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Abstract— The Computational Thinking (CT) conceptual 

framework is entering its second decade of research yet still lacks 
a cohesive definition by which the field can coalesce.  The lack of 
clear definition makes assessment tool challenging to formulate, 
pedagogical efforts difficult to compare, and research difficult to 
synthesize.  This paper looks to operationalize differing 
definitions of CT enhancing the ability to teach then assess the 
presence of CT.  Expanding upon CT definitions, industry 
practices and processes, and educational theory, we link existing 
concepts and propose a new element to model an active definition 
of CT as a theoretical framework to guide future research.  Our 
model updates existing CT definition by formally including 
Modeling, introducing Socio-Technical processes, separating 
Information Gathering from Data Collection and adding 
emphasis to Testing as a vital CT concept.  We feel these 
elements and interconnections make CT is easier to describe and 
measure. 

Keywords—Abstraction, Computational Thinking, Modeling, 
Testing, Debugging 

I. INTRODUCTION  

This research paper synthesizes current literature on 
Computational Thinking (CT) to provide an operationalized 
model of CT concepts for use in assessment and pedagogy.  To 
promote CT we must have a clear definition of the key 
concepts and competences to include, and defined in such a 
way that we can assess its presence in learners.  When Wing 
initially presented the concept [1] she proposed a generalized 
definition which later she refined [2] and others expanded upon 
[3]–[5].  While literature agrees on several key ideas, gaps still 
exist in the scope of CT as well as dissatisfaction and how it is 
defined [6].  Wing proposes that CT is not just about learning 
to program, but is an activity conducted within many 
professions.  One study finds the number of people involved in 
managing computational solutions is double the number of CS 
professionals [7], not considering the countless people who 
define and work within processes supported by automation.  
The full potential of CT is unleashed when non-programmers 
understand the potential of computing to accelerate daily tasks 
and the pace of discovery.  Educators need clear definitions 
and ideally developmental trajectories in order to convey the 
complex ideas within CT to novice programmers and non-
programmers alike.  The inexactness of the current definitions 
makes measuring mastery much less designing effective 
instruction difficult.  

A. Issues in Assessing Computational Thinking 

The lack of standardized assessments of CT is a hurdle to 
understanding its presence and growth in learners [4], [8].  
While many proposals for assessing CT exist [5], [9], [10], 
they either focus on a very limited aspect of CT (e.g. 
sequencing) or are tied to activities for those on a pre-
programming track.  Computational thinking is more than 
programming, thus an assessment which measures growth in 
programming aspects of CT concepts alone has not historically 
transferred to other problem solving contexts [11].  If we only 
focus on learners on a programming track, we are unlikely to 
meet teach “CT for all” [1].  CT skills outside programming 
contexts demands we teach and assess CT concepts that 
transfers to domains outside programming.   

When assessment is rooted in programming it is difficult to 
‘see’ CT in other fields.  It is easier to come up with 
programming tasks demonstrating CT, but examples do exist 
that use computational devices other than computers.  The 
Jones Live-Map system was constructed in 1909 as a 
navigational device, using the car’s odometer to provide real-
time driving directions [12].  The Live-Map design includes an 
abstraction of the roads to be navigated on a route, collects 
input from gears, translates the input using rules and represents 
data using an arrow pointing at the next driving instruction to 
be undertaken.  The entirely mechanical system seems to meet 
the exact criteria for applying computational thinking, yet 
realized without any microprocessor or code. Do we have 
assessment tools that could measure the presence of CT within 
such a design? 

B. Challenges in Teaching Computational Thinking 

Computational Thinking is a complex domain with a large 
number of highly integrated concepts, as we will demonstrate 
later.  Each learner comes to CT with different prior 
experience in each CT concept. Some have experience with 
programming, while others are novices in code.  Some have 
experience finding patterns, testing, or design, while others 
may only have a heard of each.  Jerome Bruner models 
learning as the development of enactive representations (e.g. a 
mental model of how the world works), followed by ikonic 
representations (e.g. using rough pictures to communicate the 
concepts), and finally symbolic representations (e.g. in this 
case, formal use of modeling languages or source code) [13], 
[14].  Bruner’s model is salient to CT as computational 
devices recreate ‘the laws of Physics’ in the architecture of 
processors and operating systems.  Computer ‘physics’ are 



more flexible and yet more precise than the physical world.  
From infancy, we create an enactive understanding how, for 
instance, gravity behaves.  Schools later teach us how to 
generalize “stuff falls downwards” and model gravity using 
physics diagrams and math equations.  The symbolic formulas 
(mostly) back our understanding of how gravity behaves in the 
real world.  Computational systems do not typically display 
‘visible attributes’ such as gravity to develop enactive 
representations, in fact designers go to great lengths to make 
interactions with computers mimic the real world.  A 
computer can easily redefine defy the laws of gravity in 
simulation, but has a very hard time understanding basic 
language.  Computers can distort our enactive understanding 
of the physical world in simulation, but still are built upon an 
immutable set of rules which we must learn.  Humans can 
communicate very imprecisely to each other and still achieve 
acceptable results.  A software solution must be realized 
perfectly to obtain even simplest results from a computer.  
Most computational solutions require logical modeling of the 
rules to be realized where the brain often relies on intuition in 
decision making [15].  Thinking computationally may in fact 
be ‘unnatural’ unless specifically taught as many of our 
decision making processes lie outside traditional logical 
reasoning. 

