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Abstract: Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) on wheat and
barley. In a previous study, a GIN4-like protein kinase gene, GIL1, was found to be important for
plant infection and sexual reproduction. In this study we further characterized the functions of GIL1
kinase in different developmental processes. The ∆gil1 mutants were reduced in growth, conidiation,
and virulence, and formed whitish and compact colonies. Although phialide formation was rarely
observed in the mutants, deletion of GIL1 resulted in increased hyphal branching and increased
tolerance to cell wall and cell membrane stresses. The ∆gil1 mutants produced straight, elongated
conidia lacking of distinct foot cells and being delayed in germination. Compared with the wild
type, some compartments in the vegetative hyphae of ∆gil1 mutants had longer septal distances and
increased number of nuclei, suggesting GIL1 is related to cytokinesis and septation. Localization of
the GIL1-GFP fusion proteins to the septum and hyphal branching and fusion sites further supported
its roles in septation and branching. Overall, our results indicate that GIL1 plays a role in vegetative
growth and plant infection in F. graminearum, and is involved in septation and hyphal branching.

Keywords: wheat scab; wheat head blight; Gibberella zeae; conidiogenesis; virulence; septation

1. Introduction

Fusarium graminearum (teleomorph Gibberella zeae) is a major causal agent of Fusarium head blight
(FHB) or scab of wheat and barley [1]. In addition to yield losses, FHB caused by this pathogen often
reduces grain quality and results in mycotoxin contamination [2]. One of the mycotoxins produced by
F. graminearum is deoxynivalenol (DON), which is a potent protein synthesis inhibitor in eukaryotic
organisms [3]. DON is also toxic to plant cells. In fact, the TRI5 trichodiene synthase gene that is
essential for DON biosynthesis is the first virulence factor characterized by molecular studies in
F. graminearum [4–6]. The TRI5 deletion mutant is still pathogenic and causes typical FHB symptoms
on inoculated wheat kernels but it fails to spread via the rachis to nearby wheat kernels on the same
wheat heads.

In the past decade, molecular genetics and functional genomics studies have characterized over
a hundred of genes that are important for plant infection in F. graminearum, including a number of
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genes encoding different transcription factors, protein kinases, lipases, and metabolic enzymes [7–18].
Whereas most of these genes, similar to TRI5, are not required for the initiation of infection, but important
for disease spreading, and several of them are essential for the initiation of infection, such as GPMK1
and MAP1 [19,20]. However, many of these mutants blocked in the key signal transduction pathways,
unlike the mutants defective in trichothecene production, have pleiotropic phenotypes, suggesting the
co-regulation of infection processes with growth and cellular developments by well conserved signaling
cascades [8,21]. In the systemic functional study of the F. graminearum kinome, a total of 42 protein kinase
genes were found to be important for plant infection. Mutants deleted of these genes were significantly
reduced in virulence or non-pathogenic [13]. Thirty-two of them also had over 30% reduction in growth
rate. One of them is FGSG_08701 (reannotated to FGSG_16988 in MIPS database) that encodes a protein
kinase homologous to the GIN4 kinase in Saccharomyces cerevisiae [22]. Deletion of FGSG_08701 resulted
in reduced growth, conidiation, and virulence in F. graminearum [13]. The FGSG_08701 deletion mutant
was also defective in sexual reproduction and had increased tolerance to oxidative stress [13].

In S. cerevisiae, GIN4, KCC4 and HSL1 are three closely-related protein kinases that have the kinase
domain at the N-terminus and a long, less conserved C-terminal region [23,24]. They have overlapping
functions in cell cycle but also retain their own specific functions. GIN4 functions in septin organization,
mitosis, and probably in regulating microtubule stability [22,25]. Deletion of GIN4 leads to a striking
reorganization of the septins [22]. In contrast, the ∆kcc4 and ∆hsl1 single mutants and ∆kcc4∆hsl1 double
mutants all display essentially normal phenotypes [24]. Loss of GIN4 in cells that are dependent upon
CLB2 causes the formation of highly elongated buds. The ∆kcc4 cells showed a multi-budded cell shape
at the stationary phase, and ∆hsl1 mutants showed a mild elongated-bud phenotype in grown to high cell
density, indicating that all three of these protein kinases are related to cell polarity [22,24,26]. The inhibitory
activity of SWE1 on CDC28 is counteracted by the activity of HSL1, GIN4, and KCC4 proteins during the
cell cycle of S. cerevisiae, but only HSL1 appears to play a direct role in SWE1 regulation [24,26].

In Schizosaccharomyces pombe, CDR1 and CDR2 are two protein kinases orthologous to GIN4,
HSL1, and KCC4 of S. cerevisiae [27]. Similar to GIN4, CDR1, and CDR2 act as the mitotic inducers
by negatively regulating the activation of the WEE1 kinase (an ortholog of SWE1). However, unlike
CDR1 that acts directly on WEE1 to regulate mitosis, the role of CDR2 in cell cycle regulation is more
complex [28,29]. Although, GIN4 regulates septin organization, CDR1 and CDR2 have not been linked
to septin function [27]. The Candida albicans genome contains two genes homologous to S. cerevisiae
GIN4 and HSL1 [30]. CaGIN4 is required for the formation of the septin ring, but not the basal septin
band, and is also required for the transition from pseudohyphae to hyphae. CaHSL1 is not required
for septin ring organization or septum formation although it regulates pseudohyphal formation [30].
In Ashbya gossypii, another Saccharomycetales yeast, morphological and behavioral differences in the
septin rings require the ELM1 and GIN4 kinases [31].

Although GIN4 homologues are conserved in filamentous ascomycetes, only the GIN4 of
Aspergillus nidulans has been characterized [32]. The AnGIN4 mutant was reduced in asexual development
but displayed an early onset of sexual reproduction. In this study we further characterized the functions
of the F. graminearum FGSG_08701 gene (named GIL1 for GIN4-like 1). Our results showed that GIL1 is
involved in hyphal growth, conidiogenesis, septation and plant infection in F. graminearum.

