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EXECUTIVE SUMMARY

EFFECTS OF BRIDGE SURFACE
AND PAVEMENT MAINTENANCE

ACTIVITIES ON ASSET RATING

Explicit statements of the efficacy of pavement and bridge treat-

ments, in terms of the asset condition ratings and other performance

indicators, is generally essential to asset performance monitoring

and feedback and for evaluating and comparing alternative treat-

ments. Also, in asset performance modeling and prediction, such

effectiveness values are important because asset managers use them

to determine the expected incremental change of asset condition

resulting from a future application of a specific maintenance treat-

ment. That way, the agency can update its asset performance curves

in software simulation to reflect maintenance application at any

future year and to identify the most cost-effective treatments.

In response to these needs, the Indiana Department of Trans-

portation (INDOT) commissioned this study to synthesize the

literature on how standard asset maintenance treatments have

affected asset surface ratings; use INDOT asset performance data

to quantify the effectiveness of such treatments in order to identify

the factors that influence such effectiveness; and use cost and

performance data to estimate the cost, effectiveness, and cost-

effectiveness of these treatments. This report addresses these

objectives.

The report presents a set of averages or models that represent the

impacts (performance jump, post-treatment performance-vs.-age

relationship, and cost) of each standard treatment type typically

applied to INDOT’s pavement and bridge assets. The performance

impacts are expressed in terms of the requisite performance

indicators. The performance jump models showed that the asset’s

functional class and pre-treatment condition and the treatment

type are major significant predictors of the performance jump

and post-treatment performance loss. The first deliverable from

this project is the average (mean) impact for each treatment type

under investigation. The second deliverable is the overall statistical

description of the impact of each treatment, namely the minimum

and maximum impact and the range and standard deviation of

impact, as well as a statistical model that predicts the impact as

a function of asset and treatment attributes. The third deliverable is

a set of charts that describe the sensitivity of the treatment impact

to factors related to the asset or the treatment. The report also

presents the development of cost models for each of the pavement

and bridge treatments and shows how these were used to assess the

long-term cost-effectiveness of the treatments.
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1. INTRODUCTION

1.1 Study Background

From a general perspective, the Indiana Department
of Transportation (INDOT)’s pavement and bridge
managers continue to invest heavily in identifying and
implementing cost-effective maintenance practices through
the use of reliable and comprehensive Pavement Manage-
ment System (PMS) and Bridge Management System
(BMS). These Asset Management (AM) tools continue
to help INDOT’s pavement and bridge managers make
more objective and defensible investment decisions
towards keeping their assets in a state of good repair.

INDOT’s dTIMS asset management packages—PMS
and BMS—each involve three main components—data
management, analysis and modeling, and program deve-
lopment. The Data Management component involves
data collection, data storage and data integration. The
PMS or BMS databases contain pavement and bridge
inventory data, condition and history, traffic volumes
and loads, climatic data, and contract and cost data.
The availability of quality input data for these packages
impacts the agency’s ability to identify investment needs
and evaluate competing investments. The Analysis and
Modeling component, which uses data from the first
component, involves measuring and modeling of the
asset condition, making performance predictions, deter-
mining the effectiveness and costs of the maintenance,
rehabilitation, and reconstruction (MR&R) treatments,
evaluation of asset condition or remaining life before
and after the MR&R treatment, and budgeting and
programming. The Program Development compo-
nent integrates the data and analysis components and
uses decision making tools to identify/select assets
that deserve some MR&R treatments, and prioritiz-
ing these candidate projects within available budget-
ary constraints.

This report addresses a part of the second compo-
nent of asset management systems, specifically, the
efficacy of asset maintenance treatments. Within this
component, in the specific context of models on asset
performance that the system user needs to input, there
are two kinds of models: (a) asset performance-vs.-age
models that are used to track the asset condition trends
over time, correctly identifying their current condition,
and forecasting their future condition. (b) treatment
effectiveness models that are used to estimate the extent
to which the asset performance ‘‘jumps’’ (or, resets) in
response to a treatment, the extent to which the rate of
deterioration is reduced, or the extent to which the asset
life is increased due to the treatment.

1.2 Problem Statement

Explicit statements of the efficacy of INDOT’s asset
treatments, in terms of the asset condition ratings,
deflection units and other performance indicators, is
generally essential to effective performance monitoring
and feedback (Flora, 2009) and for evaluating and
comparing alternative interventions (Lavrenz, Murillo

Hoyos, & Labi, 2015). These statements help answer
questions such as: By how much is a bridge deck con-
dition rating enhanced by deck overlay? How many
additional years of life can be obtained by thin HMA
overlay? Therefore, from a strategic perspective of asset
management, it is useful to assess the effectiveness and
cost-effectiveness of individual maintenance treatments
as reliably as possible.

In asset performance modeling and predictions, reli-
able assessment of treatment effectiveness is impor-
tant because asset managers use these effectiveness
models to (i) predict the expected change in the asset
condition resulting from a future application of a
specific maintenance treatment. That way, the agency’s
asset performance curves can be updated in the software
simulation to account for maintenance application at
future years, and (ii) make decisions to select the best
(most cost-effective) treatment at any given time.

These applications are consistent with one of INDOT’s
2015–2016 goals, which is to ‘‘Take Care of What We
Have.’’ Under this goal, two of the four objectives are
to ‘‘… maintain steady improvement in pavement and
bridge quality’’ and to ‘‘… link strategy and operations
to results.’’ Also, two of INDOT’s Key Performance
Indicators (KPI) directly address the condition of
highway assets: KPI#1: State-controlled roads in fair
or better condition and KPI #2: State-owned and state-
maintained bridges available for use as intended.
Motivated in part by these existing and emerging targets
related to highway asset performance measurement and
evaluation in Indiana, INDOT’s highway bridge and
pavement managers expressed a need to quantify the
impacts of various activities (or treatments) associated
with the maintenance of their assets, in terms of the
requisite asset ratings.

In response to this need, the present study was com-
missioned by INDOT, to carry out a synthesis of the
literature on how asset maintenance actions have affec-
ted asset surface ratings, to use INDOT asset performance
data to quantify the effectiveness of such treatments and
to identify the factors that influence such effectiveness,
and to use cost and performance data to estimate their
cost-effectiveness.

1.3 Study Objectives and Scope

This study provides and demonstrates a methodol-
ogy to quantify the overall impact of maintenance treat-
ments on highway asset ratings. The first objective is to
generate requisite reset values that INDOT’s asset man-
ager can use in the agency’s PMS and BMS software
packages (dTIMS-pavements and dTIMS-bridges, res-
pectively). These packages simulate sudden jumps in
asset condition (due to prospective future treatments) and
the gradual deterioration thereafter. As such, the pack-
ages require the user to input the new value of asset
condition just after a treatment is applied. The second
objective is to provide information that will enable
INDOT’s asset manager to carry out ex poste evalua-
tion of the effectiveness of past treatments or ex ante

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/19 1



evaluation of proposed or prospective future treatments
in terms of the performance jump or treatment life. The
third objective is to use this information (coupled with
cost data) to assess the cost-effectiveness of INDOT’s
standard maintenance treatments.

The study investigates two asset types (pavement
and bridge surfaces) and considers standard treat-
ments that INDOT typically applies to these assets.
The initial list of treatments intended for study
included crack sealing, chip sealing, patching, HMA
overlays (for pavements); and deck patching, latex
modified concrete overlay, and polymeric overlay
(for bridges). Due to data limitations, only a subset
of these treatments were investigated. In addition, the
scope covers state highways only (excludes assets
owned by local jurisdictions).

With regard to the performance indicators for the
performance jump measurement, it was initially desired
to use a wide range of indicators. However, for pave-
ments and bridges, data on IRI only and NBI Rating,
respectively, were available to the researchers. Never-
theless, the study framework is generic and can there-
fore be applied easily to any performance indicator.

1.4 Organization of this Report

This report starts with the background and problem
statement for this research, followed by a description of
the objectives and study approach. Chapter 2 presents
the asset families and typical maintenance types. Chapter
3 reviews the state of the practice and the state-of-the-art
methodologies for assessing the effect of asset treatments.
The chapter also provides some examples of published
effectiveness value for the various bridge and pavement
surface treatments. Chapter 4 presents the overall metho-
dology adopted in this study. Chapters 5 and 6 present
the results of performance jump values, the sensitivity of
the model outcomes, and cost-effectiveness analysis asso-
ciated with the pavement and bridge treatments. These
results were obtained using the methodology documented
in Chapter 4. In Chapter 7, the report summarizes the
study effort, makes recommendations, and highlights the
benefits of the study results to the practice of pavement
and bridge management.

2. ASSET FAMILIES AND TYPICAL
MAINTENANCE TYPES

2.1 Pavement Families

The specific treatments for pavement maintenance
and rehabilitation vary across the different pavement
types. For this reason, it is useful to group pavement
assets into families to limit not only the variation of the
influential factors of treatment effectiveness but also
any statistical interactions or correlations between any
family-factor and other factors. Based on the topmost
pavement surface material, the pavements in Indiana
are categorized as concrete (rigid) and asphalt (flexible)
pavements, with the latter dominating the former by far

(Figure 2.1). Asphaltic pavements include composite
pavements that have a flexible top layer.

It can be expected that for a given treatment type and
pre-treatment pavement condition, the effectiveness
of a maintenance treatment will differ across the fun-
ctional classes. This may be because highway agencies
design and construct Interstates to higher standards
compared to non-NHS roads, and therefore the recu-
perative effect of maintenance treatments to these
pavement and bridge surface material types and
thicknesses can be expected to differ. In Indiana,
the highest class of highways is the National Highway
System, which was designated by legislation in 1995.
This is a collection of roads based on their impor-
tance to the national economy and defense, and
comprises a few state roads and US Roads and all
Interstates. Higher class roads attract long-distance
traffic with heavy-loads due to their high mobility,
limited access, and superior pavement and geometric
standards and quality. In this study, the road sections
were placed in the following road classes: Interstates
(INT), NHS Non-Interstate (NIN), and Non-NHS
(NNN).

2.2 Characterizing the Pavement Surface Condition

A performance indicator represents, in quantitative
or qualitative terms, the extent to which a distress mani-
fests on the pavement surface. Generally, pavement
performance can be categorized into surface roughness,
surface distress, and structural condition (Haas, Hudson, &
Zaniewski, 1994).

2.2.1 Pavement Surface Roughness

Roughness is a primary criterion by which road users
judge the quality of a pavement and this is one of the
main reasons why it serves as a basis for pavement
investment decision-making at several agencies. Rough-
ness is usually reported using the International Rough-
ness Index (IRI) and is directly related to the vehicle
operation cost (Archondo-Callao & Faiz, 1994; Chesher
& Harrison, 1987).

Figure 2.1 Distribution of major pavement surface types,
Indiana State Highway Network (FHWA, 2016).
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2.2.2 Pavement Surface Distress/Defects

Surface distress can be defined as any kind of damage
observed on the pavement surface. Distress modes can
be categorized into three groups (Paterson, 1987):

1. Fracture. This category contains all types of cracking

(in flexible and rigid pavements), and spalling caused by
excessive loading thermal changes, fatigue, slippage or con-

traction, moisture damage, and distortion. This category

contains all forms of deformation, resulting from such

things as rutting, corrugation, and shoving. For rigid

pavements, the rut-shaped distortion is referred to as
Wheel Path Wear (WPW).

2. Disintegration. This category contains raveling, stripping,

and spalling, caused by aggregate degradation, loss of bond-

ing, traffic abrasion, chemical reactivity, binder aging, or

poor compaction.

3. Surface distress. This, to some extent, is related to surface

roughness (more frequent and severe cracks, distortion

and disintegration will, in the long term, lead to a rougher

pavement) as well as structural integrity. Surface distress
may be an indication of current or impending problems

with the pavement structure). Each of these surface

distresses can constitute a performance indicator for

evaluating pavement condition. For example, rutting, as

a performance indicator, has been used to evaluate pave-
ment condition in several studies (Hall, Correa, &

Simpson, 2002; Irfan, Khurshid, & Labi, 2009). How-

ever, given that a defective pavement typically exhibits

multiple distresses at the same time, it may not be prudent

to use only one distress type for purposes of evaluating the
overall pavement condition.

2.2.3 Combined Indicators of Overall Pavement
Performance

Pavement Condition Rating (PCR) is another com-
monly-used aggregate performance indicator for surface
distress, and identifies pavement distress in terms of
extent and severity. The PCR evaluation scale ranges
from 100 (very good condition) to 0 (very poor con-
dition). A number of highway agencies have estab-
lished a distress index for each individual distress
type, such as transverse crack index, while others
have an index representing various combinations of
distress type, extent and severity.

The calculation of combined indices, similar to that for
PCR, requires the establishment of weights or priority
factors among the various distress types. Pavements can
be assigned a score that represents their overall condition
based on measurements of roughness, surface distress,
skid resistance and deflection. This quantifies a pave-
ment’s overall performance and can be used by pavement
managers to identify optimal treatments and schedules,
and to prioritize projects. The first combined-index pave-
ment condition rating system, Present Serviceability
Rating (PSR), was based on the AASHO Road Test.
Various correlations have been developed between PSR
and IRI (Al-Omari & Darter, 1994; Gulen, Woods,
Weaver, & Anderson, 1994; Paterson, 1986).

2.3 Pavement Treatment Types

The pavement maintenance treatments typically imple-
mented in Indiana are summarized in the Table 2.1.

2.3.1 Maintenance Treatments for Flexible Pavements

Figure 2.2 presents photos of some standard main-
tenance treatments for flexible pavements. A majority of
the information in this section is taken from INDOT’s
design manual (INDOT, 2013a).

HMA overlay. As a preventive maintenance or main-
tenance treatment, HMA overlay has gained wide
acceptance in the United States and abroad. Hot Mix
Asphalt Overlay may be carried out with or without
profile milling or as an inlay (replacing it with a new
asphalt surface to the original surface elevation). Dep-
ending on the thickness, HMA overlay can be cate-
gorized as HMA Overlay PM, HMA Overlay Minor
Structural (or Functional), and HMA Overlay Major
Structural (or Structural). HMA overlays generally
contribute very little to pavement structural capacity
(Roberts et al., 1996). These surface treatments (up to 2
in thickness) are often intended to resolve problems
associated with the pavement surface roughness, rut-
ting, and surface cracking, improve ride quality, correct
minor surface defects, improve safety characteristics
such as skid resistance and drainage, enhance appe-
arance and reduce road-tire noise.

TABLE 2.1
Pavement Maintenance Treatments (INDOT, 2013a)

Asphalt (Flexible) Surfaces Portland Cement Concrete (Rigid) Surfaces

Crack Sealing/Routing and Filling Crack Sealing/Filling

Fog Seal PCCP Joint Resealing

Scrub Seal (Sand Seal) Load Transfer Retrofit

Seal Coat (Chip Seal) Cross-stitching

Flush Seal PCCP Profiling (Diamond Grinding) Partial

Microsurfacing Depth

Profile Milling Patching Full-Depth

HMA Overlay, Preventive Maintenance Undersealing

Ultra-thin Bonded Wearing Course (UBWC)

HMA Minor Structural Overlay
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Microsurfacing. Microsurfacing comprises of the
basic ingredients of well-graded fine aggregate emulsi-
fied asphalt, water, and mineral filler. This treatment
repairs fair-to-moderate pavement surface defects, fills
cracks and voids, and improves skid and abrasion
resistance. Microsurfacing may not be suitable at high-
volume and high-speed sections (Raza, 1994).

Crack sealing/routing and filling. Crack sealing/
routing and filling is a preventive maintenance treat-
ment that involves the placement of specialized mate-
rials into or above cracks on the pavement surface, to
prevent the intrusion of incompressibles and water into
the cracks. In Indiana, this activity is mostly carried out
in-house (crews at the sub-districts) on force account.

Figure 2.2 Illustration of flexible pavement surface treatments.
Sources:

a. http://old.post-gazette.com/pg/09173/979033-147.stm?cmpid5news.xml
b. https://www.fhwa.dot.gov/publications/focus/98mar/georgia.cfm
c. http://fp2.org/2012/10/09/thin-hma-overlay/
d. http://dpw.lacounty.gov/gmed/lacroads/treatmentslurryseal.aspx
e. https://www.fhwa.dot.gov/publications/focus/07sep/01.cfm
f. http://www.mnltap.umn.edu/publications/exchange/2017/March/opera/index.html
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Fog seal. Fog seal is a light (spray) application of a
thin liquid oil (this is a diluted asphalt emulsion that
sets slowly) to the surface of an old pavement. This is a
relatively low-cost treatment that rejuvenates the oxi-
dized pavement surface and can be applied to all road
types to address raveling, mild oxidation, and to seal
hairline cracks (Asphalt Institute, 1999) to keep water
out of the pavement.

Seal coat (chip seal). Seal coat involves spraying of a
thin layer of liquid asphalt followed by uniform spread-
ing of coarse aggregate (chips). This is done to fill and
seal cracks and raveled surfaces of old pavements,
provide ‘‘an anti-glare surface during wet weather
and an increased reflective surface for night driving,
seal the pavement surface-minimizing the effects of
aging, and to provide a highly skid-resistant sur-
face, particularly on wet pavements’’ (INDOT, 2013a;
WSDOT, n.d.). There are many types of seal coats in
terms of the number of seal coat layers (for exam-
ple, single, double, and triple seal coats), layer types,
and materials (for example, geotextile seal and fiber-
mat seal).

Scrub seals (sand seals). Scrub seals are thin surface
treatments that involve thin-layer spraying of asphalt
emulsion, brooming the sprayed surface to direct the
emulsion into the pavement cracks, followed by the
immediate spread of a thin layer of fine aggregate, and
brooming the pavement surface to scrub the emulsion
and to direct the sand into any voids and cracks. Scrub
seal is similar to sand seal, except that the latter does
not involve brooming (INDOT, 2013a).

Fog seal or flush coat. Fog seal is a kind of seal coat
that applies a fog seal coat to the surface of a chip
sealed pavement. With regard to chip seals, a major
failure mode, aggregate loss, exposes asphalt at the
surface and causes bleeding. Fog seals reduce aggre-
gate loss from the seal coat and restore the pavement
color, thus enhances the visibility of pavement mark-
ings (INDOT, 2013a).

