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ABSTRACT 

Ahmed, Sara. Ph.D., Purdue University, December 2015. Drug Delivery to Solid Tumors 
via Polymeric Nanoparticles. Major Professor: Yoon Yeo. 

A main challenge in chemotherapy is to deliver an anti-cancer drug selectively to 

tumor and avoid off-target exposure to other body tissues and organs. Nanoparticles (NPs) 

have been considered a promising approach for tumor drug delivery, with popularity 

attributable to the famous “Enhanced Permeability and Retention effect”, where small 

particles enter tumor tissues through leaky vasculature and be retained there. Currently, the 

phagocytic clearance of NPs is avoided by coating NP surface with Polyethylene glycol 

(PEG). Although successful in prolonging NPs circulation, PEG prevents proper 

interaction of NPs with the target cells, known as “PEG dilemma”. Low molecular weight 

chitosan (LMWC) can function as a hydrophilic pH-sensitive alternative stealth coating for 

NPs. The LMWC-coated NPs were previously made with a conjugate of poly(lactide-co-

glycolic) acid (PLGA) and LMWC (PLGA-LMWC) and showed pH-sensitive surface 

charge. However, this preparation method has disadvantages such as production 

complexity and difficulty in drug encapsulation. We used an alternative surface 

modification method based on dopamine polymerization, which formed a layer of 

polydopamine (pD) on NP surface allowing for conjugation of LMWC to the preformed 

NP cores. When compared to PLGA-LMWC NPs, PLGA-pD-LMWC NPs had superior 

control over drug release. Additionally, obtained PLGA-pD-LMWC NPs had similar 

cellular interactions to that of PLGA-LMWC NPs, achieving cellular uptake in cancer cells 

under mildly acidic conditions, which was not achieved with PEG coated NPs. However, 

when tested in vivo, there was no significant difference between LMWC and PEG-coated 

NPs in terms of tumor growth suppression and tumor accumulation. While the exact reason 
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Additionally, the use of tannic acid (TA) as an alternative functionalizing coating 

material for polymeric NPs was investigated. In a preliminary study, TA helped 

functionalize PLGA NPs with small ligands (FA) or macromolecules (albumin). 

Considering the strong interactions of TA with different macromolecules (e.g. proteins and 

nucleic acids), TA is hypothesized to be an ideal coating material to functionalize NPs for 

drug delivery applications. However, the stability of the coating in physiological conditions 

is yet to be investigated.  
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CHAPTER 1. INTRODUCTION ON DELIVERY OF NANOPARTICLES TO 
TUMORS 

1.1 Nanoparticles in Chemotherapy 

Most chemotherapeutic agents are low molecular weight compounds with large 

volumes of distribution (Bharali et al., 2009). These molecules are typically administered 

as intravenous (IV) injection and spread in the whole body; therefore, the dose 

administered to achieve effective concentrations in tumors also affects healthy tissues and 

organs, resulting in adverse side effects(Banerjee & Sengupta, 2011; Bharali et al., 2009). 

For example, taxanes (paclitaxel and docetaxel) are associated with bone marrow 

suppression, alopecia and hypersensitivity (Markman, 2003), and anthracyclines like 

doxorubicin and epirubicin are known to cause severe cardiotoxicity (Raschi et al., 2010). 

Cisplatin, a potent metal-based anticancer drug, is also implicated with nephrotoxicity and 

neurotoxicity (Cerri et al., 2011). In addition, many anticancer drugs have poor water 

solubility, necessitating the use of toxic solubilizers. For example, paclitaxel is formulated 

in a vehicle composed of ethanol and ethoxylated castor oil (Cremophor EL) (Hawkins et 

al., 2008), where the latter causes severe side effects such as hypersensitivity and 

neuropathy (Gelderblom et al., 2001; Kwon, 2003; ten Tije et al., 2003). Similarly, 

docetaxel is formulated with Polysorbate 80 as a solubilizer, which has comparable side 

effects (Hawkins et al., 2008). The toxicity of active and inactive ingredients has significant 

impact on the clinical outcomes, including poor patient quality of life, limited therapeutic 

options, and early dropouts from treatment in extreme cases (Stam & Challis, 1989).   
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In order to maximize therapeutic outcomes of chemotherapy, it is critical to deliver 

anticancer agents using formulations with minimal toxicity and concentrate the effect of 

drugs to tumors without harming healthy tissues. To achieve this goal, nanoparticles (NPs) 

with a diameter in the range of 10-100 nm have long been pursued as a drug carrier. In 

1995, the U.S. Food and Drug Administration (US FDA) approved Doxil®, doxorubicin 

sulfate loaded in long-circulating liposomes, for treatment of AIDS-associated Kaposi 

sarcoma and later for metastatic ovarian cancer and breast cancer (Barenholz, 2012). The 

liposomal formulation contributed to reducing cardiotoxicity of doxorubicin (Barenholz, 

2012) and has been used for the delivery of other drugs, such as vincristine (Marqibo®), 

cytarabine (DepoCyte®) and daunorubicin (DaunoXome®) (Venditto & Szoka, 2013). In 

2005, albumin-bound paclitaxel (nab-paclitaxel or Abraxane®), a solvent-free NP 

formulation with an average diameter of 130 nm, was approved by the US FDA, 

eliminating the previously mentioned side effects caused by Cremophor EL (M. R. Green 

et al., 2006; Hawkins et al., 2008).  

An important role of NP drug delivery systems is to modulate pharmacokinetics 

and biodistribution of a drug (Blanco et al., 2011). Figure 1 describes biodistribution of 

IV injected NPs and their transport pathway to tumors. Compared to low molecular weight 

drugs, NPs have relatively selective opportunity to access solid tumors due to the unique 

features of tumor vasculature. Due to the increasing nutritional demands, proliferating 

tumors rapidly recruit new blood vessels (angiogenesis) (Kerbel, 2000). The formed 

vessels are structurally and functionally abnormal, with excessive branching and 

hyperpermeable epithelial lining (Baish & Jain, 2000; Peter Vaupel Md, 2009). The 

leakiness of blood vessels in tumors allows for extravasation of blood-borne 

macromolecules including NPs, which would not readily leave capillaries in normal tissues 

(Matsumura & Maeda, 1986b). In addition, lymphatic drainage near tumors is not fully 

functional and, thus, allows for longer retention of the extravasated NPs in the interstitial 

space of tumors. This phenomenon, collectively called the Enhanced Permeability and 

Retention (EPR) effect (Maeda et al., 2001; Matsumura & Maeda, 1986a; V. Torchilin, 

2011), has been the most pronounced principle in tumor-targeted drug delivery using NPs.  

To take advantage of the EPR effect, particle size and surface chemistry are modified to 
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ensure long-term circulation in the blood. To further enhance drug delivery to tumor cells 

and intracellular targets, NPs can be modified with surface ligands that interact with 

membrane proteins with a high degree of specificity. Several other variables also influence 

the fate and drug delivery efficiency of NPs in the body. 

1.2 Factors Affecting the Effectiveness of NP Drug Delivery Systems    

An ideal NP system should incorporate specific functions to combat biological 

challenges during circulation and provide target-specific drug release. Figure 2 

summarizes several features to be considered in designing NP drug carriers for systemic 

applications. This section discusses how each property of NPs influences its effectiveness 

as a drug carrier.

Figure 1: Biodistribution of intravenously injected NPs and their transport pathway to solid tumors.

Figure 2: A typical design of NPs as drug carriers for systemic delivery of chemotherapeutics. 
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1.2.1 Biocompatibility 

An inactive ingredient of a NP (the material that constitutes the NP structure) and 

its degradation products are expected to have no biological effects that will influence 

therapy. NPs are built with biocompatible biomaterials of natural and synthetic origin 

(Amoozgar et al., 2012; M. Green et al., 2006; Ramishetti & Huang, 2012; Vivek et al., 

2013). Natural materials include lipids (Barenholz, 2012), polysaccharides (Amoozgar et 

al., 2012), and proteins (S. Jain et al., 2011). Lipid-based NPs include liposomes (vesicles 

composed of bilayers of phospholipids) and solid lipid NPs (solid lipid matrices containing 

different glycerides) (Puri et al., 2009). Polysaccharides such as chitosan, alginate, and 

hyaluronic acid are also used in preparation of NPs (Doh & Yeo, 2012; Jee et al., 2012; Z. 

H. Liu et al., 2008). NPs of synthetic origin include polymeric solid NPs, polymeric

micelles and dendrimers (Cho et al., 2008). Poly(lactic-co-glycolic acid) (PLGA) and

polylactic acid (PLA) have commonly been used due to the biodegradability and excellent

track records in FDA-approved products (R. A. Jain, 2000). Polymeric dendrimers are also

pursued as a drug carrier due to the functionalization potential. Amine-terminated

dendrimers are found to have a hemolytic effect (Domanski et al., 2004); however, the

terminal groups can be altered with anionic functional groups to lower the toxicity (Malik

et al., 2000).

1.2.2 Particle Size 

Ideally, NPs should be larger than 10 nm to avoid renal filtration during circulation 

(Venturoli & Rippe, 2005) but smaller than the cutoff size of the pores in tumor vessels, 

which ranges from 100 to 600 nm, to extravasate and reach tumors (Yuan et al., 1995). It 

is generally believed that particles larger than 10 nm and smaller than 100 nm will be 

optimal for avoiding renal clearance and extravasation at tumors, respectively, although 

NPs of this size range will still enter the liver through the sinusoid (Davis et al., 2008). 

Particle size is also an important determinant of NP penetration into the tumor interstitium. 

Reports show that smaller particles (20-60 nm) can penetrate deeper into the tumor matrix 

than larger particles (100-200 nm), which tend to stay close to blood vessels (Goodman et 

al., 2008; H. Lee et al., 2010; Perrault et al., 2009).  
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1.2.3 Particle Surface Charge 

Colloidal stability of NPs is largely dependent on their surface charge. Highly 

charged NPs repel each other in solution, lowering the possibility of flocculation and 

aggregation during storage (Heurtault et al., 2003). The cell-NP interaction is also 

influenced by the NP surface charge (Nel et al., 2009). Positively charged NPs bind via 

electrostatic interactions to the cell membrane, which is negatively charged due to lipid 

components. In addition, NP surface charge influences the degree of protein adsorption 

and the type of the adsorbed proteins (Hirsch et al., 2013; Lundqvist et al., 2008; S. Patil 

et al., 2007).  

One study reports that the extent of quaternary ammonium groups on the surface of 

silica NPs dictates their cellular internalization mechanisms. For example, mesoporous 

silica NPs with low or no quaternary ammonium groups (0-0.98 mmol/g) were taken up by 

human mesenchymal stem cells via clathrin- and actin-dependent endocytosis (T. H. Chung 

et al., 2007). On the other hand, silica NPs with higher quarternary ammonium content (1.7 

mmol/g) were taken up efficiently, not influenced by the inhibitors of cellular uptake 

mechanisms (T. H. Chung et al., 2007). Highly charged micelles, irrespective of the charge, 

showed high liver uptake, due to phagocytosis by Kupffer cells (Xiao et al., 2011). In 

contrast, less charged micelles of the same particle size showed relatively low liver uptake 

due to the reduced protein binding (Xiao et al., 2011). Similar findings were reported with 

polymeric NPs (C. B. He et al., 2010).  

1.2.4 Circulation Half-life 

The body immune system reacts to foreign particles introduced into the blood 

stream. As NPs enter the circulation, plasma proteins rapidly adsorb to the surface, a 

process called ‘opsonization’, followed by macrophage uptake. Therefore, NPs that are 

readily opsonized in blood end up in the reticuloendothelial system (RES) such as the liver 

and spleen before they reach the target tissues (Jokerst et al., 2011b; Walkey & Chan, 2012). 

For NPs to avoid premature clearance, they must hide surface properties prone to 

opsonization, such as high charge density and hydrophobicity. For this purpose, NP surface 

is modified with hydrophilic and electrically neutral polymers such as polyethylene glycol 
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(PEG). Surface modification with PEG stabilizes the NPs sterically and reduces adsorption 

of plasma proteins, thereby extending the circulation half-life of the NPs (Senior et al., 

1991; V. P. Torchilin et al., 1994). In addition to PEG, other hydrophilic materials such as 

polysaccharides and synthetic polymers are used for similar purposes (Amoozgar et al., 

2012; Doh & Yeo, 2012; Tan et al., 1993). 

For optimization of the stealth effect, molecular weight, grafting density, and 

conformation of the surface polymers need to be carefully chosen (Gref et al., 2000). It was 

shown with polymeric NPs (Gref et al., 1994), liposomes (Mori et al., 1991), and quantum 

dots (Daou et al., 2009) that their circulation times increased with the molecular weight of 

PEG when all other factors are comparable. On the other hand, silica NPs showed the least 

protein adsorption and phagocytosis when coated with 10 kD PEG as compared to 4, 6 or 

20 kDa PEG (Q. J. He et al., 2010). In Doxil® liposomes, ~5 mol% PEG was found optimal 

for the stealth effect (S. D. Li & Huang, 2010). Depending on the surface density, PEG can 

acquire two conformations, a mushroom-like or a denser brush conformation (Jokerst et al., 

2011a).  The brush conformation, obtained at >8 mol%, is believed to coat the surface of 

the NPs completely, providing the best protection and enhancement of circulation time 

(Jokerst et al., 2011b; S. D. Li & Huang, 2010; Perry et al., 2012), while the mushroom-

like conformation provides a PEG layer that does not extend far from the NPs surface 

(Perry et al., 2012). However, excessive PEG content is not always helpful at least for 

liposomes, as the integrity of membrane can be compromised by the detergent effect of 

PEG-lipid conjugates (S. D. Li & Huang, 2010) or the lateral repulsion of PEG chains 

(Tirosh et al., 1998). At comparable surface density of PEG, the stealth effect is influenced 

by the size of particles covered with PEG. Chen et al compared serum protein adsorption 

to gold NPs with a diameter in 15-90 nm range varying the PEG surface density and found 

that at an equal PEG density, 15 nm NPs showed the greatest protein adsorption, due to the 

relatively large curvature that gave a greater steric freedom to each PEG molecule (Walkey 

et al., 2012). 

1.2.5 Tumor Retention and Cellular Uptake 

Once NPs arrive at tumors after long-term circulation and extravasation via the 

leaky vasculature, their interactions with target cells play an important role in exerting 
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therapeutic effect on the cells. PEGylation interferes with NP-cell interactions 

(Hatakeyama et al., 2011b); thus, it is often necessary to functionalize NP surfaces to 

improve their tumor localization and retention. As a result of the small particle size, NPs 

have a relatively high surface area per volume, which serves as a substrate for conjugating 

different ligands. Monoclonal antibodies can be used as a ligand to decorate NPs, which 

reacts with specific antigens located on tumor cells (Kohler & Milstein, 1975). Many other 

receptors over-expressed on tumor cells compared to normal ones, such as transferrin 

(Hatakeyama et al., 2004), folate (R. J. Lee & Low, 1994), and biotin (Na et al., 2003) 

receptors, have been exploited to enhance NP-cell interactions and retention in tumors.  

1.2.6 Drug Release 

Ideal NPs should release the drug in a controlled manner at tumor tissues rather 

than in blood. However, due to the large surface area per volume, the loaded drug tends to 

leach out by diffusion, leading to premature drug release during circulation (Chen et al., 

2008; de Smet et al., 2011). Given that it typically takes 24-48 hours for circulating NPs to 

achieve tumor accumulation via the EPR effect (Iyer et al., 2006), it is critical to minimize 

drug release from NPs in blood during this period. On the other hand, if the drug is retained 

in NPs too well, its therapeutic effect is also diminished. For example, daunorubicin 

entrapped in polymeric NPs had the IC50 value of 2.05 µg/mL as opposed to 0.37 µg/mL 

of free drug in HL-60 cells after 24 hours incubation (J. Liu et al., 2010). Therefore, an 

ideal NP should have a built-in mechanism to trigger drug release in a timely manner at the 

intended targets, whether they are extracellular matrix or intracellular organelles.  
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Another consequence of the increased nutritional demands is the formation of new 

blood vessels. This is mediated by the release of different angiogenic factors from tumor 

cells such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor 

(PDGF) (Folkman, 1974; Gasparini et al., 2005; Harper & Moses, 2006; Malonne et al., 

1999; Pietras et al., 2002). The formed blood vessels are hyperpermeable to circulating 

macromolecules, which results in increase of osmotic pressure and influx of interstitial 

fluid, and, thus, interstitial fluid pressure (IFP) (Boucher et al., 1996; Heldin et al., 2004). 

High IFP represents a physical barrier to mass transport into the tumors, resulting in poor 

and heterogeneous distribution of drugs and radiation (Curti, 1993; Hompland et al., 2012; 

R. K. Jain, 1998; Milosevic et al., 1998; Roh et al., 1991; Rutz, 1999) as well as 

intratumoral delivery of NPs (Holback & Yeo, 2011).  

The difficulty in cancer therapy is aggravated by the heterogeneity of tumors. Inter-

tumoral heterogeneity refers to antigenic, immunogenic and metabolic properties of 

different tumors, which account for differences in drug resistance, growth rate, and 

metastatic capabilities. Such variability also exists at the level of a single tumor mass, 

causing intra-tumoral heterogeneity in cell morphology, phenotype, and metabolism (I. 

Fidler, 1978; I. J. Fidler & Hart, 1982; Gerlinger et al., 2012; A. Marusyk & K. Polyak, 

2010; Shibata, 2012). Tumor heterogeneity is a significant challenge to chemotherapy as it 

can lead to selection of drug-resistant cell types and relapse of drug-resistant tumors 

(Andriy Marusyk & Kornelia Polyak, 2010). The diversity and genetic instability of tumors 

also account for, at least partly, the difficulty in advancing NPs with a single type of ligand 

to clinical practice. 

Consequently, many have hypothesized that drug delivery to tumors can be 

improved by alleviating these physiological barrier properties of tumors. Auxiliary agents 

have been used to increase tumoral blood flow (e.g. Angiotensin), normalize blood vessels 

(e.g. anti-VEGF antibodies), or reduce stromal barriers (e.g., paclitaxel, hyaluronidase), 

thereby enhancing drug or NP penetration into tumors (Eikenes et al., 2005; Holback & 

Yeo, 2011; Marcucci & Corti, 2012). Radiation is also used to improve intratumoral drug 

delivery. In addition to its standard use as a standalone cancer therapy, radiation can help 

increase NPs tumor accumulation by decreasing IFP and increasing vascular permeability 
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(Giustini et al., 2012). A single dose of 15-Gy radiation decreased IFP by ~40% over a 

period of 5 days and vascular permeability by 60% (Giustini et al., 2012). When 

PEGylated iron oxide NPs were injected 3 days post irradiation, their accumulation 

increased by 2.5 folds 

1.3 Remaining Challenges in NP Development 

After decades of research on nanomedicines for chemotherapy, several 

nanomedicines have been approved by various regulatory bodies, and dozens of clinical 

trials are currently ongoing (Table 1) (R. B. Wang et al., 2013). However, NPs have 

limitations in overcoming biological challenges imposed by the complexity of tumor 

physiology. Several challenges also remain in formulation development. 

1.3.1 Tumor Physiology 

A growing tumor goes through a dormant primary phase where it directly obtains 

essential nutrients and oxygen from the environment, followed by a characteristic rapid 

growth phase in both size and demand for nutrition and oxygen. One consequence of rapid 

tumor growth is hypoxia, which leads to upregulation of hypoxia-induced factor 1 (HIF-

1), responsible for alteration of metabolism and extracellular microenvironment of tumors 

(Tannock & Rotin, 1989; Tian & Bae, 2012a; Vaupel et al., 1981; Wike-Hooley et al., 

1984). The microenvironmental changes influence different biochemical processes in cells, 

making them resistant to chemo- and radiation therapy (Tannock & Rotin, 1989; Vaupel et 

al., 1981; Wike-Hooley et al., 1984). For example, the increasing acidity of tumor 

interstitium can change cell membrane fluidity and reduce active drug uptake (Wike-

Hooley et al., 1984). Another consequence of the increased nutritional demands is the 

formation of new blood vessels. This is mediated by the release of different angiogenic 

factors from tumor cells such as vascular endothelial growth factor (VEGF) and platelet-

derived growth factor (PDGF) (Folkman, 1974; Gasparini et al., 2005; Harper & Moses, 

2006; Malonne et al., 1999; Pietras et al., 2002).  
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Table 1: Some nanomedicinal formulations approved or undergoing clinical trials. 

Commercial 
name 

Manufacturer NP type Drug Status Ref. 

Abraxane Celgene 
Albumin NPs 

(nab 
technology) 

Paclitaxel Approved 
(M. R. Green et 

al., 2006) 

Doxil/Caelyx  
Ortho Biotech 
Schering-
Plough  

PEGylated 
liposomes 

Doxorubicin Approved (Barenholz, 2012) 

DepoCyte Skye Pharma Liposomes Cytarabine Approved 
(Slingerland et al., 

2012) 

Marqibo 
Talon 
Therapeutics, 
Inc. 

Liposomes Vincristine Approved 
(Silverman & 

Deitcher, 2013) 

DaunoXome  Galen Ltd. Liposomes Daunorubicin Approved (Forssen, 1997) 

Myocet Cephalon Liposomes Doxorubicin Approved 
(R. B. Wang et 

al., 2013) 

ThermoDox Celsion 
Heat activated 

liposomes 
Doxorubicin Phase III 

(Landon et al., 
2011) 

Lipoplatin Regulon Inc. 
PEGylated 

Liposomes 
Cisplatin Phase III 

(Stathopoulos et 
al., 2011) 

OSI-211 
OSI 
Pharmaceuticals 

Liposomes Lurtotecan Phase II 
(Duffaud et al., 

2004) 

Lipo-Dox  
TTY Biopharm 
Co. Ltd. 

PEGylated 
liposomes 

Doxorubicin Phase II 
(Chou et al., 

2006) 

NK-105  
Nippon Kayaku 
Co. Ltd 

Polymeric 
NPs 

Paclitaxel Phase II 

(K. Kato et al., 
2012; R. B. 
Wang et al., 
2013) 

CRLX101  
Cerulean 
Pharma 

Cyclodextrin 
polymeric NPs 

Camptothecin Phase II 
(Ng et al., 2013; 

R. B. Wang et 
al., 2013) 

BIND-014  
BIND 
Bioscience 

Polymeric 
NPs 

Docetaxel Phase I 
(Hrkach et al., 

2012) 

MBP-426 Mebiopharm Liposomes Oxaliplatin Phase I 
(Sankhala et al., 

2009) 

CPX-1 
Celator 
Pharmaceuticals 

Liposomes 
Irinotecan and 

floxuridine 
Phase I 

(Batist et al., 
2009) 

The formed blood vessels are hyperpermeable to circulating macromolecules, 

which results in increase of osmotic pressure and influx of interstitial fluid, and, thus, 

interstitial fluid pressure (IFP) (Boucher et al., 1996; Heldin et al., 2004). High IFP 
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represents a physical barrier to mass transport into the tumors, resulting in poor and 

heterogeneous distribution of drugs and radiation (Curti, 1993; Hompland et al., 2012; R. 

K. Jain, 1998; Milosevic et al., 1998; Roh et al., 1991; Rutz, 1999) as well as intratumoral

delivery of NPs (Holback & Yeo, 2011).

The difficulty in cancer therapy is aggravated by the heterogeneity of tumors. Inter-

tumoral heterogeneity refers to antigenic, immunogenic and metabolic properties of 

different tumors, which account for differences in drug resistance, growth rate, and 

metastatic capabilities. Such variability also exists at the level of a single tumor mass, 

causing intra-tumoral heterogeneity in cell morphology, phenotype, and metabolism (I. 

Fidler, 1978; I. J. Fidler & Hart, 1982; Gerlinger et al., 2012; A. Marusyk & K. Polyak, 

2010; Shibata, 2012). Tumor heterogeneity is a significant challenge to chemotherapy as it 

can lead to selection of drug-resistant cell types and relapse of drug-resistant tumors 

(Andriy Marusyk & Kornelia Polyak, 2010). The diversity and genetic instability of tumors 

also account for, at least partly, the difficulty in advancing NPs with a single type of ligand 

to clinical practice. Consequently, many have hypothesized that drug delivery to tumors 

can be improved by alleviating these physiological barrier properties of tumors. Auxiliary 

agents have been used to increase tumoral blood flow (e.g. Angiotensin), normalize blood 

vessels (e.g. anti-VEGF antibodies), or reduce stromal barriers (e.g., paclitaxel, 

hyaluronidase), thereby enhancing drug or NP penetration into tumors (Eikenes et al., 2005; 

Holback & Yeo, 2011; Marcucci & Corti, 2012). Radiation is also used to improve 

intratumoral drug delivery. In addition to its standard use as a standalone cancer therapy, 

radiation can help increase NPs tumor accumulation by decreasing IFP and increasing 

vascular permeability (Giustini et al., 2012; Znati et al., 1996). A single dose of 15-Gy 

radiation decreased IFP by ~40% over a period of 5 days and vascular permeability by 60% 

(Giustini et al., 2012). When PEGylated iron oxide NPs were injected 3 days post 

irradiation, their accumulation increased by 2.5 folds (Giustini et al., 2012).   
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1.3.2 Formulation Challenges 

1.3.2.1 ‘PEG Dilemma’ 

As mentioned previously, surface PEGylation contributes to increasing 

blood circulation time of NPs by helping NPs avoid non-specific interactions with immune 

cells during circulation. However, upon arrival of NPs at tumors, the same effect interferes 

with NP interaction with target cells and subsequent cellular internalization. Moreover, 

PEG interferes with the endosomal escape of NPs, leading to lysosomal degradation of the 

therapeutic payload (Amoozgar & Yeo, 2012; Du et al., 1997; Hatakeyama et al., 2011a). 

This phenomenon, known as ‘PEG dilemma’, has prompted many researchers to revisit the 

routine use of PEG as the stealth polymer of choice and pursue alternative options 

(Amoozgar & Yeo, 2012; Doh & Yeo, 2012). Immune responses to PEG are also reported. 

PEGylated liposomes showed a decrease in circulation half-life upon subsequent 

administrations (Dams et al., 2000). This was explained by the formation of anti-PEG-IgM 

at the first introduction of PEGylated liposomes, followed by activation of the complement 

system, ending in accelerated blood clearance (ABC) of the subsequent doses (Immordino 

et al., 2006; X. Y. Wang et al., 2007). Anti-PEG antibodies were detected in 22-25% of 

human blood donors without known prior PEG exposure, which means that PEGylated 

drug carriers are less likely to be effective in these individuals (Armstrong, 2009; Garay et 

al., 2012).  

Several approaches have been pursued to overcome the limitations of PEG 

as stealth coating. To achieve the stealth effect of PEGylation without compromising 

proper interaction between target cells and NPs, removable PEG coatings have been 

proposed. In this approach, PEG chains are conjugated to the NP surface via stimuli-

sensitive linkers that can be cleaved by chemical or enzymatic conditions specific to the 

tumor ECM or the intracellular environment (Amoozgar & Yeo, 2012). For example, acid-

labile linkers, such as hydrazone, diorthoester and vinylether bonds (Romberg et al., 2008; 

Sawant et al., 2006), were used to take advantage of slightly acidic pH of tumor stroma 

(Tannock & Rotin, 1989) or lysosomes (R. Cheng et al., 2013). Difference in redox 

potential between the extracellular and intracellular matrices is another stimulus employed 
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to remove the PEG layer in an environment-specific manner. Molecules with sulfhydryl 

group are concentrated inside the cell (Arner & Holmgren, 2000). In particular, glutathione 

is present in mM range in the cytosol, while its extracellular concentration is as low as ~10 

µM (Arner & Holmgren, 2000; Saito et al., 2003). Therefore, reduction-sensitive disulfide 

bond can remain stable in blood and be reduced at cell surface and in the cells (Romberg 

et al., 2008; Sun et al., 2009). Another reduction-sensitive linker is dithiobenzyl carbamate, 

which is sensitive to milder thiolytic conditions (Zalipsky et al., 1999). This linker was 

used to conjugate PEG to distearoylphosphatidylethanolamine (DSPE), forming reduction-

sensitive liposomes (Zalipsky et al., 1999). The NPs with removable PEG are additionally 

modified with cell-interactive ligands such as TAT peptide (Gullotti et al., 2013a) and 

galactose (Zhong et al., 2013) so that NPs can be readily taken up by cells  after the removal 

of stealth polymer.  

In addition, several hydrophilic polymers, including polysaccharides 

(Amoozgar et al., 2012; Doh & Yeo, 2012), poly(amino acids) (Romberg et al., 2007), and 

polyoxazolines (Zalipsky et al., 1996), have been pursued as alternative stealth coating 

materials. Polysaccharides, such as chitosan (Amoozgar et al., 2012), heparin, and dextran 

(Passirani et al., 1998), are biodegradable and biocompatible. Poly(amino acids) are 

degraded by lysosomal proteases (Romberg et al., 2007). Examples are poly (hydroxyethyl 

L-asparagine) and poly(hydroxyethyl L-glutamine) (Metselaar et al., 2003). Poly(amino

acid)-coated liposomes showed a long circulation time comparable to that of PEG

(Romberg et al., 2007). Mucin is another stealth coating inspired by cell surface

glycoproteins, which can avoid the RES uptake but maintain specific cellular recognition

(Thasneem et al., 2013).

1.3.2.2 Maintaining Particle Size 

Nanometric particle size is one of the most fundamental properties that determine 

the biodistribution and pharmacokinetics of NPs. However, NPs do not necessarily 

maintain the particle size as the ‘factory setting’ during circulation. Abraxane®, albumin-

bound paclitaxel NPs with an average diameter of 130 nm, improves water solubility of 

paclitaxel, eliminates the surfactant-related hypersensitivity and the need for pretreatment 
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with antihistamines and steroids, and enables dose administration in a much shorter 

infusion time (M. R. Green et al., 2006; Hawkins et al., 2008). However, Abraxane breaks 

down to paclitaxel-albumin molecules during circulation (Desai, 2008), which do not fully 

leverage the benefits of the EPR effect (Ernsting et al., 2012).  

Conversely, liposomal systems are thermodynamically unstable and prone to 

aggregation and/or fusion (Evans & Metcalfe, 1984), especially in plasma (Yoshioka, 

1991). Therefore, designing liposomes for systemic drug delivery requires a formulation 

strategy to stabilize the membrane. Liposomal stability can be improved by inclusion of 

cholesterol and phospholipids with high phase transition temperature, which increase 

rigidity of the bilayer (Demel & De Kruyff, 1976; A Gabizon & Papahadjopoulos, 1988; 

A. Gabizon et al., 2003; Semple et al., 1996). Additionally, liposomes can be stabilized

with hydrophilic polymers. PEG is most widely used (Yoshioka, 1991), but other polymers

are also reported. For example, dipalmitoyl phosphatidylcholine (DPPC) liposomes coated

with chitosan showed greater resistance to detergent treatment (Mady et al., 2009).

Liposomes stabilized with alkylated polyvinyl alcohol (PVA) were resistant to serum-

induced aggregation and/or fusion, as compared to uncoated liposomes, which showed 10-

fold particle size increase after incubation in calf serum (Takeuchi et al., 1998). Recent

studies propose decoration of liposomal surfaces with small, charged NPs to stabilize the

lipid bilayer (Michel et al., 2013; Zhang & Granick, 2006). Liposomes based on DPPC,

~100 nm in diameter, were coated with negatively charged ~8 nm silica NPs (Michel et al.,

2013). The silica NPs provided a concentration-dependent stabilizing effect and helped

inhibit liposomal aggregation in water for more than 800 hours (Michel et al., 2013). In the

absence of silica NPs, the liposomes’s size increases dramatically over 400 hours. A

potential advantage of this method, as compared to traditional polymer coatings, is that the

stabilizing component occupies relatively little NP surface area, leaving a substantial

portion of surface available for functionalization (Zhang & Granick, 2006).

1.3.2.3 Controlling Drug Release 

Spatiotemporal control of drug release is another fundamental feature of 

NPs as a drug carrier. A number of NP designs are predicated on the assumption that a NP 
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will retain a drug during circulation until it reaches the target cells. Otherwise, the 

therapeutic effect of NPs may not be different from that of the free drug (Gullotti & Yeo, 

2012). However, initial burst release occurs in almost all types of delivery systems, 

especially in NPs with relatively large surface areas per volume ratios (Bae & Yin, 2008; 

Dai et al., 2011; Hasan et al., 2007; Yeo & Park, 2004). Therefore, various efforts are made 

to ensure stable drug retention in NPs in blood. At the same time, stimuli-responsive 

systems are pursued in parallel to make the carried drugs available at target locations in a 

timely manner.  

Incorporating a diffusion barrier on NP surface. To prevent the initial burst 

release and provide sustained drug release, a self-assembled layer of water-insoluble 

material is added as a diffusion barrier. For example, a lecithin layer was used to 

coat a PLGA core encapsulating deocetaxel, resulting in a hybrid polymer-lipid NP 

with an attenuated docetaxel release as compared to bare NPs (Zhang et al., 2008). 

Similarly, the release of doxorubicin entrapped in PLGA core was suppressed 

with an external layer of diethylenetriaminepentaacetic acid (DTPA)-gadolinium 

lipid, which  also  served  as  a  paramagnetic image contrast agent (Liao et al., 2011).  

Crosslinking. Parts of a NP can be crosslinked to improve the stability of self-

assembled NP structures. Polymeric micelles are prone to disassembly and 

dissociation upon introduction into the blood stream due to interactions with amphiphilic 

blood components and dilution below their critical micelle concentrations (Deng et 

al., 2012). Burt et al studied biodistribution of polymeric micelles based on a block 

co-polymer of D,L-lactic acid and methoxypolyethylene glycol (PDLLA-MePEG) 

encapsulating paclitaxel (Burt et al., 1999). They reported that the drug and polymer 

showed distinct biodistribution profiles, indicating premature drug release and micelle 

dissociation (Burt et al., 1999). The stability of polymeric micelles can be improved by 

crosslinking of the core, shell or the interface (Deng et al., 2012). One approach is to 

crosslink the micelle core made of anionic polymethacrylate via metal cations such as 

Ca2+ (Bronich et al., 2005). In another example, the PLA core of a polymeric micelle was 

stabilized by introducing methacrylol end groups at the terminus of the PLA block, 

which could be covalently crosslinked after micelle formation (Iijima et al., 1999). 

These micelles had high stability even in presence of 
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surfactants (Iijima et al., 1999). Instead of NP core, the interface between hydrophilic shell 

and hydrophobic core was stabilized via crosslinking mediated by UV irradiation (Yang et 

al., 2011). For this purpose, photocrosslinkable polymer, poly(acryloyl carbonate), was 

introduced as the center block of a block co-polymer. Thus formed PEG-poly(acryloyl 

carbonate)-polycaprolactone (PEG-PAC-PCL) formed more stable micelles in both size 

and drug retention as compared to those made with non-crosslinkable counterpart (PEG-

PCL) (Yang et al., 2011). Due to the improved stability, paclitaxel loaded in the photo-

crosslinked PEG-PAC-PCL micelles showed greater in vivo tumor inhibition activity than 

paclitaxel in PEG-PCL micelles (Yang et al., 2011).  

Stimuli-responsive systems. To confine drug release specifically to target 

tissues or organelles, stimuli-responsive NPs are developed. NPs are designed to 

change their physicochemical properties in response to intrinsic conditions of target 

locations (more details in section 1.4) or external stimuli focused on the targets (R. Cheng 

et al., 2013). For example, a drug was encapsulated in mesoporous silica NPs, capped 

with large molecules, such as cadmium sulfide (CdS) nanocrystals (Lai et al., 2003) or 

PAMAM dendrimers (Gruenhagen et al., 2005) via disulfide bond. These capping 

materials prevented drug release but were removed in a reductive environment inside 

the cell. In another example, reduction-sensitive NPs encapsulating doxorubicin were 

prepared with dextran-lipoic acid derivative crosslinked via disulfide bonds (Y. L. Li 

et al., 2009). This system showed minimal drug release under extracellular 

condition and fast release in reductive environments, verified with in vitro release 

experiments (Y. L. Li et al., 2009). Similarly, cathepsin B, a lysosomal cysteine 

proteinase, was used to trigger drug release from NPs in the lysosomes (Meng et al., 

2012). Cathepsin B is also overexpressed in some tumor cells, present in the extracellular 

environment and on the cell surface of tumors (Campo et al., 1994; Sloane, 1990). 

Therefore, a peptide linker specifically degraded by cathepsin B was incorporated in a 

PEG NP system via photocrosslinkable diacrylate for tumor selective drug release 

(Glangchai et al., 2008b). Matrix metalloproteinases (MMPs), another type of enzymes 

over-expressed in tumor microenvironment, are also used for controlling drug release 

(Danhier et al., 2010). Doxorubicin was loaded in mesoporous silica NPs, coated with 

conjugates of PEG diacrylate and MMP-degradable peptides with different 
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sensitivities (Singh et al., 2011). Drug release and cytotoxicity of doxorubicin-loaded NPs 

were proportional to degradability of the peptide linker, and the MMP-sensitive NPs 

resulted in greater cell death in MMP-overexpressing tumors as compared to MMP-

insensitive PEG-coated NPs (Singh et al., 2011). Acidic pH of endo/lysosomes is 

frequently used to achieve intracellular drug release. Mesoporous silica NPs were capped 

with calcium phosphate, soluble in pH 4-5 but insoluble in pH 7.4. To limit the calcium 

phosphate deposition on the surface, the silica NPs were conjugated with urease, which 

hydrolyzed urea and created a high pH zone around the NPs forming a layer of calcium 

phosphate (Rim et al., 2011). The coated NPs significantly attenuated drug release at pH 

7.4 but released drug intracellularly, indicated by sustained nuclear localization of 

doxorubicin (Rim et al., 2011). 

Multiple-stimuli responsive systems. To increase the selective reactivity of the 

NPs, two or more mechanisms are utilized either simultaneously or sequentially. NPs are 

engineered to respond to dual stimuli, such as pH and temperature, pH and reductive 

potential, or temperature and enzyme (R. Cheng et al., 2013; Dai et al., 2011; 

Sankaranarayanan et al., 2010). For example, polymeric NPs with a dual pH-sensitivity 

were formulated using a random co-polymer that degraded via both bulk dissolution 

and surface degradation at weakly acidic pH (Sankaranarayanan et al., 2010). The 

advantage of this system is the good stability at physiological pH and quick onset of 

degradation, which are often conflicting with each other (Sankaranarayanan et al., 2010). 

In another study, polymeric micelles dual-responsive to acidic endosomal pH and 

intracellular reductive potential were prepared using a tri-block copolymer made of 

a pH-sensitive hydrophobic block, disulfide-crosslinkable middle block, and PEG 

(Dai et al., 2011). This micelle system showed minimal drug release at pH 7.4 and 

increasing drug release in response to dithiothreitol (10 mM) and/or pH 5 (Dai et al., 

2011). Taking this approach a step further, triple-stimuli responsive micellar system 

was developed using a block copolymer with a pH-sensitive hydrophobic block and 

a temperature-sensitive hydrophilic block connected  v ia  a  reduction-sensitive 

disulfide linker (Klaikherd et al., 2009). The block-copolymer lost amphiphilic 

properties in response to temperature increase, acidic pH, or high reductive potential, 

allowing for tunable control of drug release with single stimulus or simultaneous 
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multiple stimuli. Notably, individual stimulus caused slow or incomplete dye release, but 

combined stimuli resulted in a significantly faster and greater drug release (Klaikherd et 

al., 2009).  

Covalent conjugation of a drug to carrier. For stable drug encapsulation, a drug 

may be conjugated to a NP matrix via a linker, which may be hydrolyzed or cleaved in a 

stimuli-responsive manner. pH-activatable NPs was made with paclitaxel conjugated to 

PEG-poly(acrylic acid) via an acid-labile acetal linker (Gu et al., 2013). The NPs showed 

>80% drug release in pH 5 in 2 days, while they released only 29% of the total drug at

pH 7.4 (Gu et al., 2013).  In another study, drug-polylactide conjugates were synthesized

using a drug (paclitaxel, docetaxel, and camptothecin) as an initiator of polymerization

(Tong & Cheng, 2008).  The conjugates formed NPs with high drug contents (5-36 wt%), 

which showed minimal initial burst release followed by gradual drug release over a week

in vitro (Tong & Cheng, 2008). Similarly, docetaxel was conjugated to PEGylated

carboxymethylcellulaose (CMC) to assemble into 120 nm NPs releasing the drug in a

controlled release manner (Ernsting et al., 2011). Notably, the CMC-based  NPs  had  an

anti-stromal effect, increasing tumoral perfusion and lowering the IFP, with a greater anti-

metastatic effect than Abraxane (Murakami et al., 2013). In another study, camptothecin

was conjugated to a β-sheet-forming peptide to make drug amphiphiles, which assembled

into supramolecular structures (nanotubes) with definite structure (Cheetham et al., 2013).

Serving as a part of the carrier building block, the drug molecules constituted up to 38% of

the nanotubes (Cheetham et al., 2013). An important consideration in design of drug-

polymer conjugates is that cleavage of the conjugate should restore a pharmacologically

active drug (Stella & Nti-Addae, 2007). Although it is an efficient way of controlling drug

release, worth mentioning is that drug-polymer conjugate is considered a new chemical

entity, which needs a new FDA approval for clinical use (Kim et al., 2009).

1.3.2.4 Clinical Translation of Developed NP systems 

Taking into consideration the enormous interest in nanomedicine development, it 

is critical to consider the challenges of clinical translation of such systems from early 

development phase. The rate of clinical translation of publications and patents does not 
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meet the expectations. This can be attributed to many reasons, some related to NP design 

and others related to screening and in vivo evaluation (J. M. Lim & Karnik, 2014; Valencia 

et al., 2012).  Among the NP-related reasons is the complexity of the developed systems 

from the commercial and industrial standpoint, which often makes the scale up extremely 

challenging (Z. L. Cheng et al., 2012; Goldberg et al., 2013). Long complicated synthetic 

chemistry is often used to produce polymeric NP systems of certain core and surface 

properties, tailored for the delivery of a certain therapeutic agent. Such chemical reactions 

are frequently carried out in presence of toxic organic solvents and under harsh conditions 

(J. Cheng et al., 2007; Y. I. Chung et al., 2010; Y. B. Patil et al., 2009). Even the simpler 

and safer “click chemistry” procedures require prior chemical modification of the substrate, 

the presence of catalysts and/or long purification steps(Joralemon et al., 2005; Kamphuis 

et al., 2010; Kolb et al., 2001; Lallana et al., 2012; von Maltzahn et al., 2008) 

1.4 Extracellularly Activatable NPs for Tumor Drug Delivery 

Despite the fact that tumor tissues are heterogenous, with various types of tumors 

having significantly different pathophysiologies (Denison & Bae, 2012), they can still be 

distinguished from normal tissues by many features (Gerweck & Seetharaman, 1996; 

Vaupel & Mayer, 2007) and eventually, selectivity of the nanocarrier action would depend 

on both distribution of a stimulus within different body tissues and sensitivity of the 

nanocarrier to different stimulus levels (Abouelmagd et al., 2014).  

1.4.1 Extracellular Stimuli Adapted for NP Activation 

Mildly acidic pH of the tumor microenvironment (6.8-7.2) (Gerweck & 

Seetharaman, 1996) is one of the most widely used features for the extracellular activation 

of nanocarriers (Tian & Bae, 2012b). The acidity of a solid tumor is attributable to 

metabolic abnormalities in tumor cells, including the high rate of aerobic and anaerobic 

glycolysis, which leads to accumulation of lactic acid (Cairns et al., 2006; Y. Kato et al., 

2013), and the increased proton-pump activities in the plasma membrane, which promote 

the secretion of acidic metabolites to extracellular milieu (Y. Kato et al., 2013). Moreover, 

the acidified tissues do not readily return to neutral pH due to the reduced blood flow in 
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tumors (Tian & Bae, 2012b). In designing stimuli-sensitive drug carriers, the acidic pH is 

used to change the ionization status of the carrier molecules (Amoozgar et al., 2012; Guan 

et al., 2013; Hu et al., 2013; K. C. Liu & Yeo, 2013) or induce cleavage of acid-labile 

linkers, thereby modulating the ability of carriers to interact with cells (Gullotti et al., 

2013b; Tian & Bae, 2012b). A challenge in exploiting acidic pH of tumors is the narrow 

pH range useful for extracellular activation of nanocarriers, which require high sensitivity 

of the carrier molecules to pH change (Tian & Bae, 2012b).   

Hypoxia is another hallmark of cancer, as a direct result of fast unorganized tumor 

growth and poor oxygenation and nutrition in some tumor areas (Denison & Bae, 2012; 

Vaupel & Mayer, 2007). Hypoxic tissue is usually located in center of tumor (Denison & 

Bae, 2012), where 50–60% of locally advanced solid tumors have  heterogeneously 

distributed regions of significant hypoxia(Vaupel & Mayer, 2007) and is one of the causes 

chemotherapy and radiation failure (Wilson & Hay, 2011). A different class of stimuli is 

enzymes present overexpressed in tumor, like MMPs, present extracellularly. Usually, their 

expression is tightly regulated throughout the body, but abundant in many cancers, due to 

involvement in degradation of extracellular matrix and tumor progression (Danhier et al., 

2010; Egeblad & Werb, 2002; Lehner et al., 2012; Niidome et al., 2010). They also can be 

present in some cardiovascular conditions (Elegbede et al., 2008; Fingleton, 2007).  

Peptides sensitive to MMP-2 and MMP-9 have been used in designing responsive 

nanocarriers(Elegbede et al., 2008; Gullotti et al., 2013a). Similarly, cathepsin B, which is 

a lysosomal proteinase generally existing intracellularly in lysosomes, can be found 

overexpressed extracellularly in some tumor types as well (Campo et al., 1994; Glangchai 

et al., 2008a; Sloane, 1990). 

1.4.2 Nanocarriers Responsive to Tumor Extracellular pH 

NP systems were engineered to respond to tumor mildly acidic pH, resulting in 

enhanced cellular interactions or triggered drug release through different mechanisms. 
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1.4.2.1 Drug Release: 

For pH-triggered drug release, acid-labile linkers such as hydrazone, acetal, or ester 

bonds are frequently used, although the triggering pHs for these linkers are somewhat low 

for extracellular drug release. For example, Lee et al. conjugated doxorubicin (DOX) to 

mesoporous silica nanoparticles (MSNs) with a hydrazone linker, which hydrolyzed in 

acidic pH (J. E. Lee et al., 2011). DOX release in neutral pH was minimal (4%) but 

significantly increased as the pH dropped to 4 (78% in 56 hours) (J. E. Lee et al., 2011).  

Polyhistidine (pHis) is another chemical moiety widely used for pH-sensitive drug 

carriers. The pH sensitivity of pHis comes from the imidazole group, which protonates in 

acidic pH with a pKa value of ~6 (Eun Seong Lee, Shin, et al., 2003). Polymeric micelles 

prepared with a block-copolymer of pHis and PEG showed higher drug release at acidic 

pH as pHis block turned hydrophilic with protonation (Eun Seong Lee, Na, et al., 2003; 

Eun Seong Lee, Shin, et al., 2003). More recently, a pHis-based AB2-miktoarm polymer 

(mPEG-b-pHis2) was designed to form polymersomes, thin-walled polymer vesicles 

similar to liposomes (Yin et al., 2012). Below pH 7.4, the polymersomes underwent 

conformation changes to cylindrical micelles, spherical micelles, and finally to unimers 

showing increasing drug release (Yin et al., 2012). 

Alternatively, chitosan and its derivatives are used as a component of NPs for pH-

triggered drug release. Magnetic nanocrystals and DOX were encapsulated in micelles 

made of amphiphilic chitosan derivative, N-naphthyl-O-dimethymaleoyl chitosan (N-nap-

O-MalCS) with an average size of 158.8 nm at pH 7.4. Exposure to acidic medium (pH

5.5) induced hydrolysis of maleoyl group, which caused the loss of amphiphilicity and

destabilization of micelle structure (E. K. Lim et al., 2013). The pH-induced change caused

abrupt DOX release (90% release in 24 hours) as compared to 20% at pH 7.4 (E. K. Lim

et al., 2013). In another study, chitosan NPs were used as a pH-sensitive carrier of

methotrexate (MTX). MTX-loaded chitosan NPs (MTX-CS-NPs) were prepared by ionic

gelation of chitosan via tripolyphosphate and an anionic surfactant (77KL), which has a

membrane-lytic activity (Nogueira et al., 2013). MTX release from the NPs increased with

pH decrease, due to the protonation of 77KL and MTX, leading to decreased electrostatic
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interactions with chitosan and destabilization of the NPs. Consequently, MTX-CS-NPs 

showed enhanced cytotoxic effect on MCF-7 cells at pH 6.6 as compared to at pH 7.4, 

while free MTX did not show such a pH sensitivity (Nogueira et al., 2013). 