Computational Thinking education often starts by 
presenting ikonic or even symbol representations without first 
teaching ‘how computation works’.  We present the rules of 
computers and describe high level concepts, sometimes before 
showing the problems to be solved.  The definition of CT also 
suffers from a ‘top down’ approach where, in our experience, 
even highly trained professionals struggle to differentiate the 
finer details of some esoteric concepts included within CT.  
Replacing concepts with a working model of CT may better 
serve learners and educators. 

C. Research Goal 

Our goal in this paper is to operationalize the CT concepts 
and competencies in a way that allows novices easier access   
to complex concepts and enables more direct assessment of 
learning.  CT concepts tend to be defined as static lists of skills 
with standalone definitions.  Instead we hope to show how 
concepts collaborate and interact as a related process.  We will 
build a concept map from the elements of CT using literature, 
data, and a dash of instinct from decades of experience 
building computational systems and teaching Computer 
Science (CS).  Our model documents how the consensus CT 
concepts naturally integrate, fills gaps where they do not, and 
draws out tacit elements which binds the concepts in a more 
visible manner.   

II. DEFINING COMPUTATIONAL THINKING 

A. Concepts and Competencies from Literature 

Literature defines and redefines CT, offering multiple lists 
of concepts and competencies which support and expand on 
each other.  We chose three primary sources to give a breadth 
of potential topics included in CT.  The first, which forms the 
foundation for the model presented in this paper, is a synthesis 

of work by the International Society for Technology in 
Education (ISTE), Computer Science Teacher Association 
(CSTA), and hosted by Google [3].  Their definition includes 
eleven key ideas which are supported by the other two 
sources, Grover and Pea[4] who collect their definition from a 
literature review and Brennan and Resnick[5] who look at CT 
from more of a pre-coding perspective.  We identified 25 
distinct concepts proposed from these three sources which can 
be condensed into 9 primary categories as follows. 

 Abstraction 
 Decomposition 
 Patterns (Recognition and Generalization) 
 Algorithms 
 Data (Collection, Analysis, and Representation) 
 Parallelism 
 Iteration 
 Simulation (and Automation) 
 Testing and Debugging 

 
Experts familiar with CT most likely resonate with this list 
and see the emerging CT definition, yet some of these 
concepts are elusive, particularly to novices learners or 
educators.  In this section we will describe the conventional 
and competing definitions in support of the model/framework 
to be presented later. 

1) Abstraction, Patterns, and Decomposition 
Abstraction might be the most important concept in CT 

based on is prevalence in literature, but it also may be the 
most inconstantly defined.  Within CS, abstraction has taken 
on two distinct uses.  The first is commonly used in CT as 
“identifying and extracting relevant information to define 
main idea(s)” [3, p. 1].   This use of abstraction is to hide 
away details which are not required to understand a greater 
concept as often relates to encapsulation [16].  The other 
common use of abstraction however relates to inheritance and 
uses the fewer details as an extension point for future 
functionality [17].  The first view of abstraction simply hides 
details not relevant to a particular viewpoint, where the second 
requires a larger understanding of the context and future 
needs.  They are both clearly ‘abstraction’ but require different 
levels nuance in instruction of expertise in action.   

The multiple definitions of abstraction can also be seen in 
other disciplines.  Philosophers debate abstraction centering 
on how abstractions are identified and used.  Hans Radder 
defined  extensibility, the ability to extend the abstraction to a 
new domain, as the distinguishing characteristic of an 
abstraction [18].  Extensibility aligns well with the Object-
Oriented representation of abstraction in inheritance.  Nancy 
Cartwright counters Radder by defining abstraction as a set of 
rules, behaviors, or characteristics, or as she states “A’s do X”.  
This basic rule covers the idea of simplification as abstraction, 
but asks for more than simply leaving out information.  It 
demands the abstraction to be defined in some way as having 
rules, not simply excluding details, and Cartwright does not 
stop there.  Abstraction become clear through contextualizing 
rules in a context demonstrating specific behavior, or “In I, 
A’s do X”.  A good abstraction should be more than leaving 



out details how ‘a thing’ is implemented, but should define 
rules that transcend the current implementation to the next.  
We can see this in Object-Orientation as objects are 
concretized implementations of a specific Class, which could 
be considered a contextualized abstraction.  The OO class is 
an abstraction which describes a concept to be modeled, where 
the object a single ‘avatar’ of that concept which does work.  
Philosophers’ views of abstraction provide a definition deeper 
yet present in modern programming paradigms, but not clearly 
present in CT.   

