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High-Frequency Thermal-Fluidic Characterization of Dynamic 

Microchannel Flow Boiling Instabilities: Part 1 - Rapid-Bubble-

Growth Instability at the Onset of Boiling1 

 

Todd A. Kingston, Justin A. Weibel, and Suresh V. Garimella 

Cooling Technologies Research Center 

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 USA 

Abstract 

Dynamic flow boiling instabilities are studied experimentally in a single, 500 μm-

diameter glass microchannel subjected to a uniform heat flux.  Fluid flow is driven through the 

microchannel in an open-loop test facility by maintaining a constant pressure difference between 

a pressurized upstream reservoir and a reservoir at the exit that is open to the ambient; the 

working fluid is HFE-7100.  This hydrodynamic boundary condition resembles that of an 

individual channel in a parallel-channel heat sink where the channel mass flux can vary in time.  

Simultaneous high-frequency measurement of reservoir, inlet, and outlet pressures, pressure 

drop, mass flux, inlet and outlet fluid temperatures, and wall temperature is synchronized to 

high-speed flow visualizations enabling transient characterization of the thermal-fluidic 

behavior.  Part 1 of this study investigates the rapid-bubble-growth instability at the onset of 

boiling; the effect of flow inertia and inlet liquid subcooling is assessed.  The mechanisms 

underlying the rapid-bubble-growth instability, namely, a large liquid superheat and a large 
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pressure spike, are quantified; this instability is shown to cause flow reversal and can result in 

large temperature spikes.  Low flow inertia exacerbates the rapid-bubble-growth instability by 

starving the heated channel of liquid replenishment for longer durations and results in severe 

temperature increases.  In the case of high flow inertia or high inlet liquid subcooling, flow 

reversal is still observed at the onset of boiling, but results in a minimal wall temperature rise 

because liquid quickly replenishes the heated channel.  A companion paper (Part 2) investigates 

the effect of flow inertia, inlet liquid subcooling, as well as heat flux on the thermal-fluidic 

oscillations during time-periodic flow boiling that follows the initial incipience at the onset of 

boiling considered here. 

Graphical Abstract 

 

Keywords: dynamic flow boiling instability, microchannel, rapid-bubble-growth instability, 

two-phase flow 

Highlights 

• The rapid-bubble-growth instability at the onset of flow boiling is studied. 

• The effects of flow inertia and inlet liquid subcooling are investigated. 

• Flow visualizations are synchronized to transient thermal-fluidic signatures. 
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• The rapid-bubble-growth instability at the onset of boiling causes flow reversal. 

Nomenclature 

cp specific heat [J/(kg °C)] 

D microchannel inside diameter [μm] 

G mass flux [kg/m2s] 

1G    nominal single-phase mass flux [kg/m2s] 

hfg heat of vaporization [J/kg] 

k thermal conductivity [W/(m K)] 

Δp pressure drop across the microchannel [kPa] 

pin inlet pressure [kPa] 

pout outlet pressure [kPa] 

Pin power into the microchannel [W] 

Ploss power loss to ambient [W] 

Ptotal total power applied [W] 

L microchannel length [m] 

Lheated microchannel heated length [m] 

t time [s] 

Tin inlet fluid temperature [°C] 

Tout outlet fluid temperature [°C] 

Tsat fluid saturation temperature [°C] 

Tsat,out fluid saturation temperature corresponding to outlet pressure [°C] 

ΔTsub inlet liquid subcooling relative to outlet saturation temperature [°C] 

Twall microchannel outside wall temperature [°C] 

V voltage [V] 

I electric current [A] 

Q volumetric flow rate [m3/s] 

qin,avg net heat flux into the microchannel [kW/m2] 

Greek Letters 

ρ density [kg/m3] 
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μ dynamic viscosity [kg/(m s)] 

σ surface tension [N/m] 

1 Introduction 

The continued miniaturization of electronic devices will require transformative thermal 

management strategies that are capable of dissipating high heat fluxes (Agostini et al., 2007; 

Bar-Cohen et al., 2006; Garimella and Harirchian, 2013; Kandlikar et al., 2013).  Tuckerman and 

Pease (1981) pioneered the use high-aspect-ratio microchannels to dissipate heat fluxes up to 790 

W/cm2 using single-phase water flow.  Single-phase flow can be accurately predicted using 

available modeling tools, making evaluation of heat sink designs straightforward when operated 

under single-phase flow conditions.  The small channel dimensions and high surface area-to-

volume ratios found in microchannel heat sinks aid in heat transfer but require a large pumping 

power to overcome the frictional forces.  Flow boiling is an attractive approach for the thermal 

management of devices generating high heat fluxes because it can be realized at lower pumping 

power than single-phase flow for a given heat removal rate, due to the utilization of the latent 

heat of vaporization and high heat transfer coefficients.  However, designing heat sinks for two-

phase operation and predicting their performance is difficult because of commonly encountered 

flow boiling instabilities.  Flow boiling instabilities can lead to premature critical heat flux 

relative to the conventional dryout mechanism (Bergles and Kandlikar, 2005).  In an effort to 

better understand these instabilities and their implications, flow boiling instabilities have 

received significant attention through experimental and theoretical analyses (Kuang et al., 2017; 

Ruspini et al., 2010; Van Oevelen et al., 2017; Zhang et al., 2009), as well as a number of 

reviews on the subject (Boure et al., 1973; Kakac and Bon, 2008; Ruspini et al., 2014).  A 
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review of flow boiling instabilities encountered in microchannels, with an emphasis on 

techniques to mitigate the effects, was recently compiled by Prajapati and Bhandari (2017). 