1.4.2.2 Cell Interaction 

Most nanocarriers are protected by non-ionic hydrophilic polymers to avoid non-

specific interactions with immune cells and normal tissues during circulation. Triggered 

removal or transformation of such a protective surface results in exposure of cationic 

charges or cell-interactive ligands, thereby allowing for electrostatic or ligand-mediated 

interactions with the cell membrane.   

To increase cellular uptake at acidic tumoral pH, a polymeric micelle system was 

developed using a blend of polyhistidine (polyHis)-based amiphiphilic polymers (E. S. Lee 

et al., 2008). The micelle was made of a blend of polyHis5kD-b-PEG and PLA-b-PEG-b-

polyHis2kD-TAT, where polyHis5kD and PLA blocks from each polymer formed a 

hydrophobic core and PEG the shell. At pH 7.4, PEG from the latter polymer formed a 

loop as polyHis2kD block remained unionized and associated with the hydrophobic core, 

keeping the cell-interactive TAT away from the surface. Below pH 7.2, polyHis2kD started 

to ionize, exposing the TAT on the surface to facilitate cellular uptake of the polymeric 

micelles (E. S. Lee et al., 2008). Due to the enhanced cellular uptake, the micelles carrying 

DOX showed a greater cytotoxic effect on drug-resistant NCI/ADR-RES cells upon the 

acid-triggered activation (E. S. Lee et al., 2008). A consistent result was observed in a 

mouse model of a drug-resistant ovarian cancer xenograft (E. S. Lee et al., 2008).  

In another study, a layer-by-layer (LbL) approach was used to make multilayered 

~80 nm NPs with a fluorescent core and PEG-coated surface (Poon et al., 2011). The core 

particle was a carboxyl-functionalized quantum dot (QD), of which negative charge 

allowed building of polymer films. The core was first coated with poly-L-lysine (PLL)-

iminobiotin conjugate and neutravidin, which was then coated with mPEG-biotin 

conjugate. Under acidic pH (4-6), the iminobiotin-neutravidin linker was decomposed due 

to the reduced affinity of the protonated iminobiotin for neutravidin, causing the external 

PEG layer to be shed and exposing a cationic PLL layer, which facilitated QD uptake. NPs 
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showed higher uptake by five different cancer cell lines after incubation in a pH 5.5 

medium but minimal uptake at pH 7.4 (Poon et al., 2011). As a consequence of pH-

sensitive tumoral uptake, the NPs modified with iminobiotin showed longer retention in 

tumors than control NPs with biotin (Poon et al., 2011).  

pH-sensitive polymers have been used to form a surface layer that becomes more 

cell-interactive in tumoral pH. For example, low molecular weight chitosan (LMWC) was 

used as a pH-sensitive surface coating. Chitosan is a polysaccharide with primary amines, 

which impart a unique pKa of 6.5, matching the weakly acidic pH of tumor tissues 

(Amoozgar et al., 2012). Due to the reduced molecular weight (<6500 Da), LMWC remains 

neutral yet hydrophilic at pH 7.4, thus qualifying for a stealth polymer. LMWC was 

conjugated to PLGA, yielding a polymeric NP with a PLGA core and a LMWC surface 

(Amoozgar et al., 2012). The PLGA-LMWC NPs showed a slightly negative charge at pH 

7.4 but acquired a positive charge in acidic pH. Consequently, PLGA-LMWC NPs showed 

greater interactions with SKOV-3 cells at pH 6.2 than at pH 7.4, whereas the unmodified 

PLGA NPs showed limited cellular uptake irrespective of the pH (Amoozgar et al., 2012).  

Another example involves a cationic polyamidoamine (PAMAM) dendrimer 

coated with a zwitterionic chitosan derivative (ZWC) (K. C. Liu & Yeo, 2013). Amine-

terminated PAMAM dendrimer is an attractive carrier of drug and gene therapeutics due 

to the well-defined structure and functionalization potential; however, the utility is limited 

because of undesirable cytotoxic effects (Domanski et al., 2004). Created by partial 

amidation of chitosan, ZWC showed a negative charge in a relatively basic condition and 

positive charge in an acidic condition, where the transition pH is readily tunable according 

to the extent of amidation (Xu et al., 2010). The PAMAM dendrimer was electrostatically 

coated with ZWC, which was anionic in neutral pH, reducing toxicity associated with the 

cationic charge of the dendrimer. On the other hand, in mildly acidic pH, where ZWC 

charge switched from negative to positive, the PAMAM dendrimer was no longer protected 

and allowed to interact with the cell membrane and enter the cells (K. C. Liu & Yeo, 2013).  

Peptides are another class of pH-sensitive material that can be used to promote pH-

sensitive cell interactions (Yao et al., 2013). A pH low insertion peptide (pHLIP) is a pH-
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sensitive peptide made of 38 amino acids with moderate water solubility (Yao et al., 2013). 

As pH drops from 7.4 to 6.5, it becomes more hydrophobic with protonation of Asp and 

Glu residues and inserts its tail into the cell membrane lipid bilayer, helping NPs modified 

with the peptide to enter cells (Yao et al., 2013; Zhao et al., 2013). pHLIP was conjugated 

with MSN, an inorganic drug carrier, via a disulfide bond (Zhao et al., 2013). When placed 

in mildly acidic pH, the pHLIP-conjugated MSNs were readily taken up by cells, in which 

the disulfide linker was reduced and the loaded DOX released. Due to the pH-induced 

cellular uptake, this system showed greater cytotoxic effects in both drug sensitive (MCF-

7) and resistant (MCF-7/ADR) cell lines at pH 6.5 relative to those at pH 7.4 (Zhao et al.,

2013). A similar approach was used to enhance tumor uptake of gold NPs (Yao et al., 2013).

1.5 Conclusions  

NP drug carriers have overcome several challenges in administration of anti-cancer 

drugs, such as poor water-solubility and side effects associated with toxic solubilizers. 

They also hold a great promise to potentiate the effectiveness of chemotherapy by 

modulating biodistribution of drugs and concentrating their effects on tumor tissues. 

Designing smart systems that can respond to special nature of the tumor tissue can greatly 

enhance their efficiency and specificity. To translate the idealized concepts into clinical 

practice, it is important to design NPs to satisfy multiple (often conflicting) requirements, 

such as stable drug retention during circulation and site-specific drug release, and evasion 

of the immune surveillance and preferential interaction with target cells. Moreover, the NP 

design must consider physiological challenges of tumors such as heterogeneity, genetic 

instability, and increasing resistance to drug transport on tissue and cellular levels, which 

can counteract chemical and structural features of the NPs. Decades of research effort has 

brought substantial technological advancement in individual aspect. The remaining task is 

to integrate these technologies in a simple and scalable manner, which will justify capital 

investment in the translation of bench-top inventions to clinical product. 
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CHAPTER 2. PREPARATION AND EVALUATION OF LOW MOLECULAR 
WEIGHT CHITOSAN COATED NPS MEDIATED VIA DOPAMINE 

POLYMERIZATION 

2.1 Introduction  

To take advantage of the EPR effect, NPs should be able to circulate avoiding 

immune surveillance, until they reach tumors. Upon arrival at target tumors, NPs should 

be stably retained in the tissues and/or taken up by cancer cells to release the loaded drug. 

Traditionally, NPs are coated with hydrophilic neutral polymers such as PEG, which 

sterically stabilizes the NPs and delays adsorption of plasma proteins to the surface (Senior 

et al., 1991; Torchilin et al., 1994), to achieve long-term circulation. However, the PEG 

surface can also limit cellular interactions with target cells and cellular internalization, 

creating a ‘PEG dilemma’ (H. Du et al., 1997; Hatakeyama et al., 2011). As a way of 

overcoming the dilemma, we previously proposed a low molecular weight chitosan 

(LMWC) as an alternative surface layer (Amoozgar et al., 2012a). Chitosan is a linear 

polyaminosaccharide with a pKa value close to 6.5, which helps establish electrostatic 

interactions with negatively charged cell membrane in weakly acidic microenvironment of 

tumors (pH 6.8-7.2) (Gerweck & Seetharaman, 1996). At neutral pH, chitosan coated on 

polymeric NPs protects them from phagocytic uptake (Parveen & Sahoo, 2011) and 

prolongs their circulation time (Ishak et al., 2013). By reducing the MW to <6.5 kDa, we 

intended to increase hydrophilicity of the polymer and reduce pH-independent interactions 

with cells mediated by polymer chain entanglement, further improving its protective effect 

at neutral pH (Amoozgar et al., 2012a). We obtained the proof of concept in the previous 

study, using NPs produced with PLGA covalently conjugated to LMWC via an amide bond 

(PLGA-LMWC) (Amoozgar et al., 2012a)



41 

The PLGA-LMWC NPs, consisting of PLGA core and LMWC surface, showed a 

pH-sensitive surface charge profile, which translated to NP-cell interactions at weakly 

acidic pH with reduced phagocytic uptake and little non-specific NP-cell interactions at 

neutral pH (Amoozgar et al., 2012a). However, the covalent conjugation of LMWC to 

PLGA had several drawbacks. First, the chemical conjugation procedure is lengthy and 

inefficient and requires reactive reagents and catalysts that need to be completely removed 

after the reaction. Moreover, the conjugation process reduces the potential of NPs as a drug 

carrier. LMWC conjugation requires a sufficient number of carboxyl termini, which 

necessitates the use of a low molecular weight PLGA (4 kDa, PLGA4). This polymer is 

relatively hydrophilic and, thus, has an inherent limitation in encapsulating hydrophobic 

drugs. Covalent conjugation of LMWC makes the product even more hydrophilic, further 

compromising the ability of the formed NPs to load and retain a drug. Prolonged reaction 

in basic pH also accelerates degradation of the polymer and aggravates the problem. 

Consequently, PTX-loaded PLGA4-LMWC NPs showed a rapid drug release in PBS with 

0.1% Tween 80 in 24 hours (Amoozgar et al., 2012a). NPs showing high initial burst 

release are likely to release the drug in circulation and not contribute to improving tumor-

specific drug delivery; therefore, these shortcomings should be overcome for the LMWC-

coated NPs to make further contribution to chemotherapy. 

In an attempt to overcome this challenge, we have employed a new surface 

modification method based on dopamine polymerization (Lee et al., 2007), which has been 

used to functionalize several nanostructures including nanowires (Ryu et al., 2011), carbon 

nanospheres (Wang et al., 2012),  gold nanoclusters (Lin et al., 2013) and  gold nanorods 

(Black et al., 2013), and validated that the new method can effectively functionalize 

polymeric NPs with different types of ligands (Gullotti et al., 2013; Park et al., 2014). The 

dopamine polymerization method depends on oxidation of dopamine catechol, followed 

by formation of polydopamine (pD) layer on the NP surface, where functional ligands with 

amine or thiol are covalently conjugated. This method can be implemented in mild 

conditions such as brief exposure to pH 8.5, UV light (X. Du et al., 2014), or oxidants (Wei 

et al., 2010), does not require reactive reagents or lengthy reaction, and can be applied to a 

broad range of surface modifiers and NP platforms (Lee et al., 2007; Park et al., 2014). 
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Once dopamine polymerizes, it loses its dopaminergic activity (Park et al., 2014), and the 

resulting pD is biodegradable and biocompatible with a LD50 of 483.95 mg/kg in mice after 

intravenous injection (S. A. Abouelmagd et al., 2014).  

In this study, we use the dopamine polymerization method to produce LMWC-

coated NPs (Fig.3) based on the flexibility in controlling drug release. Here, LMWC 

molecules are incorporated into the pD layer on PLGA NPs via multiple amine groups. 

Since LMWC is introduced as an addendum to pre-formed NPs via the pD layer, the core 

NPs can be prepared with polymers that serve best to load and retain drugs, not constrained 

by the needs for carboxyl termini or the hydrophilicity of the modified polymer. We 

demonstrate that PLGA NPs modified with LMWC via dopamine polymerization method 

overcome the previously observed limitations of PLGA4-LMWC NPs and show the desired 

pH-sensitivity in cell interaction and drug delivery and the tendency to avoid phagocytic 

uptake, similar to PLGA4-LMWC NPs. We also investigate NP-cell interactions at acidic 

pH and their intracellular trafficking and discuss their implications in drug delivery to 

tumor tissues.  

Figure 3: Schematic diagram of PLGA-pD-LMWC NP preparation and following cellular
interactions. 
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2.2 Materials and Methods 

2.2.1 Materials 

Chitosan (90-150 kDa) was purchased from Sigma-Aldrich (MO, USA). PLGA 

(acid end cap, 4 kDa, LA:GA=50:50, PLGA4) was purchased from Durect Corp (AL, USA). 

PLGA (118 kDa, LA:GA= 65:35, PLGA118) was purchased from Lakeshore Biomaterials 

(AL, USA). PLGA (150 kDa, LA:GA=85:15, PLGA150) and fluorescein-conjugated PLGA 

(7 kDa, LA:GA=50:50, *PLGA) were purchased from Akina Inc. (IN, USA). Paclitaxel 

(PTX) was a gift from Samyang Genex Corp (Seoul, Korea). LysoTracker Red DND-99, 

CellMask Deep Red plasma membrane stain, and Hoechst 33342 were purchased form Life 

Technologies (CA, USA). Methoxy PEG amine, HCl salt (5 kDa, mPEG-NH2) was 

purchased from JenKem Technology USA (TX, USA). Dopamine hydrochloride was 

purchased from Alfa Aesar (MA, USA). Coomassie Brillant blue G-250 protein stain and 

sodium dodecyl sulfate-acrylamide gel electrophoresis (SDS-PAGE) molecular weight 

standards were purchased from Bio-Rad (CA, USA). (3-(4,5-Dimethylthiazol-2-yl)- 2,5-

diphenyltetrazolium bromide) (MTT) was purchased from Invitrogen (Eugene, OR, USA). 

All other materials were of analytical grade 

2.2.2 Preparation of PLGA Cores 

PLGA polymers with different molecular weights and LA:GA ratios (PLGA4: 4 kD, 

LA:GA=50:50, PLGA118: 118 kD, LA:GA=65:35 and PLGA150: 150 kD, LA:GA=85:15) 

were formulated into NPs via the single emulsion solvent evaporation method. 20 mg of 

polymer and 2.2 mg of PTX were dissolved into 1 ml DCM. The organic polymer phase 

was emulsified in 5 mL aqueous phase containing 5% PVA at 80% amplitude and on a 4-

s on and 2-s off pulse mode. Emulsion was dispersed in deionized water and stirred for 3 

hours to allow evaporation of DCM. NPs were collected via centrifugation at 12,000 rpm 

(15,000 xg rcf) for 30 minutes and washed three times using deionized water to remove 

any residual DCM and PVA. 
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2.2.3 Preparation and Characterization of LMWC 

LMWC was prepared by as previously described (Amoozgar et al., 2012a). Briefly, 

25 mg/mL of chitosan solution was incubated in 33% hydrogen peroxide for 3.5 hours, 

dialyzed against water with a molecular weight cut-off (MWCO) of 3500 Da, and freeze-

dried. The molecular weight of LMWC was estimated by matrix-assisted laser desorption 

ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) analysis and analytical 

ultracentrifugation (AUC). For mass spectrometry, 1 mg/mL LMWC solution was 

prepared in acidified water (pH 5), filtered with a 0.2 µm syringe filter, and mixed with a 

matrix (sinapinic acid solution in acetonitrile/water (50:50) containing 0.1% trifluoroacetic 

acid) in 1:1 ratio. Mass analysis was performed with a 4800 MALDI TOF/TOF instrument 

(Applied Biosystems, USA) in 2000-8000 m/z range. For AUC, LMWC solution in sodium 

acetate buffer (pH 4.3, 10 mM) was prepared in 1, 0.5 and 0.25 mg/mL and analyzed with 

a Beckman Optima XL-I ultracentrifuge (Beckman Coulter Inc., CA, USA). The 

sedimentation coefficients and apparent molecular weights were calculated from size 

distribution analysis with SEDFIT v.12.0. The pH dependence of water solubility of 

LMWC was estimated by measuring the transmittance of LMWC solution (0.5 mg/mL) 

varying the pH from 2.5 to 10 with NaOH. % Transmittance (%T) was calculated as 10-A

100, where A was the absorbance of the solution at 500 nm.  

2.2.4 Preparation of Coated Particles 

PLGA4-LMWC NPs.  A covalent conjugate PLGA4-LMWC was prepared as 

described previously (Amoozgar et al., 2012a). Briefly, 200 mg of LMWC was dissolved 

in acidified water (20 mL, pH 5) and added to 40 mL dimethyl sulfoxide (DMSO). Five 

hundred milligrams of PLGA4 was dissolved in 2 mL of dichloromethane (DCM), to which 

hydroxybenzotriazole (HOBT) (74.3 mg), 1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) (106.2 µL), and tetramethylethylenediamine (TEMED) (269.9 µL) 

were sequentially added. The activated PLGA4 was added to LMWC solution dropwise 

and stirred overnight. The formed conjugate, PLGA4-LMWC, was purified by dialysis 

(MWCO: 3500 Da) against a mixture of DMSO and water (50:50) and then water, freeze-

dried, and stored at -20°C. PLGA4-LMWC NPs were prepared using the single emulsion 
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solvent evaporation method. Twenty milligrams of PLGA4-LMWC was dissolved in a 

mixture of 0.5 mL DMSO, 0.5 mL DCM and 0.1 mL water, optionally with 1.2 mg of 

paclitaxel (PTX). The organic phase was emulsified in 5 mL of aqueous phase containing 

5% polyvinyl alcohol (PVA) using a Vibra-Cell probe sonicator (Sonics, Newtown, CT, 

USA) at 80% amplitude with a 4-s on and 2-s off pulse mode. The emulsion was dispersed 

in 10 mL of deionized water and stirred for 3 hours to evaporate DCM. NPs were collected 

via centrifugation at 10,000 rpm for 30 minutes and washed three times. Fluorescently 

labeled PLGA4-LMWC NPs (*PLGA4-LMWC NPs) were prepared by replacing 25% of 

polymer with *PLGA.  

PLGA-pD-LMWC and PLGA-pD-PEG particles. PLGA-pD-LMWC NPs were 

prepared by coating pre-formed particles with LMWC via the dopamine polymerization 

method (Park et al., 2014). For PLGA cores, organic phase containing 50 mg polymer 

(PLGA118, PLGA150 or PLGA7-FITC=PLGA*) were emulsified into 10 mL of 4% PVA 

solution and followed by dispersion into deionized water. For PTX loaded NPs, 10 mg 

PTX were incorporated into the organic phase. Emulsion was stirred for 5 hours to allow 

DCM evaporation. NPs were collected by centrifugation and washed with water three times.  

PLGA microparticles (MPs) were prepared in a similar way except that the 

emulsification process was performed with a Silverson L4R Laboratory Mixer (East 

Longmeadow, MA, USA) for 1 minute at 5,000 rpm. The core particles were then prime-

coated with polymerized dopamine (pD) by incubation in 1 mg/mL dopamine solution in 

Tris buffer (pH 8.5, 10 mM) for 3 hours at room temperature. The pD-coated particles were 

collected by centrifugation, washed two times, and incubated with LMWC aqueous 

solution (pH 7.5, 0.5 mg/mL) for 40 minutes to produce PLGA-pD-LMWC particles. For 

comparison, PEG-modified (PLGA-pD-PEG) particles were created by incubating the pD-

coated particles in mPEG-NH2 solution (pH 8.5, 2 mg/mL). The particles were collected 

by centrifugation and washed two times to remove excess LMWC or mPEG-NH2. 

Throughout this study, PLGA particles refer to PLGA150 particles unless stated otherwise. 
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2.2.5 Particle Characterization 

Particle size and zeta potential of particles were determined using a Malvern 

Zetasizer Nano ZS90 (Worcestershire, UK). The size was measured with particles 

dispersed in phosphate buffer (2.2 mM, pH 7.4).  The zeta potential was determined at 

different pHs with particles dispersed in phosphate buffer (2.2 mM, pH 7.4) or MES buffer 

(5 mM, pH 6.2). Particle morphology was observed by transmission electron microscopy 

(TEM). An aqueous suspension of freshly prepared NPs (0.5-1 mg/mL) was spotted on a 

formvar-coated carbon grid (400 mesh) and negatively stained with 2% uranyl acetate 

solution. The grid was air-dried and examined with a FEI Tecnai T20 transmission electron 

microscope (OR, USA).  

The LMWC content in PLGA-pD-LMWC NPs was quantified by the ninhydrin 

assay. The ninhydrin reagent was prepared by dissolving ninhydrin and hydrindantin in 

lithium acetate buffer (Amoozgar et al., 2012a; Leane et al., 2004). 0.5 mg of freeze-dried 

NPs were dispersed in 0.5 mL water and combined with 0.5 mL of fresh reagent. The 

mixture was heated in boiling water for 30 minutes, then cooled and quenched with 15 mL 

of 50% ethanol solution. The absorbance of the solution was read at 570 nm using 

SpectraMax M3 microplate reader (Molecular Device, Sunnyvale, CA). The amount of 

LMWC per NP sample was calculated after subtracting the background absorbance of 

PLGA-pD NPs, using a calibration curve drawn with LMWC solutions of known 

concentrations.  

2.2.6 PTX Release from PLGA Matrices 

2.2.6.1 In Vitro Release Study 

To determine PTX loading in NPs, freeze-dried NPs were accurately weighed and 

dissolved in 0.5 mL acetonitrile. After precipitating polymer with the addition of 0.5 mL 

deionized water, the sample was centrifuged, and the supernatant analyzed via high 

pressure liquid chromatography (HPLC). The loading efficiency (LE%) was calculated as 

the amount of PTX per NP mass. For in vitro release studies, NPs equivalent to 8.75 µg 

PTX were dispersed in 1 mL of phosphate-buffered saline (PBS, pH 7.4) containing 0.2% 



47 

Tween 80 and shaken at 37°C. At regular time points, NP suspension was centrifuged at 

12,000 rpm (15,000 xg rcf) for 15 min, 0.8 mL of supernatant was sampled and replaced 

with 0.8 mL of fresh buffer, and the pellet was resuspended and returned for continued 

incubation. The sampled supernatant was filtered with a 0.45 µm syringe filter and 

analyzed by HPLC.  HPLC analysis was performed with an Agilent 1100 HPLC system 

(Palo Alto, CA), equipped with Ascentis C18 column (25 cm × 4.6 mm, particle size 5 μm). 

The mobile phase was a 50:50 mixture of water and acetonitrile run at a flow rate of 1 

mL/min. PTX was detected by a UV detector (227 nm).  

2.2.6.2 Cell Culture 

SKOV-3 human ovarian cancer cells (ATCC, Manassas, VA, USA) were grown in 

RPMI-1640 medium containing 10% FBS, 100 units/mL of penicillin and 100 µg/mL of 

streptomycin. 

2.2.6.3 Cytotoxicity of PLGA NPs 

Cells were seeded in 96-well plates with the density of 8000 cells/well. Next day, 

PLGA NPs equivalent to 1-1000 nM PTX was incubated with the cells for 24 or 72 hours. 

For the former, NPs containing medium was replaced with fresh one after 24 hour 

incubation with treatment, and the cells were further incubated for 48 more hours. For the 

latter, cells were incubated with NPs for 72 hours without medium change. At the end of 

the incubation time, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

assay was used to determine cell viability. Briefly, medium was replaced with 100 µL of 

fresh medium and 15 µL of MTT solution (5 mg/mL), and cells were incubated for 3.5 

hours, followed by addition of 100 µL of stop solution (50 % DMSO, 20% SDS and 0.02% 

acetic acid). Next day, wells absorbance was read using a SpectraMax M3 microplate 

reader (Molecular Device, Sunnyvale, CA) at 529 nm. 

2.2.7 Protein Adsorption to NP surface  

NPs were incubated with 50% fetal bovine serum (FBS) in PBS at 37°C with 

shaking for 1 or 24 hours. NPs were collected by centrifugation at 13,200 rpm and washed 

3 times with water to remove excess and loosely bound proteins. To strip off hard corona 
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proteins from NP surface, NPs were boiled in sample buffer containing 5-mercaptoethanol 

and 2% SDS for 5 minutes. The sample was analyzed with SDS-PAGE. The resolved 

protein bands were stained with Coomassie brilliant blue G-250. The molecular weight of 

band of interest was determined using GelAnalyzer 2010a software 

(www.GelAnalyzer.com). Briefly, a calibration curve was constructed with a plot of the 

relative migration distance (Rf) of standard bands versus their MWs and used to determine 

the MW of resolved bands in each gel. The intensity of different bands was quantified using 

ImageJ 1.48v software densitometry analysis (National Institute of Health, MD, USA).   

2.2.8 NP-Cell Interaction Studies 

2.2.8.1 Cell Culture 

SKOV-3 human ovarian cancer cells (ATCC, Manassas, VA, USA) were grown in 

RPMI-1640 medium containing 10% FBS, 100 units/mL of penicillin and 100 µg/mL of 

streptomycin. J774A.1 mouse macrophages (ATCC) were grown in Dulbecco's modified 

Eagle medium (DMEM) medium supplemented with 10% FBS, 100 units/mL of penicillin 

and 100 µg/mL of streptomycin. All cell experiments were performed in the FBS-

supplemented medium. 

2.2.8.2 Quantitative Analysis of Cell-Particle Interactions 

SKOV-3 cells and J774A.1 macrophages were seeded in 6-well plates at a density 

of 500,000 cells per well and incubated overnight. Next day, the medium was replaced with 

fresh medium that contained 0.1 mg/mL of fluorescently labeled NPs or MPs (*NPs or 

*MPs). For SKOV-3 cells the medium pH was adjusted to 6.2 or 7.4. After 3 hours, cells

were harvested by trypsinization (SKOV-3) or scraping (J774A.1), dispersed in fresh

medium of corresponding pH, and analyzed with a FC500 flow cytometer (Beckman

Coulter, Indianapolis, IN, USA). At least 10,000 gated events were acquired, and data was

analyzed with the FlowJo software (Treestar, CA, USA).



49 

2.2.8.3 Visualization of Cell-Particle Interactions 

NP interaction with SKOV-3 cells was observed with confocal microscopy. SKOV-

3 cells were seeded in a 35 mm glass bottomed dish (MatTek) at a density of 500,000 cells 

per dish. After overnight incubation, the medium was replaced with fresh RPMI medium 

adjusted to pH 6.2 or 7.4, which contained 0.1 mg/mL of *NPs. After 3 hours of incubation, 

the medium was removed, and the cells were washed with fresh medium twice to remove 

free and loosely-bound *NPs. Cells were incubated with Hoechst 33342 nuclear staining 

dye at 5 µg/mL for 10 minutes, and imaged with a Nikon-A1R confocal microscope (Nikon 

America Inc., NY, USA). The *NPs were excited with a 488 nm laser, and the emission 

was read from 500 to 550 nm. The cell nuclei were excited with a 407 nm laser, and the 

emission was read from 425 to 475 nm.  

To locate NPs in SKOV-3 cells, cells were further stained with CellMask Deep Red 

(Life Technologies) or LysoTracker Red DND-99 (Life Technologies) for labeling the 

plasma membrane or acidic intracellular organelles (late endosomes and lysosomes), 

respectively. Cells were incubated with *NPs in the same manner as above. After removing 

*NPs, CellMask Deep Red was added at 5 µg/mL or LysoTracker Red at 30 nM. Cells

were incubated with each marker for 40 min, washed twice with fresh medium at

corresponding pH, stained with Hoechst 33342, and imaged with a Nikon A1R confocal

microscope. Stained plasma membrane was excited at 639 nm, and emission was collected

from 663 to 738 nm. LysoTracker stained organelles were excited at 561 nm, and the

emission was collected from 570 to 620 nm.

Time-lapse confocal microscopy was performed to examine the time course of 

cellular uptake and intracellular trafficking of *PLGA-pD-LMWC NPs. SKOV-3 cells 

were seeded in a glass bottomed dish at a density of 500,000 cells per dish. After overnight 

incubation, the medium was replaced with 1 mL of fresh medium adjusted to pH 6.2, and 

cells were stained with LysoTracker Red DND-99 and Hoechst 33342. The dish was put 

in an environmental chamber, supplied with 5% CO2, and mounted on Nikon A1R confocal 

microscope. The chamber, microscope stage, and objective lens were heated to 37°C. 



50 

*PLGA-pD-LMWC NPs (0.1 mg) was added to the dish, and the cells were imaged over

4.5 hours.

Macrophage uptake of *MPs was visualized with fluorescence microscopy. 

J774A.1 macrophages were seeded in a 24-well plate at a density of 100,000 cells per well 

and incubated overnight. The medium was replaced with fresh one containing 0.1 mg/mL 

*MPs. After 3 hours, the medium was removed, and cells were washed with fresh medium

twice. The cells were stained with Hoechst 33342 and imaged with a Cytation-3 imaging

system (BioTek, USA).

2.2.9 pH Selective PTX Delivery to Cancer Cells by NPs 

Cellular uptake of PTX delivered by NPs was estimated at different pHs. SKOV-3 

were seeded at a density of 200,000 cells per well in a 12-well plate. Next day, the medium 

was replaced with 0.8 mL of fresh medium of pH 6 or 7.4, which contained PTX-loaded 

PLGA-pD-LMWC- or PLGA-pD-PEG NPs equivalent to 4.8 µg of PTX. Free PTX 

dissolved in DMSO solution was added at the same concentration to a control group. The 

total amount of DMSO added to 0.8 mL of medium was 12 µL and non-toxic to the cells. 

After 2.5 hours at 37°C, the medium was removed, and cells were trypsinized, suspended 

in fresh medium of corresponding pH, and centrifuged at 2,000 rpm to separate cells from 

NPs. The cell pellet was lysed by three freeze-thaw cycles, suspended in 0.5 mL PBS, and 

probe sonicated. The cell lysate was spiked with 35 µg of carbamazepine as an internal 

standard, extracted with 1.5 mL of ethyl acetate for 40 min, and centrifuged at 4,000 rpm 

for 25 minutes to separate ethyl acetate layer. 1.3 mL of ethyl acetate were dried under 

vacuum in a glass tube and reconstituted with 1:1 acetonitrile/water solution and analyzed 

with HPLC. A PTX calibration curve was drawn with different amounts of PTX added to 

cell suspension in PBS and treated in the same way.  
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2.3 Results 

2.3.1 Preparation and Characterization of PLGA Cores 

PTX loaded PLGA NPs with different molecular weights (4, 118 and 150 kDa) and 

LA: GA (50:50, 65:35 and 85:15), respectively, were prepared via the single emulsion-

solvent evaporation method. The produced NPs had average diameters of ~220- 250 nm, 

low polydispersity indices (PDI, the width of the particle size distribution, obtained from 

the cumulant analysis (Amoozgar et al., 2012b)) and negative zeta potentials (Table 2). As 

the molecular weight (MW) and LA fraction in the polymer increased, the LE of PTX 

increased from 8.17 to 11.4%. This is likely due to the relatively high hydrophobicity of 

high MW polymers, which had greater affinity for hydrophobic PTX and solidified faster 

than lower MW polymers. To evaluate the NP’s ability to retain PTX, in vitro release 

kinetics of PTX was examined in phosphate buffered saline (PBS) containing 0.2% Tween 

80 at pH 7.4. Tween containing medium was chosen to provide an amphiphilic 

environment for PTX release, more physiologically relevant than plain PBS. As expected, 

MW and LA:GA had a dramatic effect on in vitro release profiles (Fig. 4).  

Table 2: Particle size, zeta potential and loading efficiency of PTX loaded NPs 

Among the three types of PLGA NPs, the least hydrophobic one, PLGA4 NPs 

released almost all loaded PTX in a few hours. More hydrophobic PLGA118 NPs showed 

less burst initial release of <50% in the first 8 hours and retained PTX for a longer period 

of time. PLGA150 NPs had the least burst release effect. At the end of the release study, 

~30% and 10% of the loaded PTX was retrieved by the end of the release from PLGA150 

and PLGA118 NPs, respectively. 

NP type 
(PolymerMW (LA:GA)) 

Particle size 
(diameter, 

nm) 

Polydispersity 
index (PDI) 

Zeta potential 
at pH 7.4 

(mV) 

Loading efficiency 
(LE %) 

PLGA4 (50:50) 250 ± 41 0.124 ± 0.02 -8.02 ± 0.3 8.17  ± 0.6 

PLGA118 (65:35) 230 ± 36 0.08 ± 0.013 -4.67 ± 2.5 8.25 ± 0.47 
PLGA150 (85:15) 223 ± 12 0.06 ± 0.04 -3.91 ± 2.11 11.4 ± 0.38 
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To confirm the results of the in vitro release study and compare different polymers 

in a physiologically relevant serum-containing medium, cytotoxic activity of PTX loaded 

NPs on sensitive SKOV3 cells was evaluated as an indirect measurement of PTX release 

from the NPs. Since plain PLGA NPs were not taken up by the cells (Xu et al., 2009), it 

was expected that the killing effect would be directly proportional to the drug release.  For 

this study, SKOV-3 cells were exposed to PTX loaded PLGA4, PLGA118 and PLGA150 for 

24 or 72 hours, and their mitochondrial activity was determined via the MTT assay.  All 

NPs showed a less cytotoxic effect than free PTX (Fig. 5a and b) reflecting the attenuation 

of drug release. The cytotoxic effect trend matched that seen with the in vitro release study 

for both 24 and 72 hour exposure times; PLGA4> PLGA118 > PLGA150.  

Figure 4: In vitro release profiles of PTX from NPs of different polymer matrices in PBS (0.2%
Tween 80, pH 7.4). 
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However, the extent of difference observed in this study was less than that seen 

with the release study. This can be explained by the effect of cell culture medium 

components, including serum proteins, on the release of PTX from the polymer matrix 

and/or stability of the released PTX. The PLGA matrix itself did not contribute to the 

cytotoxic effect of PTX loaded PLGA NPs (Fig. 5c and d). 

2.3.2 Preparation and Characterization of Coated NPs 

LMWC was produced by H2O2 digestion. Three and a half hour digestion in 33% 

H2O2 reduced the chitosan molecular weight from 90-150 kDa to 4.8 kDa, consistent our 

Figure 5: Viability of SKOV-3 cells exposed to free PTX and PTX loaded NPs for 24 (a) or 72 hour 
(b), and blank PLGA NPs for 24 (c) or 72 hour (d). 

c d)

a) b)

c) d)
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the previous study (Amoozgar et al., 2012a). The MALDI spectrum of LMWC showed a 

peak at ~4800 m/z (Fig. 6a). The AUC analysis confirmed the result with additional insight 

into the structure. The global analysis of fitted data identified two species with apparent 

MWs of 2.5 and 7.3 kDa, existing in a dynamic mixture in solution. The frictional 

coefficient ratio (f/fo) was ~2.2, which indicated that LMWC had a semi-flexible rod shape, 

in agreement with existing studies (Errington et al., 1993). LMWC was soluble in water 

over a wide range of pH including 7-9, where the parent chitosan was not soluble (Fig. 6b).  

LMWC-coated NPs were produced with a polymer pre-conjugated with LMWC 

(PLGA4-LMWC NPs) or by LMWC conjugation via pD to the pre-formed PLGA NPs 

(PLGA-pD-LMWC NPs). PLGA4-LMWC NPs or pre-formed core PLGA NPs showed 

similar sizes, 160 nm and 158 nm, respectively (Fig. 7a). LMWC coating via pD increased 

the size to 209 nm (Fig. 7a). The size increase is likely due to aggregation by additional 

centrifugation rather than the thickness of the conjugated layer, given that the 

b) a) 

Figure 6: (a) Analysis of LMWC via MALDI-TOF/TOF using sinapinic acid as a matrix (1:1), (b)
pH-dependent change in transmittance for LMWC (n=2) and undegraded chitosan (0.5 mg/mL in
water) measured at 500 nm. 
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polydispersity increased with coating (Fig. 7a), and individual NPs observed with TEM 

showed similar sizes irrespective of the coating (Fig. 8). TEM of negatively stained NPs 

revealed thin layer of pD coating on the NP surface. However, no other difference was 

observed in NPs further conjugated with LMWC or PEG-NH2. 

a) b)

Figure 7: Particle size and surface charge analysis of different NPs: (a) Average diameter (Zavg) 
and polydispersity index, (b) Zeta potential at pH 7.4 and 6.2. 
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Although the presence of LMWC or PEG conjugated to pD were not visually 

identified in TEM images, their immobilization was confirmed by the altered surface 

properties. PLGA-pD-LMWC NPs showed a characteristic pH-dependent charge profile, 

negative at pH 7.4 and positive at pH 6.2, similar to PLGA4-LMWC NPs. PLGA NPs, 

PLGA-pD NPs, and PLGA-pD-PEG NPs remained negatively charged irrespective of the 

pH (Fig. 7b). PLGA NPs incubated with LMWC without pD prime coating 

(PLGA/LMWC NPs) did not show the pH-dependent charge profile, indicating that 

LMWC did not physically adsorb to PLGA and the LMWC immobilization depended on 

the pD layer. The LMWC content in PLGA-pD-LMWC NPs was determined to be 4.7±3% 

according to the ninhydrin assay, lower than the estimated value for PLGA4-LMWC NPs 

(8.7±1.5%) (Amoozgar et al., 2012a).  

Figure 8: Transmission electron microscopy (TEM) images of NPs negatively stained with 2% 
uranyl acetate. Scale bar: 50 nm (top panel), 100 nm (bottom panel). 

2.3.3 In Vitro PTX Release of Coated PLGA NPs 

PLGA4-LMWC NPs and PLGA-pD-LMWC NPs were compared with respect to 

the LE of PTX and in vitro PTX release. PLGA4-LMWC NPs showed a LE of 27.9±7.9%, 

higher than the theoretical LE (5.7%), which suggested partial loss of PLGA4-LMWC 
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polymer during NP preparation (Amoozgar et al., 2012a). PLGA-pD-LMWC NPs made of 

PLGA118 and PLGA150 showed LE’s of 12.8±5.3% and 8.6±3.4%, corresponding to 77.0% 

and 51.7% of the theoretical LE (16.7%), respectively. In vitro PTX release kinetics study 

was performed in PBS containing 0.2% Tween 80 (pH 7.4). PLGA4-LMWC showed initial 

burst release in this medium, releasing 90.4±8.5% of the loaded dose in 7 hours. On the 

other hand, PLGA118-pD-LMWC and PLGA150-pD-LMWC NPs released PTX more 

slowly: 54.2±5.5% and 39.9±9.0% of the total dose in 7 hours, reaching ~80% release in 

48 hours (Fig. 9). Since PLGA150-pD-LMWC NPs retained PTX most stably, they were 

used in the rest of the study, referred to as PLGA-pD-LMWC NPs without a subscript.  

2.3.4 Protein Adsorption to NPs Surface

 To identify proteins binding to the NPs during incubation in serum-containing 

medium and correlate them with NP-cell interactions, the NPs were incubated in 50% FBS 

solution for 1 or 24 hours, and the proteins tightly bound to NPs (“hard corona”) were 

analyzed by gel electrophoresis. Proteins bound to NPs were recovered with a detergent 

(SDS) and a reducing agent (5-mercaptoethanol), combined with heating (Docter et al., 

2014; Monopoli et al., 2011), and analyzed with SDS-PAGE. The intensity of protein bands 

Figure 9: In vitro release of PTX from different NPs in PBS (0.2% Tween 80) at 37˚C. At 7th 
hour, release % is significantly different among three types of NPs (p<0.05, two-tailed T-test, 
n=3). 
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increased with time (Figs. 10a and b), indicating the increase of protein binding to NPs, 

as previously observed (Casals et al., 2010). Three major bands were identified at 66 kDa, 

61 kDa, and 52 kDa, likely corresponding to bovine serum albumin, fetuin-A (Martel et al., 

2010; Young et al., 2009), and IgG (Ehrenberg et al., 2009), respectively. Albumin and 

fetuin-A made up dominant fractions, reflecting their abundance in FBS (Fig. 10c) (Wu et 

al., 2013).  

The relative intensity of IgG band increased with time in all NPs tested, irrespective 

of the coating polymers (LMWC vs. PEG) (Fig. 10c). Consistent with the protein 

Figure 10: Analysis of NPs hard corona composition post incubation in 50% FBS. Proteins were
stripped off NPs and resolved via SDS-PAGE. Protein extracts of different NPs post incubation for
1 or 24 hours were run on 12% gels and compared to standards ‘ladder’ (left) and FBS (right of gel).
A representative Coomassie blue-stained gel of resolved corona proteins is shown in (a), where 
arrows point to bands of interest. Relative band intensity of most prominent proteins pointed with
arrows in (a) was analyzed via ImageJ 1.48v software. Average of four different gels is shown in (b).
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adsorption, the NPs with hard corona showed relatively more negative zeta potential than 

those in buffer (Fig. 11). 

2.3.5 NP-Cell Interaction Studies 

Given that PLGA-pD-LMWC NPs did not completely avoid protein binding in 

serum solution, we were curious if PLGA-pD-LMWC NPs would maintain the intended 

advantage of pH-sensitive surface in serum-containing medium. Fluorescently labeled NPs 

(*PLGA-pD-LMWC NPs and other control *NPs) had similar sizes and surface charges to 

those of unlabeled NPs (Fig. 12). The labeled *NPs were incubated with SKOV-3 cells in 

medium containing 10% FBS at pH 7.4 and 6.2. From flow cytometry analysis, only the 

cells incubated with *PLGA-pD-LMWC and *PLGA-LMWC NPs at pH 6.2 showed 

increased geometric mean, indicating NP-cell interaction (Fig. 13a). Those incubated with 

*PLGA-pD-LMWC or *PLGA-LMWC NPs pH 7.4 did not show such increase, which

means that LMWC-coated NPs can preferentially interact with cells in mildly acidic

environment such as the extracellular matrix of solid tumors but not in normal tissues.

*PLGA, *PLGA-pD, and *PLGA-pD-PEG NPs had no cell interaction at either pH.

Confocal microscopy confirmed this result (Fig. 13b).

Figure 11: Zeta potential of protein coated PLGA-pD-LMWC and PLGA-pD-PEG NPs. NPs 
were incubated in PBS or 50% FBS in PBS. (n=3). 
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Figure 12: Analysis of different fluorescent particles: Average diameter (Zavg) of fluorescent NPs 
(a), and Zeta potential at pH 7.4 and 6.2 of fluorescent NPs (b) and MPs (c). 

Figure 13: pH dependent cellular interaction of different fluorescently labeled NPs (*PLGA) 
with SKOV-3 cells as quantified by (a) Flow-cytometry (Geometric mean at pH 6.2 was 
significantly different for *PLGA-LMWC and *PLGA-pD-LMWC from that of *PLGA, 
*PLGA-pD and *PLGA-pD-PEG, two tailed t-test, P <0.05) or visualized via confocal
microscopy (b) after three hours of incubation (Green= NPs labeled by FITC, Blue= nuclei
stained by Hoechst).
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To locate *PLGA-pD-LMWC NPs with respect to cells, cell membrane or acidic 

intracellular organelles (late endosomes and lysosomes) were stained after removing 

uninternalized or loosely bound NPs. *PLGA-pD-LMWC NPs incubated with SKOV-3 

cells at pH 6.2 for 3 hours were observed on the membrane or within the membrane 

boundary (Figs. 14a and b), indicating that they were partly internalized by the cells, but 

not at pH 7.4 (Fig. 14a). *PLGA-pD-LMWC NPs were not colocalized with the acidic 

organelles at least in 3 hours (Fig. 15a). According to time-lapse microscopy, cell binding 

of *PLGA-pD-LMWC NPs at pH 6.2 occurred in 60-75 min (Fig. 15b). The NP signals 

increased over time (Fig. 15b and 16), both outside and inside the cells, but NPs did not 

traffic into the late endosomes and lysosomes at least by 4.5 hours (Fig. 15b).  

Figure 14: Cellular uptake of *PLGA-pD-LMWC NPs by SKOV-3 cells after three hours of 
incubation at pH 7.4 or 6.2, imaged via confocal microscopy as thin sections (a) or z-stack (b, 
right panel). A cross section showing XY, XZ and YZ planes demonstrates NPs intracellular 
localization (b, left panel) (Green= NPs labeled by FITC, Red= cell membrane labeled by 
CellMask deep red). 
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To test if the LMWC layer could reduce phagocytic uptake of particles despite the 

apparent protein binding, *PLGA-pD-LMWC MPs and control *MPs (2-3 µm in diameter), 

with similar surface charge profiles to those of *NPs (Fig. 12c), were incubated with 

J774A.1 macrophages in medium containing 10% FBS, and the extent of MP phagocytosis 

was determined by measuring the fluorescence of macrophages by flow cytometry and 

fluorescence microscopy. Here, MPs were used instead of NPs, as they are more readily 

phagocytosed than NPs (Tabata & Ikada, 1988), hence serving as a more sensitive model 

for evaluating macrophage uptake of particles. *PLGA MPs were taken up most avidly 

(Fig. 17). *PLGA-pD MPs were taken up less than the naked MPs due to the hydrophilicity 

Figure 15: Intracellular trafficking of *PLGA-pD-LMWC NPs in SKOV-3 cells imaged by 
confocal microscopy after three hours of incubation at pH 7.4 or 6.2 (a). Time lapse imaging of 
*PLGA-pD-LMWC NPs incubated with SKOV-3 cells at pH 6.2 over 270 minutes (b) (Green=
NPs labeled by FITC, Red= Lysotracker Red DND-99).
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imparted by amine-containing pD. *PLGA-pD-LMWC MPs showed significant reduction 

in macrophage uptake, to even greater extent than *PLGA-pD-PEG MPs (Fig. 17). 

Figure 16: Time lapse imaging of *PLGA-pD-LMWC NPs after incubation with SKOV-3 cells 
over 270 minutes at pH 6.2 (Green= NPs labeled by FITC). 
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We hypothesize that selective cell interaction of PLGA-pD-LMWC NPs at acidic 

pH would translate to superior drug delivery. To test this, PTX-loaded PLGA-pD-LMWC 

NPs were incubated with SKOV-3 cells at pH 7.4 and 6 for 2.5 hours, and the amount of 

PTX retained by the cells was quantified. Cells incubated at pH 6 had > 4-fold higher PTX 

content as compared to pH 7.4 (Fig. 18). On the other hand, there was no such difference 

for the cells incubated with free PTX or PTX-loaded PLGA-pD-PEG NPs. This shows that 

the enhanced NP-cell interaction at acidic pH leads to similar enhancement in drug delivery 

to the cells.   

Figure 17: J774A.1 macrophage uptake of fluorescently labeled MPs at pH 7.4 after three hours 
analyzed via flow cytometry (a) or visualized with Cytation 3 fluorescence imaging system (b). 
All geometric means were significantly different from each other (One-way Anova test, P< 0.05). 
**p= 0.0034 and ***p=0.0004 (two-tailed t-test). (Green= MPs labeled by FITC) 
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2.4 Discussion 

Polymeric NP systems have been pursued for decades as a way of achieving tumor-

specific drug delivery (Cheng et al., 2012). One of the critical challenges in clinical 

translation of these systems is the increasing complexity of NP design and production 

methods. While the complexity is introduced to accommodate the developing knowledge 

of cancer biology, it also leads to increasing cost and regulatory scrutiny, making the 

development of a commercial product more challenging (Cheng et al., 2012; Goldberg et 

al., 2013). Moreover, the complicated design and synthesis can induce undesirable changes 

to the material properties of the NPs such as MW and hydrophobicity, which are essential 

for their primary roles: loading and retaining drugs. We experienced this problem in 

developing PLGA4-LMWC NPs, where the LMWC conjugation allowed for specific drug 

delivery to acidic tissues but increased hydrophilicity of the polymer and compromised the 

NP’s function as a carrier of PTX (Amoozgar et al., 2012a). Here, we used a new surface 

modification method based on dopamine polymerization to decouple the NP formation 

from the surface modification, enabling independent control of NP cores and surface 

properties for drug loading/release and specific NP-cell interactions, respectively.  

Figure 18: pH dependent PTX retention post incubation of SKOV-3 cells with PTX loaded NPs 
or free PTX at pH 7.4 or 6. NPs were incubated with the cells for two and half hours at either 
pH after which cells were harvested, separated from NPs and analyzed for PTX content 
(*p=0.03, two-tailed T-test, n=4-8). 
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The LMWC-coated PLGA NPs via dopamine polymerization (PLGA-pD-LMWC 

NPs) showed comparable average diameter and pH-dependent charge profile to those of 

PLGA4-LMWC NPs (Fig. 7). The LMWC content in PLGA-pD-LMWC NPs was lower 

than that of PLGA4-LMWC NPs, but it does not necessarily indicate less efficient coating 

because in PLGA4-LMWC NPs a fraction of the LMWC is supposed to be buried in the 

NPs and not exposed on the surface. Given the extent of charge change and NP-cell 

interaction profiles (Fig. 13), the surface exposed LMWC of the two NPs is likely to be 

comparable. 

