
Purdue University
Purdue e-Pubs
School of Engineering Education Graduate Student
Series School of Engineering Education

7-7-2017

An Operationalized Model for Defining
Computational Thinking
Tony A. Lowe
Purdue University, lowe46@purdue.edu

Sean B. Brophy
Purdue University - Main Campus

Follow this and additional works at: https://docs.lib.purdue.edu/enegs

Part of the Engineering Education Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Lowe, Tony A. and Brophy, Sean B., "An Operationalized Model for Defining Computational Thinking" (2017). School of Engineering
Education Graduate Student Series. Paper 77.
https://docs.lib.purdue.edu/enegs/77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220145606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fenegs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/enegs?utm_source=docs.lib.purdue.edu%2Fenegs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/enegs?utm_source=docs.lib.purdue.edu%2Fenegs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ene?utm_source=docs.lib.purdue.edu%2Fenegs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/enegs?utm_source=docs.lib.purdue.edu%2Fenegs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=docs.lib.purdue.edu%2Fenegs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages

An Operationalized Model for Defining
Computational Thinking

Tony Lowe
Purdue University Department of Engineering Education

West Lafayette, IN, USA
lowe46@purdue.edu

Sean Brophy
Purdue University Department of Engineering Education

West Lafayette, IN, USA
sbrophy@purdue.edu

Abstract— The Computational Thinking (CT) conceptual

framework is entering its second decade of research yet still lacks
a cohesive definition by which the field can coalesce. The lack of
clear definition makes assessment tool challenging to formulate,
pedagogical efforts difficult to compare, and research difficult to
synthesize. This paper looks to operationalize differing
definitions of CT enhancing the ability to teach then assess the
presence of CT. Expanding upon CT definitions, industry
practices and processes, and educational theory, we link existing
concepts and propose a new element to model an active definition
of CT as a theoretical framework to guide future research. Our
model updates existing CT definition by formally including
Modeling, introducing Socio-Technical processes, separating
Information Gathering from Data Collection and adding
emphasis to Testing as a vital CT concept. We feel these
elements and interconnections make CT is easier to describe and
measure.

Keywords—Abstraction, Computational Thinking, Modeling,
Testing, Debugging

I. INTRODUCTION

This research paper synthesizes current literature on
Computational Thinking (CT) to provide an operationalized
model of CT concepts for use in assessment and pedagogy. To
promote CT we must have a clear definition of the key
concepts and competences to include, and defined in such a
way that we can assess its presence in learners. When Wing
initially presented the concept [1] she proposed a generalized
definition which later she refined [2] and others expanded upon
[3]–[5]. While literature agrees on several key ideas, gaps still
exist in the scope of CT as well as dissatisfaction and how it is
defined [6]. Wing proposes that CT is not just about learning
to program, but is an activity conducted within many
professions. One study finds the number of people involved in
managing computational solutions is double the number of CS
professionals [7], not considering the countless people who
define and work within processes supported by automation.
The full potential of CT is unleashed when non-programmers
understand the potential of computing to accelerate daily tasks
and the pace of discovery. Educators need clear definitions
and ideally developmental trajectories in order to convey the
complex ideas within CT to novice programmers and non-
programmers alike. The inexactness of the current definitions
makes measuring mastery much less designing effective
instruction difficult.

A. Issues in Assessing Computational Thinking

The lack of standardized assessments of CT is a hurdle to
understanding its presence and growth in learners [4], [8].
While many proposals for assessing CT exist [5], [9], [10],
they either focus on a very limited aspect of CT (e.g.
sequencing) or are tied to activities for those on a pre-
programming track. Computational thinking is more than
programming, thus an assessment which measures growth in
programming aspects of CT concepts alone has not historically
transferred to other problem solving contexts [11]. If we only
focus on learners on a programming track, we are unlikely to
meet teach “CT for all” [1]. CT skills outside programming
contexts demands we teach and assess CT concepts that
transfers to domains outside programming.

When assessment is rooted in programming it is difficult to
‘see’ CT in other fields. It is easier to come up with
programming tasks demonstrating CT, but examples do exist
that use computational devices other than computers. The
Jones Live-Map system was constructed in 1909 as a
navigational device, using the car’s odometer to provide real-
time driving directions [12]. The Live-Map design includes an
abstraction of the roads to be navigated on a route, collects
input from gears, translates the input using rules and represents
data using an arrow pointing at the next driving instruction to
be undertaken. The entirely mechanical system seems to meet
the exact criteria for applying computational thinking, yet
realized without any microprocessor or code. Do we have
assessment tools that could measure the presence of CT within
such a design?

