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ABSTRACT 

Ahmed, Karim E. Ph.D., Purdue University, December 2015. Phase Field Modeling of 

Grain Growth in Porous Polycrystalline Solids. Major Professor: Anter El-Azab. 

 

 

The concurrent evolution of grain size and porosity in porous polycrystalline solids is a 

technically important problem. All the physical properties of such materials depend 

strongly on pore fraction and pore and grain sizes and distributions. Theoretical models 

for the pore-grain boundary interactions during grain growth usually employ restrictive, 

unrealistic assumptions on the pore and grain shapes and motions to render the problem 

tractable. However, these assumptions limit the models to be only of qualitative nature 

and hence cannot be used for predictions. This has motivated us to develop a novel phase 

field model to investigate the process of grain growth in porous polycrystalline solids. 

Based on a dynamical system of coupled Cahn-Hilliard and Allen-Cahn equations, the 

model couples the curvature-driven grain boundary motion and the migration of pores via 

surface diffusion. As such, the model accounts for all possible interactions between the 

pore and grain boundary, which highly influence the grain growth kinetics. Through a 

formal asymptotic analysis, the current work demonstrates that the phase field model 

recovers the corresponding sharp-interface dynamics of the co-evolution of grain 

boundaries and pores; this analysis also fixes the model kinetic parameters in terms of 

real materials properties. The model was used to investigate the effect of porosity on the
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 kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model 

captures the phenomenon of pore breakaway often observed in experiments. Pores on 

three- and four- grain junctions were found to transform to edge pores (pores on two-

grain junction) before complete separation. The simulations demonstrated that 

inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. 

The simulations also showed that grain growth kinetics in these materials changes from 

boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic 

growth parameters such as the growth exponent and the rate constant (or equivalently the 

activation energy) were found to depend strongly on the precise amount and distribution 

of porosity, which reconciles the different experimental results reported for grain growth 

in such materials. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Objectives 

All physical properties of polycrystalline solids such as yield stress, fracture strength, 

electrical breakdown strength, dielectric constant, etc. are strongly dependent on the grain 

size [1, 6]. This is due to the prominent role of grain boundaries in influencing material 

properties [1, 64, 155, and 156]. Samples with smaller grain size have higher grain 

boundary area per unit volume. Moreover, controlling grain growth is crucial for 

achieving the desired density for ceramics during sintering [1]. Larger grain size means 

longer diffusion path for atoms and/or point defects before reaching the pores, which are 

usually located on the grain boundaries during the final stage of sintering [1, 46-53]. This 

hinders the pore shrinkage rate and hence retards the densification process [1, 155]. 

Furthermore, it was found out that the performance of several structural materials under 

extreme conditions, such as irradiation, high temperature, high stresses, etc., depends 

strongly on the grain size [1, 155, and 156]. For example, it is widely accepted that 

nanocrystalline materials are more radiation tolerant than regular polycrystalline 

materials with micron size grains [155, 156]. This is attributed to the fact that grain 

boundaries act as sinks for point defects impairing their ability to form detrimental 

microstructural features such as voids and dislocation loops which inversely affect the 

physical properties of materials [62, 154-156].  In another situation, it was found out that
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 fission gas swelling and release in irradiated uranium dioxide, the main nuclear fuel, 

decrease with increasing grain size [7, 155]. Therefore, investigating the process of grain 

growth is of paramount importance for different technological and industrial applications. 

For grain growth in pure and fully-dense solids, which is usually termed ideal grain 

growth, the classical models by Burke and Turnbull [3], Mullins [4], and Hillert [5] 

demonstrate that grain boundary motion is a mean-curvature driven motion [65], meaning 

that the grain boundary velocity is proportional to the mean curvature of the grain 

boundary. This gives rise to the well-known parabolic kinetics for the average grain size 

[1-5]. However, modeling the process of grain growth kinetics in porous polycrystalline 

solids is more complicated by the interaction between the grain boundaries and pores in 

such materials [1, 46-58]. Basically, the pores exert a drag force on the grain boundaries 

and hinder their motion, thereby retarding the grain growth process. This pore-induced 

retardation of grain growth is an example of the so-called particle-inhibited grain growth 

[1]. Furthermore, nearby pores can in some cases merge together (coalesce) as they move 

along grain boundaries, and thus they themselves contribute to reduction of the interfacial 

free energy in solids. The concurrent pore coalescence and grain growth is known to 

proceed during the final stage of sintering in porous solids [1, 46-58].             

The first models to investigate the effect of pores on grain growth were proposed by 

Nichols [46], Brook [47], and Carpay [48]. These models assume the microstructure to be 

homogeneous. Therefore, they only considered an isolated pore on a grain boundary and 

assumed the deduced kinetics represents the average kinetics of the whole system. 

Moreover, these models assume nearly spherical pores that can only move along with the 

boundary as a rigid body without changing their shape. They also neglect pore 
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coalescence that usually takes place simultaneously with grain growth. Such simplified 

models succeeded at least qualitatively in describing some aspects of the physics of the 

process that were observed experimentally [1]. Nonetheless, the quantitative results of 

these models did not agree well with the experimental data. This discrepancy was 

primarily attributed to the absence of the details of the pore and grain boundary 

geometries in these models. 

In order to alleviate the shortcomings of the above mean-field models, 

spatiotemporal models were proposed to take into consideration the details of the 

geometry of the pore and the boundary, and hence capture the nature of the 

heterogeneous structure of the system [49-55]. Evans and co-workers [49, 50] and later 

Riedel and Svoboda [51, 52] formulated the sharp-interface description of the problem. 

These sharp-interface models gave new insights that could not be gained from the 

classical models. For instance, it has been demonstrated that the possibility of pore 

separation depends strongly on the pore configuration.  Higher-order pore configurations 

(pores on three-, and four-grain junctions) never separate directly from the migrating 

boundary. Instead, they transform into edge pores (pores on two-grain junctions) before 

breakaway.
 
However, as it is well-known for all sharp-interface models, the task of 

solving these models numerically is cumbersome. In particular, applying the boundary 

conditions for general pore/grain configurations and the criterion of pore separation is 

complicated [49-52]. In fact, only 2D numerical simulations have been conducted since 

Evans and co-workers introduced their formulation [49, 50]
 
nearly three decades ago.  

Only recently, Barrett et al. [67] presented the first 3D solution of coupled surface and 

grain boundary motion. However, that study was limited to bi- and tri-crystals with 
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applications only to thermal grooving and sintering of two unequal-sized particles. Large 

scale 3D simulations of grain growth in porous polycrystalline solids based on the sharp-

interface model have not been attempted yet. With this in mind, the motivation for 

developing a phase field (diffuse-interface) model of the problem is obvious.               

1.2 Contributions to Research   

In this work, the first phase field (diffuse-interface) model for grain growth in porous 

polycrystalline solids was developed. The phase field model relaxes all the restrictive 

assumptions employed in the classical and sharp-interface models. It provides insight into 

the dynamics of the pore-grain boundary interactions which influence the overall grain 

growth kinetics. The model captures the coevolution of porosity and grain size, and hence 

represents the microstructure evolution in porous polycrystalline solids during the final 

stage of sintering. The model has been applied to investigate grain growth in uranium 

dioxide and ceria. The model results agree well with published experimental studies of 

grain growth in these materials [56-58]. The details of the contributions of this work are 

the following:  

 The pore-grain boundary interactions complicate the investigation of grain growth 

in porous polycrystalline solids. Here, we present a novel phase field model that 

captures all possible pore-grain boundary interactions in a straightforward manner. 

Phase field models for sintering [74-76], ideal grain growth [70, 71], and the 

effect of solute segregation and immobile second-phase particles on the kinetics 

of grain growth [124-127] have appeared before in the literature. However, a 

phase field model of the effect of mobile particles such as pores on the kinetics of 

grain growth was never developed before. The current work represents the first 
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application of this modeling approach to study the process of grain growth in 

porous polycrystalline solids. 

 By using a formal asymptotic analysis of the current phase field model, it was 

demonstrated that it recovers the well-known sharp-interface dynamics of the 

coevolution of pores and grains [49-52]. Performing such analysis has two major 

benefits. First, it proves the consistency of using a phase field (diffuse-interface) 

to represent inherently sharp interfaces (e.g., grain boundaries and free surfaces). 

Second, it establishes direct relations between the phase field model parameters 

and the regular thermodynamic and kinetic parameters that appear in the sharp-

interface models. Such relations render the phase field model quantitative, which 

facilitates comparison with experiments. Indeed, the model results for grain 

growth in ceria and uranium dioxide shows good agreement with experiments. 

 The model equations were solved numerically using two distinct techniques. First, 

a standard explicit finite-difference scheme was employed using in-house codes 

written in FORTRAN 90. Then, a fully-coupled, fully-implicit finite-element 

scheme was implemented using MARMOT, the mesoscale simulator developed at 

Idaho National Laboratory [123]. The results obtained from the two schemes were 

consistent, raising the confidence in the model formulation and implementation.  

The current phase field model, which is now part of MARMOT framework, will 

be used to investigate the effect of microstructure evolution on the nuclear fuel 

performance.    

 The 3D simulations presented here are the first general 3D simulations of grain 

growth in porous polycrystalline solids in the literature. The 3D simulations 
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demonstrated that the effect of pore drag on the grain growth kinetics is 

exaggerated in the 2D simulations. This is due to the fact that 2D simulations, 

which implicitly assume cylindrical shapes for the pores and grains, overestimate 

the contact area between the pore and the grain boundary. Therefore, performing 

3D simulations is necessary for obtaining accurate grain growth rates.         

1.3 Dissertation Layout   

First, the technical background related to the grain growth process and phase field 

modeling approach is reviewed in Chapter 2. In the first part of the review, the process of 

grain growth in fully-dense and porous polycrystalline solids is discussed. The different 

theoretical models developed for investigating the grain growth process are summarized.  

In the second part of the review, the general concepts of the phase field method are 

introduced.  

Chapter 3 presents the development of the phase field model for grain growth in 

porous polycrystalline solids. First, the thermodynamic and kinetic formulations are 

introduced. Then, the procedure for determining the model parameters is discussed. 

Lastly, the details of the numerical implementation are highlighted.  

In Chapter 4, the results obtained by solving the phase field model are presented and 

discussed. Test cases for benchmarking the model were performed first. Then, a 

quantitative investigation of the effect of pore drag on the grain growth kinetics, using 

idealized 2D pore and grain shapes, was performed. General 2D and 3D simulations of 

grain growth in porous polycrystalline solids such as uranium dioxide and ceria are then 

analyzed.    
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Finally, Chapter 5 summarizes the research conducted in this study and sheds light 

on possible directions for future research. Parts of this dissertation have been published in 

Ahmed k et al. [56-58, 62, 159].  
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CHAPTER 2. TECHNICAL BACKGROUND 

This chapter presents the essential background for investigating the process of grain 

growth in porous solids using the phase field approach. In the first section, the underlying 

physics of the problem of grain growth in solids is discussed. In the second section, the 

basic ingredients of the phase field approach will be summarized in preparation for 

introducing the novel phase field model for grain growth in porous polycrystalline solids 

in the next chapter.    

2.1 Grain Growth in Polycrystalline Solids  

Grain growth takes place in polycrystalline solids at sufficiently high temperature [1-5]. 

The driving force for grain growth is the decrease in the interfacial free energy via the 

reduction of the total grain boundary area. During grain growth, the number of grains 

decreases and hence the average grain size of a polycrystalline solid increases. From 

atomistic point of view, grain growth proceeds as atoms diffuse less than an interatomic 

distance from one side of the boundary to the other side resulting in the movement of 

grain boundary in the opposite direction. This picture is illustrated schematically in 

Figure 2.1. The atoms move from the higher curvature (and hence higher chemical 

potential) “convex” side to the lower curvature “concave” side. Hence the net atomic flux 

results in the movement of boundary toward its center of curvature.
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All physical properties of polycrystalline solids are strongly dependent on the grain 

size [1]. For example, it is well-known that the yield stress and fracture strength of metals 

decrease as the grain size increases [6]. It was also shown that the electrical breakdown 

strength and dielectric constant of most ceramics increase with decreasing the grain size 

[1]. Moreover, the sintering or densification rate of porous solids is drastically reduced 

with increasing grain size; hence controlling grain growth is crucial for achieving the 

desired density for such materials [1]. Furthermore, it was found out that the fission gas 

swelling and release in irradiated uranium dioxide, the main nuclear fuel, decrease with 

increasing grain size [7]. Therefore, investigating the process of grain growth is of 

paramount importance for different technological and industrial applications.             

In general, grain growth in solids is classified into two categories: (1) normal grain 

growth and (2) abnormal grain growth. Normal grain growth is characterized by a time-

invariant grain size distribution since on average all growing gains grow with the same 

rate. On the other hand, in abnormal grain growth some few gains grow faster than the 

rest of gains which usually gives rise to a bimodal gain size distribution. Figure 2.2 

schematically depicts the difference between the normal and abnormal grain growth.  The 

occurrence of abnormal grain growth is primarily attributed to the anisotropy in grain 

boundary energy and/or mobility [1]. Grains with boundaries that have a higher mobility 

or a lower energy than the neighboring grains will grow faster. However, any local 

inhomogeneity in the microstructure of polycrystalline solids due to the presence of 

dopants, impurities, inclusions or pores could in turn lead to local changes in the grain 

boundary energy and/or mobility. Therefore, the presence of such features can also 

initiate abnormal grain growth [1].      
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Figure 2.1. A schematic illustration showing the grain boundary migration during grain growth.  

Due to the difference in curvature (and hence in chemical potential), atoms tend to move from the 

convex side to the concave side. The net effect is that a boundary moves towards its center of 

curvature [1].   

 

 

 
Figure 2.2. Normal versus abnormal grain growth. In normal grain growth, most of the growing 

grains grow with the same rate leading to a time-invariant distribution. In abnormal grain growth, 

some grains grow faster than the rest of growing grains resulting in a bimodal distribution at later 

time [1].      
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2.1.1 Ideal Grain Growth 

As early as 1950, theoretical models were introduced to investigate the process of grain 

growth in pure, isotropic, and fully dense solids. Grain growth in such materials is 

commonly known as ideal grain growth. The most notable models are the one put 

forward by Burke and Turnbull [3], Mullins [4], and Hillert [5]. These models invoke the 

standard principles of linear irreversible thermodynamics to derive the growth kinetics. In 

such approach, it is assumed that the grain boundary velocity is linearly proportional to 

the driving force as follows; 

b b bv M F .                         (2.1) 

In the above, the subscript b denotes the boundary; v  is the grain boundary velocity,  M  

is its mobility and F is the driving force. The driving force is the chemical potential 

difference across the boundary which is assumed to be proportional to its curvature, e.g.,  

gb
bF

D

 
 ,                         (2.2) 

where,  is a geometric factor (e.g.,   equals 4 for a spherical grain), gb  is the grain 

boundary energy, and D  is the grain size (diameter). Now, if one approximates the 

boundary velocity as b /v dD dt and substitutes by Eq. (2.2) in Eq. (2.1), one obtains  

b gb
.

MdD

dt D

 
                          (2.3) 

Direct integration of Eq. (2.3) gives the well-known parabolic grain growth kinetics, e.g.,   

2 2( ) .D t D k t                                                                                             (2.4) 

Here, ( )D t is the grain size at time, t  , D  is the initial grain size and gb b2k M  is the 

rate constant.  
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The initial derivation by Burke and Turnbull [3] considered only one grain and 

assumed that the final result can still be valid to represent the average kinetics for a 

system of grains. Using a mean-field theory, Hillert generalized the analysis to the case of 

a system with a distribution of grain sizes [5]. In this case, the grain size that appears in 

Eq. (2.4) is the average grain size. Hillert’s analysis basically showed that the curvature-

driven grain growth follows the boundary-controlled Lifshitz-Slyozov-Wagner (LSW) 

theory [1, 8, 9]. 

While the above mentioned models only address the curvature-driven grain growth, 

Eq. (2.1) is also valid to study other driving forces. Stress and temperature gradient were 

also proposed in literature as driving forces [10-12]. However, it was concluded that 

curvature is usually the dominant driving force for grain growth in solids at temperatures 

of interest. One also should note that grain rotation could provide another mechanism for 

the reduction of grain boundary energy in anisotropic materials [13-16]. In such materials, 

the grain boundary energy is function of the misorientation between the grains and hence 

the system can simply decreases its interfacial energy by rotating the grains to minimize 

the misorientation. Nonetheless, it was found out that for micron-size or larger grains the 

grain rotation rate is much smaller than the grain boundary migration rate [16].  

Several computational models were proposed to simulate the curvature-driven grain 

growth process. The most common of these models are the Monte Carlo Potts models 

[17-21], front tracking methods [22, 23], vertex models [24-28], cellular automata [29, 30] 

and phase field models [31-35]. For such ideal grain growth in pure solids, these models, 

in spite of their differences, reach the same conclusions that were reached by the classical 

theories on the kinetics of grain growth [3-5]. In particular, these models confirmed the 
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parabolic growth law and the existence of time-independent grain size distribution in the 

scaling regime.  

Many experimental studies of grain growth in solids, however, reported deviations 

from the parabolic growth kinetics [1, 36-40]. Such deviations were primarily attributed 

to the presence of second-phase particles (precipitates/inclusions) or pores. Such particles 

exert a drag force on the grain boundary which hinders its motion, and hence retards the 

overall grain growth rate. Grain growth under such situations is commonly called 

particle-inhibited grain growth [1].   

2.1.2 Particle-Inhibited Grain Growth 

In order to investigate the so-called particle-inhibited grain growth, new theoretical 

models were then proposed [1].  These models can be classified into two categories 

depending on whether the particles are treated as mobile or immobile.  Second-phase 

particles are usually considered immobile while pores are often considered mobile.  