Identifying and using patterns is vital in defining 
abstractions.  Cohen says “data abstraction is that of defining a 
pattern for objects… [which] can inherit all of the attributes 
defined by the pattern” [16, p. 31].  An abstraction is more 
than hiding details of a full implementation, instead capturing 
key details which will later be represented in computational 
processes.  Simple abstractions can be formulated through 
observation:  What does each customer have in common when 
they make an order?  What steps are always taken in the 
manufacturing of the product?  This process is the CT 
definition of Pattern Recognition, where the application of 
trends is Pattern Generalization.  Patterns and abstractions are 
intertwined as abstractions are formed by recognizing then 
generalizing patterns. 

Abstraction and decomposition are opposite approaches to 
analysis in some sense.  Abstractions capture patterns from the 
real world reducing details to capture what is common.  
Decomposition “is breaking down data, processes, or 
problems into smaller, manageable parts” [3, p. 2].  
Decomposition looks at a big complex thing and breaks it up 
into simpler parts by capturing or imagining details of how it 
is or can be accomplished.  Abstraction starts with the 
problem in action and works bottom-up to reduce detail and 
find commonality, while decomposition starts with a high 
level problem and works top-down to capture details.  Both 
are vital, yet opposing approaches in software development 
history.  Early software design highly utilized decomposition, 
where big tasks (e.g. Build a report) are broken down into 
manageable steps (e.g. Gather data, perform calculations, 
format printout).  Object-Oriented Analysis initially focuses 
less on decomposition and more of capturing the actors and 
objects of the system, utilizing abstraction to capture the 
essential data and behaviors to group into Classes.  
Decomposition exists within the Object-Oriented approach, 
and abstraction helps form reusable, modular components in 
structured design making these concepts difficult to separate.  
Decomposition, abstraction and patterns clearly seem 
intertwined concepts for describing computational systems. 

2) Algorithms and Data 
Algorithms may be the most agreed to CT concept across 

literature: “Algorithms are tools for developing and expressing 
solutions to computational problems” [4, p. 39].  The term is 
so ubiquitous that it often goes undefined, but generally is 
thought to be a list of steps to complete a task.  Often unsaid is 
the inextricable tie to data and context within an algorithm.  In 
CS, algorithms are typically encased within a procedure, 
function, or method that allows for inputs and outputs but is 

tied into the context provided within the application 
architecture.  Non-computational algorithms examples are 
often given as fixed set of commands without context, for 
example, a recipe.  A recipe provides a list of the needed 
inputs (ingredients) and the functional steps to transform 
inputs into the desired output, but does not elaborate on the 
context for cooking.  The recipe still assumes the context of a 
kitchen with the required tools.  It demands shared 
understanding of predefined abstractions such as “simmer”, 
“beat”, or “fold”.  The concept of an algorithm is simple, but 
precisely describing a computational algorithm requires 
assumptions on known abstractions and the representations of 
data.   

The representation and manipulation of data is core in 
computational systems.  From a highly programming-centric 
view, Brennan and Resnick define data as “involv[ing] 
storing, retrieving, and updating values” [5, p. 6].  The 
framework from Google breaks “Data” into three components: 
to collect (or gather), analyze (find patterns), and represent (or 
visualize) [3].  These definitions are unclear however, in who 
exactly is performing each action?  Computer systems can 
gather data, use algorithms to interpret meaning and take 
further action entirely on their own.  Likewise the general 
public can gather data (from computers!) and make decisions 
and act.  Computational thinkers also gather data about a 
problem space, look for patterns, and define data collection 
systems and algorithms.  Part of the goal of CT is to recognize 
this symbiosis, yet learners need to understand the role of 
computer and people within any given system, and 
differentiate form the process of building computational 
systems. 

3) The rest of the elements 
The remaining concepts are important but in many ways 

subordinate to the ones already covered.  Parallel processing is 
an important realization of systems, but mainly a deployment 
approach.  Some solutions are better in parallel but few 
require it, making it optional in early learning of CT concepts.  
Simulation is an interesting concept, both by a computer but 
also when considered as part of design.  Simulation is 
“developing a model to imitate real-world processes” [3, p. 2].   
A simulation can be a role-play or other human-centered 
exercise to better understand tradeoffs and perform early 
testing when designing a system or software is an automated 
form of simulation.  Automation only appears as a concept in 
the CSTA/ISTE/Google CT framework, but is implied in the 
other definitions of simulation.  For non-programmers, 
knowing CT can be simplified as harnessing the power of 
simulation, with or without automation. 