B. Challenges in Teaching Computational Thinking

Computational Thinking is a complex domain with a large
number of highly integrated concepts, as we will demonstrate
later. Each learner comes to CT with different prior
experience in each CT concept. Some have experience with
programming, while others are novices in code. Some have
experience finding patterns, testing, or design, while others
may only have a heard of each. Jerome Bruner models
learning as the development of enactive representations (e.g. a
mental model of how the world works), followed by ikonic
representations (e.g. using rough pictures to communicate the
concepts), and finally symbolic representations (e.g. in this
case, formal use of modeling languages or source code) [13],
[14]. Bruner’s model is salient to CT as computational
devices recreate ‘the laws of Physics’ in the architecture of
processors and operating systems. Computer ‘physics’ are

more flexible and yet more precise than the physical world.
From infancy, we create an enactive understanding how, for
instance, gravity behaves. Schools later teach us how to
generalize “stuff falls downwards” and model gravity using
physics diagrams and math equations. The symbolic formulas
(mostly) back our understanding of how gravity behaves in the
real world. Computational systems do not typically display
‘visible attributes’ such as gravity to develop enactive
representations, in fact designers go to great lengths to make
interactions with computers mimic the real world. A
computer can easily redefine defy the laws of gravity in
simulation, but has a very hard time understanding basic
language. Computers can distort our enactive understanding
of the physical world in simulation, but still are built upon an
immutable set of rules which we must learn. Humans can
communicate very imprecisely to each other and still achieve
acceptable results. A software solution must be realized
perfectly to obtain even simplest results from a computer.
Most computational solutions require logical modeling of the
rules to be realized where the brain often relies on intuition in
decision making [15]. Thinking computationally may in fact
be ‘unnatural’ unless specifically taught as many of our
decision making processes lie outside traditional logical
reasoning.

Computational Thinking education often starts by
presenting ikonic or even symbol representations without first
teaching ‘how computation works’. We present the rules of
computers and describe high level concepts, sometimes before
showing the problems to be solved. The definition of CT also
suffers from a ‘top down’ approach where, in our experience,
even highly trained professionals struggle to differentiate the
finer details of some esoteric concepts included within CT.
Replacing concepts with a working model of CT may better
serve learners and educators.

C. Research Goal

Our goal in this paper is to operationalize the CT concepts
and competencies in a way that allows novices easier access
to complex concepts and enables more direct assessment of
learning. CT concepts tend to be defined as static lists of skills
with standalone definitions. Instead we hope to show how
concepts collaborate and interact as a related process. We will
build a concept map from the elements of CT using literature,
data, and a dash of instinct from decades of experience
building computational systems and teaching Computer
Science (CS). Our model documents how the consensus CT
concepts naturally integrate, fills gaps where they do not, and
draws out tacit elements which binds the concepts in a more
visible manner.

II. DEFINING COMPUTATIONAL THINKING

A. Concepts and Competencies from Literature

Literature defines and redefines CT, offering multiple lists
of concepts and competencies which support and expand on
each other. We chose three primary sources to give a breadth
of potential topics included in CT. The first, which forms the
foundation for the model presented in this paper, is a synthesis

of work by the International Society for Technology in
Education (ISTE), Computer Science Teacher Association
(CSTA), and hosted by Google [3]. Their definition includes
eleven key ideas which are supported by the other two
sources, Grover and Pea[4] who collect their definition from a
literature review and Brennan and Resnick[5] who look at CT
from more of a pre-coding perspective. We identified 25
distinct concepts proposed from these three sources which can
be condensed into 9 primary categories as follows.

 Abstraction
 Decomposition
 Patterns (Recognition and Generalization)
 Algorithms
 Data (Collection, Analysis, and Representation)
 Parallelism
 Iteration
 Simulation (and Automation)
 Testing and Debugging

Experts familiar with CT most likely resonate with this list
and see the emerging CT definition, yet some of these
concepts are elusive, particularly to novices learners or
educators. In this section we will describe the conventional
and competing definitions in support of the model/framework
to be presented later.

1) Abstraction, Patterns, and Decomposition
Abstraction might be the most important concept in CT

based on is prevalence in literature, but it also may be the
most inconstantly defined. Within CS, abstraction has taken
on two distinct uses. The first is commonly used in CT as
“identifying and extracting relevant information to define
main idea(s)” [3, p. 1]. This use of abstraction is to hide
away details which are not required to understand a greater
concept as often relates to encapsulation [16]. The other
common use of abstraction however relates to inheritance and
uses the fewer details as an extension point for future
functionality [17]. The first view of abstraction simply hides
details not relevant to a particular viewpoint, where the second
requires a larger understanding of the context and future
needs. They are both clearly ‘abstraction’ but require different
levels nuance in instruction of expertise in action.