Profile milling. Profile milling removes the upper
portion of the pavement surface to ‘‘correct the pave-
ment profile or roughening the existing surface in
preparation for a new thin HMA overlay’’ (INDOT,
2013a). Also known as asphalt scarification, this
is used to roughen the pavement surface or to remove
excessive crack sealant before placing a HMA
overlay.

Ultra-thin bonded wearing course (UBWC). UBWC is
a ‘‘gap-graded, ultrathin hot-mix asphalt mixture applied
over a thick polymer-modified asphalt emulsion mem-
brane.’’ This membrane seals the existing pavement
surface and provides a layer with high binder content
at the interface between the existing pavement surface
and the UBWC layer (INDOT, 2013a).

2.3.2 Maintenance Treatments for Rigid Pavements

Figure 2.3 presents images of standard maintenance
treatments for rigid pavements. Patching is a common
maintenance option for rigid pavements. Patches treat
localized slab problems such as spalling, scaling (due to
conditions including reactive aggregate distress and
over-finishing the surface), corner breaks, joint dete-
rioration, or punchouts. Partial depth patches restore
defects within the top one-third of the slab depth. For
slab damage that occur in the bottom two-third of the
slab depth, full-depth patches are often applied. Any
defective existing patches are replaced.

Crack sealing/filling. Crack sealing/filling of the
PCCP pavement involves placement of specialized
material into or on top of the crack. The intent is to
prevent the entry of debris and moisture. Prior to the
sealing, the cracks are cleaned and dried. In certain
cases, the crack is routed prior to the sealing treatment.

PCCP joint resealing. Joint seal distresses often
include ‘‘loss of bonding to the sidewall, cohesive fail-
ure, spalls, and torn or missing sealant’’ (INDOT, 2013a).
These distresses can cause spalling of the joint wall,
PCCP faulting, shattering of slab edges or even slab
blowup. The process of sealing of joints includes sawing
to remove old sealant and reshaping the joint seal
reservoir, cleaning, and sealing in the PCCP joints.

Load transfer retrofit (LTR). This treatment, also
referred to as ‘‘stitching’’ involves the installation of
dowel bars across cracks or joints of the PCC pave-
ments to re-establish the integrity of load transfer
across a crack or joint. This treatment involves slot-
cutting, placing new dowels or reinforcing bars in the
slots, and cementing them. LTR is often carried out
with undersealing and fault grinding. When used in
conjunction with diamond grinding, the treatment
restores the equality of adjacent slab elevations and
therefore helps transfer wheel loads across successive
slabs, thereby reducing the rate of the pavement
deterioration (INDOT, 2013a).

Cross-stitching. Cross-stitching repairs and stren-
gthens PCCP longitudinal joints and cracks (INDOT,
2013a). The treatment ‘‘uses deformed tie bars epoxied
or grouted into holes drilled at an angle through non-
working longitudinal cracks or joints.’’ The cross-
stitching tie bars prevent the crack from horizontal
and vertical movement, and provides additional stren-
gth to the crack or joints.

PCCP profiling (diamond grinding). This treatment,
which corrects faulting or roughness on concrete pave-
ments, uses a diamond grinding machine to create a
texturized pattern on the pavement surface—the machine
grinds 0.2 in. to 0.25 in. off the concrete surface (INDOT,
2013a).
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Undersealing. Voids under PCC pavements cause fau-
lting, corner breaks, pumping, and joint failure, and filling
them (undersealing) can yield significant extension to
PCCP life and improves rideability. This technique pumps
cement grout or liquid asphalt under PCCP to flow into
the voids beneath the pavement (INDOT, 2013a).

2.4 Bridge Families

Similar to the case for pavements, bridge deck
maintenance practices are expected to vary by deck
surface material type. Based on the topmost surface
material, Indiana’s bridge deck surfaces can generally

Figure 2.3 Illustration of rigid pavement surface treatments.
Sources:

a. http://www.dot.state.mn.us/mnroad/projects/PCC_Joint_Sealing/index.html
b. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/pccp/11065/003.cfm
c. https://www.fhwa.dot.gov/publications/focus/08oct/05.cfm
d. https://www.fhwa.dot.gov/publications/publicroads/14julaug/01.cfm
e. https://www.dot.state.mn.us/mnroad/projects/Whitetopping/index.html
f. http://wikipave.org/index.php?title5joint_sealing
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be categorized as follows: those with a wearing course
and those without a wearing course. Again, a given
treatment may not fit both types of deck surface
material. Therefore, grouping of bridge deck surfaces,
for purposes of maintenance treatment selection or for
ex poste evaluation, can be useful.

2.5 Characterizing the Bridge Deck Surface Condition

For purposes of this study, the bridge deck surface
condition was characterized in terms of the National
Bridge Inventory rating (FHWA, 1995). This is a
universal scale for evaluating the deck condition on a
0–9 scale:

9 - Superior to present desirable criteria

8 - Equal to present desirable criteria

7 - Better than present minimum criteria

6 - Equal to present minimum criteria

5 - Somewhat better than minimum adequacy to
tolerate being left in place as is

4 - Meets minimum tolerable limits to be left in place
as is

3 - Basically intolerable requiring high priority of
corrective action

2 - Basically intolerable requiring high priority of
replacement

1 - This value of rating code not used

0 - Bridge closed

2.6 Typical Bridge Deck Surface Treatments in Indiana

INDOT’s Bridge and Culvert Preservation Initia-
tive (BCPI) policy statement (INDOT, 2014) defines
preventive maintenance as ‘‘specific activities that are
scheduled on a fixed cycle that are intended to maintain
a structure at its current level, and prevent or reduce
deterioration’’ and corrective maintenance is defined as
‘‘specific activities that are condition driven, intended to
correct defects and prevent or reduce deterioration.’’
The typical bridge M&R treatments implemented in
Indiana are summarized in Tables 2.2 and 2.3, based on
information from the BCPI and the Indiana Design
Manual, respectively. Tables 2.4 and 2.5 present INDOT’s
application warrants for pavement preventive and correc-
tive treatments, respectively. Figure 2.4 illustrates some
bridge deck surface treatments typically used in Indiana.

A major cause of bridge deck deterioration in Indiana
is the accumulated winter-time application of pavement
deicing chemicals. Often, such deterioration is manifest
in the form of concrete scaling, cracking, and delamina-
tion, loss of bond between the rebars and the concrete
deck, and corrosion of the steel reinforcement. To miti-
gate this problem, the top surfaces of Portland cement
concrete decks are overlaid with protective wearing sur-
faces such as latex-modified concrete. Then, the deck is
patched and any needed overlay is placed, finished, and
cured (INDOT, 2004). The sections below, culled from
the Indiana Design Manual (INDOT 2013b), describe
some of the standard treatments.

Patching. Patching of the bridge deck appears to be
one of the most common bridge deck repair activities in
Indiana. In certain cases, this is followed by a modified

TABLE 2.2
Preventive and Corrective Treatments for Deck Surfaces
(INDOT, 2014)

Treatment Role Examples

Preventive Treatments Cleaning/Flushing Bridge Decks

Cleaning Joints

Deck Sealing

Corrective Treatments Deck Patching (shallow/deep)

Joint Repair/Replacement

Thin Deck Overlay (e.g. Polymeric Overlay)

Latex Modified Concrete (LMC) Overlay

Deck Crack Sealing

TABLE 2.3
Other Maintenance Techniques for Bridge Deck Surfaces
(INDOT, 2013b)

Code Technique

BD-1 Patching

BD-2 Epoxy Resin Injection

BD-3 Low Viscosity Sealant for Crack Repair

BD-4 Concrete Overlay

BD-5 Cathodic Protection

BD-6 Deck Drainage Improvements

BD-9 Joint Elimination

BD-10 Concrete Sealants

BD-11 Corrosion Inhibitors

TABLE 2.4
Application Warrants for Preventive Treatments (INDOT, 2014)

Preventive Treatments NBI Item No. Threshold Condition Rating Cycle (years)2

Cleaning/Flushing Bridge Decks Item 581 .4 1

Substr./Superstructure Washing Item 59 & 60 .4 1

Cleaning Deck Drains Item 58 .4 1

Cleaning/Lubricating Bearings Item 59A .4 1

Cleaning Joints Item 58.15, 58.16, 58.16A&6B, 58.16C .4 1

Deck Sealing Item 58.01 & 58.02 .5 1

1Item No. refers to NBI Item number defined in FHWA (1995).
2Cycle refers to the frequency (in years) of implementing each preventive treatment.
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concrete overlay. Patching may be full-depth or partial-
depth. In cases where removal of the unsound concrete
yields deck cavities whose depth exceeds the level of
the adjacent prepared deck surface, partial-depth patch-
ing is typically applied. On the other hand, where the
unsound concrete is rather deep (in such cases, all the
concrete within the area demarcated for patching is
replaced), full-depth patching is typically applied. After
removing the concrete, the resulting voids are cleared of
all debris, foreign material, and loose concrete to yield a
solid and firm surface to receive the new concrete.
Before the actual patching operation, the exposed full-
or partial-depth patch surfaces are typically inspected
carefully to ensure that (i) all unsound concrete has
been removed, edges have a vertical face of 1 inch
(ii) there is no damage to the exposed rebar, (iii) a
‘‘minimum 1-inch clearance exists around the rebars
(if the bond between existing concrete and reinforcing
steel has been destroyed, or if over 50% of the rebar
diameter is exposed for more than 12 inches) and holes
thoroughly are cleaned out.’’ Then an air compressor is
used to clean out the cavity. Finally, epoxy adhesive is
applied to all surfaces in the patch areas (INDOT,
2004) and the patching concrete is placed. Deck patch-
ing does not completely arrest the corrosion rate.
It causes direct contact between new (uncontaminated)
concrete and old (contaminated) concrete thus gene-
rating new corrosion activity in the area. It has been
reported that repaired decks may exhibit significant
corrosion 7 years after the treatment. Therefore, it
has been recommended that deck patching should be
considered a temporary solution only.

Concrete deck sealing. Deck sealing is applied to
avoid the penetration of chloride ions from deicing
products into the deck. Sealers are classified into two
main groups: (a) penetrating sealers and (b) surface
coatings. Penetrating sealers penetrate deeper into the
concrete deck and include hydrophobic sealers (or
water-repellants) and pore blockers. Penetrating sealers
are applied early after deck construction (3–6 months)
and before the deck is contaminated by chloride ions.
The sealer is applied periodically.

Concrete deck crack sealing. Cracks serve as a direct
conduit for chloride ion penetration into the concrete
deck slab. Potential solutions for crack sealing include

penetrating sealers, HMWM (high molecular weight
methacrylate), and epoxy injection.

Latex-modified concrete (LMC) overlay. At INDOT,
latex-modified bridge deck overlays have been used
successfully for over 4 decades. The treatment is typi-
cally applied after deck patching. According to the
guidelines, for an LMC overlay project to qualify as
a candidate for preventive maintenance, each of the
three bridge components (superstructure, deck, and
substructure) must have a bridge inspection rating of
5 or higher and the need for partial depth patching
must be less than 15%. If full-depth patching exceeds
35%, consideration should be given to deck replace-
ment. LMC overlay is intended to protect the bridge
deck for 15 ¡ 5 years (the large variation is due to the
expected differences in the work quality, traffic loading,
and level of salting during wintertime. Frosch, Kreger,
and Strandquist (2013) stated that LMC overlays can
provide a long service life and therefore are recom-
mended for more critical bridges as both a preventive
maintenance and a rehabilitation measure.

Polymeric overlay. This treatment applies an epoxy
polymer with a special aggregate. For a bridge to qua-
lify as a candidate for this treatment, each of the wear-
ing surface and the 3 components (deck, superstructure
and substructure) must have an inspection rating not
less than 4. The treatment is often intended to last for
10 years. According to Frosch et al. (2013), thin poly-
mer overlays are recommended for ‘‘situations where
quick installations are required and where a thin pro-
tective system is needed.’’ In addition, this treatment
can be considered as a preventive treatment for new
bridge decks.

New wearing surface. Deck overlay, such as provision
of a wearing surface for the bridge deck, is a common
treatment applied not only to correct minor defects but
also to reduce imminent deterioration of the bridge
deck. As such, this treatment can be considered as a
preventive maintenance treatment. In this treatment,
the bridge deck is first prepared to receive the concrete
overlays by scarifying (breaking up the surface of) the
entire deck or floor of the existing bridge) or milled to
a depth of J inch. Scarification helps provide a clean
concrete surface for bonding with the new wearing

TABLE 2.5
Application Warrants for Deck Surface Corrective Treatments (INDOT, 2014)

Corrective Treatments NBI Item # Threshold Condition Rating Other Criteria

Deck Patching (shallow/deep) 58.011 .4 D/SS2 . 4; & Max 10% deck patching

Joint Repair/Replacement 58.16 ,6 WS/D/SS . 4

Thin Deck Overlay (e.g., Polymeric) 58.01 .5 D/SS . 4; & Max 10% deck patching

Latex Modified Concrete (LMC) Overlay 58.01 .3 D/SS . 5; & Max 15% deck patching

Deck Crack Sealing 58.01 .5 D/SS . 5

1Item No. refers to NBI Item number defined in FHWA (1995).
2WS 5 Wearing Surface (58.01); D 5 Deck (58); SS 5 Superstructure (59) AND Substructure (60).
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surface. After scarification, the next step is to identify
the precise location of the deteriorated areas on the
bridge deck. Then any unsound concrete and rein-
forcing steel are removed from such areas, the deck is
sandblasted, and all dust and chips from exposed sur-
faces are cleaned with compressed air (INDOT, 2004).
Concrete is placed at the areas deserving patching and

finally, the deck is overlaid with the new wearing sur-
face layer. At Indiana’s neighboring state of Ohio,
the preventive maintenance treatments for concrete
overlay wearing surface are similar to those discussed
for concrete decks. However, for asphalt concrete
deck overlay, cracks are sealed with a flexible asphalt
sealer (ASTM D3405, 1997). For low-volume asphaltic

Figure 2.4 Illustration of bridge deck surface treatments.
Sources:

a. https://mdotwiki.state.mi.us/construction/index.php/712_-_bridge_rehabilitation,_concrete
b. https://mdotwiki.state.mi.us/construction/index.php/712_-_bridge_rehabilitation,_concrete
c. http://www.uppercanadaasphalt.com/services/crack-sealing-route-seal/
d. https://www.fhwa.dot.gov/innovation/innovator/issue61/issue61.cfm
e. Bowman & Moran, 2015
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concrete bridge decks that have started to exhibit signs
of weathering or surface raveling, chip sealing treat-
ment is often applied. For high-volume roads, preven-
tive maintenance treatments include milling and filling
with asphaltic concrete (1-inch minimum thickness) or
slurry seals.

3. LITERATURE REVIEW

3.1 Introduction

A review of past studies helps establish some a-priori
expectations regarding the effects of pavement and
bridge surface treatments (on the condition rating of
these assets) as well as the factors that influence such
effectiveness. In the past ten years, prominent state
and national research studies have been carried out to
evaluate the effectiveness of pavement and bridge treat-
ments. These include:

N The CDOT (Shuler, 2010) study used full-scale test

sections to assess the long-term efficacy of pavement

treatments under different environmental conditions.

These included chip seals, crack sealing, and thin HMA

overlays (for asphalt pavements) and cross-stitching,

joint resealing, and micro-grinding (for concrete pavements).

N MACTEC Engineering and Consulting, Inc., California

Pavement Preservation Center, and the Federal High-

way Administration carried out performance evaluation

of various preservation treatments at six states in the

USA.

N The Center for Transportation Research and Implemen-

tation, Minnesota State University analyzed the expected

longevity, pavement life extension, and cost-effectiveness

of alternative pavement preservation treatments.

N Wang (2013), in his thesis, investigated the effectiveness

of pavement preservation treatments (slurry seal, thin

HMA overlay, crack seal, and chip seal) on mitigating

multiple pavement distresses (fatigue, transverse, and

longitudinal cracking, and rutting) and restoring pave-

ment surface friction, using data from the Specific Pave-

ment Studies-3 (SPS) experiments of the Long Term

Pavement Performance (LTPP) program.

N Researchers at the University of Tennessee, Knoxville,

evaluated the effectiveness and cost-effectiveness of

asphalt pavement rehabilitations using LTPP data.

N Ram and Peshkin (2013) evaluated the costs and benefits

of a number of preventive maintenance treatments used in

Michigan DOT’s CPM program. They defined ‘‘benefit’’

as the percent increase in performance over an untreated

pavement performance curve. Using unit costs, the authors

calculated the benefit-cost ratio of each treatment, and

compared such cost-effectiveness of the treatments.

In the above-listed and other literature, various rese-
arch papers and agency practice manuals have reported
such effectiveness in the short term or long term.
The list below presents the measures of effectiveness
(MOEs) that have been identified or used in previous
studies (Labi & Sinha, 2003; Lavrenz, Murillo-Hoyos &
Labi, 2015).

Short term effects of surface treatments (Figure 3.1):

N Increase in the asset condition, measured as an instanta-

neous jump or the difference between the asset’s post-

treatment condition and its pre-treatment condition

N Delayed measurement (typically over 1 year) of the

performance jump

N Reduction of the rate of the asset deterioration (that is,

the difference between the pre-treatment and post-

treatment rates of deterioration)

Figure 3.1 Short-term effects of surface treatments on asset rating—the different perspectives.
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Long term effects of surface treatments (Figure 3.2):

N Effective life of the treatment (time that elapses before
the same or higher level treatment is applied)

N Extension in the service life of the asset due to the
treatment

N Average annual loss in performance in the post-treat-
ment period

N Increase in the area bounded by the asset performance
curve due to the treatment

N Reduction in the cost of the asset maintenance after the
treatment

N Decrease in the likelihood that a specific distress will
occur for the first time in a given period

This report focuses on increase in the asset condition
or performance jump (a short-term measure of effec-
tiveness) and the effective life of the treatment (long-
term measure of effectiveness). With regard to the
short-term measures of effectiveness only, the impacts
of maintenance treatments on asset rating in the short
term, may generally take one of three forms: (i) a reduc-
tion in the rate of deterioration subsequent to the

treatment, (ii) a modest sudden jump in the asset con-
dition rating (Lytton, 1987; Markow, 1991), or (iii)
both (Mamlouk & Zaniewski, 1998) as illustrated below.
INDOT has expressed a need to investigate effectiveness
of their standard treatments from at least one of these
perspectives.

