well quantified in these studies.

The technique of microstimulation provided a
less destructive method for interrogating striatal
function. However, like prior lesion experiments,
microstimulation also implicated the striatum in
both the generation and inhibition of movement,
with the specific result again likely due to differ-
ences in stimulation parameters or location. The
most widely cited effects of striatal microstimulation

across multiple species of animal are contralat-
eral head turning or circling (10, 24, 32, 35, 38,
59, 77, 96, 106, 123, 131, 140, 201) and contraver-
sive limb movements (7, 24, 28, 32, 59, 106).
However, a number of investigators have also re-
ported suppression, arrest, or freezing of move-
ment during striatal stimulation, as well as a
general slowing of motor behavior following stria-
tal stimulation (38, 95, 97, 105, 131). Finally, electro-
physiological recordings have shown that individual
striatal neurons respond during multiple phases of
movement, with some neurons responding to the
initiation of movements, others responding during
holding or waiting periods, and still others re-
sponding near the termination of movements (5,
34, 37, 60, 74 –76, 92, 94, 108, 109, 129, 157–160,
168, 169, 172). Overall, the varied nature of these
findings supports the view that the striatum is in-
volved in both the generation and inhibition of
movement.

An anatomical scheme for understanding these
opposing roles was defined in the late 1980s
(FIGURE 1). Briefly, this scheme recognized that
the majority of dorsal striatal neurons are medium
spiny neurons (MSNs), of which there are two dis-
tinct classes, termed the “direct” and the “indirect”
pathway projection neurons (6, 36, 63, 65, 107,
139). These populations exhibit distinct neuro-
chemical expression patterns and anatomical pro-
jection targets. Direct pathway MSNs project to the
internal globus pallidus and substantia nigra pars
reticulata (SNr), whereas indirect pathway MSNs
express project indirectly to the SNr by way of the
external globus pallidus (GPe) and subthalamic
nucleus (STN). Based on this anatomy, these au-
thors hypothesized that activation of direct path-
way striatal neurons facilitated motor output,
whereas activation of indirect pathway neurons
inhibited motor output. Recent explicit tests of this
model have supported it, demonstrating that direct
pathway promotes movement, whereas the indi-
rect pathway inhibits movement (46, 100, 164).

A Role for Striatal Dopamine

Dopamine entered the discussion of striatal func-
tion in the late 1950s. Specifically, the caudate was
reported to contain the highest levels of dopamine
in the brain and also to contain relatively low levels
of the other monoamines norepinephrine and se-
rotonin, implicating dopamine as the most impor-
tant monoamine in this structure (16). Following
this finding, Ehringer and Hornykiewicz discov-
ered that the main pathology underlying Parkin-
son’s disease was the loss of dopamine from the
striatum (48, 49), firmly establishing that dopa-
mine was critical for striatal function and, in par-
ticular, striatal-dependent movement.

FIGURE 1. Sagittal schematic of basal ganglia circuitry
This schematic shows the major projects in the direct and indirect basal ganglia path-
ways. GPe, external globus pallidus; STN, subthalamic nucleus; SNr, substantia nigra
pars reticulata.
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Figure 4.1. The structure of basal ganglia complex, showing the direct and indirect
pathways [71].



70

a prominent role in the control of motor activity, habit formation and goal-directed

behavior [72].

More than 95% of neurons in the striatum are GABAergic medium spiny neu-

rons (MSN), which are divided into two subgroups of cells: neurons which express

dopamine Drd1 receptors and constitute the direct pathway, projecting directly to

the GPi and SNr, and neurons which express dopamine Drd2 receptors and con-

stitute the indirect pathway, which projects to the GPe and connects to the SNr

through the STN [71, 73, 74] (Fig 4.1). These pathways are also well known to play

a key role (specifically in the ventral striatum) in mediating reward related stimuli

associated with drug abuse [75]. The striatum is also involved in a number of neuro-

logical diseases associated with dysfunctions in locomotor activity, most importantly

the Parkinson Disease [76] and its related motor deficits, in which the two striatal

pathways play a crucial role.

Current in vivo studies of the direct and indirect pathways lack either the speci-

ficity (in the case of single unit recordings) or the single cell resolution (e.g. in the

case of optogenetic stimulation) to assess in detail the function of such neural circuits

and their e↵ects on locomotor activity.

By integrating the imaging system developed in this work together with the data

processing techniques presented above it was possible to overcome the limitations of

traditional approaches and uncover in detail the function of striatal neural circuits as

well as their relation with locomotor activity.

