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Gestalt psychologists pointed out about 100 years ago that a key to solving difficult insight 
problems is to change the mental representation of the problem, as is the case, for example, 
with solving the six matches problem in 2D vs. 3D space. In this study we ask a different 
question, namely what representation is used when subjects solve search, rather than insight 
problems. Some search problems, such as the traveling salesman problem (TSP), are defined 
in the Euclidean plane on the computer monitor or on a piece of paper, and it seems natural 
to assume that subjects who solve a Euclidean TSP do so using a Euclidean representation. 
It is natural to make this assumption because the TSP task is defined in that space. We 
provide evidence that, on the contrary, subjects may produce TSP tours in the complex-log 
representation of the TSP city map. The complex-log map is a reasonable assumption here, 
because there is evidence suggesting that the retinal image is represented in the primary 
visual cortex as a complex-log transformation of the retina. It follows that the subject’s brain 
may be “solving” the TSP using complex-log maps. We conclude by pointing out that solving 
a Euclidean problem in a complex-log representation may be acceptable, even desirable, if 
the subject is looking for near-optimal, rather than optimal solutions.
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IntroductIon

The traveling salesman problem refers to finding the order in 
which N cities should be visited so that the resulting closed 
tour is shortest (Lawler, Lenstra, Kan, & Shmoys, 1985). After 
the tour is produced, the result is the permutation of N num-
bers representing the order in which the cities were visited, 
and the length of the tour. If the distances are symmetrical, 
the number of possible tours is (N – 1)!/2. This number grows 
exponentially with N. There is no known method for finding 
the optimal tour without running the risk of trying all tours. 
This is why TSP is in the class of NP hard problems. Trying 
all tours is impractical even for fairly small N. Branch and 
bound algorithms can often produce optimal tours quickly 
even for reasonably large N, but one never knows whether a 
given problem at hand will be solved quickly (Applegate, Bix-
by, Chvatal, & Cook, 2006). This is why there has been large 
interest in formulating approximating algorithms, as well as 
algorithms that produce near-optimal tours. “Approximating 
algorithms” are algorithms for which there is a proven upper 
bound for error. Tour error is given as the difference between 
the length of the tour produced and the length of the shortest 
tour expressed as a percentage of the length of the shortest 
tour. Describing a tour as “near-optimal” means that the tour 
is not much longer than the shortest tour (error close to 0%), 
but the upper bound for an error has not been established.

There is a large body of work on approximating and near-
optimal algorithms for TSP (Lawler et al., 1985). These algo-
rithms vary with respect to computational complexity and 
errors. A universal assumption behind all these algorithms is 
that they work in the space in which the problem is defined. 
Usually, it is a Euclidean plane. Looking for a TSP tour in the 
space in which the problem is defined sounds like an obvi-
ous thing to do. Indeed, that approach would be correct, if 
the goal is to find the shortest tour. If the algorithm does not 
take the transformation into account, then using an alternate 
coordinate system should only hurt the chances that the algo-
rithm will produce the optimal tour. For example: transform 
Cartesian coordinates of the points (cities) (x,y) into polar 
coordinates (r,θ) (see Figure 1a, see next page) and use the 
Cartesian representation with the polar coordinates: θ being 
the horizontal axis and r being the vertical axis (see Figure 1b, 
see next page). Now, we can compute the distance between 
points in polar space by applying the conventional distance 
formula to polar coordinates: d = ((∆r)2 + (∆θ)2)1/2 (note that 
this example is relevant to how our model works; the main and 
important difference is that we use a complex-log mapping, in 
which a natural logarithm of the radius, not the radius itself, 
is used). It should be obvious that the distances computed in 
the polar space are not only different from distances when 
Cartesian (x,y) coordinates are used, but they are not a linear 
transformation of the Euclidean distances. It follows that the 
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shortest tour in this new representation will consist of a per-
mutation of cities that is different from the optimal permuta-
tion in Cartesian coordinates. Using a permutation that is not 
optimal means that the length of the tour will not be shortest. 

