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Abstract
Dynamic Programming (DP) algorithms are common targets
for parallelization, and, as these algorithms are applied to
larger inputs, distributed implementations become necessary.
However, creating distributed-memory solutions involves
the challenges of task creation, program and data partition-
ing, communication optimization, and task scheduling. In
this paper we present D2P, an end-to-end system for au-
tomatically transforming a specification of any recursive
DP algorithm into distributed-memory implementation of
the algorithm. When given a pseudo-code of a recursive DP
algorithm, D2P automatically generates the corresponding
MPI-based implementation. Our evaluation of the generated
distributed implementations shows that they are efficient
and scalable. Moreover, D2P-generated implementations are
faster than implementations generated by recent general
distributed DP frameworks, and are competitive with (and
often faster than) hand-written implementations.

Keywords Dynamic Programming, Recursive, Distributed-
memory parallel, Autogen, Framework

1 Introduction
Dynamic Programming (DP) [8] algorithms are very effi-
cient in solving problems arising in domains such as bio-
informatics, mobile communication, and finance. As some of
the problems operate over large data sizes, which can exceed
the memory capacity of a single compute node, distributed-
memory solutions become necessary to process the entire
data. While most parallel implementations of DP algorithms
are for shared-memory systems, there exist only a few hand-
tuned distributed-memory implementations of DP algorithms [2,
4, 5, 35]. Creating distributed-memory implementations in-
volves several challenges that do not arise in shared-memory
systems. First, we need to partition the data and computation
into tasks of appropriate granularity split among different
compute nodes so that different nodes can process portions
of the DP problem in parallel. Second, we need to insert
communication between nodes to satisfy data dependences
between tasks. Finally, we need to schedule tasks efficiently,
to balance parallelism with communication overhead.

Because formulating an efficient DP algorithm is a differ-
ent challenge than performing data partitioning and task
creation, communication insertion, and task scheduling, we
would like a system where the concerns of creating a DP

algorithm can be separated from the concerns of distribut-
ing it. In particular, we would like a system that automates
as much of the distribution process as possible, allowing
programmers to focus on simply designing DP algorithms.
Recent work has shown that efficient recursive formula-

tions of DP algorithms outperform iterative counterparts
on shared-memory systems [11, 12]. The primary reason is
better cache utilization due to a top-down or depth-first ap-
proach in recursive formulations as opposed to a bottom-up
or breadth-first approach of iterative formulations. These
recursive formulations have the property that each recur-
sive “task” (think: invocation) touches a subset of the data
of its parent task (think: caller method). This approach pro-
vides a key advantage for distributed execution: the data-
dependencies of a recursive method are inclusive (i.e. the col-
lective data-dependencies of all the recursive sub-invocations
within the body of the method are a subset of the depen-
dencies captured by method’s arguments) and hence coarse-
grained parallel tasks, suitable for a task-parallel model of
computation, can be easily identified. This is the key insight
we exploit in automatically creating distributed-memory im-
plementations of recursive DP algorithms.
Automating the creation of distributed-memory imple-

mentations requires automatic resolution of the associated
challenges. Specifically, we need to (i) automatically partition
the data among multiple nodes, (ii) infer data-dependencies,
and then (iii) establish communication channels for the pur-
pose of exchanging data to satisfy data-dependencies. While
much of prior work has addressed these challenges in differ-
ent contexts for iterative codes, recursive programs are not
explored as extensively. Existing systems [6, 30, 31, 34] either
work on iterative codes or adopt a profiling-based approach
and assume a regular communication pattern in the case of
recursive programs [31]. Efficient recursive DP programs
involve irregular communication patterns and hence, previ-
ous techniques are not effective. Currently, shared-memory
implementations of these recursive DP programs can be
generated automatically [22]. However, there do not yet ex-
ist tools for automating the creation of these programs on
distributed-memory platforms.

Overview
In this paper, we present D2P, an end-to-end system that
takes in an iterative code snippet (without any parallelism
or partitioning specifications) capturing all the read and
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write accesses in a DP program, and produces an MPI based,
distributed-memory parallel code with recursive methods.
D2P builds on a tool called Autogen [10], which takes

as input an iterative code snippet of the DP program and
produces a specification of the recursive DP algorithm. The
specification is a shared-memory pseudocode, with explicit
annotation for parallelizable code regions, consisting entirely
of a set of recursive methods calling each other.

D2P takes as input the pseudocode from Autogen and pro-
duces a distributed-memory implementation. In order to do
this, D2P first unfolds the recursion until a sufficient number
of tasks are generated to keep the compute nodes busy. The
leaves of the recursion tree are recursive method invocations
and represent the tasks to execute. The method parameters
capture the data regions read and written within the method
invocation (due to the inclusion property mentioned above).

D2P then determines data dependences by inspecting leaf
methods for overlapping read and write regions. D2P also
merges some leaves to coarsen the task granularity. After
performing merging (coalescing), the remaining tasks are
partitioned among compute nodes in a deterministic manner
known to all nodes (facilitating determination of commu-
nication later). The nodes follow an owner-computes rule
(single owner for a data region) during computation.

D2P then inserts communication—identifying and estab-
lishing communication channels between compute nodes
to send/receive data as demanded by the task allocation. By
default, intra-node parallelism in D2P is expressed through
the use of Cilk [18] parallelism constructs. The result is a
“single program multiple data” (SPMD) implementation em-
ploying asynchronous communication capable of running
on a distributed memory machine.

The contributions of this paper are:

• We build an end-to-end system that takes an iterative
code snippet of DP algorithms and outputs MPI-based
distributed-memory implementations of these algo-
rithms.

• We provide an interface for application programmers
to create distributed-memory implementations for any
recursive DP algorithm.

• We evaluate the scalability of our generatedMPI-based
code implementations and measure speedups achieved
w.r.t. baseline implementations, preprocessing over-
heads, and compare against existing distributed mem-
ory implementations.