The experimental results are organized as follows: in the first part of the chapter

we present the physiological neural activity in the direct and indirect pathway in

freely moving mice, with focus on the heterogeneity of di↵erent cell ensembles and

their distinct roles in locomotor activity. In the second part of the chapter we study

the e↵ect of cocaine on D1 and D2 neurons, revealing much more complex interactions

and functional traits in D1 and D2 neural activity than what the traditional model

could explain. Finally, using machine learning techniques we demonstrate how single
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neuron activity in the dorsal striatum (especially D2 neurons) can explain and predict

locomotor activity.

4.1 Physiological Activity of Direct and Indirect Pathway Striatal Neu-

rons

In this section we analyze the physiological activity of D1 and D2 neurons in the

dorsal striatum in freely behaving mice, serving the dual purpose of generating a

reference dataset of spontaneous neural activity in the dorsal striatum during loco-

motion and demonstrating the practical e↵ectiveness of the data analysis techniques

presented above in the study of large neuronal populations.

4.1.1 Experimental Setup

We first tested the imaging system with open field tests, recording both neural

activity and locomotor behavior through an overhead camera synchronized with the

microscope.

We used two groups of mice: D1 cre mice to label direct pathway medium spiny

neurons (D1 neurons), and D2 cre to label indirect pathway medium spiny neurons

(D2 neurons). We injected cre dependent AAV GCaMP6s to D1 cre or D2 cre mice

to selectively label D1 or D2 neurons of dorsal striatum with GCaMP6, respectively.

Subsequently, we implanted gradient index (GRIN) lens above the dorsal striatum,

and mounted the microscope above the GRIN lens (Fig. 4.2a). With this configu-

ration, images from dorsal striatum were relayed via GRIN lens to the microscope

(Fig. 4.2b). The spontaneous activity in the dorsal striatum was recorded in 17 mice

during 5 days in two di↵erent experimental conditions, i.e. before and after IP injec-

tion of cocaine (20 mg/kg). The recording pattern for each day is shown in Fig. 4.3.

This allowed for studying both the physiological features of the direct and indirect

pathways with unprecedented detail, as well as the e↵ect of cocaine on these neural
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Figure 4.2. a, schematic of the microscope mounting on the mouse skull: the GRIN
lens was first implanted at the desired depth and anchored with dental cement, then
the microscope base was mounted on the mouse skull, and the microscope body was
secured to the base through a set screw. In b (top panel) two di↵erent images are
shown: on the left is the average of 5 sequential frames, highlighting the neurons
active during a .5s period, and on the right, for the same brain area, a single frame
shows the simultaneous activation of several neurons. A detail of the calcium traces
for 8 of these neurons are plotted in the bottom panel.

Figure 4.3. Schematic of the daily imaging recording sessions. The same procedure
was repeated for 5 consecutive days for a total of 30 recording sessions.
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circuits. Throughout this section only the data collected before cocaine injection is

considered.

Figure 4.4. Cell map generation for a D1 mouse: rows correspond to di↵erent days
and columns correspond to a single 5 minute experiment cell maps. The farthest
right column shows the overall day map and on the bottom is the total cell map for
all days.
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4.1.2 Neural Activity Characterization

The steps outlined in Section 3.1 were applied to the raw images captured from

the microscope to obtain a map of all active cells for each mouse as well as the calcium

traces for each identified cell. After performing image registration along the x and

y component of the image, for each 5 minute experiment a cell map was created

following the algorithm described in Section 3.1.2. Each group of connected positive

matches for x and y cell detection was treated as a single cell, its centroid was taken

as the cell position, and a 2x2 pixel mask was overlayed for graphical representation

(Fig. 4.4). An overall mask for each day was then generated by grouping together

all the cells identified in all 6 experiments. Finally, a global cell mask was created

merging the 5 overall day maps. With this procedure it was possible to track the

Figure 4.5. a, heatmap of the average time decay constant versus �F/F for D2 (top,
n = 39816) and D1 (bottom, n = 105288). b, histogram summarizing the average
time constant (left) and amplitude (right) for the calcium transients considered in a:
the only noticeable di↵erence is the slightly longer decay time of D1 neurons. In c
a sample of 1000 calcium traces aligned at their peak are shown together with their
average for D2 (left) and D1 (right) calcium peaks above 5%�F/F .
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activity of the same cells over long periods of time, a task which is at best daunting

with any other traditional technique.

