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Abstract – This paper presents the design and implementation of a Desktop VR (Virtual Reality) framework for gen-
erating and evaluating Pareto-optimal alternate 3D spatial configurations using GA (genetic algorithms). The 3-tier
framework involves the generation of the Pareto-optimal plans using GAwhich are subsequently visualized first using
a Java-based 2D Interface and finally in the form of a 3D VR scene. The search spaces (function domains) are extre-
mely large in today’s multifaceted interior design situations, and the optimization procedure involves conflicting objec-
tive functions, and limitations in the form of constraint functions. The interior space allocation problem is formulated
and implemented as the ‘‘optimal configuration of artifacts’’. When using GAs, a group of Pareto-optimal solutions
(Pareto set) are available for the planners and decision-makers, wherefrom one solution ought to be picked. Therefore,
this study applies a tool to not only visually evaluate the plans, but also to interact with those plans to develop them
further if needed. Besides enabling the optimal spatial configuration of the scene elements, this framework also facil-
itates evaluation and interaction via the 3D VR worlds. The framework aids the proactive exploration, analysis, and
finalization of design aspects such as color, size, lighting, etc. of the various elements prior to the actual construction.
The results demonstrate the robust performance of the GA and the final 3D VR environment with dynamic interactive
capabilities. This final interface facilitates ‘‘GA-Compliant’’ transformations and scene modifications thereby facilitat-
ing the exploration and examination of alternative scene configurations.

Key words: Multiobjective optimization, Design optimization, Genetic algorithms, Desktop virtual reality.

1 Introduction

The optimal utilization of valuable interior spaces is
impeded by the lack of efficient procedures to sift through
the voluminous search spaces and support the generation/eval-
uation of alternate 3D spatial configurations. Only a very small
fraction of the total search space is explored while solving inte-
rior space configuration problems involving MOO (Multiobjec-
tive Optimization). The design effort should pay critical
attention to the notion of ‘‘the function’’ of the space i.e., the
function this interior space is going to serve. From the seminal
works of notable authors like Ballast, Pile, and Piotrowski [1–3]
the importance of interior design becomes lucid and it is also
evident that the interior space not only directly and indirectly
influences our activities at work and home, but also influences
several other daily activities such as shopping, dining, etc. One
frequently overlooked, but fundamental element in the design
of efficient interior spaces is the optimal arrangement of the arti-

facts. Vosinakis et al. [4] opine that effective interior space
designs are typically purpose-driven, implying that the design
is very mindful of the need of the clients. This innovative
approach that integrates GA-based MOO with CG-based virtual
scene rendering techniques facilitates design generation and
evaluation. Systematic configuration of spaces and the arrange-
ment of spatial components are absent or minimal either
because it is considered trivial (which is incorrect) or due to
the computational complexity involved in formulating and solv-
ing such MOO problems. Instead of following a logical proce-
dure, the arrangement of artifacts in interior spaces continues to
follow, by and large, a whimsical approach that has barely
explored or evaluated the multitudes of options available.

There is a clear lack of the explicit articulation of objectives
based on the ‘‘function’’ (purpose) of space. This is not to imply
that planning is not at all involved in such interior spaces, but is
not done in a methodical/systematic manner. While the service
of interior designers is solicited for large-scale projects, the
arrangement of the artifacts within the constructed spaces
(e.g., libraries) rarely even tends to explore the ‘‘search space’’.*e-mail: mchandr@purduecal.edu
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The GA-based method exhaustively explores the search space
to find the optimal solution. The rest of the paper is organized
as follows: Section 2 is the literature review that addresses the
related work. Section 3 explains the methodology involving the
3-tier framework for creating the Desktop VR scenes. Section 4
covers results and discussion and finally, Section 5 provides the
conclusion.

2 Related work

Numerous examples of GA within computer graphics are
found. Sims [5] applied evolutionary techniques to generate
complex structures and textures. Notable works include those
by Sims [5], Dawkins [6], Graf and Banzhaf [7], and Tood
and Latham [8]. Chen et al. [9] employed GA to pick the best
possible feature set for discerning computer graphics from dig-
ital photographic images. Yu et al. [10] used GA for automati-
cally extracting features and processing stereo images. Nishino
et al. [11] developed an interactive graphics optimizer using
immune algorithms and continuing their work on using immune
algorithms in Computer Graphics, Nishino et al. [12] developed
an interactive 3D graphics modeler by simulating the human
immune system.

Genetic algorithms were chosen for the MOO step in this
study because of the following reasons:

(i) GAs have demonstrated higher probability of conver-
gence within the parametric space;

(ii) GAs do not get trapped in the local optimum and try to
find the global optimum;

(iii) GAs offer a diverse set of increasingly viable solutions
(preservations of useful variations);

(iv) GAs have been efficiently employed for combinatorial
optimization problems with extremely large search space
of the order of 10100 or higher;

(v) GAs simultaneously evaluate many points in the param-
eter space, more likely to yield the global optimum GO;

(vi) By employing elitism, GAs try to retain the solutions
with the highest fitness (so that the best solutions are
not lost).

Stewart et al. [13] state that considering the inherent com-
plex nature of modern design problems, the definitions of many
objectives are not always nonlinear or additive. There are innu-
merable applications within the domain of construction graph-
ics and interior design wherein MOO can be employed for
solving problems involving combinatorial optimization [5].
Various MOO techniques including biologically inspired algo-
rithms such as SA (Simulated Annealing), PSO (Particle Swarm
Optimization), IWD (Intelligent Water Drops), CSS (Charged
System Search), and ANT colony optimization were explored
from the perspective of their suitability to this research. Accord-
ing to Balling et al. [14], one important reason that genetic algo-
rithms have been exceptionally effective in solving design
problems with multiple conflicting objectives and constraints
is the contradictory nature of the two fundamental operations
of crossover and mutation. Crossover intends to sustain the

goodness in current generation, while, mutation aims to induce
modifications or changes in the chromosomal structure (reverse
effect).

Nevertheless, as GA commonly offers a pool of optimal Pa-
reto plans or designs, advanced techniques are needed to eval-
uate and expedite the decision making process while reducing
subjectivity, wherein visualization performs a vital role. Visual-
izing the candidate solutions of the design space is a lucid way
to evaluate these optimal alternatives whilst minimizing abstrac-
tion. Therefore there is an imminent need for a tool to explore,
analyze and evaluate the Pareto solutions. Chandramouli et al.
[15] demonstrated that by using 3D visual scene renderings,
planners who are experts in the fields of design planning can
identify desirable or undesirable patterns. Karlen [16] states that
‘‘space planning is not a simple process involving a single cat-
egory of information; rather, it is a complex dovetailing of sev-
eral processes involving knowledge in many categories of
information’’. Such information is of diverse nature ranging
from Architectural Graphics applications by Ching [17] and
Graphics Communication works by Bertoline et al. [18] to
Kopec’s work on Environmental Psychology [19], Kilmer’s
work on functional/visual design concepts [20], and Panero
and Zelnik’s work on human dimension [21].