The multiple definitions of abstraction can also be seen in
other disciplines. Philosophers debate abstraction centering
on how abstractions are identified and used. Hans Radder
defined extensibility, the ability to extend the abstraction to a
new domain, as the distinguishing characteristic of an
abstraction [18]. Extensibility aligns well with the Object-
Oriented representation of abstraction in inheritance. Nancy
Cartwright counters Radder by defining abstraction as a set of
rules, behaviors, or characteristics, or as she states “A’s do X”.
This basic rule covers the idea of simplification as abstraction,
but asks for more than simply leaving out information. It
demands the abstraction to be defined in some way as having
rules, not simply excluding details, and Cartwright does not
stop there. Abstraction become clear through contextualizing
rules in a context demonstrating specific behavior, or “In I,
A’s do X”. A good abstraction should be more than leaving

out details how ‘a thing’ is implemented, but should define
rules that transcend the current implementation to the next.
We can see this in Object-Orientation as objects are
concretized implementations of a specific Class, which could
be considered a contextualized abstraction. The OO class is
an abstraction which describes a concept to be modeled, where
the object a single ‘avatar’ of that concept which does work.
Philosophers’ views of abstraction provide a definition deeper
yet present in modern programming paradigms, but not clearly
present in CT.

Identifying and using patterns is vital in defining
abstractions. Cohen says “data abstraction is that of defining a
pattern for objects… [which] can inherit all of the attributes
defined by the pattern” [16, p. 31]. An abstraction is more
than hiding details of a full implementation, instead capturing
key details which will later be represented in computational
processes. Simple abstractions can be formulated through
observation: What does each customer have in common when
they make an order? What steps are always taken in the
manufacturing of the product? This process is the CT
definition of Pattern Recognition, where the application of
trends is Pattern Generalization. Patterns and abstractions are
intertwined as abstractions are formed by recognizing then
generalizing patterns.

Abstraction and decomposition are opposite approaches to
analysis in some sense. Abstractions capture patterns from the
real world reducing details to capture what is common.
Decomposition “is breaking down data, processes, or
problems into smaller, manageable parts” [3, p. 2].
Decomposition looks at a big complex thing and breaks it up
into simpler parts by capturing or imagining details of how it
is or can be accomplished. Abstraction starts with the
problem in action and works bottom-up to reduce detail and
find commonality, while decomposition starts with a high
level problem and works top-down to capture details. Both
are vital, yet opposing approaches in software development
history. Early software design highly utilized decomposition,
where big tasks (e.g. Build a report) are broken down into
manageable steps (e.g. Gather data, perform calculations,
format printout). Object-Oriented Analysis initially focuses
less on decomposition and more of capturing the actors and
objects of the system, utilizing abstraction to capture the
essential data and behaviors to group into Classes.
Decomposition exists within the Object-Oriented approach,
and abstraction helps form reusable, modular components in
structured design making these concepts difficult to separate.
Decomposition, abstraction and patterns clearly seem
intertwined concepts for describing computational systems.

2) Algorithms and Data
Algorithms may be the most agreed to CT concept across

literature: “Algorithms are tools for developing and expressing
solutions to computational problems” [4, p. 39]. The term is
so ubiquitous that it often goes undefined, but generally is
thought to be a list of steps to complete a task. Often unsaid is
the inextricable tie to data and context within an algorithm. In
CS, algorithms are typically encased within a procedure,
function, or method that allows for inputs and outputs but is

tied into the context provided within the application
architecture. Non-computational algorithms examples are
often given as fixed set of commands without context, for
example, a recipe. A recipe provides a list of the needed
inputs (ingredients) and the functional steps to transform
inputs into the desired output, but does not elaborate on the
context for cooking. The recipe still assumes the context of a
kitchen with the required tools. It demands shared
understanding of predefined abstractions such as “simmer”,
“beat”, or “fold”. The concept of an algorithm is simple, but
precisely describing a computational algorithm requires
assumptions on known abstractions and the representations of
data.

The representation and manipulation of data is core in
computational systems. From a highly programming-centric
view, Brennan and Resnick define data as “involv[ing]
storing, retrieving, and updating values” [5, p. 6]. The
framework from Google breaks “Data” into three components:
to collect (or gather), analyze (find patterns), and represent (or
visualize) [3]. These definitions are unclear however, in who
exactly is performing each action? Computer systems can
gather data, use algorithms to interpret meaning and take
further action entirely on their own. Likewise the general
public can gather data (from computers!) and make decisions
and act. Computational thinkers also gather data about a
problem space, look for patterns, and define data collection
systems and algorithms. Part of the goal of CT is to recognize
this symbiosis, yet learners need to understand the role of
computer and people within any given system, and
differentiate form the process of building computational
systems.

