
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2018

Design and Implementation of an Efficient Parallel Feel-the-Way Design and Implementation of an Efficient Parallel Feel-the-Way

Clustering Algorithm on High Performance Computing Systems Clustering Algorithm on High Performance Computing Systems

Weijian Zheng
Indiana University - Purdue University, Indianapolis, zheng273@purdue.edu

Fengguang Song
Indiana University Purdue University Indianapolis, song412@purdue.edu

Dali Wang
Oak Ridge National Laboratory, wangd@ornl.gov

Report Number:
18-002

Zheng, Weijian; Song, Fengguang; and Wang, Dali, "Design and Implementation of an Efficient Parallel
Feel-the-Way Clustering Algorithm on High Performance Computing Systems" (2018). Department of
Computer Science Technical Reports. Paper 1782.
https://docs.lib.purdue.edu/cstech/1782

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Design and Implementation of an Efficient
Parallel Feel-the-Way Clustering Algorithm on

High Performance Computing Systems
Weijian Zheng

Department of Computer Science
Purdue University

Indianapolis, Indiana
zheng273@purdue.edu

Fengguang Song
Department of Computer Science

Indiana University-Purdue University
Indianapolis, Indiana
fgsong@cs.iupui.edu

Dali Wang
Oak Ridge National Laboratory

Oak Ridge, Tennessee
wangd@ornl.gov

Abstract

This paper proposes a Feel-the-Way clustering method, which reduces
the synchronization and communication overhead, meanwhile providing as
good as or better convergence rate than the synchronous clustering methods.
The Feel-the-Way clustering algorithm explores the problem space by using
the philosophy of “crossing an unknown river by feeling the pebbles in the
riverbed.” A full-step Feel-the-Way clustering algorithm is first designed to
reduce the number of iterations. In the full-step Feel-the-Way algorithm, each
process runs a number of L steps before synchronizing its local solutions with
other processes. This full-step algorithm can significantly decrease the number
of iterations compared to the k-means clustering method. Next, we extend the
full-step algorithm to a sampling-based Feel-the-Way algorithm to achieve
higher performance. Furthermore, we prove that the proposed new algorithms
(both full-step and sampling-based Feel-the-Way) can always converge. Our
empirical results demonstrate that the optimized sampling-based Feel-the-Way
method is much faster than the widely used k-means clustering method as
well as providing comparable costs. A number of experiments with synthetic
datasets, real-world datasets of MNIST, CIFAR-10, ENRON, and PLACES-2
show that the new parallel algorithm can outperform the k-means by up to
235% on a high performance computing system with 2,048 CPU cores.

1. Introduction

Machine learning is a primary mechanism to extract infor-
mation and insights from big data. It has recently generated
large amounts of momentous results in both academia and
industry. Owing to the large data volume, exponential rate of
data generation and extreme-scale data processing, high per-
formance computing (HPC) systems have become the standard
platform to solve machine learning problems at extreme scales.
However, achieving high scalability for parallel and distributed
machine learning algorithms is still a challenging task.

This paper targets the k-means clustering method, which is
one of the most widely used big data analytics methods today
[1], [2]. It partitions a set of data points into k clusters by the
following two steps: 1) assign each data point to its closest
center, and 2) recompute new centers as the means of the
just assigned points. The process is repeated for a number of
iterations until it converges. To achieve high performance on

This material is based upon research supported by the Purdue Research
Foundation, by the NSF Grant# 1522554, and by the U.S. Department of
Energy (DOE), Office of Science, Advanced Scientific Computing Research.

extreme-scale systems with millions of CPUs, it is crucial to
reduce the communication cost and synchronization cost of a
parallel algorithm. Researchers are conducting extensive stud-
ies to design communication-reducing and synchronization-
reducing machine learning algorithms [3], [4], [5], [6]. These
algorithms may reduce the communication cost and synchro-
nization cost to speed up the execution time for each iteration.
However, they sometimes cause a slower convergence rate
(i.e., requiring more iterations), lower quality of solutions,
or even divergence [7], [8], [9], [10]. Consequentially, the
overall execution time becomes longer since the increased
number of iterations can overwhelm the benefits of improved
performance per iteration.

Intrigued by this problem, we start to explore whether we
can design a set of new machine learning algorithms that
can not only reduce the synchronization cost but also achieve
a better convergence rate. To that end, we design a new
algorithm named “Feel-the-Way” algorithm. The goal is to
achieve the best of the two worlds: The new algorithm attains
minimized synchronizations meanwhile achieving the same or
faster convergence rate.

We design a Feel-the-Way Clustering algorithm to achieve
the goal. The basic idea is that each computing process
behaves like a person who is trying to “cross an unknown
river by touching or feeling the pebbles/rocks in the riverbed.”
In the design, the current rock is the safe “harbor” where the
person can always come back and try a new direction again.
Note that many people are crossing the same river and will
synchronize from time to time. Following the idea, we design
the Feel-the-Way algorithm.

In the Feel-the-Way algorithm, each process has a subset
of the input dataset, and runs L local clustering steps before
synchronizing its local solution with other processes’ local
solutions. Each process keeps track of its local solution (i.e.,
k centers) for every local step from 1 to L. At the end of the
L-th step, all processes’ local solutions are merged together to
determine a new global solution. Next, every process uses the
new global solution as a starting point, and repeats the same
steps until it converges. The rationale behind the idea is that

the solution from the first step is always a “decent” candidate
for the global solution. If one of the second, third, ..., and L-th
steps has a better optimization cost than the first step, it implies
that the Feel-the-Way algorithm has successfully reduced
synchronizations and communications, meanwhile achieving a
better cost than the original synchronous algorithm. In general,
the best of the L candidates will be at least as good as the
original synchronous algorithm in terms of the optimization
cost and the convergence rate. To understand it, considering
an extreme case, if all the local steps between the second
and the L-th make the cost worse than the first step, the final
overall cost can still be close to the synchronous first-step-only
clustering method because the first step is the “winner” which
is then adopted by the Feel-the-Way algorithm.

Our first attempt of realizing the new algorithm shows good
results. Experiments in Section 6.2 demonstrate that using
L=5 can reduce the average number of iterations from 61
to 10 with the MNIST dataset. However, it is not trivial
to implement the algorithm in practice efficiently. To make
it run as fast as possible, we need to solve the following
challenge: the time spent on the second to the L-th local steps
must be significantly small to reduce the total execution time.
Otherwise, the saved iterations may be overwhelmed by the
time of the second to L-th local steps. Hence, we consider the
second to L-th local steps as an overhead we pay in order to
decrease the number of iterations.