When designing interior spaces, Rengel [22] precisely states
that ‘‘. . . we claim space and subdivide in particular ways to
suit the needs of the project’’. A judicious configuration of
the artifacts is an essential component in the design of efficient
interior spaces. According to Kubba [23], ‘‘an understanding of
the use and allocation of space is the cornerstone in many
design disciplines’’. Rengel [22] states that, ‘‘the number, size,
and placement of large pieces of furniture, fixtures, and equip-
ment, has a major impact on the interior space’’. Such earlier
works have overlooked the ‘‘exploration and exploitation of
search space’’ as evident from the detailed survey of software
tools used by interior designers by Lok [24]. However, artifacts
are largely arranged as and when the need arises and is dictated
by the expertise of the person(s) involved in the process without
necessarily following a standard protocol. This is in sharp con-
trast to the construction process which follows a standard pro-
cedure in accordance with a well laid-out set of rules, which
must not be violated. Works by Maher et al. [25] and Whyte
et al. [26] illustrate that computer based three-dimensional
(3D) tools have evidently reduced the design time and facili-
tated concept evaluation.

3 Methodology

3.1 Research framework

There are three major components (Figure 1) in the design
and implementation of the prototype for generating virtual
representations for the alternate interior space configurations
(Pareto plans). The first component in the 3-tier framework is
the GA-based MOO process that results in the Pareto-optimal
plans. The second part involves taking the numerical results
of the GA-based computation and presenting them in the form
of a Java-based 2D Graphic Interface. The third component
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involves the CG module wherein the virtual worlds are gener-
ated for viewing the plans in desktop Virtual Reality. The fol-
lowing sections provide a detailed description of the
individual components of the aforementioned framework.

3.1.1 GA-based multiobjective optimization

Classically, a MOO is expressed as follows:

Optimization f xð Þ; or; y ¼ ðf1 xð Þ; f2 xð Þ � � � fn xð ÞÞ½ �
Subject toC xð Þ ¼ C1 xð Þ;C2 xð Þ; � � � ;Cp xð Þ

� �
n – Number of objective functions;
p – Number of constraints.

The set of values (x1, x2, . . ., xn) 2 X refers to the decision
space and the set of values (y1, y2, . . . yn) 2 Y represents the
objective space. The set of constraints i.e., C(x) � 0, limits
the feasible set of solutions. GA-based MOO overcomes the
limitations of traditional methods owing to its efficiency in
solving non-linear, non-additive optimization problems without
having to re-articulate or reformulate the design problem.

3.1.2 GA formulation

The phenotype in this study is the physical layout of the
library and the appropriate genotype has to be formulated
(Figure 2) for this space. The study area considered here is
the floor space corresponding to a library. Also, other interior
spaces such as a restaurant, a space, and office space are dem-
onstrated to illustrate other areas of application. The objective is
to generate an optimal layout, which is represented as a raster
grid of cells. These cells in the raster grid (layout) are divided
into categories. Within this genetic framework depicting the
study area, every variable (changeable) zone is denoted by a
‘‘gene’’ (integer value). A linear array of values is used to rep-
resent the layout.

Figure 2 illustrates the layout of the interior space in x and
y dimensions. This is shown along with the genotypic represen-
tation using a single-dimensional array (Figure 3) The genes in
the chromosome (G1, G2, . . ., G100) correspond to the cells in
the grid representing the layout (C1, . . ., C100). Index value
represents the artifact element (Table 1). In both the genotype
and phenotype in the (Figure 3) the ‘‘values’’ (integers repre-
senting the artifact type have been highlighted in green. It
should be noted that the cells whose values are highlighted in
yellow match (correspond between the linear integer array,
the genotype and the layout, the phenotype). In the physical
layout, the origin is at the bottom left.

Figure 2. Grid representing physical layout.

Establish MOO
Objectives/Constraints 

Execute
Genetic Algorithm

Generate VR Worlds - Interface
CG Module 

Graphic UI Interaction for
VR Scene Modification

Select
Pareto Plans 

Graphics 
Library -
PROTO 
Objects

Java-Based (Processing) 
2D Graphic Interface for Pareto 

Plans

Component I 

Component II 

Component III 

Figure 1. Framework for creating GA-based VR scenes.
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The genotype conventions are as follows:

– Gn symbolizes the nth gene. Hence, G9 represents the 9th
gene on a genotype with 100 genes.

– Gx-y symbolizes the genotype component representing the
yth occurrence of the artifact no. x (Index Value – x).
Hence, G1-2 symbolizes the 2nd occurrence of artifact
number 1.

– min(Gx:y) symbolizes the first gene of the genotype compo-
nent representing the yth occurrence of the artifact no. x
(Index Value – x). So, G1-2 symbolizes the 2nd occurrence
of artifact number 1.

– max(Gx:y) symbolizes the last gene of the genotype compo-
nent representing the yth occurrence of the artifact no. x
(Index Value – x). Thus, G1-2 symbolizes the 2nd occur-
rence of artifact number 1.

– Cn symbolizes the nth cell on the phenotype. Hence repre-
sents the 11th cell on the raster grid representing the actual
layout of the interior space.

An artifact element occupying an area of 2 cells · 2 cells
might seem continuous phenotypically, but on the genotype,
they are not actually continuous (Figure 3).

3.1.3 Feasible set

Typically, for the first generation, each gene in the chromo-
some (representing the interior space) is designated a random
value. One generation represents the size of the GA for a single
run corresponding to 100 plans for the interior space layout.
The suitability or ‘‘fitness’’ of each plan in the generation is cal-
culated, using a fitness function. The plans that meet the con-
straints of the GA collectively constitute what is called the
‘‘feasible set’’. After the initial generation is obtained, the selec-
tion, recombination, and mutation processes are performed to
create the subsequent generation. In this study, the cell location
of the emergency facilities such as fire extinguisher and emer-
gency door should not be changed. Hence, those artifacts con-
tinue to remain in their original location throughout the
iterations. Also, every plan must have a minimum proportion
of IT space and minimum amount of space for public utilities.

(a) Cells with index values 9 and 10 (emergency shelter and
fire extinguisher) are not to be changed.

(b) The percentage of IT space and space for public utilities
should have to be greater than 15% and 10%.

3.2 GA operations

3.2.1 Selection

The selection process signifies the choice of the individuals
that are ‘‘fit-enough’’ for transmitting to the next generation and
is based on the Darwinian notion of ‘‘survival of the fittest’’.
Generally, this step is based on the ‘‘goodness’’ of a solution
which is measured by the fitness of the individual. From
the sorted pool of genotypes (Figure 4), the top 10
(n = (SelRate · PopGen)) highly ranked genotypes (with high
fitness values) are selected for passing on the next generation.
The SelRate selected for the GA is 0.1 (10%). The remaining
90 genotypes (n – (SelRate · PopGen)) are created using the pro-
cesses of crossover and mutation.