3.2 Short-Term Impacts—The Three MOEs as
Developed/Used in the Literature

Figure 3.3 presents a blown up section of Area M in
Figure 3.1 (b)(iii) (due to some maintenance treatment)
in a performance curve, and illustrates the Delayed
Measurement of the Jump (DMJ) concept. Point A the
asset condition at a specified time (say, 1 year) before
the treatment. Point D is the asset condition just before
treatment. Point F is the asset condition just after the
treatment, while point E is the state of the asset a
specified time after maintenance. Ci and ti represent the
condition of the asset and the year of the asset condition
measurement, respectively, corresponding to point i.

Figure 3.2 Long-term measures of the effect of surface treatments on asset rating.
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3.2.1 Delayed Measurement of the Jump (DMJ)

Labi and Siha (2003) presented the three ways in
which Delayed Measurement of the Jump has typically
been computed in the literature (Figure 3.3):

1. Difference in deterioration 1-year before maintenance (A)
and just after maintenance (F), as illustrated as DC1 in the
figure. This is DMJTYPE I.

2. Difference in deterioration just before maintenance (D)
and 1-year after maintenance (E), as illustrated as DC2 in
the figure. This is DMJTYPE II.

3. Difference in deterioration 1-year before maintenance (A)
and 1-year after maintenance (E), as illustrated as DC3 in
the figure. This is DMJTYPE III.

Each of these measures of DMJ tend to under-
estimate the maintenance effectiveness. If DMJTYPE I is
used to measure maintenance effectiveness, the asset
condition just before maintenance is not considered and
therefore the maintenance effectiveness in recovering
the asset performance from point D to point Z is not
captured. Therefore, using DMJ TYPE I leads to under-
estimation of the maintenance effectiveness. Similarly,
DMJ TYPE II fails to consider the asset condition just
after maintenance; thus, the maintenance effectiveness
in recovering the asset condition from point W to point
F is not accounted for. Thus, using DMJTYPE II under-
estimates the maintenance effectiveness. DMJ TYPE III is
associated with the highest level of underestimation; if
this measure is used, the maintenance effectiveness is
likely perceived to be negative, leading to the often
erroneous conclusion that the maintenance treatment
was not effective.

DMJ has been used to measure short-term main-
tenance effectiveness in past research. This has been used
to determine the change in roughness (over a 1-year
period) of pavements that received each of several types
of routine maintenance (Fwa & Sinha, 1987). Models
were developed to estimate PSI change as a function of
the maintenance type and other factors. In addition,
Sinha et al. (1988) estimated models to predict the effec-
tiveness of maintenance (the change in pavement surface

roughness) arising from a given amount of maintenance
spending, for each climate zone. The change in rough-
ness was calculated as:

RRN~ RN1985{RN1984ð Þ=RN1984,

where RN 5 the roughness of a pavement section in a
given year.

That study concluded that ‘‘for most treatments,
roughness increases after treatment, regardless of main-
tenance expenditure level,’’ which is unintuitive and was
probably because the study had used DMJ to measure
of the maintenance effectiveness.

Another DMJ measure, expressed as ‘‘change in
roughness number,’’ has also been used as a response
variable in models that estimated the effectiveness of
general maintenance and rehabilitation (Madanat &
Mishalani, 1998). In addition, using data from Indiana,
models utilizing the DMJ concept were developed by Li
and Sinha (2000) to estimate change in IRI as a fun-
ction of pavement attributes. The underestimation of
maintenance effectiveness by using DMJ as a measure
of effectiveness could be further exacerbated by not
giving due cognizance to the relative timing between
maintenance and deterioration measurement. Such omis-
sion may further lead to incorrect conclusions about main-
tenance effectiveness.

3.2.2 Performance Jump

Performance jump (PJ) is the instantaneous elevation
in the pavement or bridge condition upon receiving
maintenance (see DC4 in Figure 3.3). This is computed
using the deterioration values just-before and just-after
maintenance. The concept of PJ or instantaneous
increase in performance has often been the subject of
discussion in pavement performance modeling (Lytton,
1987). PJ uses the just-before-treatment and just-after-
treatment values of the pavement deterioration. Thus,
PJ calculation does not suffer the bias associated with
DMJ and represents a superior measure of short-term

Figure 3.3 Blown-up of Area M illustrating the short-term effect of a treatment on asset rating.
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effectiveness of maintenance Unfortunately, agencies
typically do not carry out deterioration measurements
just before and just after a treatment, it is often difficult
to obtain data for PJ computation, and extrapolation
of the performance curve from both directions to the
point of maintenance is often necessary to estimate the
asset’s PJ due to treatment.

3.2.3 Deterioration Rate Reduction (DRR)

The deterioration rate reduction (Labi & Sinha,
2003) is defined as the difference in the slope of the
deterioration curve before maintenance and after
maintenance. The DRR concept involves the ‘‘slowing
down’’ of asset deterioration with time or cumulative
loading due to the application of maintenance. There-
fore in the context of DRR, the effect of maintenance is
to make a steep deterioration curve slope more gently.
DRR can be calculated as the algebraic difference in
the gradients of the asset deterioration curve before-
maintenance and after-maintenance. A gentle slope fol-
lowing a steep slope is generally indicative of the
application of maintenance.

This measure of treatment effectiveness has been
mentioned in literature, albeit, mostly in a conceptual
manner (Lytton, 1987; Markow, 1991; Markow et al.,
1994) due to the difficulties associated with identifying
and quantifying pavement deterioration rate and the
reduction of the rate, and the few numerical analyses
include the study by Labi and Sinha (2003). Older
assets in poor condition suffer progressively increased
rates of deterioration if denied maintenance, an obser-
vation that is supported by past research. On the other
hand, new pavements in good condition may likely
deteriorate at the same rate if they receive no main-
tenance (because they do not need it). These observa-
tions are founded on the shape of the typical asset
performance curve (which shows little deterioration
at the initial phases of the asset life but increasing

deterioration rates as the asset ages. With lower level
maintenance (such as shallow patching and crack seal-
ing for pavements, for example) the asset is nevertheless
expected to exhibit deterioration with time, however at
a lower rate. As the intensity or level of asset repair
increases, the deterioration curve takes on increasingly
less negative gradients.

3.3 Discussion for All Three Measures of Effectiveness

Compared to that for capital improvements, main-
tenance effectiveness has been addressed in relatively
fewer studies. For maintenance effectiveness studies,
the concept of DMJ, and to a lesser extent, PJ has been
widely used as the measure of effectiveness. As we have
discussed in a previous section of this report, DMJ can
lead to significant mis-estimation of effectiveness. In
addition, it seems that past studies did not consider
implicitly the relative timing between deterioration mea-
surement and maintenance occurrence in a given repor-
ted year. Such oversight could be costly in estimating
maintenance effectiveness regardless of which measure
of effectiveness is used. Table 3.1 summarizes the various
measures of short-term maintenance effectiveness (see
also Figure 3.3).

3.4 Long-Term Impacts—MOEs as Developed/Used in
the Literature

For some long-term effectiveness assessment techni-
ques, the development of a performance curve (a single
regression function developed using data from all of the
similar asset types that received the treatment in ques-
tion); or performance plot (performance vs. time for
each individual asset) is a prerequisite. In such curves
or plots, the ordinate is some time-related variable
that is related to the asset condition; for example,
years, or accumulated usage, loading, or climatic seve-
rity. Examples of the variables for climatic severity include

TABLE 3.1
Various Measures of Maintenance Effectiveness (Labi & Sinha, 2003)

Deterioration

Reduction Measure Computation Synonyms/Descriptions Comments References

DC1 CF – CA Delayed Measurement of the Jump (DMJ)

Decrease in Roughness

Increase in PSI

Misses effectiveness

denoted by ZD

(Li & Sinha, 2000)

DC2 CE – CD Same as for DC2 Misses effectiveness

denoted by WF

(Madanat et al., 1995)

DC3 CA – CE Same as for DC2 Avoids critical timing issue.

Likely to result in negative

effectiveness

(Fwa & Sinha, 1987;

Mohammad et al.,

1997)

DC4 CF – CD Performance Jump (PJ)

Instantaneous Deterioration Reduction

Vertical Elevation in Condition

Ideal but data is often unavailable (Colucci et al., 1985)

DRate (CE – CD)

– (CD – CA)

Deterioration Rate Reduction Sometimes D is not known;

Requires data over 3-year span

(Lytton, 1987;

Markow, 1991,

1994)
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precipitation, freeze index, freeze-thaw cycles, and
temperature.

3.4.1 Increase in Average Performance of the Asset over
the Treatment Life

This MOE can be calculated as the level of distress as
an absolute value or relative to the level just before the
treatment. To measure such effectiveness, the average
infrastructure condition can be monitored over the
treatment life using annual field measurements of the PI
until the asset condition falls below a specified thresh-
old (Figure 3.4). Alternatively, performance models can
be developed using data from a collection of all the
similar infrastructure that received the same treatment
type and the developed models can be used to deter-
mine the average value of the ordinate (asset condi-
tions) at each year of the treatment life.

The increase in the asset’s average condition due to
the treatment, y, can then be determined by computing
the percentage change in the average condition of the
asset relative to its pre-treatment condition.

y~100 �
1
tT

(PI0zPI1z:::zPIT ){PIINI

� �
PIINI

where PI0 and PIc represent the asset condition, in
terms of the performance indicator, at the time just
after the treatment and at the time when the asset
condition reaches the threshold condition, respectively;

PIi represents the asset condition at any intervening
year, i, and tT is the target period over which the post-
treatment condition is being measured (often, this
target is the treatment life);

(PI0 + PI1 + … + PIT)/tT is the average asset condi-
tion over the target period; and PIINI = pre-treatment
condition.

To determine the treatment life, the methods descri-
bed in Section 3.4.2 below can be used.

In the highway management literature, variations
of this MOE (the increase in average performance)
have been used. For pavement infrastructure for exam-
ple, Sharaf and Sinha (1984) and Hall, Darter, and
Armaghani (1993) used this MOE to assess the impact
of various pavement M&R treatments. In the case of
highway bridges, Islam, Sonhanghpurwala, and Scannell
(2002) studied the effectiveness of bridge corrosion
inhibitors, based on the reductions in the overall cor-
rosion rate relative to the control (untreated bridges)
after a five-year period of observation. A similar study
carried out for the FHWA by Islam et al. (2002) eval-
uated the long-term effectiveness of corrosion-protecting
cathodic systems in reinforced concrete bridges rela-
tive to untreated (control) sections. Lee et al. (2004)
used structural load capacity as the performance indi-
cator to assess the efficacy of carbon-reinforced fiber
polymer (CRFP) composites in rehabilitating the ten-
sion side of concrete bridge decks; the load capacities of
the treated members were compared with (i) their pre-
treatment load capacities and (ii) the load capacities of
their untreated counterparts.

3.4.2 Estimated Life of the Maintenance Treatment

(a) Performance models (deterioration curves). Haider
(2011) developed performance models for pavement
deterioration before and after a treatment application

using a standard exponential form: fpre(t)~a1eb1tand

fpost(t)~a2eb2t. Similarly, Lu and Tolliver (2012) devel-

oped models with the same exponential equation using
LTPP data, the models were established for pavement
in six different climatic zones measured by freeze-thaw
and precipitation.

Figure 3.4 Increase in average performance of the infrastructure over the treatment life.
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(b) Estimation of treatment life. The life of a main-
tenance treatment (also referred in some literature as
the treatment service life or application interval), can be
defined as the time taken for the performance (condi-
tion) of the treated asset to revert to some predefined
condition threshold (see Figure 3.4). The condition is
expressed in terms of a PI that the treatment was
intended to address. The length of the treatment life
depends on the asset condition, treatment intensity, agency
policy on triggers, loading, climate; the treatment appli-
cation interval depends not only on these factors but
also on the funding availability.

Treatment life can be determined using (a) an age-
based approach. This is a subtraction of calendar dates;
this gives the number of years that have elapsed between
the application of the treatment in question and that
of the next treatment of similar or higher level, or (b) a
condition-based approach. This is the measured or esti-
mated time for the treated infrastructure to revert to
a certain specified performance threshold. As we shall
discuss subsequently, the age-based and condition-based
approach for treatment effectiveness assessment may
be described as disaggregate or aggregate depending on
the data granularity.

In the practice and research literature, the concept of
treatment life has been used widely as an MOE to assess
the effectiveness of treatments applied to highway infra-
structure (Geoffroy, 1996; Hall et al., 2002; Labi & Sinha,
2006; Mamlouk & Zaniewski, 1998; Raza, 1994). Kong
and Frangopol (2003) assessed bridge treatment effec-
tiveness in terms of the element life extension and the
increase in bridge reliability. For pavement assets
for example, Smith, Freeman, and Pendleton (1993)
evaluated a number of M&R treatments using several
performance indicators (individual measures of pave-
ment distress such as roughness and skid resistance)
and compared the treatments based on the time taken
for the treated asset to reach the threshold level of the
performance indicators. In a study of LTPP pavement
sections, Khurshid, Irfan, and Labi (2011) determined
that treatment life could be stated not only in years but
also in terms of some accumulated traffic loading or
climate severity; they also determined that aggregate
MOEs provide a more reliable assessment of treatment
effectiveness, compared to disaggregate measures. For
example, Lounis, Martin-Perez, and Hunaidi (2001)
assessed the effectiveness of various corrosion treatments
in terms of bridge deck life extension.

3.4.3 Area under the Performance Curve Subsequent to
the Treatment

Figure 3.5 depicts how to measure the long-term
effectiveness when an asset that receives a treatment.
Consider x, a time-related variable such as time (years),
accumulated truck traffic, or accumulated climatic severity.
Performance of the asset before and after the preser-
vation treatment is denoted by f1(x) and f2(x). Many
agencies have developed deterioration models, f2(x),
for each asset type that has received some specific

preservation treatment. As the figure suggests, it is
rather easy to determine the service life (time taken for
the performance indicator to reach a pre-specified
threshold condition), given the performance curve f2(x).
The values of each preservation treatment MOE (increased
service life, increased average condition, and area-bounded-
by-the-curve) can be determined using either (i) a single
performance curve developed using data from all similar
asset types that received the preservation treatment or
(ii) manual plots for individual similar asset types that
received the preservation treatment and using coordi-
nate geometry or calculus to determine the MOE.

As explained in Labi & Sinha (2003), the area
bounded by the performance curve and the threshold
line embodies both effectiveness concepts of average per-
formance of the asset after it has received the treatment
and the service life (time taken for the asset to revert to the
pre-treatment level of performance). As such, the ‘‘area
bounded by the curve’’ may represent the most appro-
priate measure of long-term effectiveness. A simple approach
for determining the area under the performance curve
is to carry out field monitoring of performance indicator
for several similar asset types that received the preserva-
tion treatment, plotting a graph of the condition mea-
surements versus time, determining the area under the
performance plot for each element, and finding the average
of these areas. As an alternative, a single representative
performance curve could be developed using the field data
from all the assets that received that treatment, and then the
area bounded by the performance curve, from year of the
treatment to the year it reaches a specified threshold, could
be determined using calculus or coordinate geometry (Labi
& Sinha, 2003). As seen in Figure 3.5, for non-increasing
performance indicators, the preservation treatment effec-
tiveness is represented by the area bounded by the curve
and the horizontal line projected from the threshold
condition level (i.e., the area under the curve); for non-
decreasing indicators, preservation treatment effectiveness is
the area bounded by the curve and the horizontal line
projected from the threshold condition level, that is, the area
over the curve. Past researchers that used this concept
include Geoffroy (1996), Kher and Cook (1985), Joseph
(1992), Shahin, Kohn, Lytton, and McFarland (1985).

From Figure 3.5, the effectiveness of the treatment,
in terms of the area bounded by the curve, can be
expressed as:

(i) For non-decreasing performance indicators,

N Total area bounded by the performance curve

~2| PJ|tcð Þ{
ðtc

0

f (t)dt

8<
:

9=
;

N Total area bounded by the performance curve relative
to a do-nothing scenario

~ PJ|tcð Þ{
ðtc

0

f (t)dt
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(ii) For non-increasing performance indicators,

N Total area bounded by the performance curve

~2|

ðtc

0

f (t)dt

8<
:

9=
;

N Total area bounded by the performance curve relative
to a do-nothing scenario

~

ðtc

0

f (t)dt

where all symbols have their usual meanings as explained
in earlier sections of the paper.

3.5 A Literature Review—Factors Affecting the
Effectiveness of Asset Surface Maintenance

Al-Suleiman, Sinha, and Kuczek (1994) discussed the
effects of pavement age and traffic on maintenance
effectiveness. Morian, Gibson, and Epps (1998) con-
cluded that the preparation of the pavement surface
prior to overlay is generally a vital factor of the treatment
effectiveness and that the pre-treatment condition signifi-
cantly influences the subsequent performance of the
pavement. The list below presents the factors that affect
the jump in asset performance upon treatment. Wang
(2013) analyzed LTPP data and determined that precipi-
tation, freeze index, and pavement roughness showed
significant correlation to the friction number.

From the literature, it is seen that the factors affect-
ing performance jump due to surface maintenance
treatments include:

N Weather at time of treatment

N Treatment intensity (for example, thickness)

N Quality of materials

N Pre-treatment condition of the asset

N Quality of workmanship

Also from the literature, it has been determined that
the factors affecting treatment life due to surface main-
tenance treatments include:

N Pre-treatment condition of the asset

N Treatment intensity (for example, thickness)

N Traffic loading

N Climatic severity

N Quality of initial product (materials and workmanship)

3.6 Measured Effectiveness Values for Asset Treatments
(from the Literature)

3.6.1 Bridges—Short-Term Effectiveness of Deck
Surface Treatments

Relatively little research has been carried out to eva-
luate the effects of bridge MR&R treatment on bridge
deterioration. Two considerations are:

a. Some major rehabilitation activities (such as deck overlay)
may lead to a performance jump (for example, deck con-
dition rating of 5 increases to 6 or 7);

b. Some minor rehabilitation or maintenance (such as deck
patching) may not increase the condition significantly, but
may lower the rate of the bridge deterioration.

In the literature, simplified estimations of treatment
effectiveness (referred to as ‘‘recovering effects’’ in cer-
tain literature) are assumed. For example, Lee and Kim
(2007) measured some ‘‘recovering effects’’ on a scale
from 1 to 90 for different maintenance treatments on
various distress types, primarily based on opinions of

Figure 3.5 Graphical depiction of treatment life as a measure of long-term effectiveness of asset treatments.
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bridge maintenance experts (Table 3.2). Hong and
Hastak (2007) quantified the average increases in deck
NBI condition rating after maintenance actions based
on a survey of 28 highway agencies in the USA (Table 3.3).
Possible limitations of their results include (1) bias of
the individuals; (2) inconsistency across agencies; (3)
exclusion of the pre-treatment condition as a possible
factor of the effectiveness of the maintenance actions.