To reduce the overhead incurred by the second to L-th
steps, we use a variety of sampling methods to avoid re-
clustering all the data points. Based on our analysis, not
every point is reassigned in the next iteration. Five sampling
methods have been designed and compared with each other:
1) Random sampling, 2) a new Max-min sampling, 3) a new
coefficient of variation (CV) sampling, 4) Heap sampling [11],
and 5) a new Reassignment-history-aware sampling method.
These sampling algorithms have different time complexities
and distinct efficiencies on the convergence rate. To integrate
the Feel-the-Way clustering algorithm with the sampling al-
gorithm, we also design a new approach to computing the
sampling-based optimization cost efficiently for every local
i-th step (i ∈ {2, . . . , L}). All the sampling methods are
controlled by a sampling rate r, and each local step may have
a different sampling rate. Finally, we call the new algorithm
“sampling-based Feel-the-Way algorithm”. By contrast, the
original algorithm (i.e., without sampling) is called “full-step
Feel-the-Way algorithm”.

We first design and develop sequential algorithms for the
full-step Feel-the-Way algorithm and the sampling-based Feel-
the-Way algorithm, respectively. The sequential algorithms
partition the input dataset into a number of data blocks, each
with an equal number of data points. Then the algorithms
apply L local steps to each data block. Every local step
executes the k-means clustering method for one iteration upon
the data block. After all data blocks have been computed, the
data blocks’ centers will be merged to get new global centers.
Given the new global centers, we repeat the same process.
Note that the sampling-based algorithm only computes a

subset of points during the second to L-th local steps, but
computes all points in the first local step.

After verifying the correctness of the sequential algorithms,
we develop a parallel sampling-based Feel-the-Way algorithm
using the hybrid MPI/Pthread programming model. In the
parallel implementation, every thread works on its own sub-
set of data blocks, and merges centers with other threads.
We conduct a number of experiments with synthetic data
sets and real-world datasets of MNIST, CIFAR-10, ENRON,
and PLACES-2 on HPC systems. The experimental results
show that the introduced reassignment-history-aware sampling
method is more effective than the other sampling methods, and
the new parallel Feel-the-Way algorithm can outperform the
k-means algorithm significantly. To the best of our knowledge,
this paper makes the following contributions:

1) We propose a full-step Feel-the-Way algorithm and a
sampling-based Feel-the-Way algorithm to reduce syn-
chronizations at the same time achieving as good as or
better convergence rates.

2) We design a variety of sampling methods, among which
we introduce the most effective reassignment-history-
aware sampling method.

3) We prove that the sampling-based Feel-the-Way algo-
rithm converges. We empirically show that the conver-
gence rate is faster with the Feel-the-Way algorithm.

4) Our experiments with both sequential and parallel im-
plementations using real-world datasets demonstrate that
the Feel-the-Way method can provide faster performance
than the k-means method.

2. Related work

Existing machine learning libraries such as Mahout [12],
Spark MLlib [13], Google TensorFlow [14], GraphLab [15]
and Amazon AML [16] are general-purpose Big Data ecosys-
tems. They target high productivity by using Python or Java
on Cloud platforms (e.g., Hadoop). For instance, Alex et al.
found that Spark has significant runtime overhead (e.g. inter-
stage barrier, task start delay, etc.) compared to MPI-based
software [17]. Differently, this paper targets high performance
[17], [18], and focuses on designing a new parallel clustering
algorithm on HPC systems using the hybrid MPI/Pthread
programming model.

Numerous parallel ML algorithms on distributed memory
systems have been designed and developed: Some are strictly
synchronous but lead to significant communication cost, while
the others use relaxed or lazy synchronizations but cannot
guarantee the same convergence rate as the the original syn-
chronous algorithms [7], [8], [9], [19], [20], [21]. Xing et
al. study machine learning applications that use the stochastic
gradient descent (SGD) algorithm, and adaptively change the
SGD step size to compensate for errors caused by stale
synchronizations. Although we share the same philosophy
of reducing synchronizations, our work focuses on clustering
methods (i.e., not SGD related), and designs a distinct Feel-

2

the-Way algorithm to minimize both synchronization cost and
the number of iterations.

Mini-batch k-means clustering is a sampling-based cluster-
ing algorithm [22]. It randomly selects a small number of data
points from each batch. In this work, we test five different
sampling methods, and incorporate them (as a submodule)
into the new Feel-the-Way algorithm. Note that our Feel-the-
Way algorithm is a hybrid of sampling algorithm and ordinary
clustering algorithm, and can achieve the same optimization
cost as the original k-means. Kurban et al. design the heap
method and use it to the k-means clustering method [11]. We
compare the heap method with our reassignment-history based
method, and show that the reassignment-history-aware method
can result in a better convergence rate than the heap method.

3. Full-Step Feel-the-Way Algorithm

This section introduces the proposed full-step Feel-the-Way
algorithm, which works on blocks of data points and applies
local optimizations to each individual block iteratively. Each
block of data points will be optimized by a number of L local
steps without triggering any communications. The algorithm
consists of three parts: 1) The local optimization function that
iteratively optimizes each data block; 2) the merge function
that derives the global clustering centers from different blocks;
and 3) the main function that simply controls when to stop
the algorithm. The rest of the section will introduce the three
functions in details.

3.1. Data structure

We use a blocked data layout to store the input dataset.
In a machine learning application, each data point can be
represented by a vector with m attributes. Assuming we have
n data points, a dataset can be viewed as an n-by-m matrix.
In our algorithm, we divide the matrix into blocks of rows,
where each block stores a set of b consecutive data points. This
blocked data structure is used by both full-step and sampling-
based Feel-the-Way algorithms.

3.2. Local optimization function

The local optimization function is in charge of reducing
each data block’s optimization cost. Its idea is as follows: we
run one step of the synchronized algorithm (e.g., the original
k-means), then we run L-1 steps of asynchronous steps upon
each block. The additional L-1 steps on each data block are
supposed to reduce each block’s SSE (Sum of Squared Error)
cost monotonically (Theorem 5.2 in Section 5 will prove it).

Algorithm 1 shows the pseudocode of the local optimization
function. The function goes through three stages. Stage 1: Set
the current data block’s clustering seed as the newly merged
global centers. Stage 2: Use the current data block’s points to
improve the block’s clustering cost. In stage 2.1, we find the
closest center for each data point; In stage 2.2, we compute
each block’s local centers’ sizes and sums of coordinates; In

Algorithm 1 Function of Local Optimization.