2. Results

2.1. GIL1 Is Important for Normal Hyphal Growth

The F. graminearum FGSG_08701 gene is predicted to encode a 1136-amino acid protein kinase
that has the highest similarity to GIN4 but is also highly similar to KCC4 and HSL1 of S. cerevisiae.
GIN4, KCC4, and HSL1 are three paralogous protein kinases in the budding yeast [26,33,34]. Therefore,
in this study we named the FGSG_08701 protein as GIL1 (GIN4-Like 1). Whereas S. pombe has two [27],
F. graminearum and other filamentous ascomycetes analyzed in this study all have only a single
GIN4-like gene (Figure S1).
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The GIL1 gene replacement construct was generated by the split-marker approach and
transformed into the wild-type strain PH-1 in a systemic characterization of the F. graminearum
kinome study [13]. On potato dextrose agar (PDA) plates, the ∆gil1 mutants displayed reduced growth
and formed whitish, compact colonies with more fluffy aerial hyphae than the wild type strain PH-1.
In this study, two independent gene replacement mutants, T10 and T14, were further confirmed by
Southern blot analysis (Figure S2). When assayed for hyphal growth and colony morphology on
complete medium (CM) and 5× YEG mediums, in comparison with PH-1, growth rate was reduced
approximately 20% and 30% in the ∆gil1 mutants, respectively (Table 1). Similar defects in colony
morphology were observed in the mutants on CM and 5× YEG(Yeast Extract Glucose) as on PDA
(Figure 1A; Table 1). Microscopic examination showed that the ∆gil1 mutants were irregular in hyphal
branching and produced curvy hyphae (Figure 1B). Thus, GIL1 is important for vegetative growth
and colony morphology in F. graminearum. The ∆gil1 mutants appeared to be increased in hyphal
branching and hyper-branching may be related to the formation of compact colonies from the mutants.
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a Growth rate and conidiation were measured after incubation for three and five days, respectively. 
Mean and standard deviation were calculated from three independent replicates. Data were analyzed 
with Duncan’s multiple range test. The same capitalized letter indicated that there was no significant 
difference. Different capitalized letters were used to show statistically significant difference (p < 0.05). 
PDA, potato dextrose agar; CM, complete medium; YEG, Yeast Extract Glucose. 
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Figure 1. Growth defects of the ∆gil1 mutants. (A) Colony of the wild-type (PH-1), ∆gil1 mutants
(T10 and T14), and ectopic strain (E5) were grown on complete medium (CM) and 5× YEG 5× YEG
(Yeast Extract Glucose) agar plates. Photographs were taken after incubation for three days;
and (B) edges of PH-1, T10, T14, and E5 colonies formed on 1/2 CM plates were examined for
hyphal growth and branching. The ∆gil1 mutants were increased in hyphal branching. Bar = 100 µm.

Table 1. Phenotypes of the ∆gil1 mutants in growth, conidiation, and conidia size.

Strain
Growth Rate (cm/day) a

Conidiation
(106 conidia/mL)

Conidium Size (µm)

PDA CM 5× YEG Length Width

PH-1 1.3 ± 0.0 A 1.0 ± 0.0 A 1.0 ± 0.0 A 1.2 ± 0.1A 41.6 ± 0.7 B 5.4 ± 0.2 A

T10 0.8 ± 0.0 B 0.8 ± 0.0 B 0.7 ± 0.0 B 0.7 ± 0.1B 49.2 ± 2.8 A 5.4 ± 0.2 A

T14 0.8 ± 0.0 B 0.8 ± 0.0 B 0.7 ± 0.0 B 0.8 ± 0.1B 47.5 ± 2.0 A 5.3 ± 0.4 A

a Growth rate and conidiation were measured after incubation for three and five days, respectively. Mean and
standard deviation were calculated from three independent replicates. Data were analyzed with Duncan’s multiple
range test. The same capitalized letter indicated that there was no significant difference. Different capitalized letters
were used to show statistically significant difference (p < 0.05). PDA, potato dextrose agar; CM, complete medium;
YEG, Yeast Extract Glucose.

2.2. The ∆gil1 Mutants Produce Straight, Longer Conidia Lacking Typical Foot Cells

Similar to the previous study [13], the ∆gil1 mutants were reduced approximately 38%
in conidiation compared to the wild type (Table 1). To elucidate the possible causes for the
reduction of condiation, we assayed phialide formation of the mutants in five-day-old CMC
(carboxymethylcellulose) cultures. Microscopic examination showed that the ∆gil1 mutants often
formed conidia directly on short hyphal branches or hyphal tips instead of phialides, suggesting the
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involvement of GIL1 in phialide development (Figure 2A). In addition, we noticed that most of the
∆gil1 conidia had abnormal morphology. Instead of forming typical Fusarium macroconidia, the ∆gil1
mutants produced straight conidia that lacked typical foot cells (Figure 2B) and tended to be longer
than the wild-type conidia (Table 1).
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Figure 2. Conidiogenesis and conidium morphology defects of the ∆gil1 mutants. (A) Five-day-old
CMC cultures of the wild type (PH-1), ∆gil1 mutants (T10 and T14), and ectopic strain (E5) were
examined for conidiogenous structures. C, conidium; Ph, phialide. Bar = 10 µm; and (B) typical conidia
of PH-1 and ∆gil1 mutants. Bar = 20 µm.

2.3. The ∆gil1 Mutants Are Delayed in Conidium Germination but Increased in Germ Tube Branching

Due to their morphological defects, conidia of the ∆gil1 mutants were assayed for possible defects
in germination. After incubation at 25 ◦C for 3 h in liquid YEPD (Yeast Extract Peptone Dextrose)
medium, conidia of the wild-type had germinated and produced germ tubes longer than the width of
conidia (Figure 3A). Under the same conditions, over 95% of the mutant conidia had barely visible or
very short germ tubes (Figure 3A). At 6 h, short germ tubes formed by the mutants began to branch,
but hyphal branching was not observed in the wild type (Figure 3A). After incubation for 9 h or
longer, germ tubes of the ∆gil1 mutants produced more branches or branching sites than those of PH-1
(Figure 3A). Therefore, the ∆gil1 mutants were increased in germ tube branching, consistent with the
hyper-branching phenotype observed at colony edges (Figure 1B).
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Figure 3. Defects in conidium germination and cytokinesisin the ∆gil1 mutants. (A) Conidia of
the wild type (PH-1) and ∆gil1 mutants (T10 and T14) were incubated for 3, 6, and 9 h in YEPD
medium. Bar = 20 µm; and (B) Vegetative hyphae from transformants of PH-1 and the ∆gil1 mutant
T10 expressing the H1-GFP construct were stained with Calcofluor white (CFW) and examined by the
epifluorescence microscopy. Septa are marked with arrows. Bar = 10 µm.
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2.4. GIL1 Is Involved in Cytokinesis in Vegetative Hyphae

To assay for possible defects in septation and nuclear distribution, we transformed the H1-GFP
fusion construct [35] into the ∆gil1 mutant T10 and the wild type strain PH-1. Vegetative hyphae of
the transformants of PH-1 or T10 expressing H1-GFP were stained with Calcofluor White (CFW) as
described [13]. When observed with an epifluorescence microscope, the vegetative hyphae of ∆gil1
mutant were wider, and approximately 25% compartments have longer septal distances than that of
the wild type. Moreover, the compartments of the mutant hyphae contained increased number of
nuclei than that of the wild type (Figure 3B). These results indicate that deletion of GIL1 likely resulted
in cytokinesis and septation defects in F. graminearum.