Liu, Hammond, and Itoh (1997) established some
‘‘impacts’’ of maintenance on the asset deterioration
(Table 3.4). A ‘‘deterioration degree’’ was defined by the
authors on a scale of 0 (new deck) to 1 (structural fail-
ure level). Four maintenance treatments were recom-
mended by the authors to be applied corresponding to
different deterioration degree ranges. In addition, Elbehairy,
Elbeltagi, Hegazy, and Soudki (2006) estimated the
impacts of MR&R treatment categories (‘‘light, medium,
and extensive’’) on the bridge deck condition rating
(Table 3.5).

The updated IBMS manual (Sinha, Labi, McCullouch,
Bhargava, & Bai, 2009) presented information on the
effectiveness of repair activities on the conditions of
the deck, superstructure, substructure, wearing surface,
and the component service life. While this serves as a
useful reference, it was based on expert opinion and
their results did account for the influence of the pre-
treatment condition. In addition, some of the repair
activities indicated, such as deck rehabilitation and
superstructure rehabilitation, were not specific enough
in detailing the type of work done.

3.6.2 Bridges—Long-Term Effectiveness of Deck
Surface Treatments

Tables 3.6 to 3.13 present the long-term effectiveness
of various types of deck surface treatments in terms of
their expected life or application interval. These data
are from different sources (FHWA, 2011; NYSDOT,
2008; ODOT, 2007; Sprinkel, Brown, & Thompson,
2005; Weyers, Prowell, Sprinkel, & Vorster, 1993). These
are average values and ranges. The actual lives of these
deck surface treatments will be different under dif-
ferent circumstances (location, work process or equip-
ment, material, expertise of labor and supervision,
condition at time of the treatment, and so on).

A JTRP report by Frosch et al. (2013) provided
INDOT with an enhanced toolbox of bridge deck pro-
tective systems. The report recommended LMC over-
lays for bridge decks where more extensive damage is
observed. In addition, because LMC overlays provide a
long service life, the JTRP report recommended that
treatment for more critical bridges as both a preventive
maintenance and a rehabilitation measure. Where quick
installation is required and where a thin protective
system is needed, the JTRP report recommended the

TABLE 3.2
‘‘Recovering Effect’’ Values for Various Maintenance Treatments (Lee & Kim, 2007)

Treatments

Damage Types

Micro-

crack

Moderate

crack

Macro-

crack

Rebar

Corrosion

Punching/

Cavitation

Exfoliation/

Pothole

Leakage/

Efflorescence

Maximum

Effect

Surface repair 5 3 0 1 0 1 3 13

Mortar filling 3 4 5 2 1 2 4 21

Epoxy injection 3 5 3 1 2 2 0 16

Corrosion inhibiting 3 3 5 5 5 5 5 31

Note: Condition rating scale: 1–100.

TABLE 3.3
Average Improvement of Deck Condition Rating (NBI Scale)
Subsequent to MR&R Actions Based on Survey Results (Hong &
Hastak, 2007)

M&R Actions

Improvement of Condition

Rating

Crack maintenance 0.48

Sealing 0.41

Scaling 0.81

Patching/spalling 0.79

Cathodic protection 0.58

Thin epoxy/polymer overlay 1.19

Latex modified concrete 3.17

Increased slab thickness and cover 1.86

Attaching additional girders 0.92

Concrete overlay or high density overlay 2.17

Note: Condition rating scale: 1–9.

TABLE 3.4
Maintenance Impacts in Terms of the Deterioration Degree (Liu
et al., 1997)

Maintenance Method Deterioration Degree Impact

Routine maintenance 0.0–0.8 0.01

Repair 0.2–0.8 0.05

Rehabilitation 0.4–1.0 0.40

Replacement 0.6–1.0 0.90

TABLE 3.5
Impact of Repair Option on Bridge Deck Condition (Elbehairy
et al., 2006)

Condition Rating

After Repair

Condition Rating Before Repair

3, 4 5, 6 7, 8

3, 4 Light – –

5, 6 Medium Light –

7, 8 Extensive Medium Light
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use of thin polymer overlays. The report also discussed
the use of polymer overlays as a suitable preventive
maintenance treatment of new bridge decks. However,
the report did not give any numerical thresholds or
strategies regarding when or under what condition the
overlays should be applied.

The Minnesota DOT (MnDOT) sought to (a) quan-
tify the benefits of various bridge maintenance treat-
ments in relation to remaining service life and bridge
life-cycle costs and (b) know how maintenance treat-
ments could be incorporated into deterioration models.
As such, the agency commissioned CTC & Associates
(2016) to conduct a literature search and a survey
of domestic and international transportation agencies.
The survey documented the types and frequencies of
bridge maintenance activities, practices for quantifying
the impact of bridge maintenance activities on dete-
rioration, and how deterioration models could be used
to measure the benefits of bridge maintenance (CTC &
Associates, 2016). In a similar synthesis study in Indiana,
Bowman and Moran (2015) provided a synthesis of the
effectiveness (treatment life) of concrete deck-penetration
sealing treatments nationwide.

3.6.3 Pavements—Short-Term Effectiveness of Surface
Treatments

HMA minor structural overlays. A considerable num-
ber of studies have used experimental data to evaluate

pavement surface treatment effectiveness in terms of the
short-term effect on asset condition ratings. Figure 3.7
presents the short-term effectiveness of selected LTPP
SPS pavement treatments in terms of the performance
jump. Hall et al. (1993) described a comprehensive load-
transfer restoration experiment where the performance
of 14 different treatments for load transfer restoration
on Interstate 10 in Florida was monitored and analyzed.
Sawing and sealing, which involves sawing of a joint in
the asphaltic concrete overlay directly above the exist-
ing PCC pavement joint and sealing with joint sealant
material, was evaluated as part of a national experi-
mental study (Kilareski & Bionda, 1997).

In addition, concrete pavement rehabilitation strate-
gies at Pennsylvania’s SPS-6 sections have been evaluated
for their effectiveness (Morian, Coleman, Frith,
Stoffels, & Dawood, 2003). Furthermore, a national
study established service life ranges for different rigid
pavement treatments and provided useful conclusions
for the state of practice (Hall, Correa, Carpenter, &
Elliott, 2001). Recently, a study used LTPP data to
analyze the effectiveness of pavement maintenance
options (Hall et al., 2002). Also, a revealing study
recently reported on an initial evaluation of the per-
formance of rehabilitation activities on jointed Portland
cement concrete pavements under the LTPP SPS-6
experiment (Ambroz & Darter, 2005). Irfan, Khurshid,
Flora, and Labi (2009) presented the short-term effec-
tiveness of a number of maintenance treatments involving
overlay (Figure 3.6).

Thin HMA overlay effectiveness. In a JTRP-funded
research project (Labi & Sinha, 2003), higher perfor-
mance jumps were found to be attributable to the con-
dition of the pavement before the overlay treatment;
the lower the pavement condition, the higher the per-
formance jump. The performance jump model for thin

TABLE 3.6
Effectiveness (Treatment Life) of Concrete Deck-Penetration
Sealing Treatments

Researchers/Organization

Treatment Life

(years)

Sherman et al. (1993), Texas DOT 5–7

Weyers et al. (1993), SHRP 5

Zemajtis and Weyers (1996), Virginia Tech 7

NYSDOT (2008) 4

Meggers (1998), Kansas DOT 8–11

Soriano (2002), South Dakota DOT 4–10

Sohanghpurwala (2006), NCHRP Report 558 5–7

Mamaghani et al. (2007), North Dakota DOT 5

Wenzlic (2007), Missouri DOT 3–10

Filice and Wong (2008), Alberta DOT 4

Krauss et al. (2009), NCHRP Project 20-07 5–10

Morse (2009), Illinois DOT 4–5

Source: Bowman and Moran (2015).

TABLE 3.7
Effectiveness of Deck Preventive Maintenance in Virginia

Activity Frequency

Deck Washing Yearly

Deck Sweeping Yearly

Scheduled Replacement of Pourable Joint Seal 6 years

Scheduled Replacement of Compression Joint Seal 10 years

Scheduled Installation of Thin Epoxy Overlay 15 years

Scheduled Installation of Concrete Overlay 30 years

Source: Sprinkel et al. (2005).

TABLE 3.8
Effectiveness of Bridge Deck Transverse Crack Repair

Treatment Type Expected Life

Seal top surface with: HMWM 15 years

Seal top surface with: Gravity fed resin 10 years

Seal top surface with: Silane 5 years

Seal top surface with: Reactive silicate 5 years

Source: ODOT (2007).

TABLE 3.9
Effectiveness of Bridge Deck Crack Repair

Treatment Type Expected Life

Seal with a silane sealer 5 years

Treat cracks with a high molecular weight

Methacrylate

15 years

Treat cracks with reactive silicate solution 5 years

Treat cracks with gravity fed resin 10 years

Source: ODOT (2007).
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HMA overlay effectiveness model was as follows
(Figure 3.7):

PJ~
71:63

42:01z(10{5:11|97:17PTC)

PJ 5 Performance jump experienced by a pavement
section after receiving the treatment, in PSI units.

TABLE 3.10
Effectiveness of Bridge Deck Surface Treatments (Expected Life or Application Interval)

Treatment Expected Life or Application Frequency

Seal deck with a silane sealer 4–5 years

Mill, 1.250 concrete overlay/inlay 15 years

Aggregate Popout Repair 5 years

Crack seal with a silane sealer 5 years

Crack treatment with methacrylate 15 years

Treat cracks with reactive silicate solution 5 years

Treat cracks with gravity fed resin 10 years

Pothole repair, sawcut and concrete patching 10 years

Pothole repair using HMA 3 years

Deck overlay, concrete (microsilica or latex modified) 15 years

Transverse crack: Seal top surface with HMWM 15 years

Transverse crack: Seal top surface with gravity fed resin 10 years

Transverse crack: Seal top surface with Silane 5 years

Transverse crack: Seal top surface with reactive silicate 5 years

Scheduled replacement of pourable joint seal1 6 years

Scheduled replacement of compression joint seal1 10 years

Scheduled installation of thin epoxy overlay1 15 years

Scheduled installation of concrete overlay1 30 years

Clean substructure 2 years

Replace wearing surface 12 years

Place membrane 12 years

Deck sealing 4 years

Deck overlay, thin bonded polymer system 10–15 years

Deck overlay, asphalt, with waterproof membrane 10–15 years

Deck overlay, rigid (e.g., silica fume, latex modified) 20–25 years

Deck Protection, Epoxy2 SS5 6–10 years; DS510–14 years

Deck Protection, Methacrylate2 SS5 9–13 years; DS513–17 years

Deck Protection, Urethane2 SS510–14 years; DS514–18 years

Sources: FHWA (2011); NYSDOT (2008); ODOT (2007); Sprinkel et al. (2005); Weyers et al. (1993).

Note: These are average values and ranges only. Actual treatment life will be different under different circumstances (location, work process or

equipment, material, expertise of labor and supervision, condition at time of treatment, etc.).
1Application frequency (not service life).
2SS 5 Sea Spray/Splash; DS - Deicer Salt Runoff Water.

TABLE 3.11
Crack Repair Effectiveness

Treatment Type Expected Life

Seal with a silane sealer 5 years

Treat cracks with a high molecular weight

Methacrylate

15 years

Treat cracks with reactive silicate solution 5 years

Treat cracks with gravity fed resin 10 years

Source: ODOT (2007).

TABLE 3.12
Effectiveness of Scaling Repair

Treatment Type Expected Life

Seal with a silane sealer 5 years

Mill surface and place 1 1/40 concrete

overlay/inlay (if scaling is severe;

more than 1/20 deep)

15 years

Source: ODOT (2007).

TABLE 3.13
Bridge Deck Treatment Service Lives

Treatment Type Service Life (years) Source

Latex Modified Concrete

overlays

20 Sprinkel (1993)

15 INDOT (2013)

Polymeric Overlays 15 INDOT (2013)

(10–15) MIDOT (2011)

Deck patching (3–10) MIDOT (2011)

Deck crack sealing 7 Sprinkel (1993)

3 Hagen (1995)

(1–4) MIDOT (2011)
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PTC is the pre-treatment or the ‘‘initial’’ condition in
PSI units.

The shape of the curve for thin overlay effectiveness
is S-shaped (Figure 3.7), indicating that the perfor-
mance jump changes in a variable fashion with the pre-
treatment condition. The curve begins with a ‘‘slow’’
phase (where the change in performance jump is small
when the pavement is in poor condition), indicating
that a poor-condition pavement benefits little from the
overlay treatment. Also, for pavements in fair condi-
tion, the change in the performance jump is significant
for a small change in the pavement condition. At the
third phase of the curve a small change in pavement
condition yields very little incremental benefit, obviously
because there is relatively ‘‘little room for improve-
ment’’ for pavements in that condition (Labi & Sinha,
2003). The 2001 JTRP study’s findings for thin HMA
overlay effectiveness appear to be consistent with those of

Figure 3.6 Short-term effectiveness of HMA minor structural overlays (Irfan, Khurshid, Labi & Flora, 2009).

Figure 3.7 Model for predicting thin HMA overlay treat-
ment effectiveness in PSI units (Labi & Sinha, 2003).
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previous research. In Mississippi, Rajagopal and
George (1991) found that surface treated pavements
experience 20–40% jump in condition (in terms of
PCR) after treatment, and that lower condition of the
pavement at time of treatment was associated with
higher jumps in pavement condition.

Microsurfacing effectiveness. Microsurfacing involves
laying of a bituminous mixture over the entire sur-
face of a pavement. Rolling of the laid material is not
required, as the mixture includes a hardening additive.
The 2001 JTRP study (Labi & Sinha, 2003) found that
the treatment yields a PSI jump of 0.76, with a standard
deviation of 0.25.

Crack sealing. Crack sealing involves the placement
of sealing material into surface cracks and aims to
protect the underlying pavement materials from wetting
and subsequent strength loss and pumping. A previous
JTRP study (Labi & Sinha, 2003) modeled the reduc-
tion in the rate of pavement deterioration due to crack
sealing. Table 3.14 presents the descriptive statistics of
the crack sealing effectiveness data used in that study.

The Deterioration Rate Reduction (DRR, in PSI/yr)
experienced by a crack-sealed pavement section is:

Pavements in poor condition:

If CSI=PTCv0:395, DRR~0

If CSI=PTC§0:395, DRR~0:2952{0:5932 � 0:1698CSI=PTC

Pavements in fair condition:

If CSI=PTCv0:395, DRR~0

If CSI=PTC§0:395, DRR~0:25810:4532 � 0:2313CSI=PTC

CSI 5 crack sealing intensity in $100/lane-mile; PTC 5 the

pre-treatment condition in PSI units

The above models show that for a given level of pave-
ment condition, increasing the level of crack sealing
treatment results in a lower value of the exponential
term (because C is a fraction between 0 and 1) and
consequently a reduced value of the negative term
(B is negative), leading to a reduced DRR. The models
also show that for a given level of pavement cracking
condition, there is a limit of the benefits of crack seal-
ing, as the curve appears to level off after a point. Also,
for a given level of maintenance, a lower initial pave-
ment condition leads to higher values of the exponential

term and ultimately, higher DRR. This suggests that
pavements in relatively poor condition (badly cracked)
stand to benefit more by a given level of crack sealing
treatment expenditure compared to those in relatively
fair condition (lightly cracked). An important assump-
tion is that a pavement in poor initial condition (as
reflected in a low PSI value) is in that condition mainly
because of the defect for which the treatment in
question (in this case, crack sealing) is carried out. This
assumption is made good by the fact that the pave-
ments selected for modeling of crack sealing effective-
ness were those that received only crack sealing and no
other treatment at time of maintenance. A plot of the
two crack sealing effectiveness models, using the fitted
values of the response variable, is shown in Figure 3.8.
Using this model the DRR afforded by crack sealing
on a given pavement can be determined, if the pave-
ment condition before treatment and the cost expended
per lane-mile of treatment, are known.

Chip sealing. A thin coat of aggregates and binder is
typically spread over flexible pavements (often, low-
volume non-Interstates) to keep them in motorable
condition and to defer major maintenance such as thin
overlay or rehabilitation. Chip seals heal surface cracks
and raveled surfaces and are used far more widely com-
pared to sand sealing. A previous JTRP study (Labi &
Sinha, 2003) analyzed the effectiveness of chip seals in
terms of the immediate jump in PSI due to the treat-
ment. Table 3.15 presents the descriptive statistics of
the relevant variables.

The performance jump, PJ, experienced by a pave-
ment section (that received only chip sealing) is:

PJ~0:7971|EXP{(PTC{3:1482)2

where PTC 5 pre-treatment condition, in PSI units.

This bell-shaped model form was chosen because
compared to other model forms considered it provided
the closest fit to the available data, and also because it
made it possible for the results to be interpreted from
an engineering viewpoint. The model is illustrated in
Figure 3.9.

The model suggests that pavements in relatively good
condition (high PSI value) are associated with lower
performance jump upon chip sealing, while those in
relatively poor condition (low PSI values) have higher
jumps in performance (see arc QR in Figure 3.9). How-
ever, the bell–shaped nature of the effectiveness function

TABLE 3.14
Crack Sealing Effectiveness–Descriptive Statistics

Crack Sealing Expenditure

($100s per lane-mile)

Initial Pavement

Condition (PSI)

Performance

Jump (PSI)

Maximum 13.42 4.20 0.21

Minimum 0.98 1.91 0.00

Mean 2.63 2.93 0.09

Standard Deviation 1.03 1.79 0.06

Coefficient of Variation 39% 62% 66%
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indicates that for pavements in very poor condition
(very low PSI values), performance jump due to chip
sealing increases with increasing initial pavement con-
dition, as suggested by the arc PQ in the figure. This
suggests that there exists a certain optimum level of
pavement condition for which chip sealing effectiveness
is a maximum. From the figure, this optimum value is
3.2 PSI units, and the corresponding maximum value
is 0.8 PSI units. As no performance jump is possible by
chip sealing a pavement in perfect condition, the effective-
ness curve is extrapolated to meet the abscissa axis at
PSI 5 5.