3.2.2 Crossover

The GA operation of recombination corresponds to the
crossover (or recombination) process in the evolutionary cycle
that involves combining the genetic information from two par-
ent chromosomes (to produce the offspring. In this stage, ‘‘par-
ent genotypes’’ are chosen and these are subjected to the
crossover operation to generate children or ‘‘offspring’’ geno-
types. To maintain the stochastic element in this process, a like-
lihood ratio documented in GA terminology as the ‘‘crossover
probability’’ is employed. In this research, single point cross-
over is employed as explained here. The genetic material from

Table 1. Artifact elements and dimensions.

Index Description X dim. Y dim.

1 IT lab 2 2
2 Washroom 2 2
3 Recreational space 2 2
4 Study Rm. Ind 1 1
5 Study Rm. Grp 3 3
6 Conf. room 4 4
7 Table/Ch. 1 1 1
8 Furniture 1 1 1
9 Furniture 2 1 1
10 Book-shelf 2 2
11 Ref. desk 1 1
12 Safety/emergency 4 4

Figure 3. Encoding an artifact in a layout.

4 M. Chandramouli and G.R. Bertoline: Int. J. Simul. Multisci. Des. Optim. 2014, 5, A01



Parent 1 genotype (on the left of the crossover point) and from
Parent 2 genotype (on the right of the crossover point) are
joined to create Offspring1 (Figure 5).

The method of selection employed in this study for cross-
over is called tournament selection. In this type of selection,
a small subsection of chromosomes from the parent generation
is selected at first. From this the two chromosomes with the
greatest fitness values are chosen. This method hence includes
both a fitness based component as well as a non-fitness based
component. Hence, it includes a stochastic element, while still
considering the fitness of the parent chromosomes, which is
why researchers consider this a blend of random as well as fit-
ness-biased methods.

In the case of an artifact element occupying cells that are
spread on more than a single row, the genotypic representation
is not continuous. Hence, the most important consideration dur-
ing the process of crossover is to prevent the splitting or break-
ing (of cells containing artifacts). Breaking refers to a single
artifact element occurring at different locations, instead of being
continuously represented at a single location. In order that
unbroken artifact elements are obtained as a result of the cross-
over operation, other than performing the actual recombination
between 50 and 51, care needs to be exercised in the GA for-
mulation stage itself. For this reason, in the original chromo-
somes (representing the plans for the interior spaces)
themselves, an artifact element ends before gene 50 or begins
after 51 (Figure 6). Artifact element 6 (index value – 6) occu-

pies four cells on the actual interior space layout (Table 1), the
sub-section on the genotype representing this artifact element
should occupy four genes.

Let us consider the case when genes 48–51 represent this
artifact element (G48–G51). During crossover, the other chromo-
somes 51st gene need not necessarily have the value 16. Con-
sequently, the resultant plan of the interior space produced will
have an area that is a mismatch for accommodating the corre-
sponding artifact element. Thus, in the original chromosomes,
by having an artifact element end before gene 50 or begin after
51. The general rule for any artifact element occupying more
than one cell is as follows: max Gx : yð Þ < 50 and
min Gx : yð Þ > 51, where x value can range from 1 to 12
(Index values of the elements)and the maximum value of y is
the maximum number of times an artifact element occurs in

21 6 16 16 16 16 … … 

46 GG 47 G48 G49 G50 G51 G52 

21 6 16 16 16 16 … … 

G47 G48 G49 G50 G51 G52 46 G

Figure.6. Correct and incorrect genotypes.

Figure 4. Fitness-based sorting of plans in a generation for selection.

Figure 5. Crossover and resultant offspring genotype.
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the layout. In generic terms, the above can be stated as follows:

min Gx : yð Þ < n
2

and max Gx : yð Þ > n
2
þ 1;

where x value can range from 1 to imax (imax – no. of artifacts)
and the max. Value of y, max yð Þ ¼ n

2
;where n is the total no.

of genes in the genotype.

3.2.3 Mutation

When the crossover operations are finished, the next gener-
ation has its population of chromosomes. At this point in time,
random mutations are initiated in the population of chromo-
somes with a two-fold purpose: to prevent premature conver-
gence and to enable the search process to diversify. These
random mutations are induced at selected points (genes) located
anywhere along the length of the chromosome. A value of 0.05
is selected as the probability for the mutation operation. A ran-
dom value in the range of 0–1 is generated for each gene in the
two offspring resulting in the crossover operation, the value of
which determines whether mutation occurs or not. The integer
value of the gene is subjected to change within the range of
1–12 if the mutation probability is higher than the random num-
ber so generated. Else, the gene is not subjected to mutation.
The mechanism of the genetic algorithm rests on two funda-
mental operations namely selection and variation. Typically,
when the GA proceeds with searching through the search space,
it is desired to accrue the ‘‘good’’ traits or characteristics and
prevent retaining the bad traits. In other words, it is required
to preserve the good or ‘‘fit’’ individuals from generation to
generation and eliminate those individuals or plans with poor
fitness values (not suitable). Also, in order to facilitate obtaining
diverse solutions, GA search process should be directed to
explore the unexplored regions in the search space. All these
are ensured by the GA operations of selection, crossover, and
mutation.

3.3 Algorithms

The key algorithms (expressed as subroutines in the pro-
gram) in the MOO framework are as follows:

3.3.1 Accidental re-allocation deterrent algorithm (ARDA)

During the process of creation of genotypes for a genera-
tion, a random function is used to generate integers in the range
of 1–12 corresponding to the 12 artifact elements considered in
this study. Following is the Matlab function used for this ran-
dom generation of 100 chromosomes with 100 genes each:
randi (12,100,100); However, as will be seen in the algorithms
discussed subsequently here, there are other procedures that
allot values to the cells based on the dimensions of the artifact
and based on the constraints. This leads to the possibility that a
cell whose value has been allocated (on a specific purpose)
might be accidentally overwritten by a subsequent algorithm.
In order to prevent this, the ARDA (Accidental Re-allocation
Deterrent Algorithm) is implemented, which ensures that a cell
whose value has been set on purpose by a specific function will
not be accidently modified subsequently. From the earlier sec-
tions, it is known that every cell in the raster grid matches an

artifact element which is represented in the genotype by the cor-
responding integer (index value).