Our evaluations show that D2P implementations scale
well and can admit extremely large problem sizes much be-
yond the memory capacity of a single node. We also observe
that the overheads of task partitioning (recursion unfolding,
dependency determination, and task assignment) are negligi-
ble compared to the actual computation. Finally, we find that
a D2P generated program scales better compared to other
distributed-memory implementations. The D2P-generated

implementation of Smith-Waterman performs from 33× to
483× faster than an implementation generated by an existing
framework for generating distributed implementations of
iterative DP formulations. Moreover, the D2P-generated im-
plementation even outperforms a hand-written, application-
specific implementation of Smith-Waterman in most cases,
and is only 27% slower in the worst case.

2 Background and Motivation
In this section we discuss some of the essential background
needed to understand D2P. First, we briefly discuss dynamic
programming with a concrete problem, which serves as a
running example throughout the paper. We discuss what
it means to design iterative, naïve recursive, and efficient
recursive algorithms for this problem. We then discuss the
Autogen tool in order to understand how efficient recursive
algorithms can be automatically generated. We conclude this
section with a discussion on the advantages that recursive
formulations offer for distributed implementations.

2.1 Dynamic Programming
Dynamic Programming is based on the principle of divide-
and-conquer to find an optimal solution to a variety of prob-
lems. Two fundamental properties of problems that admit DP
solutions are optimal substructure and overlapping subprob-
lems [14]. The optimal substructure property is necessary for
combining optimal solutions of simpler subproblems in order
to find an optimal solution of a problem. The overlapping
substructure property ensures that the subproblems repeat.
We illustrate these properties with an example, minimum
weight triangulation (MWT) of a polygon [23].

MWT is used in applications such as finite elementmethod,
and computational geometry, among others. It is an instance
of the parenthesis problem [19]. As Figure 1 shows, the goal
in MWT is to partition a convex polygon into triangles such
that the edges do not intersect while minimizing the sum of
the edge lengths of the component triangles. The intuition
behind the recurrence equation in Figure 1(a) is to parti-
tion the polygon into a simple triangle and sub-polygon(s)
to the left and/or right of the simple triangle, compute the
solutions for each part separately, then combine the solu-
tions. If the sub-polygons have an optimal solution, then
the combined solution is guaranteed to be optimal (optimal
substructure property). The sub-polygons can be computed
as separate triangulations (overlapping subproblems prop-
erty). This corresponds to computing Cost(2, 4) in the naïve
recursive implementation of Figure 1(b), which also shows
the recursion tree withCost(0, 4) as the root representing the
cost of triangulating the entire pentagon. This property of
DP problems contrasts with traditional divide-and-conquer
solutions, in which the subproblems do not repeat. The naïve
recursive pseudocode is inefficient and leads to exponential
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main(){
Cost(0,4);

}
Cost(i, j){

if j < i+2 then return 0;
curMin ← INFINITY;
for k← i+1 to j-1 do

res ← Cost(i,k) + Cost(k,j) + Weight(i,j,k)
if res < curMin then curMin ← res;

return curMin;
}
Weight(i,j,k){

// return sum of Euclidian distances between (i,j), (j,k), and (k,i) 
}

2

0 1

3

4

/*c contains indices of table accessed for every 
DP table cell written to. */ 
for g ← 1 to n-1 do

for i ← 0 to n-g do
j ← i + g;
for k ← i+1 to j–1 do

c.x[0] ← i; c.x[1] ← j; c.x[2] ← i;
c.x[3]← k; c.x[4] ← k; c.x[5] ← j;
indexList.push(c);

Autogen

A(X,X,X)
Parallel: A(X00, X00, X00) A(X11, X11, X11)
B(X01, X00, X11)

B(Z,U,V)
B(Z10, U11, V00)  
Parallel: C(Z00, U01, Z10)  C(Z11, Z10, V01)  
Parallel: B(Z00, U00, V00)  B(Z11, U11, V11)  
C(Z01, U01, Z11)  
C(Z01, Z00, V01)  
B(Z01, U00, V11)  

C (T,R,S)
Parallel: C(T00, R00, S00)  C(T01, R00, S01)  C(T10, R10, S00)  C(T11, R10, S01)  
Parallel: C(T00, R01, S10)  C(T01, R01, S11)  C(T10, R11, S10)  C(T11, R11, S11)

Cost(0,4)

Cost(0,1) Cost(0,2) Cost(2,4)Cost(0,3) Cost(3,4)Cost(1,4)

Cost(2,4) Cost(1,3) Cost(3,4)Cost(1,2)

Cost(n){
table[n][n]; //n is number of vertices
for g ← 1 to n-1 do

for i ← 0 to n-g do
j ← i + g;
table[i][j]← INFINITY;
for k ← i+1 to j–1 do

res ← table[i][k] + table[k][j] +
Weight(i,j,k)
if res < table[i][j] then

table[i][j]← res;
}

(c) (d)

𝐶𝐶 𝑖𝑖 , 𝑗𝑗 =
𝑚𝑚𝑖𝑖𝑛𝑛( 𝐶𝐶 𝑖𝑖, 𝑗𝑗 , min

𝑖𝑖<𝑘𝑘<𝑗𝑗
�𝐶𝐶 𝑖𝑖, 𝑘𝑘 + 𝐶𝐶 𝑘𝑘, 𝑗𝑗 + 𝑊𝑊 𝑖𝑖 , 𝑗𝑗, 𝑘𝑘

0 𝑗𝑗 ≤ 𝑖𝑖 + 1
𝐺𝐺𝑖𝑖𝐺𝐺𝐺𝐺𝑛𝑛 𝑊𝑊 𝑖𝑖, 𝑖𝑖 + 1, 𝑖𝑖 + 2

(a) (b)

Figure 1. The MinimumWeight Triangulation problem: (a) shows all possible triangulations of a pentagon. Every triangulation
has an associated cost that depends on some notion of distance between the vertices of the pentagon. The recurrence equation
calculates the least cost. (b) shows the pseudocode of a naïve recursive implementation and the resulting recursion tree. Shaded
triangles in the recursion tree highlight repeated subproblems. (c) shows an iterative pseudocode that avoids re-computing
solutions for a repeated subproblem. (d) shows an efficient recursive pseudocode generated from Autogen.