Two classes of flow instabilities have been widely recognized in the literature, static and 

dynamic.  Flow is subjected to a static instability if, when disturbed, its new operating conditions 

tend asymptotically toward operating conditions that differ from the initial ones (Kakac and Bon, 

2008).  The threshold of operating conditions at which static instabilities are observed can be 

predicted using steady-state laws (Akagawa et al., 1971; Boure et al., 1973; Van Oevelen et al., 

2017).  Flow is subjected to a dynamic instability when there is sufficient interaction between the 

inertia of the flow and the compressibility of the system, leading to delayed feedback (Kakac and 

Bon, 2008).  Dynamic flow instabilities commonly encountered in microscale applications 

include the rapid-bubble-growth instability, pressure drop instability (sometimes referred to as 

the upstream compressible volume instability), and parallel channel instability (Koşar et al., 

2006).  The rapid-bubble-growth instability at the onset of boiling is investigated in Part 1 of this 

two-part study. 

The one dynamic instability that is unique to microscale flow boiling and not observed in 

macroscale systems is the rapid-bubble-growth instability (Kuo and Peles, 2008).  The small 

characteristic channel sizes confine vapor bubbles formed during boiling, causing the bubbles to 

significantly influence the operating characteristics of the system.  Barber et al. (2011) used n-

pentane to study bubble growth during microchannel flow boiling and reported that bubble 

growth can occur in two regimes: (i) free bubble growth, where a spherical bubble grows until it 

approaches the channel hydraulic diameter, and (ii) confined bubble growth, where the bubble is 

confined by the channel walls and grows in the axial direction.  Barber et al. (2011) observed 

that confined bubble growth led to pressure fluctuations and flow reversal.  Two underlying 
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mechanisms contribute to the rapid-bubble-growth instability, viz., the large liquid superheat 

needed to induce vapor bubble nucleation and the large pressure spike generated within a 

microchannel that propagates through the surrounding liquid due to rapid growth of a confined 

bubble (Kuo and Peles, 2008).  

One approach to isolate individual instability types and identify their underlying 

mechanisms is to investigate a single-channel configuration in which individual mechanisms can 

be more easily observed.  Huh et al. (2007) used high-speed imaging to qualitatively observe 

flow reversal in a single microchannel due to the flow regime transition instability which resulted 

in the growth of elongated bubbles.  This instability was quantified using a relatively low-

frequency sensor, and high-frequency flow oscillations associated with individual bubble growth 

events could not be quantitatively resolved.  Wang and Cheng (2008) used a single microchannel 

with 15 heaters and resistance temperature detectors positioned along its axial length to measure 

the time-resolved wall temperature and pressure drop during flow boiling with deionized water.  

They demonstrated that a critical exit vapor quality cutoff separated stable and unstable flow 

boiling, wherein the stability was judged based on the absence or presence of pressure and 

temperature fluctuations.  Barber et al. (2011) used pressure and temperature measurements, 

synchronized with high-speed flow visualization, to observe the rapid-bubble-growth instability 

during microchannel flow boiling.  A syringe pump was used to deliver a constant mass flux in 

the experiments. 

However, extrapolating the results of single-channel flow instability studies to behavior 

in parallel microchannel heat sinks is difficult because of potential differences in the 

hydrodynamic boundary conditions.  The constant mass flux used in many single-channel studies 

(Barber et al., 2011; Barber et al., 2009; Wang and Cheng, 2008) is different from conditions in 
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an individual channel that is part of a parallel-channel system.  The behavior of a single channel 

in a parallel-channel system does not significantly influence the full set of channels thus resulting 

in a hydrodynamic boundary condition similar to that of a constant pressure drop.  In this 

parallel-channel configuration, the flow rate through an individual channel can fluctuate 

significantly, resulting in severe thermal oscillations.  In the present study, a constant pressure 

difference between a pressurized reservoir and the ambient is used to induce fluid flow through a 

single heated microchannel, which resembles the hydrodynamic boundary conditions of an 

individual channel in a parallel-channel system.  This deliberate choice of boundary conditions in 

the present study enables the rapid-bubble-growth instability and the pressure drop instability to 

be studied in the absence of the confounding influence of the parallel channel instability.  Part 1 

of this two-part study focuses on the rapid-bubble-growth instability at the onset of boiling while 

Part 2 (Kingston et al., 2017) investigates the instabilities that occur during time-periodic 

boiling, after the effects of the initial onset have diminished. 