The findings for chip sealing effectiveness appear
similar to past research efforts. Using pavement condi-
tion rating (PCR) as the unit of performance jump
measurement, a study in Mississippi found that surface
treated pavements experience a 19–44% jump in perfor-
mance after treatment (Rajagopal & George, 1991).
That study also found that the lower the condition of
the pavement before treatment, the higher the perfor-
mance jump, which is consistent with the current find-
ings (see arc QR in Figure 3.9). However that study did
not provide an indication of diminishing performance
jump as pavement condition decreases beyond a certain

point (see arc PQ in Figure 3.9). The Supplemental Main-
tenance Effectiveness Research Program (SMERP) car-
ried out in Texas in 1997 found that the condition of a
pavement was a major determinant of the effectiveness
of chip sealing treatment that is administered to the
pavement (Syed, Freeman, & Smith, 1998). In contrast
to the findings of the Mississippi study, the SMERP
study found that pavements in good and fair initial
condition outperformed those in poor initial condition,
which appears consistent with the line PQ on Figure 3.9,
but the study did not state the range of pavement
conditions over which this observation was made.
Al-Mansour and Sinha (1994) determined that the gain
in PSI due to chip sealing was found to increase as pre-
treatment pavement condition increases; this is reflected
in the line PQ in Figure 3.8. This is consistent with the

Figure 3.8 Crack sealing effectiveness for cracked pavements in poor or fair condition.

TABLE 3.15
Descriptive Statistics for Chip Sealing Effectiveness

Statistic

Initial Pavement

Condition (PSI units)

Performance

Jump (PSI units)

Maximum 3.92 0.83

Minimum 2.53 0.14

Mean 3.44 0.44

Standard Deviation 0.39 0.19

Coefficient of Variation 11.25% 42.48%

Figure 3.9 Effectiveness model chip sealing.
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SMERP study (Syed et al., 1998). However, the range
of PSI’s for pavements considered by these studies
obviously did not go far enough to reveal the trend
indicated by arc QR in the figure.

Ultra-thin bonded wearing course (UBWC). UBWC is
a thin (0.375–0.75 inches) gap-graded modified HMA
layer placed on a polymer-modified emulsified asphalt
membrane in a single pass. Invented in France in 1986
and used in the US since 1992, UBWC provides a sur-
face with excellent macro texture qualities, good aggre-
gate retention, and excellent bonding of the very thin
surfacing to the underlying pavement (Hanson, 2001).
It has been used to correct surface distresses such as
raveling or minor cracking, or to restore surface char-
acteristics such as friction and smoothness. UBWC has
also been found useful in reducing tire splash on rainy
days as well as tire noise. Published experimental project
reports and inspections of recently completed projects
in many locations indicate good performance of the
UBWC. In Minnesota, UBWC has been used to extend
the longevity of both hot mix asphalt (HMA) and
Portland cement concrete (PCC) pavements. Based on
North Carolina’s experience with UBWC on poor-
quality jointed Portland cement concrete, a life of 6 to
10 years is attainable (Corley-Lay & Mastin, 2007).
The NC study found that the ultrathin bonded over-
lays resulted in a ‘‘dramatic bump’’ in the pavement
condition ratings (PCRs); the rate of decline of the
PCR after resurfacing with UBWC is 0.8–3.0 points/
year. Li et al. (2013) evaluated the surface properties of
UBWC pavements based on surface friction, and sur-
face macrotexture, and found that UBWC is ‘‘capable
of providing sufficient and consistent skidding resis-
tance to allow quick opening to traffic. The study con-
cluded that UBWC can provide sound, durable surface
friction, but requires highly polish-resistant aggre-
gates.’’ Ji, Nantung, and Tompkins (2015) investi-
gated the functional and structural benefits of UBWC
applications using the Pavement Condition Rating (PCR),
Structural Number (SN), and International Roughness
Index (IRI) for in situ performance evaluation on
UBWC and the four control sections (SR-58, SR-69,
SR-68, and SR-145). They found that UBWC generally
addresses pavement distresses and can extend pave-
ment life and is cost-effective if it provides more than
3.6 years of service life.

3.6.4 Pavements—Long-Term Effectiveness of Surface
Treatments

The Michigan Department of Transportation (MDOT)
is generally recognized as a leader in the United States
in developing and implementing PM programs.
Daleiden et al. (1994), Perera and Kohn (1999),
Hall et al. (2002), Perera and Kohn (2006), Ahmed
(2009), and Carvalho, Ayres, Shirazi, Selezneva, and
Darter (2011) evaluated the effectiveness of flexible
pavement treatments using data from LTPP program
SPS-5 test sections. Ahmed et al. (2010) found that

(a) the treatments involving 5-inch overlays demon-
strated higher effectiveness (in terms of the estimated
treatment life) compared to those involving 2-inch
overlays by 47% on average, and (b) the rate of
pavement deterioration after the treatment in the long-
term is significantly influenced by the pre-treatment
condition. Table 3.16 presents the effectiveness of vari-
ous pavement maintenance in terms of treatment life.
Table 3.17 presents the initial effect of SPS-3 main-
tenance treatments on IRI and rutting (Morian, Epps,
& Gibson, 1997; Morian et al., 1998), and Table 3.18

TABLE 3.16
Pavement Maintenance Treatment Service Lives

Treatment Type

Service Life

(years) Source

Crack sealing 2.2 (Feighan et al., 1986)

(3–5) (Brown, 1988)

(6-8) (Morian et al., 1997)

3 (INDOT, 2013a)

Chip sealing (1–6) (Shuler, 1984)

4 (Feighan et al., 1986)

(3–6) (Parker, 1993)

(4–7) (Raza, 1994)

(6–10) (Morian et al., 1997)

4 (INDOT, 2013a)

Slurry Seal (1–6) (Shuler, 1984)

(3–6) (Brown, 1988)

(7–10) (Morian et al., 1997)

Microsurfacing (4–6) (Shuler, 1984)

(5–7) (Raza, 1994)

7 (Irfan, 2010)

6 (Bilal, 2010)

8 (INDOT, 2013a)

HMA overlay, PM ,6 (Shuler, 1984)

8 (Joseph, 1992)

(8–11) (Raza, 1994)

(6–11) (Morian et al., 1997)

9 (INDOT, 2013a)

HMA overlay Minor

Structural

12 (Irfan, 2010)

15 (INDOT, 2013a)

HMA overlay 4–5 in

(Structural)

11 (Irfan, 2010)

18 (INDOT, 2013a)

Asphalt pavement patching (1–3) (Johnson, 2000)

PCCP Patching 10 (Irfan, 2010)

8 (Ahmed, 2012)

Diamond Grinding (16–17) (Caltrans, 2005)

14 (Caltrans, 2008)

Repair PCCP & HMA

Overlay

14 (Irfan, 2010)

15 (Ahmed, 2012)

Load Transfer Restoration

(Dowel Bar Retrofit)

15 (Pierce et al., 2003)

(10–15) (Gulden & Brown,

1983, 1985)

(8–15) (Caltrans, 2008)
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shows the long-term effect of SPS-3 maintenance treat-
ments on IRI and Rutting (Morian et al., 1997).
In addition, Table 3.19 and Table 3.20 present the

pavement condition at the pre- and post-rehabilitation
stages, for pavements in LTPP’s SPS-5 and SPS-6
experiments (Morian et al., 1997). Table 3.21 presents
the effectiveness of pavement maintenance in terms of
treatment life, reported by various authors. Table 3.22
presents the optimum time for applying selected treat-
ments on flexible pavements (Hicks, Seeds, & Peshkin,
2000) and Table 3.23 presents the treatment applica-
tion thresholds for flexible and composite pavements at
MDOT (2000). In Chapter 52 of the INDOT Design
Manual, typical performance lives of various treat-
ments, when applied to different types of pavements,
are defined, as shown in Table 3.24.

Wang (2013) analyzed LTPP data and determined
that ‘‘chip seals have little effectiveness in rutting pre-
vention; slurry seals demonstrate effectiveness in
longitudinal cracking; crack seals show effectiveness
in fatigue cracking.’’ They also investigated the effective-
ness of preservation treatments on surface friction.
They also found that slurry seal yields a substantially
higher friction number compared to the control
section. The influence of various factors on the long-
term loss of pavement friction, was also analyzed, and
freeze index, precipitation, and pavement roughness
were found to exhibit significant correlation to the
friction number.

TABLE 3.17
Initial Effect of SPS-3 Maintenance Treatments on IRI and
Rutting (Morian et al., 1997)

Treatment Type

IRI Drop, m/km

(Std Dev)

Rutting Drop,

mm (Std Dev)

Crack sealing 0.036 (0.111) 0.3 (2.9)

Chip sealing 0.064 (0.118) 1 (3.2)

Slurry Seal 0.044 (0.222) 0.0 (2.8)

Thin HMA overlay 0.191 (0.531) 0.1 (6.5)

TABLE 3.18
Long-Term Effect of SPS-3 Maintenance Treatments on IRI and
Rutting (Morian et al., 1997)

Treatment Type

IRI

(control versus

treatment), m/km

Rutting

(control versus

treatment), mm

Crack sealing 0.02 1.2

Chip sealing 0.07 1.3

Slurry Seal 0.02 0.7

Thin HMA overlay 0.32 6.7

TABLE 3.19
Pavement Condition Pre- and Post-Rehabilitation, SPS-5 (Morian et al., 1998)

SPS-5 Treatments

Pre-Treatment Post-Treatment

IRI (m/km) PSI (0-5 scale) IRI (m/km) PSI (0-5 scale)

SPS-501: Control 1.40 3.46 1.47 3.38

SPS-502: 2-in overlay, recycled mix, minimal prep 1.83 3.03 1.01 3.94

SPS-503: 5-in overlay, recycled mix, minimal prep 1.76 3.10 0.94 4.04

SPS-504: 5-in overlay, virgin mix, minimal prep 1.76 3.10 0.96 4.01

SPS-505: 2-in overlay, virgin mix, minimal prep 1.58 3.27 0.93 4.05

SPS-506: 2-in overlay, virgin mix, intensive prep 1.51 3.34 0.93 4.05

SPS-507: 5-in overlay, virgin mix, intensive prep 1.68 3.17 0.96 4.01

SPS-508: 5-in overlay, recycled mix, intensive prep 1.59 3.26 0.89 4.11

SPS-509: 2-in overlay, recycled mix, intensive prep 1.79 3.07 0.96 4.01

TABLE 3.20
Pavement Condition Pre- and Post-Rehabilitation, SPS-6 (Morian et al., 2003)

SPS-6 Treatments

Pre-Treatment Post-Treatment

IRI (m/km) PSI (0-5 scale) IRI (m/km) PSI (0-5 scale)

SPS-601: Control 2.39 2.97 2.54 2.82

SPS-602: Non-overlay minimal repair 2.26 3.12 1.82 3.63

SPS-603: 4-in overlay with minimal preparation 2.15 3.20 0.98 4.49

SPS-604: 4-in saw-and-seal overlay, min. prep 2.20 3.20 1.00 4.47

SPS-605: Non-overlay intensive repair 2.40 3.02 1.36 4.10

SPS-606: 4-in overlay with intensive preparation 2.27 3.09 1.00 4.47

SPS-607: 4-in overlay with crack/break-and-seat 2.08 3.27 1.08 4.38
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TABLE 3.21
Effectiveness of Pavement Maintenance in Terms of Treatment Life

Treatment Description Effectiveness

Saw & seal HMA

Overlay

Saw and seal reflection joints locations in HMA-PCC

composite pavement

8 years (NYSDOT, 1992)

12.4 years (Morian et al., 2003)

HMA Minor Structural

Overlay1

A non-structural treatment that involves placing hot

asphaltic concrete overlay approx. 2-4 inches

thickness

11–14 years, Int., 13–17 years, non-Int. (Bardaka et al., 2014)2

6–15 years, avg. 8 years, (Irfan, Khurshid, Labi, & Flora, 2009)

PCCP Patching1 A treatment that repairs existing damaged slabs or

exiting repaired patches that have deteriorated

8 years (Hall, Correa, Carpenter, & Elliott, 2001)

5–15 years (Khurshid, Irfan & Labi, 2011)

1Treatment effectiveness generally depends on existing pavement strength, pre-treatment preparation of pavement surface, post-treatment traffic

volume and climate severity, treatment intensity (overlay thickness).
2Is a function of pre-treatment condition).

TABLE 3.22
Optimum Time for Applying Selected Treatments on Flexible
Pavements (Hicks et al., 2000)

Treatment Years

Fog Seals 1–3

Crack Seals 2–4

Chip Seals 5–7

Slurry Seals 5–7

Thin Overlays (including surface recycling) 5–10

TABLE 3.23
Flexible and Composite Pavement Treatment Thresholds
(MDOT, 2000)

Treatment

Pavement Surface

Material Type

Life Extension

(Years)

Surface Treatment

Non-Structural

Bituminous Overlay

Flexible 5–10

Composite 4–9

Surface Milling With

Non-Structural

Bituminous Overlay

Flexible 3–6 (Single Seal)

4–7 (Double Seal)

Composite 3–6 Double Seal

Chip Seal Flexible 3–5 (Single Course)

4–6 (Multiple Course)

Composite NA

Microsurfacing Flexible Up to 3

Composite Up to 3

Crack Sealing and Crack

Filling

Flexible Up to 3

Composite Up to 3

Ultra-Thin Bituminous

Overlay

Flexible 3–5

Composite 3–5

TABLE 3.24
Treatment Design Lives (INDOT, 2009)

Pavement Treatment Design Life (years)

New PCCP 30

Concrete Pavement Over Existing Pavement 25

New Full Depth HMA Pavement 20

HMA Overlay over Rubblized PCCP 20

HMA Overlay over Asphalt Pavement 15

HMA Overlay over Cracked and Seated PCCP 15

HMA Overlay over Jointed Concrete 12

PCCP Joint Sealing 8

Mill and Overlay of Existing Asphalt 8

Concrete Pavement Rehabilitation (CPR) Techniques 7

Microsurface 6

Chip Seal 4

Asphalt Crack Sealing 3
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4. METHODOLOGY FOR THE ANALYSIS

4.1 Data Collection and Collation

4.1.1 Pavements

The study involved data collection and collation
from different sources and preparation of input data for
developing asset performance. The data sources include
road inventory data, bridge condition data, pavement
condition data and contract data, etc. There are over
11,538 pavement segments in the inventory dataset.
Each pavement segment is identified based on milepost
in the pavement referencing system. The milepost of
each segment is unique and it can be used as the basis
for merging multiple datasets into one comprehensive
dataset. The inventory data contains pavement char-
acteristics, including length, number of lanes, pavement
type, route number and functional classes: Interstate (IS),
NHS Non-Interstate, and Non-NHS. This information
can be used to group pavement into families. The pave-
ment condition dataset contains measurements of rough-
ness, rutting and PCR inspected annually on Interstate
routes, and every two years on NHS Non-Interstate and
Non-NHS highways. The treatment-specific performance
jump post-treatment effects models were developed using
the merged dataset assembled from the condition data
and contract data. The contract data in the INDOT
database contained contracts that were carried out before
2006. The dataset includes contract number, contract
starting and ending date, contract location, type of
pavement work, contract cost and fiscal year.

4.1.2 Bridges

The study used data primarily from the National
Bridge Inventory (NBI) database. The NBI data are
cross-sectional and include bridge information from
1992 to 2014. The bridge components are inspected on
a 2-year cycle and during inspections, condition ratings
are assigned to each component. The reference data
included the highway class, milepost, and the coordi-
nates (longitude and latitude). Contract data were

obtained from the SPMS database. Data from the two
sources were merged.

4.2 General Procedure for Assessing Maintenance
Effectiveness

The three basic sequential issues associated with the
evaluation of maintenance treatment effectiveness are
as follows (Sinha & Labi, in press):

(a) How should effectiveness be measured, and what per-

formance indicator should be used to measure such
effectiveness?

(b) On what grounds can the treatment or schedule be deemed
effective?

(c) If the maintenance treatment or schedule is found to be

effective, (i) what is the probability distribution of such
effectiveness, and (ii) how could such effectiveness be
modeled as a function of attributes of the asset, treatment,

and the environment?

Therefore, the steps for effectiveness evaluation can
be represented as shown in Figure 4.1. The material
presented below is culled from Sinha & Labi (in press).

4.2.1 Step 1: How should the ‘‘maintenance effect’’ be
measured?

For purposes of this study, at least two measures of
effectiveness were considered: performance jump (short-
term) and treatment life (long-term). For each asset that
received a given treatment, the performance jump was
measured using the methodology described in Section
3.2.2 of Chapter 3, and the treatment life was measured
using the methodology described in Section 3.3.2 of
Chapter 3.

4.2.2 Step 2: Which performance indicator should be used
to measure such impact?

Treatments to bridge surfaces or pavements are applied
with the intention of addressing at least one specific
distress. As such, the effectiveness of such treatments
should be evaluated only in terms of the defects or

Figure 4.1 Steps for assessing the short- or long-term effectiveness of asset surface maintenance treatments.
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distresses it is meant to address. At this step, therefore,
the appropriate short term (performance jump) PIs
were identified for pavements and bridges separately,
for example, International Roughness Index (IRI), rut-
ting, and cracking index for pavements; NBI index for
bridges surface, and standard treatments for each of
these two asset types.

4.2.3 Step 3: Calculate MOE values for each asset that
received the treatment

The MOE value, in terms of the selected performance
indicator, is determined for each asset that received the
treatment under investigation. Therefore, in this step,
average values of the short-term effectiveness (PJ) and
the long-term effectiveness (treatment life) were derived
for each type of treatment at each instance of applica-
tion to an asset. In addition, probability distributions
were establish to ascertain the statistical nature of the
PJ and service life observations, for example, shape of
the distribution, variance, and so on.

4.2.4 Step 4: Carry out test of hypothesis to ascertain
whether the treatment was effective.

This step of the analysis uses the MOE values (in
terms of the selected PI) to evaluate whether the treat-
ment was significantly effective from a statistical view-
point, The null hypothesis (that the mean MOE value is
statistically equal to zero (that is, the treatment was
not effective)) is tested against the alternate hypothesis
(that the mean exceeds zero (that is, the treatment was
effective)), at the specified level of confidence.