3) The rest of the elements
The remaining concepts are important but in many ways

subordinate to the ones already covered. Parallel processing is
an important realization of systems, but mainly a deployment
approach. Some solutions are better in parallel but few
require it, making it optional in early learning of CT concepts.
Simulation is an interesting concept, both by a computer but
also when considered as part of design. Simulation is
“developing a model to imitate real-world processes” [3, p. 2].
A simulation can be a role-play or other human-centered
exercise to better understand tradeoffs and perform early
testing when designing a system or software is an automated
form of simulation. Automation only appears as a concept in
the CSTA/ISTE/Google CT framework, but is implied in the
other definitions of simulation. For non-programmers,
knowing CT can be simplified as harnessing the power of
simulation, with or without automation.

Iteration, or iterative and incremental approach, is a
difficult concept to integrate with other CT concepts
depending on its definition. It is not discussed in the Google
hosted framework, but is in each of the other sources.
Brennan and Resnick [5] talk about partially as an approach
within algorithm design similar to parallelism. More often it
is defined as approach to the design of a computational (or
any) system, where early trials inform later design choices. In
this context, all aspects of CT can include iterative

approaches, yet it is difficult to capture any instance of this,
unless you are documenting the development process.

We feel Testing and Debugging are vital CT concept and
skills excluded from the Google hosted framework. Testing is
the process of removing errors from a system and ensuring it
fulfills the user needs. When the system does not behave as
expected, debugging follows to determine and remediate the
failure. Neither of these concepts is new or exclusive within
CT, but may be taken to new extremes in computers and has
the potential drive learning and assessment.

B. Operationalizing the Computational Thinking Definition

The major shortcoming in understanding CT is a clear
vision of how the defining elements interrelate. To bridge this
gap we are creating a concept map (Figure 1) to define
relationships between concepts and capture implicit
relationships. We have extended our concept map to include
context clues ‘who’ utilizes a concept. When the human
silhouette appears, it implies that task is (or can be) completed
by humans, where the computer icon indicates a task typically
performed by a computational device. By modeling the CT
elements in a concept map, we can see both the inherit
complexity of CT but also begin to break down into a learning
progression to introduce CT to learners.

The nine main concepts taken from the three frameworks
described above are present in our operational model for CT
with their core relationships. The next sections will walk

through the concept map, but as a few notes may be helpful to
setup a few additions to the nine main elements. We have
expanded Patterns and Data using the sub-concepts presented
in [3] to help demonstrate how the concepts are applied in
conjunction. Automation from [3] is included to distinguish
between work by human and computational devices in end
products. Finally, we have added three concepts to capture
implicit ideas which help bind stated concepts: Modeling,
Socio-Technical Processes, and Information Gathering
(distinguished from Data Collection).

1) Abstraction, Patterns, and Decomposition
Abstraction, Patterns, and Decomposition are perhaps the

most ‘problematic’ aspects of defining CT, but literature does
give hints to how they relate. Considered independently, it is
easy to become muddled in the many ways each concept is
used. In our operational model we hope to focus on a primary
use and hint at alternatives. The most common reference to
CT concepts is in the design of a system not its execution1.
Focusing on the left side of Figure 1, people gather

1 In is important to note, pattern recognition can certainly be
the goal of an algorithm within automation. Computers can
look for faces in pictures, grammatical errors, or any sort of
pattern as well. We are not ignoring this aspect of pattern
recognition or other CT concept in automation, but trying to
distinguish the human design activities from the end
user/automated system.

information (elaborated on later), from which Pattern
Recognition may emerge. Those patterns can be generalized
into common behaviors, or even to abstractions which must be
concretized into patterns in order to be captured in design. An
Abstraction by itself is interesting, but most useful when
formulated into an approach to solving problems, as occurs in
Pattern Generalization. CT literature implies that all of this
information eventually lands in a Model. The model
documents Decomposition and the patterns generated.
Abstractions appear as contextualized instances within the
model. The summation of the design portion of these three
key concepts is captured in the model as will be discussed.

2) Modeling, Data, and Algorithms
The concept of modeling underlies many of the other CT

concepts and regularly appears in the literature. In a paper
devoted to abstraction, Kramer states “Modeling is the most
important engineering technique”[19, p. 41] . Sooriamurthi
states “Programming is a process of modeling a world” [20, p.
2]. Wing refers to modeling [1] even in the initial work, yet it
seems to be taken for granted as a CT skill. Including
modeling in the concept map binds many of the otherwise
esoteric concepts. The Model becomes the place where
Abstraction, Decomposition and Patterns are documented. It
describes the connection between information and processing
forging a bridge between Data and Algorithms. The model
captures the context in which data is stored and provided to
algorithms. Models become the artifact of design which can
be assessed by experts or even simulated manually enabling
early Testing and Debugging. Modeling helps capture
complexity in a manageable form. Making modeling explicit
as a core element of CT has the potential to accelerate both
assessment and learning.