Iteration, or iterative and incremental approach, is a 
difficult concept to integrate with other CT concepts 
depending on its definition.  It is not discussed in the Google 
hosted framework, but is in each of the other sources.  
Brennan and Resnick [5] talk about partially as an approach 
within algorithm design similar to parallelism.  More often it 
is defined as approach to the design of a computational (or 
any) system, where early trials inform later design choices.  In 
this context, all aspects of CT can include iterative 



approaches, yet it is difficult to capture any instance of this, 
unless you are documenting the development process. 

We feel Testing and Debugging are vital CT concept and 
skills excluded from the Google hosted framework.  Testing is 
the process of removing errors from a system and ensuring it 
fulfills the user needs.  When the system does not behave as 
expected, debugging follows to determine and remediate the 
failure.  Neither of these concepts is new or exclusive within 
CT, but may be taken to new extremes in computers and has 
the potential drive learning and assessment. 

B. Operationalizing the Computational Thinking Definition 

The major shortcoming in understanding CT is a clear 
vision of how the defining elements interrelate.  To bridge this 
gap we are creating a concept map (Figure 1) to define 
relationships between concepts and capture implicit 
relationships.  We have extended our concept map to include 
context clues ‘who’ utilizes a concept.  When the human 
silhouette appears, it implies that task is (or can be) completed 
by humans, where the computer icon indicates a task typically 
performed by a computational device.  By modeling the CT 
elements in a concept map, we can see both the inherit 
complexity of CT but also begin to break down into a learning 
progression to introduce CT to learners. 

The nine main concepts taken from the three frameworks 
described above are present in our operational model for CT 
with their core relationships.  The next sections will walk 

through the concept map, but as a few notes may be helpful to 
setup a few additions to the nine main elements.  We have 
expanded Patterns and Data using the sub-concepts presented 
in [3] to help demonstrate how the concepts are applied in 
conjunction.  Automation from [3] is included to distinguish 
between work by human and computational devices in end 
products.  Finally, we have added three concepts to capture 
implicit ideas which help bind stated concepts: Modeling, 
Socio-Technical Processes, and Information Gathering 
(distinguished from Data Collection).   

1) Abstraction, Patterns, and Decomposition 
Abstraction, Patterns, and Decomposition are perhaps the 

most ‘problematic’ aspects of defining CT, but literature does 
give hints to how they relate.  Considered independently, it is 
easy to become muddled in the many ways each concept is 
used.  In our operational model we hope to focus on a primary 
use and hint at alternatives.  The most common reference to 
CT concepts is in the design of a system not its execution1.  
Focusing on the left side of Figure 1, people gather 

                                                           
1 In is important to note, pattern recognition can certainly be 
the goal of an algorithm within automation.  Computers can 
look for faces in pictures, grammatical errors, or any sort of 
pattern as well.  We are not ignoring this aspect of pattern 
recognition or other CT concept in automation, but trying to 
distinguish the human design activities from the end 
user/automated system. 



information (elaborated on later), from which Pattern 
Recognition may emerge.   Those patterns can be generalized 
into common behaviors, or even to abstractions which must be 
concretized into patterns in order to be captured in design.  An 
Abstraction by itself is interesting, but most useful when 
formulated into an approach to solving problems, as occurs in 
Pattern Generalization.  CT literature implies that all of this 
information eventually lands in a Model.  The model 
documents Decomposition and the patterns generated.  
Abstractions appear as contextualized instances within the 
model.  The summation of the design portion of these three 
key concepts is captured in the model as will be discussed. 

2) Modeling, Data, and Algorithms 
The concept of modeling underlies many of the other CT 

concepts and regularly appears in the literature.  In a paper 
devoted to abstraction, Kramer states “Modeling is the most 
important engineering technique”[19, p. 41] .  Sooriamurthi 
states “Programming is a process of modeling a world” [20, p. 
2].  Wing refers to modeling [1] even in the initial work, yet it 
seems to be taken for granted as a CT skill.  Including 
modeling in the concept map binds many of the otherwise 
esoteric concepts.  The Model becomes the place where 
Abstraction, Decomposition and Patterns are documented.  It 
describes the connection between information and processing 
forging a bridge between Data and Algorithms.  The model 
captures the context in which data is stored and provided to 
algorithms.  Models become the artifact of design which can 
be assessed by experts or even simulated manually enabling 
early Testing and Debugging.  Modeling helps capture 
complexity in a manageable form.  Making modeling explicit 
as a core element of CT has the potential to accelerate both 
assessment and learning. 

The model moves intangible concepts to tangible, 
capturing mental representation in physical form.  Many 
assessments of CT are limited to concepts such as control 
structures [21] in order to manage the complexity.  While 
many CT assessments opt for multiple-choice driven analysis 
questions, models provide a place where assessment can occur 
within design tasks.  Instead of reciting a definition of 
abstraction, the learner’s model can be explored for presence 
of abstraction, particularly outside the ‘expected answer’.   
The model becomes a point of mentoring where the learner’s 
mental representation is presented and a mentor can provide 
feedback on representational accuracy, application of CT 
concepts, or even process and thinking approaches.  Rather 
than being told the ‘right answer’ to a multiple choice 
question, the learner can being to see the continuum of 
approaches within CT as well as their maturing conceptual 
understanding. 