The PTX LE of PLGA4-LMWC NPs was apparently higher than that of PLGA-pD-

LMWC NPs, but this is likely because of the hydrophilicity of PLGA4-LMWC polymer, 

which was selectively washed out during the NP preparation (Amoozgar et al., 2012a). 

PTX-loaded PLGA-pD-LMWC NPs produced with PLGA118 and PLGA150 showed more 

prolonged drug release than PTX-loaded PLGA4-LMWC NPs, due to the greater 

hydrophobicity and MW of the polymers. PTX release in the first few hours from these 

NPs was much slower than that from PLGA4-LMWC NPs and sustained over three days 

(Fig. 9), suggesting that these NPs may reduce premature drug release in circulation during 

the critical period for NP biodistribution. The drug release from PLGA4-LMWC NPs 

reported in this study appears faster than that in the previous study (Amoozgar et al., 2012a), 

but the two results are not directly comparable because the Tween 80 concentration in 

release medium was different (0.2 vs. 0.1%). We chose 0.2% Tween 80 in PBS as release 

medium, as we determined that it was suitable to mimic the amphiphilic feature of 

physiological fluid and simulate a sink condition faced in vivo (Sara A. Abouelmagd et al., 

2015). Even though the drug release attenuation appears to be modest as compared to the 

previous study, the actual extent of attenuation is deemed significant given the difference 

of the medium. The NP core can be further optimized, if additional release control is 

necessary, by simple replacement of the polymer with more hydrophobic and slowly 

degrading ones (Mittal et al., 2007). 

The LMWC layer introduced via pD layer to the pre-formed PLGA NPs provided 

pH-sensitive functionality necessary for desired cell-NP interactions (Fig. 7b). Prior to 

testing cellular uptake of NPs, we investigated protein binding to PLGA-pD-LMWC NPs 
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incubated in serum solution. As the NPs enter the blood stream, they instantaneously 

interact with plasma proteins to be covered with a protein corona on NPs surface. The 

protein coronal is composed of a tightly bound stable “hard” corona and a loosely bound 

“soft” corona, which can be dynamically exchanged with other proteins (Milani et al., 

2012). Since NPs entering the bloodstream cannot completely avoid protein binding even 

with protective surface layer (Walkey et al., 2012) and the identity of bound proteins has 

shown to be critical to the biological fate of NPs (Salvati et al., 2013), we investigated the 

protein binding profile of the surface-modified NPs after incubation in 50% FBS, which 

mimicked the serum content in blood (Sherwood, 2011). Protein binding occurred with all 

tested NPs (PLGA-pD, PLGA-pD-LMWC, and PLGA-pD-PEG NPs) in a similar pattern 

(Fig. 10). It is noteworthy that all NPs were increasingly enriched with IgG, antibodies 

responsible for opsonization and complement activation, over time. Figure 17 shows that 

pD, pD-LMWC, and pD-PEG layers helped reduce phagocytic uptake of PLGA MPs by 

J774.1 macrophages due to the hydrophilicity imparted by the surface polymers. However, 

the increasing IgG enrichment indicates that the function of LMWC or PEG in this NP 

system is still imperfect as a stealth layer and remains to be improved in future studies.  

The surface charges of all NPs decreased after incubation in serum solution (Fig. 

11), reflecting protein binding. Nevertheless, the protein-bound PLGA-pD-LMWC NPs 

maintained the pH-sensitive charge profile, allowing for acid-specific NP-cell interactions 

in serum-containing medium. Confocal microscopy showed that PLGA-pD-LMWC NPs 

established interactions with SKOV-3 cell membrane at pH 6.2 in 1 hour and entered the 

cells in 3 hours (Fig. 14), likely via adsorption-mediated endocytosis (Tahara et al., 2009). 

The internalized NPs did not colocalize with the late endosomes or lysosomes by 4.5 hours 

(Fig. 15b). This result is similar to an observation made with cationic NPs coated with 

quaternized chitosan, which were internalized by human proximal epithelial cells and 

showed little colocalization with lysosomes in 6 hours (Yue et al., 2011). Other types of 

NPs lacking LMWC (PLGA, PLGA-pD or PLGA-pD-PEG) did not show cellular uptake 

at 6.2. All tested NPs showed little uptake by SKOV-3 cells at pH 7.4 (Fig. 13). This result 

indicates that while PLGA-pD-LMWC NPs did not interact with cells at normal 

physiological pH, they were able to establish interactions with cells at <pH 6.5 as PLGA4-
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LMWC NPs previously did (Amoozgar et al., 2012a) and get internalized into the 

cells without being trafficked into the acidic organelles. Given that hard corona 

compositions for all pD-coated NPs (PLGA-pD, PLGA-pD-PEG, and PLGA-pD-

LMWC NPs) were similar (Fig. 10), yet PLGA-pD-LMWC NPs showed different 

behavior than the other NPs, the protein corona in this NP system did not play a role 

significant enough to interfere with the intended NP-cell interactions. This result is 

contrasted with transferrin-functionalized silica NPs that lost targeting capabilities in 

serum-containing medium due to the formation of protein corona (Salvati et al., 2013). 

The reliable drug encapsulation achieved by PLGA-pD-LMWC NPs allowed us 

to test the contribution of the LMWC surface to PTX delivery in acidic medium. 

SKOV-3 cells were exposed to PTX-loaded PLGA-pD-LMWC NPs at pH 7.4 and 6 for 

2.5 hours and analyzed with respect to the amount of PTX retained by the cells (through 

NP binding and/or uptake). The exposure time was limited to 2.5 hours since it would 

better represent dynamic in vivo situation, where NPs would continuously flow and get 

gradually diluted. PTX-loaded PLGA-pD-LMWC NPs delivered a significantly greater 

amount of PTX to SKOV-3 cells at pH 6 compared to pH 7.4 and those delivered by free 

PTX treatment or PTX-loaded PLGA-pD-PEG NPs, which showed similar cellular levels 

of PTX at both pHs (Fig. 18). Since drug release from NPs was minimal (<30 %) in 2.5 

hours (Fig. 9), the large amount of drug delivered by PLGA-pD-LMWC NPs would be 

readily attributable to the enhanced NP binding and uptake by the cells at acidic pH, 

previously observed by confocal microscopy and flow cytometry.  

2.5 Conclusions 

In summary, LMWC-coated PLGA NPs created by the dopamine polymerization 

method overcame the limitations of the earlier version based on a PLGA-LMWC covalent 

conjugate in loading and retaining PTX. The PLGA-pD-LMWC NPs provided pH-

sensitive surface layer, which enabled acid-specific NP-cell interaction and enhanced 

drug delivery to cells in the weakly acidic environment. The LMWC layer did not 

completely prevent protein binding to the NPs incubated in serum solution but reduced 

phagocytic uptake. The surface remains to be further optimized to reduce IgG binding.
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CHAPTER 3. IN VIVO EVALUATION OF LMWC-COATED NPS IN TUMOR 
BEARING MICE 

3.1 Introduction 

Through in vitro studies described in Chapter 2, I have demonstrated that PLGA-

pD-LMWC NPs enabled acid-specific NP-cell interaction via pH-sensitive surface layer 

(Abouelmagd et al., 2015). Based on this outcome, I hypothesized that LMWC coated NPs 

would have superior tumor accumulation and retention to PEG coated NPs, leading to an 

enhanced antitumor effect. The purpose of this chapter is to evaluate in vivo efficacy of 

systemically administered the PLGA-pD-LMWC NPs in tumor-bearing mice in 

comparison with pH-insensitive PLGA-pD-LMWC NPs. Ideally, in vitro tests of prepared 

NPs for tumor drug delivery should help characterize different formulations and optimize 

their properties for in vivo efficacy. However, current in vitro tests can only examine one 

parameter at a time, such as surface charge, protein adsorption profile, drug release kinetics, 

or cellular interactions with tumor cells.  Most importantly, in vitro tests do not replace in 

vivo test, where the outcome is the net result of all parameters: opsonization, drug release 

in blood, macrophage uptake, biodistribution, tumor accumulation and retention (Cho et 

al., 2013). 

A mouse model of subcutaneous xenograft is the most widely used in vivo model. 

In the subcutaneous xenograft model, human tumor cells are inoculated under the skin of 

immunocompromised mice and allowed to grow to a visible tumor mass. Although this 

model is not a close representation of natural human primary tumors, it provides a 

convenient tool to study and compare the biodistribution and anti-tumor effect of different 

formulations in a relatively short time period due to the fast growth rate and the ease of 

size measurement (Cho et al., 2013).  
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In particular, selected tumor models show high vascularization, one of the most 

important pathological features of tumors, almost always exploited by NP drug carriers 

(Maeda, 2012). In this study, the in vivo behaviors of LMWC and PEG coated NPs were 

evaluated in two mouse models of subcutaneous tumor xenograft: MCF-7 and LS174T.  

MCF-7 is a human breast adenocarcinoma cell line, known to be non-invasive and weakly 

angiogenic due to the poor expression of VEGF (Pathak et al., 2013). LS174T is a human 

colorectal adenocarcinoma cell line, expressing high amounts of VEGF, and therefore well 

vascularized (Dang et al., 2008).  

The anti-tumor effect of PTX-loaded NPs was evaluated in MCF-7 and LS174T 

tumor models. To elucidate on the results of tumor suppression profiles, whole-body 

imaging was performed using NPs loaded with indocyanine green (ICG), in lieu of PTX, 

in MCF-7 model. ICG is a near-infrared fluorescence dye, conducive to non-invasive in 

vivo imaging due to the negligible tissue background (Frangioni, 2003). ICG was chosen 

as a proxy of PTX due to the similarity in molecular weight (ICG: 775 Da vs. PTX: 853 

Da) and high plasma protein binding. Both ICG and PTX have high affinity for serum 

albumin (Cherrick et al., 1960; Kumar et al., 1993; Paal et al., 2001).  The imaging study 

was repeated with additional enhancement of tumor acidity via intraperitoneal (IP) 

injection of glucose and meta-iodo-benzylguanidine (MIBG), a mitochondrial respiration 

inhibitor.  

3.2 Materials and Methods 

3.2.1 Materials 

PLGA (150 kDa, LA:GA=85:15, PLGA150) was purchased from Akina Inc. (IN, 

USA). Paclitaxel (PTX) was a gift from Samyang Genex Corp (Seoul, Korea). Methoxy 

PEG amine, HCl salt (5 kDa, mPEG-NH2) was purchased from JenKem Technology USA 

(TX, USA). Dopamine hydrochloride was purchased from Alfa Aesar (MA, USA). 

Indocyanine green (ICG) was purchased from MP Biomedical (CA, USA). Human serum 

albumin (HSA) and meta-iodo-benzylguanidine hemisulfate salt (MIBG) were purchased 

from Sigma-Aldrich (MO, USA). Abraxane was purchased from Celgene (NJ, USA). 
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Cremophor EL was purchased from BASF (IL, USA). All other materials were of 

analytical grade. 

3.2.2 Preparation of NPs  

3.2.2.1 Preparation of NP Cores 

PTX loaded NPs. NPs were prepared via the single emulsion-solvent evaporation 

method, where PTX was incorporated in the organic phase with PLGA. Briefly, 70 mg of 

PTX was dissolved with 350 mg of PLGA150 in 35 mL DCM, then emulsified in an aqueous 

phase of PVA (4%, 60 mL) using probe sonication (2 minutes, 4s on/2s off). Emulsion was 

dispersed in 67 mL of water and stirred for 1 hour followed by rotary evaporation for 1.5 

hour to allow complete evaporation of DCM. Finally, NPs were collected via centrifugation 

(20,000 rpm (30,000 xg rcf)) and washed twice with water.   

ICG labeled NPs. NPs were produced by the double emulsion-solvent evaporation 

method with modification of a previously reported method (Hwang et al., 2014). An 

aqueous phase of 625 µL containing 19 mg of human serum albumin (HSA) and 6.3 mg of 

ICG was emulsified in 6.3 mL of an organic phase of PLGA150 (130 mg) in DCM via probe 

sonication (1 minutes, 1s on/1s off). Resulting emulsion was further emulsified in the 

second aqueous phase of PVA solution (24 mL, 2.5%) via sonication (2 minutes, 4s on/2s 

off). Final NP suspension was dispersed in 42 mL of water and stirred for 1 hour to allow 

DCM evaporation, followed by rotary evaporation for 2 hour to completely remove any 

DCM trace. NPs were collected by centrifugation at 13,200 rpm (16,000 xg rcf) for 30 

minutes, and washed with water twice to remove any remaining PVA and excess ICG. 

3.2.2.2 In Vitro Release of ICG from NP Cores 

To test the stability of ICG-loaded NPs in serum-containing medium, 0.2 mg of 

freeze-dried NPs contained in 40 µL of water was dispersed in 1 mL of FBS/PBS solution 

(50:50). Multiple samples were prepared identically and incubated at 37 ˚C with agitation. 

At different time points, samples were removed and centrifuged at 13,000 rpm for 15 

minutes. Top 500 µL of the supernatant were stored in -20˚C. The pellet was briefly rinsed 
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with water and also stored at -20˚C. After the last time point (72 hr), all samples were 

thawed and dissolved in acetonitrile/PBS solution (50:50). The dissolved samples were 

diluted to avoid signal saturation (10 folds for supernatant and 20 folds for pellet) and 

transferred to a black 96-well plate. The fluorescence intensity was measured using an IVIS 

Lumina II imaging system (PerkinElmer, MA, USA) using 745 nm excitation filter, ICG 

emission filter, 1 second exposure, medium binning. ICG was quantified using a calibration 

curve of standard ICG concentrations in same medium (FBS/PBS).   

3.2.2.3 Coating of NP Cores 

Different types of NP cores were coated with pD-PEG or pD-LMWC using the 

same method reported in Chapter 2. Briefly, NPs were dispersed at 1 mg/mL in Tris buffer 

(10 mM, pH 8.5) containing 1 mg/mL dopmiane HCl and shaken for three hours. Dopamine 

polymerized on NPs surface resulting in formation of NP-pD, which were collected by 

centrifugation, and washed once with water. To coat NP-pD with LMWC, they were 

further incubated in LMWC aqueous solution (0.5 mg/mL, pH 7.5) for 30 minutes, 

followed by purging using nitrogen gas for 5 minutes to stop polymerization reaction. 

LMWC coated NPs (NP-pD-LMWC) were collected via centrifugation and washed with 

water twice to remove excess LMWC. Alternatively, to coat NP-pD with PEG, LMWC 

solution was replaced with mPEG-NH2 solution in Tris buffer (2 mg/mL, pH 8.5), keeping 

the rest of the method the same. After washing, NPs were freeze-dried with trehalose as a 

cryoprotectant to help redispersion: stock solution of trehalose (50 mg/mL) was added to 

make a final ratio of NP: trehalose 1:1. In this chapter, PLGA-pD-LMWC and PLGA-pD-

PEG refer to PTX-loaded NPs prepared with PLGA150 polymer cores and respective 

coatings, while *PLGA-PD-LMWC and *PLGA-pD-PEG refer to ICG-loaded NPs. 

Particle size and zeta potential of different types of NPs were measured as described in 

section 2.2.5 
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3.2.3 Development of Xenograft Tumor Model 

3.2.3.1 Cell Culture 

MCF-7 cells (human breast adenocarcinoma, ATCC, VA, USA) were grown in 

RPMI-1640 medium containing 10% FBS, 100 units/mL of penicillin, 100 µg/mL of 

streptomycin, L-glutamine (2 mM), sodium pyruvate (1 mM), HEPES buffer (10 mM) and 

2-mercaptoethanol (55 µM). LS174T cells (ATCC, VA, USA) were grown in Eagle's

Minimal Essential Medium (EMEM) containing 10% FBS, 100 units/mL of penicillin and

100 µg/mL of streptomycin.

3.2.3.2 Tumor Inoculation 

All animal procedures were approved by Purdue Animal Care and Use Committee, 

in conformity with the NIH guidelines for the care and use of laboratory animals. Female 

athymic Foxn1nu nude mice (20-24 g) were purchased from Harlan Laboratories 

(Indianapolis, IN) and housed for a minimum of one week prior to tumor inoculation. 

 LS174T tumor model. Fifty microliters of LS174T suspension in PBS (20 million 

cells/mL) was mixed with 50 µL matrigel and subcutaneously inoculated in the right flank. 

Mice were monitored daily for tumor size and body weight.   

MCF-7 tumor model. A hundred microliters of MCF-7 suspension in PBS (50 

million cells/mL) was mixed with 100 µL matrigel and subcutaneously inoculated on the 

neck (for whole body imaging), or in the right flank (for anti-tumor study). Mice were 

monitored every other day for tumor size and body weight. 

3.2.3.3 Tumor Measurement  

Two dimensions of the tumor were measured using a digital caliper, where L is 

longest dimension and W is the shorter dimension. Tumor volume was calculated from the 

equation (Tomayko & Reynolds, 1989):   

	 	
	
2
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As tumor grew larger, some developed ulcerations, similar to that observed with 

previous reports (Bryan et al., 2011; Hollis et al., 2013). Ulceration caused a change in 

tumor growth rate; therefore, mice that developed ulcerations were excluded from the study 

once observed and were monitored regularly and sacrificed if ulcerations became severe. 

Additionally, mice were sacrificed when they lost >20% body weight, or when tumors 

grew >2000 mm3. 

3.2.4 Antitumor Effect of PTX-Loaded NPs on LS174T Tumor-Bearing Mice 

Once subcutaneous tumor xenografts reached an average size of ~150 mm3, mice 

were randomized into 5 groups (n=5, except for control group, where n=4), receiving: PBS 

(control), Taxol, Abraxane, PLGA-pD-PEG and PLGA-pD-LMWC on days 0, 3 and 7.  

PTX content of NP formulations was determined using the method detailed in 

section 2.2.6. For standard Abraxane formulation, PTX content was determined via HPLC 

Figure 19: Outline of in vivo studies carried out using LS174T and MCF-7 subcutaneous tumor 
models. 
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after PTX extraction. Briefly, 1 mL of aqueous solution of a known amount of Abraxane 

spiked with 10 µg of carbamazepine as an internal standard was mixed with 3 mL of ethyl 

acetate and shaken on a rotating shaker for 40 minutes. The mixture was then centrifuged 

at 4,000 rpm (4,500 xg rcf) for 15 minutes to separate the organic layer, which was 

transferred to a glass vial and dried under vacuum. The dried sample was resuspended in 

the HPLC mobile phase, filtered through 0.45 µm syringe filter, and analyzed with HPLC. 

A calibration curve was drawn with PTX solutions of known concentrations treated 

similarly.  

Freeze-dried formulations (PLGA-pD-LMWC, PLGA-pD-PEG and Abraxane) 

were dispersed in 200 µL of sterile PBS at a dose equivalent to PTX 10 mg/kg. Taxol was 

prepared by dissolving PTX in equal parts of Cremphor EL vehicle and ethanol at 

concentration of 6 mg/mL, followed by dilution with PBS to a comparable dose. Mice 

received each treatment (10 mg/kg per treatment) on days 1, 4 and 7 (total of 30 mg/kg) 

via tail vein injection.  For the control group, mice received 200 µL of sterile PBS.  

3.2.5 Antitumor Effect of PTX-Loaded NPs on MCF-7 Tumor-Bearing Mice 

A similar procedure was followed for the MCF-7 model, except that (i) the 

treatment was started when tumor reached ~280 mm3 (n=5); (ii) the treatment groups were 

PBS (control), Abraxane, PLGA-pD-PEG and PLGA-pD-LMWC (no Taxol group); (iii) 

treatments were injected intravenously via retro-orbital injection. One of the mice in 

PLGA-pD-LMWC group was sacrificed at day 7 of the treatment initiation due to eye 

damage. All mice were sacrificed at day 19 of the study. 

3.2.6 Tracking of ICG-Labeled NPs in MCF-7 Tumor-Bearing Mice 

In this study, tumor xenografts were grown on the neck to avoid background signals 

from internal organs during whole body imaging. When tumors reached an average size of 

380 mm3, mice were randomized into two groups (n=5): *PLGA-pD-LMWC, and *PLGA-

pD-PEG.  Each mouse received 100 µL of NP suspension in sterile PBS (30 mg/kg) via 

retro-orbital injection, and the ICG fluorescence was monitored at different time points 
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using the IVIS Lumina II system (PerkinElmer, MA, USA) using 745/ICG filters, 1s 

exposure time and medium binning. At the end of the experiment (48 hours after injection), 

mice were sacrificed, different organs extracted, and their fluorescence quantified using 

the IVIS Lumina system (ex-vivo imaging). For quantification of ICG contents in tumor 

and liver tissues, ICG was extracted from the tissues according to the reported method 

(Saxena et al., 2006). Briefly, the weighed tissue was homogenized in 20 volume of DMSO 

and incubated for five hours. The tissue homogenate was centrifuged at 4,000 rpm (4,500 

xg rcf) for 20 minutes, then 13,200 rpm (16,000 xg rcf) for 20 minutes to remove all tissue 

particles. Obtained supernatant was scanned via the IVIS Lumina system.  

For the acidity-enhanced tumor model, tumors averaging at 225 mm3 were 

randomized into 2 groups (n=6): *PLGA-pD-LMWC, and *PLGA-pD-PEG. Three mice 

in each group received a combination of glucose and MIBG IP, and the other three received 

PBS IP, according to the schedule illustrated in Figure 20.  

Figure 20: Dosing schedule of glucose and MIBG for the acidity-enhanced tumor model. Glucose
and MIBG were injected IP once daily for three days, while *NPs were delivered via the retro-
orbital injection on the first day.  
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3.3 Results 

3.3.1 NP preparation and Characterization 

Freeze-dried NPs with PTX-loaded cores restored their size after redispersion in 

phosphate buffer (~ 200 nm) with a good polydispersity index < 0.2 (Fig. 21a). PTX LE% 

of both PEG and LMWC coated NPs was 6.4% ± 1.6 and 6.5% ± 1.4, respectively. PTX 

loaded PLGA-pD-LMWC NPs had the same pH-sensitive surface charge previously 

reported (Fig, 21b). PTX content of Abraxane was determined to be 10.3% ± 1.3, in 

agreement with the manufacturer’s description (Celgene, 2015) .  

3.3.2 Antitumor Effect of PTX-Loaded NPs on LS174T and MCF-7 Tumor-Bearing 

Mice 

Antitumor activity of different formulations was tested in two different tumor 

models, MCF-7 and LS174T. These two tumor models had different vascularization and 

growth rates. LS174T tumors grew faster (data not shown) and had greater vascularization 

than MCF-7 tumors (Fig. 22).

Figure 21: Characterization of freeze-dried PTX loaded NPs after redispersion: a) Particle size 
and polydipserity index, b) Zeta potential at pH 7.4 and 6.2 (n=4). 
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Fold increase in tumor volume was used to express the effectiveness of different 

treatments in suppressing tumor growth. Additionally, fold change of mice body weight 

was to evaluate systemic toxicity of the formulation.  

In the LS174T model, ulceration occurred in 28% of the mice. Since the ulcerated 

tumors were excluded from the data analysis, average tumor sizes could not be compared 

beyond 10 days after the treatment initiation. By statistical analysis of all tumors growth 

curves, all PTX formulations suppressed tumor growth as compared to the PBS control 

(Fig. 23a and b, p<0.05, see appendix for statistical analysis). However, there was no 

significant difference among the formulations.  

In the MCF-7 model, no ulcerations were developed, and tumor growth could be 

observed over a longer period of time (19 days). As in the LS174T model, Abraxane and 

PLGA-pD-PEG suppressed the tumor growth, but PLGA-pD-LMWC did not. PLGA-pD-

LMWC was significantly less effective than PLGA-pD-PEG NPs (Fig. 24a and b, p<0.05, 

see appendix for statistical analysis). For both tumor models, no significant change in 

body weight was observed over the course of treatment, indicating that formulations were 

well tolerated by the mice (Fig. 25a and b, ANOVA test).   

Figure 22: Subcutaneous xenografts of MCF-7 and LS174T tumors post extraction. 
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Figure 23: Growth profile of LS174T tumors receiving different treatments over time (a) average
fold increase in tumor volume (average ±SD), (b) growth profiles of individual tumors. Arrows
indicate the days treatments were administered. 
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Figure 24: Growth profile of MCF-7 tumors receiving different treatments over time (a) average
fold increase in tumor volume (average ±SD), (b) growth profiles of individual tumors. Arrows
indicate the days treatments were administered. 
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Figure 25: Average fold change in body weight of (a) LS174T and (b) MCF-7 tumor
xenograft model after intravenous administration of different formulations (average ±SD). 
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3.3.3 Tracking of ICG-Loaded NPs in MCF-7 Tumor-Bearing Mice 

Loading of ICG in PLGA NPs (*PLGA) was confirmed by their green color (Fig. 

26). After coating with pD-LMWC or pD-PEG, *PLGA NPs had a particle size of ~ 220 

nm (Fig. 27a), and maintained the same surface charge profile as NPs with non-fluorescent 

cores (Fig. 27b). When the stability of loaded ICG was tested in serum containing medium, 

60% of loaded ICG was released in the first 24 hours (Fig. 28), while ~30% of the dose 

was retained until 72 hours. This indicates that within the first day, most of ICG is released, 

while NP cores maintained remaining ICG throughout the following 2 days.   

Figure 27: Characterization of freeze-dried ICG loaded NPs after redispersion: (a) Particle size
and polydipserity index, (b) Zeta potential at pH 7.4 and 6.2 (average ±SD, n=3-4). 

Figure 26: ICG loaded PLGA NPs (*PLGA) and pD coated *PLGA (*PLGA-pD). 
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When ICG loaded NPs (*PLGA-pD-LMWC and *PLGA-pD-PEG) were 

intravenously injected to mice with MCF-7 xenografts, strong fluorescent signal of ICG 

appeared in the whole body in the first 2 hours, then disseminated and appeared strongest 

in the tumors at 24 hours and beyond (Fig. 29a). Tumor ICG signal was observed for 48 

hours post injection. There was no difference in tumor fluorescence intensity between 

*PLGA-pD-LMWC and *PLGA-pD-PEG NPs throughout the time course of observation

(Fig. 29b). At the end of the study, organs were examined ex vivo (Fig. 30). The excised

tumors and livers appeared fluorescent when imaged with the Lumina system (Fig. 30a).

ICG was extracted from organs and quantified. In animals treated with *PLGA-pD-LMWC

NPs, ICG content per 10 mg tumor was significantly higher than ICG in 10 mg liver (Fig.

30b). In animals treated with *PLGA-pD-PEG NPs, the ICG content in tumor was similar

to those with *PLGA-pD-LMWC NPs, but the ICG content in liver was higher (Fig. 30b).

However, there was no overall significant difference in tumor/liver ratio between *PLGA-

pD-LMWC NPs and *PLGA-pD-PEG NPs (Fig. 30c).

Figure 28: In vitro release of ICG from PLGA cores (*PLGA) dispersed in serum containing
medium at 37˚C at different time points (average ±SD, n=3). 
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Figure 29: Tracking of ICG loaded NPs in MCF-7 xenograft model (n=5), (a) Representative image
of whole body imaging performed, using IVIS Lumina system, on mice after injection of ICG 
loaded NPs, *PLGA-pD-LMWC and *PLGA-pD-PEG. Fluorescence signal was quantified
throughout the 48 hour of the study (tumor tissue outlined), (b) Corresponding fluorescence signal
(total radiance efficiency) of tumors after subtraction of background signal (signal prior to NP 
injection) and normalization to tumor weight (average ±SD). 
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Figure 30: Fluorescence imaging and quantification of ICG content of extracted MCF-7 tumors 
and livers, (a) Ex-vivo fluorescence imaging of extracted organs at the end of the study, (b) 
Weight-normalized fluorescence signal of tumors and livers for LMWC and PEG coated NPs 
post ICG extraction, (c) Weight-normalized tumor/liver ratio of ICG fluorescence for LMWC 
and PEG coated NPs (average ±SD , n=5, *p<0.05, **p<0.005, Two-tailed T-test).    

Since the results were contrary to the expectation,the imaging experiment 

was repeated with enhancement of tumor acidity. This was achieved by multiple IP 

injections of a glucose and MIBG combination. The combination of hyperglycemia and 

MIBG stimulates the production of lactic acid in tumors and consequently enhances 

their acidity (Jahde et al., 1992; McCarty & Whitaker, 2010). MIBG also helps 

produce more homogenous tumor acidification (Kuin et al., 1994).  The tumor 

extracellular pH was not experimentally determined in this study, but several studies 

reported acidity enhancement in murine and human xenograft tumors via glucose-MIBG 

combination (Jahde et al., 1992; Kalliomaki & Hill, 2004). Tumor accumulation in the 

acidity enhanced model was compared with that of control model (no glucose/MIBG 

injections). Nonetheless, the glucose-MIBG treatment did not make any difference in ICG 

accumulation patterns in tumor and liver for both NPs during in situ whole body imaging 

(Fig. 31a) or ex-vivo assessment (Fig. 31b).  



90 

3.4 Discussion 

The goal of developing NP formulations for delivery of chemotherapeutic agents is 

to enhance the tumor delivery of such agents and minimize their off-target exposure. 

Mostly, these effects are attributed to the improved biodistribution profile of drug loaded 

NPs and/or the modified NP-cell interactions favoring NP uptake.  

We have developed LMWC-coated NPs with pH-sensitive cellular interactions. In 

vitro studies (Chapter 2) have demonstrated that NPs can be selectively taken up by cancer 

cells at mildly acidic pH, similar to that of tumor microenvironment, while avoiding 

cellular interactions and macrophage uptake at neutral pH. Based on these promising 

results, we hypothesized that, LMWC-coated NPs would avoid the macrophage uptake, 

achieve long circulation to reach tumors via the leaky vasculature similar to PEG-coated 

NPs, yet show greater tumor retention than PEG-coated NPs due to the increased cellular 

interaction in acidic tumor microenvironment, delivering a greater amount of PTX to 

tumors. The antitumor effect of PTX-loaded NPs was tested in two tumor models, LS174T 

and MCF-7, with different vascularization and growth rates. The injected NPs were all well 

tolerated in mice, resulting in no significant weight loss (Fig. 25) or mortality. On the other 

hand, LMWC- and PEG-coated NPs showed similar tumor suppression, comparable to 

Figure 31: Tracking of ICG loaded NPs in acidity-enhanced MCF-7 tumor models versus normal
model, (a) Fluorescence signal (total radiance efficiency) of tumors after subtraction of background
signal (signal prior to NP injection) and normalization to tumor weight, (b) Weight-normalized ex-
vivo fluorescence signal of tumors and livers for LMWC and PEG coated NPs in both tumor models
(averages ±SD, n=3). 
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Abraxane, the current commercial gold standard formulation for PTX. No significant 

difference was observed between PEG and LMWC NPs (Fig. 23 and 24), which suggests 

that both NPs delivered the same amount of PTX to the tumors, contrary to the expectation. 

The whole body imaging using a fluorescent dye, ICG, as a surrogate for PTX corroborated 

this speculation (Fig. 29 and 30). 

The observed antitumor effect results may be explained in three potential scenarios: 

In the first scenario, the tumor xenografts were not sufficiently acidic for LMWC-coated 

NPs to achieve anticipated tumor retention. Second, tumors were acidic, but PLGA cores 

did not hold PTX stably during circulation; therefore, the drug reached tumors irrespective 

of the carriers. Third, NPs entering the circulation were immediately coated with plasma 

proteins and lost differential surface properties (Fig. 10). 

To investigate the first scenario, whole body imaging was repeated with acidity-

enhanced MCF-7 tumor model. The trend remained the same (Fig. 31), which suggests that 

poor development of tumor acidity may not have been the main reason. The second and 

third scenarios remain to be confirmed. This will be investigated in another whole-body 

imaging study using NPs made of an ICG-conjugated PLGA (instead of physical 

encapsulation of ICG in NPs). Unlike current imaging, the fluorescence signal will 

represent the trajectory of NPs rather than the dye payload. If the NP distribution profiles 

coincide with payload distribution seen in this study, it is likely that protein coronas 

forming on NPs have eliminated their differential surface properties. If the NPs show 

expected distribution profile (i.e., LMWC-coated NPs show greater retention in tumors 

than PEG-coated NPs), the main cause may be the premature release of the payload. Our 

in vitro studies suggest both are possible, given that PLGA NPs showed a high initial burst 

albeit to a lesser extent than low MW PLGA NPs and LMWC- and PEG-coated NPs had 

similar protein binding patterns in serum (Chapter 2). 

Finally, the limitation of current tumor models may be noted. Since the selectivity of 

NPs in tumor accumulation primarily depend on the leakiness of tumor vasculature, the 

nature and distribution of blood vessels dictate NP accumulation and extravasation in the 

tumor tissues (Chauhan et al., 2012; Ruoslahti et al., 2010). Therefore, NPs are typically 
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tested in animal models of tumor xenografts based on established cell lines, which grow 

rapidly and develop imperfect vasculature structure, as done in this study. However, the 

clinical utility of these models are currently in question, because they do not reflect other 

factors dictating tumor microenvironment, such as heterogeneity of tumor tissues (Nichols 

& Bae, 2014) and supporting cells such as stromal cells and immune cells (Yip & Cho, 

2013) (Chia et al., 2005).  

3.5 Conclusions 

In summary, this study investigated the tumor suppression effect of PTX loaded 

NPs coated with PEG or LMWC and visualized the payload (ICG) delivery to tumors. 

Although in vitro studies predicted superior performance of LMWC-coated NPs, in terms 

of tumor growth suppression and tumor ICG delivery, there was no significant difference 

between LMWC and PEG-coated NPs. The specific reasons behind the poor in vitro-in 

vivo correlation remain be confirmed. Whether it is premature drug release or protein 

corona formation, this study highlights the importance of controlling nanocarrier stability 

during circulation.  
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CHAPTER 4. EXPERIMENTAL DESIGN OF RELEASE STUDIES FOR 
NANOPARTICLE FORMULATIONS 

4.1 Introduction 

The evaluation of drug release from NP carriers intended for systemic delivery is 

one of the most important characterizations in terms of predicting their in vivo efficiency. 

Specifically for NPs intended for tumor drug delivery, due to the prolonged circulation of 

the NPs prior to tumor accumulation. It is predicted that significant drug load can be lost 

during that stage, leasing to delivery of near empty NP carrier. Therefore, it is critical to 

characterize the in vitro release kinetics of drugs from different carriers accurately.  

Irrespective of the test method, the assumption underlying the release kinetics 

studies is that the dose range of the NP products and the volume of release medium satisfy 

sink conditions (defined as the volume of medium at least three times that required to form 

a saturated solution of a drug (The United States Pharmacopeia: The National Formulary 

(USP37/NF32), 2014)): i.e., the drug release is not limited by the solubility, and the 

difference in release kinetics profile reflects the performance of NPs as a drug carrier in 

vivo. To meet this requirement, it is important that one use a sufficient volume of release 

medium for the NPs. However, in the case of poorly water-soluble drugs, like PTX, 

satisfying the sink condition can be quite challenging as it means a very low ratio of NP 

mass to the volume of release medium. A disadvantage of using a large volume of release 

medium is that drug analysis gets difficult due to the low concentration. In order to alleviate 

this difficulty, the sampled solution is concentrated prior to analysis or a dissolution aid 

such as surfactants or co-solvents is included in the release medium (Daniel J. Phillips et 

al., 2012; The United States Pharmacopeia: The National Formulary (USP37/NF32), 

2014). 
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Given these requirement and constraints in fulfilling a sink condition, it is very 

important to know an accurate solubility value of a drug and set up appropriate 

experimental conditions in studying drug release kinetics from NPs.  

For PTX, the solubility values reported in the literature vary over a range of orders 

of magnitude (Table 3). In this study, we look into the solubility of PTX in potential release 

media (PBS, PBS with 0.2% Tween 80, and PBS with 50% fetal bovine serum (FBS)) and 

perform release kinetics studies of PTX loaded NP formulations. 
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Table 3: Reported PTX solubility in different media (Abouelmagd et al., 2015). 

Medium PTX solubility (µg/mL) References 

Deionized water 0.3 (Lee et al., 2003) 

Deionized water 0.7 (Mathew et al., 1992) 

Deionized water 1.0 (Zhang et al., 2005) 

Deionized water 6 
(Tarr & Yalkowsky, 

1987) 

Deionized water 30 (Swindell et al., 1991) 

Phosphate buffered saline (PBS, pH 7.4) 0.3 (Kilfoyle et al., 2012) 

PBS 0.95 (Zhang et al., 2005) 

PBS 3 (Lovich et al., 2001) 

PBS 6-10
(Y. S. Wang et al., 

2008) 

PBS with 0.05% Tween 80 3 (Yang et al., 2007) 

PBS with 0.1% Tween 80 2.7 (Kilfoyle et al., 2012) 

PBS with 0.1% Tween 80 6.32 (Yang et al., 2007) 

PBS with 0.15% Tween 80 6.8 (Yang et al., 2007) 

PBS with 0.2% Tween 80 8.75 (Yang et al., 2007) 

PBS with 1% Tween 80 13.8 (Kilfoyle et al., 2012) 

PBS with 1% Tween 80 37 (Yang et al., 2007) 

PBS with 2% Tween 80 20 (Steele et al., 2011) 

PBS with 2% Tween 80 70 (Yang et al., 2007) 

PBS with 3% Tween 80 115 (Yang et al., 2007) 

Calf serum 171 (Lovich et al., 2001) 
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4.2 Materials and Methods 

4.2.1 Materials 

PLGA (150 kDa, LA:GA=85:15, PLGA150) and fluorescein-conjugated PLGA (7 

kDa, LA:GA=50:50, *PLGA) were purchased from Akina Inc. (IN, USA). Paclitaxel (PTX) 

was a gift from Samyang Genex Corp (Seoul, Korea). Tween-80 was purchased from VWR 

Life Science (PA, USA). All other materials were of analytical grade. 

4.2.2 PTX Solubility Studies 

PTX solubility in PBS containing 0.2v/v% Tween 80 (Tween/PBS), and PBS 

containing 50 v/v% FBS (FBS/PBS) were determined by incubating excess PTX (0.6 – 2.4 

mg) in 1 mL of each medium at 37°C for 7 or 24 hours with agitation. Samples were 

centrifuged at 10,000 rpm for 20 min to separate a supernatant. PTX dissolved in

Tween/PBS was analyzed with HPLC. PTX dissolved in FBS/PBS was first extracted with 

ethyl acetate and reconstituted in the HPLC mobile phase prior to HPLC analysis (as 

described in section 2.2.9). 

PTX solubility was alternatively determined by diluting 10 mg/mL PTX DMSO 

stock solution in each medium. To determine PTX solubility in Tween/PBS and 

PTX/DMSO solution (10 mg/mL) was first diluted with Tween/PBS to make 1 mg/mL of 

PTX solution, which was further diluted with Tween/PBS to 1-70 µg/mL (n=3). Samples 

were incubated at 37°C for 24 hours with shaking. Finally, samples were filtered with 0.45 

µm PVDF syringe filters and directly analyzed with HPLC. To determine PTX solubility 

in FBS/PBS, PTX/DMSO solution (10 mg/mL) was sequentially diluted with FBS/PBS to 

yield final concentrations of 25-300 µg/mL (n=3). Samples were incubated at 37°C for 7 

or 24 hours with shaking. At the end of the incubation, the samples were centrifuged at 

10,000 rpm for 20 min, and the supernatant was filtered with 0.45 µm PVDF syringe filters, 

extracted with ethyl acetate as described in Section 2.7, and analyzed with HPLC (as 

described in section 2.2.9). 
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4.2.3 PLGA NP Preparation and Characterization 

PLGA NPs loaded with PTX (PTX/NPs) were prepared by the single emulsion 

solvent evaporation method. Briefly, 20 mg of PLGA and 2.5 mg of PTX were dissolved 

in 1 mL of dichloromethane (DCM) and emulsified in 4 mL of 4% polyvinyl alcohol (PVA) 

solution by probe sonication. The o/w emulsion was dispersed in deionized water and 

stirred for 1 hour, followed by rotary evaporation for another hour to ensure DCM 

evaporation. Finally, NPs were collected by centrifugation and washed three times with 

water. The NPs were lyophilized with trehalose as a lyoprotectant. NP Particle size was 

characterized as detailed in section 2.2.5. 

4.2.4 In Vitro Release of PTX from PLGA NPs 

To determine the PTX content in NPs, the freeze-dried PTX/NPs was dissolved in 

a mixture of acetonitrile:water (50:50) for 2 hours, and the supernatant was analyzed with 

HPLC. For release kinetics studies of PTX/NPs, the freeze-dried PTX/NPs equivalent to 

4.4 or 27 µg of PTX were suspended in 1 mL of release medium (PBS, Tween/PBS, or 

FBS/PBS) and incubated at 37°C with constant agitation. At predetermined time points, 

the suspension was centrifuged at 10,000 rpm for 10 minutes at room temperature to 

separate NP pellets and supernatants. 0.8 mL of supernatant was sampled and replaced with 

the same volume of fresh medium, in which the NP pellet was resuspended and returned 

for further incubation. The sampled supernatant was analyzed immediately (PBS and 

Tween/PBS) or stored frozen (FBS/PBS) until HPLC analysis. At the end of the release 

experiment, the remaining NPs were dissolved in 1 mL of acetonitrile:water (50:50) for 2 

hours (PBS and Tween/PBS) or processed with the same extraction method as release 

samples (FBS/PBS) to determine the unreleased PTX. 
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4.3 Results 

4.3.1 PTX Solubility in Different Media 

The reported values of PTX solubility in deionized water or phosphate-buffered 

saline (PBS, pH 7.4) range from 0.3 to 30 µg/mL (Table 3). PTX solubility in a medium 

containing a surfactant such as Tween 80 is reported to be much higher: up to >100 µg/mL 

(3% Tween 80)(Yang et al., 2007). PTX solubility in calf serum is defined as 171 

µg/mL.(Lovich et al., 2001) We evaluated PTX solubility in different media by suspending 

excess amounts of PTX in each medium and measuring the concentration of dissolved PTX. 

The results showed a similar trend as those in the literature, although the values fell in 

lower ends of the reported ranges. PTX solubility in Tween/PBS was measured to be 3.3 

µg/mL irrespective of the incubation time (Fig. 32a). PTX solubility in FBS/PBS was 

measured at 45 µg/mL after 24 hour incubation at 37 °C, much higher than those in PBS 

or Tween/PBS, which confirmed solubilizing effect of serum proteins (Fig. 32b).  

PTX solubility was alternatively measured with solutions prepared by diluting a 

concentrated PTX/DMSO stock solution with each medium. This method helped handle 

small quantities of PTX with greater accuracy that the previous method. However, a small 

trace of DMSO in the solution (maximum 0.7% in Tween/PBS, and 3% in FBS/PBS) 

seemed to have affected PTX dissolution, resulting in slightly higher solubility values after 

24 hour incubation in 37°C (4 µg/mL in Tween/PBS, Fig. 33a).  In FBS/PBS, PTX 

concentration increased linearly with the PTX input and never reached a limit at least by 

300 µg/mL (Fig. 33b). PTX concentrations measured after 24h incubation at 37°C were 

about 50% of those incubated for 7h, confirming the instability of PTX in FBS/PBS 

reported previously (Bajaj et al., 2012; Ringel & Horwitz, 1987; Willey et al., 1993). This 

indicates that, if PTX release kinetics studies are performed in serum-containing medium 

and the medium is not sampled and analyzed frequently, one may not recover 100% of 

PTX from the formulation due to the degradation of released PTX. In contrast, PTX was 

relatively more stable in Tween/PBS (Abouelmagd et al., 2015). This means that, as long 

as the medium is sampled at least once a day, PTX stability in Tween/PBS is less likely to 
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be a problem. Of note, PTX solubility in Tween/PBS showed interesting variability across 

the measurements repeated four times (data not shown, (Abouelmagd et al., 2015)). While 

the saturation solubility was measured to be 4 µg/mL in the presence of far excess PTX, 

PTX solutions prepared in the range of 4-18 µg/mL in Tween/PBS showed concentrations 

greater than the saturation solubility to varying degrees in each experiment, indicating the 

formation of supersaturated solutions. This result indicates that one may observe variable 

solubility values in Tween/PBS, depending on the degree of supersaturation.  

Figure 32: PTX solubility in 0.2% Tween 80/PBS (a) and 50% FBS in PBS (b) was determined by 
incubating excess PTX in 1 mL of the medium at 37 °C for 7 and/or 24 h with agitation (Adapted 
from Abouelmagd et al., 2015).

Figure 33: PTX solubility in 0.2% Tween 80/PBS (24 hr) (a) and 50% FBS in PBS (7 and 24 hr)
(b) was determined by an alternative method. PTX was added to each medium in the amount
indicated in the x-axis from a 10 mg/mL stock in DMSO. Samples were incubated for different
times at 37 °C with agitation (Adapted from Abouelmagd et al., 2015).



102 

4.3.2 In Vitro Release of PTX from PLGA NPs 

For this study, polymeric PLGA NPs were loaded with PTX and tested for release 

kinetics with centrifugation method. PTX loaded PLGA NPs (PTX/NPs) were prepared 

using the single emulsion method. NPs were spherical and had an average diameter of 161 

nm. PTX release from PTX/NPs was tested using PBS, Tween/PBS, or FBS/PBS as release 

media. NPs equivalent to 4.4 µg of PTX was suspended in 1 mL of each release medium, 

creating a condition exceeding the solubility limit (in PBS), close to the solubility (in 

Tween/PBS), or satisfying the sink condition (in FBS/PBS). At regular intervals, 80% of 

the release medium (0.8 mL) was sampled after centrifugation and replaced with fresh 

buffers, and the sampled medium was filtered and analyzed by HPLC. In FBS/PBS which 

satisfied a sink condition from the initial time point, NPs released 50.7±9.1% of the loaded 

PTX upon the addition of the release medium and 98.7±11.0% in 72 hours (Fig. 34a). 

Similarly, in Tween/PBS, NPs released 56.6±1.2% of the loaded PTX immediately and 

83.9±1.3% in 72 hours (Fig. 34a). It is worth mentioning that NPs in Tween/PBS did not 

satisfy the sink condition at the initial time point but resulted in a similar trend as in 

FBS/PBS. On the other hand, PTX release in PBS was relatively small, reaching a 

cumulative release of 34.2±6.4% in 72 hours (Fig. 34a). Since the total amount of PTX 

dispersed as NPs in PBS (4.4 µg/mL) was above the PTX solubility (0.2 µg/mL), we 

initially thought that PTX release was inhibited due to the low PTX solubility. However, 

the sum of total release (34.2%) and unreleased PTX (3.8%) fell far short of 100%, unlike 

those in Tween/PBS or FBS/PBS (Fig. 35), suggesting a potential sample loss during the 

sampling or sample treatment. We thus added acetonitrile to the sampled PBS medium in 

1:1 volume ratio and reanalyzed the samples. We found that a much greater amount of PTX 

was present in the sampled medium (46.1±1.4% as immediate release and 78.7±3.2% as 

cumulative release by 72h) than initially measured. This indicates that PTX was released 

in PBS to a similar level as in Tween/PBS and FBS/PBS but quickly precipitated out in the 

sampled medium due to the low solubility in PBS. When analyzed as sampled (without 

additional acetonitrile), the precipitated PTX was removed during the HPLC sample 

preparation (i.e., filtration) and excluded from the analysis, which was avoided in the 
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second analysis by the addition of acetonitrile. This result underscores the importance of 

keeping the ratio of total drug in NPs to medium volume below the drug solubility limit in 

the release kinetics studies. If this condition is not met (as in PBS in our case), one may 

observe low drug levels in the medium and incorrectly interpret them as sustained drug 

release, when in reality the drug has already been released and precipitated out in the 

sampled medium.  

The release kinetics of PTX/NPs was also studied using a greater amount of NPs 

per release medium (NPs equivalent to 27 µg of PTX in 1 mL of release medium), which 

was comparable to typical conditions described in the literature (Abouelmagd et al., 2015) 

(hence ending up violating sink conditions for all samples at the initial time point). A 

similar trend was observed (Fig. 34b), with the cumulative release in PBS being the least 

when directly measured but similar to those in Tween/PBS and FBS/PBS when analyzed 

with additional acetonitrile. Interestingly, PTX concentrations in sampled media (4.0 

µg/mL in PBS, 13.1 µg/mL in Tween/PBS at the first sampling time point) were much 

greater than its solubility limit in each medium (0.2 µg/mL in PBS and 3.3 µg/mL in 

Tween/PBS). This may be explained by temporary supersaturation of PTX in the release 

medium. However, since the extent of supersaturation may vary, one cannot be sure that 

the result will be reproducible (Abouelmagd et al., 2015).  
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Figure 35: Mass balance after release kinetic studies of PTX/NPs in media containing PBS, FBS 
or Tween 80 (Adapted from Abouelmagd et al., 2015).