As the reported values of the performance indicators
(and consequently, MOE values) are average values
taken across a typically large number of assets, the dis-
tribution of the MOE values can be considered as a
statistical sampling distribution of means. Based on this
assumption, the null hypothesis (H0) and alternate
hypothesis (HA) for the treatment effectiveness, in
terms of the selected MOE and PI, can be formulated as
follows:

H0: mMOE ƒ 0 the treatment was not effectiveð Þ

HA: mMOE w 0 the treatment was effectiveð Þ

This is a 1-sided hypothesis test with the ‘‘rejection
region’’ in the upper tail. For example, assuming a
normal distribution of the means of the entire popula-
tion and 95% level of confidence, the critical value of the
test statistic is given by: Za 5 Z0.05 5 1.645.

The calculated value of the test statistic is given
by: Z* 5 (mMOE – 0)/(s/!n), where s is the standard
deviation, and n is the sample size (number of instances
of the treatment application), mMOE is the mean value of
the measure of effectiveness in terms of the perfor-
mance indicator.

Figure 4.2 illustrates the region for rejecting the null
hypothesis: If the calculated value of the test statistic

(tC or ZC) exceeds the critical value of the test statistic
(ta or Za) then the former falls in the null-hypothesis
rejection region, thus suggesting that the treatments
yielded MOEs that were significantly greater than
zero and therefore the treatment was effective at that
confidence level. On the other hand, if the calculated
value of the test statistic does not exceed the critical
value of the test statistic, then the former does not fall
in the hypothesis rejection region, thus implying that
there is no evidence to suggest that the treatment yiel-
ded MOEs that were significantly greater than zero
and therefore, it cannot be concluded that the treat-
ment was effective at that confidence level (Sinha and
Labi, in print).

4.2.5 Step 5: Statistical Modeling of Treatment
Effectiveness

Step 5A. In this step, the average value of the mea-
sure of effectiveness is calculated using the field data
regarding asset condition before and after the specific
instance of each treatment.

Step 5B. In this step, the probability distribution is
established using the field data desired values of the
measures of effectiveness. From the probability distri-
bution and plot, the shape of the distribution and its
parameters are determined.

Step 5C

(i) Was the treatment effective?
After confirming the effectiveness of the maintenance
treatment in Step 3 (Section 4.2.3), the next step is to
use the multiple values of the MOEs to make a broader
statement about the effectiveness of the treatment. This
can be done using at least one of three primary forms:
a simple average value, a probability distribution, or
statistical model. This step is needed because there was
significant variation in the maintenance effects data
(that is, the performance jumps), and it was hypothe-
sized that some of the variation could be explained
better if other explanatory factors were accounted for.
Such accounting took the form of developing a model

Figure 4.2 Region for rejecting the null hypotheses that the
treatment was effective—illustration.
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for the treatment effectiveness as a function of attributes

of the treatment, the asset, and the operating environ-

ment. Using data from the pavement sections and

bridges in Indiana, the study demonstrated how the

impacts were measured, for each of the standard

treatments. Using statistical hypothesis testing, the

study ascertained whether the impacts of each treat-

ment type were considered significant. For example,

does thin HMA overlay (treatment type) significantly

reduce rutting (performance indicator) in terms of

performance jump (MOE)?

(ii) Which significant factors affect the effectiveness of the

treatment?

It is sought not only to use a regression model to

predict the treatment effectiveness as a function of

explanatory factors but also to determine whether each

factor influences significantly the treatment effective-

ness at a given level of confidence. For each factor,

this may be done by testing the null hypothesis that

the explanatory factor is not significant (its coefficient

is statistically equal to zero) versus the alternate hypo-

thesis that the explanatory factor is significant (its

coefficient is statistically not equal to zero), at the speci-

fied level of statistical significance. This can be formu-

lated as follows:

H0: bXi~0 the explanatory factor has no effect onð
the treatment effectivenessÞ

HA: bXi=0 the explanatory factor has an effect onð
the treatment effectivenessÞ

This is a 2-sided hypothesis test with the ‘‘rejection

region’’ in both lower and upper tails. For example,

assuming a normal distribution of the means of the entire

population and 95% level of confidence, the critical value

of the test statistic is given by: Za/2 5 Z0.025.

The calculated value of the test statistic is given by:

Z* 5 (bX, MEAN – 0)/(s/!n), where s is the standard

deviation, and n is the sample size (number of obser-

vations), bX, MEAN is the mean value of the coefficient

of the explanatory factor.

Figure 4.3 illustrates the regions for rejecting the null

hypothesis: If the calculated value of the test statistic

(tC or ZC) exceeds the critical value of the test statistic

(ta/2 or Za/2) then the former falls in the null-hypothesis
rejection region, thus suggesting that the coefficient of
the explanatory variable is significantly different than
zero and therefore the explanatory factor has an effect
on the treatment effectiveness at that confidence level.
On the other hand, if the calculated value of the test
statistic does not exceed the critical value of the test
statistic, then the former does not fall in the hypothesis
rejection region, thus implying that there is no evidence
to suggest that the coefficient of the explanatory vari-
able is significantly different than zero and therefore,
it cannot be concluded that the explanatory factor has
an effect on the treatment effectiveness at the given
level of confidence.

(iii) Sensitivity analysis
This step assessed, for each treatment, the sensitivity of
its effectiveness with respect to changes in the signifi-
cant explanatory factors identified at Step 3. This result
can help in policy formulation regarding the applica-
tion of each treatment.

(iv) Cost-effectiveness analysis
This step assessed, for each treatment, the cost, and the
cost-effectiveness. Comparisons were then made across
the treatment types and functional classes.

4.3 Application of the Methodology to Pavements

4.3.1 Modeling the Pavement Performance Jump

The general form of the treatment-specific perfor-
mance jump model is:

Performance Jump, PJ~f Xð Þ

where PJ 5 Performance jump (IRI (in/mi) ) at the time
of treatment application; X 5 vector of variables repre-
senting the factors that affect performance jump.

Performance jump models were developed for each
treatment type and for each pavement family. Perfor-
mance jump is defined in the current study as the
improvement in the pavement condition rating (reduc-
tion in IRI) after a pavement treatment is carried out.
Performance (IRI) jump is often related to the IRI
before the treatment: the higher the IRI before the
treatment, the greater the IRI jump will typically be.

The jump models were investigated for various treat-
ments in the current study with IRI as the dependent
variable and pretreatment IRI as the independent
variable, using the following functional forms:

Linear form: IRI Jump~b0zb1 � Pre{treatment IRI

Logarithm form: IRI Jump~b0zb1�

ln (Pre{treatment IRI)

For rehabilitation and replacement (functional and
structural overlay) treatments, the logarithm form was
adopted in developing jump models, whereas linear
functional form was used for jump models of pre-
ventive maintenance (PM overlay, patching, etc.).
The main difference between these two functional

Figure 4.3 Region for rejecting the null hypotheses that a
given explanatory variable is a significant factor of treatment
effectiveness.
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forms is that when the condition is poor (high IRI
value), the estimated IRI jump is higher than the
actual jump in the linear model than it is in the loga-
rithm model. Typically, preventive maintenance treat-
ment such as HMA thin overlay, microsurfacing, and
PCC patching are more effective in addressing minor
defects than in improving pavement in poor condi-
tion. The reduction rate of IRI is therefore decreasing
as pretreatment IRI increases, the logarithm func-
tional form is capable of capturing this pattern. The
performance jump model results for different treat-
ments and pavement families are presented in the
results sections of this report.

5. RESULTS AND DISCUSSION—BRIDGES

5.1 Bridge Deck Surface Treatments—Performance
Jump

The following sections discuss the performance jump
effects earned from LMC overlay and polymeric
overlay, two common treatments at INDOT.

5.1.1 Performance Jump due to Bridge Latex-Modified
Concrete (LMC) Overlay Treatment

(a) Background. As stated in Indiana’s Design
Manual (INDOT, 2013a, 2013b), a 1L inch thick LMC
overlay is placed after 1/4 inch of the deck is removed,
producing a net 1K-inch grade increase. A 1/4 inch layer
of the original top layer of the deck is replaced (the
bottom part remains the same), LMC overlays are
intended to improve the deck condition rating.

The values of post-treatment condition, pre-treatment
condition, and performance jump were summarized using
data from three databases: (a) NBI (this provides deck

condition rating data annually), (b) SPMS (this pro-
vides the time of LMC overlay implementation, and
(c) Wearing surface condition data sets. The thresholds
at which LMC overlays were carried out represented
historical practice.

Figure 5.1 presents the distribution of deck condi-
tion rating changes resulting from LMC overlays. The
pre-hyphen and post-hyphen digits represent the pre-
treatment and post-treatment conditions, respectively,
of the deck. The most frequent combinations are 7-7,
6-7, 6-6, 5-7, and 6-8. For certain observations, the
deck condition does not seem to improve after the deck
received the LMC overlay, for example, 5-5, 6-6, and 7-7.
This could be because changes in the wearing course
may not always translate into changes in the overall
deck condition.

(b) Testing the Statistical Significance of the Mea-
sured Jumps in Deck Surface Performance (adapted
from Sinha & Labi, in press). In this step, average values
of the PJ were derived for each bridge deck that received
the Latex-Modified Concrete (LMC) Overlay treatment.
In addition, the mean and variance of the PJs were
calculated. This step assesses whether the treatment was
significantly effective from a statistical viewpoint, based
on the MOE (performance jump) that is expressed terms
of the selected PI (NBI rating). This was done by testing
the null hypothesis that the mean performance jump is
statistically equal to zero (the LMC treatment was not
effective) versus the alternate hypothesis that the mean
exceeds zero (the LMC treatment was effective), at the
specified level of statistical significance (95%). As the
measured PJs are average values taken across hundreds
of bridge decks, the distribution of the PJ values can be
considered as a statistical sampling distribution of means.
Based on this assumption, the null hypothesis (H0) and

Figure 5.1 Distribution of deck condition changes (pre- and post-LMC overlay).
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alternate hypothesis (HA) for the treatment effectiveness,
in terms of the selected MOE and PI, can be formulated
as follows:

H0: mPJƒ0 the LMC treatment was not effectiveð Þ

HA: mPJw0 the LMC treatment was effectiveð Þ

This is a 1-sided hypothesis test with the ‘‘rejection
region’’ in the upper tail. For example, assuming a
normal distribution of the means of the entire popula-
tion and 95% level of confidence, the critical value of the
test statistic is given by: Za 5 Z0.05 5 1.645.

The calculated value of the test statistic is given by:
Z* 5 (mPJ – 0)/(s/!n), where s is the standard devia-
tion, and n is the sample size (number of instances of
the treatment application), mPJ is the mean value of the
measure of effectiveness in terms of the performance
indicator.

From the data, the z-value is calculated as:

z~
�X{m

s=
ffiffiffi
n
p ~

0:82105{0

0:90123=
ffiffiffiffiffiffiffiffi
380
p ~17:7593

ðthe corresponding p-valuev0:0001Þ

For 99% confidence interval a~0:01ð Þ, the critical
value z�~2:33v17:7593~z.

The calculated value of the test statistic does not
exceed the critical value of the test statistic. The former
falls in the hypothesis rejection region, thus implying
that there is evidence to suggest that the LMC treat-
ment yielded performance jumps that were significantly
greater than zero and therefore, it can be concluded
that the treatment was effective at that confidence
level. (See Figure 5.2.)

(c) Developing a Model to Predict the Jump in
Performance

Part 1. Preliminary Analysis. In order to identify
the nature of relationship between the dependent vari-
able and all the explanatory variables that were hypo-
thesized to influence performance jump, a preliminary
assessment was carried out by developing a correlation

matrix and other statistical diagnostics (scatter plots,
and descriptive statistics), see Tables 5.1 through 5.3.

As can be seen in the correlation matrix, the correla-
tion of deck area with letting amount is significant
which means that these two variables cannot be used as
explanatory variables in the same model. The same
explanation applies to other variables in the table.
Different functional forms of age (linear, exponential,
polynomial) in relation to performance jump were also
investigated.

Part 2. Statistical Modeling. The best model was
realized when the independent variable was transformed
to its natural logarithm. Two alternative models were
developed.

Model with pre-treatment condition as the only
independent variable. The model developed using pre-
treatment condition only as the independent variable is:

PJDeck~8:312{4:164| ln Pre{treatment Deck Conditionð Þ

where PJDeck is the performance jump of the deck
condition due to the LMC overlay, and ln(Pre –
treatment Deck Condition) is natural logarithm of the
deck condition prior to the implementation of the LMC
overlay, where Pre – treatment Deck Condition e{4,5,6,7,8}.
Table 5.3 presents the details of the model estimation,
and Figure 5.4 illustrates the model plot.

The model results suggest that the condition of the
bridge deck prior to the treatment is statistically signi-
ficant (p-value almost zero) and the sign of the para-
meter is negative. This indicates that the higher the
pre-treatment deck condition, the smaller the jump in
the deck condition subsequent to the treatment (see
Figure 5.3).

Model with pre-treatment condition and deck area as
the independent variables. The model developed using
pre-treatment condition and deck area as the indepen-
dent variables is:

PJDeck~8:417{4:186| ln Pretreatment Deck Conditionð Þ

{0:74(Deck Area)

where PJDec, and Pre_treatment Deck Condition are as
defined previously. Deck Area is the total area of the
deck in 1000’s of m2. Table 5.4 presents the details of
the model estimation.

The model results suggest that the condition of the
bridge deck prior to the treatment is statistically signifi-
cant with a negative sign of the parameter. This indicates
that the higher the pre-treatment deck condition, the
smaller the jump in the deck condition subsequent to the
treatment. Also, the Deck Area is statistically signifi-
cant with a negative parameter; this suggests that LMC
applied to smaller decks generally yield higher perfor-
mance jumps compared to the same treatment applied
to larger decks. This is a rather curious observation.

(d) Discussion. In this report, we document the
impact of the LMC overlay on the deck condition.
It will be useful to investigate, if data were available, the

Figure 5.2 Region for rejecting the null hypotheses in Step 4—
illustration.
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TABLE 5.1
Descriptive Statistics of Potentially Influential Variables: LMC Performance Jump

Variable Mean Std Dev Minimum Maximum

Deck_area (m2) 917.64 836.19 99.56 6,460

Func_Class 7.5220994 4.571477 1 19

Deck_Age 34.2928177 12.1729186 15 98

Letting_Amount 433,078.83 367,710.08 0 3,128,082

Overlay Intensity (Unit Cost, $/m2) 634.28 490.06 0 3776.68

Finish Date 2002 N.A. 1995 2010

NBI Rating before the overlay 6.19 0.83 4 8

NBI Rating after the overlay 6.98 0.66 5 9

Performance Jump 0.79 0.90 0 5

TABLE 5.2
Correlation Matrix for the Factors that Potentially Affect LMC Effectiveness

Pearson Correlation Coefficients, N 5 358 Prob . |r| under H0: Rho50

Deck_area PTDC Deck_Age Finish_Date Letting_Amount

Deck_area 1.00000 -0.05835 -0.13632 0.00171 0.54085

0.2682 0.0094 0.9742 ,.0001

Pre_Treatment Deck Condition (PTDC) or

NBI Rating before the overlay

-0.05835 1.00000 -0.10096 -0.30196 -0.11614

0.2682 0.0550 ,.0001 0.0271

Deck_Age -0.13632 -0.10096 1.00000 0.05944 0.04803

0.0094 0.0550 0.2593 0.3622

Finish_Date 0.00171 -0.30196 0.05944 1.00000 0.03215

0.9742 ,.0001 0.2593 0.5420

Letting_Amount 0.54085 -0.11614 0.04803 0.03215 1.00000

,.0001 0.0271 0.3622 0.5420

TABLE 5.3
Performance Jump Model I—Results

Regression Statistics

R Square 0.5546

Adjusted R Square 0.5454

Observations 358

Coefficients Standard Error t Stat p-value

Intercept 8.312 0.367 22.66 ,0.001

LN(Pre Deck) -4.164 0.201 -20.72 ,0.001

Deck area (1000 m2) 8.312 0.367 22.66 ,0.001

Figure 5.3 Relationship between deck performance jump and pre-treatment condition.
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impact on the deck wearing surface condition. This is
because the warrants for LMC application are based
not on the deck condition but the wearing surface
condition. Figure 5.5 presents the distribution of the
wearing surface conditions at which LMC overlay has
been applied in the past. The figure shows that most
LMC overlays were carried out when the wearing
surface condition rating was 5, and nearly 25% were
carried out at a condition rating of 6.

5.1.2 Performance Jump due to Bridge Polymeric
Overlay Treatment

Polymeric overlay (or polymer overlay) has not been
used much by INDOT until recently. For this reason,
there were inadequate observations in the database, pre-
cluding the development of statistical models. INDOT
maintains that a polymeric overlay does not improve
the deck condition per se, but deck patching and other
surface repair work prior to the overlay could lead to
moderate increases in the deck condition.

Given the rather few observations, the polymeric
overlay trigger values (regarding the wearing surface
condition) can be 5, 6, 7, or 8. The effectiveness of the
treatment (in terms of the change in deck condition)

were assessed as follows (coded as ‘‘pretreatment rating –
post treatment rating – relative frequency’’): 8-8 (13%),
7-8 (9%), 7-7 (30%), 6-7 (21%), 6-6 (18%), and 5-6 (9%).
With regard to the post-treatment condition of the deck
wearing surface, it is assumed (similar to the case for
LMC overlays) that the wearing surface condition
returns to 9 after a polymeric overlay. In future research,
it will be needed to verify this assumption using actual
field observations.

5.2 Bridge Deck Surface Treatments—Post-Treatment
Performance-vs.-Age Trend and Treatment Life

Deterioration rates are expected to be reduced by the
treatments as the overlay protects the deck by providing
a non-permeable ‘‘sacrificial’’ layer that prevents water
and chlorides from penetrating to the reinforcing steel
in the deck (Indiana Design Manual (INDOT, 2013a,
2013b).

5.2.1 Latex-Modified Concrete (LMC) Overlay

For this treatment, the post-treatment deck perfor-
mance uses the same deterioration curves as shown in pre-
vious section. However, the post-treatment deterioration

Figure 5.4 Relationship between deck performance jump and deck area, for different levels of pre-treatment condition.