Simulated execution of models provides experiential 
opportunities to ‘see’ how design choices impact systems. The 
model captures the intended behavior of the system or process 
being designed.  Models document the user’s story/system’s 
flow which can be evaluated even without needing to produce 
a real system.  Lee et al. state that “analysis is a reflective 
practice that refers to the validation of whether the 
abstractions made were correct.” [8, p. 33].  This suggests 

learning may be better when learners model their abstractions 
and evaluate validity through simulation, refining their model 
based on the findings.  This human form of simulation, 
entirely without computers, can support instruction through 
finding and fixing problems in the model, the very process of 
iterative and incremental development.  As their model 
matures, learners witness iteration in action by seeing how 
their documented model changes over time.  Modeling ‘cleans 
up’ the links between CT concepts as well as providing an 
artifact to capture and assess a learner’s growing knowledge 
of CT. 

3) Socio-Technical Processes  
Nearly every computational system is a part of a larger 

human-centered process.   Even satellite systems charged with 
exploring remote areas of our solar system, designed to 
function with no direct human interaction, still receive 
guidance and report data back to people.  Each concept within 
CT frameworks hint at this larger purpose, but adding how 
people interact with computational systems feels vital.  
Complex systems are decomposed into tasks, some handled by 
humans and others automated in computational devices.  
When we model systems, they are capturing the boundaries 
between computational components and people.  Designers 
use Information Gathering to inform the model, but Socio-
Technical Processes also need data.  Data Collection can be 
completed by people or computers, analyzed and eventually 
reported back as a future step in the process (discussed further 
in the next section).  Capturing the interaction between 
machine computation and human cognition provides context 
to the greater purpose of CT beyond making computer 
programs.   

Socio-technical processes are likely much easier to model 
and comprehend.  It is impossible to introduce novices to all 
the aspects of a computer program, but much more reasonable 
to walk through a human-centered process.  It is easier to 
develop an enactive representation [13] CT in action by 
demonstrating an abstraction or module (e.g. using a 
spreadsheet to enter data and see a result) without requiring 
the management or manipulation code.  Lee et al. recommend 
introducing students using a “use-modify-create” approach [8] 
where learners first act as users, then modify an existing 
program, before taking on full creation.   For domains where 
programming is not the end goal, simulation of a socio-
technical process could develop a similar enactive 
understanding of CT concepts and the value of non-
programmers in CT activities.  For all learners it is important 
to remember that computational systems stem from human 
processes, and benefit from the input of many types of people. 

4) Data and Information Gathering 
The ultimate purpose of any computational system is to 

gather, process and present data, yet the use of data is a small 
portion of and in many ways vaguely defined in CT.  Grover 
and Pea [4] almost casually include data as a concept while 
Brennan and Resnick [5] define it more as variables in 
programs than a key aspect of computation.  The Google 
hosted framework [3] takes the time to break the use of data 
into three key stages, but each definitions does not provide 



clarity on the role of people versus devices.  Data Collection 
is defined as “gathering information” [3, p. 1], which could 
relate both to the human process of gaining understanding of 
the system, or the task (human or computer) of gathering input 
from sources for a process, or both.  This ambiguity likely 
leads new teachers and learners into misconceptions about CT.  
To that end, we have separated Information Gathering from 
Data Collection as a unique CT concept.  

Modeling

Data Collectioninforms

shared via

leads to

provides context for

Algorithms
drives

Data

Functional

Data Analysis

Data 
Representation

Socio-Technical 
Processes drives

defines

utilizes

 
Figure 1 Breakout of CT Data concepts 

 
Gathering information is a human process to better 

understand the role of a computational system.  Beyond CT, 
information gathering is a key aspect of any design process.  
Any STEM or design education likely includes instructions 
how to seek context and stakeholder needs.  Conjoining the 
traditional information gathering process with the specialized 
data input solutions of CT seems to add confusion rather than 
clarity.  Designers gather information to design what data the 
computational system needs to collect from the real world?  
Bundling Data Collection and Information Gathering into one 
concept, creates a confusing circular dependency!  By 
separating these concepts, Information Gathering feeds into 
the human processes of design and modeling, which then in 
turn defines the Data Collection as a piece of the end design.  
This seems more transparent than having Data Collection (the 
problem scoping facet) informing Data Collection (the inputs 
to the solution facet) and forcing learners and novice 
educators to tease out the differences.   