Figure 34: Release kinetics of PTX/NPs in media containing PBS, FBS, or Tween 80. PTX/NPs 
equivalent to (a) 4.4 µg or (b) 27 µg of PTX were suspended in 1 mL of release medium and 
incubated at 37°C with constant agitation (Adapted from Abouelmagd et al., 2015).
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4.4 Discussion 

This study demonstrates that release kinetics of a poorly water-soluble drug may 

be much underestimated when the ratio of the NP mass to release medium is not sufficiently 

low, because the released drug precipitated in the sampled medium (Fig. 34). From 

reported review of in vitro release kinetics of PTX from NPs or other sustained delivery 

formulations, (Abouelmagd et al., 2015), studies using the centrifugation method, PTX 

concentration in a test tube ranged from 25 to 1000 µg/mL. These studies conclude that 

their NP formulations achieve sustained PTX release over various time periods. However, 

given that these concentration ranges are far above the solubility (0.2 µg/mL), we suspect 

that even if the drug release had been much faster in reality they would not have been able 

to detect it. As the release kinetics studied show, when PTX is present in excess of the 

solubility limit in the medium, the drug can precipitate out in the system shortly after it is 

released out of the formulation. This translates to a low drug level in the release medium, 

which can be incorrectly interpreted as sustained drug release. From this perspective, 

revisiting some of the previous studies with conflicting bioactivity results. For example, 

with slow in vitro drug release kinetics, one may expect that a NP formulation will be less 

effective than a free drug control. Some studies do report the attenuated bioactivity of NPs 

relative to free PTX.(J. H. Kim et al., 2006; Liang et al., 2006; Malavaud et al., 2004; 

Saravanakumar et al., 2009; Yang et al., 2007; Z. P. Zhang & S. S. Feng, 2006) However, 

in many cases, PTX NP formulations are not any less toxic than a free drug control (Gu et 

al., 2013; Jiang et al., 2012; S. H. Kim et al., 2011; Liu et al., 2005; Song et al., 2011; Tang 

et al., 2013; X. Wang et al., 2014; Z. Zhang & S. S. Feng, 2006). This may be interpreted 

as a consequence of enhanced cellular drug uptake or retention of NPs (Jiang et al., 2012; 

Liu et al., 2005; Song et al., 2011; Tang et al., 2013), but it could also be premature drug 

release, which has been ignored in the release kinetics study. A potential hazard of 

underestimating in vitro drug release is that it can mislead to a prediction that a NP 

formulation will attenuate the drug activity during circulation and, thus, help reduce its side 

effects on non-target tissues. However, unlike in vitro, NPs face an ultimate sink condition 

in the body, where the released drug is continuously diluted and undergoes protein binding, 
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and can thus show very different drug release behaviors and biological performances than 

expected from the in vitro release studies. This may partly explain why many NPs expected 

to be effective in vitro do not readily translate to clinically effective products.  

In order for in vitro release kinetics to provide some predictive potential, it is 

necessary that the release studies be performed with release media that simulate critical 

features of in vivo systems while maintaining simplicity and convenience of in vitro tests. 

PBS is the most simple and common medium for the release kinetics studies, but it requires 

a very low ratio of NPs to medium volume especially for poorly water-soluble drugs, which 

is met at the price of accuracy of the analysis. To avoid analytical limitation, some have 

measured drug remaining as NPs in the system at regular time points as an indirect estimate 

of drug release, where the difference between the initial and remaining dose is considered 

the released drug (Modi & Anderson, 2013). This is a good alternative to measuring the 

released drug, as long as the released drug remains stable in the medium. Serum-containing 

buffers may be a reasonable choice of release medium for mimicking a physiological fluid 

with a complex composition that affects drug release. Due to the solubilizing effect of 

serum proteins, these media are also good for achieving a sink condition at a reasonably 

high concentration. However, PTX in serum-containing medium requires additional 

extraction step to separate PTX from the proteins prior to analysis. Moreover, PTX is 

unstable in serum-containing solution; thus, the drug release may be underestimated unless 

the medium is exchanged frequency. Hence, Tween/PBS is most recommendable among 

those tested in this study, as PTX in Tween/PBS are more stable than in FBS/PBS, do not 

require extra sample treatment for HPLC analysis, and generates a similar release profile 

as that in FBS/PBS when used in the centrifugation method.  

Centrifugation and dialysis are most widely used for sampling the release medium, 

but both have critical limitations. Centrifugation method requires centrifugation at a high 

speed for separating NPs from the free drug at each sampling. The pressure generated 

during the centrifugation can disturb the equilibrium between released drug and NPs and 

make it difficult to resuspend the NPs for further incubation. In addition, the separation is 

often incomplete, leading to cumulative errors in measurement of the released drug. 

Dialysis method eliminates the need for separation step, but the fact that the dialysis 



107 

membrane itself functions as a diffusion barrier creates a different problem, especially for 

the poorly water-soluble drugs. As observed in this study, a poorly water-soluble drug, 

accumulating in the bag due to the delay in diffusion across the membrane, can 

reprecipitate into larger aggregates, which then drive the apparent release kinetics. A 

similar concern has been raised by Anderson et al, who studied release kinetics of lipophilic 

drug-loaded liposomes with the dialysis method and observed reversible binding of the 

released drug to the liposomes (Modi & Anderson, 2013). Given these disadvantages, it is 

worthwhile to consider alternative methods. For example, Szoka et al used agarose 

hydrogel to accommodate liposomes for non-invasive separation of the released drug 

from the carrier (Peschka et al., 1998). Alternatively, a biphasic dissolution model is 

a conceivable option for studying the release kinetics of poorly water-soluble drugs (D. J. 

Phillips et al., 2012). Here, a water-immiscible organic solvent with a low density (e.g., 

octanol) is laid over an aqueous release medium that contains the formulation. A 

drug released into the medium partitions into the organic layer due to the lipophilicity, 

keeping the aqueous medium from saturation (D. J. Phillips et al., 2012). This method 

can, at least in theory, maintain the sink condition without excessive dilution and/or 

invasive sampling.

4.5 Conclusions 

Overall, this study demonstrates the importance of choosing both optimum 

drug concentration and release medium when designing in vitro release experiments of 

poorly water soluble drugs from NPs.  In vitro release kinetics studies of poorly water-

soluble drugs designed without considering the solubility limitation can result in 

underestimation of drug release. To reasonably simulate in vivo conditions in which 

NPs are administered, the ratio of NPs to the initial volume of the release medium should 

be sufficiently lower than the saturation solubility. Inclusion of a dissolution aid in the 

release medium can help meet this requirement without compromising sample detection 

as long as it is in direct contact with NPs. In any combinations of release media and 

sampling methods, it is desirable to analyze the remaining NPs at the end of the study 

and check the mass balance, in order to exclude potential underestimation of drug 

release. 
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CHAPTER 5. APPLICATION OF TANNIC ACID FOR SURAFCE 
FUNCTIONALIZATION OF NANOPARTICLES 

5.1 Introduction 

The development of simple techniques for functionalizing NPs with different 

ligands and molecules is a topic of wide interest. Polydopamine (pD) represents a universal 

technique for easy functionalization of polymeric nanocarriers with different ligands, 

including small molecules, like folate and fluoresceinamine, and macromolecules like 

LMWC (discussed in Chapter 2), PEG, TAT peptide and polycarboxybetaine  (Gullotti et 

al., 2013; Park et al., 2014). Successful conjugation of these ligands resulted in changes in 

NP surface properties and corresponding NP-cell interactions. Furthermore, the use of pD 

as a prime coating for polymeric NP cores did not compromise the drug loading function 

of the core (Abouelmagd et al., 2015).  

However, in spite of the simplicity and efficiency of pD as a universal coating 

material, its chemical and optical nature limits broader application of this technique: (1) 

pD is black in color and has a broadband absorbance profile, which interferes with the 

optical properties of the core (Quignard et al., 2014); (2) Amine groups in pD give 

significant background signals in spectroscopic analysis and quantification of 

functionalized ligands (specially proteins and peptides); (3) Dopmaine polymerization 

requires alkaline conditions, unless an oxidation aid (external ultraviolet light, or oxidants 

like sodium periodate) is provided, (Du et al., 2014; Wei et al., 2010), while such alkaline 

pH is not compatible with selected drugs and polymers; and (4) Dopamine is 

relatively expensive.
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In an effort to overcome these challenges, alternative coating substrates  are  

considered. These substrates “monomers” mostly have the same characteristic catechol and 

amine groups of dopamine, and therefore can polymerize on a solid platform like dopamine, 

but have additional functional groups to produce a surface coating with different properties 

than pD (Lynge et al., 2011).  

Among the monomers is norepinephrine, which shares the same catechol and 

terminal primary amine group with dopamine. Reportedly, Norepinephrine forms coatings 

universally in a manner similar to dopamine. However, unlike pD, polymerized 

norepinephrine coatings facilitates additional ring polymerization reactions for polyester 

monomers on the surface, due to the additional alkyl hydroxyl group of norepinephrine 

(Kang et al., 2009). In another study, azide group was introduced into dopamine. The 

presence of azide group in the polymerized coating mediated introduction of alkynyl 

terminated molecules via click chemistry, enabling simple conjugation of a new range of 

molecules to azide-dopamine coated surfaces (Barras et al., 2011). 

Recently, a whole new class of multifunctional coatings was introduced. Sileika et 

al recently proposed a group of coatings derived from natural products (Sileika et al., 2013). 

Molecules like tannic acid (TA), pyrogallol (PG), and epigallocatechins gallate (EGCG) 

are known phenolic and polyphenolic compounds of plant origin. They are not 

catecholamine compounds but possess abundant catechol (dihydroxyp\phenyl) and galloyl 

(trihydroxybenzoyl) groups (Fig. 36). These natural precursors formed oatings similar to 

pD on organic and inorganic substrates, including polycarbonate and titanium dioxide 

(Sileika et al., 2013). It appears that the coating formation was driven by oxidation 

reactions, as the thickness dramatically decreased in the absence of oxygen. Phenolic 

compounds are known to polymerize under oxidative conditions “oxidative 

polymerization”, for example, PG is known to dimerize via oxidative coupling to form PG-

PG dimer (Appel, 1993; Drynan et al., 2010).  

Unlike pD coating, the polyphenolic coatings spontaneously formed at neutral pH, 

were colorless at same thickness with minimum alteration of the optical properties of the 

coated substrate (Sileika et al., 2013). Additionally, phenols and polyphenols like PG, TA 
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and EGCG are much cheaper than dopamine (Barrett et al., 2014). These differences 

provide a good opportunity to overcome the previously mentioned limitations of dopamine.  

PG and TA coatings had no cytotoxic effects on NIH/3T3 fibroblasts but favorably 

decreased the formation of reactive oxygen species (ROS) due to their antioxidant 

properties. The same group further investigated the coating-formation ability of many 

structurally related phenols and polyphenols and concluded that precursors with a 

minimum of one aromatic vicinal diol were most successful in coating formation (Barrett 

et al., 2014). 

Among all the polyphenolic precursors shown in Figure 36, TA stands out as 

multifunctional coating material. According to the literature (Barrett et al., 2014; Sileika et 

al., 2013), TA is water soluble and able to spontaneously form a colorless coating via 

oxidation at pH 7 with a thickness comparable to that of pD (Sileika et al., 2013). As a 

polyphenol with 10 units of gallic acid, it has a lot of hydroxyl groups, which enables 

interaction with different molecules via hydrogen bonding (S. Kim et al., 2015). The high 

Figure 36: Plant derived phenolic and polyphenolic compounds investigated for formation 
of colorless multifunctional coatings (adapted from Sileika et al, 2013). 
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number of galloyl groups also makes the molecule negatively charged, driving strong 

electrostatic interactions with cationic molecules. Moreover, multiple aromatic rings can 

mediate hydrophobic interactions with hydrophobic molecules. Due to this unique 

combination of intermolecular interactions, TA is expected to be more versatile than 

dopamine as a precursor.  

Accordingly, TA has repeatedly been used to crosslink collagen scaffolds, resulting 

in dramatically higher stability and resistance to degradation than TA-free collagen 

scaffolds (Heijmen et al., 1997; Natarajan et al., 2013). This was mainly attributed to TA’s 

significant hydrogen bonding with collagen carbonyl groups, in addition to hydrophobic 

interaction with collagen hydrophobic domains (Jackson et al., 2010). In another study, 

Wang et al described the adsorption of TA to the surface of amine functionalized 

mesoporous silica NPs and confirmed covalent conjugation between TA and amine groups 

of the silica NPs via X-ray photoelectron spectroscopy (XPS) (Wang et al., 2010). 

Additionally, TA was employed as a “molecular glue’ to interact with DNA forming a 

mucoadhesive and biodegradable hydrogel for biomedical applications (Shin et al., 2015). 

Hydrogel formation was attributed to the interaction between phosphate groups of DNA 

and phenolic groups of TA. It is worth mentioning that TA was frequently utilized as a 

building block for fabrication of NPs and MPs, but it was mainly used as a polyanion in 

Layer-by-Layer (LbL) composites (B. S. Kim et al., 2009; Kozlovskaya et al., 2010; 

Lomova et al., 2015; Shutava & Lvov, 2006). The application of polymerized TA as 

multifunctional coating material of polymeric NPs has not been fully explored.  

In this study, the application of TA as a multifunctional coating for polymeric NPs 

is investigated. In addition to its biocompatibility and favorable optical properties, we 

hypothesize that, given the multitude of molecular interaction capabilities, TA will enable 

functionalization of PLGA NPs with a unique array of (macro) molecules which would be 

challenging to conjugate with pD. Two different coating methods were explored, and its 

utility in surface functionalization with different types of ligands was evaluated.   
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5.2 Materials and Methods 

5.2.1 Materials 

PLGA (150 kDa, LA:GA=85:15, PLGA150) was purchased from Akina Inc. (IN, 

USA). Paclitaxel (PTX) was a gift from Samyang Genex Corp (Seoul, Korea). Tannic acid 

(Pure) and albumin from human serum were purchased from Sigma-Aldrich (MO, USA). 

Dopamine HCl was purchased from Alfa-Aesar (MA, USA). Pierce BCA protein assay 

and CBQCA protein assay kit were purchased from Thermo Scientific (NY, USA). (3-(4,5-

Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) (MTT) was purchased from 

Invitrogen (Eugene, OR, USA). All other materials were of analytical grade. 

5.2.2 Preparation and Characterization of NPs 

Conventional method. PLGA NP cores were prepared via single emulsion-solvent 

evaporation method. Briefly 100 mg of PLGA  and 10 mg of PTX were dissolved in an 

organic phase of DCM (10 mL) were sonicated into an aqueous phase of PVA (4%, 20 mL) 

using Vibra-Cell probe sonicator (Sonics, Newtown, CT, USA) with 45% amplitude at a 

pulse of 4-s on and 2-s off. Formed emulsion was dispersed into 30 mL of water and stirred 

for 5 hours to allow evaporation of DCM. NPs were collected by centrifugation at 25,000 

rpm (33,000 xg rcf) and washed 3 times with water to remove any remaining traces of 

DCM and PVA. To coat NPs with TA, PLGA NPs were dispersed in 0.07 mg/mL of TA 

solution in bicine buffer (0.1 M, pH 7.4) at a concentration of 0.5 mg NP/mL. The 

suspension was shaken for three hours, after which the formed PLGA-TA NPs were 

collected by centrifugation and further washed with water. The pD coated NPs were 

prepared as described in section 2.2.4. To functionalize PLGA-TA or PLGA-PD NPs with 

a certain ligand (albumin or fluoresceinamine (FA)), they were further incubated in ligand 

solution in bicine buffer (0.1 M, pH 7.4) with specified concentration and time, followed 

by NPs collection and washing. The washed NPs were freeze-dried and stored in 4 ˚C until 

needed.  
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One-pot method. PLGA emulsion was prepared in a manner similar as in the 

conventional method, replacing 4% PVA/water with 4% PVA in bicine buffer (0.1 M, pH 

7.4). After DCM evaporation, TA was directly added to the continuous phase in a ratio of 

1:1 (TA: NP), followed by addition of sodium periodate at a final concentration of 0.2 

mg/mL. NP suspension was shaken for 1.5 hour to form PLGA-TA NPs, collected and 

conjugated with ligands in the same as detailed in the conventional method section.   

5.2.3 NP Characterization 

Size, zeta potential, and morphology. Different types of NPs were evaluated for 

particle size and zeta potential as described in section 2.2.5. NP morphology was observed 

by transmission electron microscopy (TEM) using the method described in section 2.2.5, 

employing different stains. 

TA-induced AgNO3 deposition. The presence of TA was detected by deposition of 

Ag metal on TA surface. (Sileika et al., 2013). Briefly, PLGA or PLGA-TA NPs were 

incubated overnight in AgNO3 aqueous solution (17 mg/mL) with shaking and collected 

by centrifugation. The NPs were washed once with water to remove excess AgNO3. Finally, 

NPs were visualized with TEM using 1% phosphotungstic acid as a negative stain.    

TA content. To examine the efficiency of TA coating on PLGA NP surfaces, TA 

content was directly and indirectly quantified by bicinchoninic acid (BCA) assay. TA is a 

reducing agent and can reduce cupric ions in the assay reagent to cuprous, which form 

colored complexes with BCA (Marino et al., 2009). This reaction is sensitive and linear. 

To directly determine TA content, TA coated NPs of a known weight were incubated with 

BCA working reagent for an hour at 37 ˚C. A supernatant was separated from the 

suspension via centrifugation, and its absorbance was read at 562 nm using a SpectraMax 

M3 microplate reader (Molecular Device, Sunnyvale, CA). The amount of TA per NP 

sample was calculated after subtracting the background absorbance of uncoated PLGA NPs, 

using a calibration curve drawn with TA solutions of known concentrations. Alternatively, 

TA content of PLGA-TA NPs was determined indirectly by quantification of TA in bicine 

buffer after incubation of PLGA NPs and separation of NPs by centrifugation. The amount 
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of TA in the supernatant was measured using BCA assay and compared to control samples 

(100% TA, no PLGA NPs). The TA content of PLGA NPs (%w/w) was calculated as:  

	 	 	% 	 	 	 	 	 	 	 	

	 	
%  

Human Serum Albumin content. To determine the amount of albumin conjugated 

to NPs surface, NPs were dispersed in water (10 mg/mL), and albumin content was 

determined via CBQCA fluorescence protein assay (Life Science, NY, USA) per vendor’s 

instruction.  A calibration curve was constructed using known concentrations of albumin. 

Fluorescence of different samples was measured at Excitation/Emission of 465/550 nm 

using a SpectraMax M3 microplate reader (Molecular Device, Sunnyvale, CA). The 

amount of albumin per NP sample was calculated after subtracting the background 

fluorescence level of corresponding NPs before albumin conjugation.  

Fluoresceinamine content. The amount of Fluoresceinamine (FA) conjugated to 

different types of NPs was quantified indirectly by measuring the absorbance of FA in 

supernatant before and after NPs incubation. Briefly, 0.4 mg of NPs was dispersed in 1 mL 

of FA solution (15 ug/mL) in Tris buffer (10 mM, pH 8.5) for 40 minutes. Then, NPs were 

centrifuged, and the FA absorbance in the supernatant was measured at 497 nm using a 

SpectraMax M3 microplate reader (Molecular Device, Sunnyvale, CA) and compared to 

that of original FA solution. The amount of FA per NP weight was determined using a 

standard calibration curve of FA in the same buffer solution.  

5.2.4 In vitro Cytotoxicity of TA coated NPs 

To evaluate the cytotoxic effect of TA coated NPs. An in vitro cytotoxicity study 

was performed using NIH/3T3 fibroblast cell line (ATCC, Manassas, VA, USA). Cells 

were cultured in Dulbecco's modified Eagle medium (DMEM) medium supplemented with 

10% fetal calf serum and 100 units/ml of penicillin and 100 ug/ml of streptomycin. Cells 

were seeded in 96-well plate at a density of 10,000 cell/well (200 µL). Next day, 

concentrated NP suspension was added (20 uL) to a final concentration of 0.1, 0.01, 0.001, 
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or 0.0001 mg/mL. After 72 hours, mitochondrial activity of the cells was evaluated using 

the MTT assay. NP containing medium was replaced with that containing MTT solution 

(115 µL) and cells were incubated for 3.5 hours, after which 100 µL of stop solution (50 % 

DMSO, 20% SDS and 0.02% acetic acid) was added. Next day, wells absorbance was read 

using a SpectraMax M3 microplate reader at 529 nm. % viability of the cells was 

determined in comparison to control cells that did not receive NP treatment. 

5.3 Results 

5.3.1 NPs Preparation and Characterization 

Freeze-dried PLGA NPs had an average particle size of 200 nm after redispersion, 

maintaining a good polydispersity index (<0.2) (Fig. 37a). TA coating was achieved using 

two methods, conventional and one-pot method. The former approach was similar to that 

of pD coating, where PLGA NPs are first formed in PVA solution, washed, then incubated 

in TA solution. In the one-pot method, PLGA NPs were directly formed in TA buffer 

solution. The main difference was that PVA was removed prior to TA deposition in the 

original method, whereas TA deposition occurred in the presence of PVA emulsifier in the 

one pot method. 

Unlike pD coating, which imparted a black color to the NPs, TA deposition on 

PLGA surface did not induce color change of the NPs (Fig. 38). Nevertheless, TA 

deposition was evident due to the increased net surface negative charge (Fig. 37b). Coating 

of NPs with TA via either conventional, or one-pot method, did not increase the particle 

size compared to uncoated PLGA NPs (Fig.37a ), which indicates that TA existed in a thin 

layer not contributing to NP diameter, similar to that observed with pD coated NPs 

(Abouelmagd et al., 2015). Overall, all coated NPs had a good polydispersity index after 

freeze-drying without prior addition of cryoprotectants (Fig. 37a).   
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Although TA itself did not have color, its presence on NP surface was indirectly 

indicated by the color change of PLGA-TA NP suspension after incubation in AgNO3 

solution (Fig. 39a), due to the reducing effect of TA on AgNO3 localized at NPs surface 

leading to deposition of metallic silver on NPs. Uncoated PLGA NPs did not show change 

after overnight incubation with AgNO3. Deposited Ag was also visualized by TEM as 

electron dense aggregates on the surface of PLGA-TA NPs (Fig. 39b).  

Figure 37: Particle size and surface charge of different NPs: (a) Particle size and polydispersity 
index, (b) Zeta potential of NPs in pH 7.4 phosphate buffer (average ±SD, n=4-5, Anova test, 
**p<0 005).

Figure 38: Suspension of PLGA NPs post coating with pD or TA (conventional method) showing 
the different colors of the coated NPs. 
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Although both preparation methods, conventional and one-pot, seemed to result 

in TA coating, as indicated by negative charges of NPs, conventional method was more 

preferable, as TA coating was carried out in absence of an emulsifier (PVA) or excess 

drug (PTX), which might interfere with intimate interactions between the coating and 

PLGA NP surface and be entrapped in the deposited TA layer. All NPs used in the rest 

experiments were prepared via the conventional method. ‘PLGA-TA’ should refer to NPs 

prepared using the conventional method, unless stated otherwise.    

Figure 39: PLGA and PLGA-TA NPs (conventional method) post incubation in AgNO3 aqueous 
solution (17 mg/mL) overnight. TA presence is indicated by the darkening of NP suspension due
to reduction of AgNO3 and deposition of metallic Ag (a). When visualized using TEM (1% PTA
negative stain) (b), electron dense Ag can be seen depositing on PLGA-TA NP surface, but not on 
PLGA NPs.  



121 

5.3.2 Quantification of TA Coating 

The TA content in NP-TA was quantified by BCA assay. TA reacts linearly with 

BCA working reagent resulting in characteristic formation of a colored complex (Marino 

et al., 2009) (Fig. 40a). The direct or indirect methods showed consistent results, with an 

average of 2.84% ±0.25 and 3.2% ±0.6, respectively (Fig. 40b and c).  

5.3.3 Functionalization of PLGA-TA NPs 

The functionalization potential of TA as a NP coating was evaluated in comparison 

with pD.  Fluoresceinamine (FA) (Fig. 41a) was chosen as a small ligand and could be 

easily detect via fluorescence (Duarte & da Silva, 2010). FA was readily conjugated to pD-

coated NPs due to the amine group (Park et al., 2014). TA was as efficient as pD in 

Figure 40: Quantification of TA using BCA assay. (a) Calibration curve of TA in bicine buffer (pH
7.4, 0.1 M), (b) Consumption of TA in solution by PLGA coating. Decrease in absorbance post
incubation of PLGA NPs for 3 hours in comparison to control (100% TA incubated for 3 hours in
absence of NPs) was used to indirectly quantify amount of TA in PLGA-TA NPs, (c) TA weight% 
per NP as determined by both direct and indirect methods (average ±SD, Two-tailed T-test, 
*p<0.05).
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conjugating FA to PLGA NPs, with an average of 2.2 (TA) and 1.7 µg/mg NPs (pD), 

respectively (Fig. 41b).  

Successful conjugation of FA indicated the potential of TA as a coating material 

for NPs. This potential was further evaluated with a large protein molecule such as albumin, 

a ~67 kDa serum protein with an isoelectric point of pH 4.7 (Fig. 42a) (Abou-Zied et al., 

2013; Vlasova & Saletsky, 2009), which has been popularly used as a NP coating material 

(Peng et al., 2015; Peng et al., 2013). Albumin coating was achieved by incubation of 

PLGA-TA NPs with human serum albumin solution (5 mg/mL) at 2 mg/mL NP 

concentration for three hours.  From the particle size and zeta potential analysis, PLGA-

TA-Al NPs had less negative charge than that of original PLGA-TA NPs (Fig. 42c) but 

maintained a similar particle size (Fig. 42b). The decrease of negative charge could be 

explained by masking of TA layer with albumin.  

Figure 41: FA was conjugated to PLGA-pD and PLGA-TA NPs. FA is a small molecule with a
free amine group (a) (Adapted from Durate et al, 2015). Amount of FA conjugated to the surface
in PLGA-pD-FA and PLGA-TA-FA NPs after NPs incubation in 15 µg/mL solution of FA (b)
(average ±SD). 
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Albumin present on PLGA-TA-Al NP surface was detected and quantified using 

the CBQCA protein fluorescence assay (Thermo Scientific). PLGA-TA-Al NPs had ~ 1.12% 

albumin per NP weight (Fig. 43). In contrast, control PLGA-Al, where albumin was 

physically adsorbed to the PLGA NPs in the same conditions, had ~0.39% albumin per NP 

weight, significantly less than that conjugated on PLGA-TA-Al NPs.  

Figure 42: The functionalization of PLGA-TA NPs with human serum albumin: (a) The 
3D structure of human serum albumin (Adapted from Abou-Zeid et al, 2013), (b) The 
particle size and polydispersity of PLGA-TA and PLGA-TA-Al NPs, (c) Zeta potential of 
the same NPs measured in phosphate buffer (pH 7.4) (average ±SD, n=3-6, Two-tailed T-
test, *p<0.05).  

Figure 43: Albumin content of PLGA-Al and PLGA-TA-Al represented as Albumin per NP w%.
PLGA-TA-Al (average ±SD, n=5-8, Two-tailed T-test, *p<0.05). 
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When visualized using TEM after negative staining with 2% uranyl acetate solution, 

PLGA-TA-Al NPs showed a thin coating layer on the surface (Fig. 44), which appeared to 

be the combination of TA and albumin.  

5.3.4 Cytotoxicity of PLGA-TA NPs 

Finally, in order to establish TA as a coating material for NPs delivered 

systemically, it should not exert any cytotoxic effect. When PLGA-TA NPs (PTX free), 

were incubated with NIH/3T3 fibroblasts for 72 hours, no cytotoxic effect was observed in 

comparison with uncoated PLGA NPs, at concentrations as high as 0.1 mg/mL (Fig. 45).   

Figure 44: Transmission electron microscopy (TEM) images of PLGA-TA-Al NPs negatively 
stained with 2% uranyl acetate at low and high magnification levels (left and right images, 
respectively). 
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5.4 Discussion 

Surface properties of NPs determines their cellular interaction in vivo and dictates 

their biodistribution (Blanco et al., 2015). Therefore, controlling NP surface chemistry and 

properties is of great importance in the development of NPs as a drug carrier. The pD 

coating simplified the process of surface functionalization of polymeric nanocarriers, 

enabling manipulation of surface charge and cellular interactions (Abouelmagd et al., 2015; 

Park et al., 2014), yet with limitations identified earlier. The introduction of polyphenolic 

coatings as a new class of multifunctional coatings can overcome pD limitations and 

expand the scope of conjugated molecules as well as coated substrates. Previously 

discussed properties of TA and dopamine (and their corresponding coatings) are shown in 

Figure 46. 

In this preliminary study, the use of TA as a coating material for PLGA NPs was 

investigated. Incubating PLGA NPs in low concentration of TA (0.07 mg/mL) was enough 

to coat NPs with TA. Two methods were attempted to prepare PLGA-TA NPs, 

conventional (PLGA NP purification, followed by coating) and one-pot (PLGA NP form 

Figure 45: Viability of NIH/3T3 fibroblasts after incubation with different concentrations (mg/mL) 
of PTX-free PLGA-TA or PLGA NPs for 72 hours as determined with MTT assay.    
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in TA containing medium). Although both methods formed TA-coated NPs (As indicated 

by NP surface charge, Fig. 38b), one-pot method was excluded due to the potential 

interference of the emulsifier. PLGA-TA NPs prepared by the conventional method had ~ 

3% TA content per NP weight (Fig.40), reflected by significant increase in negative charge 

of the NPs and deposition of metallic Ag after incubation in AgNO3 solution (Fig. 39).  

The functionalization efficiency with TA was tested using two different surface 

ligands: FA, a small molecular weight fluorescent dye with an amine terminus, and human 

serum albumin, a large 67 kDa globular protein.  TA successfully mediated FA conjugation 

to NP surface, in a similar level as pD coating (Fig. 41). Similarly, TA mediated surface 

functionalization with albumin. PLGA-TA-Al NPs had ~1.12% albumin per NP weight 

(Fig. 43), showing a decrease of the noticeably negative charge of PLGA-TA NPs (Fig. 

42c). The interaction of TA with proteins in general, and albumin in particular, is inherent 

to the nature of TA as a tannin compound. Tannins are plant products long known to 

precipitate proteins, and therefore responsible for the astringent taste of some plant 

products (Soares et al., 2007). Soares et al. studied the interaction of TA, among other 

phenolic compounds, with bovine serum albumin. TA was shown to have the highest 

quenching effect on the fluorescence of albumin in solution indicating significant changes 

in the environment of tryptophan residues of the protein. Nevertheless, there was no blue 

or red shifts were observed in the fluorescence spectrum, indicating that the change in 

tryptophan fluorescence was not due to protein unfolding or burial (no change in protein 

conformation) but rather to the presence of TA in proximity (Soares et al., 2007). High 

molecular weight of TA and presence of repeating gallic acid units is believed to be 

responsible for this strong interaction with proteins mediated by hydrophobic and hydrogen 

bonding, as compared to other phenolic compounds, such as gallic acid and ellagic acid 

(Labieniec & Gabryelak, 2006; Soares et al., 2007).  
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This strong interaction of TA with proteins, specifically albumin was repeatedly 

reported in the literature (Labieniec & Gabryelak, 2006). In another study, TA was shown 

to react with amine-functionalized silica NPs and form stable covalent bonds, suggesting 

that TA molecules could also interact via covalent conjugation (Wang et al., 2010). 

However, it is important to consider that specific interactions of TA with albumin in 

solution could be different in nature from that of TA polymerized and immobilized on NPs, 

where TA is not mobile enough to interact with amino acids within certain pockets in the 

3D structure of the protein.   

Figure 46: Comparison of chemical and physical properties of different precursors (dopamine and 
TA), and the polymerized coatings they form. Circles in top panel point to catechol and 
trihydroxyphenyl groups of dopamine and TA. References:  1 = (Park et al, 2014), 2= (Barette et al, 
2014). 

5.5 Conclusion 

In summary, this preliminary study shows that TA can be used as an alternative 

coating to pD for functionalizing PLGA NPs with small ligands (FA) or macromolecules 

(albumin). Given the strong interactions of TA with different macromolecules (e.g. 
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proteins and nucleic acids), TA is expected to be an ideal coating material to 

functionalize NPs for drug delivery applications. However, further investigation is 

needed to optimize the conditions for stable conjugation of these macromolecules and to 

test the stability of coated NPs under physiologically relevant conditions. 
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Statistical analysis was performed using SAS software (v. 9.4, NC, USA). 

Logarithm of tumor volume change (fold) was analyzed over time using a mixed model 

based on variance being significantly different among treatments and mice.  

Applied codes:  

proc mixed data = sample; 

class animalID trt; 

model logy = trt day trt*day/solution; 

random animalID; 

Where ‘animalID’ indicates individual mice of each group, ‘y’ is fold tumor volume 

change, ‘trt’ represent treatment group (PBS, Abraxane,..etc) 

By analyzing significant change in slope of tumor growth curve, with ‘day’ and ‘trt’ 

being variables, following results were obtained (significance at ‘Pr > |t|’ <0.05):  

LS174-T 

Label Estimate Standard Error DF t Value Pr > |t| 
compare the 

slope: Abraxane 
vs PBS 

0.02158 0.008115 203 2.66 0.0085 

compare the 
slope: LMWC vs 

PBS 
0.01991 0.008134 203 2.45 0.0152 

compare the 
slope: PEG vs 

PBS 
0.02190 0.008111 203 2.70 0.0075 

compare the 
slope: Taxol vs 

PBS 
0.03436 0.007526 203 4.57 <.0001 

compare the 
slope: LMWC vs 

PEG 
0.001986 0.006671 203 0.30 0.7662 

MCF-7 

Label Estimate Standard Error DF t Value Pr > |t| 
compare the 

slope: Abraxane 
vs PBS 

0.01769 0.004795 163 3.69 0.0003 

compare the 
slope: LMWC vs 

PBS 
0.004533 0.005146 163 0.88 0.3797 

compare the 
slope: PEG vs 

PBS 
0.01931 0.004795 163 4.03 <.0001 

compare the 
slope: LMWC vs 

PEG 
0.01478 0.005146 163 2.87 0.0046 
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Abstract 
Low molecular weight chitosan (LMWC) is a promising polymer for surface modification of 
nanoparticles (NPs), which can impart both stealth effect and electrostatic interaction with cells 
at mildly acidic pH of tumors. We previously produced LMWC‐coated NPs via covalent 
conjugation to poly(lactic‐co‐glycolic) acid (PLGA‐LMWC NPs). However, this method had 
several weaknesses including inefficiency and complexity of the production as well as increased 
hydrophilicity of the polymer matrix, which led to poor drug release control. Here, we used the 
dopamine polymerization method to produce LMWC‐coated NPs (PLGA‐pD‐LMWC NPs), where 
the core NPs were prepared with PLGA that served best to load and retain drugs and then 
functionalized with LMWC via polydopamine layer. The PLGA‐pD‐LMWC NPs overcame the 
limitations of PLGA‐LMWC NPs while maintaining their advantages. First of all, PLGA‐pD‐LMWC 
NPs attenuated the release of paclitaxel to a greater extent than PLGA‐LMWC NPs. Moreover, 
PLGA‐pD‐LMWC NPs had a pH‐dependent surface charge profile and cellular interactions 
similar to PLGA‐LMWC NPs, enabling acid‐specific NP–cell interaction and enhanced drug 
delivery to cells in weakly acidic environment. Although the LMWC layer did not completely 
prevent protein binding in serum solution, PLGA‐pD‐LMWC NPs showed less phagocytic uptake 
than bare PLGA NPs. 
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Introduction 
Delivering drugs specifically to tumors remains a  major challenge 
in chemotherapy. Once administered intravenously, 
chemotherapeutic agents spread to the whole body, causing 
adverse effects to healthy tissues [1]. Polymeric nanoparticles 
(NPs) have been developed for improving tumor-specificity of 
drug delivery. The popularity of NPs is mainly attributable to   the 
so-called ‘‘enhanced permeability and retention (EPR) 
effect’’ based on the leaky vasculature and impaired lymph- 
atic drainage of tumors,  which provides a selective advantage  for 
small particles in accessing tumors compared  with  free drugs 
[2–4]. To take advantage of the EPR effect, NPs should be able 
to circulate avoiding immune surveillance, until they reach 
tumors. Upon arrival at target tumors, NPs should be  stably 
retained in the tissues and/or taken up by cancer cells to release 
the loaded drug. Traditionally, NPs are coated with hydrophilic 
neutral polymers such as polyethylene  glycol  (PEG), which 
sterically stabilizes the  NPs  and  delays adsorption of plasma 
proteins to the surface [5,6], to achieve long-term  circulation.  
However,   the  PEG  surface  can     also 

Address for correspondence: Yoon Yeo, PhD, Department of Industrial 
and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, 
West Lafayette, IN 47907, USA. Tel: +1 765 496 9608. Fax: +1 765 494 
6545. E-mail: yyeo@purdue.edu 

limit cellular interactions with target cells and cellular 
internalization, creating a‘‘PEG dilemma’’ [7,8]. 

For overcoming the dilemma, we previously proposed     a 
low molecular weight chitosan (LMWC) as an alternative 
surface layer [9]. Chitosan is a linear polyaminosaccharide with 
a pKa value close to 6.5, which helps establish electrostatic
interactions with negatively charged cell mem- brane in weakly 
acidic microenvironment of tumors (pH 6.8– 7.2) [10]. At 
neutral pH, chitosan coated on polymeric NPs protects them 
from phagocytic uptake [11] and prolongs their circulation time 
[12]. By reducing the MW to 56.5 kDa, we intended to increase 
hydrophilicity of the polymer and reduce pH-independent 
interactions with cells mediated by polymer chain 
entanglement, further improving its protective effect at neutral 
pH [9]. We obtained the proof of concept in the previous study, 
using NPs produced with poly(lactic- co- glycolic) acid 
(PLGA) covalently conjugated to LMWC via an amide bond 
(PLGA-LMWC) [9]. The PLGA-LMWC NPs, consisting of 
PLGA core and LMWC surface, showed a pH- sensitive 
surface charge profile, which translated to NP–cell 
interactions at weakly acidic pH with reduced phagocytic 
uptake and little non-specific NP–cell interactions at neutral 
pH [9]. 

However, the covalent conjugation of LMWC to PLGA had 
several drawbacks. First, the chemical conjugation procedure  
is  lengthy  and  inefficient  and  requires  reactive 
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reagents and catalysts that need to be completely removed after 
the reaction. Moreover, the conjugation process reduces the 
potential of NPs as a drug carrier. LMWC conjugation requires 
a sufficient number of carboxyl termini, which necessitates the 
use of a low molecular weight PLGA (4 kDa, PLGA4). This 
polymer is relatively hydrophilic and, thus, has an inherent 
limitation in encapsulating hydrophobic drugs. Covalent 
conjugation of LMWC makes the product even more 
hydrophilic, further compromising the ability of the formed 
NPs to load and retain a drug. Prolonged reaction in basic pH 
also accelerates degradation of the polymer and aggravates the 
problem. Consequently, PTX-loaded PLGA4-LMWC NPs 
showed a rapid drug release in PBS with 0.1% Tween 80 in 24 
h [9]. NPs showing high initial burst release are likely to release 
the drug in circulation and not contribute to improving tumor-
specific drug delivery; therefore, these shortcomings should be 
overcome for the LMWC-coated NPs to make further 
contribution to chemotherapy. 

In an attempt to overcome this challenge, we have employed 
a new surface modification method based on dopamine 
polymerization [13], which has been used to functionalize 
several  nanostructures including nanowires [14], carbon 
nanospheres [15], gold nanoclusters [16] and gold nanorods 
[17], and validated that the new method can effectively 
functionalize polymeric NPs with different types of ligands 
[18,19]. The dopamine polymerization method depends on 
oxidation of dopamine catechol, followed by the formation of 
polydopamine (pD) layer on the NP surface, where functional 
ligands with amine or thiol are covalently conjugated. This 
method can be implemented in mild conditions such as brief 
exposure to pH 8.5, UV light [20]   or oxidants [21], does not 
require reactive reagents or lengthy reaction, and can be applied 
to a broad range of surface modifiers and NP platforms [13,18]. 
Once dopamine poly- merizes, it loses its dopaminergic activity 

[18], and the resulting pD is biodegradable and biocompatible 

with a LD50 of 483.95 mg/kg in mice after intravenous injection  
[22]. 

In this study, we use the dopamine polymerization method 
to produce LMWC-coated NPs (Figure 1) based on the 
flexibility   in   controlling   drug   release.   Here,     LMWC 

Figure 1. Schematic diagram of PLGA-pD-LMWC NPs preparation and 
pH-dependent NP-cell interaction. 

molecules are incorporated into the pD layer on PLGA NPs via 
multiple amine groups. Since LMWC is introduced as an 
addendum to pre-formed NPs via the pD layer, the core NPs 
can be prepared with polymers that serve best to load and retain 
drugs, not constrained by the needs for carboxyl termini or the 
hydrophilicity of the modified polymer. We demon- strate that 
PLGA NPs modified with LMWC via dopamine 
polymerization method overcome the previously observed 
limitations of PLGA4-LMWC NPs and show the desired pH- 
sensitivity in cell interaction and drug delivery and the 
tendency to avoid phagocytic uptake, similar to PLGA4- 
LMWC NPs. We also investigate NP–cell interactions at 
acidic pH and their intracellular trafficking and discuss their 
implications in drug delivery to tumor  tissues. 

Material and methods 
Materials 
Chitosan (90–150 kDa) was purchased from Sigma-Aldrich 
(St.   Louis,   MO).  PLGA  (acid  end  cap,  4 kDa, LA:GA 
¼ 50:50, PLGA4) was purchased from Durect Corp
(Birmingham, AL). PLGA (118 kDa, LA:GA ¼ 65:35,
PLGA118) was purchased from Lakeshore Biomaterials 
(Birmingham, AL). PLGA (150 kDa, LA:GA ¼ 85:15,
PLGA150) and fluorescein-conjugated PLGA (7 kDa, LA:GA 
¼ 50:50, *PLGA) were purchased from Akina Inc. (West
Lafayette, IN). Paclitaxel (PTX) was a gift from Samyang 
Genex Corp (Seoul, Korea). LysoTracker Red DND- 99, 
CellMask Deep Red plasma membrane stain and Hoechst 
33342 were purchased form Life Technologies (Carlsbad, CA). 
Methoxy PEG amine, HCl salt (5 kDa, mPEG-NH2) was 
purchased from JenKem Technology USA (Plano, TX). 
Dopamine hydrochloride was purchased from Alfa Aesar 
(Ward Hill, MA). Coomassie Brillant blue G-250 protein stain 
and sodium dodecyl sulfate-acrylamide gel electrophoresis 
(SDS-PAGE) molecular weight standards were purchased from 
Bio-Rad (Berkeley, CA). 

 
Preparation and characterization of LMWC 
LMWC was prepared as previously described [9]. Briefly, 
25 mg/mL of chitosan solution was incubated in 33% hydrogen 
peroxide for 3.5 h, dialyzed against water with a molecular 
weight cut-off (MWCO) of 3500 Da, and freeze- dried. The 
molecular weight of LMWC was estimated by matrix-assisted 
laser desorption ionization time-of-flight/ time-of-flight 
(MALDI-TOF/TOF) analysis and analytical ultracentrifugation 
(AUC). For mass spectrometry, 1 mg/mL LMWC solution was 
prepared in acidified water (pH 5), filtered with a 0.2 mm 
syringe filter, and mixed with a matrix (sinapinic acid solution 
in acetonitrile/water (50:50) contain- ing 0.1% trifluoroacetic 
acid) in 1:1 ratio. Mass analysis was performed with a 4800 
MALDI TOF/TOF instrument (Applied Biosystems, Foster 
City, CA) in 2000–8000 m/z range. For AUC, LMWC
solution in sodium acetate buffer (pH 4.3, 10 mM) was 
prepared in 1, 0.5 and 0.25 mg/mL and analyzed with a 
Beckman Optima XL-I ultracentrifuge (Beckman Coulter Inc., 
Brea, CA). The sedimentation coefficients and apparent 
molecular weights were calculated from  size  distribution  
analysis  with  SEDFIT  version 12.0 
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(National Institute of Health, Bethesda, MD). The pH 
dependence of water solubility of LMWC was estimated by 
measuring the transmittance of LMWC solution (0.5 mg/mL) 
varying the pH from 2.5 to 10 with NaOH. The percentage 

transmittance (%T) was calculated as 10-A x 100, where A 
was the absorbance of the solution at   500 nm. 

Preparation of particles 
PLGA4-LMWC NPs 
A covalent conjugate PLGA4-LMWC was prepared as 
described previously [9]. Briefly, 200 mg of LMWC was 
dissolved in acidified water (20 mL, pH  5)  and  added  to 40 
mL of dimethyl sulfoxide (DMSO). Five hundred milli- grams 
of PLGA4 was dissolved in 2 mL of dichloromethane (DCM), 
to which hydroxybenzotriazole (HOBT; 74.3 mg), 1- ethyl-3-
(3-dimethylaminopropyl)       carbodiimide      (EDC; 

106.2 mL)     and     tetramethylethylenediamine    (TEMED; 
269.9 mL) were sequentially added. The activated PLGA4 was 
added to LMWC solution dropwise and stirred overnight. The 
formed conjugate, PLGA4-LMWC, was purified by dialysis 
(MWCO: 3500 Da) against a mixture of DMSO and water  
(50:50)  and  then  water,  freeze-dried  and  stored   at 

-20 oC.
PLGA4-LMWC NPs were prepared using the single

emulsion solvent evaporation method. Twenty milligrams of 
PLGA4-LMWC were dissolved in a mixture of 0.5 mL DMSO,  
0.5 mL  DCM  and  0.1 mL  water,  optionally  with 
1.2 mg of paclitaxel (PTX). The organic phase was emulsified 
in 5 mL of aqueous phase containing 5% polyvinyl alcohol 
(PVA) using a Vibra-Cell probe sonicator (Sonics, Newtown, 
CT) at 80% amplitude with a 4-s on and 2-s off pulse mode. 
The emulsion was dispersed in 10 mL of deionized water and 
stirred for 3 h to evaporate DCM. NPs were collected via 
centrifugation at 10 000 rpm for 30 min and washed thrice. 
Fluorescently labeled PLGA4-LMWC NPs (*PLGA4-LMWC 
NPs)  were  prepared  by  replacing  25%  of  polymer    with 

*PLGA. 

PLGA-pD-LMWC and PLGA-pD-PEG particles 
PLGA-pD-LMWC NPs were prepared by coating pre-formed 
particles with LMWC via the dopamine polymerization method 
[18]. First, the core NPs were prepared with PLGA polymers 

with different molecular weights and LA:GA ratios (PLGA118: 

118 kD, LA:GA ¼ 65:35 and PLGA150: 150   kD,
LA:GA ¼ 85:15) by the single emulsion solvent evaporation
method as described in the ‘‘PLGA4-LMWC NPs’’ section. 
PLGA microparticles (MPs) were prepared in a similar way 
except that the emulsification process was performed with a 
Silverson L4R Laboratory Mixer (East Longmeadow, MA) for 
1 min at 5000 rpm. The core particles were then prime-coated 
with polymerized dopamine (pD) by incubation in 1 mg/mL 
dopamine solution in Tris buffer (pH 8.5, 10 mM) for 3 h at 
room temperature. The pD-coated particles were collected by 
centrifugation, washed twice and incubated with LMWC 
aqueous solution (pH 7.5, 0.5 mg/mL) for 40 min to produce 
PLGA-pD-LMWC particles. For comparison, PEG-modified 
(PLGA-pD-PEG) particles were created by incubating the pD-
coated   particles   in   mPEG-NH2   solution   (pH   8.5,   2 
mg/mL).  The  particles  were  collected  by  centrifugation 
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and washed twice to remove excess LMWC or mPEG-NH2. 
Throughout this study, PLGA particles refer to PLGA150 

particles unless stated  otherwise. 