The model moves intangible concepts to tangible,
capturing mental representation in physical form. Many
assessments of CT are limited to concepts such as control
structures [21] in order to manage the complexity. While
many CT assessments opt for multiple-choice driven analysis
questions, models provide a place where assessment can occur
within design tasks. Instead of reciting a definition of
abstraction, the learner’s model can be explored for presence
of abstraction, particularly outside the ‘expected answer’.
The model becomes a point of mentoring where the learner’s
mental representation is presented and a mentor can provide
feedback on representational accuracy, application of CT
concepts, or even process and thinking approaches. Rather
than being told the ‘right answer’ to a multiple choice
question, the learner can being to see the continuum of
approaches within CT as well as their maturing conceptual
understanding.

Simulated execution of models provides experiential
opportunities to ‘see’ how design choices impact systems. The
model captures the intended behavior of the system or process
being designed. Models document the user’s story/system’s
flow which can be evaluated even without needing to produce
a real system. Lee et al. state that “analysis is a reflective
practice that refers to the validation of whether the
abstractions made were correct.” [8, p. 33]. This suggests

learning may be better when learners model their abstractions
and evaluate validity through simulation, refining their model
based on the findings. This human form of simulation,
entirely without computers, can support instruction through
finding and fixing problems in the model, the very process of
iterative and incremental development. As their model
matures, learners witness iteration in action by seeing how
their documented model changes over time. Modeling ‘cleans
up’ the links between CT concepts as well as providing an
artifact to capture and assess a learner’s growing knowledge
of CT.

3) Socio-Technical Processes
Nearly every computational system is a part of a larger

human-centered process. Even satellite systems charged with
exploring remote areas of our solar system, designed to
function with no direct human interaction, still receive
guidance and report data back to people. Each concept within
CT frameworks hint at this larger purpose, but adding how
people interact with computational systems feels vital.
Complex systems are decomposed into tasks, some handled by
humans and others automated in computational devices.
When we model systems, they are capturing the boundaries
between computational components and people. Designers
use Information Gathering to inform the model, but Socio-
Technical Processes also need data. Data Collection can be
completed by people or computers, analyzed and eventually
reported back as a future step in the process (discussed further
in the next section). Capturing the interaction between
machine computation and human cognition provides context
to the greater purpose of CT beyond making computer
programs.

Socio-technical processes are likely much easier to model
and comprehend. It is impossible to introduce novices to all
the aspects of a computer program, but much more reasonable
to walk through a human-centered process. It is easier to
develop an enactive representation [13] CT in action by
demonstrating an abstraction or module (e.g. using a
spreadsheet to enter data and see a result) without requiring
the management or manipulation code. Lee et al. recommend
introducing students using a “use-modify-create” approach [8]
where learners first act as users, then modify an existing
program, before taking on full creation. For domains where
programming is not the end goal, simulation of a socio-
technical process could develop a similar enactive
understanding of CT concepts and the value of non-
programmers in CT activities. For all learners it is important
to remember that computational systems stem from human
processes, and benefit from the input of many types of people.

4) Data and Information Gathering
The ultimate purpose of any computational system is to

gather, process and present data, yet the use of data is a small
portion of and in many ways vaguely defined in CT. Grover
and Pea [4] almost casually include data as a concept while
Brennan and Resnick [5] define it more as variables in
programs than a key aspect of computation. The Google
hosted framework [3] takes the time to break the use of data
into three key stages, but each definitions does not provide

clarity on the role of people versus devices. Data Collection
is defined as “gathering information” [3, p. 1], which could
relate both to the human process of gaining understanding of
the system, or the task (human or computer) of gathering input
from sources for a process, or both. This ambiguity likely
leads new teachers and learners into misconceptions about CT.
To that end, we have separated Information Gathering from
Data Collection as a unique CT concept.

Modeling

Data Collectioninforms

shared via

leads to

provides context for

Algorithms
drives

Data

Functional

Data Analysis

Data
Representation

Socio-Technical
Processes drives

defines

utilizes

Figure 1 Breakout of CT Data concepts

Gathering information is a human process to better

understand the role of a computational system. Beyond CT,
information gathering is a key aspect of any design process.
Any STEM or design education likely includes instructions
how to seek context and stakeholder needs. Conjoining the
traditional information gathering process with the specialized
data input solutions of CT seems to add confusion rather than
clarity. Designers gather information to design what data the
computational system needs to collect from the real world?
Bundling Data Collection and Information Gathering into one
concept, creates a confusing circular dependency! By
separating these concepts, Information Gathering feeds into
the human processes of design and modeling, which then in
turn defines the Data Collection as a piece of the end design.
This seems more transparent than having Data Collection (the
problem scoping facet) informing Data Collection (the inputs
to the solution facet) and forcing learners and novice
educators to tease out the differences.