2.1.2.1 Zener’s Pining Model for Immobile Particles 

The effect of immobile particles on the grain growth process was first tackled by Zener [1, 

41]. He considered the particles to be immobile, spherical, mono-size, insoluble, and 

randomly distributed in the polycrystalline solid. Zener considered the curvature to be the 

driving force for the boundary motion. Hence, Eq. (2.2) is valid to represent the driving 

force of the particle-free boundary, bF  . However, the presence of the particles exerts a 

drag force on the boundary that hinders its motion. This is schematically depicted in 

Figure 2.3. The drag force is given by   

d gb2 cosθsinθF r  .                        (2.5) 
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Here, r  is the particle radius and θ  is the contact (drag) angle (see Figure 2.3). The 

retarding force is maximum when θ = 45 . The maximum drag force, max
dF experienced 

by the boundary due to the presence of AN  particles per unit area of the boundary is then, 

max
d A gbF N r  .                                     (2.6) 

For randomly distributed spherical particles, AN  can be simply expressed in terms of the 

particle volume fraction, f and Eq. (2.6) becomes [1] 

gbmax
d

3

2

f
F

r


 .                                     (2.7) 

From Eq. (2.2) and Eq. (2.7), the net driving force of the boundary is  

max
net b d gb

3

2

f
F F F

D r




 
    

 
.                                   (2.8) 

Clearly, the boundary migration will cease when net = 0F . This occurs when  

2

3
L

r
D

f


 .                                                           (2.9) 

In the above, LD  is the limiting grain size at which the growth process stops. Eq. (2.9) is 

often called the Zener relationship [1]. One can also derive a kinetic growth law for the 

grain size using the same approach conducted to arrive at Eq. (2.4). One now, however, 

has to use the net driving force given by Eq. (2.8). This gives rise to the logarithmic 

growth law [36],      

 
 2 L

L L

L

D D
D D D( t ) D ln k t

( D D( t ))

  
   

 
.                               (2.10) 

Computational techniques such as Monte Carlo [42, 43] and phase field [44, 45] 

methods were used to study the pining effect of second-phase particles on grain growth. 
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These models refined the Zener’s model by relaxing some of its assumptions. However 

the basic trends as captured by Zener relationship were unchanged.  

 

Figure 2.3. A schematic illustration of the particle-grain boundary interaction. (a) The immobile 

particle is approached by the migrating boundary. (b) The migrating boundary picks up the 

particle. (c) Detailed geometry of the interaction [1].    

2.1.2.2 Grain Growth in Porous Solids  

The effect of mobile particles such as pores on the kinetics of grain growth is more 

complicated. The pores can easily be dragged along by the moving grain boundary [1, 46-

58]. This is attributed to the fact that the moving boundary applies a force on the pore 

causing the pore to change its shape. The leading surface of the pore becomes less curved 

than the trailing surface, which drives matter flux from the leading surface to the trailing 

surface (or vacancy flux in the opposite direction). This causes the pore to move forward 

in the direction of boundary migration. Such scenario is illustrated schematically in 

Figure 2.4. Matter transport from the leading surface of the pore to the trailing surface 

can proceed by three distinct mechanisms: vapor transport (evaporation and 

condensation), surface diffusion, and lattice (volume) diffusion. These mechanisms are 

also shown in Figure 2.4.     
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Figure 2.4. Different transport paths for a pore moving with a grain boundary. The mass transport 

is triggered by the curvature (chemical potential) difference between the leading surface of the 

pore and the trailing surface [1].   

 

 

2.1.2.2.1 Classical Homogeneous Models  

The first models to investigate the effect of pores on grain growth were proposed by 

Nichols [46], Brook [47], and carpay [48]. In these simplified models, the microstructure 

is assumed to be homogeneous. Hence, only one pore-boundary complex is used to 

represent the behavior of the whole system. Moreover, these models assume the grain and 

pore to be spherical for the sake of simplicity. Furthermore, these models neglect the pore 

coalescence and assume the pore moves as a rigid body without changing shape.  

According to these models, there are two different scenarios for the interaction 

between the pore and the boundary. In one case, the migrating boundary could separate 

from the pore. In the other, the migrating boundary could drag the pore along with it. If 

the boundary separates from the pore, the boundary moves with its intrinsic velocity as in 
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the pore-free case. However, the separated pore can be picked up by another moving 

boundary but such situation is ignored in the classical models.   

Pore breakaway will simply occur whenever the grain boundary velocity, bv  exceeds 

the pore velocity, pv . This condition can be expressed as [1, 46-58],  

p p b b p p( )M F M F N F  .           (2.11) 

In the above, the subscript b denotes the boundary and p the pore; M is the mobility and F 

the driving force. b gb /F D  is the driving force on the pore-free boundary due to its 

curvature. pN  is the average number of pores per grain boundary area. p gbF r   is the 

maximum drag force a pore can exert on a boundary (recall Eq. (2.5)). Hence the term 

p pN F  represents the drag force experienced by the boundary due to the presence of pores. 

Rearranging Eq. (2.11), the pore separation (breakaway) condition is expressed as, 

p p
b p p

b

M F
F N F

M
  .           (2.12) 

Now if one assumes that pore is nearly spherical and moves by surface diffusion, the pore 

mobility takes on the form [1, 46-52],  

s m

4p

D w
M

RT r




 ,            (2.13) 

where, sD  is the surface diffusion coefficient, w  is the thickness of the surface diffusion 

layer, m  is the molar volume, R  is the universal gas constant,T  is the absolute 

temperature, and r  is the pore radius. Substituting Eq. (2.13) in Eq. (2.12) and assuming 

2
p 1/N D  gives, 
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2m
sep sep3

b

0sD w
D D r

M RT r




 
   

 
 

                     (2.14) 

Here, sepD  is the grain size at which pore separation occurs.  

On the other hand, if the pore moves along with the boundary, the velocity of the 

pore-boundary complex ( v ) can be obtained, by rearranging Eq. (2.11) and noting that 

p p/F v M , as [1, 46-58] 

eff
bv M F ,                                (2.15a) 

p beff

p p b

M M
M

M N M



.                    (2.15b)  

 In the above, effM  is the effective mobility of the pore-boundary complex. Two limiting 

cases are immediately obtained from Eq. (2.15). When p p bM N M , the effective 

velocity of the pore-boundary complex reduces to b bv M F , hence the effect of pores on 

the boundary velocity is negligible, a case which is commonly referred to as boundary-

controlled grain growth. Note that this condition could mean high pore mobility, small 

pore fraction, low boundary mobility, or any combination of these criteria. The other 

limiting case is when p p bM N M . In this case, the velocity of the pore-boundary 

complex becomes /p b pv M F N , and hence the boundary velocity is limited by the pore 

mobility. This case is referred to as pore-controlled grain growth. The velocity of the 

pore-boundary complex can also take on intermediate values between these two extremes. 

For the boundary-controlled case, one should expect the same parabolic grain growth 

kinetics derived for the pore-free system (see Eq. (2.4)). However, for the pore-controlled 
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case, a few growth laws for the average grain size were derived [1, 46-58]. For example, 

for pore migration by surface diffusion, the boundary velocity is given by  

s m b
b p b p 4

p

/
D w FdD

v M F N
dt NRT r




   .         (2.16) 

Taking b gb /F D , 
2

p 1/N D , and r D , Eq. (2.16) can be rewritten as,  

3

dD k

dt D
 ,             (2.17) 

where k is a constant at a particular temperature. Direct integration then gives,    

4 4 'D D k t  .            (2.18) 

Other growth equations were derived by the same procedure for other mechanisms [1]. In 

general, the growth law is a power law that has the form,   

( )n nD t D k t  .            (2.19) 

The value of the growth exponent, n , is dictated by the prevailing mechanism for pore 

migration. For pore migration via evaporation and condensation, 2n  ; while for pore 

migration by lattice (volume) diffusion, 3n  .    

In the classical homogeneous models summarized above, it was assumed that the 

microstructure is homogeneous, the pores have nearly spherical shape, and the pore shape 

does not change during the interaction with the migrating boundary. These assumptions 

are unrealistic and hence limit the applicability of these models. In fact, many 

experimental results of grain growth in porous solids showed that these models cannot 

provide quantitative predictions and are only able to give a qualitative picture of the 
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process [36-40]. This motivated the community to develop more advanced models that 

relax these assumptions. Spatiotemporal models [49-58] were then developed to take into 

account the detailed geometries of the pore and the grain boundary, and hence the 

heterogeneity of the microstructure.   

2.1.2.2.2 Sharp-Interface Models  

The sharp-interface models were the first spatiotemporal models to be developed for 

investigating grain growth in porous solids [49-53]. These models treat the interfaces 

between different phases as singular surfaces [59-63]. Therefore, appropriate boundary 

conditions must be applied at the interface, and hence the interface position must be 

tracked all the time. Such types of problems are known as free (moving) boundary 

problems.   

Evans and co-workers [49, 50], and Riedel and Svoboda later [51, 52] formulated the 

sharp-interface description of the problem. In that description, the grain boundary moves 

by mean curvature while the pore migrates via surface diffusion. Surface diffusion is 

expected to be the dominant mechanism of pore migration in solids at temperatures of 

interest [1, 47-58].  Moreover, the shrinkage of pores is ignored and hence the pores have 

a prescribed constant volume.  

The mathematical formulation of the sharp-interface dynamics of the co-evolution of 

pores and grain boundary can be summarized as follows. The grain boundary moves 

under the influence of its curvature according to the relation,    

gbb b bv M   .              (2.20) 
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Here, bv  is the velocity of a grain boundary element, gb  is the grain boundary energy, 

bM is the grain boundary mobility, and b  is the grain boundary local curvature (mean 

curvature in 3D). The curvature is positive for convex surfaces and negative for concave 

surfaces.  

On the other hand, the pore moves via surface diffusion as 

p m s sv w J    ,                                   (2.21) 

where, pv  is the velocity of an element of  the pore (free) surface, w  is the thickness of 

the surface diffusion layer, m  is the molar volume, s  is the surface gradient operator 

(i.e., it is a two-dimensional gradient operator in the surface tangent plane), and sJ  is the 

surface flux. The surface flux is related to the gradient of the excess chemical potential 

along the surface, e.g.,  

s
s s

D
J

RT
   .                                   (2.22) 

sD  is the surface diffusion coefficient, R  is the universal gas constant,T  is the absolute 

temperature, and   is the excess chemical potential at a curved surface. The excess 

chemical potential of a curved surface relative to a flat surface is given by the well-

known Gibbs-Thompson condition [61-66], e.g.,   

s s   ,                                               (2.23) 

where, s  is the pore (free) surface energy, and s  is the local curvature of the pore (free) 

surface. By substitution of Eq. (2.22) and Eq. (2.23) into Eq. (2.21) and assuming 

isotropic surface energy and diffusion coefficient, one obtains  

2s s m
p s s

D w
v

RT

 
  .            (2.24) 
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In Eq. (2.24), 2
s  is the surface Laplacian operator (e.g., the two-dimensional Laplace 

operator on the surface). Eq. (2.24) was first derived by Mullins [65]. The type of motion 

given by Eq. (2.24) is commonly referred to as motion by the Laplacian of mean 

curvature [66]. Therefore, the dynamical system of the co-evolution of pores and grain 

boundaries combines motion by mean curvature (Eq. (2.20)) with motion by the 

Laplacian of mean curvature (Eq. (2.24)).  

By solving Eq. (2.20) and Eq. (2.24) simultaneously, the co-evolution of pores and 

grain boundaries in a porous polycrystalline solid can be tracked. In order to solve these 

equations, boundary conditions at the pore tip must be supplemented. The appropriate 

boundary conditions are the continuity of the chemical potential and surface flux. From 

Eq. (2.22) and Eq. (2.23), this translates into the continuity of  s  and s  at the pore tip. 

Moreover, mechanical equilibrium requires that the tension forces to be balanced at the 

pore tip. This means that the equilibrium dihedral angle,   defined by 

1
gb s2cos ( / 2 )    must be maintained during the evolution. A schematic illustration of 

the dihedral angle at the pore tip is shown in Figure (2.5).  

Evans and co-workers only obtained a steady-state solution for an idealized 

(axisymmetric) 2D geometry of an edge pore (a pore on a two-grain junction) [49, 50]. 

Later, Riedel and Svoboda extended the analysis to other higher-order pore 

configurations (e.g., pores on three- and four-grain junctions) and non-steady-state 

motion [51, 52]. However, only idealized 2D geometries of the pore and grains were 

considered so that the boundary conditions can easily be applied. Nevertheless, the 

solution of these simplified configurations improved our understanding of the problem. It 
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was demonstrated that the possibility of pore breakaway depends on the pore 

configuration. Edge pores can directly separate from a migrating boundary while higher-

order pores usually transform to edge pores (partial separation) before complete 

separation. Moreover, it was also shown that the rate constant (or equivalently the 

activation energy) is a function of the pore fraction for both boundary- and pore-

controlled kinetics. Therefore, quantitative analysis of grain growth in porous solids 

requires a detailed description of the amount and distribution of porosity.   

As mentioned above, for three decades only 2D simulations of the sharp-interface 

model were conducted. Barrett et al. [67] have recently presented the first 3D solution of 

coupled surface and grain boundary motion. However, they have only considered simple 

test cases to validate their finite-element algorithm and numerical scheme. Large scale 

3D simulations of the sharp-interface model of grain growth are yet to be performed 

probably because of numerical difficulties. Therefore, the development of a phase field 

(diffuse-interface) description of the problem is highly desirable since it is well-known 

that such models can handle complex microstructures in a straightforward manner [59-

62]. This has motivated us to tackle the problem using the phase field approach as 

explained in the next chapter. However, before we introduce the phase field model, we 

first review the basic ingredient of the phase field (diffuse-interface) approach.  
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Figure 2.5. The equilibrium dihedral angle at the pore tip [1]. 

 

 

2.2 Phase Field Modeling of Microstructure Evolution in Materials  

Phase field modeling has been widely used in predicting microstructural evolution in 

materials [59-62]. The main feature of this approach is the treatment of the interfaces 

between phases as diffuse. The material properties of interest, which are represented by 

phase fields or order parameters, are assumed to change rapidly but smoothly across the 

interfaces. This is captured schematically in Figure 2.6. The position of the interface is 

implicitly given by a constant phase field level, which obviates the necessity of explicitly 

tracking the interface. Based on this powerful concept, phase field methods enabled the 

simulation of complex evolution problems such as the solidification [68], solid-state 

transformations [69], grain growth [70, 71], crack propagation [72], dislocation dynamics 

[73], sintering [74-76], electromigration [77, 78], vesicle membranes [79], and void 

growth in irradiated materials [62]. Historical developments of the diffuse interface 

concepts can be traced back to the works of Van der Waals on gas condensation [80], 
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Landau on phase transitions [81] (where the concept of order parameter or phase field 

was first introduced), Landau and Ginzburg on superconducting states [82], and Cahn and 

Hilliard on the thermodynamics of heterogeneous systems [83-85]. In all of these and in 

subsequent works, order parameters may represent conserved quantities such as mass and 

energy density or non-conserved quantities such as polarization, long-range order and 

grain orientation. 

 

Figure 2.6. Sharp-interface versus diffuse-interface descriptions of interfaces in heterogeneous 

materials.  In the sharp-interface description, the order parameter (the material property of interest) 

changes sharply across the interface; hence the interface is a singular surface that must be tracked 

during the evolution of the system (e.g., a moving boundary problem). In the diffuse-interface 

description, the order parameter (phase field) changes rapidly but smoothly across the interface. 

The interface position is then implicitly given by the gradients of the order parameters, and hence 

explicit tracking of the interface is no longer required [90].     

 

A typical procedure for constructing a phase field model is as follows. First, the free 

energy of the heterogeneous system is expressed in the Ginzburg-Landau (or Cahn-

Hilliard) functional form in terms of the order parameter as [81-83],       

2 3[ ( ( )) | ( ) | ] 
2

F f r r d r


    .                                                                              (2.25)                       

In the above,  is the order parameter of interest and ( )f   is the bulk 

(local/homogeneous) chemical (short-range) free energy density. Contributions of long-
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range interactions such as elastic or electrostatic energies to the free energy of the system 

can easily be added to the Ginzburg-Landau (Cahn-Hilliard)  free energy functional 

thanks to its varitional formulation [59-62, 86-90]. The gradient term represent the excess 

free energy due to the heterogeneous nature of the system, i.e., presence of interfaces. 

The gradient coefficient   is a material constant that is usually related to the specific 

energy of the interface (e.g., surface energy, grain boundary energy, etc.)  

The second step is to derive a kinetic evolution equation for the order parameter. 

This is usually carried out by invoking the principles of irreversible thermodynamics [59-

61, 86-95]. Following that approach, the order parameter evolves in such a way that the 

free energy of the system decreases monotonically while the entropy production is non-

negative. However, depending on whether the order parameter is a conserved or non-

conserved quantity, additional constraints may apply. This usually leads to three different 

categories of phase field models.  In analogy to the stochastic models of dynamic critical 

phenomena [96], phase field models are often classified into three types: models of type 

A, B and C. Models of type A describe systems with non-conserved order parameters. 

Models of type B describe systems with conserved order parameters. Models of type C 

describe systems with both conserved and non-conserved order parameters. These models 

can be considered as the continuum (macroscopic/coarse-grained) description of the 

discrete (microscopic) kinetic Ising models developed in the condensed-matter physics 

literature [97, 98].  

Phase field model A is used to describe the evolution of systems where conservation 

principles are not required to hold locally such as in diffusionless phase transformations. 

This is the continuum analog of the spin-flip Glauber kinetics model [97]. It has been 
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successfully applied for investigating martensitic transformations, order/disorder 

transition and antiphase/grain boundary motion in magnetic domain walls/polycrystalline 

solids [59-62, 86-90]. The non-conserved order parameter in this model evolves 

according to the time-dependent Ginzburg-Landau (or Allen-Cahn) equation [99], which 

has the form        

2( )F df
L L

t d


  
 

 

 
      

  
.                         (2.26) 

Here /F  is the functional derivative of the free energy functional (see Eq. (2.25)] 

with respect to the order parameter and L  is a mobility. 