Let us consider that for instance, an artifact element (index
value x) occupies four cells (2 · 2), the genotypic depiction is
not continuous as it is denoted by (G6, G7) and (G16, G17).
(G6 = G7 = G16 = G17 = x). However, if later one of the cells
preceding G6/G7/G16/G17 occupies more than one cell, then
the subsequent corresponding cell will be overwritten with a
value other than x. To prevent this from happening, besides
the array containing the integer representing the index value
for each cell in the genotype, another array of ‘‘dummy vari-
ables’’ is created. This dummy variable is given a default value
of ‘‘1’’. When a gene value is changed ‘‘on purpose’’ by
another function, say DVA explained below, then this dummy
variable’s value is changed to ‘‘2’’. Now, whenever a cell whose
dummy variable value equals 2 is encountered it implies that
this cell’s value has been already set and should not be modi-
fied. In essence, the ARDA ensures the following: A cell’s
value can be changed only if dummyvar = ‘‘1’’.

3.3.2 Dimension validator algorithm (DVA)

The actual function of this DVA is evident from the name of
this algorithm. The purpose of the DVA is to ensure that all the
genes in the genotype/all the cells in the physical layout are
allocated the values in accordance to their dimensional attri-
butes mentioned in the dimension table. In other words, if arti-
fact · has dimensions m · n, then DVA’s role is to ensure that
the corresponding number of genes in the genotype are allotted
in accordance with the positional requirements. Earlier, it was
noted that ‘‘However, if later one of the cells preceding G6/
G7/G16/G17 occupies more than one cell, then the subsequent
corresponding cell will be overwritten with a value other than
x’’. The vice-versa is what DVA2 is concerned about. If a gene
value, say G15, is found to be equal to an index value corre-
sponding to an artifact occupying more than one cell and the
genes following it are not available for allotment G16/G17, then
the value has to be changed to one corresponding to single-
celled artifacts.

3.3.3 Constraint validator algorithm (CVA)

Once again, as the name indicates this algorithm ensures
that the GA constraints are imposed. It was noted that cells with
index values 18 and 19 (Emergency Shelter and Fire Extin-
guisher) are not to be changed. Throughout the MOO process,
this CVA ensures that the corresponding cells/genes always
continue to have the same values as required by the constraints.

3.3.4 Optional GA modifier algorithm (GMA)

This is an optional algorithm that should be executed if the
same interior space project is carried with slightly modified lay-
out. For instance, for the same library interior space allocation
project discussed earlier, if for various reasons, it is decided that
book shelves are located on the northern corner of the layout,
then cells 91–100 need not be actually included in the GA pro-
cess. This is in a way a modified CVA algorithm that ensures
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that the MOO process is carried out according to this corre-
sponding layout.

3.4 Fitness calculation and objectives

The following three objectives are considered:

1. Maximizing IT usability (labs, individual work stations),
2. Maximizing reading space (table/chairs, study rooms, and

conference rooms), and
3. Maximizing public amenities (phones, ATMs, etc.).

Phenotypically, these objectives are innately conflicting
since an enlargement in one space will lead to the shrinking
of the space available for the other objectives. Also, to ensure
that some minimum requirements are satisfied, the following
constraints were imposed:

(a) Cells with index value 12 (emergency or safety features)
are constant

(b) IT space and space for public utilities should be greater
than 15% and 10%.

Balling’s [27] Maximin function is used for calculating the
fitness values of the genotypes. This function was originally
applied for geospatial problems and has been employed in ear-
lier studies involving spatial optimization [15, 28]. After taking
into consideration several fitness evaluation strategies, this par-
ticular function described here has been found to be very suit-
able for GA studies involving a spatial component. The process
of objective normalization is carried out using a basic scaling
procedure. This is done using the formula shown in equation
(1) for each objective k for a set of plans in a generation and
then performing re-scaling subsequently. In equation (2), valik
is the value of the objective k when assuming plan i, valmin,k

is the least value of objective k among all the plans in the cur-
rent generation, and valmax,k is the highest value of objective k
among all the plans in a generation. The objectives of each plan
were compared with other plans in the generation to find the fit
ones in the current generation. Hence, when an objective of a
plan i is compared with that of another plan j, plan j is
better than plan i if the difference between j and i is positive
(Eq. (2)).

ObjkðPlaniÞ ¼
valik � valmin;k

valmax;k � valmin;k
; k ¼ 1; 2; 3 i

¼ 1; . . . ; 100

Objk Planj

� �
� Objk Planið Þ ¼ valjk � valmin;k

rangek

� valik � valmin;k

rangek

¼ valjk � valik
rangek

fi ¼ 1 � max

 
min� X 

Obj1j � Obj1i

range1
;
Obj2j � Obj2i

range2
; . . . ;

Objnj � Objni

rangen

!!!p

:

The fitness of each plan in a generation is calculated with
regard to the other plans in the same generation. Range corre-
sponds to the difference between the maximum and the mini-
mum values of that particular objective. Considering two
plans planj and plani in a particular generation, plani is domi-
nated by planj if planj surpasses the other plan in all the objec-
tives. The fitness is calculated as explained in equation (3).
Based on the fitness formula described above, the Pareto-opti-
mal plans were selected from a generation based on the fitness
values obtained. While dominated plans had a fitness value
between 0 and 1, Pareto-optimal plans had fitness values greater
than 1 [14, 27]. Besides, in this study, a higher value for p is
employed. This value was chosen to pursue Pareto-optimality
more vigorously. The fitness of plans with fi more than 1 gets
higher, and the fitness of those plans with fi values less than
1 gets further lower.

3.5 Pareto-optimality and visualization

A brief discussion of the notion of ‘‘Pareto-optimality’’,
especially Pareto-optimal plans is very important from the per-
spective of this study on the whole. The GA iterations engen-
ders a set of optimal solutions (Pareto-optimal set), which
signifies the pool of solutions that denote the optimal trade-
off [13] for the interior space problem with the three objectives
subject to the constraints. For a plan to be considered as a Pa-
reto plan it should not be inferior to or underperform any other
plan from that generation. Stated otherwise, a plan may outclass
the Pareto plan when considering one objective and a different
plan may be better with regards to another objective; however, a
‘‘single plan’’ must not outdo a Pareto plan in all the objectives
considered for the MOO. Balling, Taber, Brown, and Day [27]
clearly state that the ‘‘Pareto set is independent of the relative
importance of the objectives’’. The above discussion evinces
that plans do not belong to the Pareto set (non-Pareto plans)
are ‘‘dominated’’, as a Pareto plan that is better (or that which
dominates) has been found. The fitness function used in this
study is the one proposed by Balling et al. [14, 27].

However, the challenge now is to select one solution or plan
for implementation. For any design optimization problem, a sin-
gle satisfactory solution that can be implemented is required. As
suggested by Chandramouli et al. [28], the use of genetic algo-
rithms for design optimization entails meticulous scrutiny of the
differences among the candidate solutions to obtain a better
knowledge of the basic processes and the fulfillment of the
objective functions. The process of choosing one single solution
over others entails exhaustive domain knowledge. As noted by
Seixas et al. [29], typically, many GA-based design optimiza-
tion procedures make the final choice of the solution (from
the Pareto set) based on some ‘‘higher level information’’.
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However, when it comes to design and planning, it is not pos-
sible to implement all the conflicting solutions in the Pareto set
(resulting from the GA process). Hence, a virtual reality based
visualization framework is generated to explore and study the
alternative solutions.