2.5. The ∆gil1 Mutants Are Defective in Responses to Various Environmental Stresses

The GIL1 deletion mutants had increased tolerance to oxidative stress in F. graminearum [13]. In this
study, we further assayed colonial growth of the ∆gil1 mutants on CM plates with three different chemicals
that cause hyperosmotic, cell wall, and membrane stresses. In comparison with the wild-type, ∆gil1
mutant stains had similar reduction in growth rate on CM plates with 0.7 M NaCl (Figure 4), indicating
that GIL1 is likely dispensable for responses to hyperosmotic stress. However, the ∆gil1 mutants grew
faster than the wild type in the presence of 0.01% SDS or 300 µg/mL Congo Red (Figure 4). Therefore,
deletion of GIL1 may also increase tolerance to cell membrane and cell wall stresses in F. graminearum.
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2.6. GIL1 Plays a Critical Role in Plant Infection in F. graminearum

The ∆gil1 mutants showed more servere defects in virulence on wheat heads in the current study
than reported in the kinome study [13]. In infection assays with flowering wheat heads of susceptible
wheat cultivar Norm, only the spikelets drop-inoculated with the ∆gil1 mutants developed scab
symptoms 14 days post-inoculation (dpi). The mutants failed to spread to nearby spikelets (Figure 5A).
Under the same condition, the wild type caused typical head blight symptoms in the inoculated kernels
and spread to other spikelets on the same heads, indicating that the ∆gil1 mutants were significantly
reduced in virulence, likely due to the defects in spreading from diseased kernels through the rachis to
nearby spikelets. Because of the striking difference from the previous study, we repeated the infection
assays on corn stalks and silks. In infection assays with corn stalks, the wild type caused extensive
stalk rot in the pith of inoculated plants 14 dpi. On plants inoculated with the ∆gil1 mutants, stalk
rot symptoms were restricted to only a small area near the inoculation sites (Figure 5B). In infection
assays with corn silks, the ∆gil1 mutants also caused only limited discoloration near the inoculation
sites (Figure 5C). These results confirmed that GIL1 is important for plant infection in F. graminearum.
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Figure 5. Infection assays with wheat heads, corn stalks, and corn silks. (A) Flowering wheat heads
inoculated with the wild type (PH-1), the ∆gil1 mutants (T10 and T14), and an ectopic strain (E5);
(B) corn stalks inoculated with PH-1 and the ∆gil1 mutants; and (C) corn silks inoculated with PH-1
and the ∆gil1 mutants.

2.7. Localization of GIL1-GFP Fusion Proteins to Branching Point and Septa

To determine its localization, we first generated the GIL1-GFP fusion construct under the control
of its native promoter and transformed it into the wild type PH-1. Unfortunately, the resulting
transformants that were confirmed by PCR analysis to contain the GIL1-GFP construct had no
GFP signals in conidia, germ tubes, hyphae, and ascospores, indicating that the expression level
of GIL1-GFP may be too low with its native promoter. We then generated a GIL1-GFP fusion construct
under the control of the strong, constitutive RP27 promoter and transformed it into the protoplast of
PH-1. GFP signals were observed in the resulting transformant R11 that was confirmed to contain
the transforming GIL1-GFP construct by PCR. R11 had similar growth rate, colony morphology,
and conidium morphology as the wild type strain PH-1 (Figure S3), suggesting that overexpression of
GIL1 had no obvious effects on growth and asexual reproduction of F. graminearum.

During conidium germination, GFP signals were often observed at the base of the germ tubes
(Figure 6A), suggesting that GIL1 may play a role in germ tube emergence and delineating germ tubes
from the conidium compartments. In addition, GFP signals were occasionally observed at the septa
(Figure 6B) in vegetative hyphae of R11. In repeated experiments, approximately 7% of the septa
examined had GFP signals. Since not all the septa had GFP signals, the localization of GIL1 to the
septum may be a transient or dynamic process. Interestingly, GIL1-GFP signals were often observed
at the hyphal branching and hyphal fusion sites in the GIL1-GFP transformant R11 (Figure 6B,C),
indicating possible roles of GIL1 in hyphal branching and fusion. The localization of GIL1-GFP fusion
proteins to the septation and branching sites may be related to the defects of the ∆gil1 mutant in hyphal
growth and branching.
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Figure 6. Subcellular localization of the GIL1-GFP fusion proteins in the PRP27-GIL1-GFP transformant
R11 examined by differential interference contrast (DIC) and epifluorescence microscope (GFP).
(A) In the germinated conidia (6 h), fluorescence signals (blight white) were observed at the base
of the germ tubes; (B) fluorescence signals were observed at the septa and branching sites in the
vegetative hyphae of R11; and (C) fluorescence signals localized at hyphal fusion site. For (B,C), the
vegetative hyphae were from R11 colonies grown on MM (Minimal Medium) plate for 16 h. Bar = 10 µm.

3. Discussion

GIL1 encodes a protein with a typical serine/threonine protein kinase domain at the N-terminal
region and a long C-terminal region without distinct motifs or domains. In the budding yeast,
the C-terminal region of GIN4, HSL1, and KCC4 are responsible for their functional specificities.
Therefore, it is likely that this region of GIL1 is involved in its interaction with other proteins, including
the substrates of the GIL1 kinase. Interestingly, GzSNF1 is the top hit of GIN4, KCC4, or HSL1 in
F. graminearum. Nevertheless, GzSNF1 is an ortholog of yeast SNF1 and it is essential for normal sexual
and asexual development in addition to virulence and the utilization of alternative carbon sources [36].

In F. graminearum, the ∆gil1 mutants were reduced in growth rate and formed whitish, compact
colonies [13], which may be related to the hyper-branching defect observed at colony edges and germ
tubes. Therefore GIL1 likely plays a role in hyphal branching in F. graminearum and possibly in other
filamentous ascomycetes. Hyphal branching is not well studied in F. graminearum. The ∆Fgcla4 deletion
mutant was increased in hyphal branching but it had much more severe defects in growth than the
∆gil1 mutants. In A. nidulans, the ∆aspA and ∆aspC mutants are known to have the hyper-branching
defects [37]. It is possible that the GIL1 kinase may be functionally related to these genes.

