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ABSTRACT

Hong, Seokmin Ph.D., Purdue University, December 2014. Spin Circuit Representa-
tion of Electronic Transport in Materials with Spin Orbit Coupling. Major Professor:
Supriyo Datta.

Modern nanomagnetic devices involve materials and phenomena featuring both

spin and charge transport. SPICE compatible spin circuits with 4-component voltage

and current (1 for charge and 3 for spin) have been developed to represent this emerg-

ing class of devices. However there has not been much work on circuit representation

for materials with high spin-orbit coupling (SOC) which are becoming increasingly

important with the discovery of giant spin Hall effect (GSHE) and topological insu-

lators.

In this work we describe a spin circuit representation for 3D bulk materials like

Tantalum or Tungsten exhibiting GSHE, which has received extensive attention re-

cently due to their potential applications to write units in memory. This work shows

how this circuit representation leads to many established results in a straightforward

way, while providing a versatile tool for the numerical analysis of complex geometries.

Next, we move onto new type of materials called topological insulators where we

develop theoretical models for electron transport, benchmark them against available

experimental data and make interesting predictions that can be tested experimentally,

some aspects of which have recently received experimental support. We believe that

this approach is applicable not only to topological insulators but to 2D interfacial

channels with SOC in general.
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1. INTRODUCTION

Materials with high spin orbit coupling (SOC) exhibit interesting phenomena due to

the strong relativistic effect that couples electrons motion to its spin. These include

the voltage controlled spin precession effect (so called Datta-Das effect) and spin Hall

effect (SHE) etc. Recently, a new type of material called topological insulator (TI)

is drawing a lot of attention, which are characterized by insulating bulk and spin

polarized conducting surface states. Circuit representation for materials with high

SOC is one of the main motivations of this thesis, which can be considered as an

extension of similar work in normal metals (NM) and ferromagnetic materials (FM)

in the past. Three dimensional (3D) bulk materials with SHE and two dimensional

interfacial channels with SOC (Rashba and TI surface states (TISS)) are treated as

representative examples due to all the related research and potential applications in

spintronics.

1.1 Motivation

One of the main driving forces in semiconductor spintronics [1] has been the

voltage controlled spin precession effect, (so called Datta-Das effect). Koo et al.

reported the experimental demonstration [2] in 2009 of the proposed spin precession

by combining spin injection into semiconductor and gate control of Rashba spin orbit

interaction. The detailed modeling [3] was also performed subsequently with realistic

considerations of experimental structure. Although the basic features are observed

experimentally there are great difficulties to overcome regarding the robustness of the

signal in order to be considered for practical device applications. Generally, the spin

current is not a conserved quantity and it decays quickly as it propagates through

the channel or the temperature rises. This problem ordinarily gets worse in materials



2

with high spin orbit coupling since spin orbit interaction can act as random magnetic

fields in the channel. But there are interesting exceptions to this where charge and

spin can be tied together due to spin orbit interaction and spin gains more robustness.

These are the main topic of this thesis and we consider bulk materials with SHE and

two dimensional materials of topological insulator surface states and Rashba channel

as representative examples.

1.2 Brief Introduction to Spin Hall Effect (SHE)

Spin Hall effect (SHE) was experimentally observed [4] in 2004, where the ac-

cumulation of spin polarization on the edges was shown by optical Kerr rotation

microscopy. Recent giant SHE observed in heavy metals like Pt, Ta or W shows one

or two orders of magnitude improvement, which is usually quantified by the spin Hall

angle (θSH = Js/J c) with Js being the spin current density and Jc being the charge

current density (see for example [5,6] and references therein). The reported value is as

large as 0.3 and is enough to switch a conventional magnet at room temperature [7,8].

The simple description of SHE and Inverse SHE (ISHE) in a cubic structure is shown

in Fig. 1.1 based on the standard equations that have been used in analyzing various

experimental results (chapter 2). In SHE the applied charge current (I⃗c) generates

two transverse spin currents (I⃗s) as shown in Fig. 1.1(a). The magnitude of the gen-

erated spin current is given by
∣∣∣I⃗s∣∣∣ = θSH

∣∣∣I⃗c∣∣∣ with it spin polarization direction being

I⃗c and I⃗s. In ISHE, the spin current is applied and the transverse charge current can

be generated as a result. If we take one of generated spin current in SHE from Fig.

1.1(a) as an applied spin current in ISHE, the generated charge current is opposite

in its direction as shown in Fig. 1.1(b).

1.3 Brief Introduction to Topological Insulator

Due to the similarity between classical Hall effect (HE) and SHE there have been

interest to propose quantum version of SHE, just as QHE is a quantum version of
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Fig. 1.1. A cubic structure of volume a3 is shown to represent mate-
rials with GSHE. Simple descriptions of spin Hall effect (SHE) and
inverse spin Hall effect (ISHE) are shown in (a) and (b) with charge

current (I⃗c = a2J⃗c), spin current (I⃗s = a2J⃗s) and spin polarization by

3D, solid and dotted arrows respectively. In SHE, I⃗c induces trans-

verse spin currents
∣∣∣I⃗s∣∣∣ = θSH

∣∣∣I⃗c∣∣∣ with spin polarizations given by

vector product of I⃗s and I⃗c. In ISHE, the spin current Is induces

transverse charge current
∣∣∣I⃗c∣∣∣ = θSH

∣∣∣I⃗s∣∣∣ and with spin polarizations

given by vector product of I⃗c and I⃗s.
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HE (see Fig. 1.2). Although there were several other proposals, the first successful

experimental evidence was shown in HgCdTe quantum well structure in 2007 shortly

after its theoretical prediction (see for example [9, 10] and references therein). The

quantized conductance inside the bandgap was considered as an experimental evidence

for the existence of edge states. The material is two dimensional so that the edge states

form a one dimensional channel. The generalization to three dimensional material was

soon recognized by several groups together with numerous experimental evidences

in materials with Bi1−xSbx and Bi2Se3 with spin and angle resolved photoemission

spectroscopy. In this thesis we focus on one surface of TI (Top surface in Fig. 1.2(b))

and explore the unique coupling between charge and spin in this material. But we

believe the theoretical approach is general enough to include any 2D channel with

Rashba or other SOC.

1.4 Thesis Organization

In chapter 2, we first focus on 3D bulk materials with SOC, namely, materials

with spin Hall effect which have drawn a lot of attention due to their ability to write

information into a magnet. Circuit representations based on the standard diffusion

equation are provided with increasing level of complexity in terms of the boundary

conditions. Two new proposals are made based on the circuit representation, namely,

spin injection into semiconductor without tunneling barriers and spin ground to en-

hance spin current in a thin sample.

In chapter 3, we move on 2D materials with SOC like TISS and Rashba where var-

ious types of experiment are reported very recently specially in the case of TI. Using

the widely accepted Hamiltonian, we present a quantum transport model based on

nonequilibrium Greens function (NEGF) formalism to analyze potentiometric mea-

surement where the unique coupling between charge and spin can be captured by

voltage change upon reversing magnetization direction of FM contact.
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Fig. 1.2. The schematic view of cross section of 3D sample with spin
Hall effect (SHE) and topological insulator (TI) are shown under a
charge current flowing into the plane. (a) Spin currents are shown
in the case of SHE with spin polarization directions given by cross
product of charge current direction and spin current direction. (b) In
the case of TI we have spin polarized surface states with insulating
bulk. The spin polarization direction is same as the one of SHE. The
top surface (dotted box) can be treated as 2D channel which is a topic
of the thesis.
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In chapter 4, we provide a circuit representation for arbitrary 2D channel with

SOC that can include TISS and Rashba. Based on this we explore three new results:

effective spin Hall angle, maximum spin current, and angular magnetoresistance.

In chapter 5, we summarize the thesis and suggest possible future directions in

materials with high SOC.
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2. SPIN CIRCUIT REPRESENTATION FOR BULK

MATERIALS WITH THE SPIN HALL EFFECT-

PHENOMENOLOGICAL MODEL [SUBMITTED TO IEEE

TRANS. ON MAGNETICS]

The contents of this chapter have been extracted and revised from the following

submitted paper: Seokmin Hong, Shehrin Sayed, and Supriyo Datta, ”Spin circuit

representation for the spin Hall effect,” IEEE TRANS. ON MAGNETICS (submit-

ted).

2.1 Introduction

Circuit representation for normal metal (NM) and ferromagnet (FM) interfaces

and structures with non-collinear ferromagnets have been developed and studied us-

ing both the Keldysh method [11] and the continuous random matrix theory [12].

Based on these works, circuits [13] with four component voltages and currents have

been developed to analyze spin logic devices [14] and interconnects and shown to be

compatible with conventional circuit simulators like SPICE [15].

To our knowledge, however, there has not been much work on circuit represen-

tation for materials with high spin-orbit coupling which are becoming increasingly

important with the discovery of giant spin Hall effect (GSHE) (see for example [5]

and references therein) together with other types of spin orbit torques [16–19] like

Rashba effect in heavy metals. These demonstrate a new functionality that can re-

place or add to conventional ferromagnets (FM) in various spintronic applications

such as switching of a magnets with perpendicular [7,16,17,20–22] or in-plane [19,23]

anisotropy, domain wall motion [24–26] and spin torque oscialltors [27–29]. One can

envision novel and innovative device structures where multiple layers of various ma-
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terials such as ferromagnets (FM), ferromagnet insulators (FMI) or semiconductors

are driven by GSHE material as shown in Fig. 2.1(a).

Our starting point is following semi-classical equations which have been widely

used in the past. The linear response relation (Ohm’s law) for materials with spin

Hall effect (SHE) is described by the following equation [30,31]
J⃗c

J⃗x

J⃗y

J⃗z

 = −σ


1 θSH x̂× θSH ŷ× θSH ẑ×

θSH x̂× 1 0 0

θSH ŷ× 0 1 0

θSH ẑ× 0 0 1




∇⃗V c

∇⃗V x

∇⃗V y

∇⃗V z

 (2.1)

together with charge and spin diffusion equations,

∇⃗ · J⃗c = −σ∇2V c = 0,

∇⃗ · J⃗x,y,z = −σ∇2V x,y,z = − (σ/λ2)V x,y,z,
(2.2)

where
−→
J c,

−→
J x,

−→
J y, and

−→
J z are current densities for charge and spin polarizations

of x, y, and z respectively. V c, V x, V y, and V z are voltages for charge and spin

polarizations of x, y, and z respectively and related to chemical potentials by V η =

µη/q with η = c, x, y, z. Each spin voltage is defined as (V ↑ − V ↓)/2 where V ↑ and

V ↓ are up and down spin voltages for each spin polarization direction. Here σ is the

conductivity of GSHE material, the quantity θSH is called as the spin Hall angle, and

λ is the spin diffusion length.

What we establish in this paper is that the physics of spin Hall effect as described

by Eqs. (2.1) and (2.2) with appropriate boundary conditions can be captured using

the conductance matrices shown in Fig. 2.1 which can be associated with equivalent

circuits. Here we provide three types of conductance matrices for GSHE material with

an increasing level of complexity in boundary conditions. The most general bound-

ary condition is captured by the one shown in Fig. 2.1(e), while simpler boundary

conditions are captured by the simpler ones in Fig. 2.1(c) and (d). Additional effects

not captured by Eq. (2.1) could require appropriate modifications to the conductance

matrices presented here. The advantage of the conductance matrix representation is
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Fig. 2.1. (a) Schematic view of a tri-layer structure consisting of gi-
ant spin Hall effect (GSHE) material with various adjacent materials
such as ferromagnetic metal (FM), ferromagnetic insulator (FMI),
and semiconductors. (b) A conductance matrix representation of the
structure (a) is shown. Each layer is represented by its conductance
matrix (GTop, GGSHE, GBottom) and can be connected together to con-
struct the original structure with voltage and current with four com-
ponents: one for charge and three for z, x, y spin polarization di-
rections. This representation enables a modular approach to analyze
various structure of interest. Here we provide three types of conduc-
tance matrix for GSHE block. (c) GGSHE with six terminals each of
which has either charge and one type of spin polarization (Eq.(2.7)).
(d) GGSHE with four terminals : two for charge and two for spin with
all three possible polarizations (Eq. (2.19)). In (c) and (d) unspecified
charge or spin polarizations (η = c, z, x, y) in each terminal have zero
currents or open boundary conditions (Iη = 0). (e) An elemental con-
ductance matrix (GE) with six terminals for a small cube (Eq.(2.34)).
All terminals have voltage and current with four components.
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that it enables a modular approach to the analysis and design of GSHE driven devices.

For example, the same circuit model for the GSHE material can be used regardless

of whether it drives a ferromagnet or a semiconductor, on one or both surfaces (see

Fig. 2.1(b)). Each layer has its own associated conductance matrix which combined

with that for the GSHE conductance matrix can be used to analyze the device using

standard circuit techniques. We start in Section 2 by describing how the conductance

matrix of model 1 in Fig. 2.1(c) and its associated equivalent circuits are obtained

from the standard semi-classical equations (see Eqs. (2.1) and (2.2)) based on the

uniform voltage assumption (see Eq. (2.3)). This conductance matrix is characterized

by six terminals with one component of either charge or spin where the rest of three

components have open boundary conditions. We then show in Section 3 that this

circuit representation straightforwardly leads to the standard results in the literature

for both spin Hall effect (SHE) [32, 33] and inverse spin Hall effect (ISHE) [34, 35].

Furthermore it makes predictions about experiments that have not been reported yet

such as spin injection into semiconductors without a need of tunneling barrier and

provides a simple model to analyze a role of spin ground to enhance the spin injection

into the opposite layer in a thin GSHE sample. In Section 4, we derive the conduc-

tance matrix of model 2 in Fig. 2.1(d) and its associated equivalent circuits based

on a different voltage assumption (see Eq. (2.18)). This conductance matrix has

four terminals : two for charge and two for spin where spin terminals now carry all

three components. The same open boundary conditions for unspecified components

apply here. We then show in Section 5 that this conductance matrix provides the

standard result for recently discovered spin Hall magnetoresistance (SMR) [31, 36]

where conductance matrices for GSHE material and FMI are connected together us-

ing conventional circuit rules for charge and spin. Finally in Section 6, we provide an

elemental conductance matrix of model 3 in Fig. 2.1(e) for a small cube with all four

charge and spin components at each terminal. These small cubes can be combined

together to construct any arbitrarily shaped structure making this approach suitable

for numerical modeling of complicated non-uniform geometries.



11

2.2 Model 1

2.2.1 Conductance Matrix

The standard equations (Eqs. (2.1) and (2.2)) can be converted into a conductance

matrix with terminal voltages and currents in Fig. 2.1(c)-(e). Here terminal voltages

V η
i and currents Iηi for charge and spin are defined on the surfaces of a rectangular box

where superscript η = c, z, x, y represents charge or spin polarizations and subscript

i represents terminal index. Each terminal voltage is assumed to be constant on its

surface and a positive terminal current is defined as a total integrated current density

flowing perpendicular into the surface. In this section we focus on the model 1 shown

in Fig 2.1(c). We apply the voltage assumptions given by

V c ≡ V c (x) , V z ≡ V z (y) , and V x ≡ constant, (2.3)

for a rectangular box of volume l× t×w in Fig 2.2(a). Then we can reduce Eq. (2.1)

into following ones after collecting all nonzero current components

x̂ · −→J c = J c
x = −σ (∂xV

c + θSH∂zV
y − θSH∂yV

z)

ŷ ·
−→
J z = Jz

y = −σ (θSH∂xV
c + ∂yV

z)

ẑ ·
−→
J y = Jy

z = −σ (−θSH∂xV
c + ∂zV

y) ,

(2.4)

where subscript indices indicate transport direction and superscript indices indicate

charge or spin polarization. The diffusion equations for V c, V y, and V z can be

obtained after plugging Eq. (2.4) into Eq. (2.2) under the assumptions in Eq. (2.3)

∂2
xV

c = 0

∂2
yV

z = V z/λ2

∂2
zV

y = V y/λ2,

(2.5)
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which have following solutions with boundary values provided by terminal voltages

of a rectangular box

V c(x) =
V c
2 x+ V c

1 (l − x)

l

V z(y) =
V z
4 sinh

(
y
λ

)
+ V z

3 sinh
(
t−y
λ

)
sinh (t/λ)

V y(z) =
V y
6 sinh

(
z
λ

)
+ V y

5 sinh
(
w−z
λ

)
sinh (w/λ)

(2.6)

with V η
i representing the ith terminal voltage for each surface. After plugging Eq.

(2.6) into Eq. (2.4) and integrating current densities over corresponding surfaces,

we obtain Ic1,2, I
z
3,4, and Iy5,6 (total charge and spin currents through each surface) in

terms of and (see APPENDIX A) in a form of a conductance matrix as
Ic1,2

Iz3.4

Iy5,6

 =


Gcc Gcz Gcy

Gzc Gzz 0

Gyc 0 Gyy




V c
1,2

V z
3.4

V y
5,6



=


tw σ

l
D −wσθSHD tσθSHD

wσθSHD lw σ
t
S(t) 0

−tσθSHD 0 lt σ
w
S(w)




V c
1,2

V z
3.4

V y
5,6


(2.7)

where Iηi,j =

 Iηi

Iηj

, V η
i,j =

 V η
i

V η
j

, D =

 1 −1

−1 1

, and

S(x) = x
λ

 coth x
λ

−cschx
λ

−cschx
λ

coth x
λ

. There are three 2× 2 matrices (Gcc, Gzz, and Gyy)

on the diagonals representing conventional 1D diffusion of charge and spin along x̂,ŷ,

and ẑ directions respectively. Gcc represent charge current flow between terminals 1

and 2, Gzz and Gyy represents z and y polarized spin currents between terminals 3 and

4 and between terminals 5 and 6 respectively. In addition, there are four 2×2 matrices

(Gcz, Gcy, Gzc and Gyc) on the off-diagonals which couple charge and spin diffusion.

Two upper off-diagonal blocks Gcz, Gcy represent ISHE where spin voltages of V z and



13

V y induce a charge current. Their Onsager reciprocity pairs (Gzc, Gyc) which appear

as the two lower off-diagonal blocks, represent SHE where charge voltage V c induces

spin current of z and y polarizations. Note that additional negative signs [37, 38]

between Onsager pairs (Gcz = −Gzc and Gcy = −Gyc) appear, which couple charge

and spin in the conductance matrix. Unspecified component of charge or spin at each

terminal has open boundary condition (Iη = 0). For example, at charge terminal 1

all spin currents (Iz,x,y1 = 0) are zero.

2.2.2 Circuit Representation

We can translate the conductance matrix in Eq. (2.7) into equivalent circuit for

each charge and spin in a straightforward way. The first row of Eq. (2.7) gives a

circuit for charge as in Fig. 2.2(b) with following identifications

Ic0 = β1G0(V
z
3 − V z

4 )− β2G0(V
y
5 − V y

6 )

G0 = σtw/l

β1 = θSHl/t

β2 = θSHl/w.

(2.8)

The second row of Eq. (2.7) gives a Π circuit for z polarized spin as in Fig. 2.2(c)

with each circuit element given by

Iz0 = β1G0(V
c
1 − V c

2 )

Gz
1 =

σlw

λ
tanh

t

2λ

Gz
2 =

σlw

λ
csch

t

λ
.

(2.9)

Likewise, circuit elements in the Π circuit for y polarized spin in Fig. 2.2(c) are given

by

Iy0 = β2G0(V
c
1 − V c

2 )

Gy
1 =

σlt

λ
tanh

w

2λ

Gy
2 =

σlt

λ
csch

w

λ
.

(2.10)
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Fig. 2.2. (a) A rectangular structure of volume l × t× w defining six
terminals at each surface for GGSHE in Fig 2.1(c) is shown. There
are charge transport along x̂ direction and spin transport along ŷ
and ẑ directions with z and y spin polarizations respectively. These
three are coupled together by dependent current or voltage sources
due to spin Hall effect (SHE) and inverse spin Hall effect (ISHE).
Each 1D transport can be represented by an equivalent circuit for (b)
charge transport, and (c) two spin transport (there are two equivalent
representations: Π and T ). Note that there are six terminals: 1, 2 for
charge and 3, 4 and 5, 6 for spin.
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The gain factor (β1 or β2) depends on a geometrical ratio [23] between the length

of the charge transport direction and the length of the corresponding spin transport

direction. We can convert Π circuits into T circuits as in Fig. 2.2(c) by identifying

each circuit element by

V z
0 =

θSHλ

l
(V c

1 − V c
2 ) tanh

t

2λ

Rz
1 =

λ

σwl
tanh

t

2λ

Rz
2 =

λ

σwl
csch

t

λ
,

(2.11)

for z polarized spin and

V y
0 =

θSHλ

l
(V c

1 − V c
2 ) tanh

w

2λ

Ry
1 =

λ

σtl
tanh

w

2λ

Ry
2 =

λ

σtl
csch

w

λ
,

(2.12)

for y polarized spin. It is worth noting that SHE or ISHE in this material give rise

to dependent current or voltage sources in Π or T circuit representations.

