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• Traditional Damping Treatments – Visco-elastic Core with Metal Skins

ASA May 2018, Minneapolis, MN

INTRODUCTION

• Fibrous Damping Treatments – Target Material of this Study

Structure of a Traditional Damper[2]

Test on Fibrous Dampers[4]Fibrous Damping Material[3]

Traditional Damping Material[1]
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Porous layer

Stiff panel

Reflecting 
plane

• Layered Structures Shown in the Literature

INTRODUCTION

Force
• The panel damping mostly arises because of the viscous interaction 

of the fibrous medium and the evanescent near-field of the panel 
associated with subsonic panel motion

• Literature Review
Ø Bruer & Bolton, AIAA 1987[5] – Analysis of different waves propagating in the layered damping structures
Ø Wahl & Bolton, JASA 1992[6] – Analysis by Inverse Discrete Fourier Transform (IDFT) on the spatial / 

temporal response of the layered damping system under line driving force
Ø Lai & Bolton, Noise-Con 1998[7] – Modeling to prove reasonable structural damping effect from the light

fibrous materials through dissipating nearfield energy
Ø Gerdes et al., Noise-Con 1998[8] – Numerical modeling of the structural damping effect from the light fibrous

materials by evaluating the in-plane direction particle velocity
Ø Nadeau et al., Journal of Aircraft 1999[9] – Tests of aircraft fuselage damping treatment by sound-absorbing

blankets and related layered structures
Ø Gerdes et al., Noise-Con 2001[4] – Numerical modeling of the structural damping effect from three different

visco-elastic dampers compared with fibrous dampers
Ø Kim et al., Noise-Con 2015[10] – Bulk property (thickness) design for fibrous materials’ structural damping
Ø Xue et al., Applied Acoustics 2018[11] – Fibrous material airflow resistivity prediction based on verified

microstructure

Fibrous layer

Stiff panel
Stiff panel

Force
Force

Constrained porous
layers

Half-space airHalf-space air
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Ø Gerdes et al., Noise-Con 1998[8] – Numerical modeling of the structural damping effect from the light fibrous

materials by evaluating the in-plane direction particle velocity
Ø Nadeau et al., Journal of Aircraft 1999[9] – Tests of aircraft fuselage damping treatment by sound-absorbing

blankets and related layered structures
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Ø Xue et al., Applied Acoustics 2018[11] – Fibrous material airflow resistivity prediction based on verified

microstructure

Fibrous layer

Stiff panel
Stiff panel

Force
Force

Constrained porous
layers

Half-space airHalf-space air
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• Acoustical / Damping Performance Prediction Process

GENERAL APPROACH

5



ASA May 2018, Minneapolis, MN

AFR
• Fibrous Medium Airflow Resistivity Prediction[11]

SEM of the target fibrous medium Fibrous medium micro-CT scanning

Micro-CT scanned fiber radii distribution of the fibrous medium 

Fiber 1: main AFR contributor, 
with mean fiber size r1 Fiber 2: with mean fiber size r2
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• Fibrous Medium Airflow Resistivity Prediction[11]

In
pu

ts

Fiber mean radii: 𝒓𝟏, 𝒓𝟐, 
distribution parameters

Fiber bulk density: 𝝆𝒃
Component weight fractions: 𝑿𝟏, 𝑿𝟐
Solid material densities: 𝝆𝟏, 𝝆𝟐

Solidity: 
𝑪 =	𝑿𝟏

𝝆𝒃
𝝆𝟏

+𝑿𝟐
𝝆𝒃
𝝆𝟐

Fiber mean spacing: 

𝒃𝟐 = 	
𝝅
𝑪
(∑ 𝒏𝟏,𝒑𝒓𝟏,𝒑𝟐

𝒋
𝒑2𝟏 + ∑ 𝒏𝟐,𝒒𝒓𝟐,𝒒𝟐𝒌

𝒒2𝟏 )

(∑ 𝒏𝟏,𝒑
𝒋
𝒑2𝟏 + ∑ 𝒏𝟐,𝒒𝒌

𝒒2𝟏 )
2

1

3

Output Airflow Resistivity: 𝝈 = 𝟒𝝅𝜼

𝒃𝟐[𝟎.𝟔𝟒𝟎 𝐥𝐧 𝟏
𝑪 ?𝑪@𝟎.𝟕𝟑𝟕]