Interestingly, in comparison with the wild-type, conidium germination is delayed in the ∆gil1
mutants. Therefore, GIL1 may be involved in the establishment of polarized growth, which is similar
to the function of GIN4, KCC4 and HSL1 in the budding yeast [22,24,26]. The ∆kcc4 mutant has
a multi-budded cell shape at stationary phase [26]. Nevertheless, hyphae of the ∆gil1 mutants tended
to be more curved than normal hyphae produced by the wild type under the same culture conditions.
It is likely that GIL1 also plays a role in the maintenance of polarized growth during hyphal elongation.
Interestingly, the ∆gil1 mutants had increased tolerance to cell membrane, cell wall and ROS stresses,
suggesting that GIL1 is involved in the cell wall integrality pathway and ROS response. In the
budding yeast, the ∆kcc4 mutant also has increased tolerance to 0.04% SDS [26]. Therefore, the GIL1 in
F. graminearum may have the functions of GIN4, KCC4 and HSL1 in the budding yeast.

In addition to hyphal growth, deletion of GIL1 also impacted conidiogenesis in F. graminearum.
The ∆gil1 mutants were reduced in conidiation, which may be related to its defects in phialide
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formation. Instead of producing conidia efficiently on clusters of phialides, the ∆gil1 mutants often
formed conidia directly on short hyphal branches or at the hyphal tips (Figure 2A). In F. graminearum,
the ∆Fgcdc15, ∆Fg08631 and ∆Fgrim15 mutants were also defective in phialide formation and had
more severe defects in conidiation than the ∆gil1 mutants [13]. Conidia formed by the ∆gil1 mutants
also had morphological defects, which often lacked foot cells and appeared to be straight.

Interestingly, ∆gil1 conidia tend to be longer than the wild-type conidia in F. graminearum.
The ∆gin4 cells in the budding yeast were moderately elongated when cultured at 23 ◦C and
pronounced longer when grown at 37 ◦C [22]. In C. albicans, the ∆gin4 mutant also grew in chains
of elongated cells, indicating a severe defect in cytokinesis [30]. Moreover, in comparison with
the wild-type, some compartments of the vegetative hyphae in the ∆gil1 mutant had longer septal
distances and contained increased number of nuclei, suggesting the involvement of GIL1 in regulation
of cytokinesis in F. graminearum. Deletion of GIN4 resulted in the production of significantly narrower
hyphae in A. gossypii [31]. However, in F. graminearum, the ∆gil1 mutants produced wider hyphae than
that of the wild type. In S. cerevisiae, GIN4, KCC4, and HSL1 induce mitosis by releasing CDC28 from
the inhibition of SWE1 [34]. Interestingly, the ∆Fgswe1 mutant produced shorter conidia than the wild
type [13], which is opposite to longer conidia produced by the ∆gil1 mutants. Therefore, it is likely
that the GIL1 kinase plays a similar role in counteracting the function of FgSwe1 in F. graminearum.

The ∆gil1 mutants were significantly reduced in virulence in infection assays with flowering
wheat heads, corn stalks, and corn silks. Therefore, GIL1 must play a critical role in pathogenesis in
F. graminearum. Among all the phenotypes of the ∆gil1 mutants characterized in this study, reduced
growth rate may play a major role in contributing its defects in plant infection. However, the reduction
of ∆gil1 mutants in virulence was much more significantly than their reduction in growth rate.
Other factors, such as changes in cell wall integrity may also affect virulence. F. graminearum is
known to produce infection cushions, penetrating hyphae, and appressoria [38]. Considering its
possible regulatory functions in cytokinesis, the GIL1 kinase may be important for the differentiation of
plant infection structures, maybe involved in cell wall changes and other cellular differentiation events
associated with these plant infection processes. In C. albicans, two GIL1 homologs, CaGIN4 and CaHSL1,
have been identified but their roles in virulence were not characterized [30]. Interestingly, the GIN4 and
NAP1 deletion mutants have similar phenotypes in S. cerevisiae [25]. In C. albicans, the nap1 mutants are
reduced in virulence [39], suggesting that the Cagin4 mutants may be also defective in pathogenesis.

In F. graminearum, about 25% of the compartments in vegetative hyphae of the ∆gil1 mutant
showed longer septal distances than that of the wild-type, suggesting the possible role of GIL1
in regulation of septum formation. In the budding yeast, the GIN4 kinase is involved in septin
organization [22,25]. Its ortholog in A. gossypii is essential for septum formation because the ∆gin4
mutant failed to produce septa in hyphae [31]. However, in F. graminearum, the number of septa in
conidia was similar between the wild type and ∆gil1 mutants. Therefore, the function of GIL1 in
septation remains to be clarified in different fungal cell types.

Interestingly, we observed that GIL1-GFP localized to the septum that separate the germ tube
from conidium compartments, which is consistent with the defects of the ∆gil1 mutant in conidium
germination. In S. cerevisiae, GIN4 localizes to the bud neck [40] and deletion of GIN4 results in
abnormal septin deposition [22]. GIN4 is also required for the formation of the septin ring in
C. albicans [30]. In A. gossypii, establishment of the inter-region (IR) septin rings is dependent on
the GIN4 kinase [31]. In vegetative hyphae, GIL1-GFP signals were observed in some but not all the
septa, indicating that localization of GIL1 to the septum is likely transient or dynamic. Moreover,
GIL1-GFP signals were often localized at the branching and hyphal fusion sites, suggesting its possible
roles in hypal branching and fusion. Because short specialized fusion branches are formed during
the initiation of hyphal fusion of filament fungi [41], it is possible that localization of GIL-GFP at
the hyphal fusion sites is related to formation of the fusion branches. Localization of GIL1 to the
septum and branching sites is consistent with the defects of the ∆gil1 mutants in septation and hyphal
branching. It is likely that the GIL1 kinase is involved in the regulation of septum formation and
initiation of hyphal branching in F. graminearum and possibly other fungi.
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4. Materials and Methods

4.1. Strains and Culture Conditions

The wild-type strain PH-1, ectopic transformant, and ∆gil1 mutant strains of F. graminearum were
routinely cultured on potato dextrose agar (PDA), complete medium (CM), or 5× YEG plates at 25 ◦C as
described [42,43]. Protoplast preparation and PEG (polyethylene glycerol)-mediated transformation of
F. graminearum were performed as described [5,42]. To test response against various stresses, vegetative
growth was assayed on CM plates with 0.7 M NaCl NaCl (Guangdong Guanghua Sci-Tech Co., Ltd.,
Shantou, China), 0.01% (w/v) SDS (MP Biomedicals, LLC, Solon, OH, USA), or 300 µg/mL Congo Red
(SIGMA-ALDRICH Co., St. Louis, MO, USA) [13,21].