1: /∗ Local optimization on one block ∗/
2: local optimization block(points, g centers,
3: g centers size, membership, L)
4: l = 0 /∗ l is the current step ∗/
5: while l ≤ L− 1 do
6: blk cost old = blk cost new; blk cost new = 0;
7: blk local sum = 0; blk local size = 0;
8: . stage 1: Use the global centers as a new seed for 0 step
9: if (l = 0) then

10: centers ← g centers;
11: end if
12: . stage 2: Use all local points to improve centers
13: for each point i in points do
14: . stage 2.1 find the closest center for point i
15: (dist, new center) ← find nearest center
16: (points[i], centers);
17: membership[i] = new center;
18: . stage 2.2 update each block’s partial sum and size
19: blk local sum[new center] += points[i];
20: blk local size[new center]+=1;
21: blk cost new += dist;
22: end for
23: . stage 2.3: Recalculate new centers and new cost
24: for each center c do
25: centers[c] = blk local sum[c] / blk local size[c];
26: end for
27: if (l = 0) then
28: 1st step cost ← blk cost new;
29: end if
30: l++;
31: end while
32: . stage 3: Returns if L steps are finished
33: return {blk local sum, blk local size, 1st step cost}

stage 2.3, we get new local centers based on step 2.2. Stage
3: The local optimization function returns if a number of L
local steps have been applied to the current data block.

3.3. The merge function

After calling the local optimization function, each data block
has its own set of centers. Therefore, N data blocks will
have N set of centers. Given each data block’s local sum,
local size and a new cost local cost, the merge function will
add them together to get the global sum and global size,
respectively. The new global centers are then computed by
dividing global sum by global size.

3.4. The main function

Algorithm 2 shows the main function of the full-step Feel-
the-Way algorithm. It calls the previous local optimization and
merge functions. As shown in the algorithm, it first selects k
points as the initial seed. Next, it iteratively optimizes each
data block, and aggregates each clustering center’s size and
coordinate sum (see lines 12-20). After all the data blocks have
been processed once, the new global centers can be computed
(see lines 22-24).

3

Algorithm 2 Full-Step Feel-the-Way Algorithm

1: /∗ m : number of points , n b: number of blocks ∗/
2: /∗ k centers , L: the limit for number of local steps ∗/
3: Feel the Way clustering(points, m, n b, k, L)
4: /* Set the initial k centers */
5: pre g cost new = MAXIMUM
6: repeat
7: /* Store the previous iteration’s info */
8: g size old = g size ne; g size new = 0;
9: g sum new = 0;

10: pre g cost old = pre g cost new;
11: pre g cost new = 0;
12: for each block i ← 0 to n b - 1 do
13: /* Run local optimization on each block */
14: (local sum, local size, pre local cost) ←
15: local optimization block(i-th block, g centers,
16: g size old, membership, L);
17: /* Merge each block’s coordinate sum into global sum */
18: (g sum new, g size new, pre g cost new) ←
19: merge(local sum, local size, pre local cost);
20: end for
21: /* Compute new global centers */
22: for each center c do
23: g centers[c] = g sum new[c] / g size new[c];
24: end for
25: until pre g cost new ≥ pre g cost old

4. Sampling-Based Feel-the-Way Algorithm

In this section, we first analyze the performance of the
full-step Feel-the-Way algorithm. Motivated by the unscalable
performance of the full-step algorithm, we then introduce
a sampling-based Feel-the-Way algorithm. We design and
compare five different types of sampling methods. Moreover,
we introduce a new method to compute the new SSE cost
given only a small portion of reassigned data points.

4.1. Motivation for a new sampling-based algorithm

We evaluate the performance of the full-step Feel-the-Way
algorithm on a synthetic dataset SYN (described in Table 4).
Figure 1.a shows that the full-step Feel-the-Way algorithm can
significantly reduce the number of iterations. For instance, k-
means has 74 iterations while the full-step Feel-the-Way (when
L=5) has 17 iterations. However, in Figure 1.b, we find that
the full-step Feel-the-Way is not faster than k-means when
L=4 and 5, even though Feel-the-Way has a less number of
iterations than k-means. The reason is that the time spent
on the second to L-th local steps is expensive, which is
eventually larger than the benefit of saved iterations. Later
in Lemma 5.5, we will prove that the full-step Feel-the-Way
algorithm becomes slower than k-means if it takes more than
m
L iterations to converge, where m is the number of iterations
that the k-means algorithm takes.

Therefore, we hope to design a new algorithm, which
can spend little time on the local steps (from the second
to the L steps), at the same time reducing the number
of iterations. Our in-depth analysis of tracking data points
transitions between different clusters finds that, not all data

points have been reassigned to a distinct cluster. Also, fewer
and fewer data points are reassigned from the first iteration
to the last iteration. Intuitively, if we could just pick up
those reassigned points (and skip those unchanged points) to
compute, the Feel-the-Way algorithm can certainly run much
faster. Hence, we introduce different sampling schemes to the
original Feel-the-Way algorithm’s local steps to intelligently
select a small portion of data points to compute clustering,
instead of considering all data points (as done by the full-step
algorithm).

4.2. Design of the sampling-based Feel-the-Way

The main function of the sampling-based Feel-the-Way
algorithm is the same as the full-step Algorithm 2 except for
the local optimization function.

The new local optimization function is displayed in Algo-
rithm 3. In lines 7-9, the sampling algorithm checks whether
it has visited enough data points or not. In line 10, only
the sampled points will be selected to compute clustering.
From line 11 to line 18, each sampled point is reassigned to
its closest center, and those consequentially affected cluster’s
coordinate sum and number of points are updated accordingly.
Please note that this algorithm must consider all the data points
as stated in line 10 when the algorithm executes the first local
step.

The essence of the Feel-the-Way algorithm is to use the first
local step to emulate the original synchronous k-means algo-
rithm, and use the following L− 1 local steps to improve the
cost of the first local step. Moreover, the sampling algorithm
utilizes the first local step to compute the global SSE cost for
all blocks of data points, and determines which points should
be sampled based upon the reassignment statistics of the first
local step.

4.3. Development of various sampling methods

We design and develop five different sampling methods.
These sampling methods depend on one of two types of
information: 1) distance of the data point to each clustering
center (near or far), and 2) the history of previous steps that
reassign certain points to different centers.

The five sampling methods are as follows:

0

10

20

30

40

50

60

70

80

2 3 4 5

#
it

e
ra

ti
o

n
s

L steps (within each iteration)

Full-step Feel-the-Way

k-means

(a) SYN (iterations)

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c
e

L steps (within each iteration)

Full-step Feel-the-Way k-means

(b) SYN (speedup)

Fig. 1: Comparison between the full-step Feel-the-Way algo-
rithm and the k-means algorithm.