Ø Step 3: 𝝈 calculation base on 𝑪 and 𝒃𝟐

Ø Step 1: 𝑪 calculation based on 𝝆𝒃, 𝑿𝟏, 𝑿𝟐, 𝝆𝟏, 𝝆𝟐

Ø Step 2: 𝒃𝟐 calculation based on 𝒓𝟏, 𝒓𝟐, distribution parameters and 𝑪

AFR
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• After having bulk moduli and wavenumbers of elastic fibers[13], [14]

ACM / TMM

Ø ACM: incorporate B.C.s into equations system and solve for acoustical properties
Ø TMM: reduce higher order matrices ([6x6] or [4x4]) to [2x2] by SVD + QR + B.C.s, then 

combine them with other [2x2] element matrices to solve for acoustical properties

8
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NFD
• Choice of IDFT sampling rate 𝜸𝒔 and sampling points number 𝑵[12]

Ø Target of the NFD model: calculate spatial responses for wide frequency range

Ø Key point: for each frequency input, choosing proper 𝜸𝒔 and 𝑵 to ensure accurate IDFT 

results over a large enough spatial span for observation

• Step 1: evaluate the wave number domain response of the panel
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• Step 2: decide a proper cutoff level to avoid windowing/truncation effect

NFD
• Choice of IDFT sampling rate 𝜸𝒔 and sampling points number 𝑵[12]

Ø Target of the NFD model: calculate spatial responses for wide frequency range

Ø Key point: for each frequency input, choosing proper 𝜸𝒔 and 𝑵 to ensure accurate IDFT 

results over a large enough spatial span for observation
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𝛾H
2−

𝛾H
2

• Step 3: find the proper sampling rate 𝛾H for each input frequency

• 𝑁 should 
be large 
enough to 
avoid bias

At certain 
frequency

NFD
• Choice of IDFT sampling rate 𝜸𝒔 and sampling points number 𝑵[12]

Ø Target of the NFD model: calculate spatial responses for wide frequency range

Ø Key point: for each frequency input, choosing proper 𝜸𝒔 and 𝑵 to ensure accurate IDFT 

results over a large enough spatial span for observation
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• Step 4: identify the critical frequency 𝑓M

𝑓M

Speed of 
sound

Subsonic 
components

Supersonic
components

NFD
• Choice of IDFT sampling rate 𝜸𝒔 and sampling points number 𝑵[12]

Ø Target of the NFD model: calculate spatial responses for wide frequency range

Ø Key point: for each frequency input, choosing proper 𝜸𝒔 and 𝑵 to ensure accurate IDFT 

results over a large enough spatial span for observation
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• Acoustical / Damping Performance Prediction Process

• Materials Microstructure Design Process

• Objectives of this Study
Ø Identify the airflow resistivity providing optimal damping performance

given panel structure and frequency range of interest
Ø Translate the optimal airflow resistivity into optimal fiber sizes for

fibrous material microstructure design
Ø Demonstrate effect of macroscopic stiffness

AFR & 
least 
squares 
fitting

Range of 
damping 
properties 
prediction

ACM /
TMM & 
NFD

Select 
peak 
value

Optimal damping 
and corresponding 
optimal airflow 
resistivity

Range of 
airflow 
resistivity

Input

Optimal 
fiber size

Output
Addition of 
macroscopic 
stiffness

Input
Similar 
process

GENERAL APPROACH
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MODELING

Governing Equation (GE)
𝐷
𝜕P𝑤 𝑥, 𝑡
𝜕𝑥P + 𝑚H

𝜕U𝑤 𝑥, 𝑡
𝜕𝑡U = −𝑝W 𝑥, 𝑡 + 𝑓 𝑡 𝛿 𝑥

Governing Equation Fourier Transform (GEFT)
𝐷𝑘ZP −𝜔U𝑚H 𝑊 𝑘Z,𝜔 = −𝑃W 𝑘Z, 𝑡 +𝐹

stiff panel
𝑥

𝑧

𝑓 𝑡 = 𝐹𝑒?abc

Near-field pressure, 𝒑𝟏, and 
normal velocity, 𝒗𝒛𝟏, at 𝒛 = 𝟎

Far-field pressure, 𝒑𝟐, and 
normal velocity, 𝒗𝒛𝟐, at 𝒛 = 𝒅

𝑤(𝑥, 𝑡)

Porous medium: thickness (𝒅), AFR (𝝈), bulk 
density (𝝆𝒃), porosity (𝝓), tortuosity (𝜶i), Young’s 

modulus (𝑬), Poisson’s ratio (𝝂), loss factor (𝜼)