3.6 Visualizing GA results

As explained by the previous section, while using GAs for
MOO, the procedure literally stops with the pool of the Pareto
solutions and thereafter, one solution from the Pareto set is cho-
sen based on some ‘‘higher-level or expert knowledge’’. Argu-
ably, these involve several subjective measures and this
seriously undermines the efforts to objectively select a plan
without prejudice from the various stakeholders involved.
Therefore there is an imminent need for a tool to explore, ana-
lyze and evaluate the Pareto solutions. Desktop VR-based gra-
phic visualization can meet such need by facilitating not only
presented information, but also enabling seeing and understand-
ing of hidden information among datasets. Connolly [30]
defines virtual reality as the application of an artificial environ-
ment generated by computer technology to simulate some tar-
geted activity. However, directly creating virtual
representations from the results of the GA process is a tedious
task. Hence, a processing (Java-variant) 2D graphic interface is
used to obtain the numerical array from the GA and output a 2D
Graphic layout, which then serves as a reference for building
the virtual worlds.

3.7 2D Graphic interface

In order to facilitate the transition from the numerical GA
results to virtual representations, a 2D Graphic Interface is built
in this study. For generating the 2D graphic interface, a Java-
variant called Processing is employed. Processing, an open
source programming language built by Reas and Fry [31], is
largely used for graphic programming. The Pareto-optimal plan
obtained from the GA-based iterations is a layout representing
an optimal configuration of artifacts in the interior space. This is
in the form an array of integers. This integer array contains
100 genes corresponding to the 100 cells in the raster grid rep-
resenting the interior space layout (Figure 7). However, when
constructing the 3D virtual scenarios corresponding to the Pa-
reto-optimal plans, using this numerical array of integers can
be extremely cumbersome.

Hence, the numerical array (Pareto plan) is provided as the
input in the processing file (.pde), which produces an output in
the form of a graphic layout. Figure 8 shows the iconized gra-
phic interface for another Pareto plan. This iconized graphic
interface can now be used as a reference for the 3D Virtual
world scenarios depicting Pareto plans.

3.8 Virtual worlds for visualization

The tool used for visualizing the scenarios is the virtual
reality modeling language (VRML/X3D) specifications laid
out by Ames et al. [32]. The primary reasons for using this tool
are the web advantage it offers and the programmable external

Figure 7. Tier II: Graphic interface.

Figure 8. Tier II: Iconized graphic interface.
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authoring interface (EAI). VR scenes thus created can be hosted
online directly without much further modification. Users can
view these desktop virtual environments on their computer
using standard web browsers enabled with simple, open-source
VRML plugins. Also, these are easily convertible into the latest
web standard for 3D worlds, x3D.

Using a VR-based representation offers immense advanta-
ges. The users can navigate within these virtual worlds, move
the objects in the worlds, rotate or scale them, and transform
them in multiple ways. These virtual worlds facilitate user inter-
action with the 3D objects and provide a sense of immersion. In
this study visualization is used as a tool to evaluate the Pareto
plans objectively.

3.9 Virtual world generation

The scene is defined by ‘‘nodes’’ (X3D/VRML). A visual-
ization scene can be considered to be composed of objects with
properties. In the preceding sentence, the phrase ‘‘objects with
properties’’ is highlighted or emphasized, since these properties
determine how an objects looks and/or behaves. Considering a
sample scene, say a library, as considered in this study. If further
broken down into smaller fragments, the elements that result
include tables, chairs, lamps, washrooms, etc. The furniture
may be of a particular material, color, and dimensions. All these
are the attributes of the furniture. Similarly, each element has its
own characteristic features or attributes.

A scene can be viewed as being composed of elements or
objects, each of which has its own properties or attributes. A
parent object can include any number of children, which can
be grouped or assembled to function as one single entity. This
sort of hierarchical arrangement helps in the step-by-step design
of the object and also understanding the framework at any later
stage. A scene-tree construction is used in virtual scene render-
ings. The root or the parent object consists of whole scene
grouped together and all the other components are grouped
under this parent object using ‘‘parent-child’’ relationships.
Individual scene elements corresponding to each floor type
were created positioned according to their corresponding posi-
tions as per the Pareto plan obtained in the previous step.

For complex objects including multiple parts, various object
parts are grouped to form parent objects, leading to complete
objects that are combined and re-positioned to create the final
3D scene. Another advanced way of customizing the virtual
objects is by the use of PROTO nodes, which the following sec-
tion addresses.

3.10 Virtual objects and customizable nodes

Virtual world objects are described as shapes with geometry
and appearance. All features such as buildings, rooms, artifacts,
etc. can be modeled as shapes which can be grouped together
and transformed (translated or rotated) within the coordinate
system within which they are built. A vast number of VR
objects, however complex they might be, are built using the
fundamental shape node with the principal fields namely geom-
etry and appearance. The geometry field is used to describe the
geometric properties of the object and the appearance field is

used to describe how the object looks. In order to be able to
develop a framework that can interface the GA results with a
virtual environment, the objects in the virtual environment
should be mutually compatible with the GA. This implies that
the scene or the objects that are formulated in the GA should be
in a form that can be represented and programmed within the
virtual environment (GA-compatible). A significant step
towards this goal involves generating customizable nodes, the
PROTOS. PROTOS represents reusable scene objects and these
can be referenced from within the file and externally
(EXTERNPROTO). The PROTO library created as part of this
study can serve as an extremely useful addition that can be
extended into several other object oriented applications as well.
The framework also provides functionalities to dynamically
change graphical attributes such as diffuseColor /specularColor/
transparency to generate various appearances of the same object
and also dynamically manipulate the size of the object.

3.11 Programmed interface: user interaction

One of the primary reasons for implementing the graphic
library using PROTOS is to program the objects created. The
exposedFields can be compared with Input and Output jacks
and can be wired to create ‘‘ROUTES’’. Figure 9 below dem-
onstrates the Input/Output flow corresponding to this. The key
attributes of a graphics scene include geometry and appearance.
There are numerous fields and exposed fields that cumulatively
control the shape and appearance of objects.

By routing user events through appropriate Input and Out-
put jacks, these fields can be controlled ‘‘dynamically’’ to
manipulate geometry and appearance, such as these:

– Dynamically changing diffuseColor/specularColor/ trans-
parency for alternate appearances of object(s);

– Dynamically changing the size of the object.

While these can be achieved using commercial software,
these are numerous restrictions to what can be done within such
IDEs. However, these programmed objects offer innumerable
possibilities whereby their behavior and attributes can be con-
trolled. By way of creating custom-made PROTOS and
EXTERNPROTOS, the behavior of the scene and the constitu-
ent objects can be controlled very precisely to generate desired
actions. Next, controlling the position and orientation by manip-
ulating transformational attributes is discussed.