4

Algorithm 3 Sampling Version of the Local Optimization
Function

1: /∗ Local optimization on one block ∗/
2: local optimization block(points, g centers,
3: g centers size, membership, L, max sample points)
4: /*same as lines 4-11 of Algorithm 1) */
5: . stage 2: Use sampled local points to improve centers
6: for each point i in points do
7: if (sampled points > max sample points) then
8: break;
9: end if

10: if (point i is sampled or local step = 0) then
11: sampled points = sampled points + 1;
12: . stage 2.1 find the closest center for point i
13: (dist, new center) ← find nearest center
14: (points[i], centers);
15: membership[i] = new center;
16: . stage 2.2 update each block’s partial sum and size
17: blk local sum[new center] += points[i];
18: blk local size[new center]+=1;
19: if (l != 0) then
20: blk local sum[old center] -= points[i];
21: blk local size[old center]-=1;
22: end if
23: end if
24: end for
25: /*same as local optimization function (i.e., Alg. 1) lines 23-33*/

1) Random sampling: It randomly selects a subset of data
points.

2) Max-min sampling: For each data point, we compute its
distances to the k clustering centers, respectively. Then
we compute its Max-min (i.e., max distance

min distance). Those points
that have smaller Max-min values will be selected as the
sampling points. It is based on our assumption that if a
data point is equally close to all k centers, it is more
likely this point will change its closest center.

3) Coefficient of Variation (CV): CV is defined as
standard deviation

mean . For each data point, there are k distances
to k centers. This method computes the CV of those k
distances. A small CV reveals that the distances of the
data point to all centers are almost the same. Hence, the
data points that have smaller CVs will be selected by
assuming that a point with comparable distances to all
centers is likely to be reassigned soon.

4) Heap sampling: Heap based sampling is inspired by the
work of Kurban et al. [11]. The heap based method
maintains a heap data structure for each center to store
the distances between the center and its data points. The
farthest data point is stored at the top of the heap (similar
to heap sorting). When doing sampling, we always select
the points that are at the upper levels of the heap. The
heap method assumes that the points that are far from
their belonging center will switch to a new center more
quickly.

5) Reassignment-history-aware sampling: It is a new sam-
pling method proposed by this work. Reassignment-
history-aware sampling tries to keep track of which data

points have been reassigned in the past. If a data point
is assigned to a new center in the previous step, we
consider it as a sampling point candidate by assuming
it will change center again in the current step. Suppose
there are m data points that have been assigned to new
centers in the previous step, we will randomly pick s
sample points from the set of m points. s is either
a constant or decided by a sampling ratio. When m
becomes too small (e.g., less than 20), we will use all
m points as the sampling points.

Time complexity of the sampling methods: In the above
Max-min, CV, and Heap sampling methods, we use the Quick-
Select algorithm [23] to find the first s numbers (either largest
and smallest) in an array. QuickSelect has a time complexity
of O(logn). Given k centers and each data block with b data
points, we summarize the time complexities of all the sampling
methods in Table 1 (proofs are skipped here). Here, we assume
that each sampling method needs to select s sample points
from each data block.

TABLE 1: Time complexity of different sampling methods.

Random Max-min Heap CV Reassignment-
history-aware

O(s) O(s log b) O(sk log b
k

) O(s log b) O(s)

4.4. An efficient way to compute the new SSE cost
in the sampling algorithm

For each local step l (l ∈ {1 . . . L−1}) for which sampling
is needed, we will compute the new SSE cost at the end
of the l-th local step. Certainly we cannot recompute every
point’s distance to its center because of its expensive cost,
which would make the sampling algorithm have the same time
complexity of the full-step algorithm.

In order to compute a new SSE cost by considering only
the small subset of sampling points, we divide the SSE cost
computation into two parts: 1) SSE cost related to the sampled
points, and 2) SSE cost related to the upsampled points.

Suppose V represents all the points in a data block, and
S and U represent sampled points and upsampled points,
respectively, where V = S ∪ U .
cost(S) (i.e., the cost of the sampled data points) is the SSE

cost of the sampled point. It is computed when each sampled
points is reassigned to its closest center.

Next, the SSE cost of unsampled points cost(U) is com-
puted as follows. We utilize the old SSE cost of unsampled
data points cost(U)old to compute the new cost of unsampled
data points. Specifically, given a set of centers C from the
previous local step, after re-clustering, we get a new set of
centers C ′. For unsampled data point U , we also record the co-
ordinates sums and the number of data points attached to each
center in previous step as sum and size. Let σi = C ′i − Ci,
where Ci is the i-th center. The corresponding computation
formula is as follows: cost(U) = cost(U)old−2

∑k
i=1(sumi−

sizei · Ci) · σi +
∑k
i=1(sizei(σi · σi)).

5

Eventually, cost(V) = cost(S) + cost(U).

5. Theoretical Analysis

In this section, we will analyze the proposed Feel-the-Way
algorithm, and provide theorems and lemmas to answer two
questions: 1) Does the sampling-based Feel-the-Way algorithm
always converge (subsection 5.1)? 2) In what conditions the
Feel-the-Way algorithm will be faster than the k-means method
(subsection 5.2)?

5.1. Convergence analysis

Clustering problems study how to partition a set of data
points T—which has a number of n points in a d-dimension
space (<d)—into k groups with the minimum cost. Let µ be a
data point in <d, and the result of clustering is a membership
vector M and a set of centers C.

Since we use a blocking data structure, T is divided into a
number |T |b of blocks. Assume V is a block with b data points
and there are L local steps within one global iteration. Given
block V , in each local step l ∈ [0, L−1], the local optimization
function is invoked to minimize the block V ’s own SSE cost
cost(V,C ′), where C ′ is the current best centers of the block.
We also know that cost(V,C ′) =

∑
µ∈V dist(µ − C ′M(µ)).

C ′M(µ) is the closest center among C ′ to the point µ.
Given two data points x and y, the squared Euclidean

distance between them, ∆(x, y), can be computed as follows:
∆(x, y) =

∑d
i=1(xi − yi)2 = (x − y) · (x − y) (i.e., a dot

product).

Lemma 5.1. Given an initial set of centers C (|C| = k)
for block V , after reassignment of each data point in V to
its closest center, we get a new membership M ′. Suppose
membership M ′ implies a new set of centers C ′, the new
centers C ′ always has a cost that is equal to or less than that of
the old centers C. That is, cost(V,C,M ′) ≥ cost(V,C ′,M ′).

Proof: Let σi = C ′i − Ci, where Ci is the i-th center.

cost(V,C,M ′) =
∑
µ∈V

∆(µ,CM′(µ)) /*by definition of SSE cost*/

=
∑
µ∈V

(µ− C′M′(µ) + σM′(µ)) · (µ− C′M′(µ) + σM′(µ))

=
∑
µ∈V

(∆(µ,C′M′(µ)) + 2(µ− C′M′(µ)) · σM′(µ) + (σM′(µ))
2)

= cost(V,C′,M ′) + 2

k∑
m=1

(σm ·
∑

µ∈V,M′(µ)=m

(µ− C′m))

+
∑
µ∈V

(σM′(µ))
2 = cost(V,C′,M ′) +

∑
µ∈V

(σM′(µ))
2

(1)

Note that
∑
µ∈V,M ′(µ)=m(µ − C ′m) is zero since C ′m is a

center of a cluster of points (i.e., the arithmetic mean position
of all the points in the m-th cluster).