time costs because of not reusing the computation already
performed due to a repeated subproblem.
The iterative pseudocode of Figure 1(c) overcomes this

inefficiency by storing the results of subproblems in table,
allowing previously-computed results to be reused, but re-
quiring an additional O(N 2) space. Every iteration of the
middle for loop can be run in parallel in this code. This par-
allelization strategy reflects wavefront-parallelism, which is a
popular approach for parallelizing iterative DP codes. How-
ever, the order of computation performed in this approach—
starting on the main diagonal of a matrix, and then ending
at top-right corner—exhibits poor temporal locality. This is
because the wavefront-parallel code performs bottom-up
computation of finding optimal solutions to all subproblems
of smaller sizes first before moving on to a bigger subprob-
lem (e.g. computing all points on the main diagonal before
computing points on the smaller adjacent diagonal).
Efficient recursive algorithms take a top-down or depth-

first approach to problem decomposition and solution. As a
result they have better temporal locality compared to itera-
tive algorithms [12], which adopt a bottom-up or breadth-
first approach. Hereafter, we refer to the efficient versions
when mentioning recursive algorithms. Designing recur-
sive DP algorithms that have better temporal locality is not
straightforward. Autogen [10] is a tool that automates the
design of such recursive algorithms.

2.2 Autogen
Autogen [10] is a tool to discover efficient, recursive, parallel,
cache-oblivious DP algorithms from iterative specifications
of DP recurrences. The output is a pseudocode of a non-
trivial, parallel, recursive DP algorithm.

Figure 1(d) shows how Autogen is used to produce a recur-
sive MWT algorithm. Note the similarity between the input
to Autogen and the pseudocode of Figure 1(c). This implies
that for an existing real-world application, an end-user needs
to translate only the embedded loop structure representing
the DP table recurrence equation and feed it to Autogen.
Autogen stores and analyzes the read and write accesses
to the DP table cells within the loop structure of the pseu-
docode. The dependences among DP table cells are translated
to region-wise dependences, where regions are groups of
DP table cells. Every unique access pattern corresponds to
a distinct recursive method. More details on how Autogen
discovers the recursive methods and defines their bodies can
be found in the Autogen paper. The output is a pseudocode
consisting of a set of recursive methods calling each other.
The main function is expected to call the top-level recursive
method, always named A, with arguments X, which repre-
sent a single tile corresponding to the entire DP table. Also,
it is assumed that the first parameter of a recursive method
is the tile written and the remaining parameters represent
the tiles read before the tile is written. The output pseu-
docode exhibits better temporal locality because of solving
hierarchically decomposed subproblems and combining their
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solutions. Furthermore, shared-memory parallel recursive
DP algorithms adapt better in the presence of cache sharing,
are an order of magnitude faster, and have more predictable
runtimes than their tiled iterative counterparts [10].

2.3 Distributed-memory parallelism
Recursive algorithms, in particular, have advantages when
it comes to distributed-memory implementations: parallel
recursive invocations are naturally easier to adapt to a task-
parallel model of computation as opposed to a data-parallel
model, which is a good fit for iterative DP algorithms. The
iterative codes, as we saw in Figure 1(c), could have mul-
tiple layers of for loops with regular and irregular data
accesses. This poses a challenge for inferring the data parti-
tioning needed for distributed-memory parallel codes. Data
dependency analysis is also complicated in iterative codes
when compared to recursive codes that exhibit inclusive de-
pendencies: in the case of the recursive DP codes output
from Autogen, every method invocation accesses a set of
tiles, which is the super-set of the union of the tiles accessed
within all recursive invocations done in the method body.
In other words, the method arguments specify a bound on
the entire data regions read/written. This makes it easier to
reason about data-dependencies when we try to automate
data-partitioning. We next explain how D2P takes advantage
of these properties of recursive DP algorithms in overcoming
the challenges associated with automating the generation of
distributed-memory parallel codes.

3 Design
Automating the generation of distributed-memory imple-
mentations from serial implementations involves multiple
challenges: (i) partitioning control and data to create tasks of
appropriate granularity, (ii) determining data dependences
and identifying parallelism, (iii) identifying communication
channels and insert communication code, and (iv) scheduling
tasks in parallel to minimize execution time and communi-
cation overhead. However, many of these challenges are
simplified in the context of D2P. Because the input to D2P
is a recursive algorithm, a task in D2P can be a recursive
method invocation. However, we do not create a task for
every method invocation to avoid creating too many fine-
grained tasks. Control partitioning is much simplified due to
the absence of branches in the Autogen generated recursive
pseudocode. As the recursive method arguments capture in-
clusive data dependences, reasoning about data dependences
and hence data partitioning is also simplified. We also need
not identify parallelism as the input to D2P has explicit par-
allelism specification (‘parallel’ annotation from Autogen,
Figure 1(d)). We let the underlying task-parallel runtime sys-
tem handle the scheduling of tasks. We next look in detail
how these challenges are addressed in D2P.

3.1 Task creation, partitioning, and communication
The preprocessing stage in D2P consists of task creation,
dependency inference, and partitioning. Figure 2 summarizes
these phases.

Task creation via recursion unrolling Recall from the
discussion on Autogen in Section 2.2 that the main program
invokes the top-level recursive method A with a set of ar-
guments representing the entire DP table to update. If each
method invocation is considered as an independent task, we
have just a single task to begin with. In order to generate
more tasks, we expand (unroll) the body of the top-level
recursive method. Any order of the parallel method invo-
cations in the algorithm of Figure 1(d) can be considered
while unrolling. Unrolling is equivalent to hierarchically
decomposing the DP table to compute solutions of smaller
subproblems. Unrolling results in a recursion tree, whose
leaves (L) represent the tasks computing the smaller subprob-
lems. Deciding the optimal granularity of these tasks—i.e.,
number of levels of recursion to unroll—is hard. Typically,
when executing a recursive parallel program on a single
compute node, the tradeoff is between the overhead of creat-
ing new tasks and the amount of parallelism exposed. For a
distributed-memory implementation, the number of levels
of recursion to unroll, D, reflects a tradeoff between com-
munication overhead and the available parallelism: a larger
D introduces more tasks, which may increase the available
parallelism but also introduces more data dependences, and
hence communication. Note that unrolling decomposes the
DP table computation into smaller subproblems computing
the tiles of the table. Figure 2(a) shows unrolling for the
MWT problem when D is two.