Panel: basis weight (𝒎𝒔), flexural stiffness per unit 
width (𝑫), longitudinal stiffness per unit width (𝑫𝒑)

Euler-Bernoulli beam theory (neglect 
rotary inertia & shear deformation) 

Input porous 
medium bulk 

properties (𝝈, 𝝆𝒃, 
𝝓, 𝜶i, 𝑬, 𝝂, 𝜼) 

Complex wave numbers 
(𝒌𝒊,𝒊 = 𝟏 for limp or 
rigid frame, 𝒊 = 𝟑 for 

elastic frame)

JCA &
Biot’s 
Theory

Find maximum 𝑃op (optimal 
damping) and corresponding 
optimal 𝜎 for frequency of interest

Input 𝒅, 𝒌𝒙, 𝑫, 𝑫𝒑

Integration

AFR Model combined with least 
square optimization returns optimal 
porous material microstructure 
details (e.g. fiber sizes)

Near-field-far-field relation 
𝑝W
𝑣tW t2u

= 𝑇WW 𝑇WU
𝑇UW 𝑇UU

𝑝U
𝑣tU t2p

Panel mechanical impedance: 𝑍x = 𝑖 𝐷/𝜔 𝑘ZP− 𝜔𝑚H

Near-field acoustic impedance: 𝑍{W =
|}}~��?|}�
|�}~��?|��

Far-field acoustic impedance: 𝑍{U= (𝜔𝜌{a�)/𝑘t{a�
Pressure-velocity relation: 𝑝a =𝑍{a𝑣ta	(i =1,2)

𝒌𝒛𝒊 = 𝒌𝒊𝟐 −𝒌𝒙𝟐

Equation system
based on propagating

waves and B.C.s

Panel normal velocity response
𝑣tW 𝑘Z,𝜔 = 𝐹/ 𝑍{W 𝑘Z,𝜔 + 𝑍x 𝑘Z,𝜔

Inverse Fourier Transform (IFT) for spatial response

𝑣tW 𝑥,𝜔 =
1
2𝜋
� 𝑣tW 𝑘Z,𝜔 𝑒@a��Z𝑑𝑘Z
i

@i
Use IDFT to approximate the numerical IFT results

𝑣tW 𝑘∆𝑥,𝜔 =
1
𝑁∆𝑥�𝑣tW 𝑙∆𝑘Z,𝜔 𝑒

@aU���
�

�@W

�2u

Transfer Matrix Method /
Arbitrary Coefficient Method

Combined with GEFT

Power radiation into the porous layer

𝑃W =
1
2Re � 𝑝W𝑣tW∗

i

@i
𝑑𝑥

=
1
4𝜋 Re � 𝑍{W 𝑣tW 𝑘Z, 𝜔 U

��
U

@��U

𝑑𝑘Z

Power radiation into the air

𝑃U =
1
2 Re � 𝑝U𝑣tU∗

i

@i
𝑑𝑥

=
1
4𝜋 Re � 𝑍{U 𝑣tU 𝑘Z, 𝜔 U

��
U

@��U

𝑑𝑘Z

Power dissipation in the porous layer
𝑃op = 𝑃oW − 𝑃oU

Input 
𝑵, 𝜸𝒔
for 
IDFT

Transfer 
Matrix

Line driving force

• Modeling Process[12]

14



RESULTS – BARE PANEL
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• Spatial Velocity Level (dB)

Force

Half-space air
𝑥 = 0
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RESULTS – LIMP LAYER
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• Spatial Velocity Level (dB)

Limp porous layer

Force
𝑥 = 0

Half-space air
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB)

Force

𝑥 = 0
Limp porous layer

Force

Half-space air

Half-space air

VS.

𝑥 = 0

10 Hz

56 Hz

316 Hz

1778 Hz

10000 Hz
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB) 
Ø Difference between two cases for a 3 mm thick aluminum
Ø Significant attenuation in subsonic region below critical frequency

18
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB) 
Ø Difference between two cases for a 1.5 mm thick aluminum
Ø Compare to 3 mm panel: higher critical frequency and stronger attenuation

19
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB) 
Ø Difference between two cases for a 6 mm thick aluminum
Ø Compare to 3 mm panel: lower critical frequency and smaller attenuation

20
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RESULTS – BARE PANEL
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• Power Distribution