4.2. Identification of ∆gil1 Mutants

The ∆gil1 mutants were generated with the split-marker approach in a previous study [13].
The 929-bp upstream flanking genomic sequence of GIL1 and 592-bp genomic sequence of GIL1 were
amplified with primer pairs F1-R2 and F3-R4, respectively (Figure S2; Table S1). The resulting PCR
products were connected to the hygromycin phosphotransferase (hph) cassette amplified with primers
HYG/F-HY/R and YG/F-HYG/R (Table S1) by overlapping PCR and transformed into protoplasts
of PH-1 as described [12]. For transformation selection, hygromycin B (Calbiochem, La Jolla, CA,
USA) was added to the final concentration of 250 µg/mL to the regeneration medium. Putative ∆gil1
mutants identified by PCR were confirmed by Southern blot hybridization analysis with KpnI-digested
genomic DNA. Surprisingly, in the wild type PH-1 and ectopic transformant E5, the bands detected
with a GIL1 fragment amplified with primers F5 and R6 (probe 1) are much larger than the expected
6.5 kb (Figure S2B; Table S1), which may due to failed or partial digestion. Instead of being the same
size, the GIL1 band of E5 was smaller than that of PH-1 (Figure S2B), indicating that the GIL1 locus in
E5 was partially modified by the hph integration event though the GIL1 gene remained in its genome.
The same probe had no hybridization signal in transformants T10 and T14 (Figure S2B). When probed
with a fragment of the hph gene amplified with primers H850 and H852 (Table S1), PH-1 had no
hybridization signals, and E5 and transformants T10 and T14 had a 3.0-kb band (Figure S2B). However,
another hph band of 10.0 kb was also detected in T10 (Figure S2B), suggesting that multiple copies of
the hph gene were present in T10. For PCR analysis of the GIL1 and hph genes with genomic DNA of the
gil1 mutants (T10 and T14), E5, and wild-type (PH-1), a 1.07 kb band of the GIL1 gene was amplified for
E5 and PH-1, and a 0.75 kb band for the hph gene for T10, T14 and E5 strains (Figure S2C). In addition
to the 0.75 kb hph band, there are aspecific hph amplicons present for T10 (Figure S2C), which may
be caused by multiple close integrations of the hph gene. In total, both southern blotting and PCR
analysis demonstrated that besides deletion of GIL1, at least one hph integration event is present in T10.
Since the phenotypes of T10 are identical to that of T14, it is the deletion not the insertion that caused
the phenotype of T10.

4.3. Assays for Growth and Conidiation Defects

Growth rate and colony morphology on PDA, CM and 5× YEG plates were measured after grown
at 25 ◦C for three days. Conidiation and conidium morphology with five-day-old CMC cultures were
examined as described [42,44]. Freshly harvested conidia were germinated in liquid YEPD medium for
3, 6, and 9 h, respectively, and examined for defects in conidium germination and germ tube growth.

4.4. Plant Infection Assays

For infection assays with wheat heads and corn stalks, conidia harvested from five-day-old
CMC cultures were re-suspended to 105 spores/mL in sterile distilled water, and 10 µL of
conidium suspensions were used to inoculated each flowering wheat head of cultivar Norm as
described [45]. To maintain moisture, inoculated wheat heads were capped with a plastic bag for
48 h. Disease symptoms were examined 14 dpi. Eight-week-old corn stalks of cv. Pioneer 2375 were
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inoculated with conidium suspensions by toothpicks as described [44,46]. Symptom development was
assayed at 14 dpi by splitting the corn stalks along the inoculation sites. Infection assays with corn
silks of cultivar Pioneer 2375 were conducted with culture plugs as described [17].

4.5. Generation of the GIL1-GFP Fusion Constructs

To generate the PGIL1-GIL1-GFP fusion construct, the GIL1 gene with its 1.5-Kb upstream promoter
sequence were amplified with primer GIL1/F and GIL1/R (Table S1) and cloned into pFL2 [47]
by the yeast in vivo homologous recombination approach [48]. The PRP27-GIL1-GFP construct was
generated with a similar approach by cloning the PCR product amplified with primers GIL1F/RP27 and
GIL1R/RP27 (Table S1) into pFL2. The resulting GIL1-GFP construct was transformed into protoplasts
of the wild type PH-1. Geneticin (MP Biochemicals, Santa Ana, CA, USA)-resistant transformants
harboring the transforming GFP fusion constructs were identified by PCR and examined for GFP
signals using a confocal microscopy with Nikon Tie system (Nikon, Japan).

5. Conclusions

Our data showed that the GIL1 kinase is important for different developmental stages of
F. graminearum. It plays roles in hyphal growth, septation, conidiation, stress responses, and virulence.
The hyphal branching and delayed conidium germination of the GIL1 deletion mutants and localization
of the GIL1-GFP fusion proteins suggest that GIL1 is involved in establishment of polarized growth,
probably through affecting microtubule organization.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/2/424/s1.

Acknowledgments: We sincerely thank Huiquan Liu for helps with phylogenetic analysis of GIL1 kinase
orthologs and Chenfang Wang for fruitful discussions. This work was supported by the National Major Project
of Breeding for New Transgenic Organisms (2012ZX08009003) and the National Natural Science Foundation of
China (31300544).

Author Contributions: Dan Yu and Qiaojun Jin conceived and designed the experiments; Dan Yu, Shijie Zhang,
Xiaoping Li, Zachary Schultzhaus and Qiaojun Jin performed the experiments; Dan Yu and Qiaojun Jin analyzed
the data; Jin-Rong Xu contributed reagents/materials/analysis tools; Dan Yu, Qiaojun Jin and Jin-Rong Xu wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Dean, R.; van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.;
Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology.
Mol. Plant Pathol. 2012, 13, 414–430. [CrossRef] [PubMed]

2. Desjardins, A.E. Gibberella from A (venaceae) to Z (eae). Annu. Rev. Phytopathol. 2003, 41, 177–198.
[CrossRef] [PubMed]

3. De Walle, J.V.; Sergent, T.; Piront, N.; Toussaint, O.; Schneider, Y.J.; Larondelle, Y. Deoxynivalenol affects
in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis.
Toxicol. Appl. Pharmacol. 2010, 245, 291–298. [CrossRef] [PubMed]

4. Bai, G.H.; Desjardins, A.E.; Plattner, R.D. Deoxynivalenol-nonproducing Fusarium graminearum causes initial
infection, but does not cause disease spread in wheat spikes. Mycopathologia 2002, 153, 91–98. [CrossRef]
[PubMed]

5. Proctor, R.H.; Hohn, T.M.; McCormick, S.P. Reduced virulence of Gibberella zeae caused by disruption of
a trichothecene toxin biosynthetic gene. Mol. Plant Microbe Interact. 1995, 8, 593–601. [PubMed]