Identifying data dependences via effect intersection Fig-
ure 2(b) shows the data dependences among tasks resulting
from unrolling. Correct dependences can be derived after
computing a linearization of the tree in preorder traversal (to
ensure that dependences are resolved in program order). The
tiles resulting from unrolling are numbered in a deterministic
manner known to all processes. The dependency structure,
as the arrows indicate, is derived from the tile numbering
information, which can be computed using simple set inter-
section (of the tile numbers). The source of the arrow is a
task writing to a DP table tile (producer) and the destination
is a task that reads these tiles (consumer). Enforcing these
data dependences is all that is necessary to ensure correct
execution, due to the inclusion property of the dependences
as described earlier.
Note, interestingly, that because D2P performs unrolling

of the original recursive algorithm, it is able to expose more
parallelism than the original formulation. This is because the
original formulation uses control dependences (in the form
of sequential ordering instead of parallel annotations)
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b. Resulting tree and the data-dependency structure among tasks after unrolling the recursive methods of MWT 2 levels. 

      

A

B

C

A

BA A

A

BA A CB C CB B B
Task :   t1         t2        t3           t4         t5       t6            t7       t8         t9      t10      t11     t12     t13      t14

Writes:     0          5         1            10        15       11           6         2          7         2          7    3        3         3
Reads:      0          5        0,5          10        15     10,15     5,10    1,6       6,11    0,10    5,15    1,7   2,11 0,15 

W :  X00 
R :    X00

W :  X11
R :   X11

W :  X01
R :   X00,X11

Writes (W): X  
Reads (R): X

0

5

10

15

1 2

7

3

11

6
X01(Z) 

X00(U) 

X11(V) 

U00 U01

U11

Z00 Z01

Z10 Z11

V01

V11

V01

(a)

Tasks coalesced: {t8,t10}, {t9,t11}, {t12,t13,t14}

t7

t8 t9

t4 t5

t6

t1 t2

t3

t10 t11

t12

t13

t14(b)

Process
Task

1 2 3 4
t1,t2,t3 t4,t5,t6 t7,t8,t10 t9,t11,t12,t13,t14

(c)

Figure 2. Preprocessing in D2P: (a) shows decomposition of the DP table into subproblems (numbered tiles and corresponding
identifiers used in recursive pseudocode of Figure 1(d)) after two levels of unrolling of the MWT recursive algorithm. Unrolling
results in the shown recursion tree, whose leaves (L) are identified as tasks. (b) shows dependences among tasks. (c) shows a
blocked partitioning scheme applied to the task distribution among 4 processes.

to conservatively enforce data dependences that arise be-
tween coarse-grained tasks. Two coarse-grained tasks x and
y may have to execute sequentially because some subtask in
the y is dependent on some subtask in x , even though other
subtasks in y can execute in parallel with x . As a concrete
example, note that in the original recursive formulation of
MWT in Figure 1(d), the first B task executes sequentially
after the parallel execution of the first two A tasks. However,
in the unrolled dependence graph of Figure 2(b), we see that
this is conservative: t7 (arising from a B task) can execute in
parallel with t3 and t6 (arising from A tasks) despite the con-
trol dependence in the original formulation. D2P enforces
exactly these data dependences, and hence is able to expose
more parallelism than the original parallel recursive imple-
mentation, depending on how much unrolling is done. Of
course, performing additional unrolling can incur additional
runtime overhead and communication, so this tradeoff must
be carefully managed.

Task coalescing and partitioning D2P uses an owner-
computes strategy: DP table tiles are assigned to processes
(P ), and then all tasks that write to that tile are assigned to
the same process. Note that this simplifies communication,
as we do not need to consider different processes writing to
the same tile. Tasks writing to the same tile are coalesced
prior to distributing all the tasks among different processes
so that task-to-process mapping results in a single owner for
a tile. Given owner-computes, all that remains is to assign
tiles to processes. D2P provides the programmer with control
over this distribution scheme (see Section 4). The complete
list of coalesced tasks in MWT resulting in a total of 10 tasks
(considering coalesced tasks as a single task) and a blocked
partitioning scheme distributing these 10 tasks among 4
processes is shown in Figure 2(c).

Communication insertion In a distributed-memory set-
ting, if the consumed data does not reside on local memory,

then the producer and consumer of the data must establish
communication channels and perform communication. Due
to the SPMD nature of the code, all processes participate in
unrolling and determining dependences. However, a process
determines dependents (and consumer IDs) of a task only
if it is the producer of that task. While unrolling, a process
examines the write parameter (first parameter) of a recursive
method invocation (associated with the task) to know if it
is the producer of the task, since, given a tile number, every
process can find out the owner of the tile. If the process is
not a producer, it examines the read parameters (remaining
parameters) to check if the actual owner can be added as
a potential consumer of any tasks for which the process is
a producer. This enables a producer to determine the con-
sumer IDs for the purpose of sending data and the receiver
to expect a message from the correct sender. Overall, this
distributed dependency determination scheme in D2P takes
O(L/P) time.

Leaf-task implementation One advantage of D2P is that
end users can rely on D2P for orchestrating inter-task par-
allelism as shown in Figure 2 while continuing to use their
highly-optimized, single-process code within a task. Because
a task computes a recursive method with inclusive depen-
dences, users can replace themethod bodywith codes offload-
ing computation to multiple threads, vectorizing processors,
GPUs etc. By default, D2P uses Autogen’s shared-memory,
task-parallel, recursive approach (see Section 2)

4 Implementation
Parameters - preprocessing D2P uses a few user-configurable
parameters provided at runtime for the purpose of prepro-
cessing and tuning. By default, D2P adopts a simple heuristic
of unrolling until there are at least as many tiles in a row or
column as the number of processes. Hence, in this scenario,
D depends on the number of processes P . However, D2P
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also lets users choose a D based on the maximum number
of processes that would be used in program execution. D
determines the structure of the task graph, which is built
at runtime. The input size information is used in inferring
the number of DP table cells per row or column, which is
required to compute the owner of a tile given the tile number.