Once the cell map was available for every mouse, the individual neuron calcium

traces were calculated according to the procedure outlined in Section 3.1.3. In general,

calcium transients from D1 or D2 neurons displayed similar fluorescent amplitude

(8.55% �F/F ± 4.11% s.d., n = 39816 for D1 neurons, 8.81% �F/F ± 4.51% s.d.,

n = 105288 for D2 neurons), and D1 neurons showed a slightly longer decay time

(�1.01s ± 0.53s s.d. for D1, �0.94s ± 0.51s s.d. for D2), but no specific attributes

were observed which could allow for isolating D1 or D2 cells based solely on their

functional features (Fig. 4.5). Therefore, for simultaneous recording of direct and

indirect pathway at single cell level the only option would be to label D1 and D2

neurons with two di↵erent indicators and collect the neural activity through a dual

color microscope.

4.1.3 Direct and Indirect Pathway Activity and Locomotion

Although the importance of the concerted activity of the direct and indirect path-

ways in planning of locomotor activity rather than two independent opposing path-

ways is commonly recognized, the debate on the specific role and relationship between

D1 and D2 neurons is still open, mainly due to the limitations in the investigation

techniques currently available.

The rate-based dual circuit model of the basal ganglia postulates that increased

mean firing rates of neurons in the striatal direct pathways facilitates locomotion,

whereas that of the indirect pathway suppresses locomotion In this rate-based model,

the mean firing rates of neurons is thought to encode information in the direct or

indirect pathway. This model has been instrumental in unraveling basal ganglia

function, but has recently been challenged [77], which has called for more detailed

analysis of direct and indirect pathway function in vivo.
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In [76] the authors used optogenetic stimulation to selectively activate D1 and

D2 neurons in mouse model of Parkinson’s desease, suggesting that the activation of

the indirect pathway is associated with the expression of parkinsonian motor deficits

(freezing, bradykinesia and decreased locomotor initiations), whereas stimulation of

the direct pathway has the e↵ect of recovering from these motor deficits and it is

associated with an increase in locomotor activity.

The fact that direct and indirect pathway activity could not be explained by a sim-

ple dichotomy of functionally independent neural circuits has been recently observed

in [77], where the authors using fiber optics and time-correlated single-photon count-

ing (TCSPC) showed an increase in the overall activity for both D1 and D2 pathways

when the mouse is engaged in behaviorally active tasks (e.g. lever pressing or turning).

These observations were somewhat challenged by the optogenetic experiments carried

out in [78]; however these results might not reflect the true physiological activation

of the direct and indirect pathways, mainly because of the independent activation of

D1 or D2 neurons only, and because of the large spatial span of neural activation,

which could encompass cell subpopulations with di↵erent functional characteristics.

For these reasons, these findings only give a general picture of the direct and

indirect pathway activity. In this study we unveil the functional traits of D1 and D2

neurons at much finer detail, proving that, in order to have a clear understanding of

the big picture, an in depth study at single cell level is required by the great diversity

and heterogeneity which characterized these neural circuits.

One of the common features observed in all the mice used in this study is the strong

positive correlation between the overall neural activity in the dorsal striatum and the

mouse velocity profile (Fig. 4.6). Specifically, all mice showed high neural activity

during ambulation (defined for speeds above 2 cm/s) and much lower activity during

immobility (defined for speeds below 0.05 cm/s, or twice the speed RMS value).

Although this is an expected condition for D1 neurons, it challenges the classical

model according to which the activation of the indirect pathway inhibits locomotor

activity [79,80].
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Figure 4.6. Neural activity rasterplot and speed profile for a D2 (top) and a D1
(bottom) mouse: they both show strong positive correlation between average neural
activity and speed. Additionally, all mice showed a significant direct and indirect
pathway inhibition during immobility compared with ambulation. The bar plot on
the right represents the average number of calcium transients per neuron per minute
(defined with a threshold of 5% �F/F ). Vertical dotted lines mark the separation
between each 5 minute experiment.

With our findings we demonstrate how the relation between D1 and D2 neural

activity and locomotor activity is much more complex to be explained as two neu-

ral circuits exerting opposite e↵ects on behavior. We evaluated the average neural

activity in 17 mice based on their average calcium trace as a function of their speed

(Fig. 4.7), and the results confirm an average positive correlation. In average, D2

neurons surprisingly showed consistently higher neural activity than D1, particularly

at higher speeds (> 2 cm/s). When considering individual cell populations, however,

it emerges a much more complex relation between neural activity and speed (Fig.
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Figure 4.7. Both D1 (a) and D2 (b) average neural activity shows a positive correlation
with speed: the average speed of 17 mice was partitioned into 10 equally spaced bins
(4500s each), according to the average speed profile shown in b. A closer analysis of
a single mouse cell clusters (c), however, suggests that the activity pattern is very
diverse in di↵erent cell groups, consistently with the results presented in Section 4.1.4
(scale bar 200 µm). A positive Pearson’s correlation coe�cient relates the average
calcium activity with the speed (d) in both the direct and indirect pathways, with a
slightly higher correlation at a single cell level in D2 neurons (e). In d boxes extend
from 25th to 75th percentile, whiskers from minimum to maximum value.
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4.7c), in which neuron subpopulations show heterogeneous activity increase rate and

some of them (C5 and C7) have a negative trend at higher speeds.