External Authoring Interface-Scripting 

User Action on ‘Sensorized’ Area

Output from .js (JavaScript) 

Figure 9. I/O sequence (event-response) framework.
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The virtual world/scene is divided into pixels/voxels.
Objects are embedded within these grids (2D/3D) with built-
in sensors to recognize user actions. When the user clicks
within the perimeter/boundary of the pixel/voxel, the position
(geometric center) is highlighted. The highlighted object always
exists in the scene, however, initially in the un-activated state
(visibility set to zero). Subsequently, using JavaScript functions,
the user click event is used to activate the object (by modifying
the material node’s transparency value). In order to facilitate the
user clicking, a buffer is provided whereby the user can clicking
within a radius of the geometric center of the grid and the object
is still selected. Ultimately, the crux of this interaction and
manipulation involves building sensors and programming them
to sense user actions.

Once the virtual scene environments have been built for the
corresponding Pareto-optimal plans, further modifications with-
out affecting the constraints can be performed as shown above
wherein the decision makers can apply changes to attributes
including position and appearance to ‘‘envision’’ alternative
scenarios. This offers a tremendous capability whereby once
a VR design is generated and the user wants to manipulate
the final design. Some parts are programmed to be translated
or rotated or scaled, while others are fixed or stationary. The
GA constraints require them to be at that fixed position (for
design criteria) and hence these cannot be changed.

Earlier sections covered in detail the methodology for the
design and implementation of the GA-enabled visualization
framework to generate design scenarios involving the arrange-
ment of artifacts in interior spaces. The framework involves
three major elements namely GA-based MOO, a 2D graphic
interface, and finally a VR-based visualization environment.
This discussion of the results of processes of MOO and visual-
ization is especially from the perspective of the interior space
application.

The GA-based MOO in conjunction with the VR-based
visualization described previously was tested on a common
interior space e.g., library. The interactive and navigable virtual
worlds generated are discussed in detail here. Such visualiza-
tions can efficiently illustrate design scenario(s) than a conven-
tional (paper-based) or PC-based 2D scene representations.
However, unless the GA data is converted into the 3D format
it is not of significant use to planners and decision makers, since
analyzing voluminous numerical data and inferring from them
is a cumbersome task, which may not ultimately yield the
desired results. Visualization greatly facilitates understanding
the design scenario and comprehending its function from
diverse perspectives; this is especially important when multiple
stakeholders with varying interests are involved.

4 Results and discussion

4.1 Important considerations while interpreting

results

As mentioned in the earlier sections, the ‘‘primary focus’’ of
this study is the amalgamation of the GA-based MOO with the
Desktop VR based CG component to design and implement an
innovative framework to generate alternative interior space

configurations. However, the essential innovation involves the
actual integration of GA with CG. The emphasis here is the
demonstration of the usefulness of the visualization scenarios
resulting from this integrated framework and the analysis of
the environments as a tool to facilitate ‘‘informed decision-mak-
ing’’. From this point of view, the GA metrics are not as signif-
icant as the process of interpreting the visual results. It was
explained in the literature review that earlier research applying
GA-based MOO to the domain of interior space design using a
framework similar to that of this study could not be found; this
is one of the major reasons justifying the innovative aspect of
this research.

From the above discussion the need for extensive research
in this area of ‘‘GA metrics for MOO in interior space plan-
ning’’ is evident. This in itself can be a subject matter deserving
extensive research spanning over another graduate research.
Hence, even though this section discusses the GA metrics,
the focus is essentially to elucidate the visualization results
and demonstrate the usefulness of the research outcomes in
generating as well as evaluating alternative scenarios. Hence,
the essential aspects of the GA parameters and GA metrics
are discussed subsequently. The functionalities of the visual
interface for viewing are demonstrated using not only the
library setup, but various other possible interior space scenarios
are used to demonstrate the various capabilities of the desktop
virtual environments generated for this study. But, before look-
ing at the visual interface, let us look at the GA-based MOO
component.

4.2 Crucial GA operations for experiments

At the core of the GA based optimization are the important
processes of crossover and mutation. Typically, the term ‘‘GA
parameters’’ refers to the probabilities of crossover and muta-
tion. However, before getting to the crossover probability and
the mutation probability, the method of selecting the parent
individuals for crossover needs to be discussed. The type of
selection employed in this study for selecting the parent chro-
mosomes for ‘‘mating’’ or crossover is called ‘‘tournament
selection’’. This method involves selecting the parent chromo-
somes from a smaller subset of individuals from a generation.
Typically, there is a stochastic element involved in this selection
of the few chromosomes to serve as the pool for ‘‘parents-to-
be’’. From this subset, the selection of the parent is classically
based on its fitness value. Hence, the process of tournament
selection is, in a way, characterized by stochastic as well as
deterministic traits. One important feature in this process of
tournament selection is the tournament size. When the tourna-
ment size is increased, the probability that an unfit chromosome
(individual with lesser fitness value) is selected gets minimized.
The tournament size employed in this study is 5. At random,
five plans are selected from the parent generation. From this
subset, two plans with the highest fitness values are selected
as parent individuals for the subsequent step of crossover (mat-
ing). This is implemented as follows:

1. Random set containing five integer values are selected,
2. The five integer values are used to select the subset of

individuals,
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3. From this subset, individuals with highest fitness are
selected as parents.

To prevent recurrence, a sub-routine (function) is executed
in the program to ensure that the same chromosome is not
selected again, as this would result in the children chromosomes
being the same as the parents. As noted earlier, single-point
crossover was employed for the reproduction process. Splitting
refers to the case when a single artifact element occurring at
non-continuous locations. The crossover point (after gene 50,
G50) represents the location where the portions are interchanged
to generate the offspring.

The values (genes) in the first offspring before the crossover
point are identical to the parent Individual no. 1 and the values
after the crossover point are identical to the values in the parent
individual (PI) no. 2 (51–100). The first part of the second off-
spring has values similar to PI2 and the other part replicates
PI1’s values. Subsequent to the reproduction operation, the
chromosomes in the resultant population must be subjected to
mutation. The mutation operation is carried out by comparing
the result of the random value generated with the probability
of mutation. In this study, a mutation probability of 0.05 is
employed. In the natural evolution, mutations are considered
to be a sporadic or rare occurrence and hence the mutation
probability is assigned a low value. A random value (RanVal)
in the range of 0–1 is produced corresponding to each gene
in the two children chromosomes (offspring). The ‘‘crux’’ of
the mutation process involves comparing this value hence gen-
erated with the ‘‘probability of mutation’’ (Mutprob). If
(Mutprob – Ranval > 0), then the integer value corresponding
to the gene is changed to another random value between
1 and 12. Else, it remains non-mutated or integer value corre-
sponding to the gene is not changed. It should not be the other
way (Ranval – Mutprob > 0), as the probability of mutation is
very low and then this may lead a very high frequency of muta-
tion which contradicts the natural process of mutation. The pro-
cess of mutation executed needs to be ‘‘constrained’’. This
implies that the mutation process should not result in the ‘‘split-
ting of artifacts’’ mentioned earlier and it should not allot ele-
ments in the reserved cells (for safety features/emergency
purposes).