High-frequency thermal-fluidic characterization techniques (e.g., measurement of 

pressure, mass flux, and temperature) are needed to resolve the transient features associated with 

dynamic flow boiling instabilities.  These techniques have been successfully used to quantify the 

transient heat transfer mechanisms that occur during flow boiling processes.  Rao et al. (2014) 

embedded thin-film titanium heaters and thermistors beneath a single microchannel to allow 

heating and measurement of surface temperatures with high spatial and temporal resolution 

during flow boiling.  Local surface temperatures were significantly influenced by bubble 

nucleation, thin-film evaporation, and dryout.  Bigham and Moghaddam (2015) custom-

fabricated a test section that could make temperature measurements at 20,000 Hz using a series 

of 50 μm-wide resistance temperature detectors, enabling local heat flux measurements with 
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spatial and temporal resolutions of 40-65 μm and 50 μs, respectively.  Local vapor bubble 

dynamics were shown to influence the instantaneous heat transfer rates and mechanisms. 

In Part 1 of this two-part study, high-speed flow visualizations are synchronized to high-

frequency pressure, mass flux, and temperature measurements and are used to quantify the 

underlying mechanisms of the rapid-bubble-growth instability at the onset of flow boiling in a 

single heated microchannel with hydrodynamic boundary conditions that resemble an individual 

channel in a parallel-channel system.  The transient thermal-fluidic signatures are analyzed to 

understand the effect of flow inertia and inlet liquid subcooling.  In Part 2 (Kingston et al., 

2017), the effect of flow inertia, inlet liquid subcooling, and heat flux on the magnitude and 

frequency of the thermal-fluidic oscillations are quantified during time-periodic flow boiling. 

2 Experimental Methods 

2.1 Test Facility 

The custom-built experimental facility, schematically illustrated in Figure 1, uses a 

pressurized reservoir to deliver degassed, dielectric HFE-7100 liquid (Novec Engineered Fluid, 

3M; fluid properties listed in Table 1) to the test section.  The pressure difference between this 

reservoir and the ambient is used to generate an open-loop flow.  The rigid stainless steel 

reservoir is pressurized by boiling fluid using a submerged cartridge heater (G6A-15568, 

Watlow).  Electrical power is supplied to the cartridge heater using an adjustable direct current 

(DC) power supply (XG 850W 150-5.6, Sorensen).  A constant reservoir pressure is set and 

maintained by adjusting the amount of power delivered to the cartridge heater. 
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Figure 1. Schematic diagram of the experimental facility featuring a constant pressure reservoir 

used to deliver fluid flow through the heated test section microchannel. 

 

Table 1. Fluid properties of saturated HFE-7100 at atmospheric pressure (3M, 2002). 

 Liquid Vapor 

Density, ρ [kg/m3] 1399 9.87 

Specific heat, cp [J/(kg °C)] 1255 929 

Thermal conductivity, k [W/(m K)] 0.0618 0.0156 

Dynamic viscosity, μ [kg/(m s)] 3.61 ×10-4 1.12 ×10-5 

Heat of vaporization, hfg [J/kg] — 111600 — 

Saturation temperature, Tsat [°C] —— 61 —— 

Surface tension, σ [N/m] — 0.0103 — 

 

Liquid is extracted from the reservoir through an internal dip tube.  The liquid flow rate 

and the test section outlet saturation pressure are adjusted using a pair of needle valves (FVL-

404-SS and FVL-405-SS, Omega Engineering), one upstream and one downstream of the test 
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section, respectively.  The liquid volumetric flow rate and temperature are measured using a 

liquid flow meter (LC-10CCM-D-EPDM, Alicat; accuracy of ±1% full scale).  The liquid mass 

flux is determined using the measured volumetric flow rate and the density corresponding to the 

measured liquid temperature at that location.  The fluid is preheated to the desired inlet 

temperature immediately upstream of the test section, using a constant-temperature circulating 

bath (NESLAB EX 17, Thermo Electron Corp.).  The inlet and outlet fluid temperatures are 

measured immediately upstream and downstream of the test section, respectively, using small 

exposed-tip thermocouples (TMTSS-020E-6, Omega Engineering; accuracy of ±0.5 °C) 

featuring a bead diameter of ~250 μm, which enables dynamic changes in fluid temperatures to 

be measured.  The pressures at the inlet and outlet of the microchannel are measured using 

separate pressure transducers (PX309-030G5V and PX309-015G5V, respectively, Omega 

Engineering; accuracy of ±1%).  Short, rigid stainless steel tubes were used to connect the 

pressure transducers to the polyetheretherketone (PEEK) connectors (ZX2LPK, Valco 

Instruments) to minimize damping and enable dynamic pressure fluctuations to be accurately 

measured.  Two individual pressure transducers were used instead of a differential pressure 

transducer to minimize the volume of fluid that would effectively be in parallel with the test 

section; the pressure measurements were observed to be damped when the use of a differential 

transducer was explored.  The pressure drop across the test section is taken as the difference 

between the inlet and outlet pressure measurements.  The thermocouples and pressure 

transducers, in addition to the fluid inlet and outlet connections, are mounted to the PEEK 

connectors, as shown in Figure 1; the test-section microchannel is mounted horizontally between 

these connectors. 
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The circular cross-section microchannel is made of borosilicate glass (CV5070, 