Particle characterization 
Particle size and zeta potential of particles were determined 
using a Malvern Zetasizer Nano ZS90 (Worcestershire, UK). 
The size was measured with particles dispersed in phosphate 
buffer (2.2 mM, pH 7.4). The zeta potential was determined at 
different pHs with particles dispersed in phosphate buffer (2.2 
mM, pH 7.4) or MES buffer (5 mM, pH 6.2). Particle 
morphology was observed by transmission electron micros- 
copy (TEM). An aqueous suspension of freshly prepared NPs 
(0.5–1 mg/mL) was spotted on a formvar-coated carbon grid 
(400 mesh) and negatively stained with 2% uranyl acetate 
solution. The grid was air-dried and examined with     a FEI 
Tecnai T20 transmission electron microscope (FEI, Hillsboro, 
OR). 

The LMWC content in PLGA-pD-LMWC NPs was 
quantified by the  ninhydrin  assay. The ninhydrin reagent was 
prepared by dissolving ninhydrin and hydrindantin in lithium 
acetate buffer [9,23]. 0.5 mg of freeze-dried NPs were 
dispersed in 0.5 mL water and combined with 0.5 mL of fresh 
reagent. The mixture was heated in boiling water for 30 min, 
then cooled and quenched with 15 mL of 50% ethanol solution. 
The absorbance of the solution was read at 570 nm using 
SpectraMax M3 microplate reader (Molecular Device, 
Sunnyvale, CA). The amount of LMWC per NP sample was 
calculated after subtracting the background absorbance of 
PLGA-pD NPs, using a calibration curve drawn with LMWC 
solutions of known concentrations. 

In vitro PTX release kinetics from PLGA4-LMWC and 
PLGA-pD-LMWC NPs 
To determine PTX loading in NPs, freeze-dried NPs were 
accurately weighed and dissolved in 0.5 mL acetonitrile. After 
precipitating polymer with the addition of 0.5 mL deionized 
water, the sample was centrifuged, and the supernatant 
analyzed via high pressure liquid chromatography (HPLC). The 
drug loading in NPs (DL%) was calculated as the amount of PTX 
per NP mass. For in vitro release studies, NPsequivalent to 8.75
mg PTX were dispersed in 1 mL of phosphate-buffered saline 
(PBS, pH 7.4) containing 0.2% Tween 80 and shaken at 37 oC.
At regular time points, NP suspension was centrifuged at 12 000 
rpm for 15 min, 0.8 mL of supernatant was sampled and replaced 
with 0.8 mL of fresh buffer, and the pellet was resuspended and 
returned for continued incubation. The sampled supernatant 
was filtered with a 0.45 mm syringe filter and analyzed by 
HPLC. HPLC analysis was performed with an Agilent 1100 
HPLC system (Palo Alto, CA), equipped with Ascentis C18  
column  (25 cm x 4.6 mm,  particle  size  5 mm). The mobile
phase was a 50:50 mixture of water and acetonitrile run at a 
flow rate of 1 mL/min. PTX was detected by a UV detector 
(227 nm). 

 

Protein adsorption to NP surface 
Nanoparticles (NPs) were incubated with 50% fetal bovine 
serum (FBS) in PBS at 37 oC with shaking for 1 or 24 h. 
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NPs were collected by centrifugation at 13 200 rpm and washed 
thrice with water to remove excess and loosely bound proteins. 
To strip off hard corona proteins from NP surface, NPs were 
boiled in sample buffer containing 5-mercaptoetha- nol and 2% 
SDS for 5 min. The sample was analyzed with SDS-PAGE. 
The resolved protein bands were stained with Coomassie 
brilliant blue G-250. The molecular weight of a band of interest 
was determined using GelAnalyzer 2010a software 
(www.GelAnalyzer.com). Briefly, a calibration  curve was 
constructed with a plot of the relative migration distance (Rf) 
of standard bands versus their MWs and used to determine the 
MW of resolved bands in each gel. The intensity of different 
bands was quantified using ImageJ 1.48v software densitometry 
analysis (National Institute of Health, Bethesda, MD). 

NP–cell interactions 
Cell culture 
SKOV-3 human ovarian cancer cells (ATCC, Manassas, VA) 
were grown in RPMI-1640 medium containing 10% FBS, 100 
U/mL of penicillin and 100 mg/mL of streptomycin. J774A.1 
mouse macrophages (ATCC) were grown in DMEM medium 
supplemented with 10% FBS, 100  U/mL  of  penicillin   and 
100 mg/mL of streptomycin. All cell experiments were 
performed in the FBS-supplemented medium. 

Quantitative analysis of cell–particle interactions 
SKOV-3 cells and J774A.1 macrophages were seeded in 6- 
well plates at a density of 500 000 cells per well and incubated 
overnight. Next day, the medium was replaced with fresh 
medium that contained 0.1 mg/mL of fluorescently labeled NPs 
or MPs (*NPs or *MPs). For SKOV-3 cells the medium pH 
was adjusted to 6.2 or 7.4. After 3 h, cells were harvested by 
trypsinization (SKOV-3) or scraping (J774A.1), dispersed in 
fresh medium of corresponding pH and  analyzed with a 
FC500 flow cytometer (Beckman Coulter, Indianapolis, IN). At 
least 10 000 gated events were acquired, and data was 
analyzed with the FlowJo software (Treestar, CA). 

Visualization of cell–particle interactions 
NP interaction with SKOV-3 cells was observed with confocal 
microscopy. SKOV-3 cells were seeded in a 35 mm glass 
bottomed dish (MatTek) at a density of 500 000 cells per dish. 
After overnight incubation, the medium was replaced with 
fresh RPMI medium adjusted to pH 6.2 or 7.4, which contained 
0.1 mg/mL of *NPs. After 3 h of incubation, the medium was 
removed, and the cells were washed with fresh medium twice 
to remove free and loosely bound *NPs. Cells were incubated 
with Hoechst 33342 nuclear staining dye at 
5 mg/mL for 10 minutes, and imaged with a Nikon-A1R 
confocal microscope (Nikon America Inc., Melville, NY). The 
*NPs were excited with a 488 nm laser, and the emission was
read from 500 to 550 nm. The cell nuclei were excited with a
407 nm laser, and the emission was read from 425 to 475 nm. 

To locate NPs in SKOV-3 cells, cells were further stained 
with CellMask Deep Red (Life Technologies) or LysoTracker 
Red DND-99 (Life Technologies) for labeling the plasma 
membrane or acidic intracellular organelles (late endosomes 
and lysosomes), respectively. Cells were incubated with *NPs 
in the same manner as above. After removing *NPs, CellMask 
Deep Red was added at  5 mg/mL  or  LysoTracker  Red  at 30 
nM. Cells were incubated with each marker for 40 min, washed 
twice with fresh medium at corresponding pH, stained with 
Hoechst 33342, and imaged with a Nikon A1R confocal 
microscope.  Stained plasma  membrane was  excited at   639 
nm, and emission was collected from 663 to 738 nm. 
LysoTracker stained organelles were excited at 561 nm, and the 
emission was collected from 570 to  620 nm. 

Time-lapse confocal microscopy was performed to exam- 
ine the time course of cellular uptake and intracellular 
trafficking of *PLGA-pD-LMWC NPs. SKOV-3 cells were 
seeded in a glass bottomed dish at a density of 500 000 cells 
per dish. After overnight incubation, the medium was replaced 
with 1 mL of  fresh  medium adjusted to  pH 6.2, and cells 
were stained with LysoTracker Red DND-99 and Hoechst 

33342. The dish was put in an environmental chamber, supplied 
with 5% CO2 and mounted on Nikon A1R confocal microscope. 
The chamber, microscope stage and objective lens were heated 

to 37 oC. *PLGA-pD-LMWC NPs (0.1 mg) was added to the
dish, and the cells were imaged over 4.5 h. 

Macrophage uptake of *MPs was visualized with fluores- 
cence microscopy. J774A.1 macrophages were seeded in a 24- 
well plate at a density of 100 000 cells per well and incubated 
overnight. The medium was replaced with fresh one contain- 
ing 0.1 mg/mL *MPs. After 3 h, the medium was removed, and 
cells were washed with fresh medium twice. The cells were 
stained with Hoechst 33342 and imaged with a Cytation- 3 
imaging system (BioTek, Winooski,  VT). 

Paclitaxel delivery to cancer cells by NPs 
Cellular uptake of PTX delivered by NPs was estimated at 
different pHs. SKOV-3 were seeded at a density of 200 000 
cells per well in a 12-well plate. Next day, the medium was 
replaced with 0.8 mL of fresh medium of pH 6 or 7.4, which 
contained PTX-loaded PLGA-pD-LMWC- or PLGA-pD-PEG 
NPs equivalent to 4.8 mg of PTX. Free PTX dissolved in 
DMSO solution was added at the same concentration to a 
control group. The total amount of DMSO added to 0.8 mL of 
medium was 12 mL and non-toxic to the cells. After 2.5 h at 
37 oC, the medium was removed, and cells were trypsinized,
suspended in fresh medium of corresponding pH and 
centrifuged at 2000 rpm to separate cells from NPs. The cell 
pellet  was  lysed  by  three  freeze-thaw cycles,  suspended in 
0.5 mL PBS and probe sonicated. The cell lysate was spiked 
with 35 mg of carbamazepine as an internal standard, extracted 
with 1.5 mL of ethyl acetate for 40 min, and centrifuged at 4000 
rpm for 25 min to separate ethyl acetate layer. A 1.3 mL of ethyl 
acetate was dried under vacuum in a glass tube and 
reconstituted with 1:1 acetonitrile/water solution and analyzed 
with HPLC. A PTX calibration curve was drawn with different 
amounts of PTX added to cell suspension in PBS and treated 
in the same  way. 
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Results 
Particle preparation and characterization 
LMWC was produced by H2O2 digestion. Three and a half hour 
digestion in 33% H2O2 reduced the chitosan molecular weight 
from 90–150 to 4.8 kDa, consistent our the previous study [9]. 
The MALDI spectrum of LMWC showed a peak at rv4800 m/z 
(Figure S1). The AUC analysis confirmed the result with 
additional insight into the structure. The global analysis of 
fitted data identified two species with apparent MWs of 2.5 and 
7.3 kDa, existing in a dynamic mixture in solution. The 
frictional coefficient ratio (f/fo) was rv2.2, which indicated that
LMWC had a semi-flexible rod shape, in agreement with 
existing studies [24]. LMWC was soluble in water over a wide 
range of pH including 7–9, where the parent chitosan was not 
soluble (Figure  S2). 

LMWC-coated NPs were produced with a polymer pre- 
conjugated with LMWC (PLGA4-LMWC NPs) or by LMWC 
conjugation via pD to the pre-formed PLGA NPs (PLGA-pD- 
LMWC NPs). PLGA4-LMWC NPs or pre-formed core PLGA 
NPs showed similar sizes, 160 and 158 nm, respectively 
(Figure 2a). LMWC or PEG-NH2 coating via pD increased the 
size to 209 nm (Figure 2a). The size increase is likely due to 
the aggregation by additional centrifugation rather than the 
thickness of the conjugated layer, given that the polydispersity 
increased with coating (Figure 2a) and individual NPs observed 
with TEM showed similar sizes irrespective of the coating 
(Figure 3 and Figure S4). TEM of negatively stained NPs 
revealed thin layer of pD coating on the NP surface. However, 
no other difference was observed in NPs further conjugated 
with LMWC or  PEG-NH2. 

Although the presence of LMWC or PEG conjugated to pD 
were not visually identified in TEM images, their immobil- 
ization was confirmed by the altered surface properties. PLGA-
pD-LMWC NPs showed a characteristic pH-dependent charge 
profile, negative at pH 7.4 and positive at pH 6.2, similar to 
PLGA4-LMWC NPs. PLGA, PLGA-pD and PLGA-pD-PEG 
NPs remained negatively charged irrespective of the pH 
(Figure 2b and Figure S3b). PLGA NPs incubated with LMWC 
without pD prime coating (PLGA/LMWC NPs) did not show 
the pH-dependent charge profile, indicating that LMWC did 
not physically adsorb to PLGA and the    LMWC 
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immobilization depended on the pD layer. The LMWC content  
in  PLGA-pD-LMWC  NPs  was  determined  to   be 
4.7 ± 3% according to the ninhydrin assay, lower than  the 
estimated value for PLGA4-LMWC NPs (8.7 ± 1.5%) [9]. 

In  vitro  PTX release kinetics from NPs 
PLGA4-LMWC   NPs   and   PLGA-pD-LMWC   NPs   were 
compared with respect to the DL of PTX and in vitro PTX
release. PLGA4-LMWC NPs showed a DL of 27.9 ± 7.9%, 
higher than the theoretical DL (5.7%), which suggested partial 
loss of PLGA4-LMWC polymer during NP preparation [9]. 
PLGA-pD-LMWC  NPs  made  of  PLGA118    and    PLGA150 

showed DL’s of 12.8 ± 5.3 and 8.6 ± 3.4%, corresponding to 
77.0 and 51.7% of the theoretical DL (16.7%), respectively. In 
vitro PTX release kinetics study was performed in  PBS 

containing 0.2% Tween 80 (pH 7.4). PLGA4-LMWC showed   
initial   burst   release   in   this   medium, releasing 
90.4 ± 8.5% of the loaded dose in 7 h. On the other hand, 
PLGA118-pD-LMWCand PLGA150-pD-LMWCNPsreleased 

Figure 3. Transmission electron microscopy (TEM) images of NPs 
negatively stained with 2% uranyl acetate. Scale bar: 50 nm. 

Figure 2. Particle size and surface charge of 
NPs: (a) average diameter (Zavg, black bars)
and polydispersity index (red squares) and 

(b) zeta potential at pH 7.4 and  6.2.
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PTX more slowly: 54.2 ± 5.5 and 39.9 ± 9.0% of the total dose 
in 7 h, reaching rv80% release in 48 h (Figure 4). Since
PLGA150-pD-LMWC NPs retained PTX most stably, they 
were used in the rest of the study, referred to as PLGA-pD- 
LMWC NPs without a subscript. 

Protein adsorption to NP surface 
To identify proteins binding to the NPs during incubation in 
serum-containing medium and correlate them with NP–cell 
interactions, the NPs were incubated in 50% FBS solution for 
1 or 24 h and the proteins tightly bound to NPs (hard corona) 
were analyzed by gel electrophoresis. Proteins bound to  NPs 

Figure 4. In vitro drug release of PTX from different NPs in PBS (0.2%
Tween 80) at 37 o C. At 7th hour, there was significant difference in % 
cumulative release among three types of NPs (p50.005, one-way ANOVA, 
n ¼3).

were recovered with a detergent (SDS) and a reducing agent 
(5-mercaptoethanol), combined with heating [25,26] and 
analyzed with SDS-PAGE. The intensity of protein bands 
increased with time (Figure 5a and b), indicating the increase 
of protein binding to NPs, as previously observed [27]. Three 
major bands were identified at 66, 61 and 52 kDa, likely 
corresponding to bovine serum albumin, fetuin-A [28,29] and 
IgG [30], respectively. Albumin and fetuin-A made up 
dominant fractions, reflecting their abundance in FBS  (Figure 
5c) [31]. The relative intensity of IgG band increased with time 
in all NPs tested, irrespective of the coating polymers (LMWC 
versus PEG; Figure 5c). Consistent with the protein adsorption, 
the NPs with hard corona showed relatively more negative zeta 
potential than those in buffer (Figure S5). 

NP–cell interactions 
Given that PLGA-pD-LMWC NPs did not completely avoid 
protein binding in serum solution, we were curious if PLGA- 
pD-LMWC NPs would maintain the intended advantage of pH-
sensitive surface in serum-containing medium. Fluorescently 
labeled NPs (*PLGA-pD-LMWC NPs and other control *NPs) 
had similar sizes and surface charges to those  of unlabeled  
NPs  (Figure  S3a and  S3b). The labeled 
*NPs were incubated with SKOV-3 cells in medium contain- 
ing 10% FBS at pH 7.4 and 6.2. From flow cytometry analysis, 
only the cells incubated with *PLGA-pD-LMWC and *PLGA-
LMWC NPs at pH 6.2 showed increased geometric mean,
indicating NP–cell interaction (Figure 6a). Those incubated
with *PLGA-pD-LMWC or *PLGA-LMWC NPs pH 7.4 did 
not show such increase, which means that 

Figure 5. Analysis of the composition of protein hard corona formed on NP surface after incubation in 50% FBS for 1 or 24 h. Hard corona proteins 
were stripped off NPs and resolved via SDS-PAGE on a 12% gel along with size standards and 200-fold diluted FBS. Gels were stained with Coomassie 
blue G-250. (a) A representative gel of resolved hard corona proteins. Arrow heads indicate three prominent bands. (b) Band intensity of three proteins 
pointed with arrow heads in (a). (c) Relative band intensity (% of band intensity divided by the sum of three prominent band intensities). The gel image 
was analyzed via ImageJ 1.48v software. (b) and (c) show averages and standard deviations of four independently and identically run gels with four 
different batches. 
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Figure    6.    pH-dependent    interaction   of 
*PLGA-pD, *PLGA-pD-LMWC and
*PLGA-pD-PEG NPs with SKOV-3 cells,
(a) quantified by flow-cytometry (Geometric
means at pH 6.2 were significantly different
for *PLGA-LMWC and *PLGA-pD-LMWC 
NPs from those of *PLGA, *PLGA-pD and 
*PLGA-pD-PEG NPs, *: p50.05 by two
tailed t-test) and (b) visualized via confocal
microscopy, after 3 h incubation 
(Green: *NPs; blue: nuclei). For color 
images, see online version. 

LMWC-coated NPs can preferentially interact with cells in 
mildly acidic environment such as the extracellular matrix of 
solid tumors but not in normal tissues. *PLGA, *PLGA-pD and 
*PLGA-pD-PEG NPs had no cell interaction at either pH.
Confocal microscopy confirmed this result (Figure 6b). 

To locate *PLGA-pD-LMWC NPs with respect to cells, cell 
membrane or acidic intracellular organelles (late endo- somes 
and lysosomes) were stained after removing unin- ternalized or 
loosely bound NPs. *PLGA-pD-LMWC NPs incubated with 
SKOV-3 cells at pH 6.2 for 3 h were observed on the  
membrane  or within the membrane boundary (Figure 7a and 
b), indicating that they were partly internalized by the cells, but 
not at pH 7.4 (Figure 7a). *PLGA- pD- LMWC NPs were not 
co-localized with the acidic organelles at least in 3 h (Figure 
8a). According to the time- lapse microscopy, cell binding of 
*PLGA-pD-LMWC NPs at    pH 
6.2 occurred in 60–75 min (Figure 8b). The NP signals
increased over time (Figure 8b, Figure S6), both outside and
inside the cells, but NPs were not intracellularly trafficked into 
the late endosomes and lysosomes at least up to 4.5 h (Figure 
8b). 

To test if the LMWC layer could reduce phagocytic uptake 
of particles despite the apparent protein binding, *PLGA- pD- 
LMWC MPs and control *MPs (2–3 mm in diameter), with 
similar surface charge profiles to those of *NPs (Figure S3b 
and S3c), were incubated with J774A.1 macrophages in 
medium containing 10% FBS, and the extent of MP phago- 
cytosis was determined by measuring the fluorescence of 
macrophages by flow cytometry and fluorescence micros- 
copy. Here, MPs were used instead of NPs, as they could be 
more readily phagocytosed than NPs [32], hence serving as a 
more sensitive model for evaluating macrophage uptake of 
particles. *PLGA MPs were taken up most avidly (Figure 9). 

*PLGA-pD MPs were taken up less than the naked MPs due 
to   the   hydrophilicity   imparted   by   amine-containing pD.

LMWC-coated polymeric NPs      731 

Figure 7. Cellular uptake of *PLGA-pD-LMWC NPs by SKOV-3 cells 
after 3 h of incubation at pH 7.4 or 6.2, imaged by confocal microscopy 
as (a) a cross-sectional image and (b) z-stack (left panel). XZ and YZ
planes show NPs located in a cell. (Green: *NPs; red: cell membrane 
labeled by CellMask deep red; blue: nuclei). For color images, see online 
version. 

 

*PLGA-pD-LMWC MPs showed significant reduction in
macrophage uptake, to an even greater extent than *PLGA- pD-
PEG MPs (Figure 9). 

Paclitaxel delivery to cancer cells by NPs 
We hypothesized that selective cell interaction of PLGA- pD- 
LMWC  NPs  at  acidic  pH  would  translate  to superior 
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Figure   8.   (a)   Intracellular   trafficking of 
*PLGA-pD-LMWC NPs in SKOV-3 cells, 
imaged by confocal microscopy after 3 h of 
incubation at pH 7.4 or 6.2. (b) Time-lapse 
confocal imaging of *PLGA-pD-LMWC NPs 
incubated with SKOV-3 cells at pH 6.2 for 
270 min (Green: *NPs; red: LysoTracker Red 
DND-99; blue: nuclei). For color images, see 
online version. 

Figure  9.  J774A.1  macrophage  uptake   of 
*PLGA, *PLGA-pD, *PLGA-pD-LMWC 
and *PLGA-pD-PEG MPs at pH 7.4 after 3 h
incubation, (a) analyzed via flow cytometry 
and (b) visualized with Cytation 3 fluores- 
cence imaging system (Green: *MPs). Flow 
cytometry data are expressed as averages and 
standard deviations of three independently 
and identically prepared NP samples. All 
geometric means were significantly different 
from each other (p50.05 by one-way
ANOVA test). **p50.005; ***p50.0005 by
two-tailed t-test.

drug delivery. To test this, PTX-loaded PLGA-pD-LMWC NPs 
were incubated with SKOV-3   cells at pH 7.4 and 6     for 2.5 
h, and the amount of PTX retained by the cells was quantified.  
Cells   incubated  at  pH  6  had        44-fold 

higher PTX content as compared to pH 7.4   (Figure   10). 
On the other hand, there was no such difference for the cells 
incubated with free PTX or PTX-loaded PLGA- pD- PEG  NPs.  
This  shows  that  the  enhanced      NP–cell 
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Figure 10. pH-dependent PTX retention after incubation of SKOV-3 cells 
with PTX-loaded NPs or free PTX at pH 7.4 or 6. Cells were incubated 
with the NPs for 2.5 h at either pH and separated from NPs, and analyzed 
for PTX content. Data are expressed as averages and standard deviations 
of 4–8 wells of cells treated with two independently and identically 
prepared batches of NPs. *p50.05, by two-tailed   t-test.

interaction at acidic pH leads to similar enhancement in drug  
delivery  to  the cells. 

Discussion 
Polymeric NP systems have been pursued for decades as a way 
of achieving tumor-specific drug delivery [33]. One of the 
critical challenges in clinical translation of these systems is the 
increasing complexity of NP design and production methods. 
While the complexity is introduced to accommodate new 
knowledge of cancer biology, it also leads to increasing cost 
and regulatory scrutiny, making the development of a 
commercial product more challenging [33,34]. Moreover, the 
complicated design and synthesis can induce undesirable 
changes to the material properties of the NPs such as MW and 
hydrophobicity, which are essential for their primary roles: 
loading and retaining drugs. We experienced this problem in 
developing PLGA4-LMWC NPs, where the LMWC conjuga- 
tion not only allowed for specific drug delivery to acidic tissues 
but also increased the hydrophilicity of the polymer, 
compromising the NP’s function as a carrier of PTX [9]. 
Here, we used a new surface modification method based on 
dopamine polymerization to decouple the NP formation from 
the surface modification, enabling independent control of NP 
cores and surface properties for drug loading/release and 
specific NP–cell interactions, respectively. 

The LMWC-coated PLGA NPs via dopamine polymeriza- 
tion (PLGA-pD-LMWC NPs) showed a comparable average 
diameter and pH-dependent charge profile to those of PLGA4- 
LMWC NPs (Figure 2). The LMWC content in PLGA- pD- 
LMWC NPs was lower than that of PLGA4-LMWC NPs, but 
it does not necessarily indicate less efficient coating because in 
PLGA4-LMWC NPs a fraction of the LMWC is supposed to be 
buried in the NPs and not exposed on the surface. Given the 
extent of charge change and NP–cell interaction profiles 
(Figure 6), the surface exposed LMWC of the two NPs is likely 
to be  comparable. 
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The PTX DL of PLGA4-LMWC NPs was apparently higher 
than that of PLGA-pD-LMWC NPs, but this is likely due to the 
hydrophilicity of PLGA4-LMWC polymer, which was 
selectively washed out during the NP preparation [9]. PTX-
loaded PLGA-pD-LMWC NPs produced with PLGA118 and 
PLGA150 showed more prolonged drug release than PTX- 
loaded PLGA4-LMWC NPs, due to the greater hydro- 
phobicity and MW of the polymers. PTX release in the first few 
hours from these NPs was much slower than that from PLGA4-
LMWC NPs and sustained over three days (Figure 4), 
suggesting that these NPs may reduce premature drug release 
in circulation during the critical period for NP biodistribution. 
The drug release from PLGA4-LMWC NPs reported in this 
study appears faster than that in the previous study [9], but the 
two results are not directly comparable because the Tween 80 
concentration in release medium was different (0.2 versus 
0.1%). We chose 0.2% Tween 80 in PBS as release medium, as 
we determined that it was suitable to mimic the amphi- philic 
feature of physiological fluid and simulate a sink condition 
faced in vivo [35]. Even though the drug release attenuation
appears to be modest as compared to the previous study, the 
actual extent of attenuation is deemed significant given the 
difference of the medium. The NP core can be further 
optimized, if additional release control is necessary, by simple 
replacement of the polymer with more  hydrophobic and slowly 
degrading ones  [36]. 

The LMWC layer introduced via pD layer to the pre- formed 
PLGA NPs provided pH-sensitive functionality necessary for 
desired NP-cell interactions (Figure 2b). Prior to testing 
cellular uptake of NPs, we  investigated protein binding to 
PLGA-pD-LMWC NPs  incubated in serum solution. As the 
NPs enter the blood stream, they instantaneously interact with 
plasma proteins to be covered with a protein corona on NPs 
surface. The protein corona      is composed of a tightly bound 
stable ‘‘hard’’ corona and a loosely bound ‘‘soft’’ 
corona, which can be dynamically exchanged with other proteins 
[37]. Since NPs entering the bloodstream cannot completely 
avoid protein binding even with protective surface layer [38] 
and the identity of  bound proteins has shown to be critical 
to the biological fate of NPs [39], we investigated the protein 
binding  profile of  the  surface-modified NPs after incubation 
in 50% FBS, which mimicked the serum content in blood 
[40]. Protein binding occurred with all tested NPs (PLGA- pD,   
PLGA-pD-LMWC   and   PLGA-pD-PEG   NPs)   in  a 
similar pattern (Figure 5). It is noteworthy that all NPs were 
increasingly enriched with  IgG, antibodies respon- sible for 
opsonization and complement activation, over time. Figure 
9 shows that pD, pD-LMWC and  pD-PEG  layers helped 
reduce phagocytic uptake of PLGA MPs by J774A.1 
macrophages due to the hydrophilicity   imparted  by the 
surface polymers. However, the increasing IgG enrichment 
indicates that  the  function  of  LMWC  or  PEG in this NP 
system is still imperfect as a stealth layer and remains  to  be  
improved  in  future studies. 

The surface charges of all NPs decreased after incuba- tion 
in serum solution (Figure S5), reflecting protein binding. 
Nevertheless, the protein-bound PLGA-pD-LMWC NPs 
maintained   the   pH-sensitive   charge   profile,   allowing  for  
acid-specific  NP–cell  interactions  in serum-containing 
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medium. Confocal microscopy showed that PLGA- pD- 
LMWC NPs established interactions with SKOV-3 cell 
membrane at pH 6.2 in 1 h and entered the cells in 3 h (Figure 
8b), likely via adsorption-mediated endocytosis [41]. The 
internalized NPs did not co-localize with the late endosomes or 
lysosomes by 4.5 h (Figure 8b). This result is similar to an 
observation made with cationic NPs coated with quaternized 
chitosan, which were internalized by human proximal epithelial 
cells and showed little co-localization with lyso- somes in 6 h 
[42]. Other types of NPs lacking LMWC (PLGA, PLGA-pD or 
PLGA-pD-PEG) did not show cellular uptake at pH 6.2. All 
tested NPs showed little uptake by SKOV-3 cells at pH 7.4 
(Figure 6). This result indicates that while PLGA- pD-LMWC 
NPs did not interact with cells at normal physiological pH, they 
were able to establish interactions with cells at pH56.5  as 
PLGA4-LMWC NPs previously did [9] and get internalized 
into the cells without being trafficked into the acidic 
organelles. Given that hard corona compos- itions for all pD-
coated NPs (PLGA-pD, PLGA-pD-PEG and PLGA-pD-
LMWC NPs) were similar (Figure 5), yet PLGA- pD-LMWC 
NPs showed different behavior than the other NPs, the protein 
corona in this NP system did not play a role significant enough 
to interfere with the intended NP–cell interactions. This result 
is contrasted with transferrin- functionalized silica NPs that lost 
targeting capabilities in serum-containing medium due to the 
formation of protein corona [39]. 

The reliable drug encapsulation achieved by PLGA- pD- 
LMWC NPs allowed us to test the contribution of the LMWC 
surface to PTX delivery in acidic medium.  SKOV-3 cells were 
exposed to PTX-loaded PLGA-pD-LMWC NPs  at   pH 
7.4 and 6 for 2.5 h and analyzed with respect to the amount of 
PTX retained by the cells (through NP binding and/or uptake). 
The exposure time was limited to 2.5h since it would better 
represent dynamic in vivo situation, where NPs would
continuously flow and get gradually diluted. PTX- loaded 
PLGA-pD-LMWC NPs delivered a significantly greater 
amount of PTX to SKOV-3  cells at  pH 6     compared to pH 
7.4 and those delivered as free PTX treatment or PTX- loaded 
PLGA-pD-PEG NPs, which showed similar cellular levels of 
PTX at both pHs (Figure 10). Since drug release from NPs was 
minimal (530%) in 2.5 h (Figure 4), the large amount of drug 
delivered by PLGA-pD-LMWC NPs would be readily 
attributable to the enhanced NP binding and uptake by the cells 
at acidic pH, previously observed by confocal microscopy and 
flow cytometry. 

Conclusions 
In summary, LMWC-coated PLGA NPs created by the 
dopamine polymerization method  overcame  the  limitations 
of the earlier version based on a PLGA-LMWC covalent 
conjugate in loading and retaining PTX. The PLGA- pD- 
LMWC NPs provided pH-sensitive surface layer, which 
enabled acid-specific NP–cell interaction and enhanced drug 
delivery to cells in the weakly acidic environment. The LMWC 
layer did not completely prevent protein binding to the NPs 
incubated in serum solution but reduced phagocytic uptake. 
The surface layer remains to be further optimized to reduce IgG 
binding. 
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1. INTRODUCTION 
Nanoparticles (NPs) are used in various drug delivery 
applications. NPs can be designed to attenuate drug release   so 
that they have minimal side effects on nontarget tissues during 
circulation.1 NPs are also used to solubilize poorly water-
soluble drugs.2 For example, polymeric micelles help disperse 
poorly water-soluble drugs in water by encapsulating the drugs 
in hydrophobic cores while facing water via hydrophilic 
shells.3,4 Alternatively, poorly water-soluble drugs can be 
processed into nanocrystals, pure drug particles of nanometric 
dimensions stabilized with surface active agents, to 
increase their dissolution rate in water.5−7  Irrespective of  the 
purposes of NPs, in vitro drug release kinetics (cumulative drug 
release vs time profiles, also called dissolution kinetics) are 
almost always examined to demonstrate their ability to 
attenuate or enhance drug release. 

Release kinetics studies or dissolution tests of NPs are 
performed by various methods.8 In the dialysis method, NP 
suspension is placed in a dialysis bag with a specified molecular 

sampled and analyzed to determine the amount of drug 
released during the interval. A standardized United States 
Pharmacopoeia (USP) method is also available. In the USP 
apparatus 4 (flow-through cell apparatus) method, NPs are put 
in a small dialysis unit and placed in a small volume cell, 
through which the release medium is pas9sed at a constant flow 
rate and analyzed at regular time points. 

Irrespective of the test method, the assumption  underlying 
the release kinetics studies is that the dose range of the NP 
products and the volume of release medium satisfy sink 
conditions (defined as the volume of medium at least three 
times that required to form a saturated solution of a drug10): 
i.e., the drug release is not limited by the solubility, and the
difference in release kinetics profile reflects the performance of 
NPs as a drug carrier in vivo. To meet this requirement, it is
important that one use a sufficient volume of release medium 
for the NPs. However, in the case of poorly water-soluble 
drugs, satisfying the sink condition can be quite challenging as 
it means a very low ratio of NP mass to the volume of release 

weight cutoff (MWCO), and drug molecules diffusing out  of 
the bag are frequently sampled for quantitative analysis. 
Alternatively, NPs are suspended in a finite volume of release 
medium and incubated with agitation. The suspension is spun 
down at certain time points to separate a supernatant, whichis 
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Brief Article 

ABSTRACT: In vitro drug release kinetics studies are 
routinely performed to examine the ability of new drug 
formulations to modulate drug release. The underlying 
assumption is that the studies are performed in a sufficiently 
dilute solution, where the drug release is not limited by the 
solubility and the difference in release kinetics profile reflects 
the performance of a drug carrier in vivo. This condition is, 
however, difficult to meet with poorly water-soluble drug 
formulations, as it requires a very large volume of release 
medium relative to the formulation mass, which makes it challenging to measure the drug concentration accurately. These 
difficulties are aggravated with nanoparticle (NP) formulations, which are hard to separate from the release medium and thus 
require a dialysis bag or repeated high-speed centrifugation for sampling. Perhaps for these reasons, drug release kinetics studies 
of NPs of poorly water-soluble drugs are often performed in suboptimal conditions in which the NPs are not sufficiently diluted. 
However, such a practice can potentially underestimate drug release from NPs, leading to an inaccurate prediction that the NPs 
will attenuate the drug activity in vivo. Here we perform release kinetics studies of two different NP formulations of paclitaxel, a 
representative poorly water-soluble drug, according to common practices in the literature. We find that the drug release from 
NPs can be substantially underestimated depending on the choice of the release medium, NP/medium ratio, and handling of 
release samples. We discuss potential consequences of underestimating drug release, ending with suggestions for future studies 
with NP formulations of poorly water-soluble drugs. 
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medium. A disadvantage of using a large volume of release 
medium is that drug analysis gets difficult due to the low 
concentration. In order to alleviate this difficulty, the sampled 
solution is concentrated prior to analysis or a dissolution aid 
such as surfactants or cosolvents is included in the release 
medium to increase the drug solubility (hence the ratio of NP 
mass to medium volume).10,11

 

Given these requirement and constraints in fulfilling a sink 
condition, it is very important to know an accurate solubility 
value of a drug and set up appropriate experimental conditions 
in studying drug release kinetics from NPs. Nevertheless, we 
observe that solubility values of paclitaxel (PTX), a 
representative poorly water-soluble drug, reported in the 
literature vary over a range of orders of magnitude, and the 
release kinetics studies of PTX-loaded NPs are performed 
under different understandings of a sink condition. Here, we 
revisit the current practice of drug release kinetics studies on 
NP formulations of poorly water-soluble drugs and discuss 
potential pitfalls and consequences. We first determine the 
solubility and stability of PTX in potential release media (PBS, 
PBS with 0.2% Tween 80, and PBS with 50% fetal bovine 
serum (FBS)) and perform release kinetics studies of different 
PTX NP formulations in those media according to common 
practices in the literature. We discuss our results and other 
studies published in 2005−2014 based on our stability/ 
solubility data, ending with suggestions for future studies with 
NP formulations of poorly water-soluble drugs. 

2. EXPERIMENTAL SECTION 
2.1. Determination of PTX Solubility in  PBS,  0.2% Tween 

80/PBS, and 50% FBS/PBS. PTX solubility in PBS  (pH 7.4), 
PBS containing 0.2 v/v% Tween 80 (Tween/PBS), and PBS 
containing 50 v/v% FBS (FBS/PBS) were determined 
by incubating excess PTX (0.6−2.4 mg) in 1 mL of each 
medium at 37 °C for 7 or 24 h with agitation. Samples   were 
centrifuged at 10 000 rpm for 20 min to separate a supernatant. 
PTX dissolved in PBS and Tween/PBS was directly analyzed 

with high performance liquid chromatography (HPLC) as 
described in Section 2.7. PTX dissolved in FBS/PBS was 

filtered with 0.45 μm PVDF syringe filters, extracted with ethyl 
acetate as described in Section 2.7, and analyzed with HPLC. 

PTX solubility was alternatively determined by diluting 10 
mg/mL PTX stock solution dimethyl sulfoxide (DMSO) in 

each medium. To determine PTX solubility in PBS and 
Tween/PBS, PTX/DMSO solution (10 mg/mL) was first 

diluted with Tween/PBS to make 1 mg/mL of PTX solution, 
which was further diluted with PBS to final concentrations of 
0.1−20 μg/mL (n = 3) or with Tween/PBS to 1−70 μg/mL (n 
= 3). Samples were incubated at 37 °C for 24 h with shaking. 
Finally, PTX solutions were separated by filtration with 0.45 
μm PVDF syringe filters and analyzed with HPLC. To 
determine PTX solubility in FBS/PBS, PTX/DMSO solution 
(10 mg/mL) was sequentially diluted with FBS/PBS to   yield 
final concentrations of 25−300 μg/mL (n = 3). Samples were 
incubated at 37 °C for 7 or 24 h with shaking. At the end of the 
incubation, the samples were centrifuged at 10 000 rpm for 20 
min, and the supernatant was filtered with 0.45 μm PVDF 
syringe filters, extracted with ethyl acetate as described in 
Section 2.7, and analyzed with HPLC. 

To determine how quickly PTX precipitated in PBS at 37 °C, 
PTX solution in PBS at a concentration of 20 μg/mL was 
prepared by diluting 10 mg/mL PTX/DMSO solution with 
PBS (final DMSO concentration: 0.2%), aliquoted by 1   mL, 

and incubated at 37 °C with shaking. At predetermined time 
points, three aliquots were taken and centrifuged at 3000 rpm 
for 5 min. The supernatants were additionally centrifuged at 10 
000 rpm for 20 min to remove precipitates and analyzed with 
HPLC. 

2.2. Stability of PTX in 0.2% Tween 80/PBS. PTX  solution 
(1.5 μg/mL) in Tween/PBS was prepared by diluting 
10 mg/mL PTX/DMSO solution with Tween/PBS (final 
DMSO concentration: 0.015%). The solution was divided into 
several 1 mL aliquots, and the initial PTX concentration was 
determined with seven of them. The remaining aliquots were 
incubated at 37 °C, and three aliquots were taken at 
predetermined time points and kept at −80 °C until HPLC 
analysis. The frozen samples were thawed and analyzed with 
HPLC. The concentration of intact PTX at each time point was 
divided by the original PTX concentration (1.5 μg/mL) and 
expressed as the percentage of original PTX. 

2.3. Preparation of PTX  Nanoparticles  (PTX/NPs). 
PLGA NPs loaded with PTX (PTX/NPs) were prepared by 
the single emulsion solvent evaporation method. Briefly, 20 mg 
of PLGA and 2.5 mg of PTX were dissolved in 1 mL of 
dichloromethane (DCM) and emulsified in 4 mL of 4% 
poly(vinyl alcohol) (PVA) solution by probe sonication. The 
o/w emulsion was dispersed in deionized (DI) water and 
stirred for 1 h, followed by rotary evaporation for another hour 
to ensure DCM evaporation. Finally, NPs were collected by 
centrifugation and washed three times with water. The NPs 
were lyophilized with trehalose as a lyoprotectant. 

2.4. Preparation of PTX Nanocrystals  (PNC)  and Human 
Serum Albumin‐Stabilized PNC (aPNC). PTX nanocrystals 
(PNC) were prepared according to the published method.12

Briefly, 4 mg/mL PTX/ethanol solution was added to 20 mL 
of DI water and stirred for 10 min in a round-bottom flask 
immerged in a sonication bath filled with ice water. The 
formed PNC was filtered through a 100 nm polycarbonate 
membrane and resuspended in DI water. To further stabilize 
PNC, 1 mg/mL PNC suspension was mixed with 2 mg/mL of 
human serum albumin solution and incubated for 1.5 h at room 
temperature. The human serum albumin-stabilized PNC 
(aPNC) was collected by centrifugation (10 000 rpm,  15   min) 
and washed with DI water twice. 

2.5. Release Kinetics of  PTX/NPs  in  PBS,  Tween/PBS,  or 
FBS/PBS via Centrifugation Method. To determine the PTX 
content in NPs, the freeze-dried PTX/NPs was dissolved in a 
mixture of acetonitrile/water (50:50) for 2 h, and the 
supernatant was analyzed with HPLC. For release kinetics 
studies of PTX/NPs, the freeze-dried PTX/NPs equivalent to 
4.4 or 27 μg of PTX were suspended in 1 mL of release 
medium (PBS, Tween/PBS, or FBS/PBS) and incubated at 37 
°C with constant agitation. At predetermined time points, the 
suspension was centrifuged at 10 000 rpm for 10 min at room 
temperature to separate NP pellets and supernatants. Then0.8 
mL of supernatant was sampled and replaced with the same 
volume of fresh medium in which the NP pellet was 
resuspended and returned for further incubation. The sampled 
supernatant was analyzed immediately (PBS and Tween/PBS) 
or stored frozen (FBS/PBS) until HPLC analysis. At the end of 
the release experiment, the remaining NPs were dissolved in 1 
mL of acetonitrile/water (50:50) for 2 h (PBS and Tween/ 
PBS) or processed with the same extraction method as release 
samples (FBS/PBS) to determine the unreleased PTX. 

2.6. Release Kinetics of PNC and aPNC in  PBS  via Dialysis 
Method. PNC or aPNC equivalent to 200 μg of PTX 

998 DOI: 10.1021/mp500817h 
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were suspended in 3 mL of PBS, put in a dialysis cassette 
(MWCO 3500), placed in 200 mL of PBS, and incubated at 37 
°C under constant agitation. At timed intervals, 5 mL of release 
medium was sampled and replaced with 5 mL of fresh PBS. 

2.7. HPLC Analysis of PTX. PTX in PBS or PTX in 
Tween/PBS solution was analyzed with HPLC after filtration 
with a 0.45 μm PVDF syringe filter with no other treatment. 
Optionally, PTX in PBS sample was mixed with acetonitrile in 
1:1 volume ratio and then filtered for HPLC analysis. PTX in 
FBS/PBS was extracted with ethyl acetate prior to HPLC 
analysis. Briefly, 1 mL of PTX solution in FBS medium with 10 
μg of carbamazepine as an internal standard was mixed with 3 
mL of ethyl acetate and shaken on a rotating shaker for 40 min. 
The mixture was then centrifuged at 4000 rpm for 15 min to 
separate an organic layer, which was transferred to a new glass 
vial and dried under vacuum. The dried sample was 
resuspended in the HPLC mobile phase, filtered through a 
0.45 μm syringe filter, and analyzed by HPLC. A calibration 
curve was drawn with PTX solutions in FBS medium in known 
concentrations, treated in the same manner as the sample 
solutions. PTX was analyzed with HPLC equipped with UV 
detector (1100 series, Agilent Technologies, Palo Alto, CA) and 
an Ascentis C18 column (25 cm × 4.6 mm, particle size 5 μm) 
(Supelco, St. Louis, MO, USA). The mobile phase was a 
mixture of acetonitrile and water (50:50) run in the isocratic 
mode at a flow rate of 1 mL/min. PTX was detected at 227 nm. 

3. RESULTS 
3.1. PTX Solubility in PBS, Tween/PBS,  and  FBS/PBS. The 

reported values of PTX solubility in deionized water or 
phosphate-buffered saline (PBS, pH 7.4) range from 0.3 to 30 
μg/mL (Supporting Table 1). PTX solubility in a medium 
containing a surfactant such as Tween 80 is reported to be 
much higher: up to >100 μg/mL (in 3% Tween 80).13 PTX 
solubility in calf serum is defined as 171 μg/mL.14 We 
evaluated PTX solubility in PBS, PBS containing 0.2% Tween 
80 (Tween/PBS), and PBS containing 50% FBS (FBS/PBS) by 
suspending excess amounts of PTX in each medium and 
measuring the concentration of dissolved PTX. The results 
showed a similar trend as those in the literature, although our 
values fell in lower ends of the reported ranges. PTX solubility 
in PBS at 37 °C was measured at ∼0.2 μg/mL with no specific 
trend according to the incubation time, although the values 
were variable due to the limited sensitivity of HPLC (Figure 
1a). PTX solubility in Tween/PBS was measured to be 3.3 μg/ 
mL irrespective of the incubation time (Figure 1b). PTX 
solubility in FBS/PBS was measured at 35 μg/mL after 7 h 
incubation at 37 °C, much higher than those in PBS or Tween/ 
PBS, which confirmed the solubilizing effect of serum proteins 
(Figure 1c). Notably, PTX concentration measured after 24 h 
incubation was 25 μg/mL, 28.6% lower than that after 7 h. This 
difference is attributable to the instability of PTX in serum, 
reported in our previous study15 as well as in others.16,17 This 
indicates that, if PTX release kinetics studies are performed in 
serum-containing medium and the medium is not sampled and 
analyzed frequently, one may not recover 100% of PTX from 
the formulation due to the degradation of released PTX. In 
contrast, PTX was relatively more stable in Tween/PBS, 
maintaining 94% of the initial concentration for 1 day (Figure 
1d). This means that, as long as the medium is sampled at least 
once a day, PTX stability in Tween/PBS is less likely to be a 
problem. 

999 

Figure 1. Paclitaxel (PTX) solubility in (a) PBS, (b) 0.2% Tween 80/ 
PBS, and  (c) 50% FBS/PBS. PTX  solubility in each medium    was 
determined by incubating excess PTX (0.6−2.4 mg) in 1 mL of 
medium  at  37  °C  for  7  or  24  h  with  agitation.  Samples   were 
centrifuged to remove precipitated PTX and analyzed with HPLC. (d) 
Stability of 1.5 μg/mL PTX in 0.2% Tween 80/PBS at 37 °C. 

PTX solubility was alternatively measured with solutions 
prepared by diluting a concentrated PTX/DMSO stock 
solution in each medium. This method helped handle small 
quantities of PTX with greater accuracy than the previous 
method. However, a small trace of DMSO in the solution 
(maximum 0.2% in PBS, 0.7% in Tween/PBS, and 3% in FBS/ 
PBS) seemed to have affected PTX dissolution, resulting in 
slightly higher solubility values after 24 h incubation in 37 °C 
(∼0.4 μg/mL in PBS and 3.9 μg/mL in Tween/PBS, 
Supporting Figure 1a,b). In FBS/PBS, PTX concentration 
increased linearly with the PTX input and never reached a limit 
at least by 300 μg/mL (Supporting Figure 1c). PTX 
concentrations measured after 24 h incubation at 37 °C were 
about 50% of those incubated for 7 h, confirming the instability 
of PTX in FBS/PBS. Of note, PTX solubility in Tween/PBS 
showed interesting variability across the measurements 
repeated four times. While the saturation solubility was 
measured to be 3.9 μg/mL in the presence of far excess PTX 
(Supporting Figure 1b), PTX solutions prepared in the range of 
4−18 μg/mL in Tween/PBS showed concentrations greater 
than the saturation solubility to varying degrees in each 
experiment, indicating the formation of supersaturated 
solutions. This result indicates that one may observe variable 
solubility values in Tween/PBS, depending on the degree of 
supersaturation. 

3.2. Release Kinetics of PTX  NPs  in  PBS,   Tween/PBS, or 
FBS/PBS via Centrifugation Method. We then prepared two 
types of PTX NPs (polymeric NPs and nanocrystals) and 
tested their release kinetics with conventional methods 
(centrifugation or dialysis methods). First of all, PTX was 
encapsulated  in polymeric  NPs (PTX/NPs)  using the single 

DOI: 10.1021/mp500817h 
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emulsion method. PTX/NPs were spherical and had an average 
diameter of 161 nm (Supporting Figure 2). PTX release from 
PTX/NPs was tested using PBS, Tween/PBS, or FBS/PBSas 
release media. NPs equivalent to 4.4 μg of PTX was suspended 
in 1 mL of each release medium, creating a condition exceeding 
the solubility limit (in PBS), close to the solubility (in Tween/ 
PBS), or satisfying the sink condition (in FBS/PBS). At regular 
intervals, 80% of the release medium (0.8 mL) was sampled 
after centrifugation and replaced with fresh buffers, and the 
sampled medium was analyzed by HPLC. In FBS/PBS, which 
satisfied a sink condition from the initial time point, NPs 
released 50.7 ± 9.1% of the loaded PTX upon the addition of 
the release medium and 98.7 ± 11.0% in 72 h (Figure 2a). 

precipitated PTX was removed during the HPLC sample 
preparation (i.e., filtration) and excluded from the analysis, 
which was avoided in the second analysis by the addition of 
acetonitrile. This result underscores the importance of keeping 
the ratio of total drug in NPs to medium volume below the 
drug solubility limit in the release kinetics studies. If this 
condition is not met (as in PBS in our case), one may observe 
low drug levels in the medium and incorrectly interpret them as 
sustained drug release, when in reality the drug has already been 
released and precipitated out in the sampled medium. 