Detailed analysis of D1- and D2- MSN activity around motion initiation (MI),

motion termination (MT), and velocity Peak (PK) demonstrated that D1- and D2-

MSN displayed similar population activity in relation to MI, MT, and PK (Fig. 4.8).

Moreover, the time-averaged GCaMP6 fluorescent signal change, which represents

the integrated calcium activity, displayed positive correlations with locomotion speed

of the mice for both D1- and D2- MSN (Fig. 4.7a). Together, these results suggest

that D1- and D2- MSN activity during locomotion is similar rather than opposite as

predicted by the rate-based dual circuit model. Our findings o↵er clear evidence in

refuting the concept in the rate-based dual circuit model that increased mean firing

rates of neurons in the striatal indirect pathway suppresses locomotion. Instead, these

results could be explained by the alternative model that indirect pathway neurons in-

hibit unwanted behavior, and that concerted activities of direct and indirect pathway

neurons coordinate locomotion.

These findings demonstrate the need for an in depth, single cell resolution analysis

of the direct and indirect pathway activity; merging together the neural activity of

large neural populations in the striatum, or focusing on a small cell subpopulations,

cannot fully explain the wide variety of functional aspects and complex interactions

underlying these neural circuits. To this aim we introduce, in parallel with single cell

analysis, the study of neural activity of clusters of neurons to provide a way of mining

the essential information from large amount of data.

4.1.4 Cell Clustering

For a more compact representation of neural data, the clustering algorithm pre-

sented in Section 3.2 was applied to the recorded calcium traces. A cell clustering

example for a D2 mouse is shown in Fig. 4.9 (the results of the clustering algorithm

for all the mice considered in this work is shown in Appendix A).
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Figure 4.8. D1- and D2- MSN displayed similar population activity around motion
initiation (MI), motion termination (MT), and velocity peak (PK). Red traces indi-
cate integrated fluorescent change of all the neurons from all the D1-Cre (Left panels)
and D2-Cre (Right panels) mice over time; Blue traces indicate locomotion speed of
mice. Vertical dotted lines indicate mouse motion initiation (top panels), motion ter-
mination (middle panels), and velocity peak (bottom panels). Horizontal scale bar:
2 seconds.

Since the Pearson’s correlation was used as a criterion to determine the clos-

est cluster centroid in the k-means clustering algorithm, it should not be surprising

that cells belonging to the same cluster show similar calcium traces (Fig. 4.11a).

Furthermore, even though the average intra cluster correlation is predominant, inter

cluster similarities are often observed (Fig. 4.11c and B.1), indicating and that such

a neuron partitioning does not imply a categorical separation (functional or anatom-

ical) between neuron populations, but more so it is meant to provide an aid to reduce

the data dimensionality and help recognizing neural activity patterns.

In the rate-based dual circuit model, the mean firing rates of neurons is thought to

encode information in the direct or indirect pathways. However, calcium activities of
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Figure 4.9. Clustering example: a, the pixel standard deviation reveals the location
of the most active cells. b, spatial map of all the active cells over 5 days: colored cells
belong to the largest 5 clusters, and an example of their calcium traces and centroids
is shown in d and d, respectively. c, the unsorted rasterplot for all detected cells.
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Figure 4.10. Overall clustering evaluation. a, average number of cells labeled as
clustered (CL), belonging to clusters with less than 3 cells (SC), or unclustered (NC).
b, the average pairwise correlation coe�cient is a decreasing function of the distance
between cells, which explains the spatial compactness of the clusters: in c the average
intracluster correlation versus average cell to centroid spatial distance shows both
functional and spatial compactness when compared to the average values of 100 Monte
Carlo simulations based on shu✏ed neural traces and cell index.

individual neurons in either direct or indirect pathway displayed a great deal of het-

erogeneity (Fig. 4.11), which suggests the existence of subpopulation of MSN within

direct or indirect pathway that modulate di↵erent behavior output. After clustering,

neurons within each cluster displayed similar activities (Fig. 4.11a), whereas di↵er-

ences in activity patterns among clusters are prominent (Fig. 4.11d). Heterogeneity

of cluster activity were also apparent in cross-correlation between cluster activity and

locomotor activity of the mouse (Fig. 4.11e), as C1, C2, C3, C4 and C7 all demon-

strated di↵erent cross-correlation coe�cient and time lag with locomotor speed of the

mouse (Fig. 4.11f). Taking advantage of the single neuron resolution of our imaging

method, we anatomically mapped each neuronal cluster to examine their spatial dis-

tributions. Interestingly, we found that neurons within each functional cluster were

also spatially clustered, suggesting that neurons with similar activity patterns are

also spatially close (Fig. 4.11b).