6. Desjardins, A.E.; Bai, G.; Plattner, R.D.; Proctor, R.H. Analysis of aberrant virulence of Gibberella zeae following
transformation-mediated complementation of a trichothecene-deficient (Tri5) mutant. Microbiology 2000, 146,
2059–2068. [CrossRef] [PubMed]

www.mdpi.com/1422-0067/18/2/424/s1
http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x
http://www.ncbi.nlm.nih.gov/pubmed/22471698
http://dx.doi.org/10.1146/annurev.phyto.41.011703.115501
http://www.ncbi.nlm.nih.gov/pubmed/12651961
http://dx.doi.org/10.1016/j.taap.2010.03.012
http://www.ncbi.nlm.nih.gov/pubmed/20362602
http://dx.doi.org/10.1023/A:1014419323550
http://www.ncbi.nlm.nih.gov/pubmed/12000132
http://www.ncbi.nlm.nih.gov/pubmed/8589414
http://dx.doi.org/10.1099/00221287-146-8-2059
http://www.ncbi.nlm.nih.gov/pubmed/10931910


Int. J. Mol. Sci. 2017, 18, 424 11 of 13

7. Chen, D.; Wang, Y.; Zhou, X.; Wang, Y.; Xu, J.R. The Sch9 kinase regulates conidium size, stress responses,
and pathogenesis in Fusarium graminearum. PLoS ONE 2014, 9, e105811. [CrossRef] [PubMed]

8. Hu, S.; Zhou, X.; Gu, X.; Cao, S.; Wang, C.; Xu, J.R. The cAMP-PKA pathway regulates growth, sexual and
asexual differentiation, and pathogenesis in Fusarium graminearum. Mol. Plant Microbe Interact. 2014, 27,
557–566. [CrossRef] [PubMed]

9. Jiang, C.; Zhang, S.; Zhang, Q.; Tao, Y.; Wang, C.; Xu, J.R. FgSKN7 and FgATF1 have overlapping functions
in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ. Microbiol. 2015,
17, 1245–1260. [CrossRef] [PubMed]

10. Son, H.; Seo, Y.S.; Min, K.; Park, A.R.; Lee, J.; Jin, J.M.; Lin, Y.; Cao, P.; Hong, S.Y.; Kim, E.K.; et al.
A phenome-based functional analysis of transcription factors in the cereal head blight fungus,
Fusarium graminearum. PLoS Pathog. 2011, 7, e1002310. [CrossRef] [PubMed]

11. Min, K.; Shin, Y.; Son, H.; Lee, J.; Kim, J.C.; Choi, G.J.; Lee, Y.W. Functional analyses of the nitrogen regulatory
gene areA in Gibberella zeae. FEMS Microbiol. Lett. 2012, 334, 66–73. [CrossRef] [PubMed]

12. Wang, Y.; Liu, W.; Hou, Z.; Wang, C.; Zhou, X.; Jonkers, W.; Ding, S.; Kistler, H.C.; Xu, J.R. A novel
transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Mol. Plant
Microbe Interact. 2011, 24, 118–128. [CrossRef] [PubMed]

13. Wang, C.; Zhang, S.; Hou, R.; Zhao, Z.; Zheng, Q.; Xu, Q.; Zheng, D.; Wang, G.; Liu, H.; Gao, X.; et al.
Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog. 2011,
7, e1002460. [CrossRef] [PubMed]

14. Seong, K.Y.; Pasquali, M.; Zhou, X.; Song, J.; Hilburn, K.; McCormick, S.; Dong, Y.; Xu, J.R.; Kistler, H.C.
Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin
biosynthesis. Mol. Microbiol. 2009, 72, 354–367. [CrossRef] [PubMed]

15. Blumke, A.; Falter, C.; Herrfurth, C.; Sode, B.; Bode, R.; Schafer, W.; Feussner, I.; Voigt, C.A. Secreted fungal
effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat
head infection. Plant Physiol. 2014, 165, 346–358. [CrossRef] [PubMed]

16. Voigt, C.A.; Schafer, W.; Salomon, S. A secreted lipase of Fusarium graminearum is a virulence factor required
for infection of cereals. Plant J. 2005, 42, 364–375. [CrossRef] [PubMed]

17. Seong, K.; Hou, Z.; Tracy, M.; Kistler, H.C.; Xu, J.R. Random insertional mutagenesis identifies genes
associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 2005, 95, 744–750.
[CrossRef] [PubMed]

18. Liu, X.; Wang, J.; Xu, J.; Shi, J. Fgilv5 is required for branched-chain amino acid biosynthesis and full virulence
in Fusarium graminearum. Microbiology 2014, 160, 692–702. [CrossRef] [PubMed]

19. Urban, M.; Mott, E.; Farley, T.; Hammond-Kosack, K. The Fusarium graminearum MAP1 gene is essential for
pathogenicity and development of perithecia. Mol. Plant Pathol. 2003, 4, 347–359. [CrossRef] [PubMed]

20. Jenczmionka, N.J.; Maier, F.J.; Losch, A.P.; Schafer, W. Mating, conidiation and pathogenicity of
Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the
MAP kinase GPMK1. Curr. Genet. 2003, 43, 87–95. [PubMed]

21. Zheng, D.; Zhang, S.; Zhou, X.; Wang, C.; Xiang, P.; Zheng, Q.; Xu, J.R. The FgHOG1 pathway regulates
hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS ONE 2012, 7, e49495.
[CrossRef] [PubMed]

22. Longtine, M.S.; Fares, H.; Pringle, J.R. Role of the yeast Gin4p protein kinase in septin assembly and the
relationship between septin assembly and septin function. J. Cell Biol. 1998, 143, 719–736. [CrossRef]
[PubMed]

23. McMillan, J.N.; Longtine, M.S.; Sia, R.A.; Theesfeld, C.L.; Bardes, E.S.; Pringle, J.R.; Lew, D.J.
The morphogenesis checkpoint in Saccharomyces cerevisiae: Cell cycle control of Swe1p degradation by
Hsl1p and Hsl7p. Mol. Cell. Biol. 1999, 19, 6929–6939. [CrossRef] [PubMed]

24. Longtine, M.S.; Theesfeld, C.L.; McMillan, J.N.; Weaver, E.; Pringle, J.R.; Lew, D.J. Septin-dependent assembly
of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol. 2000, 20, 4049–4061. [CrossRef]
[PubMed]