The three CSTA/ISTE/Google Data phases show the 
transformation of data within a CT system.  Collected data is 
only the starting point, as broken out from the full concept 
map in Figure 1, provided to Data Analysis processes 
informed by the Algorithms derived from the Functional and 
Data Models.  The results of Data Analysis are shared in a 

final representation of data used to communicate knowledge 
back to people participating in the larger Socio-Technical 
Process.   The Socio-Technical process is codified in the 
model, and drives Data Collection whether by device or 
human intervention, as full analysis and representation of data 
could also be conducted by people, processors or both.   

In our operationalized model, Data Analysis is a separate 
idea from the design activities which would include 
Abstraction, Patterns and Decomposition.  Data Analysis 
instead is performed by Algorithms defined within the Model 
that may have an algorithmic goal of finding patterns in real-
world data, but is bound to the context of solving the problem 
defined within the Socio-Technical Process, rather than the 
open ended goal of defining a computational system. 

Finally, Data Representations are vital parts of 
computational systems to report information in a way that is 
valuable to users.  How information is presented can have a 
large impact on how processes function.  Many learners may 
never develop the skills to create data representations, but can 
at least witness power of custom representations and their role 
in serving the larger process being served by automated 
solutions. 

5) Empahsizing Testing 
Testing is a vital part of delivering systems of any nature.  

In software, testing’s importance can be seen through 
numbers: it often exceeds a third of the budget of a software 
project [22] and one organization alone has certified more 
than a half million testers [23].  People who participate in 
testing compose a large group of non-programmers who have 
a strong interest in understanding CT.  Testing and Debugging 
appeared in two of the three CT frameworks, being left out of 
the framework developed primarily by educators [3].  This 
could be in response to not being “code centric” but seems a 
massive oversight in scoping CT. 

Testing affords an entry point to CT concepts requiring 
little prior experience.  Starting with testing follows the Lee et 
al.’s pattern of “use-modify-create” [8] , staring with ‘using’ a 
system.  Testing requires learners to form an expectation how 
the system will respond given a set of inputs, making it an 
active evaluation of the system rather than passively following 
instructions.  Learning starts by evaluating the boundaries of 
the ‘problem’ and anticipating how the computational system 
will behave.  For instance, a very popular early computational 
thinking challenge is navigating a maze [21], [24]–[26].  This 
task emphasizes the sequencing of steps within algorithms, but 
also demands strong spatial reasoning skills to complete.  
Young people often struggle with “which way to turn” more 
than stringing together a set of commands.  By focusing first 
on ‘testing’ a planned route, we can first teach the task of 
navigating the maze before taking on CT concept of forming 
an algorithm.  A test case can ‘break’, showing the route to be 
‘broken’ either due to a bad sequence (algorithm problem) or a 
wrongly reasoned turned (spatial reasoning issue).  Learners 
can be tasked with testing activities to understand a problem 
space (how do I  navigate a maze?), discovering how their 
computational device behaves at an enactive level (what 
happens when I press this turn button?), before taking the next 



step of introducing debugging to analyze algorithm for 
problems (does this route work?).  By testing first we can 
learn the rules of the game (the left and right buttons turn us 
90⁰ but do not move us forward!) separated from the tricky 
task of developing algorithms or other CT concepts. 

The combination of testing and debugging can accelerate 
student learning.  Jerome Bruner suggests learning improves 
by “shielding a learner from distraction, by forefronting 
crucial features of a problem, by sequencing the steps to 
understanding, by promoting negotiation, or by some other 
form of 'scaffolding' the task at hand” [27, p. 69].  Student 
learning is slowed when too much is going on and they must 
stop to detangle complexity.  Testing provides novices with a 
focused engagement with computational systems with 
scaffolding to remove distractions.  The learner does not need 
to modify the system itself yet, but simply modify the inputs 
to scientifically test behavioral change.  The learner’s mental 
representation of the problem space and computational 
solution can be gradually updated with evidence-based 
experience rather than abstract rules of ‘how concepts should 
work’.   

For instance, a young learner could start with a set of 
incorrect instructions to navigate a robot through the maze.  
The ‘failure’ is caused by a “right turn” when a left turn is 
needed; representing a common misconception in spatial 
reasoning.  Since the student did not create the algorithm, they 
are less invested in proving their initial guess is correct, and 
can instead focus on what is actually occurring rather than 
what they expect should happen.  Now when the student 
‘debugs’ the instructions they start by using then continue to 
modifying the ‘algorithm’ either recognizing the error or 
uncovering and correcting their misconception (e.g. ‘left’ and 
‘right’ are relative to the robot’s new position).  The learner’s 
only responsibility is to uncover the problem step, rather than 
solving the entire problem.  This scaffolding approach allows 
the learner to focus on first the problem space (spatially 
navigating a maze) before the computational element 
(designing and ‘coding’ an algorithm).  Testing and debugging 
provide a highly authentic activity easily introduced early in 
the learning process to build enactive representations upon 
which to build. 