The tiles are numbered based on the partitioning scheme,
which is specified by the user as a parameter. By default,
D2P uses a column-cyclic distribution. In many DP prob-
lems, dependences exist along rows and columns of the DP
table, and parallelism is along the diagonal (MWT) or anti-
diagonal. A column-cyclic distribution of the tiles means
that column-wise communication can be avoided, while still
leading to tasks along diagonals and anti-diagonals being
assigned to different processes. This reduces communication
while maintaining parallelism for many DP problems.

Parameters - intra-task parallelism While D2P primar-
ily concerns itself with identifying and exploiting inter-task
parallelism, as shown in Figure 2(b), each task itself repre-
sents a fairly coarse-grained computation. D2P leverages
the resulting intra-task parallelism—easily exposed due to
the recursive nature of the implementation—by using Cilk
spawn [13] to implement Autogen’s parallel sections
(though, as described in Section 3, the user can instead re-
place a leaf recursive implementation with their own opti-
mized single-process code).
During code generation, D2P inserts a Cilk sync at the

end of parallel sections as the synchronization is implicit
in the Autogen produced code. While executing a recursive
method body, spawning sub-tasks down till the recursion
base case can greatly increase the parallel overhead. The
spawn cutoff parameter,C , controls this overhead by execut-
ing sequential version of the recursive method body, with-
out cilk_spawn and cilk_sync, till the base case is
reached. We setC to two levels beyond D, which means that
each resultant task (after unrolling) mapped to a process
spawns sub-tasks for up to two levels down the recursion.
For all the benchmarks and the input sizes considered, this
created a sufficient number of sub-tasks. Cilk workers exe-
cute the sub-tasks and D2P provides a knob to set the number
of Cilk workers per process at execution time. The total num-
ber of available Cilk workers for a process on a node is equal
to the number of cores divided by the number of processes
mapped to a node. By default, we set the number of workers
per process to 1 so that it is easier to map one process per
core and evaluate a process-level decomposition.
Going deeper into the recursive method body, the recur-

sion may proceed all the way down to computing a single
cell or a sub-tile of the DP table. The recursion base case, B,
defines when to stop the recursion. The default value of B
is 1 in D2P since, by default, Autogen produces a code that
computes a single cell in the base case.

API Description
ReadInput Captures input-data. For example, reading 2-dimensional coordinates

of points from a file in MWT
InitTable Captures algorithm-specific initialization of the DP table. For example,

MWT initializes all the elements on the main diagonal to zero
BaseCase Recursion base case. Specifies the exact function applied

in computing a DP table cell. For example, for MWT,
tablei, j=min(tablei, j ,tablei,k+tablek, j+weighti,k, j ).

GetScore Fetches optimal score. Since the DP table is distributed over multiple
processes, aggregate functions MAX, MIN are provided to fetch the
maximum/minimum value among DP table cells. Specific cell content
can be obtained using GetCell(i,j). For example, in MWT, the optimal
score is always in the cell at top right corner. GetCell(0,N-1) fetches
the data from the process owning the cell.

Table 1. APIs in D2P.

Programmer interface The application programmer in-
terfaces (APIs) in D2P are designed to capture application-
specific properties such as initializing the DP table, defining
the base case, fetching the optimal score, and reading inputs.
The APIs in D2P and their purpose are described in Table 1.
These APIs abstract away the details of distributed-memory
programming and let an application programmer focus on
the algorithm aspects. The APIs need to be implemented
in Autogen and we provide reference implementations for
six benchmarks. Note that since the original input to Au-
togen is an iterative skeleton code (Figure 1(d)), complete
automation in the form of source-to-source translation of
the input shared-memory implementation of an iterative
algorithm to a distributed-memory implementation of a re-
cursive algorithm is not yet available and is future work.

5 Evaluation
We present the evaluation results of D2P with six DP based
applications. These applications are drawn from the domains
of bio-informatics, computational geometry, and computer
science. The applications differ in their data dependency pat-
tern and are spread over the different categories of DP prob-
lems mentioned in Galil et al. [19]. We begin with the scala-
bility results and demonstrate that the distributed-memory
implementations of these DP applications scale well and can
handle problem sizes much beyond the memory capacity
of a single node. Finally, we present case studies compar-
ing D2P implementation of a benchmark with other works.
We compare D2P with DPX10 [34], a generic framework
for implementing distributed-memory DP algorithms. We
also compare a D2P generated program with a hand written
distributed-memory program [2] implementing a popular
algorithm in bio-informatics. Our results show that the per-
formance of D2P is significantly better than DPX10 and that
D2P not only outperforms but also scales much better than
the hand-written code in general cases.
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5.1 Methodology
The distributed-memory (DM) implementations of DP algo-
rithms evaluated are based on the Autogen produced shared-
memory pseudocode. Our baselines are shared-memory im-
plementations of recursive DP algorithms, as formulated
by Autogen. Being recursive implementations, they are op-
timized for locality and represent the best single process
sequential implementations of each benchmark among the
approaches we tested. Section 5.2 shows a comparison of
our single process recursive (1_rec) and iterative (1_ite) im-
plementations for a subset of the benchmarks. We assume
that the results hold for remaining benchmarks based on the
findings from the Autogen paper.

The overall computation in aDP application can be broadly
divided into three steps: 1) table initialization, 2) table com-
putation, and 3) backtracking. Backtracking is an important
step constructing the optimal solution based on the optimal
scores computed in the second step. As step 2 is computation-
ally dominant in a majority of the DP problems, step 2 alone
is timed in all performance measurements unless otherwise
noted. The runtimes are measured using wall-clock time and
every configuration of a test is run until a steady state is
achieved.