25. Altman, R.; Kellogg, D. Control of mitotic events by Nap1 and the Gin4 kinase. J. Cell Biol. 1997, 138, 119–130.
[CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0105811
http://www.ncbi.nlm.nih.gov/pubmed/25144230
http://dx.doi.org/10.1094/MPMI-10-13-0306-R
http://www.ncbi.nlm.nih.gov/pubmed/24450772
http://dx.doi.org/10.1111/1462-2920.12561
http://www.ncbi.nlm.nih.gov/pubmed/25040476
http://dx.doi.org/10.1371/journal.ppat.1002310
http://www.ncbi.nlm.nih.gov/pubmed/22028654
http://dx.doi.org/10.1111/j.1574-6968.2012.02620.x
http://www.ncbi.nlm.nih.gov/pubmed/22702217
http://dx.doi.org/10.1094/MPMI-06-10-0129
http://www.ncbi.nlm.nih.gov/pubmed/20795857
http://dx.doi.org/10.1371/journal.ppat.1002460
http://www.ncbi.nlm.nih.gov/pubmed/22216007
http://dx.doi.org/10.1111/j.1365-2958.2009.06649.x
http://www.ncbi.nlm.nih.gov/pubmed/19320833
http://dx.doi.org/10.1104/pp.114.236737
http://www.ncbi.nlm.nih.gov/pubmed/24686113
http://dx.doi.org/10.1111/j.1365-313X.2005.02377.x
http://www.ncbi.nlm.nih.gov/pubmed/15842622
http://dx.doi.org/10.1094/PHYTO-95-0744
http://www.ncbi.nlm.nih.gov/pubmed/18943005
http://dx.doi.org/10.1099/mic.0.075333-0
http://www.ncbi.nlm.nih.gov/pubmed/24493249
http://dx.doi.org/10.1046/j.1364-3703.2003.00183.x
http://www.ncbi.nlm.nih.gov/pubmed/20569395
http://www.ncbi.nlm.nih.gov/pubmed/12695848
http://dx.doi.org/10.1371/journal.pone.0049495
http://www.ncbi.nlm.nih.gov/pubmed/23166686
http://dx.doi.org/10.1083/jcb.143.3.719
http://www.ncbi.nlm.nih.gov/pubmed/9813093
http://dx.doi.org/10.1128/MCB.19.10.6929
http://www.ncbi.nlm.nih.gov/pubmed/10490630
http://dx.doi.org/10.1128/MCB.20.11.4049-4061.2000
http://www.ncbi.nlm.nih.gov/pubmed/10805747
http://dx.doi.org/10.1083/jcb.138.1.119
http://www.ncbi.nlm.nih.gov/pubmed/9214386


Int. J. Mol. Sci. 2017, 18, 424 12 of 13

26. Okuzaki, D.; Watanabe, T.; Tanaka, S.; Nojima, H. The Saccharomyces cerevisiae bud-neck proteins Kcc4
and Gin4 have distinct but partially-overlapping cellular functions. Genes Genet. Syst. 2003, 78, 113–126.
[CrossRef] [PubMed]

27. Morrell, J.L.; Nichols, C.B.; Gould, K.L. The GIN4 family kinase, Cdr2p, acts independently of septins in
fission yeast. J. Cell Sci. 2004, 117, 5293–5302. [CrossRef] [PubMed]

28. Breeding, C.S.; Hudson, J.; Balasubramanian, M.K.; Hemmingsen, S.M.; Young, P.G.; Gould, K.L. The cdr2+

gene encodes a regulator of G2/M progression and cytokinesis in Schizosaccharomyces pombe. Mol. Biol. Cell
1998, 9, 3399–3415. [CrossRef] [PubMed]

29. Kanoh, J.; Russell, P. The protein kinase Cdr2, related to Nim1/Cdr1 mitotic inducer, regulates the onset of
mitosis in fission yeast. Mol. Biol. Cell 1998, 9, 3321–3334. [CrossRef]

30. Wightman, R.; Bates, S.; Amornrrattanapan, P.; Sudbery, P. In Candida albicans, the Nim1 kinases Gin4 and
hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J. Cell Biol.
2004, 164, 581–591. [CrossRef] [PubMed]

31. DeMay, B.S.; Meseroll, R.A.; Occhipinti, P.; Gladfelter, A.S. Regulation of distinct septin rings in a single cell
by Elm1p and Gin4p kinases. Mol. Biol. Cell 2009, 20, 2311–2326. [CrossRef] [PubMed]

32. De Souza, C.P.; Hashmi, S.B.; Osmani, A.H.; Andrews, P.; Ringelberg, C.S.; Dunlap, J.C.; Osmani, S.A.
Functional analysis of the Aspergillus nidulans kinome. PLoS ONE 2013, 8, e58008. [CrossRef] [PubMed]

33. Ma, X.J.; Lu, Q.; Grunstein, M. A search for proteins that interact genetically with histone H3 and H4
amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae. Genes Dev. 1996, 10,
1327–1340. [CrossRef] [PubMed]

34. Barral, Y.; Parra, M.; Bidlingmaier, S.; Snyder, M. Nim1-related kinases coordinate cell cycle progression with
the organization of the peripheral cytoskeleton in yeast. Genes Dev. 1999, 13, 176–187. [CrossRef] [PubMed]

35. Luo, Y.; Zhang, H.; Qi, L.; Zhang, S.; Zhou, X.; Zhang, Y.; Xu, J.R. Fgkin1 kinase localizes to the septal
pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1
beta-tubulins in Fusarium graminearum. New Phytol. 2014, 204, 943–954. [CrossRef] [PubMed]

36. Lee, S.H.; Lee, J.; Lee, S.; Park, E.H.; Kim, K.W.; Kim, M.D.; Yun, S.H.; Lee, Y.W. Gzsnf1 is required for normal
sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 2009, 8, 116–127. [CrossRef]
[PubMed]

37. Lindsey, R.; Cowden, S.; Hernandez-Rodriguez, Y.; Momany, M. Septins AspA and AspC are important
for normal development and limit the emergence of new growth foci in the multicellular fungus
Aspergillus nidulans. Eukaryot. Cell 2010, 9, 155–163. [CrossRef] [PubMed]

38. Boenisch, M.J.; Schafer, W. Fusarium graminearum forms mycotoxin producing infection structures on wheat.
BMC Plant Biol. 2011, 11, 110. [CrossRef] [PubMed]

39. Huang, Z.X.; Zhao, P.; Zeng, G.S.; Wang, Y.M.; Sudbery, I.; Wang, Y. Phosphoregulation of Nap1 plays
a role in septin ring dynamics and morphogenesis in Candida albicans. MBio 2014, 5, e00915-13. [CrossRef]
[PubMed]