However, if the goal is to find a near-optimal tour, then it 
is not immediately obvious why the algorithm should work 
on the representation in which the problem was defined. 
Producing a near-optimal solution in a transformed rep-
resentation may be easier than doing this in the original 
representation. By easier we mean faster, smaller error mea-
sure, or more effective with respect to cognitive/computa-
tional resources such as memory. Carruthers (2015) recently 
showed, using two examples, that humans can reformulate 
problems and work on the reformulated problem when the 
original problem exceeds their cognitive resources. Similarly, 
one of us has shown that when subjects are presented with a 
15-tile puzzle, they move around one or at most two tiles at 
a time, putting them in the correct location and treating the 
remaining tiles that are still out of place as equivalent (Pizlo 
& Li, 2005). Subjects arrange the tiles quickly, but the num-
ber of moves tends to be highly suboptimal. An optimal, or 
close to optimal algorithm must consider all 15 tiles at the 
same time in planning the next move. This is clearly beyond 
the memory capacity of the human problem solver. 

Finally, consider an example that has been reported 
recently by Kwon, Agrawal, Li, and Pizlo (2016) that provid-
ed a direct motivation for the present paper. Subjects were 
asked to draw a closed contour that was represented in the 
image by short line segments embedded in a large number 
of similar line segments, called distracters (Figure 2, see next 
page). The experimenter knew which segments were dis-
tracters and which segments belonged to the closed contour 

because the latter ones were produced by fragmenting a 
polygon. The subjects had to infer what the shape of the poly-
gon was. They had to guess which segments belong to the 
closed contour representing the polygon and in which order 
they should be connected. Drawing a closed contour sounds 
like a TSP problem. But this was not a TSP problem because 
the subjects had to connect a small subset of contours from 
among a large number of distracters. There is no version of 
a TSP that allows the “salesperson” to ignore cities. Kwon et 
al. discovered that subjects treat the task as a shortest path 
problem (SPP). SPPs always ignore nodes and edges in order 
to go from the start to the end along the shortest path. But 
in order to produce a closed contour, the shortest path had 
to start and end at the same point in the image. This will not 
work, unless the Cartesian coordinate system in the retina 
is transformed into a polar coordinate system. In fact, it is 
more desirable to use a complex-log representation in which 
the radius r is transformed into a ln(r) and the polar angle is 
expressed in radians. This way, large and small circles on the 
retina have the same length, thus providing size invariance.

The choice of a log-polar map (another name for a complex-
log map) was not a coincidence because it has been known for 
some time (since 1977; see Schwartz, 1980, for a review) that 
the primary projection area (area V1) in the visual cortex of 
the primate brain is approximately a complex-log transforma-
tion of the retina. Figure 3 (see following pages) shows how 
the retinal stimulus in Kwon et al.’s study looks in the complex-
log representation, how the shortest (least-cost) path looks in 
the complex-log representation, and the corresponding closed 
contour on the retina (see Kwon et al., 2016, for details). 

In the case of Figure 3 the origin is chosen to be the cen-
ter of the image and the polar (θ) component ranges from 
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Figure 1. 
(a) Cartesian (x,y) and polar (r,θ) coordinate systems. (b) Cartesian representation of polar 
coordinates.
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-π to π. The subject is unaware of the complex-log map in 
his brain because he is drawing the contour on the computer 
screen. Despite, or perhaps thanks to, changed representa-
tion, the subjects always produce the correct (true) polygon 
and they do it instantaneously. Selecting the right segments 
from among distracters calls for nothing else than consider-
ing all subsets of the segments of the screen. For N segments, 
the number of all subsets is 2N, so evaluating all subsets is 
computationally intractable. In contrast, solving the SPP 
optimally can be done in polynomial time because the com-
plexity of the optimal algorithm is Vlog(V + G), where V is 
the number of nodes and G is the number of edges in the 
graph. So, one could conclude that the visual system is well 
adapted: it takes what looks like an NP hard problem on the 
retina and solves it in polynomial time in the brain repre-
sentation. Note that we cannot prove that these two prob-
lems are equivalent. Otherwise, we would have shown that  
P = NP, which is no small task and commonly believed not 
true (Garey & Johnson, 1979). But what the visual system 
does is very interesting. The reader may realize that a com-
plex-log map is a member of a class of conformal maps well 
studied in applied mathematics (Schinzinger & Laura, 2003). 
Conformal maps are used in applied mathematics problems, 
because what is very difficult to do in the original representa-
tion may become easy in one of the conformal map represen-
tations. So, it is interesting to note that nature came up with 
one such map well before mathematicians did. Descartes 