Phase field model B is usually utilized when local conservation principles must be 

followed. This is the case for example in diffusion-controlled particle growth and 

coarsening (e.g., precipitation, solidification, etc.). This is the continuum analog of the 

spin-exchange Kawaski kinetics model [98]. It has been used to study spinodal 

decomposition, precipitation, Ostwald ripening, and void growth in irradiated solids [59-

62, 100-106]. The conserved order parameter evolves according to Cahn-Hilliard 

equation [100], which takes on the form     

2( )
( ) ( )

F df
M M

t d


  
   

 

 
      

  
.       (2.27)  

( )M  is a mobility that, in general, may depend on the order parameter. In this description, 

the functional derivative of the free energy functional with respect to the conserved order 

parameter, /F   , is considered as a generalized (non-classical/non-local) chemical 

potential. Hence, the Cahn-Hilliard equation is simply a continuity equation for the 

conserved order parameter.     
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Phase field model C has been introduced to investigate the evolution of systems with 

coupled conserved and non-conserved order parameters. It has been successfully utilized 

in investigating concurrent phase separation and order/disorder transition in alloys, 

sintering in polycrystalline solids, solute drag effect on solidification, second-

phase/solute drag effect on grain growth [59-62, 107-112]. The most general and 

thermodynamically-consistent version of the model is the one suggested by Bi and 

Sekerka [91]. In this version, the free energy functional of the system is expressed as,     

  2 2 3[ ( ), ( ) | ( ) | | ( ) | ] 
2 2

cF f c r r c r r d r


      .        (2.28) 

In the above equation, c  is the conserved order parameter and  is the non-conserved 

order parameter. The evolution of the system is then described by coupled Cahn-Hilliard 

and Allen-Cahn equations;    

2( , )F f c
L L

t


  
 

 

  
      

  
,       (2.29a) 

2( , )
( ) ( ) c

c F f c
M c M c c

t c c

 




  
        

.     (2.29b) 

Again, when needed, long-range interactions, production, reaction, and advection terms 

can be incorporated into this general formalism in a straightforward manner [59-62].  

When interfaces are inherently diffuse, such as with magnetic domain walls and in 

ordered-disordered systems, phase field formulations offer a natural mathematical 

description of the physical or chemical phenomenon. In such situations, the sharp-

interface descriptions, if desired for any reason, must be constrained to capture the 

physics of the diffuse interfaces. On the other hand, the sharp interface approach is the 

natural formalism to describe interfaces that are atomically sharp such as free surfaces, 
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void or bubble surface in irradiated solids, or grain boundaries. Diffuse interface 

formalisms of the latter situations must be consistent with the corresponding sharp 

interface models. This consistency can be ensured by requiring the kinetic equations of 

the phase field models to reduce to their sharp interface counterparts when the diffuse-

interface width approaches zero. This is usually accomplished by using a formal 

asymptotic analysis based on singular perturbation theory [59-61, 113-119]. Typical of 

such analysis is the expansion of phase fields in terms of a small parameter, which 

represents the diffuse-interface width, far from the interface (outer expansion) and within 

the interface (inner expansion). This is schematically depicted in Figure 2.7. Matching 

conditions are then applied to guarantee a smooth transition between the outer solution 

and the inner solution. The matching also provides the equation of motion of the interface, 

which is to be compared with its sharp-interface counterpart.  

Lastly, tracking the microstructure evolution via phase field methods reduces to the 

problem of obtaining solutions for the Cahn-Hilliard and/or Allen-Cahn equations. Since 

these equations are nonlinear partial differential equations, numerical techniques are 

often employed for solving theses equations. The most common numerical techniques 

used for this purpose are finite difference method, Fourier-spectral method, and finite 

element method [59-61]. A few open source packages designed for solving the phase 

field equations have been recently developed [120-123].  These packages have usually 

the form of libraries written in object oriented C++ with modular structure to allow for 

easy code reuse and extension.        
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Figure 2.7. A schematic illustration of the inner and outer regions used in the asymptotic analyses 

of the phase field models. In the outer region, the gradients of the phase fields (order parameters) 

are small and can be ignored from the perturbative expansion. In the inner region, the gradients 

are high and must be taken into consideration. Matching the inner and outer expansions gives the 

complete and smooth profile of the order parameter across the interface and the equation of 

motion of the interface [59].       
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CHAPTER 3. PHASE FIELD MODEL DEVELOPMENT 

The details of the development of the phase field model for grain growth in porous 

polycrystalline solids are discussed in this chapter. First, the phase fields (order 

parameters) that describe the microstructure of a porous polycrystalline solid are 

introduced in conjunction with their evolution equations, which were derived following 

the standard procedure that was highlighted in the previous chapter. Then a systematic 

procedure for determining the model parameters is addressed. Lastly, the numerical 

implementation of the phase field model is presented.  

3.1 Phase Field Modeling of Grain Growth in Porous Polycrystalline Solids  

While phase field models for sintering [74-76], ideal grain growth [70, 71], and the effect 

of solute segregation and immobile second-phase particles on the kinetics of grain growth 

exist in the literature [124-127], a phase field model of the effect of porosity on grain 

growth was lacking. This has motivated us to develop a phase field model for grain 

growth in porous solids [56-58]. As mentioned earlier, the grain growth in porous solids 

proceeds by two main mechanisms, the curvature-driven motion of grain boundaries and 

mass transport by diffusion along the pore surface. Pores migrate via surface diffusion, 

evaporation and condensation or lattice diffusion. Here, in common with previous 

investigations via classical and sharp-interface models [46-53], surface diffusion is 

assumed to be the sole mechanism of pore migration. The phase field model must thus be
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 constructed to couple these different types of motions in order to capture correctly the 

microstructure evolution and obtain accurately the kinetics of grain growth in porous 

solids [56-58]. 

The model can be summarized as follows. A combination of conserved and non-

conserved order parameters (phase fields) is used to fully represent the microstructure of 

a porous polycrystalline solid [56-58]. The conserved field, ( , )x t , represents the 

fractional density of the solid, and it takes the value of 1 in the solid phase and 0 in the 

pore phase. It can also be considered as the complement of vacancy concentration, e.g., 

1 c   , with c  being the vacancy concentration. In order to distinguish between 

different grains with different orientations in the solid phase, a set of non-conserved order 

parameters,  , are used, where   1,2,....p , with  p being the total number of grains with 

different orientations in the solid.    1  in the  -th grain and 0 otherwise. A schematic 

illustration for the phase field variables is shown in Figure 3.1. Tracking the evolution of 

these fields completely reveals the microstructure evolution in the porous polycrystalline 

solid [56-58]. 

 
Figure 3.1. A schematic of the order parameters for the case of an edge pore between two grains 

[57].   
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In order to track the evolution of the phase fields, kinetic equations for the phase 

fields must be derived. As mentioned in the previous chapter, this can be accomplished 

by following the standard approach of irreversible thermodynamics. In this approach, the 

order parameters evolve such that the free energy monotonically decreases.  

The free energy of the heterogeneous system of pores and grains can be constructed 

by invoking the formulation of Cahn and Hilliard for the free energy of non-uniform 

media [83]. The specific form used here is 

2 2 3
1 2

1

[ ( , , ,...., ) | | | | ] 
2 2

p

F f d r
 

 


 
     



     .                    (3.1) 

In the above expression, the first term represents the bulk free energy density. The two 

gradient terms account for the excess free energy due to pore (free) surfaces and grain 

boundaries, respectively. Using constant gradient coefficients is equivalent to the 

assumption of isotropic surface and grain boundary energies. The bulk free energy 

density used here is simply a positive-definite multi-well potential that represents the 

equilibrium phases. It has the form [56-58, 74],   

22 2 2 2 3 2
1 2( , , ,...., ) (1 ) [ 6(1 ) 4(2 ) 3( ) ]f B C   

  

                        (3.2) 

This particular from has (p+1) minima that correspond to the pore phase and all grains in 

the solid phase. B , C ,  and   are material constants related to surface and grain 

boundary energies. These relations can be derived from the equilibrium profiles of the 

order parameters across flat interfaces as in the pioneering work by Cahn and Hilliard 

[83]. The details of such derivation are given in Appendix A.  
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The conserved density field evolves according to a Cahn-Hilliard equation [100] in 

the form, 

1 2
( , ,...., ,...., )pfF

t




    
  

 

 
         

  
M M M .       (3.3) 

 In the above equation,   is a non-classical (non-local) chemical potential, /F    is 

the functional derivative of the free energy with respect to the density field, and M  is the 

Cahn-Hilliard (chemical) mobility tensor. In general, Cahn-Hilliard equation can 

represent different diffusion mechanisms, e.g., bulk, grain boundary, and surface [56]. 

However, we limit our study here to surface diffusion .The expression for the Cahn-

Hilliard mobility tensor M  has the form 

2 2
s s(1 )M   M T                                                                                                  (3.4) 

where sM  is a constant that is related to the surface diffusivity as shown via the 

asymptotic matching with the sharp-interface model in Appendix B, and sT  is a surface 

projection tensor, which guarantees that the surface diffusion is tangential to the surface 

[56-58, 118]. sT  has the form    

s s s  T I n n ,                                                                                       (3.5) 

with I  being the identity tensor,   the dyadic product, and 
sn  the unit normal to the 

pore (free) surface. The latter is given by s /  n . 

The non-conserved order parameters are governed by a set of Allen-Cahn equations 

[99]:      

1 2
( , ,...., ,...., )

     , 1, 2....
pfF

L L p
t


 

 

    
   

 

 
        

  
.       (3.6) 
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Here, L (the Allen-Cahn mobility) is a material property that is directly related to the 

grain boundary mobility as shown via the asymptotic matching with the sharp-interface 

model in Appendix B. By using a constant Allen-Cahn mobility, we assume isotropic 

grain boundary mobility.        

The resulting coupled Cahn-Hilliard and Allen-Cahn dynamical system is able to 

couple the curvature-driven motion of the grain boundary with the pore motion by 

surface diffusion. Using the method of matched asymptotic expansions, the fact that the 

proposed phase field model recovers the corresponding sharp-interface model (recall Eq. 

(2.20) and Eq. (2.24)) is demonstrated in details in Appendix B. Therefore, solving the 

set of kinetic equations (3.3) and (3.6) reveals the microstructure evolution in a porous 

polycrystalline solid, and hence the kinetics of grain growth in such materials can be 

investigated.   

3.2 Determination of Model Parameters  

There are two types of parameters in the phase field model, e.g., energetic and kinetic 

parameters. The energetic parameters that appear in the free energy expressions (see Eq. 

(3.1) and Eq. (3.2)) can be shown to be directly related to thermodynamic properties such 

as surface and grain boundary energies. Such relations could be established by 

investigating the equilibrium solutions of phase field variables across flat interfaces as 

was pioneered by Cahn and Hilliard [83]. The details of this derivation are given in 

Appendix A. Here, we only summarize the final results. The free energy parameters are 

related to the surface and grain boundary energy as:   

s gb12 7
B

 
 ,                       (3.7a) 
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 gb
C


 ,                        (3.7b) 

gb

3

4
  ,            (3.7c) 

s gb

3
(2 )

4
    .           (3.7d) 

In the above,  is the diffuse interface width, which, to be consistent with the sharp-

interface description of the problem, is on the order of a surface layer/grain boundary 

thickness.   

The kinetics parameters that appear in Cahn-Hilliard (Eq. (3.3)) and Allen-Cahn (Eq. 

(3.6)) equations are directly related to the surface diffusivity and grain boundary mobility 

(recall the sharp-interface model, e.g., Eq. (2.20) and Eq. (2.24). This connection can be 

demonstrated using the asymptotic matching between the diffuse- and sharp-interface 

models. While the primary goal of the asymptotic analysis is to prove that the phase field 

(diffuse-interface) model recovers its sharp-interface counterpart, it also provides a clear 

connection between the parameters of the two models. Such relations are crucial for the 

phase field model to be quantitative [56-62]. The details of the asymptotic analysis are 

given in Appendix B. Here, we only quote the final results. According to the asymptotic 

analysis of the phase field model, the equations of motions for the grain boundary and the 

pore surface are given by,   

b bv L    ,            (3.8a) 

2
p s s s( )v M       .           (3.8b) 

In the above, the parameters have the same definitions as appeared before (recall Eq. 

(2.20), Eq. (2.24), Eq. (3.1), Eq. (3.3), and Eq. (3.6)). By comparing the relations of Eq. 
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(3.8) with their sharp-interface counterparts, e.g., Eq. (2.20) and Eq. (2.24), the Allen-

Cahn and Cahn-Hilliard mobilities can be related to the grain boundary mobility and 

surface diffusivity as follow;     

gb bL M  ,            (3.9a) 

s s m
s ( )

D w
M

RT
 

 
   .           (3.9b) 

The relations of Eq. (3.7) and Eq. (3.9) completely fix the phase field model parameters 

in terms of the physical material properties, which facilitates obtaining quantitative 

results that can be compared with experiments as will be shown in the next chapter.     

3.3 Numerical implementation  

3.3.1 Non-dimensionalization of Kinetic Equations 

For the sake of convenience during the numerical implementation of the phase field 

model, a non-dimensional version of the kinetic equations (Eq. (3.3) and Eq. (3.6)) has 

been used. The non-dimensional form was obtained using a reference energy density,  , 

reference length scale,  , and reference time scale, t . We take B   as a reference 

energy density, 4 / 3C
   as a reference length scale, and 1/t L   as a reference 

time scale. Note that the non-dimensionalization is merely for simplifying the numerical 

implementation; the model parameters for a specific material can be directly calculated 

from Eq. (3.8) and Eq. (3.9). The normalized equations are thus given by,  

2

1M F F
M

L

  

   

 



     
         

        

                                                        (3.10a) 
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1 F F

 

  

   

    
       

      

                                                                               (3.10b) 

Here, /t t   is the non-dimensional time,     is the non-dimensional del operator 

and 
2/M M L   is the non-dimensional Cahn-Hilliard (chemical) mobility.  

3.3.2 Explicit Finite-difference Scheme  

In this scheme, the kinetic equations of the phase field model were discretized using 

a second-order centered finite difference approximation for all spatial derivatives and a 

first-order explicit Euler approximation for time derivatives [61, 90].  The Laplacian 

operator that appears in Eq. (3.3) and Eq. (3.6) was represented using the standard 5(7) 

point stencil for 2D (3D) solutions. For the sake of ensuring the numerical stability of the 

explicit scheme, one must satisfy the condition that 
4 d/ ( ) (1/ 2)M t x   , where x  is the 

mesh size, t  is the time step, and d is the dimension of the problem. In all the 

simulations presented in this dissertation that were conducted via the explicit scheme, 

these parameters took on the values: 1.0x  , 0.01 1.0M   , 0.01 0.08t   . Moreover, 

for all the explicit scheme simulations presented here, a periodic boundary condition is 

considered and the interface includes 5 mesh points. The explicit scheme was 

implemented using in-house codes written in FORTRAN 90.  

When applying the model for investigating the grain growth kinetics in 

polycrystalline solids, a Voronoi tessellation was utilized to generate the initial 

polycrystalline structure and each grain was assigned a different order parameter to avoid 

artificial coalescence of grains during the simulation. Due to the high computational cost 

associated with the large number of non-conserved order parameters, parallel computing 
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was used. Specifically, each simulation run was carried out on a single node that contains 

48 cores using the shared-memory parallelization concept. All the explicit scheme 

simulations runs were performed on Hansen cluster at Purdue University. The typical 

computing time ranges from three to ten days for 2D simulations and from one week to 

one month for 3D simulations.    

3.3.3 Fully-coupled, Fully-implicit Finite-element Scheme Using MARMOT 

A more advanced numerical technique was then used to solve the phase field model 

equations. This technique is based on finite-element discretization of the phase field 

kinetic equations. The resulting nonlinear system of equations is then solved using the 

mesoscale simulator, MARMOT developed at Idaho National Laboratory [123].  

MARMOT is a phase field framework for simulating microstructure evolution in 

materials. It is one of several applications based on the Multiphysics Object-Oriented 

Simulation Environment (MOOSE) developed at Idaho National Laboratory [121-123]. 

MOOSE is a massively parallel finite element framework suitable for solving 

multiphysics problems. MOOSE is a winner of the 2014 R&D 100 award. MOOSE 

currently meets all Nuclear Quality Assurance Level 1 (NQA-1) requirements. MOOSE 

is now open source software that can be downloaded freely from GitHub [121]. Its 

modular structure simplifies the development of user programs and maximizes code reuse.  

The main structure of MOOSE is schematically depicted in Figure 3.2. As shown in 

the figure, MOOSE provides a high-level interface that utilizes libMesh, the finite-

element library developed at the University of Texas at Austin [128] and the nonlinear 

solvers available via PETSc, the toolkit for scientific computation developed by Argonne 
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National Laboratory [129].  MOOSE has built-in time and mesh adaptivity, it is 

dimension agnostic and automatically parallel .  

 

 

Figure 3.2. A schematic illustration of the structure of the Multiphysics Object-Oriented 

Simulation Environment (MOOSE) developed at Idaho National Laboratory [121].    

 

As any MOOSE-based application, MARMOT inherits all the advantages and 

capabilities of MOOSE. It is designed particularly for solving all types of phase field 

models [123]. It takes advantage of the common structure of the phase field models (their 

usage of Cahn-Hilliard and Allen-Cahn equations) to provide general C++ base templates 

that can be modified to implement a specific model. Due to its object-oriented design, 

this can be accomplished in a straightforward manner [123].  

The first step to implement the current model in MARMOT is to form the varitional 

(weak) form of the partial differential equations (PDEs) (see Eqs (3.3) and (3.6)) [130]. 

However, one should note that the Cahn-Hilliard equation (Eq. 3.6) is a fourth-order PDE 
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that requires 
1C  continuous basis functions for discretization [123, 130, and 131]. 

Nonetheless, it can be split into two second-order equations which allows the use of 

regular 
0C  continuous basis functions with linear elements [123, 131]. This can be 

achieved by using the chemical potential as an auxiliary variable [131]. This drastically 

decreases the computation time and introduce negligible error to the solution [131]. 