To determine functional implication of neuron clusters in dorsal striatum, we next

examine activity of individual clusters around mouse locomotion speed. Of the 11

clusters identified in Fig. 4.11b, activity of cluster C1 closely followed locomotion
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Figure 4.11. Cell clustering results on a D2 mouse. a, calcium traces before (top)
and after (bottom) clustering, color coded according to the clustering scheme shown
in b. c, pairwise correlation between cells, highlighting a stronger intracluster than
intercluster correlation. The heterogeneity of the neural activity of the 5 clusters
circled in b is shown through the 5 day average of the cluster centroids during motion
initiation (d), the 5 day average cross correlation between cluster centroids and ve-
locity (e), and the 5 day average of the cross correlation peak value versus lag for the
single neurons within each cluster (length and width of the ellipse reflect the standard
deviation of the peak value and lag, respectively).

speed of the mouse (Fig. 4.12a), which was also apparent in the cross correlation

function between the peaks of C1 activity and mouse locomotion speed (Fig. 4.12b,

left panel). Conversely, activity of cluster C4 did not closely followed mouse loco-

motion speed (Fig. 4.12a and b). Of all the D1- and D-2 MSN clusters examined,

approximately 50% of clusters demonstrated cross correlation with mouse locomotion

speed, with cross correlation coe�cient ranging between 0.6 and 0.8, and time lag

between the cluster activity and mouse locomotion speed ranging between �1.0 and
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1.0 second (Fig. 4.12c and d). These results suggest that activity of MSN clusters

encode specific behavior state of the mouse.

Figure 4.12. a, representative cluster activity around mouse locomotion speed peak.
Upper panel: two representative speed peaks; Middle: activity of cluster C1 as shown
in Fig. 4.11b around the two locomotion speed peaks, demonstrating that cluster C1
activity closely followed locomotion speed peak with a slight time lag; Lower panel:
activity of cluster C4 as shown in Fig. 4.11b around the two locomotion speed peaks,
demonstrating that cluster C4 activity did not follow locomotion speed peak. b. Cross
correlation between cluster C1 and C4 activity with mouse locomotion speed. Left
panel: cluster C1 activity consistently showed cross correlation with mouse locomo-
tion speed; Right panel: cluster C4 activity did not show consistent cross correlation
with mouse locomotion speed. X-axis represents time lag between locomotion speed
and cluster activity, Y-axis represents cross correlation coe�cient. c, Scatter plot of
time lag and cross correlation coe�cient between all D1-MSN clusters showed con-
sistent cross correlation with mouse locomotion speed. X-axis represents time lag
between locomotion speed and cluster activity, Y-axis represents cross correlation co-
e�cient. Histogram plots on X- and Y- axis represent distribution of time lag and
cross correlation coe�cient, respectively. d, Scatter plot of time lag and cross cor-
relation coe�cient between all D2-MSN clusters showed consistent cross correlation
with mouse locomotion speed. X-axis represents time lag between locomotion speed
and cluster activity, Y-axis represents cross correlation coe�cient. Histogram plots
on X- and Y- axis represent distribution of time lag and cross correlation coe�cient,
respectively.
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4.2 E↵ect of Cocaine in the Dorsal Striatum

We then recorded both locomotor activity and GCaMP6 fluorescent signals from

D1- or D2-Cre mice before and after cocaine injection, as a pharmacological mean to

increase locomotor activity (Fig. 4.13).

Based on the observed positive correlation of D1- and D2- MSN activity with

mouse locomotor activity, one would expect that under increased locomotor activity

conditions, D1- and D2- MSN activity would increase as well.

Figure 4.13. E↵ect of cocaine sensitization on behavior. a, after cocaine injection
the ratio of average time spent in a 5 minute experiment during ambulation (A,
speed greater than 2 cm/s) progressively increases compared to the time spent in fine
motion (F, speed between 0.2 cm/s and 2 cm/s) or immobility (I, speed smaller than
0.2 cm/s). Similarly, the total distance travelled increases daily reaching a plateau
on day 3.



86

Figure 4.14. Neural activity in D1 (bottom row) and D2 (top row) mice expressed as
average calcium transients per cell per minute for every day during ambulation (A)
and immobility (I). Cocaine has a strong inhibitory e↵ect in both striatal pathways,
causing a more pronounced reduction in activity among D2 neurons.