VitroCom) with an inside diameter of D = 500 μm and a wall thickness of 100 μm.  The outside 

surface of the microchannel is custom-coated with an approximately 100 nm-thick layer of 

indium tin oxide (ITO) using atomic layer deposition (Veeco - CNT).  The ITO layer is optically 

transparent and electrically conductive, enabling visualization of the two-phase flow while 

subjected to uniform Joule heating.  Power is supplied to the ITO coating using an adjustable DC 

power supply (XG 850W 300V-2.8A, Sorensen).  The ITO layer is electrically isolated from the 

flow loop using non-conductive polytetrafluoroethylene (PTFE) ferrules and PEEK nuts for 

attachment of the microchannel to the PEEK connectors.  Any vapor leaving the test section 

condenses before discharging as liquid to an open reservoir at ambient pressure. 

Pressure, mass flux, and fluid temperature measurements are obtained at 2500 Hz using a 

high-frequency data acquisition (DAQ) unit (USB-6259, National Instruments).  The power to 

the test section is measured at 0.4 Hz using a separate, high-voltage DAQ (34970A, Agilent).  

The total heating power (which includes power loss to the ambient) applied to the test section is 

quantified by measuring the voltage drop across and current through the ITO microchannel 

coating; the current is obtained from a shunt resistor (6142-1-1000, Empro Shunts).  The entire 

experimental facility is mounted on a damped optical table (VIS3672-PG2-325A, Newport 

Corp.) to ensure that external vibrations are not transmitted to the components. 

The microchannel outside wall temperature is measured at a single fixed location using 

an infrared (IR) camera (SC7000, FLIR) pointed vertically downward at the microchannel.  The 

IR objective lens (ASIO 4×, Janos Technology, Inc.) is focused on a single black dot painted on 

the outside surface of the microchannel.  This IR imaging configuration enables nonintrusive 

measurement of the wall temperature without obscuring the flow visualization.  Infrared images 
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were acquired at 500 frames per second (fps) using an image resolution of 80 × 64 pixels.  An IR 

camera integration (i.e., exposure) time of 90 μs was used, which enabled wall temperatures up 

to approximately 200 °C to be measured before saturating the IR camera sensor. 

The flow is visualized from the side of the microchannel using a high-speed camera 

(VEO710L, Phantom) coupled to a macro lens (AF Micro-Nikkor, Nikon).  The opposite side of 

the microchannel is uniformly backlit using a high-intensity light-emitting diode (LED) strip 

with an integrated light diffuser (BL168, Advanced Illumination).  High-speed optical and IR 

images were synchronized to pressure, mass flux, and temperature measurements using a pulse 

generator (565, Berkeley Nucleonics Corp.) to simultaneously trigger both cameras and the high-

frequency DAQ unit. 

2.2 Test Procedure 

Immediately prior to testing, the HFE-7100 fluid was degassed by vigorously boiling the 

liquid in the reservoir using the submerged cartridge heater.  An auxiliary pumped loop 

circulates water through a condenser (Figure 1) to condense the vapor, which falls back into the 

reservoir, while non-condensable gases are expelled from the system.  While degassing, the 

HFE-7100 was also circulated through an auxiliary pumped loop containing a 2 μm particulate 

filter (SS-4TF-2, Swagelok) and an activated-carbon filter (12011 Pall Corporation) to remove 

any contaminants.  After degassing and filtering, the pumps in these auxiliary loops were turned 

off. 

Experiments were initiated by boiling the liquid in the reservoir until it reached a constant 

reservoir pressure of 190 kPa.  Liquid flow was then initiated through the test section at the 

desired nominal single-phase mass flux while maintaining an average test section outlet 

saturation pressure of 114 kPa, which corresponds to an outlet saturation temperature of 65 °C, 
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by adjusting the needle valves.  The test facility features a constant pressure drop across the 

system, not a constant mass flux, and thus a nominal single-phase mass flux is defined based on 

the value measured prior to the onset of boiling.  The constant-temperature bath setpoint was 

then adjusted to heat the liquid to the desired inlet temperature. 

After establishing the desired flow conditions, power was applied to the ITO-coating on 

the microchannel in increments, allowing for steady-state conditions to be achieved between 

each set point.  At low power conditions, the flow remained in a single phase.  At a power level 

large enough to cause the onset of boiling, all sensor and imaging (IR and optical) data were 

recorded synchronously immediately before and after incipience, thus capturing this transient 

event.  During this onset of boiling, optical images were acquired at 50,000 fps for a duration of 

7.85 s, extending approximately 6 s after boiling was initiated. 