Benchmarks

i MinimumWeight Triangulation (MWT) [23] is a tri-
angulation algorithm, detailed in Section 2.

ii Matrix Chain Multiplication (MCM) [14] finds the
optimal way to associate a sequence of matrix multiplica-
tions. Like MWT, MCM is an instance of the parenthesis
problem [19] and has a similar dependency structure in
its DP algorithm. Computing a single DP table cell re-
quires reading from O(N ) cells in both, and they compute
only the upper triangular matrix of the DP table.

iii Smith-Waterman Local Alignment (SW) [33] deter-
mines the similarity of two DNA (or amino acid) se-
quences. All pairs of possible subsequences from both the
sequences are compared and scored rather than consid-
ering whole sequences. The algorithm finds local regions
within the sequences having an optimal similarity score.

iv Needleman-WunschGlobal Alignment (NW) [27] is
another sequence alignment algorithm. In contrast to SW,
NW does a global alignment by considering the entire
sequence, rather than subsequences, from the given pair
of input sequences. Both NW and SW compute the en-
tire matrix in the DP table in the same order and have
the same dependency structure. Hence, the Autogen pro-
duced algorithm is the same in both cases, with slightly
different base cases.

v Floyd-Warshall All Pairs Shortest Path (APSP) [17]
finds the shortest path between every pair of vertices in
a graph. APSP computes the entire DP table matrix. SW,
NW, and APSP are all instances of the gap problem [19]

Input Description Size Used with
bench-
mark

Dros mRNA sequence of Drosophila arizonae 14630 (bases) N4D
Ecoli1
Ecoli2

Complete genome FASTA sequences of
Escherichia coli. Ecoli1=NC_000913.2E,
EColi2=BA000007.2

Ecoli1=4.6x106
Ecoli2=10x106
(bases)

SW, NW

AS The CAIDA Autonomous Systems Rela-
tionships Dataset. A vertex in the graph
is an internet service provider (ISP) and
the directed edges are relationships.

26,475 ver-
tices. 106,762
edges

APSP

Synth1 Convex hull of randomly generated
points in 2-dimensional integer space

65,536 MWT

Synth2 Randomly generated integer weights,
each of which is in the range (0,1000).
A weight value represents either matrix
row or column dimensions

262,145 MCM

Table 2. Data sets used in the evaluation

with SW and NW being special cases having O(1) de-
pendencies whereas in APSP, computing a cell requires
reading O(N ) cells.

vi Nussinov 4D (N4D) [29] predicts the structure produced
as an RNA strand folds onto itself. Our N4D implementa-
tion stores similarity values of all possible pair of subse-
quences, leading to a 4-dimensional DP table. Computing
a DP table cell requires reading O(1) cells.
Table 2 describes the data sets [3, 32] used.

Development and execution environment The distributed
memory implementations of all benchmarks use C++11, Intel
MPI [1], and Intel CilkPlus [13]. We compile the programs
with mpiicpc, a wrapper compiler for ICC 16.0.3. The exper-
iments are run on a cluster of 10 nodes, interconnected by
Gigabit ethernet. Each node of the cluster runs RHE Linux
workstation release 6.10, contains two 10-core Intel Xeon-E5-
2660 processors with 32KB L1 data and instruction cache, and
256KB of L2 cache, a shared 25MB L3 cache, and 64GB main
memory. In our multi-process experiments, we accessed up
to 8 nodes of the cluster and mapped processes to as many
nodes as available on the cluster first before using additional
cores on a compute node.

5.2 Scalability
Strong scaling In these experiments, we measure the per-
formance of the benchmarks with increased number of com-
puting resources (processes, Cilk workers) for a fixed input
size. The input sizes are chosen such that the single-process
DM executions complete in a reasonable amount of time and
that the entire DP table can be allotted memory in a contigu-
ous space for comparison with a single process baseline.

Figure 3 shows the strong-scaling results with the default
D2P configuration of 1 Cilk worker per process. Since the
scalability plots of MCM and NW are similar to that of MWT
and SW respectively, we show the scalability plots of only
four benchmarks in the figure. The plots show speedup of a
DM execution over the sequential recursive baseline (1_rec).
Table 3 shows baseline runtimes. The recursion base case,
B, is 1 by default unless otherwise noted. We observe that
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Figure 3. Strong scaling in D2P benchmarks showing speedup of 1 Cilk worker/process configuration over baseline.

Processes MCM MWT SW APSP N4D
1_ite 47.4s 293.4s 14.6s - -
1_rec 43.6s (B=8) 215.8s 31.7s 4570.6s 331.4s

Pre Cilk-workers Pre Cilk-workers Pre Cilk-workers Pre Cilk-workers Pre Cilk-workers
1 16 1 16 1 16 1 16 1 16

1_DM 0.4s 0.4× 0.7× 0.3s 0.9× 4.8× 1.2s 0.8× 1.9× 2.2s 0.9× 7.5× 0.3s 0.9× 9.3×
2_DM 0.4s 0.7× 3.9× 0.3s 1.3× 15.3× 0.8s 1.1× 2.2× 1.7s 1.3× 2.3× 0.13s 1.6× 6.2×
4_DM 0.2s 1.3× 7.1× 0.2s 1.7× 28.1× 0.4s 1.9× 2.7× 0.9s 3.1× 5.9× 0.1s 2.5× 6.6×
8_DM 0.1s 2.2× 12.5× 0.1s 2.2× 45.9× 0.3s 3.2× 3.2× 0.5s 5.9× 15.9× 0.09s 4.1× 10.4×
16_DM 0.1s 3.1× 12.5× 0.09s 2.9× 52.6× 0.2s 6.2× 1.3× 0.3s 9.7× 35.1× 0.08s 6.9× 11.8×
32_DM 0.09s 3.8× 7.4× 0.08s 5.4× 22.2× 0.1s 9.9× 1.2× 0.2s 16.3× 37.8× 0.07s 5.0× 10.1×
64_DM 0.08s 4.2× 4.8× 0.07s 8.2× 14.5× 0.08s 18.6× 2.1× 0.14s 20.9× 33.6× 0.07s 8.0× 8.5×
128_DM 0.08s 2.9× 0.9× 0.08s 13.4× 3.8× 0.07s 39.6× 2.1× 0.1s 15.9× 6.9× 0.07s 20.1× 9.6×

Table 3.Measurements showing i) iterative (1_ite) and recursive (1_rec) baseline runtimes in seconds (s). ii) preprocessing
overhead (Pre), and iii) Comparison of speedups (×) obtained over recursive baselines in 1 and 16 Cilk worker per process
configuration for the inputs used in Figure 3.
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Figure 4. Weak scaling in D2P benchmarks. The y-axis (for the bars) shows normalized runtime w.r.t. the 16-process run
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in general with B > 1, the recursive versions are faster than
the iterative versions, 1_ite (MWT is faster even with B =
1). Overall, in the default D2P configuration, we get a 20.3×
geomean speedup, which further increases to 35.5× when
we exploit intra-task parallelism.