Figure 2. 
Explanation of how stimuli were designed in Kwon and colleagues’ (2016) study. The original closed contour (a), fragmented con-
tour (b), and fragmented contour within a field of distractor line segments (c).

-π to π. The subject is unaware of the complex-log map in 
his brain because he is drawing the contour on the computer 
screen. Despite, or perhaps thanks to, changed representa-
tion, the subjects always produce the correct (true) polygon 
and they do it instantaneously. Selecting the right segments 
from among distracters calls for nothing else than consider-
ing all subsets of the segments of the screen. For N segments, 
the number of all subsets is 2N, so evaluating all subsets is 
computationally intractable. In contrast, solving the SPP 
optimally can be done in polynomial time because the com-
plexity of the optimal algorithm is Vlog(V + G), where V is 
the number of nodes and G is the number of edges in the 
graph. So, one could conclude that the visual system is well 
adapted: it takes what looks like an NP hard problem on the 
retina and solves it in polynomial time in the brain repre-
sentation. Note that we cannot prove that these two prob-
lems are equivalent. Otherwise, we would have shown that  
P = NP, which is no small task and commonly believed not 
true (Garey & Johnson, 1979). But what the visual system 
does is very interesting. The reader may realize that a com-
plex-log map is a member of a class of conformal maps well 
studied in applied mathematics (Schinzinger & Laura, 2003). 
Conformal maps are used in applied mathematics problems, 
because what is very difficult to do in the original representa-
tion may become easy in one of the conformal map represen-
tations. So, it is interesting to note that nature came up with 
one such map well before mathematicians did. Descartes 
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would have been pleased, because this is yet another example 
for his claim that the human mind is a natural geometer.

With these results in hand, we hypothesized that the TSP 
problem may be solved in the log-polar representation in 
area V1 instead of the Cartesian representation on the retina 
(and on the computer screen). Th e subjects think that they 
solve it as presented on the screen, but they may simply be 

unaware of what their brain is doing. Considering the fact 
that the primary visual area uses a complex-log representa-
tion, how good are the TSP tours when they are produced 
in complex-log, rather than on the retina or a computer 
screen? Th is paper shows in a set of simulation experiments 
that near-optimal algorithms applied to complex-log repre-
sentations are not worse, and perhaps are even better than 

Figure 3. 
The presented fi eld of line segments as it appears on the computer screen and retina (c, d), and as it would be represented in V1 (a, b). (a) 
and (c) show the subject’s drawn contour. The red dot at the center of (c) indicates the origin used to create the log-polar representations.
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corresponding algorithms in the Cartesian representation. 
We also report a preliminary study in which the cities were 
generated on two concentric circles. Some subjects consis-
tently produced a tour that resembled two connected con-
centric circles, while others produced a tour that zigzagged 
between the two circles. Our approximating algorithms can-
not produce a two-circle tour when applied to the Cartesian 
representation, but they can produce both types of tours 
when applied to complex-log representations. 