2.3 Application of Model 1

We are often interested in transport where charge and one particular type of spin

flow occur. For the present discussion we focus on the spin current along ŷ direction

i.e., between terminals 3 and 4. For terminals 5 and 6 we can apply, for example,

either by applying (a) floating boundary condition (Iy5 = Iy6 = 0) or (b) ground

boundary condition (V y
5 = V y

6 = 0). Although these boundary conditions should be

chosen to reflect the status of a given sample we assume the width of the sample

(w) is wide enough to satisfy the condition of w ≫ θ2SHλ where these two boundary

conditions give same result. We use boundary condition (b) on terminals 5 and 6 in

the following discussion.
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2.3.1 Spin Hall Effect (SHE)

In a typical SHE setup, charge current flows through GSHE material (between

terminals 1 and 2 in Fig. 2.2(b)) and the spin voltage or current is measured at the

top or bottom surface (terminal 3 or 4 in Fig. 2.2(c)). When we have terminals

3 and 4 open circuited (Iz3 = Iz4 = 0) in Fig. 2.2(c) the open circuit spin voltage

(V z
4 = −V z

3 ) is given by

V z
4 |Iz3=Iz4=0 =

θSH
2σθ2SH + σ t

λ
coth t

2λ

Ic1
w
, (2.13)

in terms of Ic1 = −Ic2 (see APPENDIX B) including θ2SH correction term, which can

be compared with standard results [32]. When we make terminal 3 open circuited

(Iz3 = 0) and terminal 4 short circuited (V z
4 = 0) in Fig. 2.2(c) the short circuit spin

current at terminal 4 (Iz4 ) is given by

Iz4
l

∣∣∣∣
V z
4 =0,Iz3=0

= − θSH

1 +
λθ2SH
t

tanh t
λ

(
1− sech

t

λ

)
Ic1
t
, (2.14)

in terms of Ic1 = −Ic2 (see APPENDIX B). The boundary condition V z
4 = 0 estimates

the maximum spin current that can be collected at terminal 4. The degrading factor

1− sech(t/λ) has been noted previously [33].

2.3.2 Inverse Spin Hall Effect (ISHE)

In a typical ISHE setup, a spin current Iz3 is injected from terminal 3 with termi-

nal 4 open circuited (Iz4 = 0) and charge voltage or current is measured across the

terminals 1 and 2. Here we make terminals 1 and 2 open circuited (Ic1 = Ic2 = 0)

in Fig. 2.2(b) to measure the open circuit charge voltage across terminals 1 and 2,

which is given by

(V c
1 − V c

2 )|Ic1=Ic2=0 =
θSH

2σθ2SH + σ t
λ
coth t

2λ

Iz3
w
, (2.15)
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in terms of Iz3 (see APPENDIX B) with θ2SH correction term as compared to standard

results [34]. Terminals 1 and 2 can be connected together (i.e., V c
1 = V c

2 ) to measure

the short circuit charge current given by [35]

Ic1
t

∣∣∣∣
V c
1 =V c

2

= θSH
λ

t

Iz3
l
tanh

t

2λ
(2.16)

in terms of Iz3 (see APPENDIX B).

2.3.3 Spin Injection into Semiconductor (High Resistive Load)

Experimental work to date has focused on using GSHE material to inject spins

into metallic materials with low resistivity. However, an important application of

GSHE material in future could be in injecting spins into high resistivity materials

like semiconductors where it is well known that high efficiency spin injection requires

the use of tunneling barriers [39]. By contrast, our model predicts that efficient spin

injection with GSHE material should be possible without the use of tunneling barriers

since the GSHE material creates non-equilibrium spin voltage similar to spin pumping

[40]. One can quantitatively analyze the spin injection from GSHE material using the

T circuit in Fig. 2.2(c) for a structure shown in Fig. 2.3(a). The corresponding spin

circuit in Fig. 2.3(b) assumes an ordinary spin diffusion channel for semiconductor

that can be modeled as same circuit as GSHE material but with no spin voltage

or current sources, which gives RL = λL coth(tL/λL)/(σLwl) with λL, tL, and σL

of semiconductor. For a relatively thick sample of GSHE material (t > λ) and

semiconductor (tL > λL) the source resistance (Rz
1 + Rz

2) of GSHE material and

semiconductor load resistance (RL) per unit area (w× l) are given by the value of λ/σ

for each material. The spin voltage V z
0 is mostly dropped across the semiconductor

load resistance since λL/σL of semiconductor is larger due to its longer spin diffusion

length λL and lower conductivity σL compared to GSHE material. In the case of β-W

the estimated spin voltage is 100µV with the parameters [41]: J c = σ(V c
1 − V c

2 )/l ≃

107A/cm2 with θSH ≃ 0.3, λ ≃ 1 nm and σ ≃ 0.004(µΩcm)−1.
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Fig. 2.3. (a) A schematic structure for spin injection into semiconduc-
tor from materials with giant spin Hall effect (GSHE) is shown. Note
that there is no tunnel barrier at the interface. (b) The corresponding
spin circuit representation is given based on the previous circuit model
(Fig. 2.2(c)). The nonequilibrium spin voltage (V z

o ) generated from
GSHE material is divided between GSHE source resistance (Rz

1+Rz
2)

and spin resistance of semiconductor (RL = λL coth(tL/λL)/(σLtLl)).
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2.3.4 Role of Ferromagnets as a Spin Ground (Low Resistive Load)

The large amount of spin current density generated by GSHE materials is of

practical importance due to its ability to manipulate magnetization directions of the

adjacent ferromagnetic layer. The maximum spin current density (Jz
4 = Iz4/(wl))

can be estimated by the short circuit spin current expression (Eq. (2.14)) given by

Jz
4 ≃ −θSH (1− sech(t/λ)) J c

1 which is proportional to the applied charge current

density (J c
1 = Ic1/(wt)) with θ2SH ≪ 1 in a structure shown in Fig. 2.4(a). Reducing

the thickness (t) of a GSHE sample is desirable so that less amount of total charge

current Ic1 is required while maintaining same charge and spin current densities for a

thick GSHE material (t >> λ). However as the thickness (t) is comparable to the

spin diffusion length (λ) there is a degradation of spin current from a value θSHJ
c
1 by

a factor of 1 − sech(t/λ) [33][25]. Intuitively it is because of the fact that in GSHE

material opposite spin polarizations accumulate at opposite surfaces. As the sample

gets thinner, two surfaces start to interfere resulting in a cancellation of each spin

polarization. This corresponds to the case of increasing Gz
2 in Π equivalent spin circuit

in Fig. 2.2(c) which connects two opposite surfaces so that two spin current sources

start to cancel each other.

In this context the amount of spin current injected into one layer can be enhanced

by suppressing the oppositely polarized spin current on the other surface using a low

spin resistive load. For the purpose of demonstrating this concept, we have assumed

a simple spin conductance for each top and bottom layer (see Fig. 2.4(a)) as GT and

GB. Based on Π equivalent spin circuit as in Fig. 2.4(b), the spin current density

injected into the top layer with the bottom layer is given by

Jz
4 = G′

TJ
z
0

1−G′
B sinh t

λ
− cosh t

λ

(G′
B +G′

T ) cosh
t
λ
+ (1 +G′

BG′
T ) sinh

t
λ

, (2.17)

with Jz
4 = Iz4/(lw), J

z
0 = Iz0/(lw), G

′
T = GT/(lwσ/λ), and G′

B = GB/(lwσ/λ) (see

APPENDIX C).

Spin injection into the top layer with or without the bottom layer as a function of

a GSHE sample thickness has been shown in Fig. 2.4(a). For a thin GSHE sample,
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the spin injection into the top layer enhances significantly with the presence of a

bottom layer. This further improves for higher spin conductance loads. The spin

sink layer can be introduced by magnetic materials or impurities. In practice low

(charge) conductivity or even insulating magnetic materials are desirable to avoid a

charge current flow through FM layer. An encouraging experimental observation has

been made using FeMn [42] layer whose conductivity is 10 times lower than GSHE

material.

2.4 Model 2

2.4.1 Conductance Matrix

Previous conductance matrix (Eq. (2.7)) has terminals with either charge or one

type of spin based on the uniform voltage assumptions given by Eq. (2.3). Although

a large class of problems can be dealt with this conductance matrix, there are cases

where we need to make use of all three components of spin polarizations as in the case

of spin Hall magnetoresistance (SMR) which is explained in this section. To have an

analytical conductance matrix we are interested in 1D uniform voltage assumptions

as before and we modify the assumption in Eq. (2.3) as [36][28]

V c ≡ V c(x), and V z,x,y ≡ V z,x,y(y) (2.18)

to include the effect of spin voltage variations with all polarizations along ŷ direction.

As can be seen in Eq. (2.18) all charge and spin voltages are assumed to be uniform
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along ẑ direction. With this new assumptions (Eq. (2.18)) we obtain following

conductance matrix for GSHE material as (see APPENDIX D)

Ic1,2

Iz3,4

Ix3,4

Iy3,4

Ic5,6

Iy5,6


=



tw σ
l
D −wσθSHD 0 0

wσθSHD lw σ
t
S(t) 0 0

0 0 lw σ
t
S(t) 0

0 0 0 lw σ
t
S(t)

0 0 lσθSHD 0

−tσθSHD 0 0 0




V c
1,2

V z
3,4

V x
3,4

V y
3,4

 (2.19)

We can identify each 2 × 2 block matrix element of the above conductance matrix

in a following way. The assumptions allow charge and spin diffusion along x̂ and ŷ

directions respectively, which are represented by twσD/l and three lwσS(t)/t block

matrices respectively. Here the charge current along x̂ direction and z polarized spin

current along ŷ direction are coupled by SHE and ISHE, as denoted by wσθSHD and

−wσθSHD respectively. Finally, the charge voltage varying along x̂ direction (V c
1,2)

can induce y polarized spin current along ẑ direction given by −tσθSHD due to SHE

and x polarized spin voltage varying along ŷ direction (V x
3,4) can generate charge

current along ẑ direction given by lσθSHD due to ISHE.

2.4.2 Circuit Representation

This conductance matrix (Eq. (2.19)) can be represented by equivalent circuits

for charge and spin as shown in Fig. 2.5 which is similar to Fig. 2.2 but in this

case we have a three component spin circuit where current or voltage sources are

vectors with three component and conductances and resistances are 3 × 3 matrices.

For charge transport each circuit element can be identified in a following way based

on the conductance matrix (Eq. 2.19)

Ic0 = β1G0(V
z
3 − V z

4 )

G0 = σtw/l

β1 = θSHl/t,

(2.20)
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from Fig. 2.5(b). Likewise, for spin transport circuit elements in the Π circuit of Fig.

2.5(c) are given by

I⃗s0 = β1G0(V
c
1 − V c

2 )


1

0

0


[G1] =

σlw

λ
tanh

t

2λ
[I3×3]

[G2] =
σlw

λ
csch

t

λ
[I3×3],

(2.21)

in z − x − y basis with [I3×3] a 3 × 3 identity matrix. We can convert Π circuit for

spins into T circuit in Fig. 2.5(c) by identifying each circuit element by

V s
0 =

θSHλ

l
(V c

1 − V c
2 ) tanh

t

2λ


1

0

0


[R1] =

λ

σwl
tanh

t

2λ
[I3×3]

[R2] =
λ

σwl
csch

t

λ
[I3×3].

(2.22)

Note that there are non-zero charge and spin currents flowing along ẑ direction given

by Icz = Ic5 = −Ic6 and Iyz = Iy5 = −Iy6 which are not included in the equivalent circuit

models in Fig. 2.5(b) and (c) but can be calculated once we know the charge and

spin voltages at terminals 1− 4. Although we have non-zero currents (I5, I6) flowing

through the surface 5 and 6 terminals cannot be defined at these surfaces since charge

and all spin voltages vary in x − y plane as can be seen from Fig. 2.5(a) with the

voltage assumptions of Eq. (2.18).

2.5 Application of Model 2

The new conductance matrix (Eq. (2.19)) can be used to obtain standard re-

sults of spin Hall magnetoresistance (SMR) [36, 43, 44] which is characterized by the

longitudinal and transverse resistivity (ρxx and ρxz) changes depending on the mag-

netization direction (m̂) of ferromagnetic insulator (FMI) layer (yttrium iron garnet
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or YIG) on top of GSHE material (Pt) as shown in Fig. 2.6(a). In this setup, the spin

current flowing along ŷ direction by SHE due to a charge current along x̂ direction,

gets absorbed and reflected with mixed spin polarizations at the Pt/YIG interface.

The reflected spin current along ŷ direction depends on the magnetization direction

and gives rise to corrections to charge current along x̂ and ẑ directions by ISHE, thus

affecting ρxx and ρxz. No charge current can flow through the ferromagnetic insulator

(YIG) layer. Thus one can avoid various unwanted charge current induced effects and

focus on pure spin current dependent phenomena in this set-up. We can rewrite the

above conductance matrix (Eq. (2.19)) into a terminal basis form for our convenience

as 

I1

I2

I3

I4

I5

I6


=



G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

G51 G52 G53 G54

G61 G62 G63 G64




V1

V2

V3

V4

 (2.23)

where we use multi-component voltages or currents for V3, V4, I3, I4, I5, I6, and each

Gij is in general a matrix. The conductance matrix representation for YIG due to

the interface properties between ferromagnetic insulator (YIG) and GSHE material

uniform in the x− z plane has been described by [36,45]
Iz

Ix

Iy

 = RGY IGR+


V z

V x

V y

 = Rlw


0 0 0

0 2Gr 2Gi

0 −2Gi 2Gr

R+


V z

V x

V y

 (2.24)

with its magnetization direction along ẑ direction in z−x−y basis and a rotation ma-

trix R for a magnet along an arbitrary direction (see APPENDIX E). 2Gr = 2ReG↑↓,

and 2Gi = 2ImG↑↓ where G↑↓ represents spin mixing conductance. Conductance

matrix for YIG mixes different polarizations of spin together and induces spin dif-

fusion along y direction, as seen from Eq. (2.24). We can reconstruct the standard

results [31, 36] for SMR directly from the conductance matrix. For this purpose we
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apply charge voltages V1 ≡ V c
1 and V2 ≡ V c

2 at terminals 1 and 2 and then obtain

expressions for Ic1 and Ic5 in the structure shown in Fig. 2.6(a) and (b), which can be

used to get ρxx and ρxz. Our approach is described in Fig. 2.6(b) where two conduc-

tance matrices for GSHE and YIG are connected together by ordinary circuit rules for

each charge and spin i.e. they share same voltages and satisfy current conservation

at a given node. Thus at terminal 4 in Fig. 2.6(b), we have following equation

−I4 = GY IGV4 (2.25)

In this setup, terminal 3 is kept open circuited i.e. I3 = 0. Voltages V3 and V4 can

be obtained from Eqs. (2.23) and (2.25) as V3

V4

 = −

 G33 G34

G43 G44 +GY IG

−1  G31 G32

G41 G42

 V1

V2

 (2.26)

Solving for V3 and V4 in Eq. (2.26) and putting them back into Eq. (2.23) gives

expressions for charge current at terminals 1 and 5 (Ic1 and Ic5) in terms of V c
1 and

V c
2 , which are given by (see APPENDIX E)

Ic1
tw

=
σ(V c

1 − V c
2 )

l

[
1 + θ2SH

λ

t

{
2 tanh

(
t

2λ

)
−
(
1−m2

z

)
ReF (t)

}]
(2.27)

Ic5
lt

= −θ2SH
σλ(V c

1 − V c
2 )

lt
(mxmzRe +myIm)F (t) (2.28)

where

F (t) ≡
2λ(Gr+iGi)

σ
tanh2

(
t
2λ

)
1 + 2λ(Gr+iGi)

σ
coth

(
t
λ

) (2.29)

with m̂ = (mz,mx,my), which are same results [31, 36] obtained by directly solving

diffusion equations.

2.6 Model 3

Previous discussions have been based on uniform voltage assumptions applied to

a rectangular structure. In practice, these assumptions are not always valid due to

various non-uniformities [8] in the structures and boundary conditions. One way
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Fig. 2.6. (a) Schematic view of spin Hall magnetoresistance set-up
consisting of ferromagnetic insulator (FMI) layer (yttrium iron gar-
net or YIG) placed on top of GSHE material (Pt) is shown, where
longitudinal and transverse currents (Ic1 and Ic5) are quantities of in-
terest. (b) Conductance matrix representation for GSHE and YIG
blocks connected together. Charge voltages V c

1 and V c
2 are applied for

terminals 1 and 2 of GSHE block.
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to approach this problem is to break an original structure into small and identical

cubes of volume a3 that can be represented by an elemental conductance matrix (see

Fig. 2.7(a)). In this sense the elemental conductance matrix presented here can be

also viewed as a discretization of Eqs. (2.1) and (2.2) applied to a cube of a3. The

conductance matrix for the original structure can be constructed by combining the

elemental conductance matrices together. Here the rules for combining terminals are

simple circuit laws for each charge and spin component. To combine ith terminal of

one block with jth terminal from another block. we apply

V η
i = V η

j and Iηi + Iηj = 0, (2.30)

with η = c, z, x, y.

2.6.1 Circuit Representation

There can be multiple representations of the elemental conductance matrix, which

is analogous to that we have different ways of discretizing continuum equations (Eqs.

(2.1) and (2.2)). Here we first present our particular choice of circuit representation

for a structure given in Fig. 2.7(a) which is then used to get the elemental conduc-

tance matrix. The resistances rc, [rs], and [rsf ] are responsible for charge and spin

diffusion where [rs] = rsI3×3 and [rsf ] = (1/gsf)I3×3 are 3× 3 matrices for three spin

polarizations in z − x − y basis. These resistance values are chosen in such a way

that the given circuit gives correct analytical expression for ordinary 1D charge and

spin diffusion between two confronting terminals when other four terminals are open

circuited (Iηi = 0), which gives

1

rc
= 2aσ,

1

rs
=

a2σ

λ
coth

a

2λ
, gsf =

a2σ

λ
sinh

a

λ
. (2.31)
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V c
m and V⃗ s

m = (V z
m, V

x
m, V

y
m)

T represent voltages in the middle node of circuits for

charge and spin. The dependent current sources for charge and spin are included to

represent the physics of SHE and ISHE and given by

Icα = aσθSH(V
z
3 − V z

4 − (V y
5 − V y

6 ))

Icβ = aσθSH(V
x
5 − V x

6 − (V z
1 − V z

2 ))

Icγ = aσθSH(V
y
1 − V y

2 − (V x
3 − V x

4 )),

(2.32)

for charge and

I⃗sα = aσθSH


V c
3 − V c

4

0

−(V c
5 − V c

6 )



I⃗sβ = aσθSH


−(V c

1 − V c
2 )

V c
5 − V c

6

0



I⃗sγ = aσθSH


0

−(V c
3 − V c

3 )

V c
1 − V c

2

 ,

(2.33)

for spin.

2.6.2 Conductance Matrix

The corresponding conductance matrix is given by
Ic

Iz

Ix

Iy

 = GE


V c

V z

V x

V y

 =


Gcc Gcz Gcx Gcy

Gzc Gzz 0 0

Gxc 0 Gxx 0

Gyc 0 0 Gyy




V c

V z

V x

V y

 (2.34)

where Iη = (Iη1 , I
η
2 , ..., I

η
6 )

T , V η = (V η
1 , V

η
2 , ..., V

η
6 )

T with η = c, z, x, y reflecting six

terminals for six surfaces of the cubic element. Charge diffusion block Gcc in Eq.
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(2.34) is determined from the resistor network with rc shown in Fig. 2.7(b) and given

by

[Gcc] = A



5 −1 −1 −1 −1 −1

−1 5 −1 −1 −1 −1

−1 −1 5 −1 −1 −1

−1 −1 −1 5 −1 −1

−1 −1 −1 −1 5 −1

−1 −1 −1 −1 −1 5


(2.35)

where A = 1/(6rc). Similarly spin diffusion blocks Gzz,xx,yy in Eq. (2.34) are de-

termined from the resistor network with rs and gsf shown in Fig. 2.7(c) and given

by

[Gzz,xx,yy] =



C −B −B −B −B −B

−B C −B −B −B −B

−B −B C −B −B −B

−B −B −B C −B −B

−B −B −B −B C −B

−B −B −B −B −B C


(2.36)

where B = (2 + rsgsf)/(rs(6 + rsgsf)) and C = B(5 + rsgsf).
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The ISHE blocks (Gcz, Gcx, Gcy) and SHE blocks (Gzc, Gxc, Gyc) are given by

[Gcz] = −[Gzc]T = aσθSH


0 −D 0

D 0 0

0 0 0



[Gcx] = −[Gcx]T = aσθSH


0 0 0

0 0 −D

0 D 0



[Gcy] = −[Gyc]T = aσθSH


0 0 D

0 0 0

−D 0 0

 ,

(2.37)

which give rise to source terms at each terminal in the elemental block as in the

previous case of Fig. 2.2 and 2.5. The elemental conductance matrix satisfies following

important constraints among its components:

1. Time reversal invariance requires the following reciprocity [38]:

Gcc
ij = Gcc

ji , Gss
ij = Gss

ji , and Gcs
ij = −Gsc

ji (2.38)

without external magnetic fields with spin index s = z, x, y. As noted before there is

an additional negative sign [37, 38] in the components of conductance matrix which

couples charge and spin.