𝑷𝒊𝒏: Power input by the driving force

𝑷𝒔: Power staying in the panel

𝑷𝟏 = 𝑷𝟐: Power radiating into the air

Power 
input

Power radiating 
to the air

Power 
staying 
in the 
panel

Force

Half-space air
𝑥 = 0

21
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RESULTS – LIMP LAYER
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• Power Distribution

𝑷𝒊𝒏: Power input by the driving force

𝑷𝒔: Power staying in the panel

𝑷𝟏: Power radiating into the layer

𝑷𝒅: Power dissipation within the layer

𝑷𝟐: Power radiating into the air

Power 
input

Power radiating 
to the layer

Power radiating 
to the air

Power 
staying 
in the 
panel

Power 
dissipation

Ø Subsonic region attenuation due to 
power dissipation within the layer 

Limp porous layer
𝑥 = 0

Half-space air

Force

22fc



RESULTS – ELASTIC LAYER
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• Power Distribution

𝑷𝒊𝒏: Power input by the driving force

𝑷𝒔: Power staying in the panel

𝑷𝟏: Power radiating into the layer

𝑷𝒅: Power dissipation within the layer

𝑷𝟐: Power radiating into the air

Power 
input

Power radiating 
to the layer

Power radiating 
to the air

Power 
staying 
in the 
panel

Power 
dissipation

Ø Stronger attenuation achieved by adding 
macroscopic stiffness to the layer 

Poro-elastic layer

Force
𝑥 = 0

Half-space air

23fc



RESULTS
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• Airflow Resistivity Effect on Power Dissipation
Ø Optimal damping and corresponding optimal AFRs at different frequencies

Frequency range
of interest

24



RESULTS – FIBER DESIGN

ASA May 2018, Minneapolis, MN

• Finding Optimal Fiber Size for Optimal Damping – least square fitting 𝝈’s
Ø Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
Ø Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
Ø Fiber inputs: 𝝆𝟏 = 𝟗𝟏𝟎	𝐤𝐠/𝐦𝟑; 𝝆𝟐 = 𝟏𝟑𝟖𝟎	𝐤𝐠/𝐦𝟑; 𝑿𝟏 = 𝑿𝟐 = 𝟓𝟎%; 𝒓𝟐 = 𝟏𝟑	𝛍𝐦; 𝒓𝟏 à design target

25



RESULTS – FIBER DESIGN
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• Finding Optimal Fiber Size for Optimal Damping – translating into optimal fiber sizes
Ø Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
Ø Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
Ø Fiber inputs: 𝝆𝟏 = 𝟗𝟏𝟎	𝐤𝐠/𝐦𝟑; 𝝆𝟐 = 𝟏𝟑𝟖𝟎	𝐤𝐠/𝐦𝟑; 𝑿𝟏 = 𝑿𝟐 = 𝟓𝟎%; 𝒓𝟐 = 𝟏𝟑	𝛍𝐦; 𝒓𝟏 à design target

26



CONCLUSIONS
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• An optimal airflow resistivity can be found to provide optimal damping (power
dissipation within the fibrous layer) at each frequency based on ACM / TMM and NFD

• Corresponding to the optimal airflow resistivity, an optimal fiber size then can be
found at each frequency based on AFR and numerical optimization method

• Fibrous dampers are effective at reducing subsonic panel vibrations while absorbing
the radiating sound from the panel at the supersonic region

• Fibrous dampers are more effective on thinner structures

• Adding macroscopic stiffness to the fibers helps to improve damping performance

• Relatively large fibers are effective at damping low frequency vibration

27
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Limp porous layer

Half-space air

Force
Panel

Limp porous layer
Panel

Perforated skin Half-space air

Force

Visco-elastic layer modeled as elastic solid

Half-space air

ForcePanel
Bonded
Bonded

Metal skin

Poro-elastic layer

Half-space air

ForcePanel
Bonded
Bonded

Metal skin

Poro-elastic layer

Half-space air

ForcePanel
Bonded

Poro-elastic layer

Half-space air

ForcePanel
BondedAdhesives modeled as elastic solid Bonded

• Developed cases for the “TMM + NFD + AFR” structural damping model

constraint constraint
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• Inter-Noise 2018 at Chicago, IL

31

e.g., a layer of
sparse, coarse
glass fibers

e.g., a layer of 
dense, fine
polymeric fibers

fc

Fibrous layer
Half-space air

Panel
Constraint
(ml, Jl)

Constraint
(ml, Jl)

x
z

Convective 
pressure
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