To our surprises, cocaine injection suppressed overall population activity for both

D1- and D2- MSN during ambulation, but did not a↵ect D1- or D2- MSN activity

during immobility (Fig. 4.14 and Fig. 4.15).

The fact that cocaine enhanced mouse locomotor activity yet depressed both D1-

and D2- MSN activity o↵ers further evidence in refuting the rate-based dual circuit

model that mean firing rate of direct pathway neurons facilitates locomotion whereas

that of indirect pathway suppresses locomotion. It also suggests that mean firing

rate of direct or indirect pathway neurons does not serve the purpose of information

encoding as suggested by previous models. Instead, it is likely that specific subpop-

ulation of neurons in the direct or indirect pathways such as neuron clusters, serve

the purpose of information encoding. Therefore, we propose to revise the alternative

model to incorporate the neuron cluster concept.
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Figure 4.15. Acute cocaine e↵ect in dorsal striatum. a, synchronous activity within
certain clusters is disrupted after cocaine injection; the inset shows the trajectory of
the mouse during the third day, before (left) and after (right) cocaine injection. b,
asynchronous correlation coe�cient for the cells belonging to the 6 largest clusters.
c, average activity change after cocaine injection for the 11 cluster highlighted in a.
d, average D2 cluster centroid activity change.

Interestingly, before cocaine injection, both D1- and D2- MSN displayed syn-

chronous calcium activity (Fig. 4.15, left panels). Cocaine injection impacted this

synchronous activity heterogeneously: decreased, enhanced, as well as unchanged

synchronous activities were observed both for D1- and D2- MSN clusters (Fig. 4.15,

right panels). Cocaine also influenced individual cluster activity heterogeneously: de-

creased, enhanced, as well as unchanged cluster activities were observed both for D1-

and D2- MSN (Fig. 4.15e and f). In all the D1- and D2- MSN clusters analyzed, a
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large number of clusters displayed diminished activity following cocaine injection in

both D1- and D2- MSN (Fig. 4.16a and b, and Fig. 4.17).

Figure 4.16. a, cocaine injection altered both cluster activity and synchronous calcium
activity heterogeneously for D1-MSN. Left panel: cluster activity change following
cocaine injection; Middle panel: cluster synchronous calcium activity change following
cocaine injection; Right panel: scatter plot of cluster activity change vs. synchronous
calcium activity change. X-axis represents cluster activity change, Y-axis represents
synchronous calcium activity change. A positive correlation between synchronous
calcium activity change and cluster activity change is observed. b, cocaine injection
altered both cluster activity and synchronous calcium activity heterogeneously for D2-
MSN. Left panel: cluster activity change following cocaine injection; Middle panel:
cluster synchronous calcium activity change following cocaine injection; Right panel:
scatter plot of cluster activity change vs. synchronous calcium activity change. X-
axis represents cluster activity change, Y-axis represents synchronous calcium activity
change. A positive correlation between synchronous calcium activity change and
cluster activity change is observed.

Some clusters did demonstrate enhanced activity following cocaine injection both

in D1- and D2- MSN. It is possible that the clusters with selectively enhanced activity



89

following cocaine injection may play more prominent role in controlling locomotion.

Interestingly, when we examine cluster activity along medial-lateral axis of dorsal

striatum, we found that cluster activity changes following cocaine injection showed

a gradient along medial-lateral axis of dorsal striatum both for D1- and D2- MSN:

more clusters with prominent diminished activity were observed near dorsal medial

striatum, and more clusters with enhanced activity were observed near dorsal lateral

striatum (Fig. 4.16a and b). Cluster synchronous calcium activity also displayed a

similar gradient along medial-lateral axis of dorsal striatum both for D1- and D2-

MSN: more clusters with prominent diminished synchronous calcium activity were

observed near dorsal medial striatum, and more clusters with enhanced synchronous

calcium activity were observed near dorsal lateral striatum (Fig. 4.16a and b). The

synchronous calcium activity change and cluster activity change was positively corre-

lated, suggesting that enhanced cluster activity may lead to more synchronous calcium

activity. Given that the dorsal medial striatum participates in goal-directed behavior

whereas the dorsal lateral striatum is important in habit formation, this unique D1-

and D2- MSN activity change by cocaine may indicate the initiation of transition

from goal directed behavior to habitual behavior in addiction.