The three CSTA/ISTE/Google Data phases show the
transformation of data within a CT system. Collected data is
only the starting point, as broken out from the full concept
map in Figure 1, provided to Data Analysis processes
informed by the Algorithms derived from the Functional and
Data Models. The results of Data Analysis are shared in a

final representation of data used to communicate knowledge
back to people participating in the larger Socio-Technical
Process. The Socio-Technical process is codified in the
model, and drives Data Collection whether by device or
human intervention, as full analysis and representation of data
could also be conducted by people, processors or both.

In our operationalized model, Data Analysis is a separate
idea from the design activities which would include
Abstraction, Patterns and Decomposition. Data Analysis
instead is performed by Algorithms defined within the Model
that may have an algorithmic goal of finding patterns in real-
world data, but is bound to the context of solving the problem
defined within the Socio-Technical Process, rather than the
open ended goal of defining a computational system.

Finally, Data Representations are vital parts of
computational systems to report information in a way that is
valuable to users. How information is presented can have a
large impact on how processes function. Many learners may
never develop the skills to create data representations, but can
at least witness power of custom representations and their role
in serving the larger process being served by automated
solutions.

5) Empahsizing Testing
Testing is a vital part of delivering systems of any nature.

In software, testing’s importance can be seen through
numbers: it often exceeds a third of the budget of a software
project [22] and one organization alone has certified more
than a half million testers [23]. People who participate in
testing compose a large group of non-programmers who have
a strong interest in understanding CT. Testing and Debugging
appeared in two of the three CT frameworks, being left out of
the framework developed primarily by educators [3]. This
could be in response to not being “code centric” but seems a
massive oversight in scoping CT.

Testing affords an entry point to CT concepts requiring
little prior experience. Starting with testing follows the Lee et
al.’s pattern of “use-modify-create” [8] , staring with ‘using’ a
system. Testing requires learners to form an expectation how
the system will respond given a set of inputs, making it an
active evaluation of the system rather than passively following
instructions. Learning starts by evaluating the boundaries of
the ‘problem’ and anticipating how the computational system
will behave. For instance, a very popular early computational
thinking challenge is navigating a maze [21], [24]–[26]. This
task emphasizes the sequencing of steps within algorithms, but
also demands strong spatial reasoning skills to complete.
Young people often struggle with “which way to turn” more
than stringing together a set of commands. By focusing first
on ‘testing’ a planned route, we can first teach the task of
navigating the maze before taking on CT concept of forming
an algorithm. A test case can ‘break’, showing the route to be
‘broken’ either due to a bad sequence (algorithm problem) or a
wrongly reasoned turned (spatial reasoning issue). Learners
can be tasked with testing activities to understand a problem
space (how do I navigate a maze?), discovering how their
computational device behaves at an enactive level (what
happens when I press this turn button?), before taking the next

step of introducing debugging to analyze algorithm for
problems (does this route work?). By testing first we can
learn the rules of the game (the left and right buttons turn us
90⁰ but do not move us forward!) separated from the tricky
task of developing algorithms or other CT concepts.

The combination of testing and debugging can accelerate
student learning. Jerome Bruner suggests learning improves
by “shielding a learner from distraction, by forefronting
crucial features of a problem, by sequencing the steps to
understanding, by promoting negotiation, or by some other
form of 'scaffolding' the task at hand” [27, p. 69]. Student
learning is slowed when too much is going on and they must
stop to detangle complexity. Testing provides novices with a
focused engagement with computational systems with
scaffolding to remove distractions. The learner does not need
to modify the system itself yet, but simply modify the inputs
to scientifically test behavioral change. The learner’s mental
representation of the problem space and computational
solution can be gradually updated with evidence-based
experience rather than abstract rules of ‘how concepts should
work’.

For instance, a young learner could start with a set of
incorrect instructions to navigate a robot through the maze.
The ‘failure’ is caused by a “right turn” when a left turn is
needed; representing a common misconception in spatial
reasoning. Since the student did not create the algorithm, they
are less invested in proving their initial guess is correct, and
can instead focus on what is actually occurring rather than
what they expect should happen. Now when the student
‘debugs’ the instructions they start by using then continue to
modifying the ‘algorithm’ either recognizing the error or
uncovering and correcting their misconception (e.g. ‘left’ and
‘right’ are relative to the robot’s new position). The learner’s
only responsibility is to uncover the problem step, rather than
solving the entire problem. This scaffolding approach allows
the learner to focus on first the problem space (spatially
navigating a maze) before the computational element
(designing and ‘coding’ an algorithm). Testing and debugging
provide a highly authentic activity easily introduced early in
the learning process to build enactive representations upon
which to build.