2.3 Data Reduction 

The wall temperature of the microchannel is determined from measurement of the IR 

image intensity in a 30 × 24-pixel region in the middle of the black dot painted on the outer wall 

of the microchannel.  This intensity is converted to a temperature using a calibration of the IR 

camera that was performed after testing was complete.  For the calibration, the IR camera is 

focused on a target surface featuring the same black paint used on the microchannel and was 

varied from 20 °C to 200 °C in approximately 10 °C increments while recording the image 

intensity.  A unique fourth-order polynomial fit of this temperature versus intensity data for each 

pixel in the imaging region is used to convert the intensity measured during testing to a 

microchannel wall temperature.  The average wall temperature for each image is then calculated 

by computing the spatial average from the 30 × 24-pixel region. 
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A portion of the total power supplied to the ITO coating on the microchannel is lost to the 

ambient (i.e., not transferred to the fluid through the microchannel wall).  This power loss is a 

function of the channel wall temperature and was calibrated after testing.  First, the HFE-7100 

was drained from the test-section microchannel and the channel was open to the ambient.  Next, 

electric power levels ranging from 0 - 1.5 W (in approximately 0.1 W increments) were applied 

to the microchannel.  In this configuration, all of the supplied power is lost to the ambient.  The 

wall temperature is measured using the IR camera at each power level and a linear fit is applied: 

Ploss = 0.0086 Twall – 0.2188.  This temperature-dependent power loss equation had a coefficient 

of determination of R2 = 0.98.  A time-averaged wall temperature (over each data acquisition 

time) is used to quantify the power loss that occurs during testing, resulting in different power 

losses for each operating condition.  The power into the microchannel is calculated by 

subtracting the power loss from the total electric power supplied using Pin = Ptotal - Ploss; power is 

calculated using Ptotal = VI where V is the voltage applied to the test section and I is the current 

through the test section.  The time-averaged heat flux into the test section is calculated using 

qin,avg = Pin / (π D Lheated). 

The instantaneous mass flux through the test section is calculated using G = Qρ / (πD2/4) 

where Q is the measured volumetric flow rate and ρ is the calculated liquid density 

corresponding to the measured liquid temperature at the flow meter.  The inlet liquid subcooling 

is determined using ΔTsub = Tsat,out,avg - Tin where Tsat,out,avg is the time-averaged fluid saturation 

temperature corresponding to the measured pressure at the outlet of the test section and Tin is the 

inlet fluid temperature.  The pressure drop across the test section is calculated as the difference 

between the test section inlet and outlet pressures, Δp = pin - pout. 
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2.4 Design of Experiments 

Five different combinations of nominal single-phase mass flux and inlet liquid 

subcooling were investigated in this study, as shown in Table 2.  The test procedure described in 

Section 2.2 was adopted for each combination.  In this study, the nominal single-phase mass flux 

is varied, enabling the effect of flow inertia to be studied, while holding the inlet liquid 

subcooling constant at ΔTsub = 5 °C.  Similarly, the inlet liquid subcooling is varied while 

holding the nominal single-phase mass flux constant at 1G   = 400 kg/m2s. 

Table 2. Operating conditions used in this study to investigate the rapid-bubble-growth 

instability. 

Nominal Single-

Phase Mass Flux, 

1G   [kg/m2s] 

Inlet Liquid 

Subcooling, ΔTsub 

[°C] 

200 5 

400 5 

400 15 

400 35 

800 5 

 

3 Results and Discussion 

When the flow transitions from single-phase to two-phase, the rapid-bubble-growth 

instability is observed at the onset of boiling, and is captured in the flow visualizations and 

transient sensor measurements.  Figure 2a shows a series of selected images at the onset of flow 

boiling obtained by the high-speed camera for a nominal single-phase mass flux of 400 kg/m2s 

and an inlet liquid subcooling of 5 °C.  The nominal flow direction (positive mass flux) is from 

left to right.  The entire heated length of the microchannel (Lheated / D = 84) is shown in the 
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frame; the electrical connections to the ITO coating are just outside the viewing region.  Figure 

2a (t = 0.024 s) shows the single-phase liquid flow immediately prior to nucleation.  The small 

black dot visible in each image, on the top portion of the channel near the outlet, is the location 

of the IR wall temperature measurement.  The entire microchannel cross-section is shown in 

each image (A-L) and appears uniformly gray; the wall thickness is virtually unidentifiable in the 

images at the magnification shown.  The reservoir, inlet, and outlet pressures, pressure drop 

across the channel, mass flux, inlet and outlet fluid temperatures, and wall temperature data 

recorded immediately before and after the onset of boiling (0 s < t < 0.1 s) are shown in Figure 

2b.  A longer-timescale plot (0 s < t < 1.0 s) is shown in Figure 2c to illustrate the transition from 

the onset of boiling to time-periodic boiling.  The gray shaded box and dashed vertical lines in 

Figure 2b correspond to the time instances in Figure 2a when the flow visualizations were 

captured (images A-L). 
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Figure 2. (a) Selected images of the two-phase morphology during the rapid-bubble-growth 

instability at the onset of boiling for 1G   = 400 kg/m2s and ΔTsub = 5 °C, and (b) synchronized 

measurements of pressure, pressure drop, mass flux, inlet and outlet fluid temperatures, and wall 

temperature.  Images A-L in (a) correspond to the time instances indicated by the gray box (A-H) 

and dashed vertical lines (I-L) in (b).  The nominal flow direction in (a) is from left to right.  A 

corresponding video of the synchronized flow visualizations and thermal-fluidic signatures 

during the onset of boiling (i.e., Figure 2a and 2b) is available online in the Supplementary 

Materials (Video S1). (c) The pressure drop, mass flux, and wall temperature measurements are 

also plotted over a longer timescale showing the transition from the onset of boiling to time-

periodic flow boiling. 