The release kinetics of PTX/NPs was also studied using a 
greater amount of NPs per release medium (NPs equivalent to 
27  μg  of  PTX  in  1  mL  of  release  medium),  which  was 

comparable to typical conditions described in the literature 
(Supporting Tables 2 and 3) (hence ending up violating sink 
conditions for all samples at the initial time point). A similar 
trend was observed (Figure 2b), with the cumulative release in 
PBS being the least when directly measured but similar to those 
in Tween/PBS and FBS/PBS when analyzed with additional 
acetonitrile. Interestingly, PTX concentrations in sampled 
media (4.0 μg/mL in PBS and 13.1 μg/mL in Tween/PBS at 
the first sampling time point) were much greater than its 
solubility limit in each medium (0.2 μg/mL in PBS and 3.3 μg/ 
mL in Tween/PBS). This may be explained by the increase in 
dissolution rate due to the small particle size of PTX NPs, 
followed by temporary supersaturation of PTX in the  release 

Figure 2. Release kinetics of PTX/NPs in media containing PBS, FBS, 
or Tween 80. PTX/NPs equivalent to (a) 4.4 μg or (b) 27 μg of PTX 
were suspended in 1 mL of release medium (PBS, Tween/PBS, or 
FBS/PBS) and incubated at 37 °C with constant agitation. At 
predetermined time points, the suspension was centrifuged to separate 
NP pellets and supernatants. Then 0.8 mL of supernatant was sampled 
and replaced with the same volume of fresh medium. The NP pellet 
was resuspended and returned for further incubation. The sampled 
supernatant was analyzed as sampled (PBS and Tween/PBS), with the 
addition of an equal volume of acetonitrile (PBS-AcN treated), or after 
extraction with ethyl acetate (FBS/PBS). 

Similarly, in Tween/PBS, NPs released 56.6 ± 1.2% of the 
loaded PTX immediately and 83.9 ± 1.3% in 72 h (Figure 2a). 
It is worth mentioning that NPs in Tween/PBS did notsatisfy 
the sink condition at the initial time point but resulted in a 
similar trend as in FBS/PBS. This may be attributable to the 
fact that Tween/PBS was capable of forming   supersaturated 
PTX solution in the range of 4−18 μg/mL (Supporting Figure 
1b). On the other hand, PTX release in PBS was relatively 
small, reaching a cumulative release of 34.2 ± 6.4% in 72 h 
(Figure 2a). Since the total amount of PTX dispersed as NPs in 
PBS (4.4 μg/mL) was above the PTX solubility (0.2 μg/mL), 
we initially thought that PTX release was inhibited due to the 
low PTX solubility. However, the sum of total release (34.2%) 
and unreleased PTX (3.8%) fell far short of 100%, unlike those 
in Tween/PBS or FBS/PBS (Supporting Figure 3), suggesting 
a potential sample loss during the sampling or sample 
treatment. We thus added acetonitrile to the sampled PBS 
medium in 1:1 volume ratio and reanalyzed the samples. We 
found that a much greater amount of PTX was present in the 
sampled medium (46.1 ± 1.4% as immediate release and 78.7 ± 
3.2% as cumulative release by 72 h) than initially measured. 
This indicates that PTX was released in PBS to a similar level as 
in Tween/PBS and FBS/PBS but quickly precipitated out in 
the sampled medium due to the low solubility in PBS. When 
analyzed  as  sampled  (without  additional  acetonitrile),   the 

medium. However, since the extent of supersaturation can vary 
(Supporting Figure 1b), one may not be sure that the result will 
be reproducible. 

3.3. Release Kinetics of PNC and aPNC in PBS via  Dialysis 
Method. PTX was also formulated as nanocrystals (PNC) by 
nonsolvent and temperature-induced crystallization.7 PNC was 
optionally coated with human serum albumin to produce 
albumin-stabilized PNC (aPNC). Both PNC (Sup- porting 
Figure 2) and aPNC were rod-shape particles with a length of 
∼400 nm and a width of ∼100 nm. PTX release kinetics from 
PNC or aPNC was evaluated using the dialysis method and
PBS as a release medium. Here, the NCs equivalent to 200 μg 
PTX was suspended in 3 mL of PBS,  put in a dialysis cassette, 
and incubated in 200 mL of PBS with regular sampling and
analysis, to make it comparable totypical conditions described
in the literature (Supporting Tables 2). Figure 3a shows that
PTX release (dissolution) from the NCs was very slow,
reaching less than 10% cumulative release in10 days. Given 
that the PTX concentration in the dialysis cassette was 66.7 
μg/mL, far exceeding the solubility (0.2 μg/mL), and
that the dialysis membrane could delay PTX diffusion into the 
release medium, we suspected that PTX might have
precipitated in the dialysis cassette. Indeed a significant fraction 
of PTX remained in the dialysis cassette after 10 days. To
estimate how quickly PTX precipitated in a dialysis cassette, we 
prepared a 20 μg/mL PTX solution in PBS (<1/3 of the initial 
concentration in a dialysis cassette) and sampled the solution at 
different time points to quantify the dissolved PTX. PTX
rapidly precipitated out in less than 30 min, leaving PTX in
solution only to the solubility level (Supporting Figure 4). This 
result suggests that even though the small size of NCs had
increased the dissolution rate of PTX, the dissolved PTX might 
have undergone reprecipitation in the dialysis cassette. In other 
words, PTX detected in the release medium did not necessarily 
reflect the dissolution of NCs but that of PTX precipitates
entrapped in the cassette. Since only the dissolved PTX could 
pass the membrane and became diluted in the release medium, 
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Figure 3. (a) Release kinetics of PNC and aPNC in PBS: PNC or 
aPNC equivalent to 200 μg of PTX were suspended in 3 mL of PBS, 
put in a dialysis cassette (MWCO 3500), placed in 200 mL of PBS, and 
incubated at 37 °C under constant agitation. At timed intervals, 5 mL 
of release medium was sampled and replaced with 5 mL of fresh PBS. 
(b) PTX concentration in the sampled medium at each time point.
Symbols indicate each replicate. The dotted line indicates the
saturation solubility of PTX in PBS. 

has been ignored in the release kinetics study. A potential 
hazard of underestimating in vitro drug release is that it can 

mislead to a prediction that a NP formulation will attenuate the 
drug activity during circulation and thus help reduce its side 

effects on nontarget tissues. However, unlike in vitro, NPs face 
an ultimate sink condition in the body, where the released drug 
is continuously diluted and undergoes protein binding, and can 
thus show very different drug release behaviors and biological 
performances than expected from the in vitro release studies. 
This may partly explain why many NPs expected to be effective 
in vitro do not readily translate to clinically effective products. 

In order for in vitro release kinetics to provide some 
predictive potential, it is necessary that the release studies be 

performed with release media that simulate critical features of in 
vivo systems and sampling methods that maintainsimplicityand 

convenience of in vitro tests. PBS is the most simple and 
common medium for the release kinetics studies, but it requires 
a very low ratio of NPs to medium volume especially for poorly 
water-soluble drugs, which is met at the price of accuracy of the 
analysis. To avoid the analytical limitation, some have measured 

drug remaining as NPs in the system at regular time points as 
an indirect estimate of drug release, where the difference 

the PTX concentration in the release medium was <0.1 μg/mL, 
below the solubility limit, at any time point (Figure  3b). 

4. DISCUSSION 
Our study demonstrates that release kinetics of a poorly water- 
soluble drug may be much underestimated when the ratio of 
the NP mass to release medium is not sufficiently low because 
the released drug reprecipitated in the sampled medium (Figure 
2) or in the dialysis cassette (Figure 3). In light of this
observation, we reviewed articles reporting in vitro release 
kinetics of PTX from NPs or other sustained delivery
formulations, published in 2005−2014. In studies using the 
centrifugation method, PTX concentration in a test tube ranged 
from 25 to 1000 μg/mL (Supporting Tables 2 and 3). In studies 
using the dialysis method, the concentration of PTX provided 
as NPs in total release medium (sum of the medium in dialysis 
bag and the bulk medium in which the bag was placed) was 
kept less than the saturation solubility, or the bulk medium was 
frequently replaced in most cases. However, the PTX 
concentration in a dialysis bag ranged from 40 to 1500 μg/mL 
(Supporting Tables 2 and 3), exceeding the water solubility  of  
PTX.  These  studies  conclude  that  their   NP 
formulations achieve sustained PTX release over various time 
periods. However, given that these concentration ranges are far 
above the solubility (0.2 μg/mL), we suspect that even if the 
drug release had been much faster in reality they would not 
have been able to detect it. As our release kinetics studies show, 
when PTX is present in excess of the solubility limit in the 
medium, the drug can precipitate out in the system shortly after 
it is released out of the formulation. This translates to a low 
drug level in the release medium, which can be incorrectly 
interpreted as sustained drug release. From this perspective, we 
revisit some of the previous studies with conflicting bioactivity 
results. For example, with slow invitro drug release kinetics, one 
may expect that a NP formulation will be less effective than a 
free  drug  control.  Some  studies  do  report  the attenuated 
bioactivity of     NPs relative to free PTX.13,18−22  However, in 
many cases, PTX NP formulations are not any less toxic than a 
free  drug  control.23−30     This  may  be  interpreted  as        a 
consequence of enhanced cellular drug uptake or retention of 
NPs,23,26,29,30 but it could also be premature drug release, which 

between the initial and remaining dose is considered the 
released drug.31 This is a good alternative tomeasuring the 

released drug, as long as the released drug remains stable in the 
medium. Serum-containing buffers may be a reasonable choice 
of release medium for mimicking a physiological fluid with a 
complex composition that affects drug release. Because of the 
solubilizing effect of serum proteins, these media are also good 

for achieving a sink condition at a reasonably high 
concentration. However, PTX in serum-containing medium 

requires an additional extraction step to separate PTX from the 
proteins prior to analysis. Moreover, PTX is unstable in serum- 

containing solution; thus, the drug release may be under- 
estimated unless the medium is exchanged frequency. We find 
that Tween/PBS is most recommendable among those tested 

in this study, as PTX in Tween/PBS is more stable than in 
FBS/PBS, does not require extra sample treatment for HPLC 
analysis, and generates a similar release profile as that in FBS/ 
PBS, which satisfied a sink condition. However, Tween/PBS 
may not be compatible with the dialysis method. If Tween/PBS 
is used to disperse NPs in a dialysis bag, the released drug will 
be entrapped in the surfactant micelles and not freely pass the 

membrane. Conversely, if Tween/PBS is used as the bulk 
medium, NPs isolated in the bag cannot make a direct contact 
with the surfactants that aid in its dissolution in the  medium, 

and the released drug can reprecipitate in the dialysis bag. 
Centrifugation and dialysis are most widely used for sampling 

the release medium, but both have critical limitations. 
Centrifugation method requires centrifugation at a high speed 
for separating NPs from the free drug at each sampling. The 
pressure generated during the centrifugation can disturb the 
equilibrium between released drug and NPs and make it 
difficult to resuspend the NPs for further incubation. In 
addition, the separation is often incomplete, leading to 
cumulative errors in measurement of the released drug. Dialysis 
method eliminates the need for a separation step, but the fact 
that the dialysis membrane itself functions as a diffusion barrier 
creates a different problem, especially for the poorly water- 
soluble drugs. As observed in this study, a poorly water-soluble 
drug, accumulating in the bag due to the delay in diffusion 
across the membrane, can reprecipitate into larger aggregates, 
which  then  drive  the  apparent  release  kinetics.  A  similar 
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concern has been raised by Anderson et al., who studied release 
kinetics of lipophilic drug-loaded liposomes with the dialysis 
method and observed reversible binding of the released drug to 
the liposomes within the dialysis bag.31 Given these 
disadvantages, it is worthwhile to consider various alternative 
methods proposed over the years. For example, Szoka et al. 
used agarose hydrogel to accommodate liposomes for non- 
invasive separation of the released drug from the carrier.32

Alternatively, a biphasic dissolution model is a conceivable 
option for studying the release kinetics of poorly water-soluble 
drugs.11 Here, a water-immiscible organic solvent with a low 
density (e.g., octanol) is laid over an aqueous release medium 
that contains the formulation. A drug released into the medium 
partitions into the organic layer due to the lipophilicity, keeping 
the aqueous medium from saturation.11 This method can, at 
least in theory, maintain the sink condition without excessive 
dilution and/or invasive sampling, although it is necessary to 
find a way to keep NPs from direct contact with the organic 
solvent. 

In summary, our study illustrates how in vitro release kinetics 
studies of poorly water-soluble drugs designed without 
considering the solubility limitation can result in under- 
estimation of drug release and a misleading conclusion of 
sustained drug release. To reasonably simulate in vivo 
conditions in which NPs are administered, the ratio of a drug 
in NP form to the initial volume of the release medium should 
be sufficiently lower than the saturation solubility of the drug. 
Inclusion of a dissolution aid in the release medium can help 
meet this requirement without compromising sample detection 
as long as it is in direct contact with NPs. In any combinations 
of release media and sampling methods, it is desirable to 
analyze the remaining NPs at the end of the study and check 
the mass balance, in order to exclude potential underestimation 
of drug release. Our discussion is limited to PTX NPs, but the 
same consideration can be extended to other formulations of 
drugs with similar stability and solubility limitations. 

■ ASSOCIATED  CONTENT 
* Supporting Information 
Supporting Figures and Tables. This material is available free of 
charge via the Internet at http://pubs.acs.org. 

AUTHOR INFORMATION 
Corresponding  Author 
*Phone: 765-496-9608. Fax: 765-494-6545. E-mail: yyeo@ 
purdue.edu. 
Author  Contributions 
§These authors contributed equally to this work. 
Notes 
The authors declare no competing financial interest. 

■ ACKNOWLEDGMENTS 
This work was supported by NIH R01 EB017791 and a Grant 
from the Lilly Endowment, Inc. to College of Pharmacy, 
Purdue University. We acknowledge the Fellowship support 
from the Egyptian Government Ministry of Higher Education 
Missions Sector to S.A.A. and the Ronald W. Dollens 
Scholarship support for B.S. We also thank Samyang Genex 
Corp (Seoul, Korea) for the kind donation of paclitaxel and the 
NAL Pharmaceuticals Ltd. (Monmouth Junction, NJ) for the 
gift support. 

■ REFERENCES 
(1) Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit,  R.;

Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. 
Nat. Nanotechnol. 2007, 2 (12), 751−760. 
(2) Merisko-Liversidge, E. M.; Liversidge, G. G. Drug Nanoparticles:

FormulatingPoorlyWater-SolubleCompounds.Toxicol.Pathol.2008,
36 (1), 43−48. 
(3) Batrakova, E. V.; Bronich, T. K.; Vetro, J. A.; Kabanov, A.   V. 

Polymer Micelles as Drug Carriers. In Nanoparticulates as Drug
Carriers; Torchilin, V. P., Ed.; Imperial College Press: London, 2006;
pp 57−93. 
(4) Yu, B. G.; Okano, T.; Kataoka, K.; Kwon, G. Polymeric Micelles 

for Drug Delivery: Solubilization and Haemolytic Activity of
Amphotericin B. J. Controlled Release 1998, 53 (1−3), 131−136. 
(5) Gao, L.; Liu, G.; Ma, J.; Wang, X.; Zhou, L.; Li, X.; Wang, F. 

Application of Drug Nanocrystal Technologies on Oral Drug Delivery 
of Poorly Soluble Drugs. Pharm. Res. 2013, 30 (2), 307−324. 
(6) Sun, B.; Yeo, Y. Nanocrystals for the Parenteral Delivery of Poorly 

Water-Soluble Drugs. Curr. Opin. Solid State Mater. Sci.2012,
16 (6), 295−301. 
(7) Zhao, R.; Hollis, C. P.; Zhang, H.; Sun, L.; Gemeinhart, R. A.; Li,

T. Hybrid Nanocrystals: Achieving Concurrent Therapeutic and
Bioimaging Functionalities toward Solid Tumors. Mol. Pharmaceutics 
2011, 8 (5), 1985−1991. 
(8) Cho, E. J.; Holback, H.; Liu, K. C.; Abouelmagd, S. A.; Park, J.; 

Yeo, Y. Nanoparticle Characterization: State of the Art, Challenges,
and Emerging Technologies. Mol. Pharmaceutics 2013, 10 (6), 2093− 
2110. 
(9) Gao, Z. In Vitro Dissolution Testing with Flow-through Method:

A Technical Note. AAPS PharmSciTech 2009, 10 (4), 1401−1405.
(10) The United States Pharmacopeia: The National Formulary

(USP37/NF32); The United States Pharmacopeial Convention, Inc.:
Rockville, MD, 2014. 
(11) Phillips, D. J.; Pygall, S. R.; Cooper, V. B.; Mann, J. C.

Overcoming Sink Limitations in Dissolution Testing: A Review of
Traditional Methods and the Potential Utility of Biphasic Systems. J.
Pharm. Pharmacol. 2012, 64 (11), 1549−1559. 
(12) Zhao, R.; Hollis, C. P.; Zhang, H.; Sun, L.; Gemeinhart, R. A.; 

Li, T. Hybrid Nanocrystals: Achieving Concurrent Therapeutic and
Bioimaging Functionalities toward Solid Tumors. Mol. Pharmaceutics 
2011, 8 (5), 1985−1991. 
(13) Yang, T.; Cui, F. D.; Choi, M. K.; Cho, J. W.; Chung, S. J.; Shim,

C. K.; Kim, D. D. Enhanced Solubility and Stability of Pegylated
Liposomal Paclitaxel: In Vitro and in Vivo Evaluation. Int. J. Pharm. 
2007, 338 (1−2), 317−326.
(14) Lovich, M. A.; Creel, C.; Hong, K.; Hwang, C. W.; Edelman, E.

R. Carrier Proteins Determine Local Pharmacokinetics and Arterial
Distribution of Paclitaxel. J. Pharm. Sci. 2001, 90 (9), 1324−1335. 
(15) Bajaj, G.; Kim, M. R.; Mohammed, S. I.; Yeo, Y.   Hyaluronic 

Acid-Based Hydrogel for Regional Delivery of Paclitaxel to Intra- 
peritoneal Tumors. J. Controlled Release 2012, 158 (3), 386−392. 
(16) Willey, T. A.; Bekos, E. J.; Gaver, R. C.; Duncan, G. F.; Tay, L. 

K.;   Beijnen,   J.   H.;   Farmen,   R.   H.   High-Performance Liquid 
Chromatographic Procedure for the Quantitative Determination of
Paclitaxel (Taxol) in Human Plasma. J. Chromatogr. 1993, 621  (2),
231−238. 
(17) Ringel, I.; Horwitz, S. B. Taxol Is Converted to 7-Epitaxol,  a 

Biologically Active Isomer, in Cell Culture Medium. J. Pharmacol. Exp.
Ther. 1987, 242 (2), 692−698. 
(18) Kim, J. H.; Kim, Y. S.; Kim, S.; Park, J. H.; Kim, K.; Choi, K.; 

Chung, H.; Jeong, S. Y.; Park, R. W.; Kim, I. S.; Kwon, I. C.
Hydrophobically Modified Glycol Chitosan Nanoparticles as Carriers 
for Paclitaxel. J. Controlled Release 2006, 111 (1−2), 228−234. 
(19) Liang, H. F.; Chen, C. T.; Chen, S. C.; Kulkarni, A. R.; Chiu, Y. 

L.;  Chen,  M.  C.;  Sung,  H.  W.  Paclitaxel-Loaded    Poly(Gamma- 
Glutamic Acid)-Poly(Lactide) Nanoparticles as a Targeted Drug
Delivery System forthe Treatment of Liver Cancer. Biomaterials 2006,
27 (9), 2051−2059. 

1002 DOI: 10.1021/mp500817h 
Mol. Pharmaceutics 2015, 12, 997−1003

http://pubs.acs.org/


150 

Extracellularly  activatable 

Review 

nanocarriers for drug delivery to 
tumors 
Sara A Abouelmagd, Hyesun Hyun &  Yoon Yeo† 5 
†Purdue University, Department of Industrial and Physical Pharmacy, West Lafayette, IN, USA 

Introduction: Nanoparticles (NPs) for drug delivery to tumors need to satisfy 
two seemingly conflicting requirements: they should maintain physical and 
chemical stability during circulation and be able to    interact with target cells 
and release the drug at desired locations with no substantial delay. The 10 
unique microenvironment of tumors and externally applied stimuli provide 
a useful means to maintain a balance between the two requirements. 
Areas covered: We discuss nanoparticulate drug carriers that maintain stable 
structures in normal conditions but respond to stimuli for the   spatiotemporal 
control of drug delivery. We first define the desired effects of extracellular 15 
activation of NPs and frequently used stimuli and we review the examples    of 
extracellularly activated NPs. 
Expert opinion: Several challenges remain in developing extracellularly 
activatable NPs. First, some of the stimuli-responsive NPs undergo incremental 
changes in response to stimuli, losing circulation stability. Second, the applica- 20 
bility of stimuli in clinical settings is limited due to the occasional occurrence of 
the activating conditions in normal tissues. Third, the construction of stimuli-
responsive NPs involves increasing complexity in NP structure and production  
methods.  Future  efforts  are  needed  to  identify  new targeting 
conditions  and  increase  the  contrast  between activated and nonactivated 25 
NPs, although keeping the production methods simple and scalable. 

Keywords: drug delivery, extracellular activation, nanocarriers, nanoparticles, stimuli-responsive,

tumor  microenvironment 

Expert Opin. Drug Deliv. (2014) Early Online:1-18 30 

1. Introduction

Nanoparticulate drug carriers can offer several features useful for the delivery of 
chemotherapeutic drugs. For example, nanoparticles (NPs) made of amphiphilic 
polymers  can  be  used  to  solubilize  hydrophobic  drugs  in  aqueous  media. NPs 
that securely encapsulate a drug can protect it from hydrolytic or   enzymatic degra- 35 
dation and the loss of biological activity. NPs with an optimal size can modify the 
tissue distribution of a drug and reduce systemic toxicity [1,2]. NPs decorated with 
specific ligands can facilitate the cellular uptake of a drug and help bypass drug efflux 
pumps [3,4]. In order to realize these potentials, it is critical that an NP remain 
stable during circulation by not interacting with healthy cells, releasing the   drug or 40 
entering off-target organs and tissues. On the other hand, once an NP manages to 
arrive at its intended targets, the NP should release the encapsulated drug in the 
vicinity of tumor cells or enters the cells to unload it inside. A balance between     the 
circulation stability and the reactivity in tumors is, therefore, one of the most 

important properties of an ideal NP. For this purpose, many carriers   are developed 45 
with materials that form stable, long-circulating NPs and maintain the chemical 
structures in normal physiological conditions but change their properties by chem- 
ical or mechanical stimuli to make the encapsulated drug available to target cells. 
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outside of the tumor cells. The extracellular activation of NPs 
is widely explored to facilitate the post-extravasation events. 

2.1 Tumor-specific drug release 
Once     NPs are introduced to circulation, it typically takes 80 
1--2 days for the NPs to achieve maximum tumoraccumula- 
tion via the leaky vasculature [18]; therefore, it is critical to 
keep drug release from NPs in blood to the minimum during 
this period. On the other hand, the excessive attenuation of 
drug release also negatively influences the  therapeutic effect. 85 
An ideal NP should keep the drug inside in a normal physio- 
logical condition but have a built-in mechanism to trigger  drug 
release in a timely manner at intended targets such as tumor  
ECM  and/or intracellular organelles. 

Various  types  of  stimuli-responsive NPs are extensively 
50  reviewed elsewhere [5-10]. In this review, we focus on nanocar-   riers 

that are activated in the extracellular matrix (ECM) of tumors 
to bring about drug release, cellular uptake or intratu- moral 
transport (Figure 1). We briefly define the desired  effects  of  
extracellular  NP  activation  and  frequently  used 

55 stimuli. We then review examples of extracellularly  activated 
NPs or NP-related systems, ending with a discussion about 

2.2  Cellular uptake 
NPs may release a drug outside the cells or enter the cells and 
unload the drug at the desired intracellular locations [19]. Either 
scenario will work if the drug can freely traverse the cell mem- 
brane. However, there are situations when NPs need to be 
internalized by the cells before they release the payload: when 
the drug is unable to cross the cell membrane efficiently (e.g., 
nucleic acids, peptides or proteins) or when the drug is readily 
removed from the cells due to drug efflux pumps in the cell 
membrane [20,21]. In these cases, it is often advantageous to 
encapsulate the drug in NPs, as they can help bypass the cellu- 
lar barriers [22]. To facilitate the cellular uptake of NPs, their 
surfaces are decorated with cell-interactive ligands such as 
small molecules, peptides, antibodies or nucleic acids,   which 

allow them to enter cells via specialized endocytosispathways. 

90 

95 

100 

remaining challenges. 

2. Desired effects of extracellular activation

On the other hand, the ligand-modified NPs face a greater risk 105 
of removal by the mononuclear phagocyte system [23,24]. 
Therefore, NPs are designed to circulate as ‘stealth’ NPs 
(surface-protected with hydrophilic polymers to prevent opso- 
nization) but expose the cell-interactive ligands or charges   in 

of NPs 

60 Systemic NP delivery to tumors is a three-step process:  blood- borne 
delivery, extravasation and then passage through ECM to tumor 
cells [11]. The extravasation of NPs in tumors occur relatively 
selectively due to the difference between normal tissues and 
tumors in vascular permeability, a common feature 

65 shared by many solid tumors----part of the so-called enhanced 
permeability and retention (EPR) effect [12]. The contribution 
of the EPR effect to the delivery of NP to tumors has been well 
documented in preclinical animal studies, especially in xeno- 
graft models [13,14]. However, the universal utility of the EPR 

70 effect in human patients has recently been questioned due to 
significant heterogeneity withinand between tumor types [15,16]

and the lack of clinical evidence supporting the benefits [13,17]. 
Nevertheless, the EPR effect is arguably the most dominant 
mechanism by which NPs access solid tumors [17]. Once    the 

75     NPs arrive at tumors, they are expected to distribute evenly  in 
the tumor mass and release the payload either inside   or 

response to the applied stimuli after they arrive at tumors [25]. 

2.3 Extracellular particle transport 
NPs arriving at tumors are expected to penetrate into the inte- 
rior of the tumor mass and completely kill the tumor cells. In 
reality, NP distribution is limited to the periphery of the tumor 
massclosetothevasculature[26,27], whereasthecentralregions 
of the tumor remain unaffected [28,29] and become a potential 
source for tumor relapse or metastasis. Difficulties in NP pen- 
etration into tumors stem from at least two abnormal features: 
the increased stiffness of tumor ECM [30] and relatively high 
interstitial fluid pressure(IFP) [31-37]. Approaches to overcome 
these challenges involve pre- or co-treatment of tumors with 
enzymes to degrade the ECM [29,38-41], priming tumors with 
an apoptotic-inducer [42-45] or employing external stimuli to 
increase the mobility of NPs in tumors [46] or to disrupt the 
ECM [47-52]. In recent efforts, various stimuli were used to 
reduce the particle size, thereby enhancing intratumoral  NP 
distribution. 

110 
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Article highlights. 

● For successful drug delivery to tumors with 
nanoparticulate carriers, they should remain stable 
during circulation, without interacting with healthy cells, 
releasing drug, or entering off‐target organs and tissues.
Once nanoparticles (NPs) arrive at intended targets, they 
should release the encapsulated drug in the vicinity of 
tumor cells or enter the cells to unload     it inside. 

● Features of tumoral microenvironment and the 
externally applied physical stimuli provide a useful means  to 
maintain the balance between circulation stability and
reactivity  in tumors. 

● Unique features shared by many solid tumors such as 
hypoxia, acidity and overly expressed enzymes, are used 
as internal stimuli for the activation of   nanocarriers. 

● Noninvasive external stimuli such as light, ultrasound,
magnetic field and temperature are also used for the
spatiotemporal control  of drug  delivery. 

● A single stimulus or combinations of multiple stimuli are
employed for the extracellular activation of various types 
of nanoparticle systems such as inorganic or polymeric 
NPs, liposomes and dendrimers. 

This box summarizes key points contained in   the article. 
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Figure 1. Schematic diagram of NPs activated in the tumoral extracellular matrix in response to internal or external stimuli. 
Specifically, the diagram illustrates that circulating NPs extravasate at tumors, undergo structural changes to release drug, 
interact with cells and/or change the particle size according to various stimuli such as light, ultrasound, magnetic field, 
temperature, hypoxia, low pH, reductive potential or increased enzyme levels. 
NPs: Nanoparticles. 

3. Stimuli

3.1 Internal stimuli 
130 Tumor cells initiate several changes in the stroma   to support 

their growth and progression, creating unique a microenvi- 
ronment distinguished from normal tissues such as hypoxia, 
acidity, and overexpression of proteolytic enzymes [53,54].  Such  
differences  have  widely  been  used  to  induce      the 

135 tumor-specific activation of NP drug  carriers. 

3.1.1  Oxygen level 
Hypoxia, inadequate oxygen supplies to the interior of tumors, 
results from fast unorganized expansion of tumors and inade- 

7.0 [58], 6.8--7.2  [56]  or ~ 7.03 [59], as compared with 7.4--7.5  in
normal  tissues.  A  study  on  67  tumor  samples  from  58 
patients revealed that tumor extracellular pH ranged   from 
5.66 to 7.78 with an average of 7.01 [60]. The acidity of a solid 
tumor is attributable to metabolic abnormalities in tumor cells, 
including the high rate of aerobic and anaerobic glycolysis, 
which leads to accumulation of lactic acid [61,62], and the 
increased proton-pump activities in the plasma membrane, 
which promote the secretion of acidic metabolites into the 
extracellular milieu [61]. Moreover, the acidified tissues  do  not 
readily return to neutral pH due to the reduced blood   flow in 
tumors [6]. In designing stimuli-sensitive drug carriers, 

the acidic pH is used to change the ionization status of the car- 

160 
 
 
 

165 

quate vascularization [54-56]. More than half of locally advanced 
140 solid tumors have regions of hypoxia, heterogeneously distrib- 

uted throughout the tumor mass [54]. Hypoxia leads to several 
changes in cell metabolism and gene regulation responsible for 
increasing resistance to chemo- or radiation therapy [57]. Tumor  
hypoxia  induces  the upregulation of signaling   path- 

rier molecules [63-66]  or induce cleavage of     acid-labile  link-         170 
ers [6,67]. A challenge in using the acidic pH of tumors is the 
small difference from the normal pH of 7.4, which require  high 
sensitivity of the carrier molecules to the pH change [6]. 

3.1.3  Reductive potential 

145 ways  involved  in  the  survival  of  hypoxic  cells     such  as 
hypoxia-inducible factors, unfolded protein response and 
mammalian target of rapamycin [57]. Although these changes 
are exploited as direct targets for cancer therapy, tumor hyp- 
oxia also takes part in chemical changes serving as  molecular 

150 cues to activate nanocarriers such as acidic pH   and reductive 
environment. 

3.1.2 pH 
Mildly acidic pH of the tumor microenvironment is one of the 
most widely used features for the extracellular activation of 

155 nanocarriers  [6].  The  reported  range  of tumor extracellular 
pH  varies  with  studies:  some  report  a median value of 

Difference in reductive potential is typically used for intracellu- 
lar drug delivery [10]. The inside of the cells has glutathione 
(GSH) in millimolar range, which is kept reduced by NADPH 
and GSH reductase [68], whereas extracellular GSH concentra- 
tion is around 10 µM [69,70]. Such a difference in the reductive 
potential across the cell membrane is useful for intracellular 
activation of drug carriers, where the carriers with labile linkers 
like disulfide [71] or dithiobenzyl carbamate [72] are reduced in 
the cells to release the drug and/or undergo matrix degrada- tion 
[71,73]. Normal ECM maintains a relatively more oxidized state 
than the intracellular environment as a function of redox- 
modulating proteins, extracellular thiol/disulfide couples and 
reactive  oxygen/nitrogen  species  that  travel  across cell 
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membranes [74,75]. This balance is perturbed in some tumors, 
resulting in elevation of the extracellular reductive   potential. 

190 For example, an aggressive prostate cancer cell line (WPE1- 
AQ3 NB26) showed twice as high extracellular GSH/GSSG ratio as 

thatofnonmalignantprostateepithelialcells[74,75].  Inaddition, 

in vivo electron paramagnetic resonance spectroscopyrevealed
that the GSH level in radiation-induced fibrosarcoma tumors 

195 was four times higher than that in normal muscles [76]. In these tumors, 
the reductive potential may be used for extracellular activation 
of drug carriers as well. 

3.1.4 Enzyme level 
Enzymes overexpressed in tumors such as matrix  metallopro- 

200 teinases (MMPs), constitute another class of stimuli used for 
extracellular activation of carriers. The expression of these 
enzymes, which is tightly regulated in normal tissues, is 
upregulated in invasive tumors due to the increased need for 
ECM degradation [77,78]. Cathepsin B, a lysosomal cysteine 

205       proteinase, is also overexpressed in the ECM and cell surface  of 
some tumors [79-81]. 

3.2  Externalstimuli 
Although the internal stimuli are very useful for inducing 
disease-specific activation of drug carriers, not all the diseases 

210 have specific internal molecular triggers. In this case,    noninva- 
sive external stimuli such as light, ultrasound, magnetic field 
and temperature may be employed to attain the spatiotempo- 
ral control of drug delivery. Advantages of this approach 
include a high level of control over the duration and extent 

215  of  stimuli and the  possibility  of combining multiple stimuli 
to increase the sensitivity of the system. 

3.2.1  Light 
Ultraviolet (UV), visible and near-infrared (NIR) lights are 
widely used as an external stimuli to trigger drug release   and 

220         structural  changes  of  nanocarriers.  Light-stimulated systems 
are of particular interest because of the noninvasiveness and the 
ease of controlling the intensity and duration [82]. UV     and 
short visible (< 410 nm) lights are used as an energy source to 
destabilize caged (deactivated) compounds, but their 

225 utility is limited to thin objects such as skin surface or external  layers 
of organs due to the short penetration depth [83]. Longer visible 
and NIR (> 650 nm) lights, which can reach deeper tis- sues in 
the orders of hundreds of micrometers to centimeters, have thus 
gained increasing interest for in  vivo    applications 

230 [83-86]. On the other hand, lights with longer wavelengths can- 
not afford sufficient energy to initiate cleavage of chemical 
linkers directly. Therefore, long visible or NIR lights are 
combined with compounds such as gold NPs  that absorb the 
lights and generate heat, which then trigger    structural 

235        changes   in drug carriers [83,84,87]. Alternatively, long visible  or 
NIR lights are used with an agent that generate reactive oxygen 
species (ROS) upon radiation (photosensitizer) that help 
enhance drug release and/or intracellular trafficking of    a drug 
[83]. 

3.2.2  Ultrasound 
Ultrasound refers to acoustic  sound  with  high  frequencies  (> 
20 kHz) above those of audible sound, which penetrate deeper 
into inner organs than light [5,88]. Ultrasound generates various 
effects (heating, acoustic cavitation and acoustic radiation 
forces) useful for diagnosis and physical therapy of diseases [89]. 
These effects are lately being used as external stim- uli for 
controlling drug delivery [90]. For example, acoustic cavitation, 
the growth and collapse of microbubbles in blood induce 
reversible changes in nanocarriers and trigger drug release 
[91,92]. Ultrasound applied at high amplitudes also produces 
mechanical actions called radiation forces, increasing 
extravasation and interstitial transport of drug  and  the  carriers 
[89]. 

3.2.3  Magnetic field 
External magnetic field is used in combination with magneti- 
cally responsive carriers as a way of positioning them in specific 
organs or tissues and triggering drug release [93,94]. A magnetic 
carrier should have superparamagnetism, the ability tostrongly 
magnetize (align all magnetic moments of atoms parallel to the 
direction of a magnetic field) when exposed to a magnetic field 
and show no residual magnetization (remanence) upon the 
removal of the magnetic field [93,94]. Superparamagnetic iron 
oxide NPs (SPIONs) based on g-Fe2O3, a-Fe2O3  and Fe3O4  are 
most commonly used as a magnetic carrier [87]. When  used for 
external control of drug release, SPIONs are incorpo- rated in 
polymer matrices or liposomes that can be deformed by heating 
or the movement of the magnetized particles  [87]. 

3.2.4  Temperature 
Most of the above-mentioned external stimuli generate mild 
heat, which provides a useful control over drug release when 
combined with thermosensitive materials [95]. For example, 
high-intensity  focused  ultrasound  (HIFU)  can  produce  local 
heating by focusing multiple ultrasound waves to deposit a high 
acoustic intensity in the focal volume [96]. Ideal temperature 

range for hyperthermia-triggered drug delivery is 41--42oC; 
above this range, vascular coagulation and tissue damage may 
occur [95,97]. For this reason, most thermosensi- tive liposomes 
are made of dipalmitoylphosphatidylcholine (DPPC), which 

undergoes phase transition at 41.5oC  [95,98-  101]. For polymeric 
NP systems, poly(N-isopropylacryla-  mide) (PNIPAM), which 
changes  hydrophilicity   according to the temperature, is 
typically used as a thermosensitive com- ponent. The transition 
temperature can be controlled by the polymer concentration 
[102], molecular weight of  the  poly- mer [103] and type and 
content of additional blocks [104,105]. Although thermal stimulus 
is mainly used to trigger drug release by causing structural 
changes in the carriers, it also contributes to drug delivery by 
increasing vascular permeabil- ity [97,106-108] and/or decreasing 
high interstitial tumor pres- sure [109], thereby enhancing 
extravasation and intratumoral transport  of NPs. 
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4. Extracellularly activatable nanocarriers

Extracellular activation has been employed in various types of 
NP systems, including inorganic or polymeric NPs, liposomes 

295 and  dendrimers.  Such  systems  respond  via     drug  release 
and cellular interactions through different mechanisms. The 
following section introduces recent examples of extracellularly 
activated NPs, classified by the consequences of the stimuli- 
triggered  activations.  Although  drug  carriers  are  the  main 

300 focus  of  this  review, imaging  agents  are also mentioned 
when relevant in principle. The readers are also advised to 
note that in many cases, NP activation was demonstrated in 
relatively extreme in vitro conditions (e.g., pH 5.5) than those
faced invivo to represent clear contrasts between the activated

305 and  nonactivated status. 

4.1  Control over drug release 
4.1.1  Internal stimuli 
4.1.1.1  pH 
For  pH-triggered  drug  release,  acid-labile  linkers  such  as 

310 hydrazone, acetal or ester bonds are frequently used, although 
the triggering pHs for these linkers are somewhat low for 
extracellular drug release. Polyhistidine (pHis) is another 
chemical moiety widely used for pH-sensitive drug carriers. 
The pH sensitivity of pHis comes from the imidazole   group, 

315 which protonates in acidic pH with a pKa value of ~ 6 [110]. 
Polymeric micelles prepared with a block-copolymer of pHis 
and PEG showed higher drug release at acidic pH as pHis block 
turned hydrophilic with protonation [110,111]. More recently,  a  
pHis-based  AB2-miktoarm  polymer   (mPEG-b- 

320 pHis2)   was   designed   to   form polymersomes,  thin-walled 
polymer vesicles similar to liposomes  [112].  Below pH 7.4,  the 
polymersomes underwent conformation changes to cylin- drical 
micelles, spherical micelles and finally to unimers, showing 
increasing drug release [112]. 

325  Alternatively,  chitosan  and  its  derivatives  are  used as a 
component of NPs  for  pH-triggered drug release.   Magnetic 

AQ4 nanocrystals and DOX were encapsulated in micelles made
of amphiphilic chitosan derivative, N-naphthyl-O-dimethyma- 
leoyl chitosan with an average size of 158.8 nm at pH  7.4. 

330 Exposure  to  acidic  medium  induced  hydrolysis  of  maleoyl 
group, which caused the loss of amphiphilicity anddestabiliza- 
tion of micelle structure, as evidenced by a significant increase 
of particle size at pH 6.5 [113]. The pH-induced change caused 
an abrupt DOX release (90% release in 24 h) at pH 5.5 as 

335 compared with 20% at pH 7.4 [113]. In another study, chitosan 
NPs were used as a pH-sensitive carrier of methotrexate 
(MTX). MTX-loaded chitosan NPs (MTX--CS-NPs) were 
prepared by ionic gelation of chitosan via tripolyphosphate 
and an anionic surfactant (77KL), which has a membrane-lytic 

340 activity [114]. MTX release from the NPs increased  with pH 
decrease due to the protonation of 77KL and MTX, leading 
to decreased electrostatic interactions with chitosan and desta- 
bilization of the NPs. Consequently, MTX--CS-NPs showed 

enhanced cytotoxic effect on MCF-7 cells at pH 6.6 as 
compared with pH 7.4, whereas free MTX did  not  show  such 
pH sensitivity [114]. 

 
4.1.1.2  Enzyme level 
When the enzyme level in ECM is used to trigger drug release, 
the enzyme-cleavable peptide substrates are used as a structural 
component of a nanocarrier [67,115-117]. MMP-sensitive lipo- 
somes were developed using a lipopeptide with a cleavage site 
for MMP-9 [115]. The lipopeptide was mixed in the lipid bilayer 
of a liposome generating a triple helical structure that was 
destroyed by MMP-9 and caused the release of liposomal 
contents [115]. A model compound carboxyfluorescein loaded in 
the liposomes was released according to the concentration of 
MMP-9 in release medium (40% in 200 nM MMP-9 and 100% 
in 2.3 µM MMP-9) [115]. Peptide cleavage was MMP-9-
specific, with none of MMP-7, MMP-10 or trypsin able to 
trigger liposomal destabilization and payload    release 

[115]. 

4.1.1.3 Reductive potential 
Most nanocarriers using the redox potential difference as a 
trigger of drug release contain disulfide bond, which iscleaved 
in a relatively reductive environment. Although the increased 
reductive potential is a potentially useful cue for extracellular 
activation of NPs, most examples in the literature have been 
evaluated in the context of intracellular drug delivery. Colla- 
gen, a natural component of ECM, was conjugated on the MSN 
surface via disulfide bond to serve as a capping mate- rial [118].  
The collagen-capped MSNs  released only 7%  of  the 
encapsulated fluorescein isothiocyanate (FITC) in PBS (pH 7.4) 
in 3 h but released additional 80% of FITC   after   the addition 
of dithiothreitol (DTT) to 30 mM [118]. It is worthwhile to note 
that, despite the widespread use as a syn- thetic substitute for 
GSH, DTT may not  result  in  similar  drug release patterns as 
GSH, depending on the nature of drug-carrier interactions. 
Nanohydrogels composed of poly (methacrylic acid) cross-
linked via N, N-bis(acryloyl)cyst- amine were prepared as a
redox-sensitive carrier of  DOX  [119]. With the addition of 10 
mM DTT  to  the  medium,  DOX release increased from 15 to 
27% after 24 h, whereas with 10 mM GSH, drug release 
dramatically increased to  80% [119]. This difference is 
explained by the electrostatic interaction between the hydrogel 
and DOX that was effec- tively displaced by partially 
protonated GSH  but  not  by DTT. 

 
4.1.1.4 Hypoxia 
For the synthesis of hypoxia-activated prodrugs for cancer 
therapy, 2-nitroimidazoles have been used, which undergo 
selective bioreduction in hypoxic conditions  [57,120].  Using  the 
same principle, a 2-nitroimidazole was conjugated to a 
hydrophilic carboxymethyl dextran backbone to produce a 
hypoxia-sensitive polymeric system [121]. This polymer conju- 
gate formed an NP with a hydrophobic 2-nitroimidazole  core, 
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loaded with a base form of DOX. Under hypoxic conditions, activation could be carried out under conditions used in 

2-nitroimidazole underwent a series of bioreductions to   form diagnostic ultrasound scanners. This is a significant  improve- 450 
more hydrophilic 2-aminoimidazole, destabilizing  the      NP ment over previous approaches as it alleviates the need to use a  
structure and releasing the loaded DOX [121]. In vitro release high-intensity ultrasound wave that may generate damages to 

400 studies were performed in hypoxic (degassed PBS  containing nontarget  tissues[125]. 
NADPH  as  electron  donor)  versus  normoxic conditions 
(PBS containing NADPH with no degassing); after    12 h, 4.1.2.3   Light 
complete  DOX  release  was  observed  in hypoxic  medium, To use NIR as an external stimulus to cause drug release, a 455 
but  49%  in  normoxic  medium.  The    DOX-loaded     NPs reservoir-type drug carrier was developed using a nanocompo-  

405 showed  greater inhibition  of SCC7 cancer xenograft  growth site ethylcellulose membrane containing gold nanoshells   and 
than an equivalent dose of free DOX   [121]. PNIPAM-based thermosensitive nanogels as a drug   diffusion  

barrier [126]. When triggered by a NIR laser (808 nm), gold 
4.1.2   External stimuli nanoshells  generated  heat  beyond  a  critical  temperature of 460 
4.1.2.1  Temperature nanogels,  causing them  to shrink and leave pores in    the 
Thermosensitive  liposomes  (TSLs)  are  frequently used for membrane  through  which  the  encapsulated  drug  could  be  

410 heat-induced drug  release control. Several TSLs have     been released [126]. This system allowed for NIR-triggered   release 
reported using DPPC as a main component.   For     example, of aspart, a fast-acting insulin analog, from the subcutane-  
TSLs  prepared  with  DPPC,  hydrogenated soy   sn-glycero- ously  implanted  device,  effectively  reducing  blood glucose 465 
3-phosphocholine,  cholesterol and 1,2-distearoyl-sn-glycero- over 14 days. On the other hand, a critical challenge is to 

415 
3-phosphoethanolamine-N-PEG  2000 (DSPE-PEG) released increase  the  response  temperature  substantially higher than 
drug upon heating at 42--45oC for 30 min [122].   Various lipid 37oC and prevent accidental drug release due to fever or    hot 
compositions have been explored to control the thermosensitiv- weather but to keep it low enough to avoid    tissue   damages 
ity  of TSLs. TSLs prepared with DPPC, MSPC   (1-stearoyl- (< 43oC) [127]. 470 
2-hydroxy-sn-glycero-3-phosphatidylcholine), DSPE-PEG
released the drug completely at > 40oC in 10 min [123].   TSLs 4.1.2.4    Magnetic  field 

420 more quickly responding to temperature were   prepared    by The same principle was applied using an oscillating  magnetic  
replacing MSPC and DPSE-PEG with a    nonionic surfactant field as a release trigger [128,129]. For this purpose, thediffusion 
(Brij78) [123]. TSLs responding to a relatively low temperature barrier was prepared with paramagnetic magnetite NPs as  the 
(39--40oC) for a short period of time (low TSL) were developed triggering entity, which generated heat (+2oC) by an  external 475 
using a mixture of DPPC,  1-palmitoyl-2-hydroxy-sn-glycero- oscillating magnetic field and induced nanogel shrinkage  and  425 3-phosphocholine  (MPPC) and DSPE-PEG  [122] and  used drug diffusion from the device [128]. Depending on the phase-  

 with HIFU-induced hyperthermia [124]. The low TSLs showed transition temperature and loading density of nanogels as well 
minimal drug release in 2 min at 37oC but 50% drug release at as the membrane thickness, this device showed 6--15 times 
42oC during the same period. The low TSLs exposed to pulsed    increase in drug release rate by heating and maintained  the 

 
 

480 
HIFU (1300 W/cm2, 0.1 s on and 0.9 s off for 120 times) zero-order release kinetics through the duration of on-state [129]. 

