

Purdue University Purdue e-Pubs

IUTAM Symposium Architectured Materials Mechanics

Symposium Contributions

Sep 17th, 12:00 AM - Sep 19th, 12:00 AM

Extending Origami: Crease Pre-stressing for Functional Adaptation

Andres Arrieta *Purdue University,* aarrieta@purdue.edu

Jakob Faber

Katherine Riley

André Studart

Follow this and additional works at: https://docs.lib.purdue.edu/iutam Part of the <u>Engineering Commons</u>

Recommended Citation

Arrieta, A., Faber, J., Riley, K., & Studart, A. (2018). Extending Origami: Crease Pre-stressing for Functional Adaptation. In T. Siegmund & F. Barthelat (Eds.) *Proceedings of the IUTAM Symposium Architectured Materials Mechanics, September* 17-19, 2018, Chicago, IL: Purdue University Libraries Scholarly Publishing Services, 2018. https://docs.lib.purdue.edu/iutam/presentations/abstracts/4

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

IUTAM Symposium Architectured Material Mechanics, T. Siegmund, F. Barthelat, eds September 17-19, 2018, Chicago, IL, USA, , Chicago, IL, USA

Extending Origami: Crease Pre-stressing for Functional Adaptation

Andres F. Arrieta¹, Jakob Faber², Katherine S. Riley and André R. Studart² ⁽¹⁾ Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, aarrieta@purdue.edu ⁽²⁾Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland

KEYWORDS:

Origami, Programmable Matter, Multistability

Shape programmability has been proposed as a mechanism to provide in material systems and structures with dynamically adaptable properties and multifunctionality [1, 2, 3, 4]. In this work we explore the capabilities to program fast and efficient shape adaptation from introducing pre-stress in the folds of origami-like structures following bioinspiration from the insect order Dermaptera [1, 2]. In a recent paper, we showed how membrane pre-strain in the creases of Dermaptera wings introduces a bistable behaviour responsible of the remarkable fast self-folding and locking mecanisms exhibited by these insects. In this paper we explore the design space for functional applications translating bioinspired design principles into engineering structures.

Acknowledgments

We thank the financial support from ETH Zurich, Purdue University, European Office of Aerospace Research and Development (EOARD, grant FA9550-16-1-0007), and the Air Force Office of Scientific Research (AFOSR, grant FA9550-17-1-0074)

References

[1] P. Fratzl and F. G. Barth, "*Biomaterial systems for mechanosensing and actuation*," Nature, vol. 462, no. 7272, pp. 442-448, 2009.

[2] I. Burgert and P. Fratzl, "*Actuation systems in plants as prototypes for bioinspired devices*," Philosophical Transactions of The Royal Society A, vol. 367, no. 1893, pp. 1541-1557, 2009.

[3] A. R. Studart, "*Biologically Inspired Dynamic Material Systems*," Angewandte Chemie International Edition, vol. 54, no. 11, pp. 3400-3416, 2015.

[4] A. R. Studart and R. M. Erb, "*Bioinspired materials that self-shape through programmed microstructures*," Soft Matter, vol. 10, pp. 1284-1294, 2014.

[5] F. Haas, "*Wing Folding in Insects: A Natural, Deployable Structure*," in IUTAM-IASS Symposium on Deployable Structures: Theory and Applications: Proceedings of the IUTAM Symposium held in Cambridge, U.K., 6--9 September 1998, S. Pellegrino and S. D. Guest, Eds., Dordrecht, Springer Netherlands, 2000, pp. 137-142.

[6] F. Haas, S. Gorb and R. A. J. Wootton, "*Elastic joints in dermapteran hind wings: materials and wing folding*," Arthropod Structure & Development, vol. 29, no. 2, pp. 137-146, 2000.

[7] F. Faber, A. F. Arrrieta, A. R. Studart, Science, accepted, 2018.