Log-PoLar cyLInder

In order to use a complex-log map to produce TSP tours, the 
transformed map must be treated as though it is wrapped 
around a circular cylinder. This means that a line going off 
the left side of the transformed map appears on the right side. 
The circumference of the base of the cylinder is 2π. Treating 
the map as the surface of a cylinder was not needed, and in 
fact was not desirable, when Kwon et al. (2016) solved the 
SPP problem in a complex-log map. A discontinuity at one 
of the nodes (line segments) led to a map where this segment 
had two representations in the complex-log map. This way, a 
shortest path from a point to itself in complex-log produced 
a closed contour on the retina. With the TSP we also need a 
closed contour on the retina, but unlike the SPP, in the TSP 
all cities must be connected. Recall that the SPP by its very 
nature goes through only some nodes in the graph, and so 
the SPP does not apply. Because the SPP is not used, a dis-
continuity is not needed, and so the complex-log map should 
be folded to form a cylinder. The cylinder interpretation of 
the map introduces an ambiguity in the pairwise distances 
because for each pair of points on the surface of the cylinder 
you could travel clockwise or counter-clockwise to get from 
one point to the other (Figure 4). In other words, there are 
two geodesic lines between any pair of points on the cylinder. 
Our algorithm always used the shorter of the two distances in 
the complex-log representation because this distance would 

have been used by any TSP algorithm when the algorithm 
is applied to the complex-log representation. Note that the 
choice of the shorter of the two distances in the complex-log 
map can be done by simply comparing the coordinates on 
the horizontal axis (angle). Next, we explain in detail how a 
complex-log transformation is computed.

Look at Figure 4. We start with polar coordinates in 
which a point is defined by its distance r from the origin 
and its angle θ relative to the positive x-axis. The angle is 
expressed in radians. The units of radius r are irrelevant in 
the sense that changing the unit from pixels, to centimeters, 
to inches will lead to a rigid translation in the complex-log 
map. A translation has no effect on the TSP tours. What is 
important is that the radius r is transformed into a natural 
logarithm of r. If one begins with a complex plane z = x + iy 
= reiθ, then a complex-log leads to the correct log-polar rep-
resentation. If, however, one begins with two real numbers, 
r and θ, then one has to be sure that a natural logarithm and 
radians are used. 

Before the complex-log transformation is applied, one 
must choose the origin of the polar coordinate system. In the 
visual system, this origin coincides with the center of the ret-
ina, which, in turn, corresponds to the fixation point. Chang-
ing the origin will change the complex-log map, including 
the distances between points. This means that optimal and 
near-optimal TSP tours will be affected by the change of 
the origin. This will give any model based on a complex-log 
map additional flexibility. For example, the model may try 
multiple fixation points, generate a tour for each, and then 
choose the shortest. Subjects could do this too. In this paper 
we did not control or record the positions of fixation points. 
We used the fixation point as a free parameter in our models.

Our models first transform the Cartesian representation 
of the TSP problem using the complex-log transformation 
and then produce a TSP tour. The resulting permutation is 
then reproduced in the Cartesian representation and used 
for the analysis of error and optimality. In order to avoid a 
singularity corresponding to a logarithm of zero, no city was 
allowed to be too close to the origin of the polar coordinate 
system. This was enforced by adjusting the location of the 
origin if it fell too close to a city.

SImuLatIon exPerImentS

Throughout the paper, by “optimal tour” we mean the short-
est tour in the Cartesian coordinates. The errors of near-
optimal algorithms are errors for the tour produced in a 
particular representation (Cartesian, polar or complex-log) 
after the permutation of cities representing the tour pro-
duced by a near-optimal algorithm has been reproduced in 
the Cartesian plane.

Consider the simplest TSP problem where N cities are 
on a circumference of a circle in Cartesian representation. 

Figure 4. 
The two ways that a pair of cities can be connected when the 
map is wrapped around a cylinder and the left edge of the map 
touches the right edge.



docs.lib.purdue.edu/jps  2018 | Volume 11

Fleischer, P., Hélie, S., & Pizlo, Z. Problem Representation in Producing Near-Optimal TSP Tours