2. Current conservation requires the following sum rules.∑
i

Gcc
ij = 0 for each j∑

i

Gcs
ij = 0 for each j.

(2.39)

This ensures that the charge current from all terminals add up to zero. Eqs. (2.38)

and (2.39) also imply that ∑
i

Gsc
ji = 0 for each j. (2.40)
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This ensures that at equilibrium (V c
k = constant and V s

k = 0 for all terminals) there

is zero spin current at all terminals. Note that there are considerable discussion

and debate regarding the equilibrium spin current in materials with high spin orbit

coupling (see for example [46,47]).

2.7 Reduction of Model 3 to Model 1 and Model 2

2.7.1 From Model 3 to Model 1

In principle, the elemental conductance matrix can be combined together to give a

conductance matrix for an arbitrary structure of interest. As an illustrative example

we reduce it into the previous analytical conductance matrix of Eq. (2.7) using the

same voltage assumptions given by Eq. (2.3). First, the assumption V c ≡ V c (x)

applied to the resistor network in Fig. 2.7(b) gives

V c
3 = V c

4 = V c
5 = V c

6 = V c
m =

V c
1 + V c

2

2
(2.41)

Likewise with the assumptions V z ≡ V z (y) and V y ≡ V y (z) applied to the resistor

network in Fig. 2.7(c) we obtain

V z
1 = V z

2 = V z
5 = V z

6 =
V z
3 + V z

4

2 + rsgsf
(2.42)

V y
1 = V y

2 = V y
3 = V y

4 =
V y
3 + V y

4

2 + rsgsf
(2.43)

Finally, V x ≡ constant gives

V x
1 = V x

2 = V x
3 = V x

4 = V x
5 = V x

6 = V x
m (2.44)

Based on Eqs. (2.41)-(2.44) we can reduce the conductance matrix of Eq. (2.34) into

a following one after collecting all non-zero currents
Ic1,2

Iz3,4

Iy5,6

 =


aσD −aσθSHD aσθSHD

aσθSHD aσS(a) 0

−aσθSHD 0 aσS(a)




V c
1,2

V z
3,4

V y
5,6

 (2.45)

which is the conductance matrix of Model 1 (Eq. (2.7)) with l = t = w = a.
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2.7.2 From Model 3 to Model 2

Similarly from the voltage assumption of Eq. (2.18) we have

V c
3 = V c

4 = V c
5 = V c

6 = V c
m =

V c
1 + V c

2

2

V z,x,y
1 = V z,x,y

2 = V z,x,y
5 = V z,x,y

6 =
V z,x,y
3 + V z,x,y

4

2 + rsgsf

(2.46)

Using Eq. (2.46) we can express the conductance matrix of Eq. (2.34) with respect

to V c
1 , V

c
2 , V

z,x,y
3 , and V z,x,y

4 , which is given by

Ic1,2

Iz3,4

Ix3,4

Iy3,4

Ic5,6

Iy5,6


=



aσD −aσθSHD 0 0

aσθSHD aσS(t) 0 0

0 0 aσS(t) 0

0 0 0 aσS(t)

0 0 aσθSHD 0

−aσθSHD 0 0 0




V c
1,2

V z
3,4

V x
3,4

V y
3,4

 (2.47)

which is the conductance matrix of Model 2 (Eq. (2.19)) with l = t = w = a.

2.8 Conclusion

We have proposed conductance matrix or equivalent circuit representation for

materials with SHE based on the standard semi-classical equations. This not only

extends previous four component circuit model to include materials with SHE but also

provides a modular approach for various structures involving these materials which are

becoming important ingredients in spintronic applications. We provide three types of

conductance matrices with an increasing level of complexity in boundary conditions.

These conductance matrices can straightforwardly reconstruct the standard results in

SHE, ISHE and SMR in the literature. Furthermore we discuss two new examples of

spin injection where the circuit representation provides simple models to understand;

one for spin injection into semiconductors with GSHE materials and the other one

for an enhancement of spin injection by introducing a spin ground on the opposite
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(b)  Circuit for charge transport (c)  Circuit for spin transport
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Fig. 2.7. (a) An arbitrary structure can be broken into small and
identical cubes of volume a3 and each of them is represented by an
elemental conductance matrix (GE). This conductance matrix has six
terminals, each of which has voltage and current with 4-component (1
charge and 3 spins). (b) Circuit representation for charge transport is
shown with six resistances (rc) and six dependent current sources (Icα,
Icβ, I

c
γ). V c

m denotes a voltage in the middle node of the circuit. (c)
Circuit representation for spin transport is shown with six resistances
([rs]) and six dependent current sources (I⃗sα, I⃗

s
β, I⃗

s
γ). Note that each

circuit element has three components due to spin polarizations and
[rsf ] is included for spin relaxation in the channel.

layer of GSHE materials. Finally an elemental conductance matrix is presented for

a small cube that can be used to build any arbitrarily shaped structure, making it

suitable for numerical modeling.
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3. SPIN VOLTAGE GENERATION BY CURRENT FLOW

IN 2D CHANNELS [EXCERPTED FROM PHYS. REV. B

86, 085131]

The contents of this chapter have been extracted and revised from the following

publication: Seokmin Hong, Vinh Diep, Supriyo Datta, and Yong P. Chen, ”Modeling

potentiometric measurements in topological insulators including parallel channels,”

Phys. Rev. B 86, 085131 (2012).

3.1 Motivation for 3-terminal Structure in Topological Insulator

Following the discovery of spin-polarized states at the surface of three-dimensional

topological insulators (TI) like Bi2Te3 and Bi2Se3 (see, for example, Refs. [9], [10]

and references therein), there is intense interest in possible electrical measurements

demonstrating unique signatures of these unusual states [48–50]. A recent interesting

proposal [51] suggests that a unique signature of TI material should be a change

in the conductance measured between a normal contact and a ferromagnetic (FM)

contact when the magnetization of the latter is reversed. We believe that in order

to observe this effect it is important to use a multi-terminal measurement in the

linear response regime. Any two-terminal resistance measurement using magnetic

contacts on a material described by a time reversal invariant (TRI) Hamiltonian

should obey a generalized Onsager relation of the form R(M⃗) = R(−M⃗) (see, for

example [52–54] and references therein) with M⃗ being a magnetization in the linear

response regime. For multi-terminal measurements, Onsager relation requires that

Rab,cd(M⃗) = Rcd,ab(−M⃗) where the first and second pair of indices are used to denote

contacts to supply current and measure the voltage difference respectively. However,

there is no requirement for Rab,cd(M⃗) to equal Rab,cd(−M⃗). Indeed in this paper we
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will show how the quantity R12,13(M⃗)−R12,13(−M⃗) measured using a specific three-

terminal (3T) potentiometric set-up [53] with R12,13(M⃗) = V (M⃗)/I (Fig. 3.1(a)) can

be related to the spin orientation of the eigenstates of the channel.

We establish this result starting from a quantitative Non-Equilibrium Green’s

Function (NEGF) based model that allows us to (1) go seamlessly from the ballistic

to the diffusive limits and (2) include multiple conduction paths described by differ-

ent Hamiltonians that may be in parallel with the TI channel. We will show that

the numerical results from the NEGF model can be described well by the following

expression, which we will also justify using simple physical arguments.

(V (M⃗)− V (−M⃗))/I = RB(p⃗ · m⃗), (3.1)

with

p⃗ =

∑
i

∑
vx(k⃗)>0

ŝi(k⃗)δ(EF − ϵi(k⃗))∑
i

∑
vx(k⃗)>0

δ(EF − ϵi(k⃗))
, (3.2)

where 1/RB is a ballistic conductance of the channel which is given by q2/h time

the number of modes or conducting channels ∼ kFW/π for each Fermi circle (kF :

Fermi wave number, W : width of channel) and EF is the Fermi energy. The effective

magnet polarization is represented by PFM = (GM −Gm)/(GM +Gm) which defines

m⃗ = PFMM̂ with GM(m) being the contact conductance for majority (minority) spins

and I is the applied current along the x direction. The channel property p⃗ can be

viewed as the degree of the spin polarization per unit current in the x direction and

applies to arbitrary dispersion ϵi(k⃗) and spin orientation ŝi(k⃗) including combinations

of TI surface states (TI SS) channels and Rashba spin orbit coupling (SOC) materials

(Fig. 3.2) each represented by a channel index i. The quantity p⃗ provides a measure

of the average spin polarization of all states with positive group velocity (vx(k⃗) =

∂ϵ/h̄∂kx > 0) which for TRI material is the negative of the average spin polarization

of states with negative group velocity. As a result there is no spin polarization at

equilibrium, but there is a current induced spin polarization, as discussed in the
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literature (see, for example, Refs. [55], [56]). If we reverse the current, I, the measured

voltage, V (M⃗)− V (−M⃗) will also reverse.

Two points : (1) The above expression is valid both in the ballistic and diffusive

limits, which, we will show, is supported by NEGF results. (Fig. 3.3).

(2) To the best of our knowledge, this type of signal has not been observed in

TI yet but it has been experimentally confirmed in Rashba SOC materials [57]. The

expression given here applied to Rashba channel is consistent with the one that has

been used in the past to describe experimental results quantitatively [58].

In order to ensure that the potentiometric set-up measure a channel property (p⃗)

in a minimally invasive way, it is advisable to use a weakly coupled contact, which also

enhances the signal as seen in experimental work on Rashba SOC materials [59,60].

3.2 Model Description

For the two dimensional (2D) top surface of a three dimensional TI, we adopt the

following model Hamiltonian on a discrete lattice:

HTISS =
h̄vF
a

[σxsin(kya)− σysin(kxa) (3.3)

− σz(cos(kxa) + cos(kya)− 2)],

where the σ⃗s are the Pauli spin matrices, a is the lattice spacing and vF is the Fermi

velocity. The additional σz term is added to avoid fermion doubling problem on a

discrete lattice (see, Ref. [61] and references therein). Although this term breaks time

reversal symmetry it is smaller than the first two terms by a factor (ka) around k = 0

and we have checked that all numerical results presented here are not affected if we

change a or the sign of the σz term.

For 2D Rashba SOC materials we use the standard form for H:

HRashba =
h̄2

2m
(k2

x + k2
y)I2 + α(σxky − σykx), (3.4)

where I2 is 2 by 2 identity matrix and α is a Rashba SOC strength.
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Fig. 3.1. (a) Schematic view of three-terminal potentiometric set-up
with two current probes (1 and 2) and one FM voltage probe (3). (b)
NEGF model : Hamiltonian (H) with four different self energies. Σ1

and Σ2 are used to model contacts 1 and 2. ΣFM is used to model a
FM contact. ΣS is responsible for incoherent processes in the diffusive
limit.

The sign of (ŝ× k⃗)z for a given Fermi circle depends on whether ẑ is chosen as the

outward or inward normal to the surface. We have chosen it as the outward normal,

which makes α in Eq. (3.4) and h̄vF in Eq. (3.3) positive, based on the experimental

results [62,63].

We model the two contacts 1 and 2 as semi infinite left and right contacts (Fig. 3.1(b))

and their self energies are described by Σ1(2) = τ1(2)gsτ
†
1(2) where τ is a coupling matrix

between the contact and the channel and gs is the surface Green’s function of each
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contact. Contact 3 is modeled with ΣFM = −iγ/2(I2 + m⃗ · σ⃗) ⊗ Iw where we use a

value of γ ≪ h̄vF/a to simulate a weakly coupled probe. γ represents the strength

of the coupling of the contact and Iw is an identity matrix whose size is same as the

width of the channel with ⊗ a tensor product.

The incoherent scattering is included through self energies Σs in the self consistent

Born approximation. We assume isotropic momentum randomizing scattering along

with two types of spin scatterings. Following the notations in Ref. [64], the momentum

randomizing scattering is described by

[Σs,Σ
in
s ]ij = dmδijδikδjl[G,Gn]kl, (3.5)

where i, j, k and l are real space indices. The spin preserving and spin randomizing

scattering [64] are described by

[Σs,Σ
in
s ]ab = δacδbd[G,Gn]cd, (3.6)

and

[Σs,Σ
in
s ]ab = (σ⃗ac · σ⃗db)[G,Gn]cd, (3.7)

respectively where a, b, c and d are used to indicate spin indices.

The charge current I between contact 1 and 2 is calculated assuming f1 = 1 and

f2 = 0 where fj is the occupation factor for contact j. The value of f3 of a FM

contact is a quantity of interest for subsequent discussions. For coherent transport it

is common to write Ii ∼
∑

j T ij(fi−fj), obtaining T ij from Trace[ΓiGΓjG
†] and then

solve for I1 = −I2 = I and f3 assuming f1 = 1, f2 = 0 and I3 = 0 [65]. However, with

incoherent scattering present there is no simple expression for T ij and we evaluate

these coefficients numerically using T ij = −∂Ii/∂fj.

3.3 Results for Ballistic and Diffusive Channels

The NEGF method described in the previous section is quite general but we focus

here on a weakly coupled FM contact that does not perturb the channel properties ap-

preciably. By setting I = 0 in the NEGF equation [65] for current (I ∼ (Trace[ΓA]f−
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Fig. 3.2. Schematic view of Fermi circles at a given energy for (a) TI

SS and (b) Rashba materials from a given dispersion relation ϵi(k⃗)
with positive h̄vF and α. The occupation factors for positive and neg-
ative propagating states are given by f+ and f− respectively. Arrows
are unit vectors representing the spin direction ŝi(k⃗) of each eigen-
state.

Trace[ΓGn])), we can write f for the given probe as Trace[ΓGn]/Trace[ΓA] in the

limit of γ → 0. For a given energy EF we first plot the occupation factor of contact 3

(f3(m⃗)) for two cases of m⃗(= ŷ,−ŷ) by continuously moving it point by point along

the current flow direction. As shown Fig. 3.3 (a) and (b) for TI SS and Rashba chan-

nels, with non-zero slopes when spin randomizing scattering processes are included

in the channel. The slope of each line is proportional to the magnitude of dm (see

Eq. (3.5)) and can be related to the conventional ohmic drop due to momentum re-

laxation processes [65]. When we compare f3 with two opposite magnet directions

ŷ and −ŷ there is a noticeable splitting between them, which is uniform along the

channel and this is true for both ballistic and diffusive transport limits with spin pre-

serving/randomizing scattering. In the small bias and low temperature limit NEGF
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results at a single energy can be related to the experimentally measurable quantities

using the following expression,

V (m⃗)− V (−m⃗)

I
=

1

(q2/h)T (E)

f3(m⃗)− f3(−m⃗)

f1 − f2
, (3.8)

obtained by combining f3(m⃗) − f3(−m⃗) = (−∂f0/∂E)(µ3(m⃗) − µ3(−m⃗)) with I =

(q/h)T (E)(µ1 − µ2), µj being the chemical potential of contact j and f0, the Fermi

function in equilibrium. This resistance value is, in general, energy dependent but is

relatively independent of whether we are in the ballistic or diffusive limits. Fig. 3.3(c)

shows the values of p⃗ deduced from the numerically calculated (V (m⃗) − V (−m⃗))/I

using Eq. (3.1), which are labeled ‘NEGF’. These agree well with the lines obtained

from the analytical expressions in Eq. (3.2) which we will now justify.

3.4 Discussion

The occupation factor for the FM contact which draws no net charge current is

given by

f3(m⃗) =

∑
i

∑⃗
k

f(k⃗)(1 + m⃗ · ŝi(k⃗))δ(E − ϵi(k⃗))∑
i

∑⃗
k

(1 + m⃗ · ŝi(k⃗))δ(E − ϵi(k⃗))
, (3.9)

assuming that the current due to each state k⃗ is (f3(m⃗)− f(k⃗))(1 + m⃗ · ŝi(k⃗)). This

gives

f3(m⃗)− f3(−m⃗) = m⃗ ·

∑
i

∑⃗
k

f(k⃗)ŝi(k⃗)δ(E − ϵi(k⃗))∑
i

∑⃗
k

δ(E − ϵi(k⃗))/2
, (3.10)

assuming
∑

i

∑
k⃗ ŝi(k⃗)δ(E− ϵi(k⃗)) = 0, which is true for TRI Hamiltonian since each

time reversal pair is composed of two opposite spins and group velocities (ϵi(k⃗, ŝi(k⃗)) =

ϵi(−k⃗,−ŝi(k⃗)). Assuming that the occupation factor f(k⃗) equals f+, f− for states

with positive and negative group velocities respectively, we obtain

f3(m⃗)− f3(−m⃗)

f+ − f− = p⃗ · m⃗, (3.11)
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Fig. 3.3. Results of NEGF and simple expressions (3.12) and (3.13).
Occupation factor (f3(m⃗)) along the length the channel when there
is a charge current in the diffusive limit (spin randomizing) for the
case of (a) TI SS (EF = 0.2 eV, dm = 3× 10−3 eV2) and (b) Rashba
channel (EF = 0.3 eV, dm = 10−3 eV2) with a = 10 Å, width= 50
nm. Two cases of m⃗ (= ŷ, −ŷ) are plotted. (c) The magnitude of
p⃗ between TI SS and Rashba channel as a function of energy with
their dispersion relations. The NEGF result in (c) assumed a ballistic
transport and periodic boundary condition along the width direction.
Parameters: h̄vF = 3.3 eVÅ, m = 0.28me, α = 0.79 eVÅ [66].

where we have made use of the fact that in TRI material the factor p⃗ defined in

Eq. (3.2) for positive group velocity states is the negative of that for for negative

group velocity states. We can recover Eq. (3.1) by noting that I(E)/(f+ − f−) is

same as q/h times the number of conducting channels [65]. It also suggests that the
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signal is relatively independent of scattering processes in the channel since the above

argument is applicable to both ballistic and diffusive limits.

3.4.1 Topological Insulator Surface States (TISS) Channel

We can evaluate the expression p⃗ in Eq. (3.2) in the case of TI SS based on, for

example, ϵ(k⃗) = |h̄vFk| and ŝ(k⃗) = sgn(h̄vF )(x̂sinθ − ŷcosθ) when ϵ > 0 from the TI

SS Hamiltonian (3.3) as shown in Fig. 3.2(a) with tanθ = ky/kx. Using these, one

can get

p⃗(E) = sgn(h̄vF )(0,−2/π, 0). (3.12)

As defined, p⃗ represents the intrinsic spin polarization of the channel of current car-

rying electrons and 2/π comes from an angular averaging of 2D electrons. Since p⃗

is a vector along the y-axis Eq. (3.1) suggests that the signal is maximum when the

magnet points along the y direction in the plane of the TI SS.

3.4.2 Rashba Channel

The same procedure can be applied to materials with Rashba SOC using, for

example, ϵ(k⃗) = h̄2k2/2m± αk and ŝ(k⃗) = sgn(α)(±x̂sinθ ∓ ŷcosθ) when ϵ > 0 with

tanθ = ky/kx from the Rashba Hamiltonian (3.4). Upper and lower signs represent

inner and outer Fermi circles respectively as shown in Fig. 3.2(b). Following the same

procedure, one can get

p⃗(E) = sgn(α)(0,
2

π

k2 − k1
k2 + k1

, 0) = (3.13)

sgn(α)

 (0, (2/π)(1 + 2Eh̄2/mα2)−1/2, 0), if E ≥ 0,

(0, (2/π)(1 + 2Eh̄2/mα2)1/2, 0), if E ≤ 0,

where k1 and k2 are inner and outer radius of Fermi circles respectively. Note that (1)

Even Rashba channels give nonzero p⃗(E) as demonstrated earlier (see, for example,

[57,58]) (2) Both Eq. (3.13) for Rashba and Eq. (3.12) for TI SS come out of the same

general result stated earlier in Eq. (3.2). The polarization for Rashba is reduced with
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Fig. 3.4. Results of NEGF and simple expression (3.14) for multiple
channels. (a) dispersion relation of TI SS (dashed line) together with
Rashba bands (dashed-dotted line). (b) y component of p⃗ for the case
of multiple channels (TI SS and Rashba channels) as a function of
energy. The NEGF result assumed a ballistic transport and periodic
boundary condition along the width direction. Parameters are same
as Fig. 3.3(c) except for 0.4 eV shift with Rashba channel.

respect to TI SS due to the imperfect cancellation of two Fermi circles (corresponding

to two different ‘i’ in Eq. (3.2)) with opposite spin orientations. Similar cancellation

could also occur for TI SS with multiple bands.