4.3 GA validation

Kemenade et al. [33] examined the role of the parameters in
the GA operational efficiency, their impact on the outcomes,
and the various schemas for GA operations. Parameters of
the GA such as the Generation size, tournament size, and the
probabilities of crossover and mutation have a strong correla-
tion with the overall performance of the GA. In this study,
the GA was executed for varying values for the probability
for mutation and tournament size and finally a medium tourna-
ment size of 5 and a low mutation probability (0.05) is
employed.

The GA results are explained here from the perspective of
the fitness of the generations and ‘‘Pareto-optimality’’. For
repeated runs of the GA for at least 10 times, the average fitness
of the generations showed consistent improvement explaining

that the GA has significantly improved the fitness of the indi-
viduals. This implies that the final plans, whilst satisfying the
constraints, have maximized the objectives incorporated within
the GA. The result of the GA iterations is the Pareto-optimal
set, which consists of the non-dominated solutions. However,
practically only one solution can be implemented and may be
more suitable for the specific problem on hand when taking
in to consideration other factors that were not included in the
GA. When there is an inventory list containing 12 elements,
the random generation of the chromosomes cannot be expected
to produce a gene allocation that matches the artifact attributes
(or dimensions). Hence, a step is implemented before the actual
execution of the genetic algorithms known as ‘‘selection of fea-
sible solutions’’ is implemented to ensure that the genotypic
representation corresponds to the realistic representation.

4.4 Visualization results

The GA results are input into a .pde file (Processing pro-
gram) which converts these numerical results into the cells of
a graphic interface (reference). Hence, the numerical array
(Pareto plan) is provided as the input in the Processing file
(.pde), which produces a output in the form of a graphic layout,
which can now be used as a reference for constructing the 3D
Virtual world scenarios depicting the Pareto-optimal plans. The
floor is superimposed over this layout and the transparency
value of the floor is adjusted so as to reveal the layout. In order
to facilitate this process of further generating the virtual worlds
from this 2D layout, the x, y, z axes are used initially as a ref-
erence and also a grid is superimposed over the scene to facil-
itate for properly situating the elements within the VR program
code.

A virtual environment or a scene is composed of various
scene objects, where the scene itself can be considered to be
the root object. All the objects can be envisioned in the form
of ‘‘parent-child’’ associations. Besides, as mentioned earlier,
to be able to develop a framework that can facilitate visualizing
the MOO results and further interacting with it generating cus-
tomizable nodes, the PROTOS, is a crucial step. Table 2 illus-
trates selected artifact elements on the layout space and what
virtual scene elements are corresponding to these index values.
A more complex virtual artifact element leads to greater branch-
ing in terms of the scene hierarchy.

When evolutionary procedures are employed for multiob-
jective design optimization, it is imperative that the differences
among the candidate solutions are meticulously evaluated to
consider their suitability to the actual problem on hand. More
importantly, it is not practically possible to include all possible
or desired features in the form of objectives or constraints. A
whole set of factors that have not been expressed as either
objectives or constraints can be evaluated using the visual med-
ium. Visualization empowers the decision makers to view and
comprehend even hidden or ineffable information. The 3D vir-
tual scenes besides enabling navigation also provide a sense of
immersion whereby the planners can explore and evaluate the
designs (Figure 10).

This study provides interactive capabilities within the vir-
tual environment. In this research, Desktop VR is used for

M. Chandramouli and G.R. Bertoline: Int. J. Simul. Multisci. Des. Optim. 2014, 5, A01 11



the visualization component. By using 3D visual scene render-
ings, planners who are experts in the fields of design planning
can identify desirable or undesirable patterns. It is very impor-
tant to interact with the VR environment to perceive the unique
aspects of the plan under study. The ‘‘point of view’’ is a feature
that indicates the use of visualization to study the same scenario
from different points of view (Figure 11).

The viewpoint is a preprogrammed spot within the VR
environment that takes the viewer to the specific position and
orientation wherefrom the scene can be viewed. This is very
helpful when evaluating a scene with respect to a specific prob-
lem, so that the pros and cons of the design can be studied in
detail. Also, another salient advantage while programing virtual
scene representations is the capability to build the same by
employing varying levels of detail. For instance, when viewing
from a distance, the bigger or finer details need not be rendered
for the smaller objects that are not quite as obvious. This notion
can be used to efficiently model the scene so as to facilitate fas-
ter and smoother scene rendering. The virtual environment can
be rendered in accordance with the viewer’s position with the
scene. Table 3 highlights few salient features provided by VR
settings and explains how the VR visualization of Pareto plans
enhances evaluating the various plans with respect to the
objectives.

4.5 Interaction with the virtual scene

Virtual environments can be rendered interactive using dif-
ferent techniques. The EAI (External Authoring Interface) pro-

vides a window to access the nodes that constitute the various
shapes within the virtual scene.

Typically, a VRML based virtual environment is composed
of scene elements that can be broken up into nodes that consti-
tute these shapes. These nodes (in these shapes) control how a
scene object looks by programming their geometry and appear-
ance. Interaction necessarily involves a change of state of the
objects involved. The node that has to be selected and modified
depends on the type of interaction desired. While the capabili-
ties of the standalone virtual environment are limited, a plethora
of possibilities can be opened up by employing the External
Authoring Interface (EAI). Two important functionalities used
in this study, from a design perspective, include ‘‘sensors’’
and ‘‘EAI’’. Sensors refer to the ability of a virtual environment
to ‘‘sense’’ and respond to user actions. The primary means of
interaction for a user with a desktop virtual environment
involves the mouse and the keyboard. Examples of common
mouse actions are as follows:

d Hover,
d Left-click,
d Right-click,
d Drag.

Theoretically, innumerable alternatives exist for a design
problem, which is why an efficient tool such as GA is used
to narrow down on a subset of solutions. It should however
be noted that it is difficult to say that with 100% accuracy that
the solution obtained is the ‘‘best’’ solution. This is so because

Table 2. Index values of selected elements and scene hierarchies.