Lemma 5.2. Let cost(V,Cl, M l) and cost(V,Cl+1, M l+1)
be the computed SSE cost for block V before and after the
l-th local step, then cost(V,Cl, M l) ≥ cost(V,Cl+1, M l+1).

Proof: In the l-th local step, every data point will be
reassigned to its closest center such at a lower cost is achieved
and a new membership of the points is formed, because each
reassigned point’s distance (to its new center) has decreased.
Thus, cost(V,Cl,M l) ≥ cost(V,Cl,M l+1).

The new membership M l+1 leads to a new set of centers,
denoted as Cl+1. Based on Lemma 5.1, cost(V,Cl,M l+1)
≥ cost(V,Cl+1,M l+1). Putting two inequalities together,
cost(V,Cl,M l) ≥ cost(V,Cl+1,M l+1).

Lemma 5.2 shows that each data block’s SSE cost will
decrease monotonically in each local l-th step. Lemma 5.2
is still correct even if we only consider reassignment of a set
of sampled points, for which every point in the proof refers to
every sampled point and the unsampled points do not affect
(i.e., increase/decrease) the SSE cost.

Lemma 5.3. Suppose an input dataset T is divided into
P data blocks. Each data block Vi has its own clustering
membership MVi and a set of k centers CVi . After merging
all the blocks’ local centers into a global set of centers CT ,
cost(T,CT ,MT) ≤

∑P
i=1 cost(Vi, CVi

,MVi
).

Proof: Let σi = CT (i) − C(i), where CT (i) is the i-th
global center. C(i) here is approximately equal to the i-th
center of each block. µ is a single data point.

P∑
i=1

cost(Vi, CVi
,MVi

) =
P∑
i=1

∑
µ∈Vi

∆(µ− CVi(MVi
(µ)))

=

P∑
i=1

∑
µ∈Vi

((µ− CT (MVi
(µ)) + σMVi

(µ))

· (µ− CT (MVi
(µ)) + σMVi

(µ)))

=

P∑
i=1

cost(Vi, CT ,MVi
) +

P∑
i=1

∑
µ∈Vi

(σMVi
(µ))

2

+ 2

k∑
m=1

(σm ·
P∑
i=1

∑
µ∈Vi,MVi

(µ)=m

(µ− CT (m)))

= cost(T,CT ,MT) +

P∑
i=1

∑
µ∈Vi

(σMT (µ))
2

(2)

Please note that
∑P
i=1

∑
µ∈Vi,MVi

(µ)=m(µ − CT (m)) is
zero since CT (m) is a center of a cluster points based on
membership MVi

.

Theorem 5.4. Let cost(T,Ci−1T ,M i−1
T) and cost(T,CiT ,M

i
T)

be the computed global SSE cost for all data points T before
and after the i-th global iteration, then cost(T,Ci−1T ,M i−1

T)
≥ cost(T,CiT ,M

i
T).

Proof: Assume there are l local steps inside one global
iteration. Let Ci(l−1)V and M

i(l−1)
V be the local center and

membership of V after l-th step within i-th iteration. M i(l−1)
T

6

is the membership of all data points copied from M
i(l−1)
Vm

. Let
CiT be the merged global center after i-th iteration. M i

T is the
membership of all data points implied by CiT

cost(T,Ci−1
T ,M i−1

T) =

P∑
m=1

cost(Vm, C
i(0)
Vm

,M
i(0)
Vm

)

≥
P∑

m=1

cost(Vm, C
i(l−2)
Vm

,M
i(l−2)
Vm

) /* According to lemma 5.2 */

≥
P∑

m=1

cost(Vm, C
i(l−2)
Vm

,M
i(l−1)
Vm

) /* Find the closest center */

≥ cost(T,CiT ,M
i(l−1)
T) /* According to lemma 5.3 */

≥
P∑

m=1

cost(Vm, C
i
T ,M

i
T) /* Find the closest center */

= cost(T,CiT ,M
i
T)

(3)

Thus, cost(T,Ci−1T ,M i−1
T) ≥ cost(T,CiT ,M i

T)

Theorem 5.4 shows that the algorithm’s global cost is
monotonically decreasing, and the sampling-based Feel-the-
Way algorithm converges.

5.2. Speedup analysis for the full-step and sampling-
based Feel-the-Way algorithms

Lemma 5.5 (Full-step). Assume it takes m and n iterations
for the k-means and the full-step Feel-the-Way algorithm to
converge. Let Tk−means and Tfull−step be the computation
time of the k-means and full-step Feel-the-Way algorithm,
respectively. If n ≤ m

L , then Tfull−step ≤ Tk−means.
Proof: Assume each iteration takes time t,

Tk−means ≥ Tfull−step =⇒ t×m ≥ t× n× L

=⇒ m ≥ n× L
(4)

Thus, when n ≤ m
L

, Tfull−step ≤ Tk−means.

Theorem 5.6 (Sampling-based). Assume it takes m and n
iterations for k-means and the sampling-based Feel-the-Way
algorithm to converge. Suppose the sampling Feel-the-Way
algorithm uses a sampling ratio of r. Let Tk−means and
Tsample be the computation time of the k-means and sampling-
based Feel-the-Way algorithm, respectively. If n ≤ m

1+(L−1)r ,
then Tsample ≤ Tk−means.

Proof: Assume the time for each iteration is t

Tk−means ≥ Tsample =⇒ t×m ≥ (t+ (L− 1)× r × t)× n

=⇒ m ≥ n× (1 + (l − 1)× r)
(5)

Thus, Tsample ≤ Tk−means when n ≤ m
1+(l−1)r

.
Theorem 5.6 reveals that the speedup of the sampling-based

Feel-the-Way over k-means is determined by the reduced
number of iterations, the number of local steps, and the
sampling ratio. For instance, if we choose L = 2 and a
small r, the sampling-based algorithm should be faster than
k-means. Experimental results in Section 6.2 will demonstrate

the speedup of the sampling-based Feel-the-Way algorithm, in
which we set r=1%.

6. Experimental Results

In this section, we will show three sets of experimental
results on both synthetic and real-world datasets to evaluate the
performance of our algorithms and implementation: 1) In the
first set of experiments, we evaluate the effectiveness of differ-
ent sampling methods; 2) In the second set of experiments, we
compare the performance of k-means, full-step and sampling-
based Feel-the-Way algorithms in terms of wallclock time and
number of iterations; and 3) In the last set of experiments, we
evaluate the scalability of our parallel implementation using
thousands of CPU cores. Note that in all of the experiments,
we use double precision floating point numbers and four-bytes
integers to do the computations.