3.4.3 Multiple Channels

The coexistence of bulk states with TI SS is one of the main obstacles to detect and

identify surface states in transport measurements. When there are multiple channels
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with their own channel polarizations the general expression for p⃗ is given by a density

of states(DOS) average of each p⃗i for a given channel index i,

p⃗(E) =

∑
i

p⃗iDOSi∑
i

DOSi

, (3.14)

by noting that DOSi = 2
∑

vx(k⃗)>0 δ(E − ϵi(k⃗))/A with A the area of 2D surface.

Recent experimental reports [62,63] suggest the coexistence of Rasbha bands together

with TI SS with spin orientations corresponding to positive h̄vF and α in Eqs. (3.3)

and (3.4). It implies that their contribution to py will have opposite signs, which

could even cause a change in the sign of py around E = 0.4 eV, depending on the

relative DOS of TI SS and Rashba bands as shown in Fig. 3.4(b). This aspect can be

probed experimentally by changing EF .

3.5 Summary

In summary, we have shown that a 3-terminal potentiometric measurement should

show a change in resistance upon reversing the magnetization of a voltage detecting

FM contact and this change can be used as a quantitative measure of the channel

polarization p⃗ using Eq. (3.2) which is applicable to TI SS and/or Rashba channels.

The key result is summarized in Eqs. (3.1) and (3.2) which have been justified using

an NEGF-based quantum transport model as well as simple semiclassical arguments.

3.6 Note added after publication

In the manuscript it is assumed that the interface resistance is low between spin(p⃗)

in the channel and the magnet(M⃗) when they are parallel to each other where M⃗

represent a magnetic moment of the FM contact. As noted in [67] (see, for example

[68]) the magnetic moment of an electron is given by µ⃗ = geµBS⃗/h̄ with ge ≈ −2

(µB: the Bohr magneton) in typical transition metals and is therefore opposite to its

spin (S⃗). But another important point that should be considered is that majority
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spins for the magnetization are not necessarily the dominant spins around the Fermi

energy which determine the interface resistance as shown in Fig. 3.5. The density of

states (DOS) for majority spins around the Fermi energy can be smaller than the one

of minority spins as in the case of simplified Stoner mode (see, for example [69]) or

typical ferromagnetic materials [70] (Fig. 3.5(b))and this gives a low resistance state

between electron’s spin (p⃗) in the channel and magnetic moment of the magnet (M⃗)

as assumed. More correctly, since the DOS of each spin around the energy range of

interest is material dependent and can vary with experimental conditions it has to be

carefully considered in analyzing experimental data.

E

F
E

(a) (b)

DOS

E

F
E

DOS

 has a low resistance. p M  has a low resistance. p M

Fig. 3.5. Two possible cases about the density of states (DOS) for each
spin direction inside magnets are shown in (a) and (b) respectively.
Note that depending on the relative DOS around the Fermi energy
(EF ) the low resistance state is determined between spin (p⃗) in the

channel and the magnet (M⃗).
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4. SPIN CIRCUIT REPRESENTATION FOR 2D

CHANNELS WITH SPIN ORBIT COUPLING [TO BE

SUBMITTED]

The contents of this chapter will be submitted for publication.

4.1 Introduction

Recently there have been various types of electrical measurements showing the

unique coupling between charge and spin in new type of materials called topological

insulators (TI) where a wide range of ratios between spin and charge current are

also reported [71–73]. These include charge current induced spin accumulation [67,

74–76] or spin current measurement [71, 77] and spin current induced charge voltage

measurement [73, 78, 79] which are analogous to spin Hall effect (SHE) and inverse

spin Hall effect (ISHE) in materials with SHE. This type of coupling between charge

and spin is not restricted to TI and indeed it has been observed in two dimensional

(2D) channel with Rashba spin orbit coupling (SOC) as well, which is often referred

as Rashba Edelstein effect (see for example [53] and references therein). Here we

focus on arbitrary 2D channel with SOC that can include TI surface states (TISS)

and Rashba SOC and provide a single consistent circuit representation that can be

used to provide new insight and guide various experimental results.

The schematic structure of 2D channel with spin orbit coupling (SOC) is shown

in Fig. 4.1(a). The phenomena of constant spin accumulation/polarization that can

be interpreted as a spin voltage under a longitudinal charge current motivates us to

introduce a spin terminal on top of 2D channel as shown in Fig. 1(a). Together

with 2 charge terminals (1 and 2) along the longitudinal direction one can think of a

three terminal device with a spin terminal on top of 2D channel that can be used to
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define terminal characteristics. The purpose of this paper is to provide a conductance

matrix or equivalent circuit representations for this three terminal structure in Fig.

4.1(a) that can be independently defined by focusing on terminal quantities of charge

and spin and used in various set-ups with general boundary conditions.

The proposed equivalent circuit is based on a simple representation of 2D chan-

nel as shown in Fig. 4.1(b). In general, all propagating modes in an arbitrary 2D

channel can be categorized into four types depending on their spin (up or down) and

propagating directions (positive or negative). Here we assume strong communication

and constant equilibration within each of the four types, so that each category can be

described by a single quasi-Fermi level. Then the overall system is described by four

quasi-Fermi levels: µ↑
+, µ

↑
−, µ

↓
−, and µ↓

+. The time reversal invariance of the system

dictates that the number of positive propagating modes with up spin M is same as

the number of negative propagating modes with down spin. Likewise the same num-

ber of modes, N , is given to modes with negative group velocities with up spin and

positive group velocities with down spin. In materials with SOC the number M is

not in general equal to N , which gives rise to a non-trivial coupling between charge

and spin as in the case of Rashba (M ̸= N) or TISS (N = 0) as will be shown. We

present two circuit representations for charge and spin which are equivalent to each

other in Fig. 4.1(c) and (d). All the circuit elements are defined in terms of only

three quantities GB, G, and p. Here GB = (q2/h)(M+N) is the ballistic conductance

for the 2D channel with a width W , G = GBλI/L is the conductance of intrinsic 2D

channel with λI is an intrinsic back scattering length (with i⃗s = 0).

The quantity p describes a degree of the coupling between charge and spin trans-

port in the channel which is given by

p =
2

π

M −N

M +N
, (4.1)
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Fig. 4.1. (a) The structure of interest is shown, where two dimen-
sional (2D) channel with spin orbit coupling (SOC) can include topo-
logical insulator surface states (TISS) or Rashba SOC. A uniform
longitudinal charge current is assumed throughout this paper that
can be modeled with two charge terminals 1 and 2 with voltages (V1,
V2). and currents (I1, I2) and one spin terminal 3 with a voltage
(v⃗s = (vz, vx, vy)T ) and current (⃗is = (iz, ix, iy)T ) on top of 2D chan-
nel. (b) All propagating modes in an arbitrary 2D channel can be
categorized into four types depending on their spin directions (up or
down) and group velocities (positive or negative along x̂ direction).
M and N denote the number of modes for each type. Note that due
to the time reversal invariance of the system the number of channels,
M for positive propagating states with up spin is same as the one for
negative propagating states with down spin. Two equivalent circuit
representations for a structure (a) are shown in (c) and (d) with their
dependent current or voltage sources. Here G is a conductance of the
intrinsic channel (⃗is = 0), GB = q2/h (M +N) is the ballistic conduc-
tance of the channel, p = (M − N)/(M + N) denotes the degree of
spin polarization due to a charge current, and I3×3 is a 3× 3 identity
matrix. The spin circuits have 3-component voltages and currents
with conductance or resistance. Note that the longitudinal charge
current is assumed to be coupled with one type of spin (z-spin in our
discussion).



51

where the factor 2/π is included for the purpose of angular averaging in 2D Fermi

circles [80]. For a given Hamiltonian one can estimate p based on the picture in Fig.

4.1(b). For example, in the case of TISS (N = 0) it is given by

p =
2

π
, (4.2)

with a following type of Hamiltonian

H = h̄v0(σ⃗ × k⃗) · n̂, (4.3)

where n̂ an outward normal vector from a surface, σ⃗ is a vector of the Pauli spin

matrices, v0 is the Fermi velocity. For the channel with Rashba SOC (E ≥ 0), it is

given by

p =
2

π

1√
1 + 2E/(mv20)

, (4.4)

with a following type of Hamiltonian

H =
h̄2k2

2m
I2×2 − h̄v0(σ⃗ × k⃗) · n̂. (4.5)

The polarization direction of spin is determined by ŝ = sign(h̄v0) Î × n̂ with n̂ a

surface normal vector and Î a charge current direction so that we have ±ẑ = ±x̂× ŷ

polarized spin in the structure of Fig. 4.1(a).

Based on the proposed circuit we present three results in this paper, namely, ef-

fective spin Hall angle, maximum spin current, and magnetoresistance. Since the

longitudinal charge current couples with z-polarized spin we first assume a diagonal

form of the load resistance [RL] = [GL]−1 = 1/(GL)I3×3 where I3×3 is a 3× 3 identity

matrix and GL = ηGBkFL/4 with kF the Fermi wavelength and η being a propor-

tionality constant in Fig. 4.1(d) so that we can work with one component of spin

circuit that is coupled with charge (z component or s ≡ z).

1. Effective spin Hall angle: The main quantity of interest is the ratio of the

generated spin to the applied charge current. Given a charge current I we have

−is

I
=

2p

(1− p2)λI + 8/ (ηkF )
L, (4.6)
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from the circuit in Fig. 1(d). We can define the effective spin Hall angle with the

limit η → ∞ as
θ2DSH
t

≃ 2p

(1− p2)λI

(4.7)

by noting that −is/I = θSHL/t in the case of 3D materials with SHE. Although

the effective spin Hall angle θ2DSH in 2D channel has an unusual dependence of the

sample thickness t it is not surprising since the thickness of 2D channel is not a well-

defined quantity as compared to 3D bulk materials with giant SHE, suggesting that

the conventional definition of the spin Hall angle is inappropriate in 2D channel. It is

interesting to note that θ2DSH inversely depends on the intrinsic back scattering length

λI .

2. Maximum spin current: The spin current density is given by

is

LW
≈ 2p

(1− p2)λI

I

W
, (4.8)

from Eq. (4.6) with η → ∞. The amount of charge current that can be carried by

the channel is often limited by its energy bandwidth of their dispersion relations. In

the case of TISS the bandwidth is approximately the band gap EG suggesting that[
I

W

]
max

=
q

h
M max(µ+ − µ−) ∼

q2

h

EG

q

kF
π

∼ 10
mA

µm
, (4.9)

with µ+/− chemical potentials for positive/negative propagating modes with EG ∼

0.5eV, kF ∼ 1.5/nm. Assuming p ∼ 2/π and λI ∼ 0.2µm we estimate the maximum

spin current density given by is/(LW ) ∼ 107 A/cm2 in TISS.

3. Magnetoresistance: Due to the coupling between charge and spin in the 2D

channel, the spin current drawn from the spin circuit affects the charge current flow

that is described by the dependent voltage source in Fig. 1(d). Specifically, the charge

resistance change due to the spin current extracted is given by

∆R = R(is)−R(is = 0) = − 2p

GB

is

I
, (4.10)

with R = (V1−V2)/I , implying that the resistance increases as the spin load absorbs

more spin current. For the case of RsGL ≫ 1 with Rs = (1− p2)G/4G2
B, we have

∆R =

(
p

2GB

)2
GL

1 +RsGL
≈ p2

(1− p2)G
. (4.11)
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It suggests a new way of estimating the spin current collected from the 2D channel and

is a reminiscent of spin Hall magnetoresistance (SMR) [31,36] in materials with giant

SHE where the angular dependence of magnetoresistance (MR) has been observed.

In section 5 we make use of full three component spin circuit to include quantum

mechanical boundary conditions based on spin mixing conductance and present the

corresponding result that can be compared with SMR.

The rest of the paper is organized as followings: A simple justification for the

proposed circuit is given in section 2 followed by nonequilibrium Greens function

(NEGF) based result for 1D TISS that can be compared with the circuit result in

section 3. A formal semi-classical scattering matrix based justification is presented in

section 4. In section 5 we show the angular dependence of MR. Finally we describe

how our circuit or conductance matrix approach can include various parallel channels

in section 6.

4.2 Simple Justification

Here, we provide a simple justification of the proposed circuit (Fig. 4.1(d)) where

we have two dependent voltage sources and two source resistances. First of all, let’s

consider a case where a constant charge current I = I1 = −I2 is applied in the charge

circuit as shown in Fig. 4.2(a). Under this condition it is reasonable to assume that

all positive and negative propagating modes have same chemical potentials of µ+ and

µ− respectively as in Fig. 4.2(b). Then we can define the chemical potentials for up

and down spins as weighted average of four types of modes, which are given by

µ↑ =
Mµ+ +Nµ−

M +N
, and µ↓ =

Nµ+ +Mµ−

M +N
. (4.12)

The spin voltage is given by

vs|is=0 =
µ↑ − µ↓

2q
=

M −N

M +N

(µ+ − µ−)

2q

=
pI

2GB

(4.13)
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Fig. 4.2. Two configurations for simple justification of the proposed
circuit in Fig. 1(d) are presented. (a) A constant charge current
I = I1 = −I2 is applied to the charge circuit with no spin current
(is = 0).The open circuit spin voltage can be obtained by noting that
all positive and negative propagating modes share the same chemical
potential µ+ and µ− respectively as shown in (b). Based on this
observation we have vs|is=0 = pI/(2GB). The second figuration is
shown in (c) where a constant spin voltage vs is applied to the spin
circuit and the short circuit charge voltage is obtained. Under this
condition all propagating modes with up and down spin share the
same chemical potential µ↑ and µ↓ respectively as shown in (d), which
gives I|V=0 = 2pGBv

s.

using Eq. (4.12) where we make use of I = GB(µ+ − µ−)/q which is valid [81] in

both ballistic and diffusive limits and we define spin voltage as vs = (µ↑ − µ↓)/(2q).

Based on Eq. (4.13) we can infer the dependent voltage source in the spin circuit as

pI/(2GB).

Secondly, due to reciprocity we can also get the expression for the dependent

voltage source in the charge circuit given by pis/(2GB) with an opposite polarity as

shown in Fig. 4.2(a).
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Thirdly, we define a source resistance of the charge circuit as an intrinsic resistance

1/G under the condition of no terminal spin current (is = 0) which is an ordinary

ohmic resistance.

Finally, a source resistance of the spin circuit can be obtained by the following

observation. Let’s consider a case where we apply a spin voltage vs on the terminal 3

and try to get an expression for the short circuit charge current as shown in Fig. 4.2(c).

Due to the constant spin voltage vs applied it is reasonable to assume that all modes

with up and down spins have same chemical potentials of µ↑ and µ↓ respectively. The

chemical potentials for positive and negative propagating modes are given by

µ+ =
Mµ↑ +Nµ↓

M +N
, and µ− =

Nµ↑ +Mµ↓
−

M +N
. (4.14)

Then the expression for the short circuit charge current is given by

I|V=0 = GB

(µ+ − µ−)

q
= GB

M −N

M +N

(µ↑ − µ↓)

q
= 2pGBv

s. (4.15)

At the same time we also have

0 =
I

G
− pis

2GB

, (4.16)

from the charge circuit and

vs =
pI

2GB

+ isRs, (4.17)

from the spin circuit. Using Eqs. (4.15)-(4.17) we can obtain the expression for the

source resistance Rs in the spin circuit which is given by (1− p2)G/(4G2
B). Since we

identified all four elements of the circuit in Fig. 4.1(d) for charge and one type of

spin (s = z) we have a following form of resistance matrix, V

vs

 =

 1/G −p/(2GB)

p/(2GB) (1− p2)G/(4G2
B)

 I

is

 , (4.18)

with I = I1 = −I2 and V = V1 − V2. This can be inverted to give a conductance

matrix form,
I1

I2

is

 = [G]


V1

V2

vs

 =


(1− p2)G −(1− p2)G 2pGB

−(1− p2)G (1− p2)G −2pGB

−2pGB 2pGB 4G2
B/G




V1

V2

vs

 , (4.19)
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while maintaining charge conservation and reciprocity given by

[G]ij = (−1)ninj [G]ji, (4.20)

with ni = 1 for i = 1, 2 (charge terminals) and ni = −1 for i = 3 (spin terminal) and∑
i=1,2

[G]ij = 0, (4.21)

respectively where i and j represent terminal indices. It is straightforward to see that

the terminal spin current vanishes at equilibrium (V c
1 = V c

2 = V and vz,x,y = 0) [47].

Finally, we obtain a full conductance matrix by adding additional spin polarization

directions which is given by

I1

I2

iz

ix

iy


=



(1− p2)G −(1− p2)G 2pGB 0 0

−(1− p2)G (1− p2)G −2pGB 0 0

−2pGB 2pGB
4G2

B

G
0 0

0 0 0
4G2

B

G
0

0 0 0 0
4G2

B

G





V1

V2

vz

vx

vy


. (4.22)

Note that x and y polarized spins are added with p = 0 since they are not coupled

with the longitudinal charge current flow as in the case of TISS or Rashba channel.

It is straightforward to see that Eq. (4.22) corresponds to the circuit (conductance

type) in Fig. 4.1(c) with the identifications of i⃗s = (iz, ix, iy)T and v⃗s = (vz, vx, vy)T .

By inverting Eq. (4.22) after grounding the terminal 2 to avoid the singularity of the

matrix one can obtain the second circuit (resistance type) in Fig. 4.1(d).

4.3 NEGF Comparison

In this section we provide a nonequilibrium Greens function (NEGF)-based results

that can be compared with the proposed circuit results in the case of ideal 1D TISS

(M = 1 and N = 0). The schematic setup is shown in Fig. 4.3(b) for a structure in

Fig. 4.1(a) where we have Hamiltonian H with four different self energies (ΣL, ΣR,

ΣS, and ΣFM). The details of NEGF model are provided in the appendix G with the
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description of ΣFM in terms of isotropic spin and momentum relaxation scattering

process. The correspondences between the circuit model and NEGF are given as

ΣS ↔ G = GB
λI

L

ΣFM ↔ GFM

H ↔ M,N.

(4.23)

Here we vary the magnitude of the ΣFM in NEGF model of Fig. 4.3(a) which corre-

sponds to varying the GFM in the circuit in Fig. 4.3(b). The charge and spin circuits

give following relations among charge and spin voltages and currents,

I = GV +
G

2GB

is

vs =
I

2GB

,

(4.24)

which can be directly checked with NEGF result. The comparison is shown in Fig.

4.3(c) and (d) for charge and spin circuits in ballistic and diffusive cases showing good

agreement. Note that the proposed circuit can capture the ballistic result of NEGF

by choosing G = GB.