Prior to nucleation (i.e., during single-phase flow when qin,avg ≤ 33.7 kW/m2), all the 

sensor measurements remain constant in time, as shown in Figure 2b from 0 s < t < 0.024 s.  

Immediately prior to nucleation, the outlet fluid temperature is 78.0 °C, corresponding to a large 

liquid superheat of 12.4 °C relative to the outlet saturation temperature of the fluid (65.6 °C).  

The glass microchannel used in this study has a smooth inside wall and HFE-7100 is a highly 

wetting liquid; these characteristics impose a large energy barrier for nucleation that typically 

suppresses vapor bubble formation during boiling until a large liquid superheat is attained, for 

example, as shown by Kuo and Peles (2008) for the walls of smooth silicon microchannels.  At t 

= 0.025 s, a single vapor bubble nucleates from the top portion of the inside wall of the 

microchannel near the middle of the heated region (Figure 2a).  Nucleation at the onset of boiling 

preferentially occurred at this location, likely because of a small imperfection on the inside 

surface.  Once formed, the small vapor bubble grows very rapidly both upstream and 

downstream from the nucleation site.  This explosive growth is attributed to the vapor bubble 
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being surrounded by superheated liquid, which drives rapid liquid-to-vapor phase change and 

volumetric expansion of the bubble due to the density difference between vapor and liquid.  As 

the vapor bubble becomes circumferentially confined by the microchannel wall, growth 

predominantly occurs in the axial direction.  The furthest upstream and downstream portions of 

the vapor bubble feature a bullet-like shape, due to the high-velocity (3.5 m/s) propagation of the 

vapor-liquid interface.  Rapid growth of the vapor bubble generates a large pressure spike within 

the microchannel that also propagates upstream and downstream through the liquid.  As shown 

in Figure 2b, the inlet pressure begins to abruptly increase at t = 0.026 s until it reaches a 

maximum pressure of 283 kPa at t = 0.030 s.  The pressure spike is so large that the inlet 

pressure exceeds that of the reservoir pressure (190 kPa).  Similarly, the outlet pressure begins 

increasing at t = 0.027 s until it reaches a maximum pressure of 168 kPa at t = 0.033 s.  The local 

spike in pressure promotes flow reversal upstream of the nucleation site.  This local pressure 

spike, combined with the large liquid superheat that drives evaporation and expansion of the 

bubble, are the underlying mechanisms responsible for the rapid-bubble-growth instability.  The 

faster response and increased pressure magnitude of the inlet pressure, relative to the outlet 

pressure, is attributed to the inability of the system to relieve the increasing pressure upstream of 

the rapidly growing vapor bubble.  Instead, it begins to pressurize any compressible volume 

upstream of the test section. 

Eventually, the entire heated length of the microchannel is occupied by a long continuous 

vapor bubble with only a thin layer of liquid separating it from the heated wall (Figure 2a; t = 

0.032 s).  This time instant approximately corresponds to maxima being observed in the inlet 

pressure and pressure drop, as shown in Figure 2b.  A flow reversal is detected by the upstream 

flow meter, which measures a change in mass flux from the nominal single-phase flow condition 
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of 400 kg/m2s to virtually zero at t = 0.042 s and extends until t = 0.057 s (duration of 0.015 s); 

the flow meter is unable to measure negative flow rates, and shows a zero reading instead. 

As the vapor-liquid interface moves downstream, and past the location of the wall 

temperature measurement (Figure 2a; t = 0.029 s), the liquid begins to cool as the excess sensible 

heat stored in the superheated liquid is converted to latent heat via evaporation.  The outlet fluid 

temperature eventually decreases to the saturation temperature of the fluid.  This process initially 

begins to cool the microchannel wall, as shown in Figure 2b at t = 0.048 s.  There is a 0.019 s 

delay between the vapor bubble passing the location of the temperature measurement and the 

wall temperature beginning to decrease, due to the thermal lag in conduction through the channel 

wall.  At later times, the liquid film appears to thin and becomes more spatially uniform (i.e., 

interfacial waves are eliminated) and the channel is filled with mostly vapor (Figure 2a; t = 0.061 

s).  Due to starvation of incoming liquid, the wall temperature then begins to increase at t = 0.062 

s. 