Computing Platform: We performed experiments on the
BigRed II system located at the Indiana University. BigRed
II is a Cray XE6/XK7 HPC system, which consists of 1,020
compute nodes. Each compute node has two 16-core CPUs
and 64GB of memory. Table 2 shows detailed information of
the system.

TABLE 2: The BigRed II Supercomputer System.

Nodes 1,020 (max 2048 cores per job)
Memory per node 64 GB
Processors per node 2
Cores per processor 16
Processor AMD Opteron 6380 2.5GHz
Interconnect Cray Gemini
MPI Cray-MPICH 7.2.5

Datasets: We use four real-world datasets, and two syn-
thetic datasets. Table 3 shows the information of the four real-
world datasets, which are MNIST, CIFAR-10, ENRON, and
PLACES-2. MNIST is a well-known dataset for hand-writing
digit recognition [24]. CIFAR-10 is used for object recognition
with 60,000 color images [25]. PLACES-2 is generated from
Places 2 [26], which is a large collection of images from
different scenarios. ENRON is a dataset of documents and
was initially used for the email classification research [27].

We also use two synthetic datasets in our experiments.
Table 4 shows the two synthetic datasets, which are named
SYN and SYN-Large. We generate the synthetic datasets using
different Gaussian distributions. In particular, the larger dataset
of SYN-Large is generated to measure the scalability of our
parallel implementation with many CPUs.

For each experiment, we use five different seeds, and report
the average of the measured performances as our performance
result. Also, all the Feel-the-Way experiments have compara-
ble SSE costs to the k-means algorithm.

6.1. Comparison of Various Sampling Methods

As described in Section 4.3, the sampling-based Feel-the-
Way algorithm deploys a sampling approach to the 2nd to

7

TABLE 3: Specifications of the real-world datasets.

MNIST CIFAR-10 ENRON PLACES-2
K 10 10 10 50
#Data points 10,000 60,000 38,400 1,024,000
#Coordinates 784 3,072 28,102 1,024
Dataset size 17MB 626MB 24.7MB 3.25GB

TABLE 4: Specifications of the synthetic datasets.

SYN SYN-Large
K 10 10

#Data points 6,400 204,800
#Coordinates 1,024 2,048
Dataset size 50.48MB 3.23GB

the L-th steps, while computing the whole set of points for
the first step. Since the effectiveness of the sampling method
determines the performance of sampling-based Feel-the-Way,
we compare and evaluate five different sampling methods: 1)
Random, 2) Max-min, 3) Coefficient of Variation (CV), 4)
Heap, and 5) Reassignment-history-aware method (in short,
Reassign-hist).

In the rest of the subsection, we use the Reassignment-
history-aware method as an example to explain how a sam-
pling ratio will affect the convergence rate and execution time.
Next, we use a selected small ratio of 1% to compare five
sampling methods.

Effect of the sampling ratio. We use the parameter of
sampling ratio to control how many data points should be
considered to compute new clustering centers. If the sampling
ratio is p%, p% of the total number of points will be accessed
by the algorithm.

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e
 (

s)

#i
te

ra
ti

o
n

s

Sampling ratio

Sampling-based Feel-the-Way (iterations)

Sampling-based Feel-the-Way (time)

k-means (time)

Fig. 2: Effect of the sampling ratio with the MNIST dataset
using the Reassignment-history-aware sampling method.

Figure 2 shows how the number of iterations and the
execution time will change as the sampling ratio increases
from 1% to 100% for the MNIST dataset. Here we use
the Reassignment-history-aware sampling and set L = 4 to
test the Feel-the-Way algorithm. Regarding the number of
iterations, when the sampling ratio = 1%, Feel-the-Way takes
27 iterations. Then, the number of iterations drops slowly from
27 to 21 as the ratio rises from 1%, 10% to 80%. Eventually,

when the sampling ratio is equal to 90%, we see a significant
drop in the number of iterations. This experiment tells us that
given a specific sampling method, making the sampling ratio
smaller does not necessarily degrade the number of iterations
greatly (e.g., 20%, 10%, 1% have nearly the same number of
iterations).

On the other hand, the execution time increases more
quickly than the speed in which the number of iterations
decreases (except for 90% and 100%). For instance, the
execution time jumps quickly from 4 seconds to 12 seconds
when the ratio rises from 1% to 80%. This is because a larger
sampling ratio implies a larger time complexity for each local
step l (l = 2, 3, 4). Theorem 5.6 has proved a formula to
describe the relationship between time and the number of
iterations given a specific L.

Since our goal is to optimize the execution time, we choose
to use a small sampling ratio of 1% by bringing in two benefits:
1) It can lead to a small overhead (around 1%) to compute
most local steps l ∈ {2 . . . L}; and 2) In combination with
the first full step of l = 1, the sampling-based Feel-the-Way
algorithm can achieve a less number of iterations than k-means
(i.e., 27 iterations versus k-means’ 61.4 iterations, on average).

Comparison of the five sampling methods. Next, we test
which sampling method can provide the best performance. Our
evaluation is based on two metrics: 1) Accuracy. If a sampling
method selects s data points, we measure how many points
of the selected points have really been assigned to a different
cluster (e.g., h points switched clusters). We use h

s to represent
the accuracy of the sampling method. We call it “Sampling Hit
Rate”. The higher the sampling hit rate, the better the sampling
method is. The second metric is 2) the number of iterations
needed by the Feel-the-Way clustering algorithm to eventually
converge.

In Figure 3, we show the experimental results with four
datasets: MNIST, SYN, ENRON, and CIFAR-10. For each
dataset, we evaluate different sampling methods’ sampling hit
rate and number of iterations, respectively.

As shown in Figure 3 a.1, the Reassignment-history-aware
method has the best sampling hit rate of 35% when L = 2
and 3. The hit rate lowers to 30% and 25% when L = 4
and 5. The second best sampling method is the Heap method,
which has a sampling hit rate of 15%. The other three methods
(Random, CV, and Max-min) only achieve sampling hit rates
that are less than 5%. From the perspective of convergence
rate, Figure 3 a.2 shows that the Reassignment-history-aware
method is the fastest one, taking around 30 iterations. The
Max-min sampling method takes 60 iterations, and the CV,
Random sampling methods take 51 and 53 iterations. The
Heap sampling method converges slowly when L = 2, but
starts to converge faster when L is bigger. Note that the
sampling method that has a higher hit rate is more likely to
converge faster.