4.4 Scattering Matrix

In this section we provide a formal justification for the proposed circuit based on

a semi-classical scattering matrix. We first define following four quantities

f =
M(f ↑

+ + f ↓
−) +N(f ↓

+ + f ↑
−)

2(M +N)

I(E) = G′
B

M(f ↑
+ − f ↓

−) +N(f ↓
+ − f ↑

−)

M +N

f s =
M(f ↑

+ − f ↓
−)−N(f ↓

+ − f ↑
−)

2(M +N)

Is(E) = G′
B

M(f ↑
+ + f ↓

−)−N(f ↓
+ + f ↑

−)

M +N
,

(4.25)
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(H) with four different self energies are shown. ΣL and ΣR are used
for left and right contacts. ΣS represents the incoherent scattering
in the intrinsic 2D channel. ΣFM represents the effect of ferromagnet
(FM) which is modeled as isotropic spin and momentum relaxation
scattering process. (b) The corresponding circuit model is shown. The
spin circuit is connected with FM load (GFM) and a charge voltage
V = V1 − V2 is applied in the charge circuit. (c) Comparison of
results between the charge circuit (solid lines) and NEGF (circles).
(d) Comparison of results between the spin circuit (solid line) and
NEGF (circles). Parameters in NEGF : L = 40 nm, a = 1 nm,
h̄v0 = 3.3 eVÅ, dm = 0, 5× 10−2eV2, EF = 0.2 eV.
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in terms of four occupation factors f ↑
+, f

↓
−, f

↑
−, f

↓
+ for each type of modes in Fig. 4.1(b)

with a charge current I =
∫
dE I(E) and G′

B = GB/q. This can be also written as
f ↑
+

f ↓
−

f ↑
−

f ↓
+

 =


g1 g1 g1/2 g1/2

g1 −g1 g1/2 −g1/2

g2 g2 −g2/2 −g2/2

g2 −g2 −g2/2 g2/2




f

f s

Is(E)
2G′

B

I(E)
2G′

B

 , (4.26)

where g1 = (1 +N/M) /2 and g2 = (1 +M/N) /2. We assume a following form

of semi-classical scattering matrix among occupation factors f ↑
+, f

↓
−, f

↑
−, f

↓
+ that is

coupled with a nonequilibrium terminal spin current is(E):

d

dx



f ↑
+

−f ↓
−

−f ↑
−

f ↓
+


=


−u rs r ts

rs −u ts r

r ts −u rs

ts r rs −u





f ↑
+

f ↓
−

f ↑
−

f ↓
+


+

is(E)

2gL



+1

−1

+1

−1


, (4.27)

with rs, ts, r representing various scattering rates per unit length among four types

of modes as shown in Fig. 4.4(a). The back scattering length and spin diffusion

length can be defined by λI = 1/(r + rs), λs = 1/(rs + ts) for a channel with no

terminal spin current (is(E) = 0). There is a sum rule for scattering rates given by

u = rs + ts + r due to the requirement that Eq. (4.27) is also valid at equilibrium

(f ↑
+ = f ↑

− = f ↓
+ = f ↓

− = f = constant and is(E) = 0). Note that the terminal spin

current is(E) is coupled equally to all four occupation factors with a constant factor

g. Using Eq. (4.26), we can express f ↑
+, f

↓
−, f

↑
−, f

↓
+ in Eq. (4.27) in terms of f , f s,

Is(E), I(E) which is given by
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d

dx


f s

I(E)
G′

B

f

Is(E)
G′

B

 =
1

1− p2
×


0 0 2p (r + ts) −(r + ts)

0 0 4p2(r + ts) −2p(r + ts)

2p (r − ts) p2 (ts + rs)− (r + rs) 0 0

4 (p2 (r + rs)− (ts + rs)) −2p (r − ts) 0 0

×


f s

I(E)
G′

B

f

Is(E)
G′

B

 +


0

0

p is(E)
2gL

is(E)
gL

 .

(4.28)

Due to the assumption of uniform charge flow along the longitudinal direction, we

need to have d(I(E)/G′
B)/dx = 0, which requires 2pV = Is(E)/G′

B from Eq. (4.28).

This gives,

d

dx

 f s

I(E)/G′
B

 =

 0

0

 . (4.29)

Using the third and fourth row in Eq. (4.28) we have

0 =
d

dx

(
2pf − Is(E)

G′
B

)

= 2(ts + rs)
(

2 −p
) f s

I(E)/G′
B

− (1− p2)is(E)

gL
,

(4.30)

which gives

f s =
p I(E)

2G′
B

+
(1− p2)λs

4 gL
is(E). (4.31)

Next, from the third row in Eq. (4.28) together with Eq. (4.31), we have

df

dx
=

I(E)

G′
B λ

− p

2gL

λs

λ
is(E). (4.32)
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After integrating along x̂ direction from x = 0 (terminal 1) to x = L (terminal 2)

f1 − f2 =
I(E)L

G′
B λ

− p

2g

λs

λ
is(E). (4.33)

Combining Eqs. (4.31) and (4.33) we have I(E)

is(E)

 =

 (1− p2)G/q 2pGB/q

−2pλg /λs 4Lg/ λs

 f1 − f2

f s

 . (4.34)

After integrating over energy E I

is

 =


∫

dE

(
−∂f0
∂E

) (1− p2)G 2pGB

−2pλqg /λs 4Lqg/ λs


 V

vs


=<

 (1− p2)G 2pGB

−2pλqg /λs 4Lqg/ λs

 >

 V

vs

 ,

(4.35)

with V = V1 − V2 and < · > representing an average over energy. Finally we recover

the desired expression (Eq (4.18)) by requiring that qg = GBλs/λ due to reciprocity.

4.5 Angular Magnetoresistance

Recently, new type of magnetoresistance was discovered in materials with GSHE,

called as spin Hall magnetoresistance (SMR) [31, 36] where simultaneous actions of

SHE and ISHE give rise to longitudinal and transverse resistivity changes depending

on the magnetization direction of the top FM layer. The same type of measurement

can be explored in 2D channels with SOC like TISS and Rashba due to the similarity

with materials with SHE regarding the coupling of charge and spin transport. The
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Fig. 4.4. Semi-classical scattering matrix for the justification of the
spin circuit proposed based on the Fig. 1(c). f ↑

+, f
↑
−, f

↓
+, and f ↓

− repre-
sent occupation factor for each type of mode. (a) There are scattering
processes which mix different modes whose rates are denoted as rs, ts,
and r representing scattering probability per unit length. (b) The ef-
fect of positive terminal spin current into the terminal 3 (−is) to each
mode is shown. It is assumed that the spin terminal 3 is connected
each mode with equal probability.
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charge and spin transport in 2D channels can be described by a following conductance

matrix ([G2D]),

I1

I2

iz

ix

iz

Iz

iyz


=



(1− p2)WλI

L
gB −(1− p2)WλI

L
gB 2pWgB 0 0

−(1− p2)WλI

L
gB (1− p2)WλI

L
gB −2pWgB 0 0

−2pWgB 2pWgB 4WL
λI

gB 0 0

0 0 0 4WL
λI

gB 0

0 0 0 0 4WL
λI

gB

0 0 0 −2pLgB 0

2pLgB 0 0 0 0


×



V1

V2

vz

vx

vy


(4.36)

where gB = GB/W is a number of modes per unit width and two currents Iz and

iyz along ẑ direction are added compared to the previous circuit in Fig. 4.1(c) or

Eq. (4.22). The charge current Iz = −2pLgBv
x is added which is similar to the

contribution of spin voltage induced charge current given by I1 = 2pWgBv
z with

a spin polarization direction made consistent with properties of TI. Likewise iyz =

2pLgBV1 is added based on the contribution of charge voltage induced spin current

which is similar to iz = −2pWgBV1.

The interface between nonmagnetic (NM) and FM layers with no charge current

flow as in the case of insulating magnet like yttrium iron garnet (YIG) can be de-

scribed by following form of conductance matrix [36,45] in z − x− y basis

[GFM] = RotLW


0 0 0

0 2Gr 2Gi

0 −2Gi 2Gr

Rot+ (4.37)
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with 2Gr = 2ReG↑↓ and 2Gi = 2ImG↑↓ whereG↑↓ represents spin mixing conductance.

A rotation matrix Rot is used for a magnet along arbitrary direction (m̂) from the

initial ẑ direction. Here we assume that the same form of the conductance matrix is

valid between 2D channel and FM, which might require further study in the future.

For a bilayer structure in Fig. 4.5(a) the corresponding conductance matrix rep-

resentation is shown in Fig. 4.5(b) where two independently defined conductance

matrices [G2D] and [GFM] are combined together following ordinary circuit rules for

each spin component. Specifically, we have

−⃗is = GFMv⃗s (4.38)

for the spin terminal 3. From Eqs. (4.36) and (4.38) we can have expression for

all currents in terms of charge voltages V1 and V2. For the purpose of obtaining

longitudinal (σxx) and transverse (σxz) conductivities we have

I1 = (1− p2)gB
WλI

L
(V1 − V2)

(
1 +

p2

1− p2
(
1− (1−m2

z)ReF
))

(4.39)

Iz = −gBλIp
2(V1 − V2) (mxmzRe +myIm)F, (4.40)

with F = λI(Gr+iGi)
2gB

/
1 + λI(Gr+iGi)

2gB
and m̂ = (cosα cos β, sinα cos β, sin β). These

give the expressions for σxx = (I1/W )/((V1 − V2)/L) and σxz = I5/(V1 − V2) as

shown in Fig. 4.5(c) and (d). There are noticeable similarities regarding the angular

dependence of the signals and p2 dependence in the amplitude (instead of θ2SH)

compared to the results of SMR.

4.6 Parallel Channels

One of the main obstacles in various electrical measurements of TISS is parallel

channels that coexist with TISS where these parallel channels can be ordinary spin

degenerate channels or Rashba channel on the surface as experimentally observed [62,

63]. As long as the our previous assumption is satisfied (strong communication within

four types of channels), we can define an effective conductance matrix for the whole
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Fig. 4.5. Spin Hall magnetoresistance (SMR) effect in TISS/Rashba
channels. (a) The bilayer structure consists of 2D channel (TIS-
S/Rashba) and FM (YIG) with its magnetization direction m̂. (b)
The corresponding conductance matrix representation of the structure
(a). Two independent conductance matrices for each layer (G2D and
GFM) are combined together following conventional circuit rules for
each charge and spin component. The longitudinal (σxx) and trans-
verse (σxz) conductivities are plotted (c) and (d) for two different
values of p = 1, 0.5 (solid and dotted lines respectively) as the mag-
net direction (m̂) of YIG is rotated in x− z plane by an angle α. The
results show the dependence of p2, which is similar to the case of SMR
in bulk materials with GSHE where the result show the dependence
of θ2SH. Parameter values: Grλ

2
I = 2.6× 104gBλI , Gi = 0.
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system since the proposed circuit model is general to include arbitrary 2D channels

with three parameters, Geff , GB,eff , and peff that can be experimentally determined.

Note that two parameters GB,eff , and peff can be determined from the information of

the bandstructure for each Hamiltonian without reference to the detailed scattering

process in the channel, which are given by

GB,eff =
∑
i

GB,i and peff =
∑
i

(Mi +Ni)pi

/∑
i

(Mi +Ni), (4.41)

where index i is used for each channel. The conductance Geff in general not the sum

of each Gi and depends on the specific scattering processes in the channel. Therefore

it is better to be determined experimentally. Although it is straightforward to add

conductance matrices of each channel i together to take into account all channels in

parallel this approach assumes that there is no internal scattering among different

channels (i.e., each channel is physically isolated from other channels and connected

by outer charge and spin terminals only) so has to be applied under appropriate

conditions.

4.7 Brief connection with experimental results

Our proposed circuit model (Fig. 4.1(d)) has four elements: Two in the charge

circuit and two in the spin circuit. In this section we briefly connect each component

with available experimental results one by one.

The source resistance of charge circuit in Fig. 4.1(d): This represents a conven-

tional ohmic resistance under the condition of zero spin current, which is satisfied

when no spin current is extracted from or injected into 2D channel.

The dependent voltage source of spin circuit in Fig. 4.1(d): This represents a

charge current induced spin polarization/accumulation effect which is represented

as a spin voltage in the proposed circuit. This effect is often referred as Rashba-

Edelstein effect in 2D channel with Rashba SOC. There are extensive theoretical

and experimental results in Rashba channel (see for example Ref. [53,82]). Recently,

several experimental results are reported from different groups Ref. [67, 74–76] in
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topological insulators where the proposed expression (Eq. (4.13)) is used [74, 75].

Instead of the spin voltage, a spin current can be also measured, which was done in

Ref. [77, 83] in topological insulators and there is a great interest in the amount of

spin current that is available due to their possible applications in writing information

into magnets.

The dependent voltage source of charge circuit in Fig. 4.1(d): This is the inverse

process of the previous source term and represents a spin current induced charge

voltage. It is often referred as inverse Edelstein effect in the literature. This effect

has been observed in the case of Rashba channel [84] and topological insulators [73,

76,78,79]. In particular, Ref. [76] used a same sample to do both types of experiments

(charge/spin current induced spin/charge voltage) and reported Onsager reciprocity

between them in the magnitude of the observed signal. Ref. [73, 78, 79] used spin

pumping to inject spin into topological insulators.

The source resistance of spin circuit in Fig. 4.1(d): This represents a spin source

resistance which does not appear in the literature to the best of our knowledge. In the

spin voltage measurement this resistance is irrelevant since the spin circuit is supposed

to be open circuited. But in the spin current measurement the source resistance can

be important. In the theoretical treatment of the experimental result of Ref. [83] this

source resistance is assumed to be zero which can be consistent with the proposed

circuit model if 2D channel can be approximately treated as ideal 1D topological

insulator surface states (p = 1) . In realistic conditions, all kinds of parallel channels

can coexist and the whole channel should be considered as an effective channel with

non-ideal value of p (≤ 1) as discussed and a nonzero source resistance should be

included and compared with the spin load resistance in the setup.

4.8 Summary

We have proposed an equivalent circuit representation or conductance matrix

for 2D channels with spin orbit coupling (SOC) (including TISS and Rashba) in a
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three terminal set-up (2 charge terminals and 1 spin terminal) by focusing on the

terminal characteristics of charge and spin. This circuit can be independently defined

and combined together with other elements of circuit representing other adjacent

materials. Based on the circuit we present three results: effective spin Hall angle,

maximum spin current, and angular magnetoresistance for 2D channel with SOC. A

simple justification as well as formal justification based on a semi-classical scattering

matrix are provided for the proposed circuit and a comparison with NEGF results is

made in the case of 1D TISS. Finally the effect of parallel channels that can exist in

realistic samples are discussed within our model.
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5. SUMMARY

In summary, we have studied transport properties of materials with spin orbit coupling

(SOC) with emphasis on spin-charge coupling.

First, we consider bulk materials with spin Hall effect where we provide three

different models (conductance matrices or equivalent circuits) starting from standard

diffusion equations. The proposed circuits reproduce existing analytical results in the

literature by simple application of circuit rules for charge and spin but also provide

valuable insights such as spin injection into semiconductors without tunneling barriers

and the concept of spin ground for a thin sample to increase the spin current. We

complete the story by showing an elemental conductance matrix that can be used to

arbitrary shaped structure.

Secondly, we study 2D materials with SOC including Rashba channel or topolog-

ical insulator surface states (TISS). We model the spin voltage generation by current

flow in both quantum transport based on nonequilibrium Green’s function model as

well as semi-classical transport, which is receiving experimental support. Then we

provide a conductance matrix or equivalent circuit for charge and spin, which can

capture various kinds of experimental setups in a single picture based on simple view

of propagating modes in these materials. This circuit allows us to answer questions

such as the effective spin Hall angle in 2D materials, maximum spin current in TISS,

and magnetoresistance effect.

The extension of a simple view of propagating modes in 2D materials into 3D bulk

materials can be explored as a future work. Bulk SHE with Rashba channel or TISS

with Rashba channel are active field of current research that can be explored using

the proposed circuits. Broadly, we believe the spin circuit approach can provide a

natural framework to incorporate diverse physics of spintronics with new insights.
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T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer,
S. T. B. Goennenwein, and E. Saitoh, “Spin Hall Magnetoresistance Induced by
a Nonequilibrium Proximity Effect,” Physical Review Letters, vol. 110, p. 206601,
May 2013.

[37] J. Shi, P. Zhang, D. Xiao, and Q. Niu, “Proper Definition of Spin Current in
Spin-Orbit Coupled Systems,” Physical Review Letters, vol. 96, p. 076604, Feb.
2006.

[38] P. Jacquod, R. S. Whitney, J. Meair, and M. Büttiker, “Onsager relations in
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A. DERIVATION OF EQ. (2.7)

Each terminal current is defined as follows

I1 =
t∫
0

dy
w∫
0

dzJx|x=0, I2 = −
t∫
0

dy
w∫
0

dzJx|x=L

I3 =
l∫
0

dx
w∫
0

dzJy

∣∣
y=0

, I4 = −
l∫
0

dx
w∫
0

dzJy

∣∣
y=d

I5 =
l∫
0

dx
t∫
0

dyJz|z=0, I6 = −
l∫
0

dx
t∫
0

dyJz|z=t,

(A.1)

with Jx, Jy, Jz representing current densities along x̂, ŷ, ẑ directions respectively.

Using Eq. (2.6) the terminal currents are given by

Ic1 =
t∫
0

dy
w∫
0

dzJ c
x|x=0

= −σ
t∫
0

dy
w∫
0

dz (∂xV
c + θSH∂zV

y − θSH∂yV
z)|x=0

= −σwt
l
(V c

2 − V c
1 )− σθSH

t∫
0

dy (V y|z=t − V y|z=0) + σθSH
w∫
0

dz
(
V z|y=d − V z|y=0

)
= −σwt

l
(V c

2 − V c
1 )− σtθSH (V y

6 − V y
5 ) + σwθSH (V z

4 − V z
3 )

(A.2)

Iz3 =
l∫
0

dx
w∫
0

dzJz
y

∣∣
y=0

= −σ
l∫
0

dx
w∫
0

dz (θSH∂xV
c + ∂yV

z)|y=0

= −σθSH
w∫
0

dz (V c|x=l − V c|x=0)− σ lw
λ

(
−V z

3 coth t
λ
+ V z

4 csch
t
λ

)
= −σwθSH (V c

2 − V c
1 ) + σ lw

λ
V z
3 coth t

λ
− σ lw

λ
V z
4 csch

t
λ

(A.3)
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Iy5 =
l∫
0

dx
t∫
0

dyJy
z |z=0

= −σ
l∫
0

dx
t∫
0

dy (−θSH∂xV
c + ∂zV

y)|z=0

= σθSH
t∫
0

dy (V c|x=l − V c|x=0)− σ lt
λ

(
−V y

5 coth w
λ
+ V y

6 csch
w
λ

)
= σtθSH (V c

2 − V c
1 ) + σ lt

λ
V y
5 coth w

λ
− σ lt

λ
V y
6 csch

w
λ
.

(A.4)

Other elements in the conductance matrix (Eq. (2.7)) can be worked out following

same procedures.
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B. DERIVATION OF EQS. (2.13)-(2.16)

We first derive Eq. (2.13) from GSHE equivalent circuit in Fig. 2.2. The open circuit

spin voltages at terminals 3 and 4 (Iz3 = Iz4 = 0) in Fig. 2.2(c) are given by

V z
4 = −V z

3 = V z
0 =

θSHλ

l
(V c

1 − V c
2 ) tanh

t

2λ
(B.1)

We have expression for charge current from circuit in Fig. 2.2(b)

Ic1 = G0(V
c
1 − V c

2 )− Ic0 = G0 [(V
c
1 − V c

2 ) + 2β1V
z
4 ] (B.2)

Combining Eq. (B.1) and (B.2) we have the expression V z
4 in terms of Ic1 as in Eq.

(2.13).

Secondly, the short circuit spin current at terminal 4 in Eq. (2.14) is given by

Iz4 = Iz0 +Gz
2V

z
3 =

(
1− sec h

t

λ

)
β1G0(V

c
1 − V c

2 ) (B.3)

with V z
4 = 0 and Iz4 = 0 from Fig. 2.2(c). The open circuit spin voltage at terminal

3 are determined by

V z
3 = − Iz0

Gz
1 +Gz

2

(B.4)

From Fig. 2.2(b) we can write

Ic1 = G0 (V
c
1 − V c

2 )− Ic0 = G0 (V
c
1 − V c

2 )− β1G0V
z
3 (B.5)

From Eqs. (B.4) and B.5 we have

Ic1 =

(
1 +

β2
1G0

Gz
1 +Gz

2

)
G0(V

c
1 − V c

2 ) (B.6)

Combining Eq. (B.4) with Eq. (B.6) yields Eq. (2.14).