As the pressure wave that was generated at the onset of boiling travels upstream and 

downstream through the liquid, its magnitude decays and results in a reduction in the inlet and 

outlet pressures and eventually initiates a measurable mass flux at t = 0.058 s.  The pressure 

build-up in the compressible volume upstream of the test section is relieved, causing the mass 

flux to increase to a maximum of 440 kg/m2s at t = 0.080 s, exceeding the nominal single-phase 

mass flux for a brief time.  The increased mass flux causes the vapor located upstream of the 

image frame to be forced back downstream and the furthest upstream portion of the vapor-liquid 

interface to become visible again within the viewing window (Figure 2b; t = 0.069 s).  Small 

vapor bubbles begin to successively nucleate and depart from the microchannel wall at a fixed 

axial location (Figure 2b; t = 0.073 s).  As these bubbles move downstream and grow, they 
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coalesce and form larger, confined vapor bubbles resembling a slug flow regime before 

transitioning to churn and annular flow.  After t = 0.081 s, the two-phase morphology begins 

exhibiting time-periodic fluctuations and the effects of the rapid-bubble-growth instability 

completely attenuate. 

Figure 2c shows the pressure drop, mass flux, and wall temperature data for a longer 

duration (0 < t < 1 s) to illustrate the transition from the onset of boiling to time-periodic boiling; 

time-periodic oscillations in the pressure drop and mass flux are observed for t > 0.081 s (Figure 

2c).  The thermal response is much slower than the hydrodynamic response due to the thermal 

capacitance of the microchannel wall, and the wall temperature takes longer to achieve time-

periodic behavior (Figure 2c).  The wall temperature first increases 2 °C due to the rapid-bubble-

growth instability, from 133.4 °C during single-phase flow to a maximum wall temperature of 

135.4 °C at t = 0.244 s.  It then reduces due to the change in the two-phase morphology and 

exhibits time-period fluctuations around a mean of 82 °C beginning at approximately t = 0.900 s. 

3.1 Effect of Flow Inertia 

While the rapid-bubble-growth instability at the onset of boiling for 1G   = 400 kg/m2s 

and ΔTsub = 5 °C only resulted in a 2 °C transient increase in the wall temperature relative to 

single-phase flow that then decayed (Figure 2), this was not always the case.  In particular, when 

the flow inertia was reduced, a larger and longer transient temperature excursion was observed.  

Figure 3 shows a series of selected images at the onset of flow boiling for a nominal single-phase 

mass flux of 200 kg/m2s and an inlet liquid subcooling of 5 °C, as well as the synchronized 

pressure drop, mass flux, and wall temperature measurements before, during, and after the onset 

of boiling on a longer timescale (0 s < t < 4.5 s).  Prior to nucleation, the wall temperature is 119 

°C.  Once a vapor bubble nucleated from the channel surface (Figure 3; t = 0.299 s), it exhibits 
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explosive growth both upstream and downstream, as in the discussion above.  Similarly, it is 

accompanied by a large pressure spike and a reduction in the mass flux (Figure 3b) to a value of 

zero.  A mass flux value of zero (indicating flow reversal) is detected for a duration of 0.066 s, a 

fourfold increase relative to the case with 1G   = 400 kg/m2s.  The wall temperature then begins 

to increase significantly and reaches a maximum temperature of 163 °C at t = 1.968 s.  This 

larger increase in wall temperature is attributed to the lower flow inertia in this case, which 

causes flow reversal (as detected by the flow meter) and the initial vapor bubble that fills the 

channel (Figure 3a) to remain in place for a longer period of time for 1G   = 200 kg/m2s 

compared to 1G   = 400 kg/m2s, starving the heated wall of adequate liquid replenishment.  Such 

significant increases in the wall temperature caused by the rapid-bubble-growth instability could 

be catastrophic to temperature-sensitive devices.  Shortly after the wall reaches its maximum 

temperature, the flow begins to enter a time-periodic flow boiling condition where oscillations in 

pressure drop and mass flux are observed (t > ~2.25 s).  This cools the microchannel wall and 

time-periodic wall temperature oscillations centered at ~75 °C begin at approximately t = 4.0 s. 



23 

 

Figure 3. (a) Selected images of the two-phase morphology during the rapid-bubble-growth 

instability at the onset of boiling for 1G   = 200 kg/m2s and ΔTsub = 5 °C, and (b) synchronized 

measurements of pressure drop, mass flux, and wall temperature.  Images in (a) correspond to the 

time instances in the gray box in (b).  A corresponding video of the synchronized flow 

visualizations and thermal-fluidic signatures during the onset of boiling is available online in the 

Supplementary Materials (Video S2). 

For a larger nominal single-phase mass flux of 1G   = 800 kg/m2s, the effect on the rapid-

bubble-growth instability is minimal because the flow inertia is sufficient to mitigate the effects 
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of flow reversal (as was observed at 1G   = 400 kg/m2s).  The flow meter measured a value of 

zero (indicating flow reversal) for a duration of 0.015 s when 1G   = 800 kg/m2s, identical to the 

case when 1G   = 400 kg/m2s.  At the onset of boiling for 1G   = 800 kg/m2s, the wall temperature 

reduced to a much lower value; there was never an increase from its initial temperature during 

single-phase flow (unlike the brief increase at the onset observed for 1G   = 400 kg/m2s).  A 

video showing the two-phase morphology synchronized to pressure drop, mass flux, and wall 

temperature measurements at the onset of boiling for a nominal single-phase mass flux of 800 

kg/m2s and ΔTsub = 5 °C is provided online in the Supplementary Materials (Video S3). 