Artifact classification virtual scene Level 1 of scene hierarchy Level 2 of scene hierarchy

Index value – 1 IT lab 1. PC terminals
2. Furniture 1

Index value – 3 Refreshments/Rec. space 1. Vending machine
2. Snacks machine

Index value – 5 Group study room 1. Furniture 1
2. Table.Ch.1

Index value – 11 Ref/Info desk 1. Furniture 1 2. Table.Ch.1
Index value – 12 Book-shelf 1. Shelf

Figure 10. Desktop VR scene for a Pareto plan. Figure 11. Multiple POVs (points of view).
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the final solution is the result of the interplay of a whole lot of
factors such as GA formulation, constraints applied, various
GA parameters such as rate of selection, probability of muta-
tion, fitness function, and so on.

A different set of values for the aforementioned characteris-
tics might lead to totally diverse set of solutions. Let X denotes
the complete search space for a problem on hand. For design
problems, depending on the number of various factors includ-
ing objectives involved, the nature of objectives (e.g., conflict-
ing), and constraints imposed etc. the search space may be
enormous. The rationale behind using tools such as GA is to
narrow down and identify the ‘‘optimal’’ solution.

Assuming that a robust GA has been employed with suit-
able fitness function and appropriate parameters, the user is still
left with a pool of solutions (Pareto-optimal plans). From the
above explanation it follows that for a different combination
of factors, a different solution (or set of solutions) could have
been attained. Also, most literature refer to terms such as
‘‘expert knowledge’’ or ‘‘domain-specific knowledge’’ or
‘‘higher level information’’ [29] that plays a crucial role in
the selection of the final plan or design for implementation.
This, quite frequently involves ‘‘intangible’’ or ‘‘ineffable’’ fac-
tors in the sense that some aspects may become obvious to the
expert upon visualizing the design. Whilst, this can always be
‘‘expressed’’ once it has been ‘‘envisioned’’, it may be difficult
to express prior to that.

The ultimate purpose of all these tools is to facilitate the
process of ‘‘envisioning’’ the best or optimal design. The visual
representation generated portrays a possible solution to the
problem considered. However, when this visual environment
lacks interactive capabilities, it is a major handicap as the user
or the expert is not able to envision ‘‘What if’’ scenarios. It is
extremely important that any transformation (translation or rota-
tion) can occur only within the ‘‘constraints’’ already set in the
GA. A transformation should not violate the GA constraints;
else the entire process of MOO using the GA will be under-
mined. The following pseudo-code expresses this notion:

dof
==Object transformationwithin theVirtual Scene

gwhile ðGAConstraintsMet ¼¼ trueÞ;

In order to ensure that the conditions are always met, the
virtual environment (and hence, the objects within the virtual
scene) are programmed as follows:

d Not all objects are allowed to translate. Repositioning is
enabled only for select objects within virtual scene.

d Areas where objects cannot be moved into are pro-
grammed in such a way that a ‘‘visual warning’’ (a trans-
parent red object) is displayed when any infringement
occurs.

The use of scripting here is to identify specific areas within
the virtual environment that should not be transgressed or
infringed upon (as the GA constraints are so formulated). In this
process there are specific mouse activities that are performed
such as hovering, clicking etc. When the mouse hovers upon
the a specific scene area that has been categorized as a
‘‘restricted zone’’ (e.g., emergency exit as mentioned earlier),
this area should undergo a change of state that is ‘‘visible’’.
In other words, if the restricted area gets highlighted in a differ-
ent color (e.g., red/transparent red), that indicates that the user
should not move any object into this colored area.

In order to get this effect, a shape object should be embed-
ded within this area and the actual work occurs in the MATE-
RIAL node of the shape object. Let us assume that ‘‘Box’’
geometry is used to indicate the demarcated area. The MATE-
RIAL node of this object should change the color to red when it
‘‘senses’’ mouse movement. This implies that, when the user
hovers the mouse over this area, the object (upon sensing the
mouse) should change the color of the Box object from ‘‘invis-
ible’’ to ‘‘red’’. The state of invisibility is accomplished by turn-
ing the transparency to 100%. Inside the code snippet this is
represented between values of 1 and 0, 1 being 100%. Any
value in between is represented using corresponding decimals.
In this study, JavaScript is used for scripting. A whole lot of
interactions can be done with the virtual scene hence generated.
These include transformations as well as modifying appearance
related attributes.

On the whole, all the modifications can be classified either
as geometry related modifications, appearance related modifica-
tions, and position related modifications. The last one also
includes modifications related to the orientation and scale.
Modifications to position, orientation, and scale are all grouped
as transformational changes. In the virtual environment, the
color that is seen or is visible finally is the result of various pro-
grammatic elements such as color, transparency, ambient inten-
sity, etc. These can be controlled using a menu-driven
environment, in which visible sensors can be activated to con-
trol the various values such as the transparency, color, shininess
etc. This can be especially useful for designers focusing on the
various design aspects involving light and those who study the
impact of applying various -modulations to the light and color
in the interior environment. Also, the ability to vary the inten-
sity provides a valuable functionality to determine the most

Table 3. Salient advantages of VR scene visualization of Pareto plans.

Feature Advantage

Point of view (POV) The scene can be evaluated from innumerable points of view.
Levels of detail (LOD) The same scene can be created and viewed using varying levels of detail.
Navigation Different browser/plug-in combinations offer various methods of navigation

such as study, flying, and walk-through.
Controlling scene attributes The scene attributes and the attributes of the VR scene objects such as

Geometry Appearance can be controlled in multiple ways.
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suitable form and intensity of lighting for the specific environ-
ment under study.

5 Conclusion

This research integrated the notion of GA-based MOO
within the discipline of interior space planning. he results
evinced the robustness of the GA and its efficiency in generat-
ing the Pareto plans. The study goes beyond presenting the
results in the form of a Pareto set with a pool of candidate solu-
tions, by providing a means to visualize potential solutions
using a virtual reality imaging, and by experimenting with those
plans through an active interaction capability. Experimenting
indicates producing alternative representations corresponding
to a different set of appearance and geometry variables and
the subset of variables influencing the final VR Scene. The sub-
set of variables mentioned above includes a wide range of val-
ues such as diffuseColor, transparency, specularColor, etc.
Visualizing and manipulating the plans in this manner provides
a means of more effectively exploring and navigating the poten-
tial solutions. This greatly facilitates the practice of informed
decision-making and selecting the optimum plan, and allows
for the inclusion of many more stakeholders in the final deci-
sion process.

The generation of the graphic designs is based on a web-
friendly framework. Designs are generated using OpenSource
software that are web-compatible so that the results can be
hosted online (World Wide Web). For this reason the research
has accomplished all programming procedures using web-com-
patible OpenSource software such as VRML, Java, and Java-
Script. In order to more up-to-date with the web standards,
the code snippets can also be easily converted to X3D if it is
so required. This conversion is a seamless and straightforward
process as X3D is considered the successor to VRML and is the
XML-based 3D authoring language. Programming the EAI
(External Authoring Interface) of the virtual worlds (.wrl or
.x3d) with Java and JavaScript opens up the key graphics attri-
butes include geometry and appearance.
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