Thirdly, to derive Eq. (2.15) for ISHE, we make both terminals 1 and 2 open

circuited (Ic1 = 0, Ic2 = 0) then we have from Fig. 2.2(b)

V c
1 − V c

2 =
Ic0
G0

= β1 (V
z
3 − V z

4 ) . (B.7)
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With terminal 4 open circuited (Iz4 = 0), we have

Iz4 = 0 = Gz
1V

z
4 −Gz

2 (V
z
3 − V z

4 )− Iz0 (B.8)

Iz3 = Gz
1V

z
3 +Gz

2 (V
z
3 − V z

4 ) + Iz0 (B.9)

Subtracting Eq. (B.8) from Eq. (B.9) we have

Iz3 = Gz
1 (V

z
3 − V z

4 ) + 2Gz
2 (V

z
3 − V z

4 ) + 2Iz0 (B.10)

Solving Eqs. (B.7) and (B.10) we have

Iz3 =

{
Gz

1 + 2Gz
2 + 2β2

1G0

β1

}
(V c

1 − V c
2 ) (B.11)

which is Eq. (2.15). Lastly, to derive Eq. (2.16) we connect terminals 1 and 2

(V c
1 = V c

2 ) together and keep terminal 4 open (Iz4 = 0) then we have from Fig. 2.2(b)

and (c)

Ic1 = −Ic0 = −β1G0(V
z
3 − V z

4 ) (B.12)

Iz3 = Gz
1 V

z
3 +Gz

2 (V
z
3 − V z

4 ) (B.13)

Iz4 = 0 = Gz
1 V

z
4 +Gz

2 (V
z
4 − V z

3 ) (B.14)

Subtracting Eq. (B.14) from Eq. (B.13) yields

Iz3 = (Gz
1 + 2Gz

2) (V
z
3 − V z

4 ) (B.15)

Finally, from Eqs. (B.12) and (B.15) we have Eq. (2.16).
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C. DERIVATION OF EQ. (2.17) FROM SPIN CIRCUIT

From nodal analysis in the circuit in Fig. 2.4, we have

−Gz
2V

z
4 + (GB +Gz

1 +Gz
2)V

z
3 = −Iz0 (C.1)

(GT +Gz
1 +Gz

2)V
z
4 −Gz

2V
z
3 = Iz0 . (C.2)

Solving Eqs. (C.1) and (C.2) we can derive the expression for spin voltage at terminal

4 as

V z
4 =

GB +Gz
1

GBGT + (GB +GT )(Gz
1 +Gz

2) +Gz
1(G

z
1 + 2Gz

2)
Iz0 . (C.3)

Then the spin current at terminal 4 through top load is given by

Iz4 = −GBV
z
4

= −G′
T I

z
0

G′
B sinh t

λ
+ cosh t

λ
− 1

(G′
B +G′

T ) cosh
t
λ
+ (1 +G′

BG′
T ) sinh

t
λ

,
(C.4)

with G′
T = GT/(lwσ/λ) and G′

B = GB/(lwσ/λ). We obtain Eq. (2.17) by noting

that Jz
4 = Iz4/(lw) and Jz

0 = Iz0/(lw).
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D. DERIVATION OF EQ. (2.19)

We provide a conductance matrix for GSHE under the assumption [36] in Eq (2.18).

Under this assumption, the diffusion equations for V c, V y, and V z are from Eq. (2.2)

∂2
xV

c = 0

∂2
yV

x,y,z = V x,y,z/λ2,
(D.1)

which have following solutions with boundary values provided by terminal voltages

of a box

V c(x) =
V c
2 x+ V c

1 (l − x)

l

V x,y,z(y) =
V x,y,z
4 sinh

(
y
λ

)
+ V x,y,z

3 sinh
(
t−y
λ

)
sinh (t/λ)

.

(D.2)

We can also reduce Eq. (2.1) into following sets of equations

x̂ ·
−→
J c = J c

x = −σ (∂xV
c − θSH∂yV

z)

ŷ ·
−→
J x = Jx

y = −σ∂yV
x

ŷ ·
−→
J y = Jy

y = −σ∂yV
y

ŷ ·
−→
J z = Jz

y = −σ (θSH∂xV
c + ∂yV

z)

ẑ ·
−→
J c = J c

z = −σθSH∂yV
x

ẑ ·
−→
J y = Jy

z = σθSH∂xV
c.

The terminal currents are given by

Ic1 =
t∫
0

dy
w∫
0

dzJ c
x|x=0

= −σwt
l
(V c

2 − V c
1 ) + σwθSH (V z

4 − V z
3 )

(D.3)

Ix3 =
l∫
0

dx
w∫
0

dzJx
y

∣∣
y=0

= −σ lw
λ

(
−V x

3 coth t
λ
+ V x

4 csch
t
λ

) (D.4)
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Iy3 =
l∫
0

dx
w∫
0

dzJy
y

∣∣
y=0

= −σ lw
λ

(
−V y

3 coth t
λ
+ V y

4 csch
t
λ

) (D.5)

Iz3 =
l∫
0

dx
w∫
0

dzJz
y

∣∣
y=0

= −σwθSH (V c
2 − V c

1 ) + σ lw
λ
V z
3 coth t

λ
− σ lw

λ
V z
4 csch

t
λ

(D.6)

Ic5 =
l∫
0

dx
t∫
0

dyJ c
z |z=0

= −σlθSH (V x
4 − V x

3 )

(D.7)

Iy5 =
l∫
0

dx
t∫
0

dyJy
z |z=0

= σtθSH (V c
2 − V c

1 ) .

(D.8)

Other elements in the conductance matrix (Eq. (2.19)) can be worked out following

same procedures.
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E. DERIVATION OF EQS. (2.27)-(2.29)

The conductance matrix for YIG with magnetization direction along (mz,mx,my) =

(cosα cos β, sinα cos β, sin β) direction is given by

GYIG (m⃗) = R(ŷ, α)R(x̂,−β)GYIGR(x̂,−β)+R(ŷ, α)+, (E.1)

with R(ŷ, α) and R(x̂,−β) rotation matrices along ŷ and x̂ with angles α and β

respectively. The charge currents along x̂ and ŷ directions are given by

Ic1 = tw
σ

l
(V c

1 − V c
2 ) + wσθSH(V

z
3 − V z

3 ) (E.2)

and

Ic5 = lσθSH(V
x
3 − V x

4 ) (E.3)

from Eq. (2.19) where V z
3 − V z

4 and V x
3 − V x

4 can be expressed in terms of V c
1 − V c

2

from Eq. (2.26) and given by

V x
3 − V x

4 = −λθSH
l

(V c
1 − V c

2 )tanh
2

(
t

2λ

)
(mxmzRe +myIm)

2λ(Gr+iGi)
σ

1 + 2λ(Gr+iGi)
σ

coth
(
t
λ

)
(E.4)

V z
3 − V z

4 =− θSHλ(V
c
1 − V c

2 )

l
2tanh

(
t

2λ

)
+

θSHλ(V
c
1 − V c

2 )

l
tanh2

(
t

2λ

)(
1−m2

z

)
Re

2λ(Gr+iGi)
σ

1 + 2λ(Gr+iGi)
σ

coth
(
t
λ

) . (E.5)
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F. DERIVATION OF EQS. (3.12) AND (3.13)

Here we assume positive h̄vF , α and ϵ. In the case of TI SS, there is single band given

by ϵ(k⃗) = h̄vFk and ŝ(k⃗) = x̂sinθ − ŷcosθ. We start the derivation from Eq. (3.2).

p⃗ =

∑
vx(k⃗)>0

ŝi(k⃗)δ(EF − ϵ(k⃗))∑
vx(k⃗)>0

δ(EF − ϵ(k⃗))

=

∫ +π/2

−π/2
dθ(x̂sinθ − ŷcosθ)

∫ +∞
0

kdkδ(EF − ϵi(k⃗))∫ +π/2

−π/2
dθ

∫ +∞
0

kdkδ(EF − ϵi(k⃗))

= − 2

π
ŷ,

which is Eq. (3.12).

In the case of Rashba channel, first note that we have two Fermi circles with

inner and outer radius k1 and k2 respectively (ϵinner(k⃗) = h̄2k2/2m+ αk, ŝinner(k⃗) =

x̂sinθ − ŷcosθ and ϵouter(k⃗) = h̄2k2/2m − αk, ŝouter(k⃗) = −x̂sinθ + ŷcosθ). For the

denominator we have∑
i

∑
vx(k⃗)>0

δ(EF − ϵi(k⃗))

=
∑

vx(k⃗)>0

{δ(EF − ϵinner(k⃗)) + δ(EF − ϵouter(k⃗))}

=
A

(2π)2

∫ +π/2

−π/2

dθ

∫ +∞

0

kdk{δ( h̄
2

2m
(k − k1)(k + k2))

+δ(
h̄2

2m
(k + k1)(k − k2))}

=
A

(2π)2
2mπ

h̄2 .
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Based on these,

p⃗ =
k1

π(k1 + k2)

∫ +π/2

−π/2

dθ(x̂sinθ − ŷcosθ)

+
k2

π(k1 + k2)

∫ +π/2

−π/2

dθ(−x̂sinθ + ŷcosθ)

=
2

π

k2 − k1
k2 + k1

ŷ,

which is Eq. (3.13). The cases for negative values of h̄vF , α or ϵ < 0 can be shown

similarly.
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G. NEGF DETAILS OF CHAPTER 4

In this appendix we describe the details of NEGF model used in section 3 of chapter

4. We generally follow the discussion and notations in Ref. [80] with an efficient al-

gorithm in Ref. [85] here.

Hamiltonian: The model Hamiltonian for TISS is given by

HTISS =
h̄vF
a

[σx sin(kya)− σy sin(kxa)− σz(cos(kxa) + cos(kya)− 2)], (G.1)

with σx, σy, σz the Pauli spin matrices and a, v0 the lattice spacing and the Fermi

velocity respectively.

Self energy for contact: Two self energies ΣL and ΣR are used for left and right

contacts representing semi-infinite contacts of extended channel.

Self energy for incoherent scattering: The incoherent scattering in the channel is

included by the self energy ΣS with isotropic momentum and spin relaxations in

the self-consistent Born approximation. The momentum randomizing scattering is

described by [64]

[Σs]ij = dmδijδikδjl[G]kl

[Σin
s]ij = dmδijδikδjl[G

n]kl,
(G.2)

with i, j, k, and l representing indices in real space. The spin randomizing scattering

is described by [64]

[Σs]ab = (σ⃗ac · σ⃗db)[G]cd

[Σin
s]ab = (σ⃗ac · σ⃗db)[G

n]cd,
(G.3)

with a, b, c, and d representing indices in spin space.



88

Self energy for FM: The self energy for FM (ΣFM) is modeled as an additional scat-

tering process in the channel represented by isotropic momentum and spin relaxations

in the self-consistent Born approximation.

Currents and Voltages: The current operator at terminal ‘i’ is defined as [65],

Iopi (E) =
q

ih
(
[
Σin

i GA −GRΣin
i

]
+
[
ΣiG

n −GnΣ+
i

]
), (G.4)

for a given energy. The charge and spin currents are calculated from

I(E) = Tr(Iop), and i⃗s(E) = Tr(σ⃗Iop). (G.5)

The charge and spin occupation factors are calculated from

f = Tr(Gn)/Tr(A), and f⃗ s = Tr(σ⃗Gn)/Tr(A). (G.6)

To compare NEGF result with the proposed circuit model the following identifications

are made, which can be justified within a linear response regime [81],

vs

V
=

f s

f1 − f2
I

GBV
= T (E)

is

GBV
=

is(E)

(GB/q)(f1 − f2)
,

(G.7)

with I =
∫
dE I(E), is =

∫
dE is(E), and G/GB = λI/(λI + L) to take into account

the contact resistance in NEGF result.
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H. MATLAB CODES

Codes for Fig. 3.3(a)

clear all

% Inputs

hbar=1.06e-34;q=1.6e-19;m=0.04*9.1e-31;

sx=[0 1;1 0];sy=[0 -i;i 0];sz=[1 0;0 -1];

a=10e-10; % 1/kF~1nm

% t0=(hbarˆ2)/(2*m*(aˆ2)*q);

qh=q/hbar;BB=0;

% eta=4.1;%[eV A]

eta=3.3;%[eV A]

t0=eta*1e-10/a;

NW=100;

% Np=10;

SX=kron(eye(NW),sx);SY=kron(eye(NW),sy);SZ=kron(eye(NW),sz);

spineye=kron(eye(NW,NW),ones(2,2));

vF=eta/hbar*1e-10*q;

% L=zeros(Np);R=L;L(1,1)=1;R(Np,Np)=1;

zplus=1i*1e-6;

Y=a*([0:1:NW-1]-0.5*NW);

D=3*1e-3; % coupling constant

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ctr=0.5;

kk=1;

Elo=t0*1;
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dE=1*1e-3; Ehi=Elo;

EE=Elo;

EE=0.2;

% t0=t0*10;

tic

leng low=50;

leng high=50;

if D==0

leng high=leng low;

end

%%

HW=eye(NW);

% Ordinary spin degenerate

al=4*t0*eye(2);by=-t0*eye(2);bx=-t0*eye(2);

% Topological insulator

al=-2*t0*sz;by=t0/2*(sz-1i*sx);bx=t0/2*(sz+1i*sy); % to=eta/a

if NW==1

al=al/2;

end

% for EE=Elo:dE:Ehi

alpha=kron(HW,al);

alpha=alpha+kron(diag(ones(1,NW-1),+1),by)+kron(diag(ones(1,NW-1),-1),by

');

% alpha=alpha+kron(diag(ones(1,1),1-NW),by')+kron(diag(ones(1,1)

,NW-1),by); %PBC

beta=kron(spdiags(exp(i*qh*BB*a*a*[1:1:NW]'),0,NW,NW),bx);

%% self energy of contact %%

galpha=(EE+zplus)*eye(2*NW)-alpha;
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g1=sancho gs(galpha,beta');

g2=sancho gs(galpha,beta);

sigL=1*beta'*g1*beta;

sigR=1*beta*g2*beta';

gamL=1i*(sigL-sigL');

gamR=1i*(sigR-sigR');

for length=leng low:5:leng high

leng(kk)=length;

Np=length

%% initialization for RGF

% Al = zeros(2*NW,2*NW,Np-1);

Ad = zeros(2*NW,2*NW,Np);

Au = zeros(2*NW,2*NW,Np-1);

Sigin=zeros(2*NW,2*NW,Np);

% Sigout=zeros(2*NW,2*NW,Np);

SigB=zeros(2*NW,2*NW,Np);SiginB=zeros(2*NW,2*NW,Np);

TMRL(kk)=0;

%% BLOCK SET-UP

fchange1=1;fchange2=1;iter=1;

while (fchange1+fchange2)>1e-5

for ii=1:Np-1

Ad(:,:,ii)=EE*eye(2*NW)-alpha-SigB(:,:,ii);

Au(:,:,ii)=-beta;

% Al(:,:,ii)=-beta';

end

Ad(:,:,Np)=EE*eye(2*NW)-alpha-SigB(:,:,Np);

Ad(:,:,1)=Ad(:,:,1)-sigL;

Ad(:,:,Np)=Ad(:,:,Np)-sigR;
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Sigin=SiginB;

Sigin(:,:,1)=Sigin(:,:,1)+gamL; %

[Grd,Gnd,Gpd] = recursealgblock3d new2(2*NW,Np,Ad,Au,Sigin);

if iter==1

TMB=real(trace(gamR*(Gnd(:,:,Np))));

end

for ii=1:Np

SigBnew(:,:,ii)=D*(SX*(spineye.*Grd(:,:,ii))*SX+SY*(spineye.

*Grd(:,:,ii))*SY+SZ*(spineye.*Grd(:,:,ii))*SZ); % spin

random

SiginBnew(:,:,ii)=D*(SX*(spineye.*Gnd(:,:,ii))*SX+SY*(

spineye.*Gnd(:,:,ii))*SY+SZ*(spineye.*Gnd(:,:,ii))*SZ);

% SigBnew(:,:,ii)=D*eye(2*NW,2*NW).*Grd(:,:,ii);

% SiginBnew(:,:,ii)=D*eye(2*NW,2*NW).*Gnd(:,:,ii);

% SigBnew(:,:,ii)=D*spineye.*Grd(:,:,ii); % TI spin

preserving case

% SiginBnew(:,:,ii)=D*spineye.*Gnd(:,:,ii);

change1(ii)=sum(sum(abs(SigBnew(:,:,ii)-SigB(:,:,ii))));

norm1(ii)=sum(sum(abs(SigBnew(:,:,ii)+SigB(:,:,ii))));

change2(ii)=sum(sum(abs(SiginBnew(:,:,ii)-SiginB(:,:,ii))));

norm2(ii)=sum(sum(abs(SiginBnew(:,:,ii)+SiginB(:,:,ii))));

SigB(:,:,ii)=SigB(:,:,ii)+ctr*(SigBnew(:,:,ii)-SigB(:,:,ii))

;

SiginB(:,:,ii)=SiginB(:,:,ii)+ctr*(SiginBnew(:,:,ii)-SiginB

(:,:,ii));

end
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fchange1=sum(change1)/sum(norm1);fchange2=sum(change2)/sum(norm1

)

iter=iter+1

end % end of while loop

TM(kk)=real(trace(gamR*(Gnd(:,:,Np))));

TM(kk)

% E(kk)=EE;

kk=kk+1;

end % length

toc

%% Electron density along the device

for ii=1:Np

eden(ii)=real(trace(Gnd(:,:,ii)))/real(trace(1i*(Grd(:,:,ii)-Grd

(:,:,ii)')));

edenyd(ii)=real(trace(kron(eye(NW),(eye(2)-sy))*Gnd(:,:,ii)))/

real(trace(1i*(Grd(:,:,ii)-Grd(:,:,ii)')));

edenyu(ii)=real(trace(kron(eye(NW),(eye(2)+sy))*Gnd(:,:,ii)))/

real(trace(1i*(Grd(:,:,ii)-Grd(:,:,ii)')));

end

%%

beta=TM/TMB;

aeden=(1-beta)*(1-linspace(0.5,Np-0.5,Np)'/Np)+beta/2;

% aeden=(1-beta)*(1-linspace(1,Np,Np)'/Np)+beta/2;

% aeden=(1-beta)*(1-linspace(0,Np-1,Np)'/Np)+beta/2;

figure(605);

hold on

qq=plot([1:1:Np]*a/1e-9,aeden,'k-');hold on

o=plot([1:1:Np]*a/1e-9,aeden+(1-aeden(1))*2/pi,'r-.');hold on
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p=plot([1:1:Np]*a/1e-9,aeden-(1-aeden(1))*2/pi,'b--');hold on

NJ=3;

k=plot([1:NJ:Np]*a/1e-9,eden(1:NJ:Np),'ko');hold on

m=plot([1:NJ:Np]*a/1e-9,edenyd(1:NJ:Np),'ro');hold on

n=plot([1:NJ:Np]*a/1e-9,edenyu(1:NJ:Np),'bo');hold on

set(k,'linewidth',[3.0]);set(m,'linewidth',[3.0]);set(n,'linewidth',[3.0

]);

set(o,'linewidth',[3.0]);set(p,'linewidth',[3.0]);set(qq,'linewidth',[3

.0]);

set(gca,'Fontsize',[24])

% title(['NEGF real, N w = ',num2str(NW),' N L = ',num2str(Np),''])

% ylabel('f + y, f, f - y');

% ylabel('F {\vec{m}}');

% ylabel('$F {\vec{m}}$','interpreter','latex');

% xlabel('Length [nm]','interpreter','latex');

% ylim([0 1])

box on

% grid on

function [G old]=sancho gs(alpha,beta) % beta is the matrix of same

basis in a Raw

change=1;

N=size(alpha);

t old=inv(alpha)*beta';

tt old=inv(alpha)*beta;

T old=t old;

delta old=tt old;
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while change>1e-10

t new=inv(eye(N)-t old*tt old-tt old*t old)*t old*t old;

tt new=inv(eye(N)-t old*tt old-tt old*t old)*tt old*tt old;

delta new=delta old*tt new;

T new=T old+delta old*t new;

change=sum(sum(abs(delta new)))/sum(sum(abs(T new)));

t old=t new;

tt old=tt new;

delta old=delta new;

T old=T new;

end

G old=inv(alpha-beta*T new);

function [Grd,Gnd,Gpd] = recursealgblock3d new(Nc,Np,Ad,Au,Sigin)

% based on Dmitri Nikonov; Siyu Koswatta (2006), "recursive algorithm

for NEGF in Matlab," https://nanohub.org/resources/1983.

