The Summer Undergraduate Research Fellowship (SURF) Symposium 2 August 2018 Purdue University, West Lafayette, Indiana, USA

Thin Film Cocaine Sensors

Datta Sheregar, Vick Hung and Robert Nawrocki College of Technology, Purdue University Jenna Walker, Orlando Hoilett, and Jacqueline Linnes School of Biomedical Engineering, Purdue University

ABSTRACT

Over 7 million Americans suffer from a drug use disorder and up to 60% of individuals treated for addiction will ultimately relapse. We are developing ultra-thin film electrodes on a wearable substrate for a sensor that can detect minute amounts of cocaine in sweat droplets secreted from the skin. This will enable wearable drug monitoring for personalized rehabilitation treatment plans and improve long-term addiction recovery rates. The current research focuses on developing a thin-film sensor that can be applied directly to the skin. First a layer of PVP (poly4-vinylphenol) was prepared and then spun coated onto a piece of glass. This adhesive coated glass acted as a substrate for assembling the sensors. Silver reference electrodes were generated by evaporating silver through a stencil, which contained 1mm by 10mm slits, in a vacuum sealed chamber. The resulting electrodes were tested to verify their conductivity, stability, and reactivity. Upon successfully demonstrating these characteristics, a second stencil was made to evaporate both gold and silver to make a working electrode surface that will react with a cocaine solution, making the first prototype that can successfully detect cocaine.

KEYWORDS

Sweat Sensor, Drug Use Monitoring, Cocaine, Organic Electronics, Wearable Sensor