Figure 3 b.1 shows the SYN dataset’s sampling hit rate.
When L > 2, the heap method is as good as the the
reassignment-history-aware method. The Random and Max-

8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5

Sa
m

p
le

 H
it

 R
at

e

L steps (within each iteration)

Reassign-hist Heap

CV Random

Max-min

a.1 MNIST (sample hit rate)

0

10

20

30

40

50

60

70

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Reassign-hist Heap
CV Random
Max-min

a.2 MNIST (iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5

Sa
m

p
le

 H
it

 R
at

e

L steps (within each iteration)

Reassign-hist Heap

CV Random

Max-min

b.1 SYN (sample hit rate)

0

10

20

30

40

50

60

70

80

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Reassign-hist Heap

CV Random

Max-min

b.2 SYN (iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5

Sa
m

p
le

 H
it

 R
at

e

L steps (within each iteration)

Reassign-hist Heap

CV Random

Max-min

c.1 ENRON (sample hit rate)

0

10

20

30

40

50

60

70

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Reassign-hist Heap

CV Random

Max-min

c.2 ENRON (iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5

Sa
m

p
le

 H
it

 R
at

e

L steps (within each iteration)

Reassign-hist Heap
CV Random
Max-min

d.1 CIFAR-10 (sample hit rate)

0

20

40

60

80

100

120

140

160

180

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Reassign-hist Heap

CV Random

Max-min

d.2 CIFAR-10 (iterations)

Fig. 3: Sampling methods comparison on different datasets.

min methods have the lowest sampling hit rate. Correspond-
ingly, Figure 3 b.2 shows that the Reassignment-history-
aware method and Heap method have the smallest number
of iterations.

Similarly, Figure 3 c.1 and c.2 show the experimental
results for the ENRON dataset. The Reassignment-history-
aware method has a significantly higher hit rate than the
other sampling methods. Please note that when L = 5,
the Heap method takes less iterations to converge than the
Reassignment-history-aware method, but its SSE cost is 4%
larger than the reassignment-history-aware.

Figure 3 d.1 and d.2 show the experimental results for the
CIFAR-10 dataset. Again, The Reassignment-history-aware
method is better than the Heap method, which is better than
the CV, Max-min, and Random methods. However, Figure d.2
shows an exception, where the Heap sampling method has
the smallest number of iterations. For this case, we find that
its SSE cost is larger than that of the Reassignment-history-
aware method by 11%. Therefore, the Heap method takes
fewer iterations to reach a less optimal solution.

In general, the Reassignment-history-aware sampling
method is the most effective method with a higher sampling
hit rate and a less number of iterations in most cases. In the
following experiments, we choose to use this method to show
the performance of the Feel-the-Way algorithm.

6.2. Sequential performance of the full-step and
sampling-based Feel-the-Way algorithms

In the second set of experiments, we compare the perfor-
mance of k-means, full-step Feel-the-Way, and sampling-based
Feel-the-Way clustering algorithms. We use three real-world
datasets and one synthetic dataset to compare the different
clustering algorithms.

Figure 4 shows four groups of subfigures: a, b, c, and
d, which correspond to four datasets, respectively. The first

subfigure in a group shows the number of iterations (i.e., con-
vergence rate), while the second subfigure shows the relative
performance speedup over the baseline program of k-means.

Figure 4 a.1 and a.2 show the performance comparison on
MNIST. In a.1, the full-step Feel-the-Way method has the least
number of iterations because it is able to utilize its L number
of local steps to improve the cost. Sampling-based Feel-the-
Way has the second least number of iterations due to using
a small portion (i.e., 1%) of sampled points. As an example,
when L is equal to 5, sampling-based and full-step Feel-the-
Way take 27 and 9 iterations to converge. By contrast, the
k-means clustering method takes 61 iterations to converge on
average. In Figure 4 a.2, we show the performance speedup of
the Feel-the-Way algorithms relative to k-means. Speedup is
computed by the division of two algorithms’ execution time.
The higher the number, the better the performance is. Thanks
to the very small sampling overhead of the sampling-based
Feel-the-Way algorithm, it is faster than the full-step Feel-the-
way by up to 1.7 times although it requires more iterations to
converge (as shown in subfigure a.1). Also, it is faster than
k-means by up to 2.4 times.

Figure 4 b.1 and b.2 show the performance comparison on
the SYN dataset. In the figure, the sampling-based Feel-the-
Way algorithm has the second least number of iterations, and
achieves the best speedup, which outperforms the k-means
method by 1.8 times. In Figure 4 c.2, the full-step Feel-the-
way is slower than k-means by 50%, however, the sampling-
based Feel-the-way is faster than k-means by 1.3 times. This
is because the overhead of the full-step algorithm exceeds
the time saved by its less number of iterations for ENRON.
In Figure 4 d.2, the sampling-based Feel-the-Way algorithm
attains speedups between 1.4 and 1.9 over the k-means method
for the CIFAR-10 dataset.

9

0

10

20

30

40

50

60

70

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Sampling-based Feel-the-Way

Full-step Feel-the-Way

k-means

a.1 MNIST (iterations)

0

0.5

1

1.5

2

2.5

2 3 4 5

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

L steps (within each iteration)

Sampling-based Feel-the-Way
Full-step Feel-the-Way
k-means

a.2 MNIST (speedup)

0

10

20

30

40

50

60

70

80

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Sampling-based Feel-the-Way

Full-step Feel-the-Way

k-means

b.1 SYN (iterations)

0

0.5

1

1.5

2

2 3 4 5

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

L steps (within each iteration)

Sampling-based Feel-the-Way
Full-step Feel-the-Way
k-means

b.2 SYN (speedup)

0

10

20

30

40

50

60

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Sampling-based Feel-the-Way

Full-step Feel-the-Way

k-means

c.1 ENRON (iterations)

0

0.5

1

1.5

2 3 4 5

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

L steps (within each iteration)

Sampling-based Feel-the-Way
Full-step Feel-the-Way
k-means

c.2 ENRON (speedup)

0

20

40

60

80

100

120

140

2 3 4 5

#i
te

ra
ti

o
n

s

L steps (within each iteration)

Sampling-based Feel-the-Way

Full-step Feel-the-Way

k-means

d.1 CIFAR-10 (iterations)

0

0.5

1

1.5

2

2 3 4 5

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

L steps (within each iteration)

Sampling-based Feel-the-Way
Full-step Feel-the-Way
k-means

d.2 CIFAR-10 (speedup)

Fig. 4: Performance comparison on different datasets

1,035.0
566.0

298.1
160.4

80.3
40.7

709.6
395.0

216.6
123.5

62.6
32.3

1

10

100

1000

10000

1 2 4 8 16 32

ti
m

e
 (

s)

#cores

k-means

Sampling-based Feel-the-Way

(a) ENRON

451.9
233.4

123.1
64.8

32.6
16.5

8.5
4.4

219.1
116.2

62.3
34.1

17.3
8.9

4.6
2.5

1

10

100

1000

1 2 4 8 16 32 64 128

ti
m

e
 (

s)

#cores

k-means

Sampling-based Feel-the-Way

(b) CIFAR-10
57.1

28.9

14.6

7.5

4.0

2.3

32.7

16.8

8.6

4.5

2.5
1.5

1

10

100

32 64 128 256 512 1024

ti
m

e
 (

s)

#cores

k-means

Sampling-based Feel-the-Way

(c) SYN-Large

310.3
155.3

78.0
39.3

20.0
10.2

5.4

160.6
80.9

40.7
20.7

10.3
5.5

3.3

1

10

100

1000

32 64 128 256 512 1024 2048

ti
m

e
 (

s)

#cores

k-means

Sampling-based Feel-the-Way

(d) PLACES-2

Fig. 5: Strong scalability experiments. The y-axis is shown in
the logarithmic scale.