% format long

edinC = eye(Nc,Nc);

grL = zeros(Nc,Nc,Np); % initialize left-

connected function

ginL = zeros(Nc,Nc,Np); % initialize left-

connected in-scattering function

% gipL = zeros(Nc,Nc,Np); % initialize left-

connected out-scattering function

Grl = zeros(Nc,Nc,Np-1);

Grd = zeros(Nc,Nc,Np); % initialize the

Green's function

Gru = zeros(Nc,Nc,Np-1);

% Gnl = zeros(Nc,Nc,Np-1);

Gnd = zeros(Nc,Nc,Np); % initialize the

electron coherence function

% Gnu = zeros(Nc,Nc,Np-1);

% Gpl = zeros(Nc,Nc,Np-1);

% initialize the hole coherence function
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% Gpu = zeros(Nc,Nc,Np-1);

grL(:,:,1)=(Ad(:,:,1))\edinC; % step 1

for q=2:Np % obtain the left-

connected function

obra = (Ad(:,:,q)-Au(:,:,q-1)'*grL(:,:,q-1)*Au(:,:,q-1));

grL(:,:,q)=obra\edinC;

end

Grd(:,:,Np)=grL(:,:,Np); % step 2

for q=(Np-1):-1:1

Grl(:,:,q)=-Grd(:,:,q+1)*Au(:,:,q)'*grL(:,:,q); % obtain the sub-

diagonal of the Green's function

Gru(:,:,q)=-grL(:,:,q)*Au(:,:,q)*Grd(:,:,q+1); % obtain the super-

diagonal of the Green's function

prom = edinC-Au(:,:,q)*Grl(:,:,q);

Grd(:,:,q)=grL(:,:,q)*prom; % obtain the

diagonal of the Green's function

end

ginL(:,:,1)=grL(:,:,1)*Sigin(:,:,1)*grL(:,:,1)'; % step 3

for q=2:Np

sla2 = Au(:,:,q-1)'*ginL(:,:,q-1)*Au(:,:,q-1);

prom = Sigin(:,:,q) + sla2;

ginL(:,:,q) = grL(:,:,q)*prom*grL(:,:,q)'; % left-connected in-

scattering function

end

Gnd(:,:,Np)=(ginL(:,:,Np)); % step 4

for q=(Np-1):-1:1

% Gnl(:,:,q) = - Grd(:,:,q+1)*Au(:,:,q)*ginL(:,:,q) - Gnd(:,:,q

+1)*Al cr(:,:,q)*grL'(:,:,q);

nui = ginL(:,:,q) + grL(:,:,q)*Au(:,:,q)*Gnd(:,:,q+1)*Au(:,:,q)'*grL

(:,:,q)' - ...
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( ginL(:,:,q)*Au(:,:,q)*Gru(:,:,q)' + Gru(:,:,q)*Au(:,:,q)'*ginL

(:,:,q) );

Gnd(:,:,q) = nui;

end

clear grL ginL Grl Gru

Gpd = zeros(Nc,Nc,Np);

for k=1:Np

Gpd(:,:,k) = i*(Grd(:,:,k)-Grd(:,:,k)')-Gnd(:,:,k);

% advanced Green's function

end

Codes for Fig. 3.3(b)

%% 2D real space

clear all

% Inputs

hbar=1.06e-34;q=1.6e-19;

% m=0.04*9.1e-31;

sx=[0 1;1 0];sy=[0 -i;i 0];sz=[1 0;0 -1];

a=10e-10; % 1/kF~1nm

% t0=(hbarˆ2)/(2*m*(aˆ2)*q);

qh=q/hbar;BB=0;

% eta=4.1;%[eV A]

eta=3.3;%[eV A]

t0=eta*1e-10/a;

NW=100;

% Np=10;

SX=kron(eye(NW),sx);SY=kron(eye(NW),sy);SZ=kron(eye(NW),sz);

spineye=kron(eye(NW,NW),ones(2,2));

vF=eta/hbar*1e-10*q;

% L=zeros(Np);R=L;L(1,1)=1;R(Np,Np)=1;
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zplus=1i*1e-6;

Y=a*([0:1:NW-1]-0.5*NW);

D=1*1e-3; % coupling constant

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ctr=0.5;

kk=1;

Elo=t0*1;

dE=1*1e-2; Ehi=Elo;

EE=Elo;

EE=0.3;

% t0=t0*10;

tic

leng low=50;

leng high=50;

if D==0

leng high=leng low;

end

%%

HW=eye(NW);

% Ordinary spin degenerate

al=4*t0*eye(2);by=-t0*eye(2);bx=-t0*eye(2);

% Rashba

m=0.28*9.1e-31;rashba=(1)*0.79*1e-10; % mass change 0.28-> 0.05, alpha

from PRL 107, 096802 (2011)

t0=(hbarˆ2)/(2*m*(aˆ2)*q);

by=-t0*eye(2)-1i*rashba/a/2*sx;

bx=-t0*eye(2)+1i*rashba/a/2*sy;

al=4*t0*eye(2);

% Topological insulator

% al=-2*t0*sz;by=t0/2*(sz-1i*sx);bx=t0/2*(sz+1i*sy); % to=eta/a

if NW==1

al=al/2;
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end

% for EE=Elo:dE:Ehi

alpha=kron(HW,al);

alpha=alpha+kron(diag(ones(1,NW-1),+1),by)+kron(diag(ones(1,NW-1),-1),by

');

% alpha=alpha+kron(diag(ones(1,1),1-NW),by')+kron(diag(ones(1,1)

,NW-1),by); %PBC

beta=kron(spdiags(exp(i*qh*BB*a*a*[1:1:NW]'),0,NW,NW),bx);

%% self energy of contact %%

galpha=(EE+zplus)*eye(2*NW)-alpha;

g1=sancho gs(galpha,beta');

g2=sancho gs(galpha,beta);

sigL=1*beta'*g1*beta;

sigR=1*beta*g2*beta';

gamL=1i*(sigL-sigL');

gamR=1i*(sigR-sigR');

for length=leng low:5:leng high

leng(kk)=length;

Np=length

%% initialization for RGF

% Al = zeros(2*NW,2*NW,Np-1);

Ad = zeros(2*NW,2*NW,Np);

Au = zeros(2*NW,2*NW,Np-1);

Sigin=zeros(2*NW,2*NW,Np);

% Sigout=zeros(2*NW,2*NW,Np);

SigB=zeros(2*NW,2*NW,Np);SiginB=zeros(2*NW,2*NW,Np);

TMRL(kk)=0;
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%% BLOCK SET-UP

fchange1=1;fchange2=1;iter=1;

while (fchange1+fchange2)>1e-4

for ii=1:Np-1

Ad(:,:,ii)=EE*eye(2*NW)-alpha-SigB(:,:,ii);

Au(:,:,ii)=-beta;

% Al(:,:,ii)=-beta';

end

Ad(:,:,Np)=EE*eye(2*NW)-alpha-SigB(:,:,Np);

Ad(:,:,1)=Ad(:,:,1)-sigL;

Ad(:,:,Np)=Ad(:,:,Np)-sigR;

Sigin=SiginB;

Sigin(:,:,1)=Sigin(:,:,1)+gamL; %

[Grd,Gnd,Gpd] = recursealgblock3d new2(2*NW,Np,Ad,Au,Sigin);

if iter==1

TMB=real(trace(gamR*(Gnd(:,:,Np))))

end

for ii=1:Np

SigBnew(:,:,ii)=D*(SX*(spineye.*Grd(:,:,ii))*SX+SY*(spineye.

*Grd(:,:,ii))*SY+SZ*(spineye.*Grd(:,:,ii))*SZ); % spin

random

SiginBnew(:,:,ii)=D*(SX*(spineye.*Gnd(:,:,ii))*SX+SY*(

spineye.*Gnd(:,:,ii))*SY+SZ*(spineye.*Gnd(:,:,ii))*SZ);

% SigBnew(:,:,ii)=D*eye(2*NW,2*NW).*Grd(:,:,ii);

% SiginBnew(:,:,ii)=D*eye(2*NW,2*NW).*Gnd(:,:,ii);
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% SigBnew(:,:,ii)=D*spineye.*Grd(:,:,ii); % TI spin

preserving case

% SiginBnew(:,:,ii)=D*spineye.*Gnd(:,:,ii);

change1(ii)=sum(sum(abs(SigBnew(:,:,ii)-SigB(:,:,ii))));

norm1(ii)=sum(sum(abs(SigBnew(:,:,ii)+SigB(:,:,ii))));

change2(ii)=sum(sum(abs(SiginBnew(:,:,ii)-SiginB(:,:,ii))));

norm2(ii)=sum(sum(abs(SiginBnew(:,:,ii)+SiginB(:,:,ii))));

SigB(:,:,ii)=SigB(:,:,ii)+ctr*(SigBnew(:,:,ii)-SigB(:,:,ii))

;

SiginB(:,:,ii)=SiginB(:,:,ii)+ctr*(SiginBnew(:,:,ii)-SiginB

(:,:,ii));

end

fchange1=sum(change1)/sum(norm1);fchange2=sum(change2)/sum(norm1

)

iter=iter+1

end % end of while loop

TM(kk)=real(trace(gamR*(Gnd(:,:,Np))));

TM(kk)

% E(kk)=EE;

kk=kk+1;

end % length

toc

%% Electron density along the device

for ii=1:Np

eden(ii)=real(trace(Gnd(:,:,ii)))/real(trace(1i*(Grd(:,:,ii)-Grd

(:,:,ii)')));

edenyd(ii)=real(trace(kron(eye(NW),(eye(2)-sy))*Gnd(:,:,ii)))/

real(trace(1i*(Grd(:,:,ii)-Grd(:,:,ii)')));

edenyu(ii)=real(trace(kron(eye(NW),(eye(2)+sy))*Gnd(:,:,ii)))/

real(trace(1i*(Grd(:,:,ii)-Grd(:,:,ii)')));

end
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%%

beta=TM/TMB;

aeden=(1-beta)*(1-linspace(0.5,Np-0.5,Np)'/Np)+beta/2;

% aeden=(1-beta)*(1-linspace(1,Np,Np)'/Np)+beta/2;

% aeden=(1-beta)*(1-linspace(0,Np-1,Np)'/Np)+beta/2;

figure(605);

hold on

% kmax=abs(fzero(@(x) myfun(x,t0,rashba,a,EE), -1));

% kmin=abs(fzero(@(x) myfun(x,t0,rashba,a,EE), 1));

kmin=m/hbarˆ2*abs(-rashba+sqrt(rashbaˆ2+2*EE*hbarˆ2/m/q));

kmax=m/hbarˆ2*abs(-rashba-sqrt(rashbaˆ2+2*EE*hbarˆ2/m/q));

r=min(kmax,kmin)/max(kmax,kmin);

Pch=2/pi*(1-r)/(1+r); % Rashba

% Pch=2/pi; % TI case

qq=plot([1:1:Np]*a/1e-9,aeden,'k-');hold on

oo=plot([1:1:Np]*a/1e-9,aeden-(1-aeden(1))*(Pch),'b--');hold on

pp=plot([1:1:Np]*a/1e-9,aeden+(1-aeden(1))*(Pch),'r-.');hold on

NJ=5;

kk=plot([1:NJ:Np]*a/1e-9,eden(1:NJ:Np),'ko');hold on

mm=plot([1:NJ:Np]*a/1e-9,edenyd(1:NJ:Np),'ro');hold on

nn=plot([1:NJ:Np]*a/1e-9,edenyu(1:NJ:Np),'bo');hold on

set(kk,'linewidth',[3.0]);set(mm,'linewidth',[3.0]);set(nn,'linewidth'

,[3.0]);

set(oo,'linewidth',[3.0]);set(pp,'linewidth',[3.0]);set(qq,'linewidth'

,[3.0]);
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set(gca,'Fontsize',[16])

% title(['NEGF real, N w = ',num2str(NW),' N L = ',num2str(Np),''])

ylabel('f + y, f, f - y');

xlabel('Length [nm]');

ylim([0 1])

box on

% grid on

Codes for Fig. 3.3(c)

clear all

%% input parameters

hbar=1.06e-34;q=1.6e-19;a=1e-9;uB=5.78*1e-5;

A2=3.3; % [eV A]

t0=A2*1e-10/a; % [eV]

sx=[0 1;1 0];sy=[0 -i;i 0];sz=[1 0;0 -1];zplus=1i*1e-6;

Np=1;N1=ceil(Np/2);X=1*[0:1:Np-1];

L=diag([1 zeros(1,Np-1)]);

R=diag([zeros(1,Np-1) 1]);

ii=0;

tic

flag ord=0; % 0 Rashba

kymin=1*(-1.1);dky=0.0005;kymax=-kymin;

ii=1;

Emin=-0.1;Emax=+0.2;dE=(Emax-Emin)/30; % Rashba

% Emin=-0.2;Emax=+0.2;dE=(Emax-Emin)/11; % TISS

for EE=Emin:dE:Emax

E(ii)=EE;

EE

H0=diag(ones(1,Np));
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HR=diag(ones(1,Np-1),1);HL=diag(ones(1,Np-1),-1);

jj=1; % ky mode sum

%% initialization

noeyd(ii)=0;noeyu(ii)=0;dos(ii)=0;

for ky=kymin:dky:kymax

beta=t0*(1/2)*(1*sz+i*sy);

alpha=-t0*sz+(EE*ky)*sx;

if flag ord==0

% m=0.05*9.1e-31;rashba=(2)*8*1e-12;g=15;B=1; % Koo's

m=0.28*9.1e-31;rashba=(1)*0.79*1e-10;

t0=(hbarˆ2)/(2*m*(aˆ2)*q);

% kf=acos(1-(EE)/(2*t0))/a;

kf=(rashba*q+sqrt((rashba*q)ˆ2+2*hbarˆ2*EE*q/m))/(hbarˆ2/m);

ky=kf*ky;

Ey=2*t0*(1-cos(ky*a));

beta=-t0*eye(2)+1i*rashba/a/2*sy;

alpha=2*t0*eye(2)+Ey*eye(2)+rashba*sin(ky*a)/a*sx;

end

H=kron(H0,alpha)+kron(HL,beta')+kron(HR,beta);

%% PBC condition along transport direction for Hamiltonian

% H=H+kron(diag(ones(1,1),1-Np),beta)+kron(diag(ones(1,1),Np-1),

beta'); %PBC

%%

g0=(EE+zplus)*eye(2)-alpha;

%% Sancho
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gL=sancho gs(g0,beta');

sL=beta'*gL*beta;

gR=sancho gs(g0,beta);

sR=beta*gR*beta';

%%

sigL=kron(L,sL);sigR=kron(R,sR);

gamL=1i*(sigL-sigL');gamR=1i*(sigR-sigR');

G=inv(((EE+zplus)*eye(2*Np))-H-sigL-sigR);

Gn=G*(gamL)*G';

noeyd(ii)=noeyd(ii)+real(trace((eye(2)-sy)*Gn));

noeyu(ii)=noeyu(ii)+real(trace((eye(2)+sy)*Gn));

dos(ii)=dos(ii)+real(trace(1i*(G-G')));

%%

jj=jj+1;

end % end of ky sum

Pch(ii)=(noeyu(ii)-noeyd(ii))/dos(ii);

if dos(ii)<0

Pch(ii)=0;

end

Pch(ii)

%%

ii=ii+1;

end %

toc

%%
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figure(53)

hold on

if flag ord==0 % Rashba

h=plot(2/pi*ones(length(E),1),E,'b');hold on

k=plot(Pch,E,'bo-');hold on

else

h=plot(2/pi*ones(length(E),1),E,'b');hold on

k=plot(-Pch,E,'rx');hold on

end

set(gca,'Fontsize',[16])

set(h,'linewidth',[3.0])

set(k,'linewidth',[3.0])

% set(l,'linewidth',[3.0])

% set(m,'linewidth',[3.0])

grid on

box on

xlim([-1 1])

% legend('NEGF','Resistor','Location','Northwest');

% legend('I c','I x','I y','I z','Location','Best');

xlabel('P c h');

% xlabel('c (in c\sigma z)');

ylabel('E [eV]');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 3D TI E(k) relation surface 2 by 2 band structure plot

clear all
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%Constants (all MKS, except energy which is in eV)

hbar=1.06e-34;q=1.6e-19;qh=q/hbar;a=1e-11;

%inputs

TI flag=0;

%% this is in unit of pi/a

% klo=1*0.67-0.06;khi=1*0.67+0.06;

% klo=0-0.01*1;khi=0.01*1;

klo=-.02;khi=-klo;

%Hamiltonian

sx=[0 1;1 0];sy=[0 -i;i 0];sz=[1 0;0 -1];temp1=[0,1;-1,0];

NW=1;

%% Rashba

% m=0.05*9.1e-31;rashba=(1)*0.36*1e-10;

m=0.28*9.1e-31;rashba=(1)*0.79*1e-10;

t0=(hbarˆ2)/(2*m*(aˆ2)*q);

by=-t0*eye(2)-1i*rashba/a/2*sx;

bx=-t0*eye(2)+1i*rashba/a/2*sy;

al=4*t0*eye(2);

al=al/2;

%%

if TI flag==1

% Topological insulator

t0=3.3*1e-10/a;

al=-2*t0*sz;by=t0/2*(sz-i*sx);bx=t0/2*(sz+i*sy); % to=eta/a

al=al/2;

else

end

%%
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HW=eye(NW);

alpha=kron(HW,al);

alpha=alpha+kron(diag(ones(1,NW-1),+1),by)+kron(diag(ones(1,NW-1),-1),by

');

% alpha=alpha+kron(diag(ones(1,1),1-NW),by)+kron(diag(ones(1,1),

NW-1),by'); %PBC

% beta=kron(eye(NW),bx)+kron(-t0*diag(exp(i*q*B*a*Y/hbar)),1);

beta=kron(spdiags(exp(i*qh*0*a*a*[1:1:NW]'),0,NW,NW),bx);

%%

ii=1;

for kk=[klo:(khi-klo)/400:khi]

H=alpha+beta*exp(i*kk)+beta'*exp(-i*kk);

[V,D]=eig(H);E(:,ii)=sort(real(diag(D)));K(ii)=kk;ii=ii+1;

end

%%

figure(5)

hold on

% subplot(2,1,1)

% subplot(1,3,1)

h=plot(K/a/1e10,E,'b');hold on

set(h,'linewidth',[3.0])

set(gca,'Fontsize',[16]);

% h=plot(2/3,linspace(0,5,1000),'k.','linewidth',[2]);hold on

% h=plot(1/3,linspace(0,5,1000),'k.','linewidth',[2]);hold on

set(h,'linewidth',[3.0])

set(gca,'Fontsize',[16]);

% grid on
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% xlim([-0.3 0.3])

ylim([-0.2 0.2])

% ylabel('E [eV]')

% xlabel('k')

% k [Aˆ(-1)]

box on

% subplot(1,3,2)

%%

figure(6)

NE=400; % even number

yy=linspace(-0.2,0.2,NE);

% Rashba

temp1=((rashba*q)ˆ2*m/2/hbarˆ2/q)/0.6*NE*3

xx=[zeros(floor(NE/2)-temp1,1); 2/pi*sqrt(1+2*yy(floor(NE/2)-temp1:floor

(NE/2))*q*hbarˆ2/m/(rashba*q)ˆ2)';...