Moreover, when implementing the model in MARMOT, the vacancy concentration ( c ) is 

used instead of the fractional mass density as the conserved parameter. As, we mentioned 

earlier the two are simply related by 1c   . Therefore, the kinetic equations of the 

model become              

1 2
( , ,...., ,...., )p

c

f c
c

c

  
 


  


,             (3.11a) 

c

t



  


M ,          (3.11b) 

1 2
( , ,...., ,...., )

     , 1, 2....
pf cF

L L p
t


 

 

   
   

 

 
        

  
.  (3.11c) 

In the above c   and 1 1( , ,...., ,...., ) ( , ,...., ,...., )p pf c f        with   replaced by 

1 c  in Eq. (3.2). The residual equations in the weak form are then    

( , ) , ( , ) , 0c c

f
c c

c
      

 
          

 
n ,           (3.12a) 

, ( , ) , 0
c

t
    

 
        

 
M M n ,       (3.12b) 

, , ( , ) , 0   , 1, 2....
f

L L L p
t


   




         



   
             

    
n .  (3.12c) 
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In the above   is a test function, ( , )  stands for interior integration, and ,     for 

boundary integration.  Linear Lagrange discretization of Eqs (3.12a-3.12c) employing 

four-node quadrilateral elements in 2D and eight-node hexahedral elements in 3D was 

performed. The time integration was carried out via a second-order Backward 

Differentiation Formula (BDF2). 

The second step is to solve the nonlinear system. This goal was accomplished using 

the Jacobian-Free Newton Krylov (JFNK) method [132]. This is a quasi-Newton method 

where the linear system inside each nonlinear iteration is solved iteratively using a 

Krylov method. Since usually only the action of the Jacobian on a vector is need, the 

Jacobian itself is not required to be assembled; hence the name Jacobian-Free Newton 

Krylov method. Here the generalized minimal residual (GMRES) method is used for 

solving the linear system [133].  

In investigating the grain growth in polycrystalline solids, a Voronoi tessellation was 

also used to generate the initial polycrystalline structure as in the explicit scheme. 

However, since the number of degrees of freedom (DOF) is linearly proportional to the 

number of the non-conserved order parameters representing the grains, simulations of 

ensembles with large number of grains are unfeasible. Nonetheless, there are some useful 

algorithms that were developed to remedy this issue [134-138]. Such algorithms use 

small number of order parameters to simulate large number of grains. This is 

accomplished by randomly assigning order parameters to grains and then switching these 

order parameters when two grain represented by the same order parameter are close to 

each other. MARMOT has its own switching algorithm that is called Grain Tracker. A 

representation of a polycrystalline structure using Grain Tracker is shown in Figure 3.3. 
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In this figure, 400 grains are represented using only 15 distinct order parameters 

(orientations). Nevertheless, the computational cost was still high and parallel computing 

was used. Specifically, 2D simulation runs were carried out using 72 cores and 3D 

simulations using 600 cores. All MARMOT simulations runs were performed on Fission 

cluster at Idaho National Laboratory. The typical computing time ranges from a day to 

three days for 2D simulations and from four days to one week for 3D simulations.  

 

 

Figure 3.3. Representation of 400 grains with different orientations using only 15 non-conserved 

order parameters via Grain Tracker algorithm implemented in MARMOT. Different colors 

represent different orientations.   

 

3.3.4 Increasing Length and Time Scales of the Phase Field Model 

When solving the phase field kinetic equations, numerical stability requires few mesh 

points to be placed within the interfacial regions. Since the physical interface width is in 

nanometers (i.e., on the order of the thickness of a surface layer), the grid spacing would 

be limited to about 1 nanometer. In this case, mesoscale simulations (with grain sizes in 
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micrometers) will not be feasible. A remedy for this problem is to modify the phase field 

model parameters without altering the thermodynamic driving forces or the kinetics in 

accordance with equations (3.7 and 3.9). By increasing the gradient coefficients and at 

the same time decreasing the bulk free energy parameters, the diffuse interface increases 

while the surface and grain boundary energy remain the same. However, according to the 

equation of motions (e.g., Eq. 3.8), increasing the gradient coefficients must be 

accompanied by decreasing the Cahn-Hilliard and Allen-Cahn mobilities in order to keep 

the kinetics unaltered. This approach of increasing the length and time scales of the phase 

field models was utilized before [139-141].
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CHAPTER 4. RESULTS AND DISCUSSION   

The results obtained by solving the phase field model for grain growth in porous solids 

are presented and discussed in this chapter. In the first section, test cases that demonstrate 

the capabilities of the model are explained. These test cases also serve as a benchmark for 

the model before simulating real systems. In the second section, the pore drag effect on 

the kinetics of grain growth is examined thoroughly using idealized 2D configurations for 

the pore and grain. In the third section, 2D solutions of the model for grain growth in 

porous uranium dioxide are introduced. 3D simulations of grain growth in porous ceria 

are then presented. Lastly, 2D and 3D simulations of grain growth in porous 

polycrystalline solids using MARMOT are discussed. Some of the results presented here 

were published in [56-58].      

4.1 Test Results           

In this section, we examine the model by investigating simple test cases. For some of 

these cases, analytical solutions exist that can be used to evaluate quantitatively the 

model solutions. First, we examine the establishment of the equilibrium dihedral angle at 

the triple-junction and the equilibrium pore configuration. We then study the kinetics of 

the curvature-driven motion by simulating the shrinkage of an isolated circular grain 

embedded in a solid matrix. The surface diffusion kinetics is then investigated by 

simulating the flattening of a perturbed solid surface and the instability of cylindrical
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particles. Lastly, the classical example of the sintering of two unequal-sized particles is 

discussed in details.                                                                                  

4.1.1 Equilibrium Dihedral Angle and Pore Configuration  

As mentioned in Chapter 2, mechanical equilibrium requires the balance of surface and 

grain boundary tensions at the triple-junction (the junction between a grain boundary and 

two free surfaces). This condition is equivalent to requiring the establishment of an 

equilibrium dihedral angle defined as 1
gb s2cos ( / 2 )   at the triple-junction. Clearly, 

different ratios of grain boundary to surface energy give rise to different equilibrium 

angles. This scenario can be tested using the phase field model by noting that different 

sets of free energy parameters produce different surface to grain boundary ratios (see Eq. 

(3.7))) and, hence, different values of the equilibrium dihedral angle,  . For instances, if 

we set B C  and / 3   , we obtain s gb2 / 3   and 83  , while if we put 5B C  

and    , we obtain s gb   and 120  .  These results are demonstrated in Figure 

4.1.  

 

       
                                                     (a)                                             (b) 

Figure 4.1. The dependence of the equilibrium dihedral angle on the surface to grain boundary 

ratio.  Two different ratios generated using two different sets of free energy parameters: (a) 

B C  and / 3    gives 83  , while (b) 5B C  and     gives 120   [56].   
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The condition of mechanical equilibrium has also a direct implication on the 

equilibrium pore configuration in porous polycrystalline solids. Since the equilibrium 

dihedral angle must be established at the pore tip, the equilibrium pore shapes are 

different for pores on two-, three- or higher-order-grain junctions. In general, the 

equilibrium pore configuration depends on the dihedral angle and number of grains 

attached to the pore, the latter is commonly called the pore coordination number [1]. 

Different equilibrium pore configurations at different junctions are shown in Figure 4.2, 

which is a close-up view of a 2D porous polycrystalline structure that was simulated 

using MARMOT.     

 

 

 
 

Figure 4.2. Different equilibrium pore configurations at two-, three-, and four-grain junctions. In 

general, the equilibrium pore configuration depends on the dihedral angle and the pore 

coordination number (e.g., the number of grains attached to the pore). This simulation was 

performed in MARMOT with adaptive mesh, i.e., the mesh at the interfaces is much finer than in 

the bulk regions.   

 

 

4.1.2 Shrinkage of an Isolated Circular Grain  

In the absence of pores, the grain boundary migrates under the influence of its curvature 

as was discussed in Chapter 2. This gives rise to the well-known parabolic grain growth 



48 

 

4
8
 

kinetics (see Eq. 2.4). The simplest example for studying such kinetics is the shrinkage of 

an isolated circular grain embedded in a matrix grain. The solution of Eq. (2.20) for this 

case is simply given by 

( )A t A k t   ,                                                                                         (4.1a) 

gb b2 2k M L      .                                                                             (4.1b) 

 Here, ( )A t is the grain area at time, t  , A  is the initial grain area and k  is the rate 

constant. The last equality in Eq. (4.1b) is based on the relation of Eq. (3.9) that relates 

the sharp- and diffuse-interface parameters. A simulation of this test case was carried out 

in MARMOT. Snapshots of this simulation are shown in Figure 4.3. The initial interface 

width was 20 and the initial grain radius was 600. The values of the non-dimensionalized 

model parameters that appear in Eq. (4.1b) were 15  , and 1.0L  . The kinetics of the 

shrinkage is quantitatively captured in Figure 4.4. As evident from the figure, the kinetics 

follows the linear relation of Eq. (4.1). The value of the rate constant calculated from Eq. 

(4.1b) is 94.2, while the value from the simulation (the slope in Figure 4.4) is 96.    

 

           

Figure 4.3. Snapshots of the shrinkage of an isolated circular grain embedded in a matrix grain. 

The simulation was performed using MARMOT with adaptive mesh.  
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Figure 4.4. The kinetics of the shrinkage of an isolated circular grain embedded in a matrix grain. 

The kinetics follows closely the relation of Eq. (4.1). The markers represent the simulation data 

and the line is the fit to Eq. (4.1).  

 

 

4.1.3 Flatting of a Perturbed Solid Surface via Surface Diffusion 

It is well-established that a slightly curved solid surface evolves into a flat surface to 

decrease its surface area and hence its surface energy [64-66, 142]. Such process takes 

place by matter transport from the higher curvature side to the lower curvature side via 

surface diffusion, evaporation and consideration, or volume diffusion. For the case of 

surface diffusion, the surface velocity is given by Eq. (2.24).  For a slightly perturbed 

surface, Eq. (2.24) can be linearized and the decay rate of the amplitude of surface 

perturbation can be derived [64-66, 142-145]. For example, the decay rate of the 

amplitude of perturbation of a surface perturbed by a long wavelength sinusoid is given 

by 

4
s s( ) (0)exp[ (2 / ) ]A t A B t    ,           (4.2a) 
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s m
s

D w
B

RT


 .               (4.2b) 

In the above, ( )A t is the perturbation amplitude at time, t  , (0)A  is the initial amplitude 

of perturbation,    is the perturbation wavelength and sB  is the surface mobility.  

A simulation of this test case was conducted using MARMOT. In the simulation, the 

values of the geometrical parameters were: (0) 100A   and  2000  . Note that the 

condition / 1A   must be satisfied in order for the linear approximation to hold. The 

phase field model parameters took on the values: 45  , 15  , and sM = 83. Recall 

that, from the matching between the sharp- and diffuse-interface models, we have the 

relation (see Eq. (3.9))  

s s m
s s s( )

D w
M B

RT
 

 
     .               (4.3) 

The evolution of the perturbed surface is captured in Figure 4.5. The kinetics of the decay 

of the perturbed surface is shown in Figure 4.6. As clear from the figure, the phase field 

model solution agrees well with the analytical relation of Eq. (4.2). The decay constant 

defined as 4 4
s s s(2 / ) ( )(2 / )B M             equals 74.3 10 , the simulation gave a 

value of 74.33 10 .    
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Figure 4.5. Snapshots of the decay of a sinusoidal surface between a solid phase (shown in red) 

and a vapor/gas phase (shown in blue). The simulation was carried out using MARMOT with 

adaptive mesh. 

 

      

                                      (a)                       (b)  

Figure 4.6. The kinetics of the decay of the amplitude of a sinusoidal surface via surface diffusion: 

(a) exponential fit and (b) linear fit.  

 

4.1.4 Instability of Cylindrical Second-phase Particles during Coarsening  

It has been shown that cylindrical second-phase particles are unstable and transform into 

spherical particles during coarsening [64, 146-149]. This is the mechanism by which 

open porosity (interconnected cylindrical pores) changes into closed porosity (isolated 
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spherical pores) during the final stage of sintering. The instability of a cylindrical shape 

under the influence of capillarity was first shown by Rayleigh [146]. The driving force is 

the minimization of the interfacial free energy via the reduction of the interfacial area. 

The kinetic mechanism by which this process takes place may be surface diffusion, 

evaporation and condensation, or volume diffusion. However, there are two different 

evolution paths for a slightly perturbed cylindrical particle to decrease its surface energy, 

e,g,, ovulation and spheroidization. This is schematically depicted in Figure 4.7. It was 

found out that there is a critical wavelength above which ovulation takes place (i.e., the 

perturbation grows) and the particle breaks up into two or more spheres. This critical 

wavelength is given by  

0 02 R  ,                  (4.4) 

where 0  is the critical wavelength and 0R  is the initial radius of the cylinder. This is a 

morphological instability commonly known as Rayleigh instability [146]. On the other 

hand, if the wavelength of the perturbation is below the critical value, spheroidization 

takes place (i.e., the perturbation decays) and the cylindrical particle transform into only 

one spherical particle.   

Two simulations were performed using MARMOT in 3D to study the 

spheroidization and ovulation of cylindrical pores. In both cases, the initial condition is a 

cylindrical pore perturbed by a sinusoid and embedded in a matrix grain. The 

perturbation is radially symmetric, e.g.,    

0

2
( ) cosR z R A z




  ,                  (4.5) 

with 10A . 
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The phase field model parameters took on the values: 45  , 15  , and sM = 10. 

In the first simulation, the geometrical parameters were  0 50R   and  200  . 

Therefore, according to Eq. (4.4), spheroidization takes place and only one spherical 

particle is formed. This is shown in Figure 4.8. In the second simulation, the geometrical 

parameters were  0 50R   and  400  . Hence, ovulation takes place and the cylindrical 

particle breaks up into two spherical particles. This is captured in Figure 4.9.  

 

 

Figure 4.7. A schematic illustration of ovulation and spheroidization. If the initial wavelength of 

perturbation is larger than the critical wavelength (see Eq. (4.4)), ovulation takes place and the 

cylindrical particle breaks up into two spherical particles. Otherwise, spheroidization proceeds, 

and only one spherical particle is formed [149].    
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Figure 4.8. Snapshots of the evolution of the isosurface of a 3D cylindrical pore with 02 R  . 

For short-wavelength perturbations, spheroidization takes place and only one spherical particle is 

formed.  

 

 

           

Figure 4.9. Snapshots of the evolution of the isosurface of a 3D cylindrical pore with 02 R  . 

For long-wavelength perturbations, ovulation takes place and the cylindrical particle breaks up 

into two spherical particles.  
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4.1.5 Sintering of Two Unequal-sized Grains  

As a final test case, we study here the classical example of the grain growth during the 

sintering of two unequal-sized grains. Consider two barely touching circular grains as 

depicted in Figure 4.10. The small grain has a radius of 20 grid points or pixels while the 

large one has a radius of 30 grid points. The evolution of this two-grain system is 

captured in Figure 4.10. As the figure shows, the neck between the two grains is first 

formed with the aid of surface diffusion. Then concurrent grain and neck growth is 

observed. In the final stage, grain growth proceeds until the equilibrium configuration of 

one circular grain is established. In this simulation, we set 11B C  and 2   , and the 

ratio of Cahn-Hilliard to Allen-Cahn mobility was set to 10. The radius of the small grain 

and the neck (now the grain boundary) size were used as indicators of the extent of 

system evolution. The area of each grain is calculated as i dA  while the neck size was 

approximated by 1 2 dA   which has non-zero value only at the neck (grain boundary). 

The evolution time is presented as a fraction of the total simulation time, st . These 

quantitative results are presented in Figure 4.11. As can be seen in Figure 4.11, the 

overall evolution process can be divided into three stages. In the first stage, the neck 

(grain boundary) between the two grains grows quickly without any noticeable change in 

grain size. In the second stage, there is a concurrent neck growth and grain growth or 

shrinkage (the large grain grows while the small grain shrinks). In the third stage, the 

grain growth or shrinkage continues but the neck size starts to decrease. The final stage 

continues until the small grain disappears.    
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(a)  / 0st t                        (b) s/ 0.1t t                        (c)  s/ 0.25t t   

         

(d)  / 0.6st t                        (e) s/ 0.8t t                        (f)  s/ 1.0t t   

Figure 4.10. Snapshots of the evolution of a system of two unequal circular grains illustrating the 

stages of neck formation, concurrent widening of the neck and growth of the larger grain, and the 

final neck shrinkage and complete disappearance of the smaller grain [56].   

 
Figure 4.11. Different stages of sintering of two unequal circular grains; neck formation and 

growth dominate the initial stage, concurrent grain and neck growth mark the intermediate stage, 

and the small grain completely disappears in the final stage [56].   
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4.2 Pore Drag Effect on the Kinetics of Grain Growth  

In this section, the effect of the presence of pores on the kinetics of grain growth is 

examined in details using idealized 2D configurations of the pore and the grain boundary. 

Tow particular cases are considered here. In the first example, the effect of pore 

retardation on the shrinkage kinetics of an isolated circular grain embedded in a matrix 

grain is discussed. The effect of the number of pores on the boundary and the pore 

surface mobility on the kinetics are examined. In the second example, the pore retarding 

effect on the shrinkage of a four-sided grain is investigated. The retarding effects of two 

pore configurations, e.g., edge pores (pores on two-grain junctions) and corner pores 

(pores on three-grain junctions) are addressed. All the simulations presented in this 

section were conducted using the fully-coupled, fully-implicit finite-element scheme 

implemented in MARMOT. Since the goal of this section is to examine the general 

behavior of the pore-grain boundary interactions, the model equations are solved in a 

non-dimensionalized setting.    

4.2.1 Shrinkage of an Isolated Circular Grain with Boundary Pores 

As was discussed in section 4.1, the shrinkage of an isolated circular grain embedded in a 

matrix grain is the simplest example to study the kinetics of ideal grain growth. Hence, it 

is instructive to utilize the same example to examine the pore drag effect on the grain 

growth kinetics in porous solids. In this case, pores were introduced on the boundary of 

the circular grain. The number of pores and their surface diffusivity were varied to 

investigate their effect on the grain growth kinetics. In the following examples, the initial 

grain radius was 600 and the initial pore radius was 75.  
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In the first set of simulations, the pore (free) surface mobility ( sM ) was set to 100, 

while the number of pores on the grain boundary was varied to examine its effect on the 

grain growth process. A set of snapshots of these simulations is shown in Figure 4.12. As 

evident from Figure 4.12, the first notable effect that is common in all cases irrespective 

of the number of pores is the anisotropic shrinkage of the initially circular grain. The 

circular grain changes its shape while shrinking depending on the distribution of pores. 