430 showed significantly faster and greater drug delivery to tumors 
as compared with non-TSLs [124]. The growth of tumors  in 4.1.3    Multiple stimuli 
animals treated with repeated IV injections of low TSLs    and Several stimuli may be used in combination to facilitate     the 
HIFU was significantly delayed as compared with no HIFU formation of NPs, increase the flexibility in release control or 
group [124]. increase the selective reactivity of a system to stimuli [5,130-132]. 485 

For  example,  pH-  and temperature-sensitive  micelle system  
435 4.1.2.2    Ultrasound was  produced  using  a  block  copolymer  consisting  of poly 

Acoustic  cavitation  is  used  to  trigger  drug release     from (NIPAM-co-acrylic   acid)   and   polycaprolactone   [133]. The  
nanocarriers. In a recent example, ultrasound was applied    to hydrophilic  block  of  this  polymer,  poly(NIPAM-co-acrylic 
localize drug release from liposomes on  tumors [125]. Lipo- acid), imparted the sensitivity to temperature and pH based 490 
somes were prepared with DSPE, cholesterol, 1,2-distearoyl- on the phase transition of PNIPAM in increasing temperature  440 sn-glycero-3-phosphocholine   and  DSPE-PEG, including and protonation of acrylic acid in acidic pH [133]. Paclitaxel 
luciferin as a model active ingredient. The    liposomes circu- (PTX) encapsulated in this micelle system was released  most  
lated  with  no  significant  leakage  of  luciferin. When ultra- quickly when both conditions were met [133]. 
sound was applied to tumors in the presence of  SonoVue®, A mesoporous silica material capped with  boronic acid- 495 
phospholipid-stabilized  microbubbles  to enhance  cavitation modified  gold NPs  is another  pH-/temperature-sensitive sys-  

445 effects, the liposomes were destabilized and released luciferin, tem [134]. A saccharide derivative was anchored on the external 
producing  16  times  higher  luminescence  signal in  tumors surface of mesoporous silica-based material 41, where multiple  
than nonstimulated ones [125]. An important feature   of    this alcohol groups of the saccharide derivative had reversible inter-  

 approach  is  that  with  the  aid  of  SonoVue the  ultrasound actions  with boronic acid of gold  NPs  by forming  boronate 500 
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A. Oxidation sensitive 
(solubility switch) 

O 

pH sensitive 
(fragmentation switch) 

A polythioether ketal-based NP system was produced to 
activate drug release in response to acidic pH and ROS, which 
changed   hydrophilicity   and   degradation  rate, respectively 

510 

O O      N N 
H H 

H2O2 

O O 
S O      O 

(Figure 2) [135]. Upon the exposure to ROS, thioether groups 
in the polymer backbone underwent oxidation to sulfone, 
turning the polymer from hydrophobic to hydrophilic. On 
the other hand, ketal groups in the backbone underwent rapid 
acid-catalyzed hydrolysis in mildly acidic condition [135]. The 
polythioether ketal-based NPs showed complete degradation 
and  drug  release  in  24  h  when  both  conditions    were 
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provided [135]. In contrast, the NPs in neutral pH with no 
oxidative reagents showed minimal release of model drugs 
over the same period of time [135]. 

An important advantage of multiple-stimuli-sensitive sys- 
tem is the potential to precisely regulate the drug release 
according to the combination of stimuli. To enhance the 
precision of control, a polymeric micelle  system  responding 
to triple stimuli (temperature, pH and  reductive  potential) 
was developed using a block-copolymer comprising of an 
acid-sensitive hydrophobic core (poly(hydroxyethyl methacry- 
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late)), temperature-sensitive hydrophilic shell (PNIPAM) and 
redox-sensitive interface (disulfide linker) [136]. The decrease of 
pH converted acid-sensitive hydrophobic block to hydro- philic 
one, temperature increase made PNIPAM hydrophobic and a 
reducing environment induced cleavage of block- copolymer to 
individual homopolymers, all contributing to disassembly of the 
micelle system. Notably, individual stimu- lus caused slow or 
incomplete release of the encapsulated dye, but combined 
stimuli led to a significantly faster and greater release [136]. 

4.2 Control over cellular uptake 
Promoting selective interaction of nanocarrier systems with 
tumor cells is achieved by removing protective surface layers 
from the carriers or transforming the surface properties in a 
tumor-specific  manner.  Most  nanocarriers  are  protected by 

530 
 
 
 

535 
 
 

540 

nonionic hydrophilic polymers  to avoid  nonspecific  interac- 545 

Figure 2. (A) Degradation mechanism of polythioether ketal. 
Hydrogen peroxide and acidic pH stimulate the degradation 
of the polymeric nanoparticles in tandem. (B) Schematic 
diagram of polythioether ketal-based NP system, which 
releases drug in response to acidic pH and ROS. 
Reprinted with permission from [135]. Copyright (2011) American 
Chemical Society. 
NP: Nanoparticle; ROS: Reactive oxygen species. 

esters  [134].  The boroester bonds were hydrolyzed at pH 3    or 
cleaved thermally by plasmonic heat emitted from NIR- 
irradiated gold NPs, removing the capping gold NPs and releas- 
ing molecules entrapped in the pores of the silica device  [134]. 

505 Although this approach opens up a new possibility of designing 
stimuli-induced release systems, the present format has a limited 
utility for drug delivery purposes due to the low trigger pH 
(pH 3) and the heat generated by thelongwavelength NIRlaser 
itself. 

tions with immune cells and normal tissues during circulation. 
Removal or transformation of such a protective surface results 
in exposure of cationic charges or cell-interactive ligands, 
thereby allowing for electrostatic or ligand-mediated interac- 
tions with the cell membrane.  This effect  can be  achieved  by 
employing a stimulus-sensitive linker as a component of the 
carrier polymer or using a stimulus-sensitive polymer for  a 
protective surface. 

4.2.1 Internal stimuli 
4.2.1.1 pH 
To increase cellular uptake at acidic tumoral pH, a polymeric 
micelle system was developed using a blend of pHis-based 
amiphiphilic polymers [137]. The micelle was made of a blend 
of pHis5kD-b-PEG and PLA-b-PEG-b-pHis2kD-TAT, where
pHis5kD and PLA blocks from each polymer formed a hydro- 
phobic core and PEG formed a shell. At pH 7.4, PEG from 
the latter polymer formed a loop as pHis2kD  block remained 
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unionized and associated with the hydrophobic core, keeping 
the cell-interactive  TAT away  from the  surface.  Below  pH 

The PAMAM dendrimer was electrostatically coated with 
ZWC,  which  was  anionic  in  neutral  pH,  reducing toxicity 

565 7.2, pHis2kD   started to ionize, exposing the TAT on   the sur- associated  with  the  cationic  charge  of  the  dendrimer   and 620 
face to facilitate cellular uptake of the polymeric micelles [137].  preventing cellular uptake of PAMAM dendrimers (Figure   3). 
Due to the enhanced cellular uptake, the micelles  carrying   On  the other  hand,  in mildly  acidic  pH  such  as  pH  6.5 or DOX 
showed a greater cytotoxic effect on drug-resistant lower, where ZWC acquired more  positive  charges,  the NCI/ADR-RES  cells  
upon  the  acid-triggered activation [137].       PAMAM dendrimer was no longer protected and allowed to 

570 A  consistent  result  was  observed  in  a  mouse  model  of  a interact with the cell membrane and enter the cells (Figure 3) 625 
drug-resistant ovarian cancer xenograft  [137]. [66]. 

In  another  study,  a  layer-by-layer  approach  was  used to   Peptides are another class of pH-sensitive materials that can make 
multilayered ~ 80 nm NPs with a fluorescent core and be used to promote pH-sensitive cell interactions [142]. A pH PEG-coated 
surface  [138]. The core particle was a     carboxyl-      low   insertion   peptide   (pHLIP)  is  a  pH-sensitive peptide 

575 functionalized quantum dot (QD). The negatively   charged made of 38 amino acids with moderate water solubility   [142]. 630 
core particle was first coated with poly-L-lysine (PLL)-imino- As pH drops from 7.4 to 6.5, it becomes more hydrophobic 
biotin conjugate and neutravidin, which was then coated with with protonation of Asp and Glu residues and inserts its tail 
mPEG--biotin conjugate. Under acidic pH, the iminobio- into the cell membrane lipid bilayer, helping NPs modified tin--
neutravidin linker was decomposed due to the   reduced with the peptide to enter cells [142,143]. pHLIP was  conjugated 

580 affinity of the protonated iminobiotin for neutravidin.   The with   MSN,   an   inorganic   drug   carrier,  via a  disulfide 635 
decomposition of iminobiotin--neutravidin bonds were dem- bond [143]. When placed in  mildly  acidic  pH,  the  pHLIP- onstrated 
over a range of pH 4--7.4, where the decomposition  conjugated  MSNs  were  readily taken  up  by  cells  in  which rate increased  
linearly with  the decrease of pH. This   caused     the  disulfide  linker  was  reduced  and  the  loaded      DOX the external  PEG 
layer to be  shed  and  a cationic  PLL  layer       released. Due to the pH-induced cellular uptake,   thissystem 

585 exposed, thereby facilitating cellular uptake of QD cores in showed  greater  cytotoxic  effects  in  both  drug sensitive 640 
acidic environment. After incubation in a pH 5.5   medium,     (MCF-7) and resistant (MCF-7/ADR) cell lines at pH   6.5 

NPs showed significantly higher cellular uptake in five differ- relative to those at pH 7.4 [143]. A similar approach was used ent 
cancer cell lines as compared with those in pH 7.4 [138]. As     to enhance tumor uptake of gold NPs [142]. 
a  consequence  of  pH-sensitive  tumoral  uptake,  the     NPs 

590 modified with iminobiotin showed longer retention in tumors 4.2.1.2   Enzyme level 
than control NPs with  biotin  [138]. The removal of a protective layer can be induced by  enzymes 645 

The pH-sensitive polymers have been used to form a surface abundant in tumor ECM. PLGA NPs were dual-coated with  layer 
that becomes more cell interactive in tumoral pH. For  a  cell  penetrating  peptide  (TAT  peptide)  and  PEG  for  example, low-
molecular-weight chitosan (LMWC) was    used      promoting    cellular    uptake    and    preventing nonspecific 

595 as a pH-sensitive surface coating. Chitosan is a polysaccharide exposure of the TAT peptide, respectively  [67].  The     surface 
with     primary amines, which impart a unique pKa of 5.5--6.5      PEG was conjugated to the NP surface via a MMP-2 cleavable 650 
[139], matching the weakly acidic pH of tumor tissues [63]. Due    peptide linker, so that it could be removed in a MMP-2-rich to 
the reduced molecular weight (< 6500 Da), LMWC remains environment such as tumoral ECM, allowing the TAT peptide 
neutral yet hydrophilic at pH 7.4, thus qualifying for a stealth     to promote cellular uptake of NPs. The dual-modified PLGA 

600 polymer.  LMWC  was  conjugated  to  poly(lactic-co-glycolic NPs showed minimal uptake by SKOV-3 cells in MMP-2-free 
acid) (PLGA), yielding a polymeric NP with a PLGA core          medium but significantly enhanced cellular uptake after  treat- 655 
and a LMWC surface [63]. The PLGA--LMWC NPs showed a ment with MMP-2. In contrast, NPs with noncleavable PEG  slightly 
negative charge at pH 7.4 but acquired a positive charge    showed minimal cellular uptake, irrespective of the presence in acidic   
pH. Consequently, PLGA--LMWC   NPs     showed        of MMP-2. Consistent with the MMP-2-dependent    cellular 

605 greater interactions with SKOV-3 cells at pH 6.2 than atpH uptake, the dual-modified NPs loaded with PTX resulted in 
7.4, whereas the unmodified PLGA NPs  showed   limited     a greater cytotoxic effect after MMP-2 treatment than    non- 660 
cellular uptake irrespective of the pH [63]. treated ones, although the difference was not as clear as the cel- 

Another   example   involves   a  cationic polyamidoamine lular uptake due to the high initial burst release of the drug [67]. 
(PAMAM)  dendrimer  coated  with  a  zwitterionic   chitosan 

610 derivative (ZWC) [66]. Amine-terminated PAMAMdendrimer 4.2.2    Multiple stimuli 
is an attractive carrier of drug and gene therapeutics due to the      A dual pH-sensitive drug conjugate was developed to produce 
well-defined structure and functionalization potential; how-  polymeric NPs that respond to tumor ECM pH (6.5) to facil- 665 
ever, the utility is  limited  because  of  undesirable  cytotoxic  itate cellular uptake and then to lower lysosomal pH(5--5.5) effects 
[140]. Created by partial amidation of chitosan,  ZWC       to  enhance  intracellular  drug  release [144].  A  DOX--polymer 

615 showed a negative charge in a relatively basic condition    and conjugate  (PPC--Hyd--DOX--DA)  was  synthesized  by conju- 
positive charge in an acidic condition, where   the   transition gating   3-dimethylmaleic   anhydride   (DA)   and   DOX to a 
pH is readily tunable according to the extent of amidation [141].   block-copolymer  of  mPEG  and  cysteamine-modified    poly 670 
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Figure 3. Cellular uptake of PAMAM or ZWC(PAMAM) at pH 7.4 (left) and pH 6.4 (right). Green: PAMAM dendrimers; blue: 
nuclei. Fluorescently labeled PAMAM dendrimers (green) appeared in or on the cells irrespective of the pH. In contrast, 
PAMAM dendrimers coated with ZWC showed minimal cellular interactions at pH 7.4, whereas strong green signals were 
observed in or on the cells at pH 6.4, where the dendrimers were no longer protected by  ZWC. 

AQ7  Adapted with permission from [66]. Copyright (2013) American Chemical  Society.
PAMAM: Polyamidoamine; ZWC: Zwitterionic  chitosan  derivative. 
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(allyl ethylene phosphate) (mPEG-b-PAEP-Cya, PPC), via
amide and hydrazone bond, respectively. Here, the  amide bond 
between with b-carboxylic acid of DA and amino group of 
cysteamine is cleavable at slightly acidic conditions like pH 

675      6.8 [145], whereas hydrazone bond is cleaved at lower pHs.      The 
polymer  conjugate formed self-assembled NPs with    an 
average diameter of ~ 27 nm that underwent two levels of 
changes according to the pH [144]. First, the b-carboxylic amide  
bond  between  DA  and  polymer  cleaved  at  pH 6.8, 

680 increasing the cationic charge density, thus enhancing  cellular uptake 
of NPs. After the uptake and endosomal localization, the 
hydrazone link between DOX and polymer was cleaved off and 
the drug was released [144]. Due to the pH-sensitive 
enhancement of cellular uptake and intracellular drug  release, 

685 the  NPs achieved  greater  cytotoxicity in  drug-resistant  cancer stem 
cells than free DOX at pH 6.8   [144]. 

Similarly, NPs responding to multiple levels of pH were 
developed to induce NP--cell interaction and drug release 
according  to  the  environment.  Dual-pH-sensitive polymeric 

690 micelles were prepared using two block copolymers, poly(L-his- 
tidine)-b-short branched polyethyleneimine (pHis-b-sbPEI) and
mPEG-b-polysulfadimethoxine (mPEG-b-PSDM) [64]. pHis-b-
sbPEI self-assembled to yield core polymeric micelles, where 
pHis formed a pH-sensitive hydrophobic core and sbPEI 

695 formed a cationic shell. The core micelles were coated with mPEG- 
b-PSDM via pH-sensitive electrostatic interactions between 
sbPEI and PSDM. The pH-sensitivity of the shielded micelles 
came from PSDM, negatively charged at neutral pH but 
uncharged in slightly acidic conditions. At mildly    acidic 

700 pH, the micelles lost an mPEG-b-PSDM layer due to the
weakening electrostatic interactions with the PEI shell and the 
exposed cationic surface then interacted with the surface of 
tumor cells. Once taken up by cells, the core pHis-b-sbPEI
micelles were destabilized and released the loaded PTX in the 

705 low endo/lysosomal pH as the pHis block started to protonate. 
Theshieldedmicelleswerestableinserumduetotheprotective 
effect of PEG and showed minimal cellular uptake at pH 7.4 
but significantly enhanced uptake at < pH 6.6. When injected 
IV  in  MCF-7  tumor-bearing  mice,  the shielded micelles 

710    showed superior tumor growth inhibition   as compared   with   free 
PTX or the unshielded core micelles [64]. 

In a recent example, pH and ultrasound were used in 
combination for the delivery of oncolytic adenovirus to 
tumors [146]. Adenovirus was coated with a new stealth poly- 

715      mer,   N-(2-hydroxypropryl)   methacrylamide   copolymer  con- 
taining pH-sensitive hydrazone bonds  that  degraded  at  acidic 
intratumoral pH to restore the ability of virus to bind and infect 
specific cancer cells. Focused ultrasound was used along  with  
SonoVue to produce  an  intense  cavitation effect 

720 that enhanced the penetration of viral particles into the acidic 
interior of tumors. The combination of ultrasound-mediated 
tumor penetration and pH-sensitive deshielding of virus led 
to significant improvement in tumor growth inhibition and 
survival of tumor-bearing mice as compared with non-ultra- 

725 sound-stimulated  ones [146]. 

4.3 Control over extracellular particle transport 
Although the approved NP products have particle sizes rang- 
ing from 100 nm or higher (e.g., Doxil), recent animal studies 
find that sub-100 nm sizes are required for effective tumor 
penetration. Kataoka et al. report that only 30 nm polymeric 
micelles can penetrate poorly permeable pancreatic tumors to 
achieve an antitumor effect [147]. Similarly, Allen et al. found 
that 25 nm, but not 60  nm,  polymeric  micelles  penetrate 
into breast tumor xenografts [2]. Chan et al. also showed using
PEGylated gold NPs that smaller particles (20 nm) penetrated 
better into tumor matrix than larger NPs (40--100 nm) [148]. 
On the other hand, such a small NP is not necessarily benefi- 
cial for the accumulation and retention in tumors [148] and the 
drug loading capacity [149]. To address these conflicting needs, 
NPs are engineered to circulate as relatively large particles and 
be reduced to smaller NPs by internal and external stimuli. 
Alternatively, stimuli are also used to increase the particle 
size after arrival at tumors [150]. In this case, NPs are delivered 
as relatively small particles to take advantage of the EPR effect 
but swell in the tumoral ECM so that their retention in the 
intended locations may be  improved. 

4.3.1 Internal stimuli 
4.3.11   Enzyme level 
Wong et al. reported an NP system changing the size in tumor
ECM according to high MMP levels [11]. The NPs consist of 
cross-linked gelatin core with an average diameter of 100 nm, 
on which 10 nm QD NPs were covalently bound on the 
surface. The 100 nm size allowed the NPs to circulate and 
reach the tumor via the EPR effect; once in the tumor with 
an elevated level of MMP-2, the gelatin core degraded to 
release 10 nm QD NPs that could better penetrate into 
tumors. When injected intratumorally in mice bearing HT- 
1080 tumors with high MMP-2 activity, the gelatin- QD NPs 
showed greater penetration into tumor tissues than silica-QD 
NPs that did not change the size [11]. 

4.3.2  External stimuli 
4.3.2.1  Light 
To improve tissue penetration and drug release in target tis- 
sues, Tong et al. developed a lipid-based NP system composed
of DSPE--PEG, lecithin and a spiropyran--alkyl conjugate 
(SP-C9), which reduced the average size from 150 to 40 nm 
upon the exposure to UV light (365  nm) (Figure  4) [151]. The 
photo-triggered shrinkage resulted from the isomeriza- tion 
of hydrophobic SP to zwitterionic merocyanine (MC) and 
subsequent movement of MC to hydrophilic PEG layer, 
which let alkyl chains of DSPE and lecithin form tighter 
assembly in the hydrophobic core [151]. The shrunken NPs 
swelled back with the removal of UV as MC reverted to SP 
and translocated to the core. After photo-triggering, NPs 
encapsulating fluorescent dyes showed greater penetration 
into a dense collagen gel and the cornea than free dyes and 
NPs with no UV trigger [151]. Although the use of UV light 
may limit the utility of this system in drug delivery to tumors, 
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Figure 4. (A) Structure and photoisomerization reaction between SP and MC. (B) Abbreviations for SP and MC derivatives. (C) 
Scheme of photoswitching SP NP composed of SP-C9 and DSPE-PEG. Yellow oval, SP molecule: blue line, alkyl chain (R) in SP; 
red, lipid part; green line, PEG. SP NP are converted to MC NP (purple oval, MC molecule) by UV light irradiation; the 
reversible photoisomerization from MC NP to SP NP happens in dark but is accelerated by visible light (500--600 nm). (D) 
Dynamic light scattering measurement of size changes of SP NP composed of SP-C9, DSPE-PEG and lecithin. Inset: the solution 
of NPs before and after UV  irradiation. 
Reprinted with permission from [151]. Copyright (2012) American Chemical Society. 
DSPE‐PEG: 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐PEG; MC: Merocyanine;  NP: Nanoparticle; SP: Spiropyran;    UV: Ultraviolet. 

it is conceivable to introduce similar features in other types of 

780 NPs to enhance drug delivery into the tumor interior, which 
can be hard to reach due to the dense interstitialmatrix. 

4.3.2.2 Temperature 
Thermosensitive composite microparticles were developed to 
control the surface adhesion of circulating particles by thermal 

785 stimulus [152]. The microparticle consisted of a   PNIPAM core 
particle containing SPIONs and a surface stabilized with SiO2 

particles. Heating SPIONs with the magnetic field resulted in a 
reduction of the particle size, which in turn reduced the drag 
force on the particles in the flow and helped them remain bet- 

790 ter adherent to a surface [152]. This principle may be useful for 
controlling distribution and retention of the circulating 
nanocarriers. 

4.3.3  Multiple stimuli 
A dual temperature- and pH-responsive polymeric micelle 
system based on mPEG-b-P(HPMA-Lac-co-His) was devel- 
oped to facilitate  drug  encapsulation  and  micelle retention in 
tumors [150]. The hydrophobic segment of this polymer 
consisted of poly(N-(2-hydroxypropyl) methacrylate dilactate
(HPMA-Lac) and pHis,  which  provided  thermosensitivity and 
pH-sensitivity, respectively [150]. P(HPMA-Lac-co-His) had a 

low cloud temperature (< 10oC), allowing for efficient micelle 
formation and drug encapsulation by quick heating [150]. At 
physiological temperature, the particle size gradually increased 
and drug release occurred due to the accelerated hydrolysis of 
lactic acid side chains and further accelerated at relatively 
acidic pH of tumor ECM [150]. The authors propose that the 
micelles initially maintain a desirable size (< 60  nm) 
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for circulation and tumor accumulation but are better retained 
in tumors due to the increasing size (> 80 nm) in a   condition 

810 best met by  tumor  ECM  (physiological  temperature  and acidic 
pH). 

5. Conclusion

The success of NP-based drug delivery depends on the circula- 
tion stability of NPs and their ability to deliver the drug at the 

815    right location and time. Unique microenvironment of   tumors 
and externally applied physical stimuli provide useful means to 
maintain a fine balance between the two properties. Recent 
studies show examples of NP systems that respond to a wide 
variety of internal and external cues in the tumor ECM. The 

820         majority of these systems are studied at preclinical levels and  a 
lot remains to be done to  translate the technical  potential  to 
clinical benefits. Future efforts are required to increase the 
choices of stimuli-sensitive biomaterials. Equally important is 
the  advancement  in  imaging  technology  to  locate    tumor 

825    lesions and technologies to apply external stimuli in a focused  and 
noninvasive manner. 

6. Expert opinion

Extracellularly activatable nanocarriers have shown a great 
potential to achieve drug delivery to tumors in a target-specific 

830 manner, but several challenges remain. 
First, some of the stimuli-responsive NPs undergo incremen- 

tal changes in response to stimuli, which often translates to low 
circulation stability. For example, DOX conjugated to MSNs 
via a pH-sensitive hydrazone linker showed a linear increase in 

835 drug release with the decrease of the solution pH [153] and MMP- 
sensitive liposomes showed gradual increase in the release of a 
model compound with the increase of the MMP-9 concentration 
[115]. When the responses are linearly propor- tional to the 
intensity of stimuli, there is a good chance that 

840        the NPs undergo inadvertent changes upon small fluctuations  in 
environmental conditions. If the changes are irreversible, their 
circulation stability will be significantly compromised. The 
instability issues tend to be underestimated during develop- ment  
because of the overly simplified test conditions     (e.g., 

845      buffered saline in lieu of blood) or the lack of analytical tools   to 
predict the stability of NPs in complex fluids. Many NP sys- 
tems with promising in vitro effects fail at later stages of devel- 
opment due to the insufficient improvement from free drugs, 
resulting from their instability during circulation [154]. On  the 

850  other hand, an effort to improve the NP stability can lead to poor 
responsiveness to the stimuli. In this regard, it is worth- while 
to note recent approaches that combine multiple stimuli to 
increase the contrast between responses to normal and 
tumoral conditions [135,136]. 

855  Second, although many internal stimuli inherent  to tumors 
have  been  identified  in  the  literature,  their  applicability in 

clinical settings is often questioned as such conditions occasion- 
ally occur in normal tissues. For example, acidic environment 
can develop in conditions like ischemia or inflammation [155,156]

and small fluctuations in body temperature can occur due to 
fever or hot weather. It is also suggested that MMP activation 
occurs in circulation rather than in tumor tissues [157]. More- 
over, conditions to activate NPs may not be readily met if  they 
are located far away (e.g., acidic and hypoxic regions) from the 
perivascular regions where NPs typically accumu- late [158] or 
parts of the NP construct interfere with the access of the 
activating conditions (e.g., interference of PEG with an enzyme 
access to the cleavage site). In order to further advance the field 
of stimuli-responsive nanocarriers, it is necessary to make 
interdisciplinary efforts to identify new targeting stimuli and 
understand their physiological backgrounds. 

Third, the need to address the intricate nature of tumor 
biology often leads to increasing complexity in NP structure 
and production methods. Technical complexity is seldom 
considered an issue in academia but rather encouraged for    the 
advancement of materials science. However, if the com- plexity 
is not justified by the substantial improvement in therapeutic 
benefits, it is difficult to gain significant attention from the 
consumers. In particular, the growing complexity leads to 
increasing difficulties in quality control of the pro- duction, 
toxicological studies of the product and regulatory approval 
processes, which pose significant obstacles in  the late stage of 
new product development. Whereas multiple chemical 
functionalities may be an integral part of a versatile carrier, a 
conscious effort towards a simple and scalable method should 
be made in tandem in the early phase of development. 
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1. INTRODUCTION translational diffusion coefficient, to the size of NPs according 
The field of nanomedicine has seen significant progress in the tothe Stokes−Einsteinequation.1 The particle size is defined as 
past decades, both in design and in the scope of applications. 
Various techniques are used to characterize nanoparticles 
(NPs) and predict their ultimate fates in the human body. 
However, current technology is challenged in a sense that the 
characterization is often performed in a condition that does not 
reflect the complexity of the physiological environment. 
Moreover, in vivo studies based on animal models largely 
remain a black box approach, where pharmacokinetics and 
biodistribution of NPs are driven by a series of biological events 
that are not readily predicted in vitro. In order to expedite the 
transition of a benchtop effort to a clinically effective product, it 
is imperative that investigators employ adequate methodologies 
to characterize nanomedicine, correlate their effects and 
biological consequences, and predict the therapeutic outcomes 
in clinical subjects in the early stage of product development. 
The purpose of this review is to highlight current techniques 
used in NP evaluation from a critical perspective, discuss 
potential pitfalls and cautions, and introduce emerging 
technologies that deserve keen attention from the field of 
nanomedicine. 

2. IN VITRO CHARACTERIZATION OF  NPS 
2.1. Physical Properties. 2.1.1. Particle Size. Particle size is 

the most basic information of NPs, one of the main 
determinants of biodistribution and retention of the NPs in 
target tissues. Dynamic light scattering (DLS) is commonly 
used for particle size determination. DLS measures Brownian 
motion of NPs in suspension and relates its velocity, known as 

the size of a hypothetical hard sphere that diffuses in thesame 
fashion as that of the NPs being measured. The result is 
reported as a mean particle size and homogeneity of size 
distribution. The latter is expressed as polydispersity index 
(PDI), a dimensionless parameter calculated from a cumulant 
analysis of the DLS-measured intensity autocorrelation 
function.2 A PDI value from 0.1 to 0.25 indicates a  narrow size 
distribution, and a PDI value greater than 0.5 indicates a broad 
distribution.3 While DLS provides a simple and speedy estimate 
of the particle size, several studies suggest inherent limitations 
of DLS. For example, DLS is relatively poor at analyzing 
multimodal particle size distribution.3,4 For example, when a 
mixture of 20 and 100 nm NPs is measured, the signal of 
smaller particles is lost because the signal intensity of a 
spherical particle with a radius r is proportional to r6; thus, the 
scattering intensity of small particles tends to be masked by that 
of larger particles. 

Microscopy provides an accurate assessment of the size and 
shape of an NP; however, it often requires complicated sample 
preparation steps specific to microscope techniques,4 which can 
change samples and create artifacts (e.g., NP agglomeration 
during the drying process for electron microscopy5). Moreover, 
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ABSTRACT: Nanoparticles have received enormous attention as a 
promising tool to enhance target-specific drug delivery and diagnosis. 
Various in vitro and in vivo techniques are used to characterize a new 
system and predict its clinical efficacy. These techniques enable efficient 
comparison across nanoparticles and facilitate a product optimization 
process. On the other hand, we recognize their limitations as a 
prediction tool, due to inadequate applications and overly simplified test 
conditions. We provide a critical review of in vitro and in vivo techniques 
currently used for evaluation of nanoparticles and introduce emerging 
techniques and models that may be used complementarily. 



169 

due to the limited throughput, it is difficult to obtain particle 
size distribution.6 Another imaging-based method is the NP 
tracking analysis (NTA), a single particle tracking technique 
based on dark field or fluorescence microscopy and automatic 
imaging analysis.7 In this method, NP size is derived from the 
average displacement of NPs undergoing Brownian motion 
within a fixed time frame.7,8 An advantage of this method is that 
it tracks individual NPs and thus provides a high resolution for 
multimodal samples and aggregation.7 On the other hand, it 
requires a sample to be sufficiently diluted so that the 
observation fields may not be overly crowded.5 Alternatively, 
NP size may be estimated by disk centrifugation, which 
depends on sedimentation speed of NPs. Since NPs with a few 
percent size differences settle at significantly different rates, the 
disk centrifugation method can resolve a very small size 
difference (as little as 2%).9 Moreover, this method can analyze 
a broad range of particle sizes, ranging from 5 nm to 75 μm. On 
the other hand, it takes longer than other methods, lasting 15 to 
30 min, and requires that NPs be denser than the suspended 
fluid.9 

Since these techniques rely on different physical principles 
and sample preparation, the results vary according to the 
employed methods.5 For example, electron microscopy, DLS, 
NTA, and disk centrifugation gave rise to highly variable results 
even for the well-defined, homogeneous NPs. Depending on 
the methods and the type of averages reported (intensity, 
number,  or volume),  silver NPs  (70 nm) and  gold  NPs (15 
nm) were measured as 40−124 nm and 11−52 nm, 
respectively.5 In addition to the underlying principles, it should 
be considered that sample status in each method is not the 
same. For example, the size of NPs measured in solution is 
generally much larger than the size of dried NPs because of the 
hydration layer. 

The measured particle size can also be different depending 
on how the samples are prepared even in the same method. For 
example, in DLS measurement, it is critical to ensure that the 
NPs are well dispersed. NPs are typically dispersed via probe/ 
bath sonication or vortex mixing. A high energy dispersion 
method can temporarily reduce agglomeration, but the NPs do 
not remain dispersed for a long time and agglomerate again.10 

Therefore, it is often observed that the increased duration of 
sonication and/or higher energy sonication method ultimately 
promotes  agglomeration  after  initial  dispersion  due  to the 
enhanced interaction  of NPs with high surface    energy.10−12

Ionic strength of the NP suspension is another important 
factor.11 When TiO2 NPs or quantum dots were analyzed, an 
increase in ionic strength from 0.001 to 0.1 M resulted in a 50- 
fold increase in the hydrodynamic diameter.11 This is because 
the increasing ions shield the electrical layer on NPs that has 
kept the NPs apart at a lower ionic strength. The pH of the NP 
suspension also plays a role in particle size measurement.11 

When pH is distant from the isoelectric point of NPs, the 
electrostatic repulsive force is dominant over the van der Waals 
force, and NPs are well dispersed. On the other hand, the 
repulsive force decreases and the hydrodynamic size increases, 
when the pH is close to the isoelectric point and, thus, the NP 
surface is less charged. Due to the dependence on pH and ionic 
strength, the size distribution in a condition where the 
bioactivity of NPs is tested is quite different from that 
measured in water. Murdock et al. measured sizes of various 
inorganic and organic NPs in water or cell culture medium 
(with or without serum) with DLS.10 In many cases, NPs 
aggregated to a greater extent in serum-free medium than   in 

water.10 The presence of serum proteins attenuated the size 
increase, likely due to surface stabilization by the adsorbed 
proteins. Given the variability, it is necessary to record the 
conditions in which NP size is measured when DLS is used for 
size measurement. 

Additional cautions are needed in measuring sizes of NPs 
with nonspherical shape. DLS assumes spherical shape for NPs; 
therefore, it is important to validate this assumption via 
microscopic examination. When the shape significantly deviates 
from a sphere, the DLS measurement may be less accurate; 
thus, DLS must be accompanied by image analysis.13 It is also 
noteworthy that the particle size can differ by a factor of 2 to 4 
depending on the type of particle size distribution used in DLS 
(i.e., intensity, volume, and number-based); therefore, one 
should report the type of size distribution in addition to the 
average size.5 

2.1.2. Surface Charge. Surface charge, expressed as zeta 
potential, critically influences the interaction of an NP with the 
environment.3 There are two liquid layers surrounding an NP: 
strongly bound inner part (Stern layer) and weakly bound outer 
layer. Zeta potential is commonly measured by laser Doppler 
electrophoresis, which evaluates electrophoretic mobility of 
suspended NPs in the medium, thus measuring the potential at 
the boundary of the outer layer. Generally, particles  with  zeta 
potential  more positive than +30  mV or 
more negative than −30 mV have colloidal stability maintained 
by electrostatic repulsion. One limitation is that in bimodal 
samples the zeta potential value of larger particles dominates 
the scattering signal of smaller particles, similar to DLS size 
measurements.10

 

The zeta potential measurement depends on the strength 
and valency of ions contained in the NP suspension. High ionic 
strength and high valency ions compress the electric double 
layer, resulting in reduction of the zeta potential.14,15 The pH, 
the concentration of hydrogen ions in the medium, greatly 
influences the zeta potential as well. When the suspension is 
acidic, the NPs acquire more positive charge, and vice versa. 
Therefore, a zeta potential value without indication of solution 
pH is a virtually meaningless number.1 It is recommended that 
information of the NP suspension be precisely described in 
reporting the zeta potential, including the ionic strength, 
composition of the medium, and the pH.16,17 For comparison 
of results across different studies, it is conceivable to normalize 
the zeta potential by pC (negative logarithm of concentration 
of counterion species).17

 

2.1.3. Drug Release Kinetics. When an NP is used for 
delivery of a drug, the ability of the NP to release the drug is 
evaluated over a period of time, since it ultimately determines 
the availability of a drug at target tissues, thereby the 
therapeutic outcomes.3 There are three possible mechanisms of 
drug release: desorption of the surface bound/adsorbed drug, 
diffusion from the polymer matrix, and release subsequent to 
polymer erosion. In the case of a matrix-type polymer NP, in 
which the drug is uniformly distributed in the matrix, the 
release occurs by diffusion and/or erosion of the matrix. If the 
diffusionoccursmorerapidlythanmatrixdegradation, diffusion 
is likely to be a main mechanism of drug release. Rapid initial 
burst release is attributed to the fraction of the drug adsorbed 
or weakly bound to the surface of the NPs.18

 

Drug release from NPs is studied in at least three ways: 
sampling and separation, dialysis membrane diffusion, and in 
situ analytical technique.19 In the sampling and separation 
technique, the released drug is separated from NPs by filtration, 
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centrifugation, or centrifugal filtration, and quantified by 
various analytical methods. The NPs are supplemented with 
fresh release medium, resuspended, and incubated further for 
the next sampling. While this method can be performed with a 
small amount of samples and simple analytical equipment, 
several shortcomings exist. Irrespective of the separation 
methods, the process is slow and inefficient, which makes 
them less suitable for studying NPs that rapidly release a drug. 
Moreover, centrifugal force or shear stress during filtration 
required for NP separation, which becomes increasingly strong 
when NPs are relatively small, can alter the NPs and the release 
kinetics. Dialysis membrane diffusion depends on continuous 
diffusion across the dialysis membrane. Advantages of this 
method are that the NPs are not subject to invasiveseparation 
processes and sampling is quick and simple. On the other hand, 
the  dialysis  membrane  can  attenuate  the  drug  release  as a 

Figure 1. Techniques used for prediction of physical and chemical 
stability of various NPs. Techniques are listed in the order of required 
time and resources (top to bottom: least to  most). 

diffusionbarrieroranadsorptivesurface;  therefore, thismethod 
should be accompanied by a control experiment with a free 
drug to account for the membrane effect. The dialysis 
membrane diffusion method typically employs a large volume 
of release medium. While the large volume helps maintain a 
sink condition for drug release, drug analysis may become 
difficult due to the low concentration. In situ analytical 
technique is useful for studying nanocrystals, which is made 
almost exclusively of a drug. This technique analyzes the 
properties of NPs in situ to determine the quantity of the 
released (dissolved) drug indirectly. Various analytical 
techniques, including electrochemical analysis, solution calo- 
rimetry, or turbidimetric method, and light scattering 
technique, are employed for this purpose.19 This technique 
does not need NP separation and enables real-time assessment 
of the release kinetics. However, it is limited in determining the 
integrity of the released drug. 

2.2. Prediction of Physical and Chemical Stability  of  NPs. 
Maintaining NP stability in the bloodstream is a crucial 
requirement for successful drug delivery to target tissues. The 
fate of NPs in vivo is in large part determined by its ability to 
maintain the size, to retain drug payload external to the target 
tissues, and to properly release drug to the cells. Ideally, an NP 
must remain stable (i.e., resist aggregation or degradation and 
retain drug) in the blood until it reaches the target sites. 
Instability of NPs results in altered biodistribution and 
premature drug release, thereby compromising the efficacy of 
the delivery system. Hence, evaluation of NP stability is an 
important aspect of NP characterization and an essential 
component to the success of the system. This section reviews 
commonly used techniques to investigate NP stability in 
various biologically relevant media in vitro (Figure 1). Well- 
established studies of micelles or similar self-assembled NP 
systems are mainly used as examples. Although NP stability 
needs to be ultimately measured in vivo, these techniques 
provide reasonable prediction of NP stability in a physiological 
environment. 

2.2.1. Determination of Critical Aggregation/Micelle 
Concentration. The critical association or aggregation 
concentration (CAC)  or  critical  micelle concentration (CMC) 
can be used to evaluate the stability of self-assembled NP 
systems including polymeric or surfactant micelle systems. The 
CAC, or CMC, is defined as the concentration at which a self-
assembled particle or micelle associates/dissociates. This value 
provides a quantitative measure of the physical stability of NPs. 
A relatively low CAC/CMC indicates a more stable micelle 
system  than  one with  a high  CAC/CMC.  In  other 

words, NPs with a low CAC/CMC are more likely to resist 
dissociation upon dilution in the blood. 

CMC can be measured using a variety of different detection 
methods, such as conductivity, chromatography, surface 
tension, fluorescent probes, and light scattering. When 
measuring CMC using surface tension, the CMC is defined   as 
the concentration of a surfactant (i.e., an amphiphilic polymer) 
above which the surface tension becomes constant. At 
concentrations below CMC, a surfactant has not yet saturated 
the surface and lends itself to reduce surface tension of the 
solution. On the other hand, at concentrations above CMC, 
this saturation has occurred, and the excess surfactants form 
micelles and do not contribute to the surface tension change. 
Many studies have utilized this method to  determine 
the CMC of micelles.20−23 Another commonly used method to 
measure CAC/CMC is to utilize fluorescence probes, such as 
pyrene, as an indicator of micelle dissociation. Pyrene is a 
hydrophobic aromatic hydrocarbon, which partitions in the 
hydrophobic domain of self-assembled NPs during assembly.24 

When an NP dissociates, pyrene is exposed to water, where it 
shows a different fluorescence profile than when in the 
hydrophobic domain of the NP. Therefore, the CAC/CMC 
can be determined by monitoring the change in fluorescence 
profile of pyrene, defined as the concentration at which a 
drastic band shift is observed. The pyrene technique has widely 
been used as an indicator of relative micelle stability.25−29      In 
addition, light scattering is used to determine CAC/CMC. This 
technique measures the count rate (the intensity of scattered 
light in DLS), which is proportional to the number of NPs in 
solution when NP size is constant.30 The count rate is plotted 
with respect to NP concentration, and the CAC/CMC is 
defined as a concentration above which the count rate shows a 
linear increase with concentration of the components of NPs.30 

The CAC/CMC measurement is a relatively simple and 
sensitive method of evaluating NP stability, but a disadvantage 
is that the application is limited to micelles and self-assembled 
NPs, whose formation is influenced by concentrations of the 
components. 

2.2.2. Determination of Low Critical Solution Temper‐ 
ature. Temperature-sensitive micelle systems composed of a 
copolymer of hydrophobic block and thermosensitive block can 
utilize lower critical solution temperature (LCST) as a measure 
of their stability. The LCST is defined as the temperature at 
which phase transition of a thermosensitive polymer occurs 
(from hydrophilic to hydrophobic with increase in temper- 
ature).31 This phase change provides the system with the ability 
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to release a drug in response to an external thermal stimulusat 
a specific temperature via local and controlled hyperthermiain 
a specific region of the body.32 At temperatures below LCST, 
the polymer is amphiphilic and the drug remains encapsulated 
in micelles; however, at temperatures above LCST, the 
thermosensitive block becomes hydrophobic, destabilizing the 
micelle structure and releasing the drug.33 As an inherent 
property of a thermosensitive polymer, LCST can be utilized in 
comparing the stability of NPs based on such polymers. For 
example, LCST of poly(N-isopropylacrylamide-co-maleic anhy- 
dride) copolymer increased from 31.1 to 45 °C as the content 
of maleic anhydride and molecular weight increased.34 

Conversely, LCST of Pluronics and poly(N-isopropylacryla- 
mide) decreased when mixed with saccharides.35 One may 
expect that NPs based on a polymer with a relatively high 
LCST will be more resistant to thermal dissociation. 

2.2.3. Monitoring NP Size or Turbidity of an NP 
Suspension. Changes in NP size can be used to predict the 
stability of most NPs. Assuming that the assembled NPs form 
within a constant size range, deviations from the average NP 
size range can be interpreted as an indication of NP dissociation 
or instability in that particular environment or concentration. In 
one study, the stability of different NPs in 10% bovine serum 
albumin (BSA) and 10% human plasma solution was studied by 
monitoring their size change.36 Here, an increase in NP size 
provides evidence of protein adsorption and, therefore, 
potential instability in vivo. A similar study evaluated micellar 
NP stability by incubating the NPs with 5% BSA and measuring 
the size using DLS.37 Changes in turbidity of NP suspension 
may also be used as an indication of instability. For example, 
one study monitored the change in absorbance at 550 nm of 
NPs in a suspension and utilized the kinetics of absorbance 
decay (decomposition of NPs) as an indicator of NP stability.38 

In another example, turbidity of a sulfonamide-containing 
hydrogel NP suspension was measured at different pH values to 
study the pH-sensitive aggregation behavior of the NPs.39 The 
NPs showed constant particle size and turbidity at pH 7 or 
higher but increased turbidity and size at pH below 7, indicative 
of NP aggregation due to hydrophobic interactions of the 
deionized polymer.39 These methods may be used for virtually 
any type of NP systems and performed with basic analytical 
equipment. However, they take into account any materials 
present in the medium; thus, it is difficult to monitor the 
stability of NPs in a complex fluid that contains additional 
components such as serum proteins. 

2.2.4. Gel Permeation Chromatography. Gel permeation 
chromatography (GPC) can be used to determine the physical 
stability of self-assembled NPs. This technique separates self- 
assembled NPs from degraded NPs or their components. NP 
stability can be estimated based on the elution times, given that 
degrading NPs or their components are eluted later than intact 
NPs. Yokoyama et al. used GPC to study the formation of 
different polymeric micelles and their stability in aqueous 
media.40 In subsequent studies, GPC was used to study the 
stability of drug-loaded micellar structures of different 
compositions in the presence of serum41,42 or purified serum 
albumins.42 This technique was also used to assess the 
formation and dissociation of insulin-hydrophobized pullulan 
NP assemblies.43 The assemblies showed high colloidal stability 
in water and buffer, but insulin was released rapidly from the 
assemblies upon the addition of bovine serum albumin.43 Many 
other studies have also used GPC as a means to evaluate 
stability  of  self-assembled  NPs  in  the  presence  of  serum 

proteins.44−48 While this technique is straightforward, inter- 
actions between the column beads and NPs may affect the 
outcome of the analysis. 

2.2.5. Forster Resonance Energy Transfer Technique. 
Recently, Forster resonance energy transfer (FRET) has been 
employed to study the stability of NPs at the molecular level. 
Cheng et al. encapsulated a FRET pair, consisting of 
hydrophobic fluorescent probes DiO (donor) and DiI (accept- 
or), in a polymeric micelle to study the stability of micelles.49 

The FRET pair retained in the hydrophobic core of the 
micelles shows a FRET signal due to their proximity to each 
other, whereas the FRET signal disappears as the micelles 
dissociate and release the dyes. Using this phenomenon, micelle 
stability during cellular uptake has been studied.49 When FRET 
dye-loaded micelles were incubated with KB cells for 2 h, a 
strong DiO signal was observed on the plasma membrane, 
indicating that the dyes were already released from the micelle 
core while passing the cell membrane.49 Following internal- 
ization, a FRET signal was partially restored, suggesting the two 
dyes were trafficked to and concentrated in the same 
endosomal vesicles.49 The FRET technique was used to study 
the stability of NPs in vivo as combined with intravital 
microscopy.50 Many other studies have utilized FRET in 
evaluating the stability of the NP systems in vitro or in 
vivo.25,48,50,51 One challenge in FRET analysis is the need for 
technical adjustment to avoid optical artifacts that may interfere 
with FRET detection. For example, an acceptor dye can be 
excited directly with light that is supposed to excite the donor.52

Alternatively, fluorescence from the donor can leak into the 
detection channel of the acceptor fluorescence (bleed- 
through).52 For accurate assessment of FRET signals, several 
optical corrections need to be made to account for these issues. 
Furthermore, for NP systems that require covalent labeling of 
NP-dye, this conjugation may affect the formation or chemical 
conformation of the NPs, thus potentially changing its 
properties. 

2.3. In Vitro Prediction of in Vivo  Fates  of NPs.  Once NPs 
are introduced into the circulation, plasma proteins almost 
instantaneously adsorb to their surfaces. The protein corona 
changes the nature of the NPs and induces sequential immune 
responses, leading to uptake by phagocytes of the reticuloen- 
dothelial system (RES) and rapid clearance from the 
circulation.53,54 Therefore, it is important that NPs resist the 
adsorption of plasma proteins and premature clearance by the 
immune system.55 Protein adsorption to the NP surface is 
mainly influenced by its hydrophobicity and charge among 
other properties.56 Typically, hydrophilic and electrically neutral 
NPs are less likely to engage with serum proteins; therefore, 
polyethylene glycol (PEG) is widely used to decorate the NP 
surface (“PEGylate”) and prevent binding of plasma proteins 
to the NPs. The PEGylated stealth NPs thus acquire a longer 
half-life in circulation,55,57,58 which translates to greater 
accumulation in solid tumors via the enhanced permeability and 
retention (EPR) effect.59,60 On the other hand, an accelerated 
blood clearance of PEGylated liposomes has been reported 
following the injection of the first dose in animals,61 mediated 
by the production of anti-PEG IgM.62 Clinical studies showan 
occurrence of anti-PEG antibodies in human subjects following 
the treatment with PEGylated agents.63 Therefore, alternative 
stealth coatings are investigated to circumvent the immunoge- 
nicity of PEG, such as polysaccharides including dextran, 
heparin,  and  low  molecular  weight  chitosan,  or   synthetic 
polymers.55,64−66
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2.3.1. Protein Adsorption. Given the immunogenicity of an 
NP has only been detected in costly in vivo studies, there has 
been increasing interest in predicting the immunological 
responses to NPs in earlier phases of NP development, 
preferably in vitro. One of the basic techniques to study the 
stealth properties of NPs is to examine the extent of protein 
adsorption on the NP surface, the first step of phagocytic 
removal  of   NPs.67−69     To   assess  the   extent  of   protein 
adsorption, NPs with constant surface area are incubated in 
serum for a period of time and washed with water to remove 
proteins loosely adsorbed to the surface. The proteins bound to 
NPs are desorbed with a surfactant like sodium dodecyl sulfate 
and subjected to gel electrophoresis and/or quantitative protein 
assay. Attempts have been made to correlate protein adsorption 
to the NP surface and the in vivo fate of the NPs.55 For 
example, polystyrene NPs coated with a series of amphiphilic 
polyethylene oxide-polypropylene oxide block copolymers 
showed much reduced protein adsorption in vitro and a 
prolonged circulation in rats.55 However, protein adsorption 
alone provides only a rough prediction of the potential 
immunogenicity, as it does not reflect the complex nature of 
subsequent immune reactions leading to elimination of NPs. 