6

Humans always produce an optimal tour for such a TSP. Th e 
optimal tour is a polygon with N vertices inscribed in that 
circle. Th ere are several ways to produce an optimal tour in 
such a case. One way is to fi nd a convex hull of the points 
(MacGregor & Ormerod, 1996). An algorithm that com-
putes a convex hull has polynomial complexity. Alternative-
ly, one can use a nearest neighbor algorithm, which is also 
of polynomial complexity. If this problem is represented in 
a complex-log representation and if the origin of the polar 
coordinate system coincides with the center of the circle, the 
circle in Cartesian coordinates maps into a straight line in 
complex-log representation. More precisely, it will be a cir-
cle on the complex-log cylinder. Th e nearest neighbor algo-
rithm applied in complex-log representation would produce 
a tour that is optimal in both representations. By optimal we 
mean the optimal permutation. Geodesic lines on the com-
plex-log cylinder will map to arcs of a circle in the original 
Cartesian representation, not to straight-line segments rep-
resenting the inscribed polygon. However, since by an opti-
mal tour we mean an optimal permutation, we can ignore 
the fact that the connections between pairs of cities may or 
may not be straight line segments.

neareSt neIgHBor aLgorItHm

Method

We started our simulation experiments with the nearest neigh-
bor algorithm to solve randomly generated TSP problems with 
6, 10, 20, and 50 cities in Cartesian coordinates and in log-
polar coordinates, using up to 81 origin points in the log-polar 

transformations. We used 1,000 randomly generated problems 
for each problem size. Th e nearest neighbor algorithm that we 
used tried all N starting points and chose the shortest tour. 
One of our goals was to compare the solutions generated in 
Cartesian and log-polar spaces. One would expect that distort-
ing the map prior to solving it would result in overall longer 
tours when converted back into Cartesian coordinates. We 
compared the solutions generated in Cartesian space to two 
versions of the log-polar model: (i) with only one fi xation point 
and (ii) with 81 fi xation points. In the second version, we chose 
the shortest tour from the 81 tours, where shortest was evalu-
ated in Cartesian representation. Th e 81 fi xation points repre-
sented a regular grid of points. Th e results of human subjects 
described in this section were taken from Pizlo et al. (2006).

Results

We measured the error of a tour as the ((tour length) - (short-
est tour length))/(shortest tour length). Percent optimal is the 
proportion of optimal tours. Figures 5 and 6 (see next page) 
show that the nearest neighbor algorithm with one fi xation in 
log-polar space performed as well or better compared to near-
est neighbor in Cartesian space. However, both were systemat-
ically worse than the subjects in Pizlo et al.’s (2006) experiment. 
When 81 fi xations were used and the best tour was chosen, 
NN algorithm in the log-polar space performed similarly to 
human subjects. Th is is a new result suggesting that one may 
want to reconsider NN algorithms as a good greedy method, 
at least with small problem sizes. In the next simulation exper-
iment we compared pyramid algorithms when implemented 
in the Cartesian vs. log-polar representation.

Figure 5. 
Error measure of the nearest neighbor solutions in Cartesian coordinates, best of 1 nearest neighbor 
solutions in log-polar coordinates, best of 81 nearest neighbor solutions in log-polar coordinates, and 
human solutions. Error bars show standard deviation.
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Figure 6. 
The proportion of optimal tours in the nearest neighbor solutions in Cartesian coordinates, 
best of 1 nearest neighbor solutions in log-polar coordinates, best of 81 nearest neighbor 
solutions in log-polar coordinates, and human solutions.

PyramId aLgorItHm

Method

In our second experiment, we tested a version of a pyramid 
algorithm that we used in our previous studies (Haxhimu-
sa, Kropatsch, Pizlo, & Ion, 2009). We applied the pyramid 
algorithm to the Cartesian representation and to the log-
polar representation with multiple origins (fi xation points). 
Before the multiresolution pyramid produces a TSP tour, a 
clustering algorithm is applied recursively to produce a hier-
archy of clusters. Th e clustering merges at least two cities to 
form a cluster that is treated as though it were a city in the 
next highest layer. In our implementation, we merge the two 
closest cities/clusters at each merge cycle. Th e cluster formed 
this way is positioned at the midpoint between the two cit-
ies/clusters that compose the new cluster. Th e size or depth 
of a cluster does not aff ect this process in any way: large 
clusters are no more or less likely to be involved in a merge 
and do not aff ect the determination of the new cluster’s loca-
tion. Th is clustering method is simple computationally, and 
it resembles in some respects Boruvka’s method for produc-
ing a minimum spanning tree (MST). Boruvka’s algorithm 
was used in one of our earlier TSP studies (Haxhimusa et 
al., 2009). Th e clustering method used here leads to tours 
that are longer than those produced by Haxhimusa et al.’s 
algorithm. Note, however, that the main goal of the present 
study was to compare the tours produced by the same pyra-
mid algorithm in two diff erent representations, rather than 
to optimize the algorithm itself.