Only for the case of 8 pores evenly distributed on the boundary (the last row of snapshots 

in Figure 4.12) that the shrinkage is near isotropic. This clearly shows that the pores act 

as obstacles for the grain boundary motion reducing its intrinsic velocity.  

When only one pore is present (see the first two row of Figure 4.12), the boundary 

experiences minimal drag. This evident from the fact that the boundary drags the pore 

with it only for a short distance; this can be easily checked by noticing that the initial and 

final position of the pore is almost the same. On the other hand, when two or more pores 

are present, the effect of drag becomes increasingly more pronounced (see Figure 4.12). 

The grain boundary starts dragging the pores along with it. However, the grain boundary 

can manage to break away from the pore as for the cases of two and three pores (see 

second and third rows of Figure 4.12). Nonetheless, as the number of pores increases, the 

drag effect becomes more pronounced and the boundary can no longer break away from 

the pores. In fact, for four or more pores and after a short initial transient, the pore moves 

along with the grain boundary as a rigid-body. This can be explained as follows. When 

surface diffusion is fast enough, matter can be transported quickly from the leading 

surface of the pore to the trailing surface and the pore moves forward with the grain 

boundary as a rigid-body. Recall that all the classical models assume the rigid-body 
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motion of the pores [1, 46-48]. Moreover, 2D numerical solutions of the sharp-interface 

models showed that this is a reasonable assumption in the limit of low velocity [49-53].  

The effect of the number of pores on the shrinkage kinetics of the circular grain is 

captured quantitatively in Figure 4.13. In that figure, the evolution of the area of the 

shrinking grain with different number of pores is presented. The retarding effect of the 

pores on the kinetics is clear. As the number of pores increases, the shrinkage rate 

decreases. This agrees well with the predictions of the classical models as discussed in 

Chapter 2, i.e., recall that the velocity of pore-boundary complex is inversely proportional 

to the number of pores on the boundary (see Eq. (2.15)).  

In the second case study investigated here, the number of pores was held constant 

while the pore surface mobility was varied to investigate its effect on the kinetics. Since 

the shrinkage is almost isotropic when eight pores are evenly distributed on the boundary 

(see the last row of snapshots in Figure 4.12), this configuration was chosen to study the 

effect of surface mobility. Figure 4.14 captures the effect of surface mobility on the 

shrinkage kinetics. The figure presents the evolution of the area of the shrinking grain 

with different values for the pore surface mobility. As evident from the figure, higher 

surface mobility results in faster shrinkage kinetics. This is of course to be expected since 

higher surface mobility means faster surface diffusion. Fast surface diffusion kinetics 

allows the pores to be easily dragged by the migrating boundary. Nonetheless, this 

captures the main difference between the effect of pore drag and the immobile particles 

(Zener’s type) drag on the grain growth kinetics. The latter is a static drag that depends 

only on geometric parameters such as the particle radius and volume fraction (recall Eq. 
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(2.7)), while the former is a kinetic drag that depends on kinetic parameters such as the 

pore surface mobility.                           
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Figure 4.12. Effect of pore drag on the shrinkage of a circular grain. The presence of pores leads 

to anisotropic shrinkage of the initially circular grain. The shrinkage rate decreases with 

increasing the number of boundary pores. For only one present, the pore drag effect is minimal. 

When two or three pores are present, the boundary can separates from the pore. However, for 

higher number of pores, the boundary can no longer detaches from the pore; instead, for high 

enough surface mobility, the pore moves along with the boundary as a rigid-body, i.e., without 

changing its shape or size.     

 

 

 

Figure 4.13. Effect of pore drag on the kinetics of the shrinkage of a circular grain with boundary 

pores (see Figure 4.12). The presence of pores hinders the grain boundary motion. As the number 

of pores increases, the shrinkage rate decreases.   
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Figure 4.14. Effect of the pore (free) surface mobility on the kinetics of the shrinkage of a circular 

grain with eight pores on its boundary (see the last row of snapshots in Figure 4.12). Higher 

surface mobility leads to faster surface diffusion resulting in higher pore velocity. The higher the 

pore velocity, the less extent of drag the pore exerts on the grain boundary.           

 

 

4.2.2 Shrinkage of a Four-sided Grain with Edge and Corner pores 

Another important case study that helps in understanding the nature of pore drag is the 

shrinkage of a four-sided grain with different pore configurations. In this example, two 

different pore configurations are considered, e.g. edge pores (pores on two-grain 

junctions) and corner pores (pores on triple-junctions). Hence, the effect of pore 

configuration on the grain growth kinetics can be investigated. 

Before investigating the shrinkage of a four-sided grain with different pore 

configuration, it is instructive to study the pore-free case first. According to the well-

known topological analysis of grain growth put forward by Neumann and Mullins [4, 64], 

a grain with more than six sides will grow, while a grain with less than six sides will 
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shrink. A grain with six sides is static. The growth/shrinkage rate of a grain with N sides 

is given by [4, 64]  

gb b

( )
( 6)

3

dA N
M N

dt


  ,                                                                   (4.6) 

where, ( )A N is the area of a grain with N sides.  

A simulation of the shrinkage of a four-sided grain was performed with the following 

values of the non-dimensionalized model parameters 15  , and 1.0L  . The initial 

grain size of the four-sided grain was 1200. In this example, natural boundary conditions 

for all the variables were applied. Snapshots of the shrinkage of the four-sided grain are 

presented in Figure 4.15. The shrinkage kinetics is captured in Figure 4.16 which shows 

the evolution of the grain area with time. As evident from the figure, the area decreases 

linearly with time in agreement with Eq. (4.6). The non-dimensionalized rate constant 

calculated from Eq. (4.6), taking into account the matching relation of Eq. (3.9a), was 

31.4, while the value obtained from the simulation was 31.8.  

  

 

     

Figure 4.15. Snapshots of the shrinkage of a four-sided grain.  
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Figure 4.16. The shrinkage kinetics of a four-sided grain. The grain area decreases linearly with 

time in agreement with the Neumann-Mullins relation (see Eq. (4.6)).  

 

 

Now we turn our attention to the case of the effect of pore configuration on the 

shrinkage/growth kinetics. Simulations of the shrinkage of a four-sided grain with edge 

and corner pores were conducted.  In these simulation, the non-dimensionalized model 

parameters took on the values: 15  , 1.0L  , 45  , and sM = 100. The initial grain 

size was 1200 and the initial pore radius was 75. Figure 4.17 shows snapshots of the 

shrinkage of a four-sided grain with edge and corner pores. Similar to the case of the 

shrinkage of a circular grain with boundary pores, pores move along with the boundary as 

a rigid-body when surface mobility is high. However, the rate of shrinkage depends 

strongly on the pore configuration. Edge pores are much easier to be dragged by the 

migrating boundary than corner pores. This is due to the fact that edge pores have higher 

curvature than corner pores. Higher curvature leads to higher surface diffusion kinetics 

and hence higher pore velocity. This is captured quantitatively in Figure 4.18 which 

presents the evolution of the grain area with edge and corner pores.  
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One can assign an effective rate constant for each configuration (recall that an 

effective mobility for the pore-boundary complex was introduced in Eq. (2.15)). This 

effective rate constant can be directly calculated from Figure 4.18. The non-

dimensionalized effective rate constant was 1.05 for the case of edge pores and 0.85 for 

the case of corner pores (recall that the rate constant was 31.8 for the pore-free case). 

The last case study to be considered here is the Ostwald ripening of the pores that 

may take place concurrently with grain growth in porous polycrystalline solids [1, 48-53]. 

When grain boundary and/or bulk diffusion are active, vacancies diffuse from smaller 

(higher curvature) pores to larger (lower curvature) pores. Hence, the number of pores 

decreases while their average size increases during coarsening. Hartland and Crocker [53] 

showed that corner pores grow at the expense of edge pores. In order to simulate this 

example here, bulk diffusion is considered to be active. The bulk diffusion mobility is 

formulated as          

 b b ,M  M I                                                                            (4.7a) 

  3 2(10 15 6 )       .                                                                (4.7b) 

In the above, bM  is the bulk (volume) mobility tensor, bM  is the bulk mobility 

coefficient of the material, and ( )   is an interpolation function which guarantees 

nontrivial values of bulk mobility in the solid region and zero values in the pores. Now, 

the mobility tensor that appears in Eq. (3.3) is the total mobility tensor with both bulk and 

surface diffusion. In the example presented here, sM = 100 and bM = 1. Snapshots of the 

shrinkage of a four-sided grain with both edge and corner pores are shown in Figure 4.19. 

As evident from the figure, edge pores shrink while corner pores grow in agreement with 
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the results of Hartland and Crocker [53]. It is worth noting that the Ostwald ripening of 

the pores affects the grain growth kinetics. This is captured in Figure 4.20 which shows 

the shrinkage kinetics. After the edge pores disappear, the rate of shrinkage decreases. 

This due to the fact that the more mobile edge pores have transformed into the less 

mobile corner pores. Therefore, Ostwald ripening of the pores increases the extent of 

drag experienced by the boundary which retards the shrinkage/growth kinetics.   

 

 

     

     

Figure 4.17. Snapshots of the shrinkage of a four-sided grain with edge (top row) and corner 

(bottom row) pores. In common with the case of the shrinkage of a circular grain with boundary 

pores (see Figure 4.12), the pore moves along with the boundary as a rigid-body when the surface 

mobility is high enough.       
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Figure 4.18. Effect of the pore configuration on the shrinkage kinetics of a four-sided grain. The 

grain with edge pores shrinks faster. This is due to the fact that edge pores have higher curvature 

and hence higher surface diffusion kinetics. Therefore, edge pores exert less drag on the boundary 

than corner pores.    

 

 

     

Figure 4.19. Snapshots of the shrinkage of a four-sided grain with both edge and corner pores. 

Edge pores shrink while corner pores grow due to the vacancy diffusion from the former to the 

latter. This is commonly referred to as the Ostwald ripening of the pores [1, 53].     
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Figure 4.20. The shrinkage kinetics of a four-sided grain with edge and corner pores (see Figure 

4.19). After the edge pores disappear (see Figure 4.19), the shrinkage rate decreases.      
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4.3 2D Simulations of Grain Growth in Porous Uranium Dioxide  

In this section, we investigate the process of grain growth in porous polycrystalline 

uranium dioxide. In applying the model to UO2, surface and grain boundary energies 

were taken to be 0.6 and 0.3 J/m
2
, respectively [150]. Referring to Eq. (3.7) and assuming 

a grain boundary width of 1nm, the free energy parameters were determined to be: 

91.9176 10B    J/m
3
, 81 128 10C .  J/m

3
, 106 10

  J/m and 91.8 10
  J/m. The 

surface diffusion coefficient is directly taken from [151]. The boundary mobility is taken 

from [150]. The results presented here were obtained using the explicit finite-difference 

scheme. These results were also published in [57].      

A Voronoi tessellation was utilized to generate the initial polycrystalline structure, 

where each grain is assigned a different order parameter to prevent the unphysical 

coalescence of grains during the simulation. Pores were then distributed randomly on 

grain boundaries to mimic the actual microstructure of materials in the final stage of 

sintering where grain growth takes place. In all simulations presented in this section, an 

ensemble of 200 grains (and equal number of non-conserved order parameters) on a 700

700 finite difference grid was used. The number, size and distribution of pores were 

varied to investigate their effect on the kinetics of grain growth in UO2. Periodic 

boundary conditions were applied to minimize the effect of domain size on the kinetics of 

grain growth. Parallel computing was utilized to overcome the high computational cost 

associated with the large number of order parameters.    

The results obtained for grain growth in the fully dense UO2 are shown in Figures 

4.21 and 4.22. Figure 4.21 captures the microstructure evolution of UO2 at 1727 C. As 
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expected, in the case of fully dense ceramics, the larger grains grow at the expense of the 

smaller ones to reduce the excess free energy associated with grain boundary network. 

The kinetics of the grain growth in pore-free UO2 is presented in Figure 4.22(a) which 

shows the evolution of the average grain area with time at three different temperatures. 

The effect of temperature was considered through the dependence of the boundary 

mobility on temperature [57]. The average grain area increases linearly with time in 

accordance with the parabolic growth law for the average grain size. Increasing the 

temperature accelerates the growth rate, represented by an increased slope of the linear 

fits in Figure 4.22(a). Figure 4.22(b) is an Arrhenius plot that was generated using the 

growth data at different temperatures. The activation energy, which is the negative of the 

slope of the Arrhenius plot, was found to be 237 KJ/mol in good agreement with the 

activation energy for boundary diffusion value of 239 KJ/mol, as expected for grain 

growth in fully dense solids. 

    
            (a) t =1 min                                (b) t =20 min                                   (c) t =1h 

Figure 4.21. Snapshots of microstructure evolution of fully dense (pore-free) UO2 at 1727 C [57].  

 



71 

 

7
1
 

 
   (a)               (b) 

Figure 4.22. Kinetics of grain growth in fully dense UO2. (a) Evolution of average grain area at 

different temperatures. (b) Arrhenius plot for calculating the activation energy in non-porous UO2 

showing an activation energy value of 237 KJ/mol. The markers represent the data points while 

the straight lines are the best fit [57].   

 

As mentioned earlier, in porous materials a competition between pore controlled and 

boundary controlled growth kinetics takes place. The boundary mobility, pore mobility 

and pore fraction are the key factors that determine which kinetics prevails. These factors 

could be stated in terms of the phase field model parameters as follows. If 
2

s pM N r L , 

the growth follows a boundary controlled kinetics. On the other hand, if 
2

s pM N r L , the 

growth follows a pore controlled kinetics. Otherwise, mixed kinetics is expected.  

For the sake of investigating such scenarios in the case of UO2, different initial 

ensembles of grains and pores were created. Each ensemble has 200 grains and different 

numbers of pores of different pore sizes. The density of pores was varied to enable the 

investigation the effect of porosity on the kinetics of grain growth in uranium dioxide.  

Several simulation cases were considered. In the first case, an ensemble of 200 

grains with initial grain size of 4.7 m and 75 pores with pore size of 1 m was 
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considered. This gives pore volume fraction, f , of 0.025 and pN  of about 0.25. Figure 

4.23 depicts the microstructure evolution of that ensemble at 1727 C. Pores migrate with 

boundaries and are expected to coalesce as they are swept by the grain boundaries. As 

expected, the figure clearly shows that pore-free boundaries migrate much faster than 

boundaries with pores. This could lead to abnormal grain growth if the pores are not 

uniformly distributed on the boundaries as will be discussed later. The grain growth 

kinetics is quantitatively described in Figure 4.24(a), which shows the evolution of the 

average grain size with time. It was found that it is best fit to a power law with exponent 

of 3.25. Non-integer values between 3 and 4 for the growth exponent in UO2 were 

reported before [36, 37]. The value of the exponent suggests that the grain growth in the 

current case exhibits mixed kinetics.  

 

                                      
            (a) t=1min                                   (b) t=1h                                              (c) t=2h 

Figure 4.23. Snapshots of microstructure evolution of slightly porous UO2 ( 0.025f  , 

0.25pN  ) at 1727C [57].   
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                                       (a)              (b) 

Figure 4.24. Kinetics of grain growth in slightly porous UO2 ( 0.025f  , 0.25pN  ). (a) 

Evolution of the average grain size at different temperatures following a power law with exponent 

of 3.25. (b) Arrhenius plot for the rate constant with an activation energy of 240 KJ/mol. The 

markers represent the data points while the straight lines are the best fit [57].  

 

In a second example, an ensemble of 200 grains with initial grain size of 4.7 m and 

125 pores with pore size of 1 m is considered. This fixes f as 0.04 and pN  as 0.4. 

Figure 4.25(a) represents the average grain size growth with time. In this case, the best fit 

was a power law with exponent of 4 as expected for pore controlled grain growth when 

pore migration takes place via surface diffusion. Hence, grain growth in UO2 follows 

pore controlled kinetics when 2100 /pN M Lr . The activation energy was found to be 

227 KJ/mol as calculated from the Arrhenius plot shown in Figure 4.25(b).  

A growth exponent of 4 for grain growth kinetics in porous UO2 was reported at least 

four times in experimental studies [37]. However, each investigation proposed different 

values for the activation energy and the pre-exponential factor. This discrepancy in the 

experimental data could arise from the presence of impurities or the deviation from 

perfect stoichiometry. Nevertheless, a correlation between the activation energy and the 
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pre-exponential factor of the rate constant was proposed and it was shown that the 

different experimental results meet such correlation [37]. That correlation simply states 

that, although the pre-exponential factor and activation energy differ much from one 

study to another, the rate constants calculated from these investigations lie within a 

relatively narrow range in the temperature range 1700-1800 C. The average pore volume 

fraction in those investigations was between 4-6%. Therefore, one should be encouraged 

to compare the phase field model prediction found in the second example above with 

such experimental results. This comparison is depicted in Figure 4.26. This figure was 

produced by plotting 4 4D D k t  , with 4.7D  m and k  calculated at 1727 C from 

each study. The value of the rate constant, k , calculated from the experimental data was 

found to lie between 977 and 1358 m
4
/h [37]. The value predicted from the phase field 

model is 1132 m
4
/h. Hence the phase field model predictions lie in the middle of the 

empirical data, indicating good agreement with experiments.  
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                                    (a)                    (b) 

Figure 4.25. Kinetics of grain growth in porous UO2 ( 0.04f  , 0.4pN  ). (a) Evolution of 

average grain size at different temperatures following a power law with exponent of 4, which is 

indicative of pore controlled growth. (b) Arrhenius plot for the rate constant showing an 

activation energy value of 227 KJ/mol. The markers represent the data points while the straight 

lines are the best fit [57].  

 

 

 
Figure 4.26. Comparison between the extrapolated phase field model prediction and the 

corresponding experimental results; the model predictions and experimental data were fit to the 

growth law: 4 4D D k t  . Experimental data yielded a value of k  in the range 977-1358 m
4
/h, 

while the model gave a k  value of 1132 m
4
/h [57]. 
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The above simulation cases show that the predictions of the phase field model for the 

kinetics of grain growth in UO2 agree well with experimental data, both qualitatively and 

quantitatively. Moreover, the phase field model provides an explanation for the 

discrepancy in the experimental results since the precise amount of porosity seems to 

have a crucial effect on the grain growth kinetics in UO2. As the amount of porosity 

increases, the grain growth slows down. This trend is captured in Figure 4.27, which 

shows the evolution of the average grain size for UO2 with different porosity levels 

at1727 C. Figure 4.27 is thus a graphical summary of all cases investigated here. The 

kinetics of grain growth in UO2 changes gradually from boundary-controlled to pore-

controlled kinetics with increasing the amount of porosity.   