It is worth noting that the striatal input to globus pallidus (GP) is highly con-

vergent. In rodents, it is estimated that the number of MSN in the striatum is ap-

proximately 60 fold of that of GP neurons, and that GP neurons on average receive

input from approximately 60 MSN. In light of our findings of functionally heteroge-

neous and spatially compact neuron clusters in the direct and indirect pathway, it

is possible that individual GP neurons receive inputs from neurons in only one or a

few functional clusters, and that mean firing rates and patterns of each cluster relay

striatal encoded information to GP neurons. Although the biological significance of

the synchronous activity in D1- and D2- MSN remains to be further explored, it is

possible that synchronous activity may be more e�cient in relaying information from

dorsal striatum MSN clusters to GP target neurons.
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Figure 4.17. Scatterplot of single neuron activity change (5 day average) for 4 di↵erent
cell groups: D2 cocaine group (1314 cells, 5 mice), D2 control group (815 cells, 5 mice),
D1 cocaine group (734 cells, 5 mice) and D1 control group (255 cells, 2 mice). b shows
the cluster activity change for the same groups is shown, calculated as the average
cell activity change within each cluster. The cumulative distribution function of the
activity change for these four groups (c) suggests that D2 neurons undergo an overall
stronger inhibition as acute e↵ect of cocaine injection.

4.3 Machine Learning for Decoding Behavioral Variables

We reasoned that if heterogeneous neuronal activities within D1- and D2- MSN

clusters serve the purpose of information encoding, one should be able to predict

mouse behavior state based on neuronal activity patterns. As a proof-of-concept

experiment, we categorized mouse locomotor behavior into two simple and opposite

behavior states: Ambulation (A) and Immobility (I). We trained a machine-learning

algorithm using part of our behavior and calcium activity data set. Following training

of the machine-learning algorithm, we test the performance of the algorithm using

the rest of our data set not used in the initial training (Fig. 4a). The algorithm was

able to reliably predict mouse behavior state based on striatal neuron activity data

(Fig. 4a and b). Specific neuronal activity patterns that predict specific behavior
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state could also be mapped (Fig. 4c). It is noteworthy that the neuronal activity

pattern for Ambulation prediction (Fig. 4c, left panel) and that for Immobility pre-

diction (Fig. 4c, middle panel) is largely none-overlapping, and belongs to di↵erent

functional clusters (Fig. 4c, right panel). Both D1- and D2- MSN activity could

be used for behavior prediction, but the accuracy of prediction was higher when the

prediction was based on D2-MSN activity (Fig. 4d). The success in using neuronal

activity pattern to predict mouse behavior state strongly supports our hypothesis

that heterogeneous striatal D1- and D2-MSN cluster activity serves the purpose of

information encoding for the behavior state of mouse.

Figure 4.18. a, mouse locomotion is categorized into Ambulation (A) and Immobility
(I). Blue segments indicate actual behavioral state, red segments indicate the pre-
dicted state; speed profiles are shown at the bottom for both D1 (top panel) and D2
(bottom panel) mice. b, Zoom-in of green boxed region in a. c, Weights of neurons
that are used for behavior prediction of ambulation (left panel), immobility (center
panel) and overlay of the two (right panel). d, Prediction accuracy for D1 (blue bars)
and D2 (green bars) mice.
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4.4 Conclusion

In summary, by developing a custom miniature fluorescence imaging system and

employing it to record neuronal activity in dorsal striatum via GRIN lens, we provided

strong evidence refuting the long-standing rate-based dual circuit model of basal

ganglia. Based on our findings, we propose that dorsal striatal MSN clusters serves

the purpose of information encoding, and that coordinated activities between direct

and indirect pathway neuron clusters ensure proper behavior output. Our in vivo

imaging technique, neuron cluster analysis, and machine-learning algorithm could

be applied to many other brain regions and animal behavior models, and will have

transformative impact on unraveling how neuronal circuit activity controls behavior.
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5. CONTRIBUTION

Miniature fluorescence optical imaging is changing the way neuroscientists can analyze

brain activity at a microscopic neural circuit level and link anatomical structure with

functional characteristics with unprecedented single cell detail. More importantly,

the miniaturization of fluoresce imaging systems opens the possibility to record the

activity of intact neural circuits in freely behaving animals, allowing to study in depth

the relevance of specific neural circuits to certain behaviors. However the unique

potential o↵ered by these tools comes with several challenges which need to be met

through a joint multidisciplinary e↵ort across the realms of Biology and Engineering.

The contribution of this work is threefold: the design and manufacturing of a

miniature fluorescence imaging system for use with both VSDI and calcium imaging,

the introduction of data processing techniques for analyzing the specific type of data

generated by functional optical neural recordings, and the application and validation

of these tools in providing new insights in the study of a biologically relevant problem,

the functional organization and behavioral encoding of D1 and D2 neurons in the

dorsal striatum.

5.1 System Design

In this work we propose the first full miniature fluorescence imaging system for

application with both voltage sensitive dye imaging (VSDI) and calcium imaging (CI).