We investigate exploiting Cilk parallelism within pro-
cesses by assigning more than one Cilk worker per process.
Table 3 shows speedups in 1 and 16 Cilk worker per process
configurations. We performed a sweep of 1 to 16 Cilk work-
ers per process at each scale, however, we show here only a
part of these results due to lack of space. Since the base case
computation in SW and NW differs only in the values used
for scoring, the performance numbers of NW are very simi-
lar to SW. Hence, we do not show them here. We find that in
SW and N4D, multiple Cilk workers do not help improve the
performance relative to single Cilk worker configuration: the
best speedups seen in SW (39.6×), and N4D (20.1×) are with
a single Cilk worker. In contrast, the best speedups seen in
MCM (12.5×), MWT (52.6×), APSP (39.9×) are with 16 Cilk

workers per process. Our experiments showed that allocat-
ing parallelism to additional processes rather than additional
Cilk workers consistently gave better performance, even
though using more processes requires more communication.
We thus believe that there is some performance issuewith the
single-process Cilk implementation, though we have not yet
determined the root cause. The table also shows preprocess-
ing overheads, and the speedups seen earlier are inclusive
of the preprocessing overheads. The overhead remains un-
der 1.7% in most cases and decreases with increase in the
number of processes due to the O(L/P) time (see Section 3.1,
communication insertion).
Overall as the results show, D2P implementations scale

well given the inherently strong data dependencies in DP
problems. The addition of more Cilk workers improves per-
formance in general, and intra-process parallelism is nec-
essary in order to get the absolute best performance. The
results reflect D2P’s use of coarse-grained, task-level par-
allelism at the level of leaves of the tree (see Section 3.1,
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recursion unrolling) and Cilk workers to exploit an intra-
process, sub-task parallelism available within a task.

Weak Scaling In these experiments, we increase the input
size with increasing number of processes while keeping the
per-process computation fixed. We also fix the unroll depth,
D, to override the default D2P configuration of increasing D
as more processes are added. As a result, the runtime some-
times decreases with more processes due to more effective
utilization of available parallelism. In weak-scaling experi-
ments in general, we expect the communication overhead
to increase proportional to the number of processes. In D2P
benchmarks, we have an additional source of communica-
tion overhead: as some benchmarks read O(N ) (APSP, MWT,
MCM) data to compute a cell, the amount of communica-
tion per cell can increase with scale. Additionally, when the
input size is not a perfect power-of-two the recursive de-
composition does not evenly divide the table, so partitioning
tasks/sub-tasks computing these tiles can result in load im-
balance. As a result, we expect the overall runtime to increase
with scaling up the inputs and number of processes.

Figure 4 confirms this behavior. The X-axis shows the
number of processes and the Y-axis shows runtime normal-
ized to a 16-process baseline. The secondary line plot shows
the input sizes for reference. We see that the runtimes show
different degrees of increase for different benchmarks. The
figure shows that the 32 process runtime is greater com-
pared to the 64 process runtime in SW. This is because of
load imbalance in the former run. The 16 process run in SW
uses an input sequence length of 32,768, which is perfect-
power-of-two. Because SW is O(N 2) algorithm, the next
perfect-power-of-two input size is used when the processes
are scaled to 64. We consider scaling from 16 to 64 as an indi-
cator of true weak-scaling since these correspond to perfect
load-balance. For MWT and APSP, O(N 3) algorithms, 16 and
128 process runs represent the load-balanced configurations.
In N4D, which is O(N 4), 8 and 128 process runs are each
perfectly balanced.
In a perfectly load-balanced scenario, SW, MWT, APSP,

and N4D weak-scale differently. SW weak-scales the best
and shows the least increase of 1.08× in runtime due to a
O(1) amount of communication per cell. Even though MWT
and APSP have both O(N ) dependencies in computing a
cell, MWT shows 5.9× increase while APSP shows a 10.1×
increase in runtime. This is because MWT only computes
an upper triangular matrix. Hence, the communication over-
head is reduced by half. N4D, despite computing O(N 4) cells,
shows a modest 4.5× increase in runtime. This is because,
like SW, each cell in N4D depends on O(1) other cells.
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Figure 5. Case studies comparing D2P with other systems.

5.3 Case Studies
D2P vs. DPX10 We compare D2P with DPX10 [34], the
best available framework for generating distributed imple-
mentations of iterative DP programs. DPX10 captures node-
level, and thread-level parallelism for iterative DP programs
when the computation is partitioned across nodes of a com-
pute cluster. Node-level parallelism is captured through X10
Places and the thread-level parallelism through pthreads.
We compare the performance of SW benchmark only,

since, DPX10 currently supports only DP programs with
2-dimensional DP table and O(1) dependency in computing
a cell (2D/0D) [34]. DPX10 takes a master-slave approach
in executing tasks. First, a master process creates a DAG
of tasks based on a user-specified dependency pattern. The
tasks are then distributed among slaves, who report back
to master with results. Each slave (and master) coordinate
task execution with the help of an additional per slave (and
master) scheduler processes. DPX10 recommends a single
X10 place per compute node and multiple threads to engage
the cores on a node.

Figure 5(a) shows the strong scaling results. In this exper-
iment we chose the best performing DPX10 configuration
among different choices of X10 threads available per place.
We observe that the single process runtime of D2P is 33×
faster than DPX10. Since DPX10 stops scaling beyond 16
places (more than two place per node) and D2P continues
to scale up to 128 processes, the performance gap widens
and we see that D2P achieving a speedup from 33× to 483×.
We attribute the reason for superior performance of D2P
to its implementation choices and the recursive algorithm
advantage [10] over the iterative codes in DPX10. In addition,
we believe that the control overheads in DPX10 (e.g. runtime
task management, and of a dedicated process for scheduling
tasks) make it slower than D2P.