 

Figure 4.27. Effect of porosity on the kinetics of grain growth in UO2 at 1727 C. The process of 

grain growth retards as the amount of porosity increases [57].   

 

The last case study considered in this section is dedicated to investigating the 

possibility of abnormal grain growth in porous UO2. Abnormal grain growth refers to the 
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exaggerated growth of some grains relative to the normal growth for the majority of 

grains in a material undergoing thermal treatment at elevated temperatures. The 

anisotropy of grain boundary energy and mobility is considered to be the main reason for 

causing such abnormal growth [1]. However, the drag force experienced by the boundary 

due to the presence of pores, second phase particles and impurities could also lead to 

abnormal grain growth. A phase field model proposed by Kim et al. [124] showed that 

the presence of solute atoms gives rise to abnormal grain growth even in isotropic 

materials, i.e., when isotopic grain boundary and surface energies and mobilities were 

assumed to be isotropic as in the model presented here. This could be attributed to the 

fact that these particles tend to retard the grain growth process. Therefore, a non-uniform 

distribution of such particles on grain boundaries may simply cause some of the grains 

with fewer particles attached to them to grow much faster than the rest.    

In agreement with the results obtained by Kim et al. [124], it is found that the 

presence of pores facilitates abnormal grain growth in porous UO2, especially when pores 

are non-uniformly distributed. We used the same ensemble introduced in the second 

example discussed above but with pores being present only in one half of the domain. 

The kinetics of growth of the average grain size, in terms of the growth exponent and rate 

constant, remains practically the same whether the pores were uniformly or non-

uniformly distributed. This is expected since the same number and size of grains and 

pores were used in the two cases. Nonetheless, the evolution path, i.e., the microstructure 

evolution, for the case of a non-uniform pore distribution is quite different from the case 

where the pores are distributed uniformly. This is clearly shown in Figure 4.28. Moreover, 
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the figure clearly demonstrates the occurrence of abnormal grain growth, as some grains 

grow much faster than the rest.  

   
            (a) t=1min                                        (b) t=1h                                              (c) t=2h 

Figure 4.28. Snapshots of the microstructure evolution of porous UO2 ( 0.04f  , 0.4pN  ) at 

1727 C with non-uniform pore distribution. The grains in the pore-free part of the domain grow 

much faster than the grains in the porous part of the domain, giving rise to abnormal growth [57]. 

 

 

 

4.4 3D Simulations of Grain Growth in Porous Ceria  

In this section, we investigate the process of grain growth in porous polycrystalline ceria 

using 3D simulations. In the previous section, all the results presented were for 2D 

solutions of the problem. The 2D solutions implicitly assume cylindrical symmetry of the 

pores and grains and in-plane boundary motion. Therefore, while some aspects of the 

underlying physics of the process were captured in the 2D solutions, 3D solutions are 

necessary to simulate the process of grain growth accurately and capture all the related 

physics. For instance, as was mentioned before in Chapter two, the phenomenon of pore 

breakaway is of immense importance for the sintering process [1]. However in all the 2D 

simulations presented here, complete pore breakaway was not observed. This is though in 

agreement with the analysis of Riedel and Svoboda [51, 52], which is based on the sharp-
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interface modeling of the problem. As was mentioned before, they found out that 2D 

cylindrical pores do not separate from the grain boundary.  

In applying our model to CeO2, surface and grain boundary energies of ceria were 

taken to be 1.5 J/m
2
 and 1.0 J/m

2
, respectively [152] and orientation dependence of these 

energies was ignored for simplicity. The surface diffusivity of CeO2 is given by [152]  

4 2308250
3.82 10 exp   m / ssD

RT

  
   

 
.           (4.8) 

The intrinsic grain boundary mobility was obtained from the experimental data by Chen 

and Chen [153]. Their data was chosen because their samples were pure and almost fully 

dense. They have deduced a value of the activation energy of 581 KJ/mole for the grain 

growth process. However, they did not provide a formula for the grain boundary mobility. 

Here, we fit their data to the expression:   

4581000
327.1 exp   m /J sbM

RT

 
  

 
.                  (4.9) 

Now we turn our attention to the case of grain growth in porous ceria. As we 

discussed before, pores exert a drag force on the boundary that hinders its motion, and 

hence retards the grain growth process. However, as expected from grain growth theories 

and reported from experiments, there are several pore-boundary interactions that may 

occur. A pore may separate from the boundary or move along with it. Moreover, an 

isolated pore inside a grain may get picked up by a migrating boundary. Furthermore, 

when a pore moves along with the boundary, the kinetics of the pore-boundary complex 

may be pore-controlled or boundary-controlled. Therefore, a good model should be able 

to elucidate all these possibilities. Here we demonstrate that the phase field model is 

indeed capable of capturing all such scenarios.  
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Snapshots of the microstructure evolution in porous ceria at 1700K are shown in 

Figures 4.29 and 4.30 below. In this simulation, an ensemble of 100 grains with initial 

average grain size of 2.5 m and 80 spherical pores with initial pore size of 0.8 m was 

used. Half of the pores were distributed randomly on the grain boundary network and the 

rest were distributed randomly inside the grains to capture all possible pore-boundary 

interactions. The initially spherical pores relax quickly to a shape that satisfies locally the 

equilibrium dihedral angle condition at triple-junctions. Figure 4.29 presents snapshots of 

the 3D microstructure evolution. Figure 4.30 shows different 2D cross-sectional views of 

the same 3D simulation. As it is evident from the figures, there is a continuous change of 

the pore and boundary shapes during the migration of the pore-boundary complex. 

Moreover, the pore breakaway phenomenon is clearly captured. In our previous 2D 

simulations, the pore breakaway phenomenon was artificially suppressed due to the 

unrealistic cylindrical symmetry of the pores and grains implicitly assumed in 2D 

simulations. Such situation was also reported in the sharp-interface simulations [48-52].  

In agreement with the sharp-interface predictions, the phase field model 

demonstrates that the pore breakaway possibility depends strongly on the pore 

configuration. Higher-order pore configurations, e.g., pores on three- and four-grain 

junctions tend to reduce to lower-order configuration before complete separation from the 

migrating boundary. These situations are particularly clear in Figure 4.30. The opposite 

scenario is also possible, i.e., migrating boundaries can attach themselves to a lower-

order configuration and form a higher-order configuration; this can also be considered as 

a partial attachment. Moreover, a pore that started as an isolated pore inside a grain could 

get picked up by a migrating boundary and then separate from it and then get picked up 



81 

 

8
1
 

by another boundary and so on. Similar situation with opposite order could occur for 

isolated pores on grain boundaries. In another words, a specific pore could go through a 

series of partial and complete attachments and separations.  Lastly, as can be deduced 

from Figures 4.29 and 4.30, most of the grains where pore separation took place are 

larger than their neighboring grains.  This demonstrates that pore breakaway initiates 

abnormal grain growth as predicted from grain growth theories and reported in 

experiments [1, 46-58]. 

  

  
(a)                                                   (b)                                                   (c) 

Figure 4.29. Snapshots of the 3D microstructure evolution in porous ceria at 1700K: (a) after 1 

min, (b) at 120 min, and (c) at 360 min. Pore breakaway is evident. Some pores break away from 

the grain boundaries and some move along with them. The grains that left pores behind are 

relatively larger than the neighboring ones; this implies that pore breakaway initiates abnormal 

grain growth [58].        

 

Since the 3D simulations with the current model are clearly able to account for all 

the possible pore-boundary interactions, it is now possible to investigate quantitatively 

the effects of the presence of pores on the grain growth in ceria. In doing so, we use 

different ensembles of grains and pores. Initially, the pores are spherical and randomly 

distributed on grain boundaries to mimic actual microstructures during the final stage of 

sintering. The initial average grain size was 2.5 m and the pore size was 0.8 m. The 
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number of pores (and hence their volume fraction, f) was varied to study its effect on the 

kinetics of grain growth. 

 

                 
                t=1min                                              t=120min                                       t=360min 

            
                t=1min                                              t=120min                                       t=360min 

Figure 4.30. Snapshots of cross-sectional views corresponding to the results shown in Figure 4.29 

revealing pore-boundary interactions: x-z plane (upper row) and y-z plane (lower row). The 

change of the pore shape is continuous during the movement of a pore-boundary complex. A pore 

can break away from or be picked up by a migrating grain boundary (e.g., the pores in hexagon 

and square, respectively, in the upper row). The pore breakaway possibility is highly dependent 

on the pore configuration. Higher-order pore configurations (e.g., the pores at three- and four-

grain junctions) tend to reduce to the two-grain junction (edge pore) configuration, which 

represents a partial breakaway (e.g., the pore marked by diamonds in the upper row) before 

complete separation. A pore on a two-grain junction could also become attached to other 

migrating boundaries and form a higher-order configuration (e.g., the pore enclosed in squares in 

the upper row). A specific pore could go through a series of attachments and detachments (e.g., 

the pore marked by the rectangle in the lower row). The thick gray spots are due to the fact that 

the cutting planes are sometimes parallel to the diffuse interfaces [58]. 

 

 

In agreement with our previous 2D simulations, the presence of pores diminishes 

grain growth in porous ceria. This effect is quantitatively captured in Figure 4.31, which 
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shows the evolution of the average grain size with different levels of porosity at 1700K. 

As it is obvious from the figure, the grain growth process slows down as the amount of 

porosity increases. Moreover, the average kinetics of the heterogeneous system shows a 

transition from boundary-controlled kinetics to pore-controlled kinetics as the porosity 

level increases. Such situation is presented in Figure 4.32. This prediction agrees with 

both the classical models [46-48] and the sharp-interface models [49-52] .However, the 

phase field model presented here relaxes all the assumptions used in those models. For 

example, it does not assume a homogeneous microstructure as in the classical models [1, 

46-48]. It is also not restricted to simplified geometrical descriptions of the 

pore/boundary configurations or steady-state situations as in the sharp-interface models 

[49-52]. The condition that determines which kinetics dominates is as follows. In terms 

of the phase field parameters, when 2
sM f r L   , the system follows pore-controlled 

kinetics, while in the case  2
sM f r L    , it follows boundary-controlled kinetics. 

Here r is the pore size. Equivalently, in terms of the regular thermodynamic and kinetic 

(sharp-interface) parameters, this condition becomes: if   2s m
gb

s
b

D w
f r M

RT

 
 , the 

growth kinetics is pore-controlled, while if 2s m
gb

s
b

D w
f r M

RT

 
 , the growth kinetics is 

boundary-controlled.  This criterion can easily be understood if one recalls the equation 

of motions for the grain boundary and pore (free) surface in the diffuse- or sharp-

interface descriptions (Eqs. (2.20) and (2.24) or (3.8)). Aside from the pore fraction, this 

condition simply examines if the grain boundary velocity is higher or lower than the pore 

(free) surface velocity. The pore fraction simply checks if the porosity is of significant 
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amount to influence the average kinetics of the system. It is also worth noting that the 

rate constant (or equivalently the activation energy) is sensitive to the precise amount of 

porosity regardless of the type of the prevailing kinetics. This is also shown in Figure 

4.32 where the slope (rate constant) decreases with increasing the porosity level for both 

boundary- and pore-controlled kinetics. The quantitative results are summarized in 

Tables 1 and 2, which give the values of the rate constant as function of the pore fraction 

for both types of kinetics.  

 

             
                                  (a)                                                                                 (b) 

Figure 4.31. Effect of porosity on the kinetics of grain growth in CeO2 at 1700K. (a) Evolution of 

the average grain size with time as function of the pore volume fraction. The main trend is the 

same as was captured in 2D simulations [6, 18]. That is, the process of grain growth is slowed 

down by increasing the amount of porosity. (b) A close up view showing the initial dense region 

in part (a) [58]. 
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 (a) Boundary-controlled growth                              (b) Pore-controlled growth 

Figure 4.32. Kinetics of 3D grain growth in CeO2 at 1700K at different porosity levels. There is a 

transition from boundary-controlled growth to pore-controlled growth as the pore fraction 

increases. Moreover, for each regime, the rate constant (or equivalently the activation energy) is 

sensitive to the precise amount of porosity. The values of the rate constant as function of porosity 

for both types of kinetics are given in Tables 1 and 2 [58]. 

 

Table 1: The dependence of the rate constant on the pore fraction for boundary-controlled kinetics 

 

(%)f  
2(μm /hr)k  

0 3.34 

2 2.35 

4 1.79 

 

 

Table 2: The dependence of the rate constant on the pore fraction for pore-controlled kinetics 

 

(%)f  
4(μm /hr)k  

4.5 34.4 

5.5 28.94 

6 24.1 

8 19.73 
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The strong dependence of the overall grain growth kinetics on the precise amount 

and distribution of pores captured by the phase field model explains the discrepancies 

often found in the results obtained from grain growth experiments in porous solids. For 

example, for the case of grain growth in ceria, different types of kinetics were reported. 

Chen and Chen [153] reported parabolic grain growth kinetics for highly dense ceria 

samples. Our model results for the boundary-controlled cases (see Figure 4.32(a)) are in 

good agreement with their data. Zhang and co-workers reported a growth exponent of 

four for Co-, Mn-, and Fe-doped porous ceria. This is similar to our results for the pore-

controlled kinetics shown in Figure 4.32(b). Adding dopants is equivalent to changing the 

porosity level since it alters the intrinsic grain boundary mobility. In this case, as reported 

by Zhang and co-workers [38-40], the dopants increased the intrinsic grain boundary 

mobility and hence shifted the kinetics from boundary-controlled kinetics to pore-

controlled kinetics.  

 

4.5 2D and 3D Simulations of Grain Growth in Porous Solids Using MARMOT  

In this section, 2D and 3D simulations of grain growth in a porous polycrystalline solid 

using MARMOT are presented. The main goal here is to demonstrate that the model 

predictions are consistent irrespective of the numerical method used to solve the model 

equations. Therefore, the model equations are solved here in a non-dimensionalized 

setting. The non-dimensionalized model parameters took on the values: 1.0B  , 0.05C 

15  , 1.0L  , 45  , and s 1.0M  . These values of the model parameters are 

consistent with the magnitude of thermodynamic and kinetic parameters of most solids at 

high temperatures.   
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First, the 2D simulations are discussed. In these simulations, an ensemble of 400 

grains with different number of pores was used. The domain size was 4000 4000 . The 

initial pore radius was 60. The 400 grains were presented using only 15 orientations 

(order parameters) via Grain Tracker as discussed in the previous chapter. In all the 

simulations, adaptive mesh and time step were used. A typical adaptive mesh generated 

using MARMOT for simulating grain growth in porous polycrystalline solids is shown in 

Figure 4.33.  

In common with the 2D results obtained from the explicit scheme (see Section 4.3), 

the 2D results obtained from the fully-coupled, fully-implicit scheme also show 

retardation of the grain growth process with increasing porosity. This is most evident 

from Figures 4.34 and 4.35. Figure 4.34 presents snapshots of the microstructure 

evolution of a porous polycrystalline solid with different levels of porosity. These 

snapshots are taken at the same time. Hence, as evident from the figure, the average grain 

size is smaller at higher porosity levels. This is quantitatively demonstrated in Figure 

4.35 which shows the evolution of the average grain size with different pore fractions. As 

the pore fraction increases, the grain growth slows down. Moreover, a transition from 

boundary-controlled kinetics to pore-controlled kinetics takes place as the amount of 

porosity increases. This transition is captured in Figure 4.36. Furthermore, the absence of 

complete pore separation in 2D simulations is also observed here. This is most obvious in 

Figure 4.34 where complete pore breakaway is absent. Therefore, all the quantitative and 

qualitative predictions of the model that were obtained using the explicit scheme were 

also reproduced using the fully-coupled, fully implicit scheme implemented in 

MARMOT.          
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Figure 4.33. An adaptive mesh generated using MARMOT for simulating grain growth in porous 

polycrystalline solids. The mesh is much finer at the grain boundaries and pore surfaces than in 

the bulk of the grains.   
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Figure 4.34. Snapshots of the microstructure evolution of a porous polycrystalline solid with 

different porosity levels obtained from 2D MARMOT simulations. As clear from the figure, the 

presence of pores diminishes the grain growth rate. This can easily be seen by noting that the 

average grain size is larger for lower porosity levels (the porosity level increases from top to 

bottom). Similar to the 2D simulations performed using the explicit scheme, complete pore 

separation is absent. This is due to the unrealistic assumption of cylindrical symmetry of the pore 

and grain shapes implied in the 2D simulation. This assumption exaggerates the contact area 

between the pore and the grain boundary and hence overestimates the pore drag effect.    

 

 

 
Figure 4.35. Effect of porosity on the kinetics of grain growth in a porous polycrystalline solid 

based on 2D MARMOT simulations (see Figure 4.34). In agreement with previous simulations 

performed via the explicit scheme, the growth rate diminishes as the amount of porosity increases.   
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    (a) Boundary-controlled growth                       (b) Pore-controlled growth 

 

Figure 4.36. Dependence of the type of grain growth kinetics on the pore fraction. A transition 

from boundary-controlled growth to pore-controlled growth takes place as the amount of porosity 

increases.   

 

3D simulations of grain growth in porous polycrystalline solids were also performed 

via MARMOT. The non-dimensionalized model parameters are the same as in the above 

2D simulations. The domain size was1000 1000 1000  . The initial pore radius was 50. An 

ensemble of 200 grains was used. However, the current version of Grain Tracker 

algorithm is inefficient in 3D. At least 50 different orientations (order parameters) had to 

be used to represent 200 grains. This of course leads to high computational cost since the 

number of degrees of freedom (DOF) is linearly proportional to the number of variables. 

In fact, for a typical 3D simulation with adaptive mesh, the number of elements was one 

million and the total number of degrees of freedom was 52 million. The 3D simulations 

were conducted using 600 cores on Fission cluster at Idaho National Laboratory.      