III. APPLYING THE CT MODEL

1) Assessment
Assessment of CT should start with the learner’s ability to

translate Information Gathering skills into Modeling. A
model provides the most tangible representation of growing
knowledge and exposes the presence of other CT concepts
such as Abstraction, Patterns, and Decomposition. The
model binds and contextualizes Data and Algorithms in both
computational devices and also Socio-Technical Processes. In
early stages students can evaluate their solution (and skill) by
‘executing’ their model within a manual simulation. The
model documents a learning trajectory while authentically
demonstrating iterative design through synergistic formative
assessment. Learners can receive feedback on their model,
including both the solution space and reflective feedback on

the CT concepts. Having learners create models provides
more authentic summative assessment than memorized
definitions or forcing non-programming track learners to code.
Using models provides a flexible approach to problem solving
that can be translated into different domains. CT learning can
be measured in projects unrelated to coding, by allowing the
specification of computational devices but never requiring
their actual design or implementation. Including Information
Gathering as a starting point, Modeling as a point of capture,
and defining Socio-Technical Processes to allow for non-
programming related context, simplifies CT concepts to allow
for more relevant assessment for all learners.

2) Pedagogy
Modeling provides a tangible artifact for assessment but

does little on its own to promote learning. In fact, learning a
modeling language may add a similar burden as learning a
programming language initially. While a modeling language
does not demand programming’s perfect syntax, if too free-
form models are difficult to interpret and becomes useless for
broad assessment. We propose the key to modeling pedagogy
is heavy scaffolding integrating CT concepts, yet allowing
learners to focus on learning each concept in turn.

Testing provides a low-demand introduction to CT
concepts. A successful test case allows learners to experience
a system as intended and develop and enactive understanding
of how the problem domain and computational device solve a
particular need. By introducing controlled failures in
predefined test cases, we focus student’s attention on specific
aspects of the problem space and CT concepts in turn, while
expanding enactive representations. Testing is followed by
reading premade models to build ikonic representations of the
computational system being tested and teaching modeling
syntax. By introducing change in stakeholder needs, the
learner can see changes in test cases and model maturing the
enactive and binding to ikonic representation the learner is
developing. When CT concepts are formally introduced, the
learner will already hold a ‘gut feeling’ how they behave in
the sample system, linking the ‘abstract CT concepts’ to a
‘concretized solution’. This approach maintains a low
demand for programming skill level, making CT plausible for
diverse subjects and learners. A test system could be a highly
configurable software product, or even be a human driven
process with instructions modified on paper. Testing allows
the focus to shift from programming skills to CT concepts
much earlier in the learning curve.

IV. FUTURE DIRECTIONS

This paper is the culmination of literature, initial research,
and anecdotal experience, but is very much a starting point. A
great deal of time and energy has gone into expanding the
body of research on CT, but we do no feel a definition has
emerged which facilitates consistent assessment or a learning
trajectory for learners from early grades through college level
programing courses. Which aspects of CT are pre-cursors to
CT-for-all versus mostly coding-centric? What level of
expertise do different learners need to achieve? This
framework does not answer all of these questions, but

hopefully provides a framework for how we can define
empirical research. Future questions could include:

 Can modeling demonstrate CT skills development?
 Can testing and debugging as an initial introduction

to CT improve the development of CT/coding skills?
 Does developing CT concepts and competencies

make learners more likely to participate in careers
that involve CT?

 What CT skills are most often employed in non-
programming domains and thus are most valuable to
teach to pre-college learners?

We feel the model presented in this paper can help to
inform future research by providing an operationalizing
several definition of CT beyond a set of related but unlinked
concepts. By continuing a conversation on what is CT,
hopefully research and assessment techniques can better
document development of CT in learners of all ages and
backgrounds.

ACKNOWLEDGMENT

This work is sparked from many discussions with our peers
at Purdue’s INSPIRE while working on our STEM+C project
(NSF Award Number 1543175) focusing on K-2 learners.
Having a multi-disciplinary team researching computational
thinking exemplifies the need and value of CT-for-all and the
worthiness of sharing these ideas to kids and adults from all
walks of life.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no.

3, pp. 33–35, 2006.

[2] J. M. Wing, “Computational Thinking,” in Microsoft Research Asia

Faculty Summit, 2012.

[3] Google, “Computational Thinking Concepts Guide.” [Online].

Available: https://docs.google.com/document/d/1i0wg-

BMG3TdwsShAyH_0Z1xpFnpVcMvpYJceHGWex_c/edit.