III. APPLYING THE CT MODEL 

1) Assessment 
Assessment of CT should start with the learner’s ability to 

translate Information Gathering skills into Modeling.  A 
model provides the most tangible representation of growing 
knowledge and exposes the presence of other CT concepts 
such as Abstraction, Patterns, and Decomposition.   The 
model binds and contextualizes Data and Algorithms in both 
computational devices and also Socio-Technical Processes.  In 
early stages students can evaluate their solution (and skill) by 
‘executing’ their model within a manual simulation.  The 
model documents a learning trajectory while authentically 
demonstrating iterative design through synergistic formative 
assessment.  Learners can receive feedback on their model, 
including both the solution space and reflective feedback on 

the CT concepts.  Having learners create models provides 
more authentic summative assessment than memorized 
definitions or forcing non-programming track learners to code.  
Using models provides a flexible approach to problem solving 
that can be translated into different domains.  CT learning can 
be measured in projects unrelated to coding, by allowing the 
specification of computational devices but never requiring 
their actual design or implementation.  Including Information 
Gathering as a starting point, Modeling as a point of capture, 
and defining Socio-Technical Processes to allow for non-
programming related context, simplifies CT concepts to allow 
for more relevant assessment for all learners. 

2) Pedagogy 
Modeling provides a tangible artifact for assessment but 

does little on its own to promote learning.  In fact, learning a 
modeling language may add a similar burden as learning a 
programming language initially.  While a modeling language 
does not demand programming’s perfect syntax, if too free-
form models are difficult to interpret and becomes useless for 
broad assessment.  We propose the key to modeling pedagogy 
is heavy scaffolding integrating CT concepts, yet allowing 
learners to focus on learning each concept in turn. 

Testing provides a low-demand introduction to CT 
concepts.  A successful test case allows learners to experience 
a system as intended and develop and enactive understanding 
of how the problem domain and computational device solve a 
particular need.  By introducing controlled failures in 
predefined test cases, we focus student’s attention on specific 
aspects of the problem space and CT concepts in turn, while 
expanding enactive representations.  Testing is followed by 
reading premade models to build ikonic representations of the 
computational system being tested and teaching modeling 
syntax.  By introducing change in stakeholder needs, the 
learner can see changes in test cases and model maturing the 
enactive and binding to ikonic representation the learner is 
developing.  When CT concepts are formally introduced, the 
learner will already hold a ‘gut feeling’ how they behave in 
the sample system, linking the ‘abstract CT concepts’ to a 
‘concretized solution’.  This approach maintains a low 
demand for programming skill level, making CT plausible for 
diverse subjects and learners.  A test system could be a highly 
configurable software product, or even be a human driven 
process with instructions modified on paper.  Testing allows 
the focus to shift from programming skills to CT concepts 
much earlier in the learning curve. 

IV. FUTURE DIRECTIONS 

This paper is the culmination of literature, initial research, 
and anecdotal experience, but is very much a starting point.  A 
great deal of time and energy has gone into expanding the 
body of research on CT, but we do no feel a definition has 
emerged which facilitates consistent assessment or a learning 
trajectory for learners from early grades through college level 
programing courses.  Which aspects of CT are pre-cursors to 
CT-for-all versus mostly coding-centric?  What level of 
expertise do different learners need to achieve?  This 
framework does not answer all of these questions, but 



hopefully provides a framework for how we can define 
empirical research.  Future questions could include: 

 Can modeling demonstrate CT skills development? 
 Can testing and debugging as an initial introduction 

to CT improve the development of CT/coding skills? 
 Does developing CT concepts and competencies 

make learners more likely to participate in careers 
that involve CT? 

 What CT skills are most often employed in non-
programming domains and thus are most valuable to 
teach to pre-college learners? 

We feel the model presented in this paper can help to 
inform future research by providing an operationalizing 
several definition of CT beyond a set of related but unlinked 
concepts.  By continuing a conversation on what is CT, 
hopefully research and assessment techniques can better 
document development of CT in learners of all ages and 
backgrounds. 

ACKNOWLEDGMENT  

This work is sparked from many discussions with our peers 
at Purdue’s INSPIRE while working on our STEM+C project 
(NSF Award Number 1543175) focusing on K-2 learners.  
Having a multi-disciplinary team researching computational 
thinking exemplifies the need and value of CT-for-all and the 
worthiness of sharing these ideas to kids and adults from all 
walks of life. 

REFERENCES 

[1] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 

3, pp. 33–35, 2006. 

[2] J. M. Wing, “Computational Thinking,” in Microsoft Research Asia 

Faculty Summit, 2012. 

[3] Google, “Computational Thinking Concepts Guide.” [Online]. 

Available: https://docs.google.com/document/d/1i0wg-

BMG3TdwsShAyH_0Z1xpFnpVcMvpYJceHGWex_c/edit. 