6.3. Scalability of the parallel sampling-based Feel-
the-Way algorithm

Finally, we perform large scale experiments to evaluate the
scalability of our parallel implementation for the sampling-
based Feel-the-Way algorithm. In the parallel experiments, we
take as input four datasets: ENRON, CIFAR-10, SYN-Large,
and PLACES-2.

Figure 5 shows the performance of strong scalability. As
we increase the number of CPU cores, the execution time will
decrease correspondingly. Figure 5.a displays the execution
time of k-means and sampling-based Feel-the-Way on the
ENRON dataset. As the number of CPU cores increases from
1 to 32, our parallel Feel-the-Way reduces the execution time
from 709.6 to 32.3 seconds while k-means reduces it from

1,035 to 40.7 seconds. Figure 5.b displays the execution time
when using the CIFAR-10 dataset. On 128 CPU cores, our
parallel implementation is faster than k-means by 176%.

In Figure 5.c, we use 1,024 CPU cores to compute the SYN-
Large dataset. From the subfigure c, we can see that the par-
allel Feel-the-Way implementation reduces the execution time
from 32.7 to 1.5 seconds using 1,024 cores, outperforming k-
means by 153%. As for the PLACES-2 dataset as shown in
(d), the wallclock execution time is decreased from 160.6 to
3.3 seconds when using a number of 2,048 CPU cores. The
parallel sampling-based Feel-the-Way implementation is able
to outperform the k-means method by 164%.

7. Conclusion

In this paper, we seek to design and develop a fast clustering
algorithm for large-scale HPC systems. We first design the
full-step Feel-the-Way algorithm. Compared to k-means, this
algorithm takes significantly less number of iterations by
applying local optimization to each data block, meanwhile
providing the same cost as the k-means algorithm. Next,
to optimize the execution time of the full-step algorithm,
we introduce different sampling methods and design a new
algorithm called sampling-based Feel-the-Way. By sampling
a few useful data points, the new sampling-based algorithm
has a much better performance than the full-step algorithm.
Five sampling methods are designed and tested, among which
the reassignment-history-aware sampling method achieves the
best convergence rate. Our future work along this line will
design sampling-based parallel Feel-the-Way algorithms for
other machine learning and deep learning methods on extreme-
scale HPC systems.

References

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

10

[2] J. A. Hartigan and J. Hartigan, Clustering algorithms. Wiley New York,
1975, vol. 209.

[3] A. Frommer and D. B. Szyld, “On asynchronous iterations,” Journal of
computational and applied mathematics, vol. 123, no. 1, pp. 201–216,
2000.

[4] J. W. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou,
“Communication-optimal parallel and sequential QR and LU factoriza-
tions,” UTK, LAPACK Working Note 204, August 2008.

[5] R. Bru, L. Elsner, and M. Neumann, “Models of parallel chaotic iteration
methods,” Linear Algebra and its Applications, vol. 103, pp. 175–192,
1988.

[6] F. Song, H. Ltaief, B. Hadri, and J. Dongarra, “Scalable tile
communication-avoiding QR factorization on multicore cluster sys-
tems,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC’10), 2010, pp. 1–11.

[7] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ML via
a stale synchronous parallel parameter server,” in Advances in neural
information processing systems, 2013, pp. 1223–1231.

[8] M. G. Tallada, “Coarse grain parallelization of deep neural networks,”
in ACM SIGPLAN Notices, vol. 51, no. 8. ACM, 2016, p. 1.

[9] W. Zheng, F. Song, and L. Lin, “Designing a synchronization-reducing
clustering method on manycores: Some issues and improvements,” in
Proceedings of the Machine Learning on HPC Environments. ACM,
2017, p. 9.

[10] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art
deep learning software tools,” in 7th International Conference on Cloud
Computing and Big Data (CCBD). IEEE, 2016, pp. 99–104.

[11] H. Kurban and M. M. Dalkilic, “A novel approach to optimization of
iterative machine learning algorithms: Over heap structure,” in 2017
IEEE International Conference on Big Data (Big Data). IEEE, 2017,
pp. 102–109.

[12] Apache Mahout, “https://mahout.apache.org/,” 2017.
[13] MLlib, “http://spark.apache.org/mllib/,” 2017.
[14] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[25] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[15] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: a framework for machine learning
and data mining in the cloud,” Proceedings of the VLDB Endowment,
vol. 5, no. 8, pp. 716–727, 2012.

[16] Amazon Machine Learining, “https://aws.amazon.com/aml/details/,”
2017.

[17] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt,
J. Kottalam, J. Liu, K. Maschhoff, S. Canon, J. Chhugani et al., “Matrix
factorizations at scale: A comparison of scientific data analytics in
Spark and C+MPI using three case studies,” in 2016 IEEE International
Conference on Big Data (Big Data). IEEE, 2016, pp. 204–213.

[18] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[19] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino, “Fault tolerant de-
centralised k-means clustering for asynchronous large-scale networks,”
Journal of Parallel and Distributed Computing, vol. 73, no. 3, pp. 317–
329, 2013.

[20] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art
deep learning software tools,” in 7th International Conference on Cloud
Computing and Big Data (CCBD). IEEE, 2016, pp. 99–104.

[21] Y. You, A. Buluç, and J. Demmel, “Scaling deep learning on gpu
and knights landing clusters,” in Proceedings of the 2017 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’17). ACM, 2017, p. 9.

[22] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 1177–
1178.

[23] C. A. Hoare, “Algorithm 65: find,” Communications of the ACM, vol. 4,
no. 7, pp. 321–322, 1961.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[26] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva, “Places:
An image database for deep scene understanding,” arXiv preprint
arXiv:1610.02055, 2016.

[27] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” in European Conference on Machine Learning.
Springer, 2004, pp. 217–226.

11

	Design and Implementation of an Efficient Parallel Feel-the-Way Clustering Algorithm on High Performance Computing Systems
	Report Number:
	

	tmp.1532011939.pdf.Dbq9S