Figure 4.37 shows snapshots of a 3D simulation of an ensemble of 200 grains and 

200 pores. The figure clearly demonstrates that complete pore separation takes place 



91 

 

9
1
 

during grain growth in porous solids. It also shows that pore breakaway may initiate 

abnormal grain growth since the grains that detached from the pores are usually larger 

than the other grains. These deductions are also obvious in Figure 4.38 which presents 

different 2D cross-section views of the 3D simulation shown in Figure 4.37.  Moreover, 

Figure 4.38 captures the fact that higher order pore configurations tend to transform into 

lower order configuration (partial separation) before complete separation. Hence, the 3D 

results obtained here using MARMOT confirm the 3D results deduced earlier via the 

explicit scheme (recall Section 4.4).              

 

 

     

Figure 4.37. Snapshots of a 3D simulation of grain growth in a porous polycrystalline solid 

carried out using MARMOT. Pore breakaway is evident. This confirms that pore separation is 

artificially suppressed in 2D simulations as was concluded before using the explicit scheme.  
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Figure 4.38. Snapshots of cross-sectional views corresponding to the 3D simulation shown in 

Figure 4.37 revealing pore breakaway: x-z plane (upper row) and y-z plane (lower row). Higher 

order pore configurations reduce to lower order configuration before complete separation. Note 

that the mesh is very fine in the vicinity of grain boundaries and pore surfaces.   

 



93 

 

9
3
 

CHAPTER 5. SUMMARY AND FUTURE DIRECTIONS  

5.1 Summary  

A detailed phase field model has been developed to study the kinetics of grain growth in 

porous polycrystalline solids. The model couples the curvature-driven grain boundary 

motion and pore migration by surface diffusion via constructing a dynamical system of 

coupled Cahn-Hilliard and Allen-Cahn equations. Hence it takes into account the 

interplay between the pore and the grain boundary which highly influences the overall 

grain growth kinetics. Moreover, the model is able to capture the concurrent pore 

coalescence and grain growth. We carried out a formal asymptotic analysis to 

demonstrate that the phase field model reduces to its sharp-interface counterpart in the 

limit of small diffuse-interface width. The phase field model alleviates all the unrealistic 

assumptions of the classical homogeneous models and obviates all the numerical 

difficulties of the sharp-interface models. All the model parameters were identified in 

terms of regular thermodynamic and kinetic parameters. The free energy parameters of 

the model are directly related to the surface and grain boundary energies, Cahn-Hilliard 

and Allen-Cahn mobilities are given in terms of the surface and grain boundary 

mobilities. Determination of the model parameters enables quantitative analysis of the 

grain growth process. The model equations were solved using two different numerical 

schemes, e.g., explicit and implicit. The explicit scheme uses finite-difference 
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discretization and was implemented using in-house codes written in FORTRAN 90. The 

fully-coupled, fully-implicit scheme uses finite-element discretization with adaptive 

meshes and was implemented using MARMOT. The kinetic trends captured by the model 

using the two techniques were the same, which raises the confidence in the numerical 

results. The high computational cost was overcome by using parallel computing. The 3D 

simulations presented here are the first such general simulations for 3D grain growth in 

porous polycrystalline solids in the literature.   

The model has been used to investigate the effect of porosity on the kinetics of grain 

growth in porous polycrystalline solids. By using idealized 2D pore and grain shapes, the 

basic pore-grain boundary interactions were captured. It was shown that the presence of 

pores exerts a drag on the grain boundary hindering its motion and retarding the grain 

growth process. As the amount of porosity increases, the growth rate diminishes. 

Moreover, higher pore (free) surface mobility leads to faster grain growth. This is due to 

the fact that pores with high surface mobility are easier to be dragged by the migrating 

boundary, i.e., they exert less drag on the grain boundary. In fact, for high enough surface 

mobility, the pore moves along with the boundary as a rigid-body without changing its 

shape or size. Moreover, it was shown that the pore configuration influences the grain 

growth kinetics in porous solids. The simulations demonstrated that corner pores (pores 

on triple-junctions) retard the grain growth process more than edge pores (pores on two-

grain junctions). This can be attributed to the fact that edge pores have higher curvature 

and hence higher velocity than corner pores. Obviously, the more mobile edge pores 

exert less retarding force on the grain boundary than corner pores. This result can be 

generalized to higher-order pore configuration as well. The higher the pore coordination 
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number (the number of grains attached to the pore) is, the lower its curvature and hence 

velocity. Therefore, higher-order pore configurations retard the grain growth process 

more than lower order configuration. Furthermore, it was shown that when the kinetic 

mechanism of bulk diffusion is active, corner pores grow at the expense of edge pores as 

part of Ostwald ripening of the pores during coarsening. Hence, the process of Ostwald 

ripening of the pores tends to hinder the grain growth process since it transform the more 

mobile lower-order pore configurations into less mobile higher-order pore configurations.         

The model was then applied to investigate the effect of porosity on the kinetics of 

grain growth in UO2 and CeO2. The model parameters for both materials were calculated 

from their thermodynamic and kinetic data available in literature. 2D and 3D simulations 

were performed to study in details the grain growth process in these materials. The 

polycrystalline structures were produced using a Voronoi tessellation.  It was 

demonstrated that the presence of pores slows down the grain growth process. Moreover, 

it was shown that the growth mode is very sensitive to the amount of porosity.  As the 

amount of porosity increases, the growth mode changes from boundary-controlled to 

pore-controlled. In each growth mode, the rate constant (or equivalently the activation 

energy) depends strongly on the pore fraction. Only 3D simulations were able to capture 

the phenomenon in pore breakaway, which is commonly observed in experiments. This 

shows that 2D simulations artificially suppress the process of pore separation. The 3D 

simulations revealed that higher-order pore configurations transform into lower-order 

configurations before complete separation. Such transformation may be called partial 

breakaway. On the other hand, partial attachments where lower-order pore configurations 

transform into higher-order pore configurations also take place during grain growth in 
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porous polycrystalline solids. Lastly, it was observed that inhomogeneous pore 

distribution and pore breakaway lead to abnormal grain growth. Therefore, a detailed 

description of the microstructure (e.g., pore fraction and pore and grain sizes and 

distributions) is necessary for obtaining accurate grain growth rates. The strong 

dependence of the grain growth kinetics on the underlying microstructure in porous 

polycrystalline solids captured by the phase field model helps in reconciling the 

discrepancies found in the experimental results for such materials [1, 36-40, 153].   

5.2 Future Directions  

The possible directions for future research are the following:  

 In our investigation, we considered surface diffusion to be the sole mechanism for 

pore migration. However, for a complete description of the problem, bulk 

diffusion and evaporation and condensation must be incorporated as possible 

mechanisms for pore migration. Note that bulk diffusion was already considered 

during the investigation of Ostwald ripening of pores in Section 4.2. It can be 

shown that only minor modifications are required for the current version of the 

model to account for evaporation and condensation.   

 In all the simulations presented here, isotropic material properties, e.g., surface 

and grain boundary energies and mobilities were assumed. For a more accurate 

description of grain growth in real materials, the anisotropy of these parameters 

must be taken into account. Such anisotropy is known to cause abnormal grain 

growth in fully dense solids. For the case of porous materials, it will certainly also 

affect the possibility of pore breakaway and hence the overall growth kinetics. 

The current version of the phase field model can be generalized to take into 
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consideration the anisotropy of these parameters by allowing the gradient 

coefficients, Cahn-Hilliard mobility, and Allen-Cahn mobility to depend on the 

corresponding order parameters and/or their gradients. A detailed procedure for 

constructing such anisotropic phase field models was reported several times in the 

literature [59-61].   

 The current model ignores the effect of deviation from perfect stoichiometry on 

the kinetics of grain growth in ceramics. Deviations from stoichiometric 

concentrations are known to affect all the thermodynamic and kinetic parameters 

of ceramics and hence their grain growth kinetics [36-40, 150, and 151]. 

Nonetheless, this effect can be incorporated into the model if one can establish 

direct relations between deviations from stoichiometric concentrations and the 

thermodynamic and kinetic parameters. This could be achieved through 

experiments or lower scale models such molecular dynamics and density 

functional theory.   

 While the model presented here was used to investigate grain growth in porous 

UO2, the effect of irradiation was absent. Irradiation is known to drive 

microstructure evolution and affect the grain growth kinetics in UO2 [36, 37, 150, 

151, and 154-156]. Two steps are required to incorporate irradiation effects in the 

current version of the model. The first step is to reformulate the model in terms of 

point defects rather than mass density. In the second step, generalized Cahn-

Hilliard equations for the point defect concentrations including production and 

reaction terms can be derived as in the case for the phase field models for void 

growth [62, 101-112]. However, in order for such models to be quantitative, 
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formal asymptotic analyses must be performed to deduce their sharp-interface 

limits and connect their parameters to the regular thermodynamic and kinetic 

parameters. We have, in fact, taken the first step for constructing such general 

models by developing phase field models for porosity evolution in single crystals 

under irradiation [62, 154].     
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Appendix A Determination of Model Energetic Parameters 

 

 Here, we use the equilibrium solutions of phase field variables to fix the model 

parameters. We perform this task in two steps. First we study the phase field profiles 

across a flat grain boundary between two semi-infinite different grains with orientations i 

and j (see Figure A1(a)). Across a grain boundary, the change in the density field is very 

small, 1  , and can be neglected. By following Cahn and Hilliard approach [83], the 

specific grain boundary energy, gb , is given by the integral     

22
gb

dd
( 1, , ) d

2 d d

ji
i jf x

x x

  
   





          
     

 ,                                      (A.1) 

where an isotropic grain boundary energy was assumed. This assumption leads to only 

one gradient coefficient. Here, x is the coordinate perpendicular to the grain boundary, 

and ( 1, , )i jf     is the bulk free energy density (see Eq. (3.2)) at the grain boundary 

between grain i and grain j , which reads as follows:   

   
2

3 3 2 2( 1, , ) 1 4 3i j i j i jf C      
 

      
 

.                                          (A.2) 
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Figure A1. A schematic of the variation of phase field variables across (a) a diffuse flat grain 

boundary and (b) a diffuse flat surface. 

 

For a grain boundary in local equilibrium, the profiles  i x  and  j x  must adopt a 

shape which minimizes the functional (A.1) and satisfies the following boundary 

conditions (see Figure A1(a)):   

j1     and     0     for  i x    ,                                                    (A.3a) 

j0     and     1     for  i x    ,                                                  (A.3b) 

dd
0         for  

d d

ji x
x x


   .                                                             (A.3c) 

According to the principles of calculus of variations, the functions  i x  and  j x  that 

extremize the functional (A.1) must satisfy Euler equations, namely,  

2

2

( 1, , ) d
0

d

i j i

i

f

x


   




 
 


,                       (A.4a) 

  2

2

1, , d
0

d

i j j

j

f

x


   




 
 


.         (A.4b) 

Equivalently, these profiles satisfy 
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22 dd
( 1, , ) 0

2 d d

ji
i jf

x x

  
  

         
     

,                                            (A.5) 

where the boundary conditions (A.3) were taken into account. Across a flat grain 

boundary, the following relation holds (see Figure A1(a)): 

d d

d d

j i

x x

 
  ,                                                                      (A.6) 

 by integrating the above equation taking into account the boundary conditions, we 

simply obtain  

   1j ix x   ,                                                                (A.7)  

which is readily seen from figure A1(a). This immediately modifies equation (A.6) to  

d d

d d

j i

x x

 
  ,                                                                    (A.8) 

which also gives 

d
1

d

j

i




  .                                                                     (A.9) 

Rearranging equation (A.5) while taking into account equations (A.7) through (A.9) and 

the boundary conditions, we obtain  

( 1, , )d

d

i ji
f

x 

  




  ,                                                                 (A.10) 

d ( 1, , )

d

j i jf

x 

   




 .                                                          (A.11) 

The above two equations are needed to carry out the integral in (A.12), which comes by 

substituting equation (A.5) into equation (A.1).  
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b 2 ( 1, , ) dg
i jf x   





  .                                                                 (A.12) 

From equation (A.7) we have    xx ij  1 , so by substituting this relation into 

equation (A.2) and skipping some algebraic details we obtain  

 
22( 1, , 1 ) ( ) 12 1i j i i i if f C            .                                    (A.13) 

Substituting by equation (A.10) and equation (A.13) into equation (A.12) gives,  

 
1

gb

0

2
2 12 1 d

3
i i iC C         .                                        (A.14) 

Equation (A.14) establishes a direct relation between two of the model parameters and a 

material property which is the specific grain boundary energy.  

The diffuse interface width across a flat grain boundary can be estimated from the 

model parameters by (see Figure A1(a)) 

0

d 1
tan

d

j

x
x






 
  

 
.                                                                 (A.15) 

From equations (A.11) and (A.13) and Figure A1(a), we have  

0

d ( 0.5) 3

d 4

j i

x

f C

x  

 

 


  
  

 
,                                                    (A.16) 

The last two relationships yield 

4

3C


  ,                                        (A.17) 

where   is the grain boundary thickness. Equation (A.17) provides a relation between 

the model parameters and another material property which is the grain boundary 

thickness.  
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There are still two parameters in the free energy functional to be determined, B  and 

 . These parameters can be obtained from the phase field profiles in equilibrium across 

a flat free surface. Without loss of generality, we consider the phase field profiles across 

a flat free surface at 0x    between a semi-infinite solid grain and semi-infinite 

amorphous/pore phase (see Figure A1(b)). In this case, both fields change across the 

interface and hence the specific surface energy is calculated from the integral  

 
2 2

s d d
, d

2 d 2 d
f x

x x

   
  





   
     

   
 .                                          (A.18) 

Here ( , )f    is the bulk free energy density (see equation (2)) when only one solid grain 

is present, 

     
22 2 2 3 4( , ) 1 6 1 4 2 3f B C                 

 
.                           (A.19) 

At equilibrium, the functional (A.18) must be a minimum which requires   

2

2

( , ) d
0

d

f

x


  




 
     

,                                                                (A.20a) 

2

2

( , ) d
0

d

f

x


  




 
     

.                                                               (A.20b) 

Upon integration, the above two equations yield 

2 2
d d

( , ) 0
2 d 2 d

f
x x

   
 

    
      

     

,                                                    (A.21) 

where the boundary conditions ( ) ( ) 1      and ( ) ( ) 0      were used. From 

Figure A1(b), one expect that the following relation to be valid: 

d d

d dx x

 
 ,                                                                   (A.22) 
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which, after applying the boundary conditions above, gives  

( ) ( )x x  .                                                                  (A.23) 

From the last equation one obtain 

d d

d dx x

 
 ,                                                                      (A.24) 

and 

   
22( , ) ( ) 7 1f f B C          .                                          (A.25) 

According to Euler equations (B.20), such relations are valid only if

(1/ ) / (1/ ) /f f         , which holds if the following relation holds  

6C B C

  


 .                                                                  (A.26) 

Following the procedure leading to equation (A.14) for obtaining the grain boundary 

energy, the surface energy is finally found to be  

s 2
7

6
B C      .                                                     (A.27) 

Equations (A.14), (A.17), (A.26) and (A.27) uniquely fix the unknown free energy 

parameters B , C ,   and   in terms of the surface energy, grain boundary energy, and 

grain boundary width for any particular material.  
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Appendix B Asymptotic Analysis of the Phase Field Model  

A typical procedure for carrying out an asymptotic analysis of a phase field model is by 

expanding the fields in terms of a small parameter, often given the symbol  , that is 

related to the diffuse interface width [59-61, 113-119]. Two different expansions are 

usually employed, e.g., outer and inner expansions. The outer expansion describes the 

fields far away from the interface (in the bulk phases), and the inner expansion describes 

the fields in the neighborhood of the interface. Matching the solutions of the outer and 

inner problems deduced from these expansions in the limit 0   gives rise to the sharp-

interface limit of the phase field (diffuse-interface) model. The matching conditions were 

derived and summarized several times before [59-61, 113-119], so we will not repeat that 

here. However, we will explicitly mention any matching condition we use here when 

necessary.      

There are two phase field models [157, 158] that are relatively close to the one 

presented here in the sense that they also couple motion by mean curvature to motion by 

surface diffusion (motion by the surface Laplacian of the mean curvature). In [157], a 

phase field model of simultaneous order/disorder transition and phase separation was 

proposed. In that model, it was shown via asymptotic analysis that the antiphase 

boundary (the boundary between two variants of the ordered phase) moves by mean 

curvature flow while the interphase boundary (the boundary between the ordered and 

disordered phases) moves by surface diffusion provided that the curvature of antiphase 

boundary is small and the curvature of the interphase is large. While in principle the pore 

(free) surface can be considered as an interphase and the grain boundary as an antiphase, 
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the condition on the curvatures is restrictive. A pore moves by surface diffusion and a 

grain boundary moves by mean curvature flow regardless of their sizes/curvatures. In 

[158], a phase field model for the electromigration of intergranular voids was introduced. 

Using formal asymptotic analyses, the authors derived two different sharp-interface limits 

depending on the scaling of Allen-Cahn mobility. In one limit, the grain boundary was 

stationary while the void surface moves by surface diffusion. In the other limit, the grain 

boundary moves by mean curvature flow while the void surface moves by an evolution 

law that combines surface diffusion and surface attachment limited kinetics. As was first 

proposed by Taylor and Cahn [67], the evolution law that combines surface diffusion and 

surface attachment limited kinetics is considered to represent the general curvature-driven 

motion form which motion by mean curvature flow and motion by surface diffusion arise 

as limiting cases. Nevertheless, the two limits mentioned above do not reduce to the 

sharp-interface limit we seek here. Therefore, we present a different scaling that gives 

rise to a third limit. In this limit, the grain boundary moves by mean curvature flow and 

the pore surface moves by surface diffusion in agreement with the sharp-interface model 

(Eqs.(2.20) and (2.24)). Also note that in [158] the authors used a non-differentiable 

(non-smooth) obstacle potential while here we use a differentiable (smooth) multi-well 

potential.          

Let us recast our model equations in a form similar to the one usually used in the 

asymptotic analyses reported in [59-61, 113-119]. The free energy (Eq. 3.1) is then 

rewritten as:                    

2 2
2 2 3

1
1

[ ( , ,...., ,...., ) | | | | ] 
2 2

p

p

q
F f d x 



 
     



     .                                       (B.1) 
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Hence, /q    is a constant and    is a small parameter proportional to the 

diffuse interface width (see Eq. A.17) Moreover, we define    

2 2
1 2( , , ,...., )

F
f q 


      


     
 

,                                                            (B.2a) 

2 2
1 2( , , ,...., )     , 1,2....