2.3.2. Phagocytic Uptake. Another technique to predict the 
fate of NPs in blood is to measure the degree of phagocytic 
uptake of NPs by incubating fluorescently labeled NPs with 
macrophages for a certain period of time and quantifying  the 
amount of NPs taken up by the phagocytes.70−72  The size and 
surface properties are important determinants of phagocyto- 
sis.73 According to a study with microparticles, their shape at 
the initial contact with a phagocyte is shown to be critical in the 
phagocytosis process.74 The shape has similar importance in 
NPs.75,76 For example, linear polymer micelles (filomicelles) 
had a longer circulation time than their spherical counterparts 
with similar chemistry due to their resistance to phagocytic 
uptake in flow.77 Similarly, PEGylated gold nanorods, as 
compared to spherical NPs, were taken up by macrophages to a 
lesser extent and showed a longer circulation time upon 
injection in mice.75 One limitation of the phagocytosis assay is 
that it is carried out in cell culture medium, which does not 
completely resemble the concentration and composition of 
proteins in blood; thus, the extent of protein adsorption and 
phagocytosis can be underestimated. 

2.3.3. Complement Activation. Adsorption of a group of 
soluble plasma proteins, also called the complement system, on 
the NP surface initiates a biochemical cascade leading to NP 
clearance from the circulation via complement receptor- 
mediated phagocytosis.54 The degree of complement system 
activation can be measured to predict the ability of NPs to 
evade or elicit the phagocytic clearance. As foreign particles 
trigger the system activation, one of the soluble protein 
components, C3, is cleaved into C3b and C3a. Therefore, the 
ratio of C3b to C3 is determined as a measure of the extent of 
complement activation by NPs, via crossed immunoelectropho- 
resis  of   serum  solution  incubated  with  NPs.78−81           The 
complement system activation assay has been used to analyze 
the   effect   of   chain   length,   conformation,   charge,  and 
composition of a surface-decorating polymer on its stealth 
functions.73,82−84 When chitosans with different chain lengths 
(8.8  to  80  kDa)  were  compared,  complement     activation 
increased with chain length and number of NH2 groups.85 

Difference in the conformation of polymer chains on the NP 
surface can dramatically influence the ability to bind to plasma 
proteins and activate the complement system. For    example, 

polyalkylcyanoacrylate (PACA) NPs with dextran coating 
prepared by two different methods had two types of dextran 
conformation and density, which had opposite complement 
activation effects.82 Dextran chains bound forming flexible 
“loops” on the NP surface had a strong complement activation 
effect, but dense “brush” like conformation showed resistance 
to protein adsorption.82 Similar observations were reported 
with poly(isobutylcyanoacrylate) (PIBCA) NPs coated with 
dextran or chitosan.78 Vauthier et al. reported that the 
complement activation effects of PIBCA NPs with different 
dextran coatings did not necessarily correlate with their 
albumin binding, indicating that each protein interacts with 
surface coatings uniquely according to its size, conformation, 
and flexibility.83

 

2.3.4. NCL Protocols. The Nanotechnology Characterization 
Laboratory (NCL) has published a series of in vitro protocols 
specifically designed for the evaluation of nanomaterials’ 
compatibility with various biological environments and the 
immune system, which include tests of blood coagulation, 
complement activation, protein binding, platelet aggregation, 
and phagocytosis due to nanomaterials.86 Although no in vitro 
test may exactly mimic real physiological conditions in vivo, 
combinations of these approaches can help predict in vivo 
behaviors ofNPs. 

 
3. CELL‐BASED  EVALUATION  OF NPS 
Once NPs are characterized with respect to their physical and 
chemical properties, their biological effects are tested in cell 
culture models prior to in vivo applications. This section 
describes widely used cell models and their advantages and 
weaknesses. 

3.1. Two‐Dimensional  (2D)  Monolayer  Cell  Culture. In 
frequently used 2D cell culture, cells are grown as a monolayer 
on a plate or flask surface, which is treated via physical methods 
or adhesive biological materials to encourage cell attachment. 
The cells are bathed in culture medium supplemented with 
nutrients and grown at 37 °C in a humidified environment that 
provides uniform exposure to oxygen (and carbon dioxide). 
These conditions provide minimum requirements for main- 
taining cell viability. As a consequence of convenience, the 
monolayer cell culture model is extremely beneficial for quick 
determination of cellular uptake and intracellular trafficking of 
NPs, bioactivity of drugs delivered as NPs, and toxicity of the 
vehicles. These studies are usually done with multiple 
established cell lines. 

3.1.1. Cellular  Uptake.  Confocal  microscopy  and  flow 
cytometry are widely used to study the cellular uptake  of 
NPs. These methods require that NPs be labeled with a 

fluorescent marker, which is done by physical entrapment or 
covalent conjugation. While the former has the advantage of 

simplicity, one should be aware that a lipophilic dye may leach 
out of NPs upon contact with amphiphilic or lipophilic 

components and misrepresent NPs.87 When the intention is to 
track a vehicle, it is desirable to label the component by 

covalent conjugation of a dye and confirm the stability of the 
conjugation in a solution similar to physiological fluid. Ideally, a 

drug and a vehicle should be separately labeled so that drug 
delivery attributable to the vehicle may be accurately evaluated. 

Ekkapongpisit et al. studied the potential of silica (10 nm, no 
surface modification) and polystyrene NPs (30 nm, carboxyl 

surface modification) as theranostic agents in the treatment of 
ovarian cancer.88 Cellular uptake of the fluorescently labeled 

NPs were studied with OVCAR-3 and SKOV-3 ovarian cancer 
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cell lines using fluorescence microscopy.88 Initially mesoporous 
silica NPs were associated along nuclei, with subsequent 
diffusion into the cytoplasm.88 Polystyrene NPs were observed 
as punctate signals restricted to cell peripheries, which 
disappeared in 120 min.88 At subtoxic levels of the NPs, 
mesoporous silica NPs showed faster cellular uptake and longer 
intracellular retention than polystyrene NPs.88

 

While confocal microscopy helps locate NPs within cells, 
quantitative analysis of NP uptake relies on flow cytometry. In 
flow cytometry, cells in suspension are passed through an 
interrogation point, where the cells are individually examined 
by a laser with respect to their optical or fluorescent 
properties.89 Quantitative information is acquired based on  the 
number of fluorescent cells or an average fluorescence 
intensity of the cell population and used to determine the 
fraction of cells killed by therapeutic treatments or the amount 
of a fluorescent drug internalized by the cells. In oneexample, 
magnetic NPs (MNPs) were used as a drug carrier to tumor 
cells.90 Iron oxide (Fe3O4) was covered with carboxymethyl 
chitosan (CMCS),90 in which montmorillonite (MMT) was 
intercalated to enhance cellular uptake of the NPs.90,91 A 
lipophilic fluorescent dye, coumarin-6, was covalently interca- 
lated to MMT to label the CMCS/MMT-covered MNPs for a 
cellular uptake study.90,92 Flow cytometry was used in 
quantifying the uptake of the coumarin-6 labeled CMCS/ 
MMT-MNPs by HeLa cells.90 The researchers observed that 
cellular uptake of their delivery system increased with 
increasing MMT content.90  On the other hand, the amount  of 
NPs associated with the cells did not increase inproportion to 
the NP concentration, indicating that the cellular uptake was a 
saturable process.90 Gratton et al. used flow cytometry to 
evaluate cellular uptake kinetics of PEG hydrogel particles with 
different sizes and shapes in HeLa cells, prepared with a 
lithographic fabrication (particle replication in nonwetting 
templates, PRINT) technique.93 This study found that 
submicrometer particles were taken up by HeLa cells to a 
greater extent than microparticles and the high aspect ratio 
(height:diameter = 3:1) particles showed a greater rate and 
extent of cellular uptake than the low aspect ratio (1:1) particles 
with a comparable volume.93

 

Alternatively, cellular uptake can be quantified by direct 
measurement of intracellular drug or dye contents. Here, cells 
are destroyed at the end of a treatment to release the 
internalized drug. For example, in the evaluation of doxorubicin 
(DOX)-loaded polymeric micelles, SiHa human cervical tumor 
cells were incubated with the micelles or a free drug for various 
time periods, washed, and the drug extracted with dimethyl 
sulfoxide (DMSO).94 DOX content in the extract was 
determined according to the fluorescence intensity.94 This 
study found no difference between free DOX and DOX-loaded 
micelles in cellular uptake at each time point but significant 
difference in cytotoxicity (concentration for 50% cell death 
(IC50): DOX < micellar DOX), which was interpreted asdelay 
in DOX release from the micelles.94

 

3.1.2. Mechanisms of Cellular Uptake. The mechanism by 
which NPs enter cells is as much important as the quantity of 
the internalized NPs because the subsequent intracellular 
events are dependent on the uptake pathway. Depending   on 
their physicochemical properties, NPs can enter cells via various 
pathways.95−98 For example, particles with a size ranging from a 
fraction of a micrometer to ∼10 μm depend on phagocytosis, 
performed by specialized phagocytic cells.96,99 Smaller NPs may 
be   taken   up   by   macropinocytosis96,99,100    or   clathrin- or 

caveolae-mediated endocytosis.95,96,101−103 Cells can internalize 
NPs up to 300 nm in diameter by macropinocytosis, where the 
cell membrane protrudes and fuses back with another part of 
the membrane to produce large vesicles around the NPs.5,9 

Clathrin-mediated endocytosis occurs as clathrin proteins in the 
cell membrane polymerize and form a vesicle (∼100 nm) 
around an NP, which is then transported to an early 
endosome.96    Some  NPs   may  utilize  a  caveolar   route,103

where the cell membrane is coated with caveolin along with 
cholesterol and lipids and forms a flask-shaped invagination 
called caveolae.96 In particular, clathrin- or caveolae-mediated 
endocytosis involves cellular receptors for specific ligands,100 

such as folic acid,104 transferrin,105 or albumin,106 which 
facilitate endo- or transcytosis of these molecules. For this 
reason, NPs incorporating these ligands have been widely 
explored as a way of achieving cell-specific NPdelivery. 

For studying the NP uptake pathway, cells are treated with 
specific inhibitors of specific internalization   pathways107−109

prior to incubation with fluorescently labeled NPs. Chlorpro- 
mazine is an inhibitor of clathrin-mediated endocytosis, and 
filipin and methyl-β-cylcodextrin (MbCD) are inhibitors of 
caveloae-mediated endocytosis.107 Macropinocytosis andphag- 
ocytosis  can  be  inhibited  by  pretreatment  with   amiloride 
(inhibitor of Na−K exchange) or cytochalasin D (F-actin- 
depolymerizing drug).107 Following the pretreatment, cells are 
cultured  with  NPs  and  analyzed  with  flow  cytometry   or 
confocal microscopy combined with quantitative imaging 
analysis software to determine the sensitivity of the NP uptake 
to each inhibitor. For instance, the uptake pathways of 
mesoporous silica and carboxyl-terminated polystyrene NPs 
were compared by investigating their responses to pretreatment 
of MbCD.88 MbCD has high affinity for cholesterol and forms 
inclusion complexes with cholesterol when added to cells at 5− 
10 mM.107  This way, MbCD removes cholesterol from the 
plasma membrane, interfering with cholesterol-dependent 
uptake pathways such as carveolae-mediated endocytosis.107 

The two NPs showed opposite responses to the MbCD 
treatment. The uptake of mesoporous silica NPs washindered 
by the MbCD treatment, whereas that of polystyrene NPs did 
not change, indicating that mesoporous silica NPs, but not 
polystyrene NPs, were taken up via caveolae-mediated 
endocytosis.88

 

The cellular entry of NPs incorporating specific ligands, the 
so-called targeted NPs, mirrors the interaction between the 
ligands and corresponding receptors.110 Moreover, NPs act as a 
scaffold on which multiple ligands are concentrated, thus 
enabling simultaneous interactions with multiple receptors on 
the cells (i.e., multivalent effect).110 As a result, the binding 
strength of ligand-modified NPs to cell receptors is often orders 
of magnitude higher than that of free ligands.111,112 Several 
studies demonstrate that the NPs modified with receptor- 
specific ligands achieve a greater cytotoxicity than nonmodified 
ones due to the enhancement of cellular binding and uptake. 
For example, Liu et al. produced folate-receptor targeted 
polymeric micelles, where folic acid was conjugated to the 
hydrophilic block.113 Cellular uptake of the targeted micelles by 
mouse breast cancer (4T1) and human epidermal carcinoma 
(KB) cells was significantly enhanced by the presence of folic 
acid on the micelles compared to the untargeted micelles.113 

Consequently, the folate-targeted micelles carrying DOX were 
more cytotoxic than untargeted NPs due to folate-receptor 
mediated endocytosis.113 A similar result was reported with 
another folate-receptor targeted micelle based on a   different 
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polymer.114 In addition to naturally overexpressed targets, cells 
may be pretreated to induce overexpression of specific 
receptors, such as p32 receptors that are upregulated by 
thermal treatment. Park et al. reported that magnetic 
nanoworms and DOX-loaded liposomes, decorated with a 
peptide ligand targeted to p32 receptors, showed increased 
binding and internalization by MDA-MB-435 humancarcinoma 
cells, which were preheated with gold nanorods to induce 
expression of p32 receptors.115

 

Once NPs targeted to specific cellular receptors are 
developed,  it  is  important  to  confirm  whether  the cellular 
uptake is indeed mediated by the intended receptor−ligand 
interactions. One common way is to compare cellular uptake of 
the targeted NPs in cells that express the specific receptors to 
different degrees. For example, Kim et al. produced PLGA NPs 
targeted to folate receptors and compared their uptake in KB 
cells (folate receptor overexpressing cell line) and A549 lung 
cancer cells (folate receptor-deficient cell line) to find that the 
NP uptake was much higher for KB cells than for A549 cells.116 

Additionally, cells are pretreated or coincubated with free 
ligands in addition to the targeted NPs to investigate whether 
the NP uptake is competitively inhibited. If the NP uptake is 
receptor-mediated, cellular uptake and/or bioactivity of adrug 
delivered by the NPs is diminished by the presence of excess 
free ligands in a concentration-dependent manner.113,117,118

 

In addition to the presence of ligands, several other factors 
affect the endocytic pathway that NPs take to enter a 
cell.95,119,120 Particle size has a direct influence on NP uptake 
pathway. It is assumed that NPs carried via the receptor- 
mediated endocytic pathways have average hydrodynamic 
diameters close to the sizes of vesicles formed during clathrin- 
or caveolae-mediated endocytosis, which are 100 or 60 nm, 
respectively.96,101 Macropinocytosis has a greater flexibility in 
the upper limit of particle size.96 Particle size has an additional 
role in targeted NPs as a main determinant of ligand density on 
the NP surface.110,112,119 A small particle has a high surface 
curvature that limits relative orientation between ligands, 
leaving large background area without ligand coverage.112 

Relatively large NPs can have a higher ligand density on the 
surface, but if the membrane cannot catch up with the high 
demand for receptors within the area of binding, NP uptake is 
also limited.112 Therefore, Jiang et al. concludes that 40−50 nm 
is   an   optimal   size   for   receptor-mediated endocytosis.112

According to Gratton et al., the cellular uptake pathway is  also 
influenced by the particle shape.93 They used the PRINT 
technique to produce particles with different aspect ratios and 
observed that the particles had different sensitivity to inhibitors 
of various endocytosis pathways.93 Another factor to influence 
endocytic pathway is the surface charge of NPs. Typically 
cationic NPs are internalized more readily than anionic ones, 
due to the ability to interact with negatively charged cell 
membrane and clathrin-coated pits in the mem- 
brane.95,96,110,119,121

3.1.3. Intracellular Trafficking. Once an NP is internalized 
by cells, its intracellular fate critically influences its therapeutic 
effect, especially when the drug target is localized in a particular 

potential artifacts resulting from the fixation/permeabilization 
process, such as protein extraction or relocalization.122,123

 

In the study of mesoporous silica and polystyrene NPs 
discussed earlier, the NPs were incubated with cells which were 
prelabeled with LysoTracker, a fluorescent probe that 
accumulates in acidic organelles.88  The  mesoporous  silica NPs 
and the LysoTracker signals colocalized in 5 min, indicating the 
residence of silica NPs in lysosomal vesicles. With time the 
fluorescence of the silica NPs and LysoTracker signals 
separated, which suggested the escape of NPs from the acidic 
vesicles.88 On the other hand, carboxyl-terminated polystyrene 
NPs did not show colocalization with LysoTracker signals at 
any time, indicating their residence in recycling vesicles.88 This 
result is consistent with the limited intracellular accumulation 
of the polystyrene NPs.88

 

3.1.4. Bioactivity of NPs. When an NP is developed for drug 
delivery, it is of utmost interest whether the potency and 
efficacy of a drug are changed and/or target specificity of the 
drug is enhanced due to the delivery system. When an 
anticancer drug is delivered via NPs, various methods 
measuring the metabolic activity or cell membrane integrity are 
used to estimate the viability of the treated cells. For example, 
colorimetric assays such as MTT, MTS, and XTT assays 
measure mitochondrial function of live cells, according to the 
ability to reduce these tetrazolium salts to intensely colored 
formazan dyes.124 Bioluminescence assays measure ATP 
produced by live cells using luciferase. Since luciferase 
metabolizes luciferin in an energy-dependent manner, the 
luciferase activity (luminescence intensity) is proportional to 
the amount of ATP (i.e., cell viability).124 Dye/stain exclusion 
assays utilize chemicals such as trypan blue, propidium iodide, 
and calcein-AM, which are selectively excluded from or trapped 
in live cells according to membrane integrity or esterase activity. 
Lactate dehydrogenase (LDH) assays also reflect the integrity 
of the cell membrane. LDH is a constitutive cytoplasmic 
enzyme, which is released when the cell membrane is 
compromised. Therefore, the LDH activity in cell medium 
indicates the proportion of nonviable cells.125

 

In the CMCS/MMT-covered MNPs introduced earlier, 
doxorubicin (DOX) was electrostatically complexed to the  NP 
at pH 6, forming DOX/CMCS/MMT-MNPs.90 DOX release 
from the NP was faster at pH 5 versus pH 7.4 due to the 
protonation of CMCS at pH 5, where DOX was no longer 
retained via electrostatic interactions.90 The cytotoxic effect of 
the NPs was observed in MCF-7 cells via MTT assay in 
comparison with free DOX and the vehicle.90 Cytotoxicity in 
MCF-7 cells increased in the order of CMCS-MNPs (vehicle), 
CMCS/MMT-MNPs (vehicle), free DOX, and DOX/CMCS/ 
MMT-MNPs.90 Interestingly, the toxicity of DOX/CMCS/ 
MMT-MNPs in H9c2 cardiomyocytes was less than that of free 
DOX, due to the antioxidant effects of CMCS.90

 

Lei et al. studied the cytotoxicity and cellular uptake of DOX- 
loaded poly(lactic-co-glycolic acid) (PLGA) NPs in drug- 
sensitive and resistant cell lines: SKOV-3 ovarian carcinoma 
cells (drug resistant, p53 mutation, HER2+), MES-SA uterine 
sarcoma cells (drug sensitive), and its drug resistant variant 126 

organelle and/or the drug is unstable in a specific intracellular 
environment (e.g., acidic pH or lysozyme in late endo/ 
lysosomes). To track the intracellular trafficking of the NPs, 
markers of intracellular organelles are colocalized with NPs and 
observed over a period of time. Alternatively, the organelles are 
located using fluorescently labeled antibodies after fixation and 
permeabilization of cells. One pitfall of the latter technique is 

MES-SA/Dx5 cells (P-glycoprotein (P-gp)-overexpressing). 
DOX-PLGA NPs (DNPs) and antibody-conjugated DOX- 
PLGA NPs (ADNPs) were comparable in particle size (163 
and 213 nm) and drug loading (2.7% and 2.3%), except that 
ADNPs had 9.3 μg of anti-HER2 antibody per mg of NPs.126 

Due to the HER2-mediated endocytosis, ADNPs were taken up 
better than DNPs by SKOV-3 cells. In contrast, no difference in 
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cellular uptake was observed between the two NPs in MES-SA 
and MES-SA/Dx5 cells, whichdidnotexpress HER-2. Notably, 
both NPs showed higher uptake than free DOX in MES-SA/ 
Dx5 cells, indicating that the NPs were not subject to P-gp 
efflux. In this study, cytotoxicity of the NPs reflected the 
cellular uptake profile: ADNPs were more cytotoxic than DNPs 
or free DOX in SKOV-3 cells, although the difference did not 
reach statistical significance. Both ADNPs and DNPs showed 
higher toxicity than free DOX in MES-SA/Dx5 cells.126

 

On the other hand, there are examples where bioactivity of 
NPs does not necessarily match their cellular uptake.127 In our 
recent study, PLGA NPs conjugated to a cell-penetrating 
peptide, TAT, were used to increase intracellular delivery of 
paclitaxel (PTX) to multidrug resistant (MDR) cells. As 
expected, the PLGA-TAT NPs were more efficiently taken up 
by MDR cells than PLGA NPs, but they did not increase PTX 

Figure 2. Commonly used 3D tumor models to determine NP 
efficacy. 

delivery  to   the  MDR  cells  (hence   their  killing). This 
discrepancy  can   be   interpreted  as   indirect  evidence    of 
extracellular drug release from the NPs, which may not be 
observed in typical in vitro release kinetics studies using a 
buffered saline.127

 

3.2. Three‐Dimensional (3D) Approaches. In in vitro 2D 
cell culture, target cells are directly and uniformly exposed to 
NPs for a desired period of time with no limitation in the 
higher end of a concentration range. However, this condition 
may not be an accurate reflection of in vivo events occurring at 
3-dimensional (3D) masses such as solid tumors, where NPs 
face various access barriers to target cells.128 Moreover, due to
the highly unnatural geometric and mechanical properties, 
there  is  a  good  possibility  that  the  2D-cultured  cells have 
limited potential to represent the phenotype and genetic
functions of living tissues, which can drastically affect their
responses to chemical stimuli.129−131 The fact that in vivo 
efficacy often betrays the drug screening results obtained in 2D 
cell culture is not irrelevant to the artificial nature of 2D culture 
models.132 Therefore, several efforts have been made to 
develop  3D  cell  models,  which  can  better mimic cell−cell 
and  cell−extracellular  matrix  (ECM)  interactions  seen  in a 
living organism, as  a test  bed  of NP systems.  This   section 
introduces various 3D models and examples in which 3D 
models were used for evaluation of the efficacy of a drug or 
drug-loaded NPs. 

Commonly used models include (i) cells encapsulated in 
scaffolds, (ii) multicellular spheroids,133  (iii) a combination  of 

hydrogels, where cancer cells grew forming clustered structures 
similar to real tumors.141 This model was used in testing the 
efficacy of anticancer drugs to show that cells in the HA gels 
were more sensitive to camptothecin than those in 2D 
culture.141 The increased drug sensitivity of cells in the HA 
hydrogel is attributed to the biological activities of HA on 
cancer cells, which may be reflective of the ECM−cell 
interactions in vivo.141  Conversely, epithelial ovarian   cancer 
cells grown in PEG hydrogels showed a reduced sensitivity to 
PTX treatment than those in 2D culture.142 These results 
suggest that a scaffold is not simply a space-filler but plays an 
active role in expression of phenotypes relevant to drug 
sensitivity. 

Mitra et al. developed a cells-in-scaffold model of Y79 
retinoblastoma for the study of NP efficacy. Here, large and 
porous PLGA microparticles (∼150 μm) were produced as a 
scaffold, in which dispersed cells were seeded and allowed to 
grow.130   The  porous  microparticles  were  produced  by the 
double emulsion method using sucrose as a porogen. Gelatin, 
polyvinyl alcohol, and chitosan were incorporated to promote 
cell attachment to the microparticle scaffold.130 Cells in the 3D 
model not only attached to the microparticle surface but 
infiltrated the particles over time.130 Compared to the cells 
grown in 2D, those grown in the 3D model exhibited higher 
ECM production and altered gene regulation.130 When dosed 
with carboplatin-, etoposide-, or DOX-loaded NPs or their free 

spheroids and scaffolds,134  and (iv) multilayer cell    models132 drug  counterparts,  4.5−21.8-fold  higher   IC50    values were 
(Figure 2). Other 3D models include excised tissues or tissue 
components135 and a microfluidic device based on poly- 
dimethylsiloxane template.136−138

In the cells-in-scaffold model, which has been widely studied in 
the context of tissue engineering, cancer cells are grown in 
either synthetic or natural scaffolds such as hydrogels of ECM 
components,139−141 PEG hydrogels,142 peptide nanofiber 
scaffolds,143 multilayered paper scaffolds,144  or polymers.130 An 
advantage of this model is that cells are exposed to a 
microenvironment similar to their native ECM and reflect its 
influence on the cell growth. In one example, 3D tumor models 
were created by seeding MDA-MB-231 human breast cancer 
cells in collagen I hydrogels.140 The 3D tumor models 
expressed a phenotype reflecting in vivo tumor progression, 
such as hypoxia, necrosis, and angiogenic gene upregulation, in 
a manner dependent on the thickness of the collagen gels.140 In 
another study, C4-2B bone metastatic prostate cancer cells 
were cultured in in situ cross-linkable hyaluronic acid    (HA) 

observed in the 3D model as compared with 2D.130 These 
results indicate that 3D culture conditions can greatly change 
the chemical and biological environment of the cells and, 
thereby, the therapeutic outcomes of the tested drug.130

 

Multicellular spheroids refers to spherical aggregates of cancer 
cells that can reflect tight junctions between cells and ECM 
synthesis.145 A multicellular spheroid model was used in the 
evaluation of DOX-loaded micelles based on a poly(ethylene 
oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) 
(PEO-PHB-PEO/DOX) with respect to their ability to 
penetrate the spheroids.94 Here, the 37 nm micelles or free 
DOX were incubated with SiHa cell spheroids with a diameter 
of 400 μm.94 In 30 min, DOX-loaded micelles penetrated 
spheroid cores to a greater extent than free DOX, although this 
difference disappeared in 2 h.94 This difference was explained 
by the ability of the PEGylated micelles to avoid nonspecific 
binding to ECM and immediate cellular uptake.94 In another 
example, Kim et al. used a multicellular cylindroid model    to 
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investigate how surface charges control the penetration and 
cellular uptake of gold NPs in tumor matrix.146 Gold NPs (6 
nm) were modified with trimethyl ammonium- or carboxylate- 
terminated tetra(ethylene glycol) to produce cationic or anionic 
surfaces, respectively. The NPs were additionally conjugated 
with fluorescein and incubated with a cylindroid, and the 
fluorescence in the cylindroid was quantified according to time 
and radial position. The results showed that gold NPs with a 
cationic surface were readily consumed by actively proliferating 
cells at the periphery, whereas negative NPs penetrated into the 
apoptotic/necrotic interior of the cylindroid at a higher rate 
than cationic ones.146

 

Hoetal. useda spheroid/scaffold combination model of U251 
human glioma cells to study the effect of the geometry of a cell 
model on DOX and irinotecan drug resistance.134 Spheroids 
were first formed by growing cells in a plate coated with poly(2- 
hydroxylethyl methacrylate), which prevented cell attachment 
to the well bottom. Subsequently, the spheroids were seeded 
into a porous PLGA scaffold coated with collagen.134 The 
spheroids maintained their structure for 2 days, allowing for a 
time window in which the drug effect could be tested. Drug 
resistance was highest for the spheroids seeded in the scaffold, 
followed by those seeded as dispersed cells in a comparable 
scaffold, with cells grown in 2D having the least drug 
resistance.134 Lactate production was highest in the spheroid- 
seeded scaffold model, while the 2D cell culture model 
produced the lowest lactate per cell.134 The authors attributed 
the increased drug resistance in the 3D model to the tendency 
to form hypoxic regions, supported by the high lactate 
production, rather than the limitation in drug transport. 

In the multilayer cell models, cancer cells are grown on a 
permeable membrane support to reach 200−250 μm thick cell 
layers.145     Hosoya  et   al.  created  multilayer  cell      models 
simulating pancreatic cancer with fibrotic tissue to study 
intratumoral transport of different macromolecules.132 These 
models consisted of alternating layers of fibroblasts and 
fibronectin-gelatin films on Transwell inserts.132 The thickness 
of the models with 5 layers of cultured cells was 30−50 μm. 
Transport of FITC−dextrans across the cell model was 
quantified  by  measuring  the  fluorescence  of  the  medium 
below the Transwell.132 As readily expected, the dextran 
transport decreased as the number of cell layers increased or 
the molecular size of dextran increased. Approximately 29% of 
the 250 kDa FITC−dextran conjugate (12 nm) permeated the 
K643f monolayer over 24 h.132  During the same time, the  12 
nm dextran had approximately 21% and 19% permeability 
through 2 and 5 layer models, respectively.132

 

4. IN VIVO STUDIES 
Once NPs demonstrate a proof of concept in vitro, their safety 
and therapeutic effectiveness are tested in animal models. The 
results of animal studies play a pivotal role in decision making 
toward clinical trials. An animal model that can reflect 
pathophysiology of a human disease is an invaluable tool for 
predicting therapeutic outcomes in human. This section 
discusses the currently available experimental animal models, 
their strengths and weakness, and emerging trends in the 
animal model development. Given that the majority of in vivo 
NP studies have been performed in the context of cancer 
therapy, the discussion focuses on animal models of tumors 
unless specified otherwise. 

4.1. Evaluation of NPs in Animal Models of Tumors: 
State  of  the  Art.  Mouse models with allograft or human 

xenograft tumors are widely used in in vivo evaluation of NPs 
due to the relatively low cost and well-established protocols. In 
these models, cancer cells are inoculated or tumor tissues are 
implanted (typically subcutaneously) in immunodeficient mice 
(athymic nude or severe combined immunodeficient mice), 
allowed to grow to visible tumors (Figure 3), and treated with 
experimental therapeutics to examine the pharmacokinetics, 
biodistribution, and the pharmacological effects. 

Figure 3. Animal models of tumors used in the evaluation of in vivo 
efficacy of NPs. TSG: Tumor suppressor genes. 

For example, therapeutic efficacy of PEGylated liposomal 
DOX (PLD) was tested in a mouse model of cancer.147 C-26 
mouse colon carcinoma cells were inoculated subcutaneously in 
the left flank of a BALB/c mouse, and the response to a 
treatment was monitored by measuring the size of tumors.147 

Here, free DOX at a dose of 6 mg/kg only slightly delayed 
tumor growth compared with the saline control, whereas with 
PLD at a dose of 6 or 9 mg/kg tumors regressed to 
nonmeasurable sizes.147 Consequently, all animals receiving 
PLD groups survived 120 days (duration of the experiment), 
whereas those receiving saline and free DOX groups survived a 
mean of 50 and 49 days, respectively.147 The therapeutic benefit 
of PLD is attributable to its high bioavailability and preferential 
accumulation in tumors.147 Similarly, Vaage et al. used human 
prostate carcinoma PC-3 implanted subcuta- neously into mice 
and reported that the therapeutic efficacy of DOX was 
increased and its toxic side effects were reduced when 
delivered as PEGylated liposomes.148 The superior efficacy of 
PLD over free DOX was further demonstrated in mouse 
models of murine mammary carcinomas,149 xenografted human 
ovarian carcinomas,150  and pancreatic carcinomas.151

 

However, the performance of NPs in these animal models is 
not always predictive of clinical outcomes. The PLD that 
demonstrated 100% survival of tumor-bearing mice147 was at 
best equivalent to free DOX in clinical efficacy (progression- 
free survival (PFS) and overall survival) in a randomized phase 
III trial with metastatic breast cancer patients.152 Here, women 
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with metastatic breast cancer (n = 509) were randomly assigned 
to either PLD 50 mg/m2 (every 4 weeks) or DOX 60 mg/m2 

(every 3 weeks). PLD and DOX were comparable with respect 
to PFS (6.9 versus 7.8 months) and overall survival (21 versus 
22 months).152 In a phase II study with metastatic breast cancer 
patients, the overall response rate of the PLD-treated group (45 
to 60 mg/m2 every 3 to 4 weeks for a maximum of six cycles) 
was 31% (95% confidence interval, 20% to 43%),153 

comparable to the response rates (25 to 40%) for free DOX at 
conventional doses (50 to 75 mg/m2 every 3 weeks) in 
advanced breast cancer patients with similar character- 
istics.154−157

The discrepancy between preclinical in vivo results and 
clinical outcomes is found in another example. PK1, a covalent 
conjugate of DOX and N-(2-hydroxypropyl) methacrylamide 
(HPMA) copolymer via biodegradable (Gly-Phe-Leu-Gly) 
oligopeptide, was evaluated in various animal models.158,159 The 
models were created by intraperitoneal (ip) injection of L1210 
leukemia cells, subcutaneous (sc) injections of B16F10 
melanoma cells, Walker sarcoma cells, P388 leukemia cells, and 
M5076 cells, or subcutaneous implantation of LS174T human 
colon xenograft.158 When administered ip to mice bearing 
L1210 ascitic tumor, PK1 showed relatively good antitumor 
activity as compared to free DOX.158 The highest T/C, a ratio 
of median survival of the test group (T) to that of untreated 
control (C), seen in the PK1-treated group was >762%, as 
opposed to 214%, that of the free DOX-treated group.158 In the 
case of solid tumor models (B16F10, Walker, P388, M5076, 
and LS174T xenograft), ip administration of PK1 resulted in an 
increase in survival rate as compared to free DOX. In particular, 
P388 and Walker sarcoma showed remarkable regression after 
the treatment.158 On the other hand, the phase II studies of 
PK1 in patients with non-small-cell lung (NSCLC, n = 29), 
colorectal (n = 16), and breast (n = 17) cancer showed less 
exciting outcomes.160 Of 26 evaluable patients with NSCLC, 3 
chemotherapy-naive patients had partial responses, and none of 
the 16 evaluable patients with colorectal cancer showed 
responses.160 Of 14 evaluable patients with  breast  cancer, only 
3 anthracycline-naive patients had partial responses.160

 

Another example is a macromolecular conjugate of PTX and 
poly(L-glutamic acid) (PTX poliglumex). PTX poliglumex 
demonstrated a prolonged circulation half-life and greater 
tumor uptake as compared to Taxol (PTX solubilized with 
Cremophor EL) in a mouse model.161 Consequently, PTX 
poliglumex exhibited significant tumor growth delay after a 
single intravenous (iv) injection at 80 mg/kg (as PTX 
equivalent) compared with Taxol at the same dose in mice 
bearing syngeneic ovarian OCA-1 carcinoma.161 A similar 
antitumor effect was shown in a rat model with 13762F rat 
mammary adenocarcinoma.161 Clinical outcomes in phase II 
trials were modest. In women with recurrent epithelial ovarian, 
primary peritoneal, or fallopian tube carcinoma, the response 
rate and median time to disease progression of PTX poliglumex 
(175 mg/m2, every 21 days) were 10% and 2.1 months, 
respectively,162 and the median PFS was 2.8 months.163 Even 
considering variability due to prior treatment history, these 
responses were not favorable as compared with those of the 
standard regimen based on PTX (135 mg/m2) and platinum 
(75 mg/m2) based chemotherapy,164 which showed >70% of 
response rate and 18 months of median PFS.165 The lack of 
advantages over existing regimens, combined with unexplained 
toxicity, led the developer to officially withdraw the application 
for a marketing authorization of PTX poliglumex in 2009.166

 

4.2. Limitations of Current  Tumor  Models  in Predicting 
Clinical Efficacy. In explaining the  gap between the results of 
rodent models and clinical outcomes, several limitations of 
current animal models may be considered. First, the frequently 
used sc tumor implants do not represent the primary human 
cancers (e.g., lung, colon, breast) nor the preferred sites of 
metastasis (e.g., liver for colon cancer metastasis).167 Instead, 
allograft or xenograft tumors are artificially implanted sc 
(mostly for the sake of convenience), where the tumors grow 
in an environment different from the primary organs, with 
much reduced potential for meta- stasis.168,169 Second, 
immortalized cancer cell lines used in many models as the 
source of xenografts have been maintained over many passages 
in culture and may have lost architectural and cellular 
properties unique to the original tumors.170,171 Even though 
grafted tumors can represent important attributes of the original 
tumors, it is uncertain whether it captures the genetic and 
epigenetic variability of tumors in its entirety.170 Third, when 
human xenografts are inoculated in mouse models, the tumors 
build stroma and vasculature out of murine sources.168,170,171

The   potential   impact   of   this    artificial 
arrangement on the architecture of stroma, cell−stroma 
interactions, and tumor propagation is barely considered in the 
establishment of models and interpretation of preclinical 
studies. Fourth, due to the foreign origin of tumors, it is 
inevitable to use mice with compromised immune systems, 
such as athymic or severe combined immunodeficient (SCID) 
mice.172 Consequently, potential immune responses to NPs, 
which directly influence their bioavailability,61,173−175  are   not 
properly evaluated in these models. Fifth, the size and growth 
rate of tumors in mice are not comparable to those of human 
patients. While human tumors typically develop over a number 
of years, tumors in murine models are designed to grow in days 
or weeks for high throughput evaluation.170 In addition, typical 
sc tumors can be as large as ∼1 cm3 for a 25 g mouse (4% of 
the body weight). Human patients with tumors that can be 
visibly identified would be candidates for surgical debulking 
rather than chemotherapy. One of the likely reasons to favor 
rapidly growing tumor models in the evaluation of NPs is the 
positive correlation between tumor growth rate and the  EPR 
effect,176 the main driving force for tumor-selective NP 
accumulation.177,178 Nonetheless, one should be aware that  the 
clinical significance of vascular permeability effect in drug 
delivery is much debated,60,179 and little is known about the 
effectiveness of the EPR effect in metastatic or microscopic 
residual tumors, where targeted chemotherapy is most desired. 

4.3. Alternative Animal Models of Tumor. To make a 
reliable and clinically relevant evaluation tool, an animal model 
of tumor must fulfill several requirements. It should faithfully 
recapitulate the pathophysiology of human cancer, reproduce 
the problems associated with a specific type and location of 
primary and metastatic cancer, and allow for evaluation of 
biological events associated with tumor progression.180 In 
addition, the model should be reproducible and affordable and 
provide a quantitative end point of therapeutic responses.180 It 
may not be possible to develop a single model that meets all the 
requirements and works for all, but several efforts are currently 
made to develop models that better address each requirement. 
Based on an understanding of these models, one may choose an 
experimental model that is most appropriate for the specific 
questions asked in each study. 

4.3.1. Orthotopic Tumor Models. In an orthotopic model, a 
tumor allo- or xenograft is grown in proximity to the tissues or 
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organs that the tumor cells were derived from (Figure 3).170 The 
orthotopic model is advantageous over ectopic sc models in 
that it provides a host environment closer to a normal milieu of 
the tumor, where the cells can grow in the same manner as in 
human cancer. The histological, biochemical, and immuno- 
logical properties of primary tumors determine their metastatic 
potential.180 In many cases, orthotopically implanted tumor 
cells have a greater potential for metastasis compared to the 
same cells implanted sc;181 therefore, when the desired effect of 
a new drug product is against metastasis, it is desirable to use an 
orthotopic  model.  The  microenvironment  also  influences 
responses  of tumors to  a  therapeutic  agent.181−183  Fidler  et 
al. reported that a sc human colon cancer xenograft was 
relatively noninvasive and sensitive to DOX, whereas the same 
tumor implanted in the cecal wall was less responsive.182 The 
difference in therapeutic responses was attributed to differential 
expression of P-gp in the tissues.182 In another example, human 
small-cell lung cancer (SCLC) cells were grown orthotopically 
(in the lung) or ectopically (sc) in SCID mice and administered 
with cisplatin and mitomycin C (MMC). The two models 
displayed opposite response profiles: while an orthotopic SCLC 
model was responsive to cisplatin but not to MMC, similar to 
the clinical situation, a sc model showed sensitivity to MMC 
but not to cisplatin.183 According to this model, an orthotopic 
model better reflects the clinical effects of drugs on human 
SCLC than the tumors growing sc.183

 

On the other hand, one challenge of an orthotopic model is 
that tumor burden is not readily detectable as in sc 
models.167,181 Except for breast tumor models, which develop 
superficial tumors, most orthotopic tumors are located in 
internal organs such as prostate, kidney, brain, lungs, and liver 
and are not conducive to caliper measurement.181 One way to 
monitor therapeutic responses is to assess tumor burden 
terminally after serial sacrifice of animals. In this case, group 
size needs to be determined considering potential “non-takers” 
(animals that have not developed tumors at the time of 
treatment).181 The main disadvantage of this approach is that it 
is labor-intensive and necessitates a large number of animals. 
Alternatively, noninvasive imaging techniques may be used 
together with cancer cells producing fluorescent or luminescent 
signals.181,184 Genes encoding fluorescent proteins and/or 
luciferase are introduced to human or murine cell lines in 
vitro to stably express the proteins in living animals.185−188

Optical imaging tools, such as fluorescence or bioluminescence, 
are used to monitor the growth of orthotopic tumors and 
metastasis in host organs externally in real time.188−191 The two 
techniques are often used in combination: fluorescence imaging 
for high throughput in vitro tests or superficial tumor imaging 
and bioluminescence imaging for detection of relatively deep 
tissues.188 Orthotopic models of pancreatic cancer192 and 
bladder cancer193 expressing luciferase have been used for 
evaluating therapeutic efficacy of the targeted gold NPs and 
hyperbranched polyglycerol NPs, respectively. 

4.3.2. Ectopic−Orthotopic Tumor Models. The ectopic− 
orthotopic model is a hybrid of sc and orthotopic model.194−196

In this system, an exogenous tissue sample is first implanted 
ectopically (in the skin), and a tumor sample is then implanted 
within the tissue graft (Figure 3).195,196 For example, mammary 
fat pad from a lactating female mouse, prostate tissue from a 
male mouse, lung, or liver is prepared as minced tissue 
fragments and implanted in the skin of a host animal. Tumor 
tissues grown as spheroids are then placed upon the engrafted 
tissue  stroma,  which  provides  the  orthotopic environment 

essential for tumor−mesenchymal interactions.195 To visualize 
the extent of vascularization and tumor progression, the tissues 
may be grown in a window chamber implanted into a dorsal 
skinfold in the host animal. 

The presence of orthotopic tissue environment is shown to 
play a critical role in the growth and vascularization of tumors. 
For example, Transgenic Adenocarcinoma Mouse Prostate-C2 
prostate tumors were poorly angiogenic and showed no 
significant growth in the absence of prostate tissue, whereas 
tumors grown with prostate stroma were highly angiogenic and 
proliferative.196 On the other hand, tumor spheroids implanted 
on the orthotopic tissue stroma showed less vascular 
permeability than those directly implanted on the skinfold.195 

Consequently, a single iv administration of DOX was much less 
effective on the ectopic−orthotopic tumors than the sc tumors, 
consistent with clinical outcomes.195  This result suggests  that 
many preclinical results obtained in the subcutaneous animal 
models may have been exaggerated due to the pervasive 
vascular leakiness less natural to human tumors.195

 

4.3.3. Humanized mice. When narrowly defined, the term 
humanized mice refers to animal models in which human 
immune  cells  or  hematopoietic  stem  cells  are    adoptively 
transferred to mice so that human immune systems are 
established in the mice at least partly.197−199 Zhou et al. used a 
BALB/c-Rag2−/−γc−/− humanized mouse (RAG-hu) model  in 
the evaluation of cationic PAMAM dendrimers carrying a small 
interfering RNA (siRNA) for the therapy of HIV-1 infection.200 

The RAG-hu model was prepared by injecting human fetal 
liver-derived CD34+ hematopoietic progenitor cells into the 
liver of a neonatal mouse, preconditioned by irradiation. When 
the animals no longer produced antibodies to a human antigen, 
they were infected with HIV-1 and then treated with 
dendrimer-siRNA NPs. Upon systemic application, the NPs 
decreased viral loads in animals by several orders of magnitude 
and protected CD4+ T-cells from virus-induced depletion.200 In 
the context of cancer research, the humanized mice are used in 
studying human immune responses to tumors and their roles in 
tumor progression and metastasis.172 Although the human 
histocompatibility alleles that can be expressed in a mouse are 
currently limited,199 humanized mice are a useful tool for 
evaluating drugs that provide protection against cancer by 
controlling the immune system. 

4.3.4. Genetically Engineered Mouse Models. In genetically 
engineered mouse (GEM) models, tumor formation is driven 
by genetic manipulation of animals. GEMs are created by 
activating clinically relevant oncogenes or inactivating tumor 
suppressor genes (TSG) via germline or somatic mutations, 
which predispose animals to certain types of tumors   (Figure 
3).172,201−203  The main advantage of GEM models is that  they 
reflect genetic changes responsible for specific tumors and 
syngeneic tumor−host interactions;181 therefore, they are very 
useful for studying the roles of oncogenes of interest and 
interactions  between  tumor  cells  and microenvironment.172

GEMs have not been used as widely as other models in routine 
evaluation of NPs due to the high cost, time, and intellectual 
property issues. The challenges in tumor monitoringdiscussed 
in the orthotopic models also apply to the GEM models.204

 

Recently, Sengupta et al. used a GEM with somatic PTEN 
and K-Ras mutations (K-rasLSL/+/Ptenfl/fl), which predispose 
the animals to ovarian cancer,205 to demonstrate the antitumor 
efficacy of cholesterol-tethered platinum II-based supramolec- 
ular NPs.206 Ovarian tumors were induced by intrabursal 
injection of adenovirus carrying Cre recombinase (Adeno-Cre) 
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and luciferase.206 Tumor growth in animals receiving treat- 
ments was quantified by monitoring bioluminescence resulting 
from tumor luciferase expression.206 In another example, 
Dibirdik et al. studied the anticancer activity of a PEGylated 
liposomal NP carrying a multifunctional tyrosine kinase 
inhibitor in a MMTV/Neu transgenic mouse model of 
metastatic ErbB2/HER-2+ chemotherapy-resistant breast can- 
cer.207 In MMTV/Neu transgenic mice, the wild-type neu gene 
is overexpressed in the mammary gland under the control of 
the MMTV long terminal repeat,208 which induces progressive 
and metastatic breast cancer.209 The PEGylated liposomal 
formulation of the multifunctional tyrosine kinase inhibitor was 
more effective than standard chemotherapy against the 
chemotherapy-resistant breast cancer in the MMTV/Neu 
transgenic mice.207

 

There is also an increasing appreciation of GEM as a valuable 
model for identifying biomarkers related to human diseases and 
developing therapeutics targeted to the biomarkers. For 
example, Kelly et al. used pancreatic ductal adenocarcinoma 
(PDAC) cell lines isolated from GEM to screen peptides 
specifically binding to cell surface antigens on the cells.210 A 
magnetofluorescent NP was modified with the identified 
peptide and used as an imaging agent to locate incipient PDAC 
in GEM.210

 

5. FUTURE PERSPECTIVES 
The field of nanomedicine has grown enormously in the past 
few decades. Nanoparticulate drug carriers are now created in 
various forms based on organic and inorganic material 
platforms with an unprecedented control over the size, shape, 
surface properties, drug loading, and release. On the other 
hand, their clinical translation is relatively slow, with only a 
handful of commercial products from the early time, such as 
liposomes or micelles. One of the main reasons is that the 
knowledge obtained from in vitro and preclinical studies has 
little value in predicting clinical outcomes of new NP products. 
It may not be an exaggeration to say that it is not the talent to 
create NPs but the technology to evaluate them that currently 
limits further advancement of nanomedicine. For example, new 
NPs are routinely characterized with respect to surface charge 
and ligand density, which are then correlated with their 
behaviors in cell models. On the other hand, in blood or other 
physiological fluids, NPs are easily covered with protein corona, 
which ultimately dictates in vivo fates and therapeutic outcomes 
of the NPs.110,119 In recognition of the disparity between in 
vitro propertiesand invivooutcomes, manygroupsnowmigrate 
to research models that involve early in vivo proof of concept 
studies. However, the majority of investigators in academia may 
not be able to afford this approach, nor is it necessarily 
acceptable in an ethical perspective. Moreover, clinical 
predictive values of some animal models are recently revisited, 
with respect to their relevance to human diseases and the ability 
to recapitulate disease progression. Therefore, it is important 
for the investigators to initiate an open discussion of the 
limitations and challenges of current methodologies and 
explore a new avenue of nanomedicine  characterization, which 
can predict the clinical outcomes in the early stage of product 
development with a greater reliability. These methods may 
include new cell models, labeling and detection methods, 
analytical  technologies,  mathematical  modeling,  and animal 
models that portray critical attributes of human diseases. The 
need for a new NP evaluation method is another reason to pay 
attention to recent advances in microfluidic technologies, which 

have  emerged  as   a   promising  tool  to  create  in      vitro 
microenvironments that mimic in vivo conditions.211
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