TABLE 5.4
Performance Jump Model II—Results (Figure 5.4)

Regression Statistics

R Square 0.5525

Adjusted R Square 0.5499

Observations 358

Coefficients Standard Error t Stat p-value

Intercept 8.417 0.368 22.86 ,0.001

LN(Pre-treatment Deck Condition) -4.186 0.200 -20.90 ,0.001

Deck area (1000s m2) -0.000074 0.000034 -2.15 0.032
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restarts from an elevated condition level that is esti-
mated using the performance jump model developed
in this study. This method does not reflect the decrease
in the deterioration rates, but provides an alternative
way to measure the deck service life extension. Accord-
ing to the Indiana Design Manual (INDOT, 2013a,
2013b), LMC overlays typically provide deck protec-
tion for 15 ¡ 5 years. The post-treatment condition
of the deck wearing surface is estimated using models
that account for the pre-treatment condition of the
deck. For example, for a pre-treatment deck condi-
tion of 5, when the LMC overlay is carried out, the
post-treatment condition of the wearing surface would
be determined using 5 as the model input for that var-
iable. This is found to lead to faster post-treatment
deterioration compared with the pre-treatment deck
conditions of 7 to 9.

5.2.2 Polymeric Overlay

The effect of this treatment on the deck life exten-
sion was estimated based on very few observations. For
each bridge deck that received the treatment, the post-
treatment deck condition for each year after the treat-
ment was tracked. Other bridges that have similar
characteristics (highway district, functional class, ADT,
truck percentage, etc.) to that bridge but did not receive
the treatment, were identified using the NBI database.
The average number of years that each bridge stayed in a
certain condition was determined (for example, condition
8 for t1 years, 7 for t2 years, 6 for t3 years). These were
averaged and compared with the life of similar decks
that had received a polymeric overlay. It was deter-
mined, within the sample size constraints, that the
polymeric overlay provides a 5–8 years extension of the
deck service life, and that this extension is influenced
by the pre-treatment deck condition. According to
the Indiana Design Manual (INDOT, 2013a, 2013b),
polymeric overlays offer an average service life of
approximately 10 years.

5.3 Bridge Treatments—Costs

Cost models were estimated using data from the
SPMS database. This database contains contract infor-
mation over the period spanning 1994 to 2010. The Site
Manager database contains detailed data on contract
pay item costs, from 2009 to 2012. The costs that occur
in different years were converted into their equivalent
constant dollars of year 2010, using the National
Highway Construction Cost Index (NHCCI).

5.3.1 LMC Overlay Cost

The reported cost of LMC overlay represents not
only for the LMC wearing surface but also hydro-
demolition and deck patching and asphalt wedging of
the approach roadway (because LMC overlays raise
the bridge driving surface). These are preparatory or
accompanying work activities for this type of overlay).
For this reason, the LMC overlay unit cost is likely to
be affected by the pre-treatment deck condition because
a higher level of preparatory work will likely be required
when the LMC overlay is to be placed on a deck in
poorer condition. Besides, the unit cost of construction
work is often influenced by scale economies. In this case,
specifically, the greater the deck area (overlay area) is,
the lower the unit cost is likely to be. The cost model
developed for LMC overlays is:

LMC Unit Cost $=ft2
� �

~

9:48{11:14 Pre{ treatment ConditionÞð
{0:66 ln Deck Areað Þð Þ

Figure 5.6 presents the LMC Overlay unit cost
models. The signs of the variables are intuitive. Speci-
fically, higher pre-treatment deck condition and larger
deck area are associated with lower unit cost. The LMC
overlay unit cost sample mean is $62.81/ft2, and the
sample standard deviation is $44.47/ft2, which reflects a
large variation in the data.

Figure 5.5 Distribution of pre-LMC overlay wearing surface condition (triggers).
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5.3.2 Polymeric Overlay Unit Cost Model

Due to the rather limited number of polymeric over-
lay contracts, a reliable cost model could not be deve-
loped. Therefore, this report uses a polymeric overlay
cost model provided by INDOT:

POC $ð Þ~1:05 16:8 Deck Areað Þz35,000½ �

where DeckArea is the total deck area (ft2) (assumed to
be equal to the area of the polymeric overlay, $35,000 is
the estimated maintenance of traffic (MoT) cost, POC
is the polymeric overlay contract cost, and 1.05 is a
multiplier established by INDOT. The corresponding
unit cost function (Figure 5.7) is indicative of the pre-
sence of scale economies.

POC Unit Cost $=ft2
� �

~1:05 16:8z 35000=Deck Areað Þ½ �

5.3.3 Cost Model for Partial Depth Patching of Deck
Surface

From forty-two (42) observations, the average unit
cost of partial-depth patching based on the contract
data in INDOT’s Site Manager database is $34.46/ft2

in 2010 constant dollars (the standard deviation was
$47.25/ft2). A statistical model was developed to describe
the unit cost of partial depth patching of bridge decks,
as follows:

Partial�Depth Deck Patching Unit Cost $=ft2
� �

~

99:54{11:14 ln Deck Areað Þ�

For the full-depth deck patching cost model, the
patching area was found to be statistically insignificant.
Therefore, only the average unit cost was determined:
$48.56/ft2 in 2010 constant dollars, with $68.13/ft2

standard deviation. The model plot is presented in
Figure 5.8.

5.4 Cost-Effectiveness of the Bridge Deck Surface
Treatments

Figure 5.9 presents the cost-effectiveness of the
bridge deck surface treatments. This is done using
two different measures of cost-effectiveness. Type I is
the change in the asset rating per treatment intensity
($/m2). For Type I, a treatment that yields a bigger
change in asset rating for a given intensity, is considered
more cost effective. Type II is the treatment intensity
($/m2) that is needed to yield a given change in the
asset rating per treatment intensity. For Type II,
a treatment for which a smaller intensity is needed to
yield a unit change in asset condition is considered
more cost effective. Type II is the reciprocal of Type I.
Both charts in the figure suggest that from the pers-
pective of performance jump, polymeric overlay is the

Figure 5.6 LMC overlay unit cost models.

Figure 5.7 POC unit cost model.
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most cost-effective treatment, followed by deck patch-
ing and LMC overlay. However, two points must be
borne in mind:

N The surface defects that warrant these treatments may

be different, therefore it may not be a prudent exercise

to make a direct comparison of their relative cost-

effectiveness.

N The cost effectiveness computations are based on a

short-term measure of effectiveness (performance jump).

It may be better to compare them based on their cost-

effectiveness in the longer term, for example, the treat-

ment life (years) per treatment intensity ($/m2).

Figure 5.8 Unit cost model for partial-depth patching.
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Figure 5.9 Cost-effectiveness comparison of three bridge deck surface treatments.
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6. RESULTS AND DISCUSSION—PAVEMENTS

6.1 Performance Jump

6.1.1 Testing the Statistical Significance of the Measured
Jumps in Pavement Surface Performance

Using the methodology explained in Chapter 4 of
this report, the jumps in pavement surface performance
due to each treatment type was tested for their stati-
stical significance. We present the results of these hypo-
thesis tests I Table 6.1 but we present only a single
result below (for thin HMA overlay treatments at
flexible-pavement Interstates).

For flexible Interstate Thin HMA Overlay treat-
ments data, the z-value is calculated as:

z~
�X{m

s=
ffiffiffi
n
p ~

62:85{0

25:50=
ffiffiffiffiffiffiffiffi
133
p

~28:4244 the corresponding p-valuev0:0001ð Þ

For 99% confidence interval a~0:05ð Þ, the critical
value z�~2:88v28:4244~z.

The calculated value of the test statistic does not
exceed the critical value of the test statistic (Figure 6.1).
The former falls in the hypothesis rejection region,
thus implying that there is evidence to suggest that the
thin HMA overlay treatment yielded performance
jumps that were significantly greater than zero and
therefore, it can be concluded that the Thin HMA
Overlay treatment at flexible Interstates were effective
at 95% confidence level. The analysis was repeated for
each of the three pavement treatments, and for each
treatment, and at each of the three functional classes of
pavements that received the treatment. The results are
tabulated below (Table 6.1).

6.1.2 Developing a Model to Predict the Jump in
Performance and Hypothesis Testing of the Influence
of the Explanatory Factors—Indiana Data

Model Development. A statistical model was devel-
oped to predict the performance jump and to measure
the magnitude and direction of the effect of the various
explanatory factors (variables) on the performance
jump. The regression technique was applied to esti-
mate the model. The functional form is given in the
equation below:

PJ~azb(X)

where PJ 5 Performance jump or IRI Drop at the time
of application for treatment; a 5 Constant term, and
b 5 parameter estimate for each explanatory variable;
X is a vector of explanatory variables.

Influence of the Factors. The values of the variables
are taken across a large number of pavement sections;
therefore, the distribution of the PJ values can be

Figure 6.1 Rejecting the null hypotheses regarding treatment
effectiveness, flexible Interstate pavements, thin HMA overlay.

TABLE 6.1
Performance Jump of Treatments at Various Functional Classes—Results of Hypothesis Tests

Treatment Functional Class Results of Hypothesis Test Remarks1

HMA Overlay, PM Flexible Interstates Reject the null Treatment was effective

Flexible Non-Interstate NHS Reject the null Treatment was effective

Flexible Non-NHS Reject the null Treatment was effective

Microsurfacing Flexible Interstates Reject the null Treatment was effective

Flexible Non-Interstate NHS Reject the null Treatment was effective

Flexible Non-NHS Reject the null Treatment was effective

HMA Minor Structural Overlay Flexible Interstates Reject the null Treatment was effective

Flexible Non-Interstate NHS Reject the null Treatment was effective

Flexible Non-NHS Reject the null Treatment was effective

PCC Repair & HMA overlay Rigid pavements, all classes Reject the null Treatment was effective

PCC overlay of PCCP Rigid pavements, all classes Reject the null Treatment was effective

PCCP Patching Rigid pavements, all classes Reject the null Treatment was effective

1Effectiveness here refers to the performance jump.
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considered as a statistical sampling distribution of means.
Therefore, for each variable, the strength of its influence
of the performance jump was investigated by testing the
null hypothesis that the mean value of the variable’s
coefficient is statistically equal to zero (the variable is not
a significant factor of the performance jump) versus the
alternate hypothesis that the mean exceeds zero (the
variable is a significant factor of the performance jump),
at the specified level of significance.

H0: bXi~0 the variable is not a significant factor ofð

the performance jumpÞ

HA: bXi=0 the variable is a significant factor of theð

performance jumpÞ

This is a 2-sided hypothesis test with the ‘‘rejection
region’’ in the upper tail. For example, assuming a
normal distribution of the means of the entire popula-
tion and 95% level of confidence, the critical value of the
test statistic is given by: Za/2 5 Z0.025 5 1.96. The
calculated value of the test statistic is given by: Z* 5

(bEF – 0)/(s/!n), where s is the standard deviation, and
n is the sample size (number of instances of the treatment
application), bEF is the mean value of the measure of
effectiveness in terms of the performance indicator.

Using the above test, there was only one variable that
was found significant in the developed model—the pre-
treatment condition of the pavement. For this variable, it
was determined that the calculated value of the test
statistic exceeded the critical value of the test statistic thus
the former falls in the null-hypothesis rejection region.
This suggests that the coefficient of the variable repre-
senting the pre-treatment condition of the pavement, is
significantly greater than zero and therefore the variable
is an influential factor of the performance jump.

Tables 6.2 through 6.5 present the performance jump
models for each treatment. The selected variables were
found to be statistically significant at the given level of
confidence, and models exhibit a good fit. The results
suggest that pavements in poor pre-treatment condition
exhibit larger jumps in performance after receiving a treat-
ment, compared to those in fair-good pre-treatment
condition.

6.1.3 Developing a Model to Predict the Jump in
Performance—LTPP Data

The performance jump modeling was repeated using
data for the LTPP wet-freeze region (which includes
Indiana). The results are presented in Table 6.6.

PJ~b0zb1|½ln(PTC)�

TABLE 6.2
Performance Jump (IRI Drop) Models—Flexible Interstate Pavement Maintenance Treatments

Treatment Type

Model

Variable

Coefficient

Value t-statistic

Model

Statistics

Average

Pre-treatment

IRI (in/mi)

Average

IRI Drop

(in/mi)

HMA overlay, PM Constant –265.25 –11.413 R2 5 0.73 121.83 71.14

PTC1 70.332 18.034

Microsurfacing2 Constant –284.55 –7.68 R2 5 0.81 114.84 58.81

PTC1 72.38 9.26

HMA Minor Structural Overlay Constant –244.08 –5.919 R2 5 0.80 129.44 77.42

PTC1 66.10 7.791

1PTC 5 pre-treatment condition of the pavement (IRI in in/mi).
2The microsurfacing model is same for all functional classes because it was developed using data from all the classes.

TABLE 6.3
Performance Jump Model—Flexible Non-NHS Pavement Maintenance Treatments

Treatment Type Model Variable

Coefficient

Value t-statistic

Model

Statistics

Average

Pre-treatment

IRI (in/mi)

Average

IRI Drop

(in/mi)

HMA overlay, PM Constant –262.18 –6.217 R2 5 0.73 122. 23 62.59

PTC1 66.54 7.154

Microsurfacing2 Constant –284.55 –7.68 R2 5 0.81 114.84 58.81

PTC1 72.38 9.26

HMA Minor Structural Overlay Constant –222.57 –6.45 R2 5 0.74 141.22 85.04

PTC1 59.988 8.33

1PTC 5 pre-treatment condition of the pavement (IRI in in/mi).
2The microsurfacing model was developed using data from all functional classes.
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where PTC 5 pre-treatment condition (in/mile of sur-
face roughness).

The models developed using LTPP data confirmed
that the ‘‘lower-level’’ treatments (thin overlay, slurry
seal, crack seal, and chip seal) provided the least jumps
in pavement performance. For this category of treat-
ments, thin overlays were most effective, followed by
chip seals and slurry seals. Crack sealing provided the
smallest jump on pavement condition. This is consistent

with expectation. Crack sealing is expected to yield little
or no jump in performance but rather, a reduction in
the rate of deterioration.

Compared with the ‘‘lower-level’’ treatments, the
‘‘higher-level’’ treatments provided the highest jumps in
performance. However, it must be noted that this cate-
gory of treatments were applied at lower levels of pave-
ment condition. The mix type seems to play a major
role in the treatment effectiveness. In certain cases,

TABLE 6.4
Performance Jump (IRI Drop) Model—Flexible NHS Non-Interstate Pavement Maintenance Treatments

Treatment Type

Model

Variable

Coefficient

Value t-statistic

Model

Statistics

Average

Pre-treatment

Performance

(in/mi)

Average

IRI drop

(in/mi)

HMA overlay, PM Constant –265.31 –5.241 R2 5 0.69 109.89 56.62

PTC1 68.54 8.544

Microsurfacing2 Constant –284.55 –7.68 R2 5 0.81 114.84 58.81

PTC1 72.38 9.26

HMA Minor Structural Overlay Constant –315.54 –3.457 R2 5 0.71 138.5 76.04

PTC1 78.77 7.51

1PTC 5 pre-treatment condition of the pavement (IRI in in/mi).
2The microsurfacing model was developed using data from all functional classes.

TABLE 6.5
Performance Jump (IRI Drop) Model—Rigid Pavement Maintenance Treatments (All Functional Classes)

Treatment Type

Model

Variable

Coefficient

Value t-statistic

Model

Statistics

Pre-treatment

Performance

(in/mi)

Average

IRI drop

(in/mi)

PCCP Patching2 Constant –341.88 –7.141 R2 5 0.62 113.51 49.14

PTC1 79.24 5.224

Repair PCCP & HMA Overlay3 Constant –191.25 –7.12 R2 5 0.75 105.33 52.63

PTC1 49.71 4.813

1PTC 5 pre-treatment condition of the pavement (IRI in in/mi).
2All sections are either NHS-Non IS or Non-NHS.
3All sections are Interstate (IS).

TABLE 6.6
Performance Jump Models for Flexible Pavements (SPS-3, SPS-5), LTPP Wet-Freeze Climates

SPS Code Treatment Description

Pre-treatment Condition,

PTC (IRI in in/mile)

Performance Jump

(Ave IRI Drop), (in/mile) b0 b1 R2

SPS-310 Thin Overlay 91.99 19.14 2126.09 32.49 0.56

SPS-320 Slurry Seal 94.41 10.24 2106.32 25.699 0.8678

SPS-330 Crack Seal 86.52 2.85 242.646 10.482 0.4644

SPS-350 Chip Seal 106.26 14.16 23715.6 799 0.8211

SPS-502 20/Min/Recycled 103.17 38.46 2450.58 107.65 0.8317

SPS-503 50/Min/Recycled 125.96 71.98 2552.98 130.32 0.9402

SPS-504 20/Min/Virgin 130.35 73.56 2464.85 111.75 0.9872

SPS-505 50/Min/Virgin 115.81 58.24 2327.35 91.67 0.8901

SPS-506 20/Max./Virgin 91.43 43.51 2406.93 100.06 0.99

SPS-507 50/Max./Virgin 119.39 66.21 2534.39 126.5 0.99

SPS-508 50/Max./Recycled 106.59 54.62 2372.77 92.254 0.9962

SPS-509 20/Max./Recycled 120.08 63.95 2573.28 135.2 0.9874
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recycled overlays yielded a higher jump than virgin
mixes. For a given mix type (virgin vs. recycled), minor
structural overlays (5 inch) in most cases, provided
much larger jumps compared with preventive (2-inch)
overlays.

6.1.4 Factors Affecting the Performance Jump upon
Treatments (Sensitivity Analysis)

For the models developed using Indiana data, the
sensitivity of the performance jump with respect to the
performance jump factors (treatment type, pre-treatment
condition, and functional class) was analyzed.

Figure 6.2 presents the short-term effectiveness (IRI
Drop) of various treatment types for flexible pavements.
The trends of the PJ-PTC relationship were generally
similar across the three functional classes. The three treat-
ments afforded PJs ranging from 40 to 90 in/mile depend-
ing on the pre-treatment pavement condition. For Interstates,
HMA overlay, PM and HMA Minor Structural Overlay
provided very similar results while for microsurfacing,
a more gentle PJ-PTC relationship was observed: smaller
performance jumps as the pavement becomes poorer.
For non-NHS Interstates, there seems to be very little
difference in PJs across the functional classes. With
regard to non-NHS pavements, thin HMA overlay and
microsurfacing indicated similar results while HMA
Minor Structural Overlay provided performance jumps
that were higher (15 units higher) than that provided
the other two treatments irrespective of pre-treatment
pavement condition.