This allows to perform novel in vivo studies on freely behaving mice while imaging

virtually any area in the brain with VSDI or CI at single neuron resolution. The

developed system relies on the integration of a custom designed miniature microscope
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(Tab. 5.1), an FPGA based custom hardware for both tethered and wireless data

transmission, and a cross platform software interface for real time data streaming

and behavioral recording.

Table 5.1. Summary of the features of the proposed microscope compared with current
state of the art miniature fluorescence imaging systems.

System Single cell SNR Power Use in mice VSDI Untethered
[27] 7 N/A 2.4 mW 7 7 3
[26] 3 47 dB N/A 3 7 7
[38] 7 61 dB 12 mW 7 3 7

This work 3 48 dB 320 mW 3 3 3

5.2 Data Processing Tools

An important issue in the interpretation of the single cell neural activity is how to

mine relevant information from the large amount of recorded data, and how to cor-

rectly extract single neuron activity from the recorded in vivo images. We first intro-

duced e�cient image preprocessing algorithms targeted to real-time implementation,

including image registration, automatic cell detection and calcium traces extraction.

Typical image registration techniques fail to robustly detect image translations

due to the unique nature of the recorded brain images, which in general have no

distinctive landmarks and can substantially diverge across di↵erent frames depending

on which cell is active at any given time instant. The proposed algorithm based on

the Phase Correlation method o↵ers sub-pixel precision for iterative registration of

sequential frames, and it was tested on both synthetic datasets and real neural images

a↵ected by motion artifacts typical of in vivo applications.

Additionally, we proposed a fast, noise robust cell identification algorithm based

on the shape matching of the image gradient which can target specific cell sizes and is

robust to the contribution of out of plane fluorescence. This allowed to create stable

cell masks for chronically tracking singe neurons for several weeks.
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Another data analysis technique introduced is a clustering method which allows to

partition neurons into di↵erent groups of cell with similar activity, and the application

of which brought unprecedented insight on the functional organization of the neural

circuit on the dorsal striatum. The proposed algorithm is based on the meta k-

means [58, 59], and it improves the consistency of the partitioning scheme within

di↵erent datasets and the applicability of the algorithm to generic datasets (Fig.

5.1).

Figure 5.1. Comparison between meta k-means and proposed algorithm. a, the aver-
age Rand index of the final clustering scheme shows a significant decrease in the inter-
dataset variability (across 5 di↵erent days) while still maintaining good intra-dataset
consistency. b, histogram showing the distribution of the average inter-dataset abso-
lute di↵erence in the co-occurence matrix elements for the meta k-means (top) and
the proposed algorithm (bottom): the long tail, which indicates significant di↵erences
in the individual partitioning schemes, is considerably reduced. 5 datasets were con-
sidered for 5 di↵erent days, and the average absolute variance � dotted green line �
was 20.48% for the meta k-means and 7.31% for the proposed clustering algorithm.

5.3 Novel In Vivo Study on Dorsal Striatum

The application of the developed techniques to the study of the striatal activity

in freely moving mice both validated the relevance of the proposed system and data
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analysis tools in addressing key questions in Neuroscience, and provided a new per-

spective on the functioning principles of two important neural circuits in the basal

ganglia, the direct and indirect pathways, which can be summarized as follows.

• We investigated the complex relation between the neural activity in the direct

and indirect pathways and locomotor activity, providing strong evidence for

refuting the classical rate-based model and proposing a new

• The application of the clustering method proposed in this work suggests a func-

tional organization of the dorsal striatum where neurons are clustered into spa-

tially compact sub-populations with very diverse functional traits.

• These identified neuron clusters show very heterogeneous neural activity and

correlation with locomotion, indicating encoding of di↵erent behaviors.

• The acute e↵ect of cocaine is in general inhibitory for both D1 and D2 neurons,

however at a single cluster level the neural response is very diverse, showing a

clear positive gradient in the medial-lateral direction.

• Behavioral activity can be precisely predicted by single cell neural activity

through the use of neural networks, suggesting the encoding of locomotion and

other behaviors from specific groups of cells in the striatum.
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A. NEURON CLUSTERS

Figure A.1. Cell clustering based on calcium traces correlation for all D1 and D2 mice.
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B. CLUSTER CORRELATION

Figure B.1. The average Pearson’s correlation coe�cient between the calcium traces of
all neurons within the largest 11 clusters for a D2 mouse: the intra-cluster correlation
is the dominant component, and a weaker inter-cluster correlation varying from day
to day is also observed. If the same neurons were not clustered, no clear correlation
pattern would be detectable in this representation.
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