3.2 Effect of Inlet Liquid Subcooling 

 The effect of the inlet liquid subcooling on the rapid-bubble-growth instability was 

studied by changing the subcooling to ΔTsub = 15 °C and 35 °C while holding the nominal-single 

phase mass flux constant ( 1G   = 400 kg/m2s).  Figure 4 shows a series of selected images at the 

onset of flow boiling for a nominal single-phase mass flux of 400 kg/m2s and an inlet liquid 

subcooling of 15 °C, as well as the synchronized pressure drop, mass flux, and wall temperature 

measurements before, during, and after the onset of boiling on a longer timescale (0 s < t < 2.0 

s). 
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Figure 4. (a) Selected images of the two-phase morphology during the rapid-bubble-growth 

instability at the onset of boiling for 1G   = 400 kg/m2s and ΔTsub = 15 °C, and (b) synchronized 

measurements of pressure drop, mass flux, and wall temperature.  Images A-K in (a) correspond 

to the time instances indicated by the gray box (A-G) and dashed vertical lines (H-K) in (b).  A 

corresponding video of the synchronized flow visualizations and thermal-fluidic signatures 

during the onset of boiling is available online in the Supplementary Materials (Video S4). 

 Similar to the prior case at the lower inlet liquid subcooling of ΔTsub = 5 °C, vapor bubble 

nucleation from the channel surface (Figure 4; t = 0.078 s) is accompanied by explosive growth 
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both upstream and downstream causing the vapor bubble to occupy most of the channel (Figure 

4; t = 0.092 s).  A large pressure spike and a reduction in mass flux are observed (Figure 4b).  A 

zero mass flux is detected by the flow meter at t = 0.089 s (Figure 4b), which lasts for 0.006 s, a 

reduction in time relative to the smaller inlet liquid subcooling of ΔTsub = 5 °C (at which the zero 

mass flux reading lasted for 0.015 s).  As a result, a minimal wall temperature increase of 0.5 °C 

is observed, from the single-phase wall temperature of 126.0 °C to a maximum temperature of 

126.5 °C at t = 0.218 s.  Incoming liquid then quickly replenishes the channel (Figure 4; t = 

0.099 s) and cools (Figure 4b) the heated wall.  The reduction in this duration of flow reversal 

likely results from the relatively cool incoming liquid minimizing the upstream propagation of 

the evaporating vapor-liquid interface. 

 After the onset of boiling, the mass flux slowly increases (~0.25 s < t < ~1.55 s) while the 

fluid is boiling (Figure 4; t = 1.061 s and t = 1.500 s).  Eventually, the furthest upstream portion 

of the vapor-liquid interface is pushed downstream (Figure 4; t = 1.621 s) and the channel 

transitions to a single-phase flow regime (Figure 4; t = 1.640 s).  A subsequent increase in the 

wall temperature is observed (Figure 4b).  This cyclical process, namely, single-phase flow, 

boiling incipience, rapid-bubble-growth instability, and return to single-phase flow, marks the 

start of time-periodic flow boiling, which is discussed in Part 2 (Kingston et al., 2017) of this 

two-part study. 

When the inlet liquid subcooling is increased further to ΔTsub = 35 °C, the high inlet 

subcooling minimizes the effect of the rapid-bubble-growth instability.  While local flow 

reversal is still observed in the channel at the onset of boiling and results in a reduction in mass 

flux, the flow meter never detects a value of zero, indicating that the local flow reversal observed 

within the channel does not propagate upstream to the flow meter.  A small increase in the wall 
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temperature is observed shortly after the onset of boiling, similar to the cases for ΔTsub = 5 °C 

and 15 °C, before reducing to a much lower value during flow boiling conditions.  A video 

showing the two-phase morphology synchronized to pressure drop, mass flux, and wall 

temperature measurements at the onset of boiling for a nominal single-phase mass flux of 400 

kg/m2s and inlet liquid subcooling of 35 °C is provided online in the Supplementary Materials 

(Video S5). 

4 Conclusions 

 A constant pressure source was used to deliver fluid flow through a single microchannel 

subjected to a uniform heat flux while synchronized high-speed flow visualization and high-

frequency pressure, mass flux, and temperature measurements were acquired.  This deliberate 

design of the hydrodynamic boundary condition closely resembles that of an individual channel 

in a parallel-channel heat sink.  The effects of nominal single-phase mass flux and inlet liquid 

subcooling on the rapid-bubble-growth instability is reported here in Part 1 of this study.  The 

mechanisms underlying the rapid-bubble-growth instability, namely, large liquid superheat and a 

large pressure spike, were quantified and shown to result in flow reversal.  Low flow inertia 

exacerbates the rapid-bubble-growth instability by starving the heated channel of liquid 

replenishment for longer durations and results in severe temperature increases.  While flow 

reversal was also observed in the cases with high flow inertia, the wall temperature increase was 

minimal.  The effect of the inlet liquid subcooling on the rapid-bubble-growth instability was 

small as indicated by the minimal increase in wall temperature.  Flow reversal was observed for 

all three levels of subcooling, but higher subcoolings resulted in a shorter duration of flow 

reversal. 
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