Figures 6.3 through 6.5 present the same results
organized by treatment type and pre-treatment condi-
tion. With regard to microsurfacing, the treatment
effectiveness (performance jump) shows greatest varia-
tion for non-Interstate pavements. For higher levels of
pre-treatment condition (lower IRI), the performance
jump provided by microsurfacing is higher than that
provided by non-NHS pavements. However, for lower
levels of pre-treatment condition (higher IRI), the oppo-
site is true. With regard to HMA Minor Structural
Overlay, the effectiveness of the treatment across the
functional classes seems to converge at the pre-treatment
condition decreases (higher IRI).

Figure 6.6 presents the short-term effectiveness (IRI
Drop) of various treatment types for rigid pavements.
The trends of the PJ-PTC relationship were somewhat
different across the three functional classes. For higher
levels of pre-treatment condition (lower IRI), PCCP
overlay of PCC provides the highest performance jump,
followed by repair PCC and HMA overlay, and lastly,
PCC patching. For medium levels of pre-treatment con-
dition (90–110 in/mile), PCCP overlay of PCC still provides
the highest performance jump, followed by PCC patching
and lastly, repair PCC and HMA overlay. For low levels of
pre-treatment condition (.110 in/mile), PCC patching
provides the highest performance jump followed by PCCP
overlay of PCC still, and lastly, repair PCC and HMA
overlay. Clearly, PCC patching is most sensitive to the pre-
treatment condition of the pavement, and seems to be least
suited for pavements in fair condition and most suited for
those in very poor condition.
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Figure 6.2 Impact (IRI drop) of different treatment types—flexible.
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Figure 6.3 Impact (IRI drop) of functional class, for each treatment—flexible (very poor, poor, and fair pre-treatment condition).
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Figure 6.4 Impact (IRI drop) of functional class, for each treatment—flexible.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/19 43



Figure 6.5 Impact (IRI drop) of treatment for each functional class—flexible (very poor, poor, and fair pre-treatment condition).
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6.2 Treatment Service Life

6.2.1 Deterioration Curve after the Treatment

The functional form that was found most intuitive is:

Performance~EXP azbAATA : tzcANDX : tð Þ

Tables 6.7 through 6.9 present the model results. The
model results were consistent with intuition.

Figure 6.6 Impact (IRI drop) of treatment for each functional class—rigid.

6.2.2 Estimating the Treatment Life from the
Deterioration Curve

When the asset condition reaches a critical threshold
value (PItrig), the value of t gives the treatment service
life of the treatment:

tSL~
ln PIpre{treatment

� �
{a

b:AATAzc:ANDX
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This equation is used only when the post-treatment
performance function is of exponential form. The aver-
age service life for each treatment can be estimated
(Tables 6.10 and 6.11) based on mean values of accu-
mulated annual truck traffic volume (AATA 5 2.5 millions)
and accumulated freezing index (AADX 5 0.490 thou-
sands). In addition, given the expected variation in the

factor values, a range of treatment service lives can
be established. Figures 6.7 and 6.8 present the life of
flexible and rigid pavements treatments respectively,
using data from Indiana. Thin HMA overlays seems to
have the highest long-term effectiveness at Interstates
and non-Interstates and least for non-Interstate NHS
pavements. HMA Minor Structural Overlay seems to

TABLE 6.7
Description of the Model Variables

Variable Description

Performance Indicator,

PI (Response variable)

Performance Indicator measured in terms of International Roughness Indicator (IRI in in/mi) or Pavement

Condition Rating (PCR)

Age, t 5 service life in years Time or treatment service life since the last intervention treatment

AATA?t 5 Accumulated

Annual Truck Traffic

Loadings (million-years)

The product of average annual truck traffic volume (in millions) and time (years) since the last intervention

treatment, t, and it represents the accumulated average annual truck traffic experienced by the treated

pavement section at a given year

ANDX?t 5 Accumulated

Annual Freezing Index

(thousands-years)

The product of average annual freeze index (in thousands) and time since the rehabilitation treatment,

t, which represents the accumulated annual freeze index experienced by the treated pavement section

at a given year

Constant term, a Representing some non-dimensional characteristic of performance prediction

b and c Estimated coefficients for model explanatory variables: age or a surrogate of age, i.e., accumulated annual

truck traffic loadings and accumulated annual freeze index

TABLE 6.8
Flexible Pavement Performance-vs.-Age Models for Each Treatment (Interstates)

Treatment Type Model Variable Symbol

Coefficient

Value p-value1 Model Stat.

Microsurfacing Constant Term a 4.121 0.000 R2 5 0.53

Accumulated Traffic Loading (AATA?t) b 0.015 0.001

Accumulated Climate Effects (ANDX?t) c 0.153 0.000

Thin HMA Overlay Constant Term a 4.169 0.001 R2 5 0.48

Accumulated Traffic Loading (AATA?t) b 0.027 0.001

Accumulated Climate Effects (ANDX?t) c 0.028 0.000

HMA Minor Structural Overlay Constant Term a 3.995 0.000 R2 5 0. 61

Accumulated Traffic Loading (AATA?t) b 0.022 0.001

Accumulated Climate Effects (ANDX?t) c 0.092 0.000

1p value implies that selected variables are statistically significant at 95% confidence level.

TABLE 6.9
Flexible Pavement Performance-vs.-Age Models for Each Treatment (NHS Non-Interstates)

Treatment Type Model Variable Symbol

Coefficient

Value p-value Model Stat.

Microsurfacing Constant Term a 4.121 0.000 R2 5 0.53

Accumulated Traffic Loading (AATA?t) b 0.015 0.001

Accumulated Climate Effects (ANDX?t) c 0.153 0.000

Thin HMA Overlay Constant Term a 4.237 0.000 R2 5 0.59

Accumulated Traffic Loading (AATA?t) b 0.023 0.001

Accumulated Climate Effects (ANDX?t) c 0.079 0.000

HMA Minor Structural Overlay Constant Term a 4.229 0.000 R2 5 0. 71

Accumulated Traffic Loading (AATA?t) b 0.014 0.000

Accumulated Climate Effects (ANDX?t) c 0.059 0.000
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be most long-lived at non-Interstate NHS pavements,
followed closely by Interstate pavements. In addition,
using the performance models developed for each of
the LTPP treatments and performance thresholds of
130 and 160 in/mile, the service life of each treatment
was estimated. Table 6.12 presents the estimated service
lives of flexible pavements in LTPP wet freeze climates.

The service life of the treatments are generally consistent
with those in the published literature (Geoffroy, 1996;
Hall et al., 2001; Irfan, Khrushid, & Labi, 2009; Irfan,
Khurshid, Labi, & Flora, 2009; Peshkin, 2004).

6.3 Performance Jump Cost-Effectiveness of the
Pavement Surface Treatments

Figures 6.9 and 6.10 present the cost-effectiveness of
the flexible and rigid surface treatments, respectively.
This is done using two different measures of cost-
effectiveness. Type I is the change in the pavement
rating per treatment intensity ($/m2). For Type I,
a treatment that yields a bigger change in pavement
rating for a given intensity, is considered more cost
effective. Type II is the treatment intensity ($/m2)
that is needed to yield a given change in the pavement
rating per treatment intensity. For Type II, a treatment
for which a smaller intensity is needed to yield a unit
change in pavement condition is considered more cost
effective. Type II is the reciprocal of Type I. Both charts
in the figure suggest that from the perspective of pave-
ment performance jump, microsurfacing is the most
cost-effective treatment for flexible pavements, and PCC
patching is the most cost-effective for rigid pavements.

TABLE 6.10
Flexible Pavement Performance-vs.-Age Models for Each Treatment (Non-NHS)

Treatment Type Model Variable Symbol

Coefficient

Value p-value Model Stat.

Microsurfacing Constant Term a 4.121 0.000 R2 5 0.53

Accumulated Traffic Loading (AATA?t) b 0.015 0.001

Accumulated Climate Effects (ANDX?t) c 0.153 0.000

Thin HMA Overlay Constant Term a 4.160 0.000 R2 5 0.52

Accumulated Traffic Loading (AATA?t) b 0.014 0.001

Accumulated Climate Effects (ANDX?t) c 0.101 0.000

HMA Minor Structural Overlay Constant Term a 4.011 0.000 R2 5 0.67

Accumulated Traffic Loading (AATA?t) b 0.089 0.000

Accumulated Climate Effects (ANDX?t) c 0.108 0.000

TABLE 6.11
Rigid Pavement Performance-vs.-Age Models for Each Treatment (Interstates Only)

Treatment Type Model Variable Symbol

Coefficient

Value p-value Model Stat.

1PCCP Patching Constant Term a 4.328 0.000 R2 5 0.71

Accumulated Traffic Loading (AATA?t) b 0.018 0.000

Accumulated Climate Effects (ANDX?t) c 0.013 0.000

1Repair PCCP & HMA Overlay Constant Term a 3.624 0.000 R2 5 0. 61

Accumulated Traffic Loading (AATA?t) b 0.024 0.000

Accumulated Climate Effects (ANDX?t) c 0.048 0.001

1PCCP Overlay of PCC Pavement Constant Term a 3.554 0.000 R2 5 0.57

Accumulated Traffic Loading (AATA?t) b 0.015 0.000

Accumulated Climate Effects (ANDX?t) c 0.039 0.000

TABLE 6.12
Estimated Service Lives of Flexible Pavements (SPS-3 and SPS-5),
LTPP Wet-Freeze Climates

SPS Code

Treatment

Description

Service Life at

IRI5130

Service Life at

IRI5160

SPS-310 Thin Overlay 7 9

SPS-320 Slurry Seal 7 9

SPS-330 Crack Seal 6 10

SPS-350 Chip Seal 7 9

SPS-502 20/Min/Recycled 8 10

SPS-503 50/Min/Recycled 7 9

SPS-504 20/Min/Virgin 6 8

SPS-505 50/Min/Virgin 9 .10

SPS-506 20/Max./Virgin 9 .10

SPS-507 50/Max./Virgin .10 .10

SPS-508 50/Max./Recycled .10 .10

SPS-509 20/Max./Recycled .10 .10
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Similar to the case for bridge treatments, two points must
be borne in mind:

N The surface defects that warrant these treatments may be

different, therefore it may not be a prudent exercise to

make a direct comparison of their relative cost-effectiveness.

N The cost effectiveness computations are based on a short-

term measure of effectiveness (performance jump). It may

be better to compare them based on their cost-effectiveness

in the longer term, for example, the treatment life (years)

per treatment intensity ($/m2).

Figure 6.7 Estimated treatment life, flexible pavements—Indiana data.

Figure 6.8 Estimated treatment life, rigid Interstate pavements—Indiana data.

6.4 Service Life Cost-Effectiveness of the Pavement
Surface Treatments

Figures 6.11 and 6.12 present the service life cost-
effectiveness of the flexible and rigid surface treatments,
respectively. Similar to the performance jump cost effe-
ctiveness, this is done using two different measures of
cost-effectiveness. Type I is the treatment life per treat-
ment intensity ($/m2). For Type I, a treatment that
yields a longer service life for a given intensity, is
considered more cost effective. Type II is the treatment
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intensity ($/m2) that is needed to yield a unit time (year) per
treatment intensity. For Type II, a treatment for which a
smaller intensity is needed to yield a unit service life is
considered more cost effective. Type II is the reciprocal of
Type I. Both charts in the figure suggest that from the
perspective of pavement service life, microsurfacing is the

most cost-effective treatment for flexible pavements, and
PCC patching is the most cost-effective for rigid pave-
ments. Again, it should be borne in mind that the surface
defects that warrant these treatments may be different,
therefore it may not be a prudent exercise to make a direct
comparison of their relative cost-effectiveness.

Figure 6.10 Cost-effectiveness of rigid pavement treatments.

Figure 6.9 Cost-effectiveness of flexible pavement treatments.
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Figure 6.12 Service life cost-effectiveness of rigid pavement treatments.

Figure 6.11 Service life cost-effectiveness of flexible pavement treatments.
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7. CONCLUDING REMARKS

7.1 Summary and Conclusions

Assessments of the efficacy of agency interventions is
important for continuous performance monitoring and
feedback, and for evaluation and comparison of alter-
native interventions. For example, by how much is bridge
deck condition rating enhanced due to deck overlay?
What is the jump in pavement condition when it receives
a thin HMA overlay? As a first step in answering ques-
tions such as these, the infrastructure agency establishes
performance indicators that serve as a basis for making
informed judgment about the efficacy of their inter-
ventions. Any measure of effectiveness (for example, the
instantaneous improvement in the infrastructure condi-
tion just after the intervention jump in performance,
sudden reduction in the deterioration rate, are expressed
in terms of the performance indicators.

This report presents a set of numbers or formulae
that represent the levels of impact of each treatment
typically applied to INDOT’s assets. These impacts are
expressed in terms of the requisite performance indi-
cators. These are in the form of:

1. Average (mean) impact level of each treatment type

under consideration.

2. The other statistical parameters of the impact level of

each treatment type, for each asset type (pavements and
bridges): minimum impact, maximum impact, range, and
standard deviation.

3. A statistical model (for each asset type) that predicts the
impact level of each treatment type as a function of initial
asset condition, treatment intensity, and other variables.

4. Sensitivity charts.

5. Cost-effectiveness values.

INDOT’s asset managers seek to quantify the impact
of each treatment on asset rating for a variety of reasons:
(i) to generate requisite input data for use in INDOT’s
Pavement Management System and Bridge Manage-
ment System software packages because these packages
require the user to input the new value of asset condi-
tion just after each of the standard treatments is applied,
(ii) to make judgments (for decision support purposes)
of the effectiveness of specific past or future (proposed)
treatments in terms of increased rating, and ultimately
in terms of asset life extension, and (iii) to compare the
effectiveness of alternative treatments that differ by
treatment type, material, procedure, or work source
(work done in-house versus work done by contract).

The developed numbers or formula for the treatment
effectiveness and cost-effectiveness are useful for INDOT
in selecting and defending the choice of pavement and
bridge treatments. Further, these results can serve as
default reset values for purposes of ‘‘what-if’’ analysis
in INDOT’s PMS and BMS software packages; for
example, what will be the predicted post-treatment rating
in response to a hypothetical future application of a
specific MR&R treatment. That way, the post-treatment
level of performance can be predicted. Therefore,
implementation is expected to occur in the use of INDOT’s

asset decision making and programming software
packages including DTIMS. Also, because the pave-
ment analysis in MEPDG includes deterioration curves
(and simulation thereof) under different damaging
effects and maintenance effects, the study results can be
used in pavement analysis.

Quantitative statements of the maintenance effects,
or the MOEs (expressed in terms of a performance
indicator) helps in in assessing prospective compet-
ing treatments for an individual asset. PIs help reflect
the concerns of the infrastructure stakeholders which
include the infrastructure owner or operator, regular
users of the infrastructure, and communities located
proximal to the infrastructure. Typically, the most
desirable treatment is that which provides the optimal
value of the MOE. The use of PI-based MOEs is
particularly prudent in the present environment that is
characterized by the need for transparency, high user
expectations, rapidly-aging infrastructure, and yet, fund-
ing limitations or uncertainty. Using PI-based MOEs,
the agency can make investment decisions in a more
pragmatic, defensible, and transparent manner.

7.2 Contribution to the State-of-the-Art and State of
Practice

The study framework for optimizing treatments over
the life-cycle of pavements is based on established eco-
nomic principles. Such a comprehensive optimization
tool would considerably improve overall investment
decisions over the life-cycle of different pavement fami-
lies (surfaces and functional classes). The post-treatment
performance trends documented in this study can be used
to predict or estimate the impacts of changing climate or
traffic loading levels on the service lives of the MR&R
treatments. This report thus provided input data using
which agencies may update their current project-level
MR&R schedules that had been largely based on expert
opinion and historical practice. Optimal MR&R sche-
dules are useful for life-cycle cost analysis of alternative
pavement M&R strategies, highway needs assessment
studies and pavement management in general. The study
confirmed the findings of previous studies that the pre-
treatment pavement performance, treatment type, pavement
family and/ or functional classes were major significant
predictors of the performance jump upon treatment:
treatment application on a poorly performing pave-
ment yields a greater performance jump. In this study,
this phenomenon was observed for all the treatments
investigated.

One of the principal tenets of highway asset manage-
ment is the acquisition of full and reliable knowledge,
at any time, of the state of the highway assets and their
rate of performance loss (Dawson, Walsh, Purnell, &
Rogers, 2014; Haas et al., 1994; Shehu, Elma, Endut, &
Holt, 2014; Taggart, Tachtsi, Lugg, & Davies, 2015).
The framework presented in this report can help agencies
to increase their awareness of the effectiveness and cost-
effectiveness of their maintenance treatments. Also, with
treatment cost-effective models, agencies are better equipped

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/19 51



to make more defensible prescriptions of treatments for
pavement and bridge maintenance (Taggart et al., 2015;
Wang, 2013; Wu, Groeger, Simpson, & Hicks, 2010).

The practice of asset management often involves
the use of processes and concepts that are intended for
purposes of decision support. The models and cost-
effectiveness charts developed in this report are not
intended to serve as a cure all for investment questions
regarding bridge and pavement surface treatment
selection. Rather, the analysis results are meant to help
the asset manager to make a balanced and rational
decision-making using the models herein, duly tem-
pered with expert knowledge about the site in question.
At pointed out in a recent JTRP report, making the
best decision will often require sound engineering judg-
ment, candid consideration of project constraints, due
consideration of a project’s local environment, admin-
istrative practices and culture at the area of its juris-
diction, and flexibility.

7.3 Future Work

The treatment-specific post-treatment effects, perfor-
mance jumps, cost and project (workzone) duration
models developed in the study could be improved using
more detailed data items such as pavement layer thick-
nesses, subgrade quality, and design and construction
features to take cognizance of variation of attributes
within pavement families. The effect of changing the
performance indicator (for example, using PCR or
RUT instead of IRI), on the optimal solution, could be
investigated. Further, future work could incorporate
probabilistic elements directly into the optimization
procedure to yield robust solutions.

Highway asset owners continue to maintain manage-
ment databases for their pavements and bridges (Moloney,
McKenna, Fitzgibbon, & McKeogh, 2017). As such,
data on the pre- and post-treatment performance of
bridges and pavements are becoming increasingly
available at several other agencies. These agencies use
different treatments and performance indicators, and
have different ways of categorizing their pavements
and road classes (Adey, Garcia-Soto, & Senn, 2017;
Dong & Huang, 2012; Lytton, 1987). This report’s
framework can be used to assess the cost-effectiveness
of any treatment type, performance indicator, pave-
ment surface material type, or road class.
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