Clustering ceases when the top layer of the pyramid 3 has 
clusters. With 3 cities, there is eff ectively only one TSP tour 
since tour length is unaff ected by changing the starting point 
or reversing the order of cities. Th is tour is the fi rst tour in a 
sequence of tours produced by unmerging clusters one pair 
at a time with the rest of the tour remaining unchanged (see 
Figure 7, next page). Each unmerging results in two possible 
paths through the newly unmerged subclusters. Th e algo-
rithm adopts the shorter of the two.

We used the clustering algorithm to solve problems 
with 6, 10, 20, and 50 cities in (1) Cartesian coordinates, 
(2) polar coordinates, and (3) log-polar coordinates using 
up to 25 origin points in the polar and log-polar transfor-
mations. Th e polar coordinate system has been used in the 
past in computer vision studies, and it is a natural candi-
date to shed more light on the performance in log-polar 
representation.

Since the distance dimension of polar coordinates is not 
scale invariant as it is for log-polar coordinates, we scaled that 
dimension by m*2π/√((map_width)2+(map_height)2 where 
the scale factor m is 0.5, 1.0, or 2.0. Th e scale factor of 1 cor-
responds to equal weight being given to the length dimension 
and the angular dimension. A factor of 2 makes the model 
more biased toward making large angular changes and avoid-
ing large radial changes. A factor of 0.5 would invert this bias.

Results

Applying the pyramid algorithm to polar coordinates with 
m = 1 produced substantially longer tours than applying the 
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pyramid algorithm to Cartesian coordinates, as can be seen 
in Figure 8. In contrast, applying the pyramid algorithm to 
log-polar coordinates leads to better tours. Th e superiority 
of log-polar representation over polar representation holds 
for a single origin, as well as for 25 origins (Figures 8 and 9).

A comparison between the diff erent scale factors for polar 
coordinates and log-polar, each with 25 fi xation points, can 

be seen in Figure 10 (see next page). It is interesting to note 
that discounting the radius dimension relative to the angu-
lar dimension seems to produce better tours. However, the 
log-polar transformation outperformed all 3 versions of the 
polar transformation. It is possible that polar representa-
tion with the scale factor lower than 0.5 could do better, but 
it is unlikely that one scale factor would fi t many diff erent 

Figure 9. 
The proportion of optimal tours in the clustering algorithm solutions in Cartesian coor-
dinates, 1 clustering algorithm solution in polar and log-polar coordinates, best of 25 
clustering algorithm solutions in polar and log-polar coordinates, and human solutions.

Figure 8. 
Error measure of the pyramid algorithm solutions in Cartesian coordinates, 1 cluster-
ing algorithm solutions in polar and log-polar coordinates, best of 25 clustering algo-
rithm solutions in polar and log-polar coordinates, and human solutions. Error bars 
show standard deviation.
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problems equally well. So, one can expect large variability 
from problem to problem with any particular value of the 
scale factor.

SPecIaL caSeS of a tSP confIguratIon—
PSycHoPHySIcS and modeLS

Method

We generated 20 TSP problems where cities were arranged 
in two concentric circles, 8 cities randomly placed on the 
inner circle and 16 on the outer circle. Th e radii of the circles 
were 100 px and 220 px. Th ese problems were solved using 
the pyramid algorithm in Cartesian coordinates and in log-
polar coordinates using 25 origin points in the log-polar 
transformations. Our human data was collected from 25 
undergraduate subjects. TSP problems with these arrange-
ments of cities in concentric circles generally have optimal 
solutions that fall into one of two categories: zigzag tours 
where there are many transitions between the inner and 
outer circle as the tour makes its way around the center once 
in one direction, and “keyhole” where the tour follows one 
circle in one direction, transitions to the other circle once, 
and follow the other circle in the opposite direction before 
transitioning back once more to the starting point on the 
fi rst circle. For all of our circle problems the optimal tour 
fell into the keyhole category. However, human subjects 
produced tours of both types—see Figure 11 (next page). A 
follow-up question is whether the model can also produce 
tours of both types by varying the origin. 