2/pi*1./sqrt(1+2*yy(floor(NE/2)+1:NE)*q*hbarˆ2/m/(rashba*q)ˆ2)'];

%

if TI flag==1

xx=[2/pi*ones(floor(NE/2),1);2/pi*ones(floor(NE/2),1)];

else

end

%

hold on

g=plot(xx,yy,'b')

set(g,'linewidth',[3.0])

set(gca,'Fontsize',[16]);
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ylabel('E [eV]')

xlabel('P c h')

box on

xlim([-1 1])

ylim([-0.2 0.2])

xlim([0 1])

Codes for Fig. 3.4(a)

%% 3D TI E(k) relation surface 2 by 2 band structure plot

clear all

%Constants (all MKS, except energy which is in eV)

hbar=1.06e-34;q=1.6e-19;qh=q/hbar;a=1e-11;

A2=3.3*1e-10; % [eV meter]

t0=A2/a; % [eV]

g=15;B=1;

% m=0.05*9.1e-31;rashba=(2)*8*1e-12; % Koo's

m=0.28*9.1e-31;rashba=(1)*0.79*1e-10;

%inputs

TI flag=0;

%% this is in unit of pi/a

% klo=1*0.67-0.06;khi=1*0.67+0.06;

% klo=0-0.01*1;khi=0.01*1;

klo=-.02;khi=-klo;

%Hamiltonian

sx=[0 1;1 0];sy=[0 -i;i 0];sz=[1 0;0 -1];temp1=[0,1;-1,0];

NW=1;
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ky=0;

kf=0

t0=1*A2/a; % [eV]

beta1=1*t0*(1/2)*(1*sz+i*sy);

alpha1=-t0*sz+(A2*kf*ky)*sx;

t1=(hbarˆ2)/(2*m*(aˆ2)*q);

% kf=acos(1-(EE)/(2*t0))/a;

% kf=(rashba*q+sqrt((rashba*q)ˆ2+2*hbarˆ2*EE*q/m))/(hbarˆ2/m);

kyr=0;

Ey=2*t1*(1-cos(kyr*a));

beta2=1*(-t1)*eye(2)+1i*rashba/a/2*sy;

alpha2=2*t1*eye(2)+Ey*eye(2)+rashba*sin(kyr*a)/a*sx;

alpha2=alpha2+0.4*eye(2); %shift

alpha=[alpha1 zeros(2); zeros(2) alpha2];

beta=[1*beta1 zeros(2); zeros(2) 1*beta2];

%%

ii=1;

for kk=[klo:(khi-klo)/400:khi]

H=alpha+beta*exp(i*kk)+beta'*exp(-i*kk);

[V,D]=eig(H);E(:,ii)=sort(real(diag(D)));K(ii)=kk;ii=ii+1;

end

%%

figure(5)

hold on

% subplot(2,1,1)

% subplot(1,3,1)

h=plot(K/a/1e10,E,'k');hold on
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set(h,'linewidth',[3.0])

set(gca,'Fontsize',[16]);

% h=plot(2/3,linspace(0,5,1000),'k.','linewidth',[2]);hold on

% h=plot(1/3,linspace(0,5,1000),'k.','linewidth',[2]);hold on

set(h,'linewidth',[3.0])

set(gca,'Fontsize',[16]);

% grid on

% xlim([-0.3 0.3])

ylim([0 0.6])

% ylabel('E [eV]')

% xlabel('k')

% k [Aˆ(-1)]

box on

Codes for Fig. 3.4(b)

clear all

%% input parameters

hbar=1.06e-34;q=1.6e-19;a=1e-11;uB=5.78*1e-7;

A2=3.3*1e-10; % [eV meter]

t0=A2/a; % [eV]

g=15;B=1;

% m=0.05*9.1e-31;rashba=(2)*8*1e-12; % Koo's

m=0.28*9.1e-31;rashba=(1)*0.79*1e-10;

sx=[0 1;1 0];sy=[0 -i;i 0];sz=[1 0;0 -1];zplus=1i*1e-5;

Np=1;N1=ceil(Np/2);X=1*[0:1:Np-1];

L=diag([1 zeros(1,Np-1)]);

R=diag([zeros(1,Np-1) 1]);

ii=0;

tic

% P2=[1 0 0];

flag ord=0; % 0 Rashba

% P1=[0 1 0];
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% kF=abs(EE)/(A2*1e-10);

% W=1e-6; % device width

% Mode=kF*W/pi;Mode=1;

% kymin=1*(-0.9);dky=0.05;kymax=-kymin;

% kymin=1*(-0.95);dky=0.01;kymax=-kymin;

kymin=1*(-1.2);dky=0.001;kymax=-kymin;

% kymin=1*(-0.99);dky=0.01;kymax=-kymin;

% kymin=0*(-1.2);dky=0.001;kymax=-kymin;

ii=1;

Emin=-0.011;Emax=+0.04;dE=(Emax-Emin)/11;

Emin=-0.0005;Emax=+0.001;dE=(Emax-Emin)/21;

Emin=0.38;Emax=+0.4;dE=(Emax-Emin)/11;

Emin=0.1;Emax=+0.6;dE=(Emax-Emin)/53;

for EE=Emin:dE:Emax

E(ii)=EE;

EE

H0=diag(ones(1,Np));

HR=diag(ones(1,Np-1),1);HL=diag(ones(1,Np-1),-1);

jj=1; % ky mode sum

%% initialization

noeyd(ii)=0;noeyu(ii)=0;dos(ii)=0;

for ky=kymin:dky:kymax

kf=abs(EE)/(A2);

t0=A2/a; % [eV]

beta1=1*t0*(1/2)*(1*sz+i*sy);

alpha1=-t0*sz+(A2*kf*ky)*sx;

t1=(hbarˆ2)/(2*m*(aˆ2)*q);

% kf=acos(1-(EE)/(2*t0))/a;
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% kf=(rashba*q+sqrt((rashba*q)ˆ2+2*hbarˆ2*EE*q/m))/(hbar

ˆ2/m);

kyr=kf*ky;

Ey=2*t1*(1-cos(kyr*a));

beta2=1*(-t1)*eye(2)+1i*rashba/a/2*sy;

alpha2=2*t1*eye(2)+Ey*eye(2)+rashba*sin(kyr*a)/a*sx+0*g/2*uB*B*

sz;

alpha2=alpha2+0.4*eye(2); %shift

alpha=[alpha1 zeros(2); zeros(2) alpha2];

beta=[beta1 zeros(2); zeros(2) 1*beta2];

H=kron(H0,alpha)+kron(HL,beta')+kron(HR,beta);

%% PBC condition along transport direction for Hamiltonian

% H=H+kron(diag(ones(1,1),1-Np),beta)+kron(diag(ones(1,1),Np-1),

beta'); %PBC

%%

ig0=(EE+zplus)*eye(4)-alpha;

%% Sancho

gL=sancho gs(ig0,beta');

sL=beta'*gL*beta;

gR=sancho gs(ig0,beta);

sR=beta*gR*beta';

%%

sigL=kron(L,sL);sigR=kron(R,sR);

gamL=1i*(sigL-sigL');gamR=1i*(sigR-sigR');

G=inv(((EE+zplus)*eye(4*Np))-H-sigL-sigR);

Gn=G*(gamL)*G';

noeyd(ii)=noeyd(ii)+real(trace(kron(eye(2),(eye(2)-sy))*Gn));
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noeyu(ii)=noeyu(ii)+real(trace(kron(eye(2),(eye(2)+sy))*Gn));

dos(ii)=dos(ii)+real(trace(1i*(G-G')));

%%

jj=jj+1;

end % end of ky sum

Pch(ii)=(noeyu(ii)-noeyd(ii))/dos(ii);

Pch(ii)

kf;

%%

ii=ii+1;

end %

toc

% splitting=g*uB*B

%%

figure(53)

hold on

if flag ord==0

% h=plot(2/pi*ones(length(E),1),E,'b');hold on

k=plot(Pch,E,'bx-');hold on

else

h=plot(2/pi*ones(length(E),1),E,'b');hold on

k=plot(-Pch,E,'bx');hold on

end

% k=plot(pol,INX,'ro-');hold on

% l=plot(pol,INY,'bx-');hold on

% m=plot(pol,INZ,'c+--');hold on

% h=plot(pol,0.5-1/pi*pol,'r.-');hold on



116

% h=plot(parameter,VN par,'bx-');hold on

% k=plot(pol,VR,'bo');hold on

set(gca,'Fontsize',[16])

% set(h,'linewidth',[3.0])

set(k,'linewidth',[3.0])

% set(l,'linewidth',[3.0])

% set(m,'linewidth',[3.0])

grid on

box on

xlim([-1 1])

% legend('NEGF','Resistor','Location','Northwest');

% legend('I c','I x','I y','I z','Location','Best');

xlabel('P c h');

% xlabel('c (in c\sigma z)');

ylabel('E [eV]');

Codes for Fig. 4.3

clear all

% Inputs

hbar=1.06e-34;q=1.6e-19;m=0.04*9.1e-31;

sx=[0 1;1 0];sy=[0 -1i;1i 0];sz=[1 0;0 -1];

a=1e-9; % 1/kF~1nm

% t0=(hbarˆ2)/(2*m*(aˆ2)*q);

qh=q/hbar;BB=0;

% eta=4.1;%[eV A]

eta=3.3;%[eV A]

t0=eta*1e-10/a;

NW=1;

% Np=10;

SX=kron(eye(NW),sx);SY=kron(eye(NW),sy);SZ=kron(eye(NW),sz);
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spineye=kron(eye(NW,NW),ones(2,2));

diaeye=kron(eye(NW,NW),eye(2,2));

vF=eta/hbar*1e-10*q;

% L=zeros(Np);R=L;L(1,1)=1;R(Np,Np)=1;

zplus=1i*1e-7;

Y=a*([0:1:NW-1]-0.5*NW);

ctr=0.5;

kk=1;

Elo=t0*1;

dE=1*1e-3; Ehi=Elo;

EE=Elo;

EE=0.2;

lambda kF=2*pi*eta/EE*1e-10/1e-9;

% t0=t0*10;

tic

%%

HW=eye(NW);

% Ordinary spin degenerate

al=4*t0*eye(2);by=-t0*eye(2);bx=-t0*eye(2);

% Topological insulator

al=-2*t0*sz;by=t0/2*(sz-1i*sx);bx=t0/2*(sz+1i*sy); % to=eta/a

if NW==1

al=al/2;

end

% for EE=Elo:dE:Ehi
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alpha=kron(HW,al);

alpha=alpha+kron(diag(ones(1,NW-1),+1),by)+kron(diag(ones(1,NW-1),-1),by

');

% alpha=alpha+kron(diag(ones(1,1),1-NW),by')+kron(diag(ones(1,1)

,NW-1),by); %PBC

beta=kron(spdiags(exp(i*qh*BB*a*a*[1:1:NW]'),0,NW,NW),bx);

%% self energy of contact %%

galpha=(EE+zplus)*eye(2*NW)-alpha;

g1=sancho gs(galpha,beta');

g2=sancho gs(galpha,beta);

sigL=1*beta'*g1*beta;

sigR=1*beta*g2*beta';

gamL=1i*(sigL-sigL');

gamR=1i*(sigR-sigR');

%%%%%%%%%%

fR=0;

N kk=21;

Np=40;

D2=0*1e-3/2; % ordinary spin reversing scattering for intrinsic channel

%% initialization for RGF

Al = zeros(2*NW,2*NW,Np-1);

Ad = zeros(2*NW,2*NW,Np);

Au = zeros(2*NW,2*NW,Np-1);

Sigin=zeros(2*NW,2*NW,Np);

% Sigout=zeros(2*NW,2*NW,Np);
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SigB=zeros(2*NW,2*NW,Np);SiginB=zeros(2*NW,2*NW,Np);SigoutB=zeros(2*NW

,2*NW,Np);

SigB1=zeros(2*NW,2*NW,Np);SiginB1=zeros(2*NW,2*NW,Np);SigoutB1=zeros(2*

NW,2*NW,Np);

SigB2=zeros(2*NW,2*NW,Np);SiginB2=zeros(2*NW,2*NW,Np);SigoutB2=zeros(2*

NW,2*NW,Np);

for kk=1:N kk

D1=2*1*1e-3*(kk-1)/3; % coupling constant %% spin eraser

DD(kk)=D1;

length(kk)=Np;

TMRL(kk)=0;

%% BLOCK SET-UP

fchange1=1;fchange2=1;iter=1;

while (fchange1+fchange2)>1e-6

for ii=1:Np-1

Ad(:,:,ii)=EE*eye(2*NW)-alpha-SigB(:,:,ii);

Au(:,:,ii)=-beta;

Al(:,:,ii)=-beta';

end

Ad(:,:,Np)=EE*eye(2*NW)-alpha-SigB(:,:,Np);

Ad(:,:,1)=Ad(:,:,1)-sigL;
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Ad(:,:,Np)=Ad(:,:,Np)-sigR;

Sigin=SiginB;

Sigin(:,:,1)=Sigin(:,:,1)+gamL; %

Sigin(:,:,Np)=Sigin(:,:,Np)+fR*gamR; % in equilibrium

[Grd,Gnl,Gnd,Gnu,Gpd] = recursealgblock3d m(2*NW,Np,Al,Ad,Au,

Sigin);

if (kk==1)&&(iter==1)

TMB=real(trace(gamR*(Gnd(:,:,Np))))

end

for ii=1:Np

SigBnew1(:,:,ii)=D1*(SX*(spineye.*Grd(:,:,ii))*SX+1*SY*(

spineye.*Grd(:,:,ii))*SY+SZ*(spineye.*Grd(:,:,ii))*SZ);

SigBnew2(:,:,ii)=D2*(SX*(spineye.*Grd(:,:,ii))*SX+1*SY*(

spineye.*Grd(:,:,ii))*SY+SZ*(spineye.*Grd(:,:,ii))*SZ);

SigBnew(:,:,ii)=SigBnew1(:,:,ii)+SigBnew2(:,:,ii);

SiginBnew1(:,:,ii)=D1*(SX*(spineye.*Gnd(:,:,ii))*SX+1*SY*(

spineye.*Gnd(:,:,ii))*SY+SZ*(spineye.*Gnd(:,:,ii))*SZ);

SiginBnew2(:,:,ii)=D2*(SX*(spineye.*Gnd(:,:,ii))*SX+1*SY*(

spineye.*Gnd(:,:,ii))*SY+SZ*(spineye.*Gnd(:,:,ii))*SZ);

SiginBnew(:,:,ii)=SiginBnew1(:,:,ii)+SiginBnew2(:,:,ii);

change1(ii)=sum(sum(abs(SigBnew(:,:,ii)-SigB(:,:,ii))));

norm1(ii)=sum(sum(abs(SigBnew(:,:,ii)+SigB(:,:,ii))));

change2(ii)=sum(sum(abs(SiginBnew(:,:,ii)-SiginB(:,:,ii))));
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norm2(ii)=sum(sum(abs(SiginBnew(:,:,ii)+SiginB(:,:,ii))));

SigB(:,:,ii)=SigB(:,:,ii)+ctr*(SigBnew(:,:,ii)-SigB(:,:,ii))

;

SiginB(:,:,ii)=SiginB(:,:,ii)+ctr*(SiginBnew(:,:,ii)-SiginB

(:,:,ii));

SigB1(:,:,ii)=SigB1(:,:,ii)+ctr*(SigBnew1(:,:,ii)-SigB1(:,:,

ii));

SiginB1(:,:,ii)=SiginB1(:,:,ii)+ctr*(SiginBnew1(:,:,ii)-

SiginB1(:,:,ii));

end

fchange1=sum(change1)/sum(norm1);fchange2=sum(change2)/sum(norm1

);

iter=iter+1;

end % end of while loop

TM(kk)=real(trace(-gamR*fR*(1i*(Grd(:,:,Np)-Grd(:,:,Np)'))+gamR*(Gnd

(:,:,Np))));

TM2(kk)=real(trace(gamL*(1i*(Grd(:,:,1)-Grd(:,:,1)')-Gnd(:,:,1))));

TM(kk)

% TM2(kk)

for ii=1:Np

Ic(ii)=real(trace(kron(eye(NW),eye(2))*(SiginB1(:,:,ii)*Grd(:,:,

ii)'-Grd(:,:,ii)*SiginB1(:,:,ii)+SigB1(:,:,ii)*Gnd(:,:,ii)-

Gnd(:,:,ii)*SigB1(:,:,ii)')/(1i)));

Ix(ii)=real(trace(SX*(SiginB1(:,:,ii)*Grd(:,:,ii)'-Grd(:,:,ii)*

SiginB1(:,:,ii)+SigB1(:,:,ii)*Gnd(:,:,ii)-Gnd(:,:,ii)*SigB1

(:,:,ii)')/(1i)));
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Iy(ii)=real(trace(SY*(SiginB1(:,:,ii)*Grd(:,:,ii)'-Grd(:,:,ii)*

SiginB1(:,:,ii)+SigB1(:,:,ii)*Gnd(:,:,ii)-Gnd(:,:,ii)*SigB1

(:,:,ii)')/(1i)));

Iz(ii)=real(trace(SZ*(SiginB1(:,:,ii)*Grd(:,:,ii)'-Grd(:,:,ii)*

SiginB1(:,:,ii)+SigB1(:,:,ii)*Gnd(:,:,ii)-Gnd(:,:,ii)*SigB1

(:,:,ii)')/(1i)));

end

Ic total(kk)=sum(Ic);

Ix total(kk)=sum(Ix);

Iy total(kk)=sum(Iy)

Iz total(kk)=sum(Iz);

%% Electron density along the device

for ii=1:Np

eden(ii)=real(trace(Gnd(:,:,ii)))/real(trace(1i*(Grd(:,:,ii)-Grd

(:,:,ii)')));

edenx(ii)=real(trace(kron(eye(NW),(0*eye(2)+sx))*Gnd(:,:,ii)))/

real(trace(1i*(Grd(:,:,ii)-Grd(:,:,ii)')));

edeny(ii)=real(trace(kron(eye(NW),(0*eye(2)+sy))*Gnd(:,:,ii)))/

real(trace(1i*(Grd(:,:,ii)-Grd(:,:,ii)')));

edenz(ii)=real(trace(kron(eye(NW),(0*eye(2)+sz))*Gnd(:,:,ii)))/

real(trace(1i*(Grd(:,:,ii)-Grd(:,:,ii)')));

end

Vx(kk)=edenx(floor(Np/5));

Vy(kk)=edeny(floor(Np/5));

Vz(kk)=edenz(floor(Np/5));
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kk=kk+1;

end %

toc

Tb=TM(1);

Iy total=-Iy total;

Vy=-Vy; % due to coordinate axis change, Old y axis = - New z axis

%%

beta=TM/TMB;

figure(810)

l=plot(Iy total,Tb+Tb/2*Iy total,'b-');hold on

k=plot(Iy total,TM,'ro');hold on

set(k,'linewidth',[3.0]);

set(l,'linewidth',[3.0]);

set(gca,'Fontsize',[24])

xlabel('iˆs/(G BV)');

% xlabel('D [eVˆ2]');

ylabel('I/(G BV)');

% ylim([0 1])

% xlim([0 Np*a/1e-9])

box on

figure(910)

l=plot(TM,TM/2,'b-');hold on

k=plot(TM,Vy,'ro');hold on

set(k,'linewidth',[3.0]);

set(l,'linewidth',[3.0]);

set(gca,'Fontsize',[24])

ylabel('vˆs/V');
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% xlabel('D [eVˆ2]');

xlabel('I/(G BV)');

% ylim([0 1])

% xlim([0 Np*a/1e-9])

box on

function [Grd,Gnl,Gnd,Gnu,Gpd] = recursealgblock3d m(Nc,Np,Al,Ad,Au,

Sigin)

% format long

% based on Dmitri Nikonov; Siyu Koswatta (2006), "recursive algorithm

for NEGF in Matlab," https://nanohub.org/resources/1983.

edinC = eye(Nc,Nc);

grL = zeros(Nc,Nc,Np); % initialize left-

connected function

ginL = zeros(Nc,Nc,Np); % initialize left-

connected in-scattering function

% gipL = zeros(Nc,Nc,Np); % initialize left-

connected out-scattering function

Grl = zeros(Nc,Nc,Np-1);

Grd = zeros(Nc,Nc,Np); % initialize the

Green's function
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Gru = zeros(Nc,Nc,Np-1);

Gnl = zeros(Nc,Nc,Np-1);

Gnd = zeros(Nc,Nc,Np); % initialize the

electron coherence function

Gnu = zeros(Nc,Nc,Np-1);

% Gpl = zeros(Nc,Nc,Np-1);

% Gpd = zeros(Nc,Nc,Np); % initialize the

hole coherence function

% Gpu = zeros(Nc,Nc,Np-1);

grL(:,:,1)=(Ad(:,:,1))\edinC; % step 1

for q=2:Np % obtain the left-

connected function

obra = (Ad(:,:,q)-Al(:,:,q-1)*grL(:,:,q-1)*Au(:,:,q-1));

grL(:,:,q)=obra\edinC;

end

for k=1:Np

gaL(:,:,k) = grL(:,:,k)'; % advanced left-

connected function

end

for k=1:(Np-1)

Al cr(:,:,k) = Au(:,:,k)'; % Hermitean

conjugate of the coefficient matrix

Au cr(:,:,k) = Al(:,:,k)';

end

Grd(:,:,Np)=grL(:,:,Np); % step 2

for q=(Np-1):-1:1

Grl(:,:,q)=-Grd(:,:,q+1)*Al(:,:,q)*grL(:,:,q); % obtain the sub-

diagonal of the Green's function

Gru(:,:,q)=-grL(:,:,q)*Au(:,:,q)*Grd(:,:,q+1); % obtain the super-

diagonal of the Green's function

prom = edinC-Au(:,:,q)*Grl(:,:,q);

Grd(:,:,q)=grL(:,:,q)*prom; % obtain the

diagonal of the Green's function
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end

for k=1:Np

Gad(:,:,k) = Grd(:,:,k)'; % advanced Green's

function

end

for k=1:(Np-1)

Gal(:,:,k) = Gru(:,:,k)';

Gau(:,:,k) = Grl(:,:,k)';

end

ginL(:,:,1)=grL(:,:,1)*Sigin(:,:,1)*gaL(:,:,1); % step 3

for q=2:Np

sla2 = Al(:,:,q-1)*ginL(:,:,q-1)*Au cr(:,:,q-1);

prom = Sigin(:,:,q) + sla2;

ginL(:,:,q) = grL(:,:,q)*prom*gaL(:,:,q); % left-connected in-

scattering function

end

Gnd(:,:,Np)=(ginL(:,:,Np)); % step 4

for q=(Np-1):-1:1

Gnl(:,:,q) = - Grd(:,:,q+1)*Al(:,:,q)*ginL(:,:,q) - Gnd(:,:,q+1)*

Al cr(:,:,q)*gaL(:,:,q);

nui = ginL(:,:,q) + grL(:,:,q)*Au(:,:,q)*Gnd(:,:,q+1)*Al cr(:,:,q)*

gaL(:,:,q) - ...

( ginL(:,:,q)*Au cr(:,:,q)*Gal(:,:,q) + Gru(:,:,q)*Al(:,:,q)*

ginL(:,:,q) );

Gnd(:,:,q) = nui;

end

for k=1:(Np-1)

Gnu(:,:,k) = Gnl(:,:,k)'; % upper diagonal

of the electron function

end

Gpl = i*(Grl-Gal) - Gnl;

Gpd = i*(Grd-Gad) - Gnd; % hole Green

's function

Gpu = i*(Gru-Gau) - Gnu;
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end
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