F
u f p

   



       


       
 

.                            (B.2b)                      

Here  is a chemical potential and u is a generalized force that drives the evolution of 

the non-conserved order parameter,  . Furthermore, we make the slow time 

transformation 
2t t suitable for the slow curvature-driven motion [157]. The 

dynamical system (Eqs. (3.3) and (3.6)) can then be rewritten as       

2 ( )t M      .                                                                                                (B.3) 

2     , 1,2....t Lu p         .                                                                            (B.4) 

In Cahn-Hilliard equation above, we dropped its tensorial representation of the mobility 

and assumed that it is just function of  for simplicity. The projection tensor does not 

change the sharp-interface limit as was shown in [118]. In fact, in agreement with [118], 

we will show here that Cahn-Hilliard equation describes surface diffusion regardless of 

the form of the mobility as long as the bulk phases are in equilibrium. However, the 

importance of the projection tensor for numerical implementation will be discussed later.   

As depicted in Figure B1 below, the order parameters behave differently in the 

vicinity of a grain boundary or a pore (free) surface. Hence, the complete asymptotic 

analysis consists of two steps to deduce the equation of motion for each interface as in 

[157, 158]. Here, we first deduce an equation of motion for the grain boundary and then 

its counterpart for the pore (free) surface. In both cases, along  , the boundary 
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conditions are 0M         m m m where m  denotes the unit normal to . 

Under these conditions, the system is closed and the mass of the system is prescribed by 

the initial conditions. The results of the asymptotic analysis would not be altered if an 

open system with Dirichlet type boundary conditions is considered instead.        

 

                  

                                 (a)                                                                                         (b) 

Figure B1. A schematic illustration of the local coordinate system used in the asymptotic analysis 

showing values of the order parameters across (a) a grain boundary and (b) a free surface [58]  

 

B.1 Derivation of the Equation of Motion of a Grain Boundary  

Over a volume containing a single grain boundary (see Figure B1(a)), the free energy (Eq. 

(B.1)) reduces to  

2 2
2 3

1 2
1

[ ( 1, , ) | | ] 
2

F f d x



   



    .                                 (B.5) 

The bulk free energy density (Eq. (3.2)) is now given by   

3 3 2 2 2
1 2 1 2 1 2( 1, , ) 1 4( ) 3( )f C            

 
           (B.6) 

In other words, the multi-well potential given by Eq. (3.2) reduces to a double well 

potential (Eq. (B.6)) at a grain boundary.  


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Since the density is constant across a grain boundary, the dynamics is controlled by 

Allen-Cahn equations only. This is true as long as solute segregation is ignored. An 

asymptotic analysis for a phase field model of the effect of solute segregation on grain 

boundary motion was discussed in [125]. Hence, the dynamical system (Eqs. (B.3) and 

(B.4)) reduces to  

2       , 1, 2t Lu         ,            (B.7) 

with the following initial and boundary conditions (see Figure 1(a)),  

1 2( ,0) 1  ,  ( ,0) 0x x x      ,          (B.8a) 

1 2( ,0) 0  ,  ( ,0) 1x x x      ,         (B.8b) 

( ,0) 1 x x    ,            (B.8c) 

1 2 0 x      m m .             (B.8d) 

In the outer region we expand the fields as   

0 1 2 2( , ) ( , ) ( , ) ( , )  , 1,2u x t u x t u x t u x t             ,        (B.9) 

with similar expressions for  . Note that superscripts on  denote exponents, while 

superscripts on the fields u ,  ,  , and    denote the order in the perturbation 

expansion. Explicit expressions of 0u , 1u , etc. can be obtained by expanding the 

derivatives of the bulk free energy (Eq. B.6) in Taylor series as  

1 1 1 2 1

0 0 2 0 0 1 2 2 2 0 0 1 2 2
1 2 1 2 1 2 1 1 1 2 2 2( , ) ( , ) ( , )[ ] ( , )[ ]f f f f                            ,                

(B.10a) 

2 2 1 2 2

0 0 2 0 0 1 2 2 2 0 0 1 2 2
1 2 1 2 1 2 1 1 1 2 2 2( , ) ( , ) ( , )[ ] ( , )[ ]f f f f                           .   

(B.10b) 
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By substituting Eqs. (B.10(a) and B.10(b)) in Eq. (B.2(b)), and equating terms of the 

same order, we arrive at,   

1 2

0 0 0 0 0 0
1 1 2 2 1 2( , ) ,      ( , )u f u f        ,       (B.11a) 

1 2 1 2 1 2

1 2 0 0 1 2 0 0 1 1 2 0 0 1 2 0 0 1
1 1 2 1 1 2 2 2 1 2 2 1 2 1( , ) ( , )  ,  ( , ) ( , )u f f u f f                       .   (B.11b) 

We will need only explicit expressions for the fields up to first order in our analysis here. 

Substituting Eq. (B.11) in Eq. (B.7) and equating terms of the same order results in 

different outer equations to be solved order by order. For the leading order (
0 ) we have,  

00  , 1, 2Lu      .              (B.12) 

Taking into account the initial and boundary conditions, (Eqs. (23a-d)), Eq. (27) 

immediately gives,   

0 0 , 1, 2 ,  u x        ,        (B.13a) 

0 0
1 21  ,  0,   x      ,         (B.13b) 

0 0
1 20  ,  1 ,  x      .         (B.13c) 

For the next-to-the leading order ( ), we obtain   

10 , 1, 2Lu      .            (B.14) 

This immediately gives  

1 0 , 1, 2 ,  u x        .             (B.15) 

Now from the above expressions of 1u  and since by construction 

1 2 2 1

2 0 0 2 0 0
1 2 1 2( , ) ( , ) 0f f          and 

1 2

2 0 0 2 0 0
1 2 1 2( , ) , ( , ) 0f f       when the leading order 

outer solutions take on their equilibrium values (given by Eqs. (B.13b) and (B.13c)), Eq. 

(B.15) also leads to    
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1 0 , 1, 2 ,  x        .              (B.16) 

In other words, the leading order outer solution solves the outer problem exactly. 

Therefore, we have  

0 , 1, 2 , 0  ,  l lu l x           .           (B.17) 

Let us now define a local orthogonal coordinate system ( , )r s , where r is the normal 

distance from the point x  in   to the interface ( )t , such that 0r  in   and 0r  in

 , and 1 2{ , }s s s being the other two coordinates that are perpendicular to r  and 

tangent to  (see Figure 1).  . Moreover, since the interface width is of order  , we 

further introduce a stretched variable, /z r  . Therefore, ( , )z s  is a local orthogonal 

coordinate system that moves with the interface.  In the moving coordinate system (MCS), 

the spatial and time derivatives transform as follows:  

2 2 2 1 2
z z s         ,                   (B.18a) 

1
MCS MCS( ) ( ) n

t t t t zV V          .                 (B.18b) 

In the above,  2
s   is the 2D surface Laplacian, 

nV  is the normal velocity of the interface 

with respect to a stationary frame of reference, and   is the curvature of the interface, 

which is positive when the center of curvature lies within  .  We will drop the 

subscript (MCS) in the following.  

In the inner region, we expand the fields as   

0 1 2 2( , , ) ( , , ) ( , , ) ( , , ) ( , , )    , 1,2u z s t u r s t u z s t u z s t u z s t               ,           (B.19) 
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with similar expressions for other field quantities. Again, similar to the outer expansion, 

we can get explicit expressions for these terms. By using Eqs. (26a), (33a) and (17b), we 

get   

1 2

0 0 0 2 0 0 0 0 2 0
1 1 2 1 2 1 2 2( , )  , ( , )z zu f u f            ,             (B.20a) 

1 1 2

1 2 0 0 1 2 0 0 1 0 2 1
1 1 2 1 1 2 2 1 1( , ) ( , ) - -z zu f f               ,      (B.20b) 

2 2 1

1 2 0 0 1 2 0 0 1 0 2 1
2 1 2 2 1 2 1 2 2( , ) ( , ) - -z zu f f                .       (B.20c) 

Therefore, the inner equations can now be written as   

2      ,  1, 2t zv Lu              .                          (B.21)    

Here v  is the interface (front) normal velocity in the slow timescale defined above. 

Again, the above inner equations must be solved simultaneously order by order. For the 

leading order (
0 ), we have  

00  ,  1, 2Lu      .             (B.22) 

This gives 

0 0  ,  1, 2u     .               (B.23) 

These are basically the Euler-Lagrange equations (see Eq. (B.20a)) which, with the 

boundary conditions, from the outer solution, e.g., 0 0( ) ( 0)     , give the equilibrium 

planar profiles for the order parameters [56,125]. For the next-to-the leading order ( ), 

we obtain   

0 1 ,  1, 2zv Lu         .                                 (B.24) 

Following the standard procedure implemented in all previous asymptotic analyses [59-

61, 113-119], we multiply each equation by its corresponding 0
z   and integrate from 
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z   to z  . Performing integration by parts on the first and fourth terms of the 

right hand sides (see Eqs. (B.20b) and (B.20c)) and taking into account that the leading 

order profiles satisfy Euler-Lagrange equations, one obtains   

 1 1( )
v

L A
 

 
  ,          (B.25a)  

2 2( )
v

L A
 

 
   .            (B.25b) 

In the above, 
1 2

1 0 1 0 2 0 0
1 2 2 1 1 2( , ) ( ) ( , )z zA s t f dz     





     , and 0 2( )z dz   




   such 

that the total grain boundary energy is 1 2
gb    . Hence, by eliminating A  from the 

above two equations, we arrive at the desired result:   

2nV L   .              (B.26) 

Comparing this with its sharp-interface counterpart (Eq. (2.20)), we get the relation  

2 gb
bL M  .              (B.27) 

B.2 Derivation of the Equation of Motion of a Free (Pore) Surface  

Consider a volume containing a free surface between the pore phase and a solid grain 

(see Figure B1(b)), the free energy (Eq. (B.1)) reduces to,    

2 2
2 2 3[ ( , ) | | | | ] 

2 2

q
F f d x

 
        .            (B.28) 

The bulk free energy (Eq. (3.2)) reduces to 

2 2 2 2 3 4( , ) (1 ) [ 6(1 ) 4(2 ) 3 ]f B C                 .                    (B.29) 
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Hence at a pore surface the multi-well potential reduces to a double well potential 

reflecting the two equilibrium phases (see Figure B1(b)). Noting that 2gb
bL M   (from 

Eq. (B.27)), the dynamical system (Eqs. (B.3) and (B,4)) reduces to   

2 ( )t M      ,         (B.30a) 

4 gb
t bM u     .            (B.30b) 

with the following initial and boundary conditions (see Figure B1(b)), 

( ,0) 0  ,  ( ,0) 0 ,  x x x      ,                                                                  (B.31a) 

( ,0) 1  ,  ( ,0) 1 ,  x x x      ,                   (B.31b) 

0,   M x          m m m .               (B.31c) 

Performing an outer expansion as before, and substituting in Eqs. (B.2a) and (B.2b), 

we obtain   

0 0 0 0 0 0( , ) ,    u ( , )f f         ,          (B.32a) 

1 2 0 0 1 2 0 0 1 1 2 0 0 1 2 0 0 1( , ) ( , )  ,  u ( , ) ( , )f f f f                       .   (B.32b) 

The outer equations can now be solved as follows. For the leading order (
0 ) we have,   

0 00 ( )M    ,                    (B.33a) 

00 gb
bM u  .             (B.33b) 

When the initial and boundary conditions (Eqs. (B.31a)-(B.31c)) are taken into account, 

this gives  

0 0 0 ,   u x     ,          (B.34a) 

0 0= 0 ,   x     ,              (B.34b) 

0 0 1 ,   x      .             (B.34c) 



124 

 

 

1
2
4
 

For the next-to-the leading order ( ), we obtain  

0 10 ( )M    ,            (B.35a) 

10 gb
bM u  .           (B.35b) 

Hence we also deduce that   

1 1 0  ,   u x     ,          (B.36a) 

1 1 0  ,   x      .         (B.36b) 

In the above, we deduced Eq. (B.36b) from (B.36a) using the same argument we utilized 

before in deriving Eq. (B.16) from Eq. (B.15). Therefore, once again the outer problem is 

solved exactly by the leading order outer solution and we have    

0 ,  0 ,  l l l lu l x          .            (B.37) 

In the vicinity of the free surface, we define an orthogonal coordinate system as 

before. The spatial and time derivatives are exactly as in Eq. (33). Additionally, here we 

have   

2 1( ) ( ) ( )z z z s sM M M M                 ,         (B.38) 

where   and  s s    are the 2D surface gradient and divergence, respectively. We then 

proceed by performing an inner expansion of the fields as before. We can then find 

explicit expressions for the different orders of   and u  as follows,  

0 0 0 2 0 0 0 0 2 0( , )  , u ( , )z zf q f              ,       (B.39a) 

1 2 0 0 1 2 0 0 1 0 2 1( , ) ( , ) -q -z zf f q                ,       (B.39b) 

1 2 0 0 1 2 0 0 1 0 2 1( , ) ( , ) - -z zu f f               .      (B.39c) 

Hence the inner equations can now be written as   


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4 3 0 0 2 0( ( ) ) ( ) ( ( ) )t z z z z s sv M M M                        ,         (B.40a) 

4 3 gb
t z bv M u         .         (B.40b)  

The inner equations must be solved simultaneously. For the leading order ( ) we 

have,   

0 00 ( ( ) )z zM     ,          (B.41a)    

00 gb
bM u  .           (B.41b)

  

The above equations to be solved with boundary conditions that can be derived from the 

outer solutions via the matching conditions: 0( ) 0z   , 0 0( ) ( 0) 0      and 

0 0( ) ( 0) 0u u    ; this gives   

0 0 0u   .             (B.42) 

Therefore, once again, these are simply the Euler-Lagrange equations (see Eq. (B.39a)). 

When these equations are supplemented with the boundary conditions from the outer 

solution, e.g., 0 0( ) ( 0)     and 0 0( ) ( 0)    , they give the equilibrium planar 

profiles for the order parameters [56, 125]. For the next-to-the leading order ( ), we 

obtain (recall that 0 0  )    

0 10 ( ( ) )z zM     ,          (B.43a) 

10 gb
bM u  .           (B.43b) 

Taking into account the matching condition 1 0( ) ( 0) 0z r       , this leads to  

1 ( , )e s t  ,           (B.44a) 

0
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1 0u  .                  (B.44b) 

Here ( , )e s t  is a function that does not depend on z , which is to be determined. To 

accomplish that, we follow the same procedure we conducted before, i.e., we multiply Eq. 

(B.44a) by 0
z and Eq. (B.44b) by 0

z  and integrate in z  from   to  , we get  

1
1A





  ,                  (B.45a) 

10 A



  .                 (B.45b) 

In the above, 1 0 1 0 2 0 0
1( , ) ( ) ( , )z zA s t f dz     





     , 0 2( )zq dz  




  , and 

0 2( )z dz  




  such that the total surface energy is given as s
     . From the 

above two equations, one obtains    

1
s





 .                (B.46) 

For the next order (
2 ), we have (where the fact that 0 1 0z     was taken into 

account)  

0 20 ( ( ) )z zM     ,          (B.47a) 

20 gb
bM u  .              (B.47b) 

In conjunction with the matching condition 2 1( ) ( 0) 0z r       , we arrive at  

2 2 0zu    .                (B.48) 

The front velocity can be obtained at order (
3 ). At this level, it suffices to consider only 

Eq. (B.40a) which gives (recall that 2 0z  ),    
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0 1 0 2( ) ( )
s

z s s sv M M


   



                   (B.49) 

In Eq. (B.49) above we have used the fact that 0  does not depend on s . Multiplying Eq. 

(B.49) by 0
z  and integrating in z  from  to  produces,        

2
s s

s

M
v

q

 


 
  ,                          (B.50) 

where 
1

0 0 0 0

0

( ) ( )s
zM M dz M d   





    .  

Note that sM is finite whether 0M  for z or simply a constant. Hence, in 

agreement with [118], we show that as far as the asymptotic analysis is concerned, the 

Cahn-Hilliard equation recovers surface motion by surface diffusion regardless of the 

form of the mobility as long as the outer solutions for the order parameters represent the 

equilibrium bulk phases. Nonetheless, using interpolation functions and projection 

tensors as in Eq. (3.4) to represent surface diffusion in phase field models is important 

from numerical point of view. Recall that we conclude that the normal gradient of the 

chemical potential is zero in the interfacial region ( 0z  ) using matching conditions 

that assume 0  . However, in any numerical implementation the diffuse interface width 

is finite, and hence non-zero normal fluxes may exist in the interfacial region during 

simulations. The projection tensor ensures that the normal fluxes in the interfacial region 

vanish even if the normal gradients of the chemical potential are non-zero. On the other 

hand, the interpolation function ensures the bulk fluxes vanish even if the numerical 

values of the order parameters differ slightly from their equilibrium values due to any 
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numerical errors. However, this is usually negligible, and hence using interpolation 

functions is often unnecessary.  

Finally, restoring the physical unit of the velocity, Eq. (B.50) becomes,        

2 2(1 )n s
sV q M     .             (B.51) 

In obtaining Eq. (B.51) we used the relation /q    , and hence / (1 ) /s q q   

which arises from the similar behavior of the equilibrium profiles a cross a free surface 

(see Appendix A for details). By comparing Eq. (B.51) with its sharp-interface 

counterpart, Eq. (2.24), we obtain the relation   

s
2 s m(1 ) s D w

q M
RT

 
  .             (B.52) 

So far we have shown that the equations of motions for the free (pore) surface and the 

grain boundary in the phase field model reduce to their counterparts in sharp-interface 

model. However, in order to prove that the phase field model completely recovers the 

sharp-interface model, the boundary conditions at the triple-junction, namely the balance 

of forces, fluxes and continuity of chemical potential must be derived. Such derivation 

was presented in the phase field models [157, 158] which have the same structure as the 

one presented here as we mentioned in the beginning of this section. Their derivation is 

readily applicable to our model, and hence we will not repeat it here   
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