Case Study II: D2P vs. Hand_Written (HW) In this case
study we compare D2P with a highly optimized, hand writ-
ten, distributed memory implementation of iterative SW
algorithm [2]. Like DPX10, the HW implementation takes a
master slave approach. The master divides the work (row-
wise) evenly among slaves and computes any rows remaining
due to an uneven division. The row-wise division means that
a process depends on only a single row of data owned by a
remote process. Note that this is in contrast to D2P, where
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a producer sends an entire tile of data even though only a
single row (or column) of a tile is required by the consumer.

Figure 5(b) shows the strong scaling results. The HW code
is evaluated with input sizes where slaves evenly divide the
work (HW _even), and where master computes some rows
(HW _дeneral ). D2P is also evaluated with an auto generated
implementation (D2P_auto) and a modified implementation
communicating only a row or column of the tile (D2P_opt ).
We observe that D2P is competitive. In the general case,

HW _дeneral , the master process waiting for all the data
from slaves in order to compute its rows necessitates an
MPI AllGather communication besides creating a need to
allocate space for the entire DP table. D2P does not have any
of these bottlenecks and as a result D2P scales much better
than HW in the general case and even outperforms beyond
16 processes. Whenmaster does not compute any rows, there
is no bottleneck. As a result,HW _even scales very well. Even
in this ideal scenario, the best D2P_opt performance (0.6s)
is only 27% slower than HW (0.47s).

6 Related work
Dynamic programming [8] algorithms, with their application
in a wide variety of domains, are the target of parallelization
efforts [19, 26, 35] as multi-cores and commodity clusters
become increasingly accessible.
Frameworks simplifying parallel programming and ex-

ploiting multiple levels of parallelism on heterogeneous ar-
chitectures have been proposed [7, 16, 24, 30, 34]. While
D2P is aligned with these works on the end goal, there
are some major differences: D2P specializes in recursive
DP programs in comparison with OMPD [24], Legion [7],
and others [6, 30, 31], which are more general. Both Legion
and D2P leverage the inclusion property of recursive for-
mulations. However, Legion relies on region annotations
to determine dependencies, which would still need to be
generated by something like D2P’s unrolling and analysis.
Among important prior works that automate the genera-
tion of distributed-memory parallel programs, some [6, 24]
rely on a convenient starting point of explicit parallelism
specification (e.g. #pragma omp parallel for) and
implicit partitioning (implicit assignment of iterations to
threads), while others [30, 31] work well on regular/irreg-
ular/mixed iterative codes. D2P instead relies on Autogen
produced parallel specifications, performs explicit par-
titioning and works on recursive codes. Sarkar et al. [31]
do an extensive study of the serial to parallel program con-
version problem. They automate program partitioning in a
functional programming setting, and explore compile- and
runtime scheduling techniques on multi-processors with
different system architectures. We could augment the ex-
isting, recursion unrolling influenced partitioning scheme
in D2P with sophisticated inspector-executor based tech-
niques [20, 30, 31]. Also, compared to these systems, D2P

could be thought of as a semi-automatic framework special-
izing in recursive DP programs. Semi-automatic because the
input is an iterative code snippet rather than an entire pro-
gram, thus necessitating the introduction of APIs to capture
user input. Like D2P, FastFlow [4], EasyHPS [16] and its
successor DPX10 [34] focus on simplifying the creation of
distributed-memory DP programs through system provided
APIs and user-configurable parameters. However, unlike
D2P, they work on iterative DP codes.
Galil et al. [19] design parallel iterative DP algorithms

and categorize DP problems based on the data-dependency
patterns. Chowdhury et al. [10] design efficient recursive
DP algorithms and automate the design process through
Autogen. They also show that recursive DP algorithms ex-
hibit better temporal locality and outperform their iterative
counterparts [11, 12]. Bellmania [22] takes a program syn-
thesis approach in generating parallel shared-memory imple-
mentations of recursive pseudocodes output from Autogen.
Lifflander et. al. [25] show that cache performance can also
be improved for a broader set of divide-and-conquer prob-
lems with recursive implementations. They use programmer
specified ‘effect’ annotations for identifying fine-grained
parallelism in recursive programs implementing stencil com-
putations. Based on the results, different recursive method
invocations are spliced (interleaved) effectively to improve
cache locality. The parallelism expressed in D2P is explicit
at a coarser level of recursive method invocation. Because
the method parameters specify the entire read and write
access regions, effect annotations are redundant for the re-
cursive methods in D2P. However, through the use of effect
annotations, we could extend our distributed-memory code
generation scheme to arbitrary recursive programs.

Majority of the prior work on distributed-memory DP im-
plementations focus on problem-specific customizations [2, 3,
5, 9, 21, 26, 28, 35, 36]. While some focus on algorithmic opti-
mizations [21, 26, 36], others [5, 15, 28] have system-specific
optimizations. For example, in optimizing Smith-Waterman
algorithm for distributed-memory, a majority [15, 28] exploit
the coarse-grained parallelism available in comparing a se-
quence against a database of sequences. Whereas, D2P’s im-
plementation of Smith-Waterman parallelizes the algorithm,
which computes the DP table to compare two sequences.

7 Conclusions
In this paper, we presented D2P, an end-to-end system for
auto-generating distributed-memory implementations of re-
cursive DP algorithms. We presented how D2P generates
those implementations starting from a code snippet of an iter-
ative DP algorithm. In the process, we showed how D2P uses
Autogen and transforms its output to produce distributed-
memory implementations from shared-memory recursive
parallel pseudocodes of DP algorithms. Finally, we presented
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an evaluation of D2P that showed that the generated imple-
mentations scale well, preprocessing overheads are negligi-
ble, and that D2P significantly outperforms the best available
system for parallelizing DP programs on distributed-memory
systems and is competitive against hand written programs.
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