Results

In Figure 12 (see next page) we again see that single tour 
pyramid solutions in log-polar space are as good as the Car-
tesian space pyramid solution and that human performance 
is reached using a pyramid algorithm in the log-polar space 
with the best of 25 fi xation points.

We also found that our model, by changing the fi xation 
point, was able to produce exactly the same tours that human 
subjects produced including both zigzag and keyhole tours, 
some examples of which can be found in Figure 11. Th is result 
suggests that changing the fi xation point in the pyramid algo-
rithm applied to the complex-log representation may account 
for at least some individual diff erences observed in solving TSP.

concLuSIon and dIScuSSIon

Th e results show that two of the near-optimal algorithms (NN 
and pyramid) when applied to log-polar representation per-
form as well as, or better than they do in Cartesian space. So, 
even though distorting the problem space prior to solving the 
problem is likely to result in suboptimal solutions, the near-
optimal solutions may be more likely to occur and more likely 
to be closer to the optimal solution when they do occur. Th e 
main reason for the improved performance in the log-polar 
transformation is the possibility of trying a number of fi xation 
points (origins of the polar coordinate system) and choosing 
the best. Th e question remains whether the subjects try a num-
ber of origins and choose the best tour, or perhaps subjects 
have their idiosyncratic preferences for the origins. In fact, it 

Figure 10. 
The error of the tours generated under the polar transformation with 25 fi xation points 
and three scale factors for the radius dimension compared to the error of the tours 
generated using the log-polar transformation with 25 fi xation points. Error bars show 
standard deviation.
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Figure 11. 
Selected tours generated by humans (blue) that were replicated by the clustering algorithm (green) in log-polar space. The top 
two comparisons show examples of keyhole tours while the bottom two show examples of zigzag tours.

Figure 12. 
The error and proportion of optimal tours in the clustering algorithm solutions in Car-
tesian coordinates, best of 1 clustering algorithm solutions in log-polar coordinates, 
best of 25 clustering algorithm solutions in log-polar coordinates, and human solu-
tions of the concentric circle patterned maps. Error bars show standard deviation.

is possible that the subjects modify the location of the origin 
as they produce the tour. Recording the subject’s eye fixations 
may shed light on this process. Alternatively, the subject may be 
shown a single tour for a short period of time with controlled 
fixation position and asked whether the tour looks optimal.

In conclusion, our study provides some evidence that the 
human mind may use representations that are not identical with 
the representations in which problems are defined or present-
ed. This way, the subjects may, in general, be solving a problem 
that is different from the problem given by the experimenter. 
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The choice of the representation may be dictated by cognitive 
resources, by the efficiency of producing near-optimal solutions, 
by constraints of how the brain represents the incoming stimuli, 
and by the intrinsic aspects of the problem itself. This means it 
is possible that when subjects solve a TSP problem, they do so 
using distance approximations that were generated very early 
in visual processing. To use the six matches problem mentioned 
in the beginning of this paper, the physical constraints of a flat 
surface on which matches are laid and the operation of grav-
ity, which makes it difficult to construct a 3D form from the 
matches, naturally suggests the 2D space as the adequate rep-
resentation of the problem. So, our results are consistent with 
the recent suggestion put forth by Carruthers (2015). She sug-
gests that cognitive psychologists interested in problem solving 
should study not only which algorithms and heuristics are used, 
but also in which space they operate. Hence, the role of mental 
representation of problems may provide a common denomina-
tor for insight problems and problems of search.
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