40. Okuzaki, D.; Tanaka, S.; Kanazawa, H.; Nojima, H. Gin4 of S. cerevisiae is a bud neck protein that interacts
with the Cdc28 complex. Genes Cells 1997, 2, 753–770. [CrossRef] [PubMed]

41. Glass, N.L.; Jacobson, D.J.; Shiu, P.K. The genetics of hyphal fusion and vegetative incompatibility in
filamentous ascomycete fungi. Annu. Rev. Genet. 2000, 34, 165–186. [CrossRef] [PubMed]

42. Hou, Z.; Xue, C.; Peng, Y.; Katan, T.; Kistler, H.C.; Xu, J.R. A mitogen-activated protein kinase gene (MGV1) in
Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant
Microbe Interact. 2002, 15, 1119–1127. [CrossRef] [PubMed]

43. Seong, K.; Li, L.; Hou, Z.; Tracy, M.; Kistler, H.C.; Xu, J.R. Cryptic promoter activity in the coding region
of the HMG-CoA reductase gene in Fusarium graminearum. Fungal Genet. Biol. 2006, 43, 34–41. [CrossRef]
[PubMed]

44. Zhou, X.; Heyer, C.; Choi, Y.E.; Mehrabi, R.; Xu, J.R. The CID1 cyclin C-like gene is important for plant
infection in Fusarium graminearum. Fungal Genet. Biol. 2010, 47, 143–151. [CrossRef] [PubMed]

45. Gale, L.R.; Chen, L.F.; Hernick, C.A.; Takamura, K.; Kistler, H.C. Population analysis of Fusarium graminearum
from wheat fields in eastern China. Phytopathology 2002, 92, 1315–1322. [CrossRef] [PubMed]

46. Choi, Y.E.; Xu, J.R. The camp signaling pathway in Fusarium verticillioides is important for conidiation, plant
infection, and stress responses but not fumonisin production. Mol. Plant Microbe Interact. 2010, 23, 522–533.
[CrossRef] [PubMed]

http://dx.doi.org/10.1266/ggs.78.113
http://www.ncbi.nlm.nih.gov/pubmed/12773812
http://dx.doi.org/10.1242/jcs.01409
http://www.ncbi.nlm.nih.gov/pubmed/15454577
http://dx.doi.org/10.1091/mbc.9.12.3399
http://www.ncbi.nlm.nih.gov/pubmed/9843577
http://dx.doi.org/10.1091/mbc.9.12.3321
http://dx.doi.org/10.1083/jcb.200307176
http://www.ncbi.nlm.nih.gov/pubmed/14769857
http://dx.doi.org/10.1091/mbc.E08-12-1169
http://www.ncbi.nlm.nih.gov/pubmed/19225152
http://dx.doi.org/10.1371/journal.pone.0058008
http://www.ncbi.nlm.nih.gov/pubmed/23505451
http://dx.doi.org/10.1101/gad.10.11.1327
http://www.ncbi.nlm.nih.gov/pubmed/8647431
http://dx.doi.org/10.1101/gad.13.2.176
http://www.ncbi.nlm.nih.gov/pubmed/9925642
http://dx.doi.org/10.1111/nph.12953
http://www.ncbi.nlm.nih.gov/pubmed/25078365
http://dx.doi.org/10.1128/EC.00176-08
http://www.ncbi.nlm.nih.gov/pubmed/19028993
http://dx.doi.org/10.1128/EC.00269-09
http://www.ncbi.nlm.nih.gov/pubmed/19949047
http://dx.doi.org/10.1186/1471-2229-11-110
http://www.ncbi.nlm.nih.gov/pubmed/21798058
http://dx.doi.org/10.1128/mBio.00915-13
http://www.ncbi.nlm.nih.gov/pubmed/24496790
http://dx.doi.org/10.1046/j.1365-2443.1997.1590358.x
http://www.ncbi.nlm.nih.gov/pubmed/9544703
http://dx.doi.org/10.1146/annurev.genet.34.1.165
http://www.ncbi.nlm.nih.gov/pubmed/11092825
http://dx.doi.org/10.1094/MPMI.2002.15.11.1119
http://www.ncbi.nlm.nih.gov/pubmed/12423017
http://dx.doi.org/10.1016/j.fgb.2005.10.002
http://www.ncbi.nlm.nih.gov/pubmed/16377218
http://dx.doi.org/10.1016/j.fgb.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19909822
http://dx.doi.org/10.1094/PHYTO.2002.92.12.1315
http://www.ncbi.nlm.nih.gov/pubmed/18943886
http://dx.doi.org/10.1094/MPMI-23-4-0522
http://www.ncbi.nlm.nih.gov/pubmed/20192838


Int. J. Mol. Sci. 2017, 18, 424 13 of 13

47. Zhou, X.; Li, G.; Xu, J.R. Efficient approaches for generating GFP fusion and epitope-tagging constructs in
filamentous fungi. Methods Mol. Biol. 2011, 722, 199–212. [PubMed]

48. Bruno, K.S.; Tenjo, F.; Li, L.; Hamer, J.E.; Xu, J.R. Cellular localization and role of kinase activity of PMK1 in
Magnaporthe grisea. Eukaryot. Cell 2004, 3, 1525–1532. [CrossRef] [PubMed]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/21590423
http://dx.doi.org/10.1128/EC.3.6.1525-1532.2004
http://www.ncbi.nlm.nih.gov/pubmed/15590826
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Purdue University
	Purdue e-Pubs
	2-16-2017

	A Gin4-Like Protein Kinase GIL1 Involvement in Hyphal Growth, Asexual Development, and Pathogenesis in Fusarium graminearum
	Dan Yu
	Shijie Zhang
	Xiaoping Li
	Jin-Rong Xu
	Zachary Schultzhaus
	See next page for additional authors
	Recommended Citation
	Authors


	Introduction 
	Results 
	GIL1 Is Important for Normal Hyphal Growth 
	The gil1 Mutants Produce Straight, Longer Conidia Lacking Typical Foot Cells 
	The gil1 Mutants Are Delayed in Conidium Germination but Increased in Germ Tube Branching 
	GIL1 Is Involved in Cytokinesis in Vegetative Hyphae 
	The gil1 Mutants Are Defective in Responses to Various Environmental Stresses 
	GIL1 Plays a Critical Role in Plant Infection in F. graminearum 
	Localization of GIL1-GFP Fusion Proteins to Branching Point and Septa 

	Discussion 
	Materials and Methods 
	Strains and Culture Conditions 
	Identification of gil1 Mutants 
	Assays for Growth and Conidiation Defects 
	Plant Infection Assays 
	Generation of the GIL1-GFP Fusion Constructs 

	Conclusions 