[4] S. Grover and R. Pea, “Computational Thinking in K-12: A Review

of the State of the Field,” Educ. Res., vol. 42, no. 1, pp. 38–43,

2013.

[5] K. Brennan and M. Resnick, “New frameworks for studying and

assessing the development of computational thinking,” Annu. Am.

Educ. Res. Assoc. Meet. Vancouver, BC, Canada, pp. 1–25, 2012.

[6] E. Jones, “The Trouble with Computational Thinking,” 2011.

[Online]. Available:

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Jone

sCTOnePager.pdf.

[7] “The Hidden Half,” Change the Equation, 2015. [Online].

Available: http://www.changetheequation.org/blog/hidden-half.

[Accessed: 01-Jan-2017].

[8] I. Lee, F. Martin, J. Denner, B. Coulter, W. Allan, J. Erickson, J.

Malyn-Smith, and L. Werner, “Computational thinking for youth in

practice,” Acm Inroads, vol. 2, no. 1, pp. 32–37, 2011.

[9] M. Israel, Q. M. Wherfel, S. Shehab, E. A. Ramos, A. Metzger, and

G. C. Reese, “Assessing collaborative computing: development of

the Collaborative-Computing Observation Instrument (C-COI),”

Comput. Sci. Educ., vol. 3408, no. December, pp. 1–26, 2016.

[10] D. Weintrop and U. Wilensky, “Using Commutative Assessments to

Compare Conceptual Understanding in Blocks-based and Text-

based Programs,” Int. Comput. Educ. Res. Conf., no. January, pp.

101–110, 2015.

[11] R. D. Pea, “Logo Programming and Problem Solving,” Conf. Pap.,

vol. 150, no. ir 014 383, pp. 1–10, 1983.

[12] N. Paumgarten, “Getting There: The science of driving directions.,”

The New Yorker, Apr-2006.

[13] J. S. Bruner, “On cognitive growth,” in Studies in cognitive growth:

A collaboration at the center for cognitive studies, Wiley and Sons,

1966, pp. 1–29.

[14] J. S. Bruner, “On cognitive growth II,” in Studies in cognitive

growth: A collaboration at the center for cognitive studies, Wiley

and Sons, 1966, pp. 30–67.

[15] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

[16] A. T. Cohen, “Data abstraction, data encapsulation and object-

oriented programming,” SIGPLAN Not., vol. 19, no. 1, pp. 31–35,

1984.

[17] L. Cardelli and P. Wegner, “On understanding types, data

abstraction, and polymorphism,” ACM Comput. Surv., vol. 17, no.

4, pp. 471–523, 1985.

[18] S. F. Martı, “Epistemic Groundings of Abstraction and Their

Cognitive Dimension *,” vol. 78, no. 3, pp. 490–511, 2016.

[19] J. Kramer, “Is abstraction the key to computing? Abstraction : What

is it? Why is it so important?,” Commun. ACM, vol. 50, no. 4, pp.

37–42, 2007.

[20] R. Sooriamurthi, “The essence of object orientation for CS0:

concepts without code,” J. Comput. Sci. Coll., pp. 67–68, 2010.

[21] A. Mühling, A. Ruf, and P. Hubwieser, “Design and First Results of

a Psychometric Test for Measuring Basic Programming Abilities,”

WiPSCE ’15, 2015.

[22] C. Saran, “Application testing costs set to rise to 40% of IT budget,”

Computer Weekly, 2015.

[23] “Facts & Figures.” [Online]. Available: http://www.istqb.org/about-

as/facts-figures.html.

[24] M. Roman-Gonzalez, J. C. Perez-Gonzalez, and C. Jimenez-

Fern??ndez, “Which cognitive abilities underlie computational

thinking? Criterion validity of the Computational Thinking Test,”

Comput. Human Behav., 2016.

[25] L. A. Gouws, K. Bradshaw, and P. Wentworth, “Computational

thinking in educational activities,” Proc. 18th ACM Conf. Innov.

Technol. Comput. Sci. Educ. - ITiCSE ’13, p. 10, 2013.

[26] E. Kazakoff and M. Bers, “Programming in a robotics context in the

kindergarten classroom: The impact on sequencing skills,” J. Educ.

Multimed. Hypermedia, vol. 21, pp. 371–391, 2012.

[27] J. S. Bruner, “Celebrating divergence: Piaget and Vygotsky,” Hum.

Dev., vol. 40, no. 2, pp. 63–73, 1997.

	Purdue University
	Purdue e-Pubs
	7-7-2017

	An Operationalized Model for Defining Computational Thinking
	Tony A. Lowe
	Sean B. Brophy

	Microsoft Word - CT.doc