[4] S. Grover and R. Pea, “Computational Thinking in K-12: A Review 

of the State of the Field,” Educ. Res., vol. 42, no. 1, pp. 38–43, 

2013. 

[5] K. Brennan and M. Resnick, “New frameworks for studying and 

assessing the development of computational thinking,” Annu. Am. 

Educ. Res. Assoc. Meet. Vancouver, BC, Canada, pp. 1–25, 2012. 

[6] E. Jones, “The Trouble with Computational Thinking,” 2011. 

[Online]. Available: 

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Jone

sCTOnePager.pdf. 

[7] “The Hidden Half,” Change the Equation, 2015. [Online]. 

Available: http://www.changetheequation.org/blog/hidden-half. 

[Accessed: 01-Jan-2017]. 

[8] I. Lee, F. Martin, J. Denner, B. Coulter, W. Allan, J. Erickson, J. 

Malyn-Smith, and L. Werner, “Computational thinking for youth in 

practice,” Acm Inroads, vol. 2, no. 1, pp. 32–37, 2011. 

[9] M. Israel, Q. M. Wherfel, S. Shehab, E. A. Ramos, A. Metzger, and 

G. C. Reese, “Assessing collaborative computing: development of 

the Collaborative-Computing Observation Instrument (C-COI),” 

Comput. Sci. Educ., vol. 3408, no. December, pp. 1–26, 2016. 

[10] D. Weintrop and U. Wilensky, “Using Commutative Assessments to 

Compare Conceptual Understanding in Blocks-based and Text-

based Programs,” Int. Comput. Educ. Res. Conf., no. January, pp. 

101–110, 2015. 

[11] R. D. Pea, “Logo Programming and Problem Solving,” Conf. Pap., 

vol. 150, no. ir 014 383, pp. 1–10, 1983. 

[12] N. Paumgarten, “Getting There: The science of driving directions.,” 

The New Yorker, Apr-2006. 

[13] J. S. Bruner, “On cognitive growth,” in Studies in cognitive growth: 

A collaboration at the center for cognitive studies, Wiley and Sons, 

1966, pp. 1–29. 

[14] J. S. Bruner, “On cognitive growth II,” in Studies in cognitive 

growth: A collaboration at the center for cognitive studies, Wiley 

and Sons, 1966, pp. 30–67. 

[15] D. Kahneman, Thinking, fast and slow. Macmillan, 2011. 

[16] A. T. Cohen, “Data abstraction, data encapsulation and object-

oriented programming,” SIGPLAN Not., vol. 19, no. 1, pp. 31–35, 

1984. 

[17] L. Cardelli and P. Wegner, “On understanding types, data 

abstraction, and polymorphism,” ACM Comput. Surv., vol. 17, no. 

4, pp. 471–523, 1985. 

[18] S. F. Martı, “Epistemic Groundings of Abstraction and Their 

Cognitive Dimension *,” vol. 78, no. 3, pp. 490–511, 2016. 

[19] J. Kramer, “Is abstraction the key to computing? Abstraction : What 

is it? Why is it so important?,” Commun. ACM, vol. 50, no. 4, pp. 

37–42, 2007. 

[20] R. Sooriamurthi, “The essence of object orientation for CS0: 

concepts without code,” J. Comput. Sci. Coll., pp. 67–68, 2010. 

[21] A. Mühling, A. Ruf, and P. Hubwieser, “Design and First Results of 

a Psychometric Test for Measuring Basic Programming Abilities,” 

WiPSCE ’15, 2015. 

[22] C. Saran, “Application testing costs set to rise to 40% of IT budget,” 

Computer Weekly, 2015. 

[23] “Facts & Figures.” [Online]. Available: http://www.istqb.org/about-

as/facts-figures.html. 

[24] M. Roman-Gonzalez, J. C. Perez-Gonzalez, and C. Jimenez-

Fern??ndez, “Which cognitive abilities underlie computational 

thinking? Criterion validity of the Computational Thinking Test,” 

Comput. Human Behav., 2016. 

[25] L. A. Gouws, K. Bradshaw, and P. Wentworth, “Computational 

thinking in educational activities,” Proc. 18th ACM Conf. Innov. 

Technol. Comput. Sci. Educ. - ITiCSE ’13, p. 10, 2013. 

[26] E. Kazakoff and M. Bers, “Programming in a robotics context in the 

kindergarten classroom: The impact on sequencing skills,” J. Educ. 

Multimed. Hypermedia, vol. 21, pp. 371–391, 2012. 

[27] J. S. Bruner, “Celebrating divergence: Piaget and Vygotsky,” Hum. 

Dev., vol. 40, no. 2, pp. 63–73, 1997. 

 


	Purdue University
	Purdue e-Pubs
	7-7-2017

	An Operationalized Model for Defining Computational Thinking
	Tony A. Lowe
	Sean B. Brophy

	Microsoft Word - CT.doc

