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ABSTRACT
Human intention inference is the ability of an artificial system to predict the intention of a person. It is im-
portant in the context of human-robot interaction and homeland security, where proactive decision making
is necessary. Human intention inference systems at test time is given a partial sequence of observations
rather than a complete one. At a trajectory level, the observations are 2D/3D spatial human trajectories and
intents are 2D/3D spatial locations where these human trajectories might end up. We study a learning ap-
proach where we train a model from complete spatial trajectories, and use partial spatial trajectories to test
intention predictions early and accurately. We use non-parametric Gaussian Process Regression (GPR) as
the learning model since GPR has been shown to model subtle aspects of human trajectory very well. We
also develop a simple geometric transfer technique called Naive Registration (NR) that allows us to learn
the model using training data in a source scene and then reuse that model for testing data in a target scene.
Our results on synthetic and real data suggests that our transfer technique achieves comparable results as
the technique of training from scratch in the target scene.

KEYWORDS
Intention Inference; Gaussian Process Regression; Transfer Learning; Trajectory prediction

1. Introduction

There is growing research interest on human intention inference because of its importance in human-
robot collaboration/interaction and homeland security. Human intention inference is different from hu-
man activity recognition because at test time, the system is given a partial sequence of observations
rather than a complete one and the goal is to identify the intention of the human. The observations can
be a time-series of human pose, facial expressions, environmental contextual cues etc. Oztop, Wolpert,
and Kawato (2005) suggested that similar parts of the brain are involved in movement planning and
intention inference and therefore we will use only human motion information for intention inference.
From now, throughout the paper, we shall use the terms intention and intent interchangeably.

The problem of human intention inference can be approached at different levels: Trajectory - where
humans are treated as 2D/3D points moving in space with an intent. The intentions are salient locations
in space. In a 2D scenario, this can be pedestrians moving in a scene towards destinations like buildings,
cars etc, as observed from a bird’s eye view. The locations of these destinations are the intentions in the
scene. In a 3D scenario, trajectory level human intention inference can represent the human reaching
target prediction problem where the trajectory of the human arm is used to infer the target locations.
The goal would be to identify the most probable intent as quickly and accurately as possible. The other
level is Activity Level Intent Inference, where the goal is to identify the activity of a person as quickly
and accurately as possible. Some well know work in this area is activity level intent inference which has
been called Activity Prediction (Ryoo, 2011) and Activity Anticipation (Koppula & Saxena, 2016) in the
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Figure 1. For Trajectory Level Intention inference we have complete trajectories towards the intents as training data. For test data, we have
partial trajectories and our goal is to obtain the most probable intent

literature. Prior work in trajectory level intention inference has been carried out in both human reaching
target prediction and pedestrian destination prediction problem domains. In Fig. 1 we see an example
where training trajectories are completely reaching the intents. For the testing scenario, we only have
partial trajectories reaching towards an intent.

The human reaching target prediction, which is human intention inference at 3D trajectory level,
has generally been framed as a supervised-learning problem. Ravichandar and Dani (2015) used neural
networks to model the transition dynamics of the human arm motion. Pérez-D’Arpino and Shah (2015)
used a Bayesian approach to target prediction but realized training and testing on the same target-setup
and did not generalize to arbitrary target setups and reaching trajectory starting locations. On the other
hand, pedestrian destination prediction has generally been approached by the research community as an
end result of pedestrian trajectory prediction. Xie, Shu, Todorovic, and Zhu (2016) formulates intents
as dark matter where people travel to satisfy their needs. The trajectory model is formulated within a
bayesian framework. Yi, Li, and Wang (2015) carries out trajectory prediction by using an energy map
calculated using the scene layout, moving pedestrians and stationary groups. Other works in pedestrian
trajectory prediction include (Ziebart et al., 2009), (Alahi et al., 2016), (Karasev, Ayvaci, Heisele, &
Soatto, 2016). Our work solely focuses on pedestrian destination prediction as a primary application of
2D trajectory level intention inference without regard to trajectory prediction.

Our observation is that prior work on these trajectory level intention inference problems never ad-
dresses the issue of re-usability of models in different scenes. Most of these works only deal with models
trained in one scene but do not talk about transferability of the model to different scenes. Transferability
of models from a source scene to a target scene is important because it saves the much needed effort
of training the model from scratch, provided we can guarantee competitive performance in our trans-
fer methodology. We contribute by proposing our own transfer methodology. To our end, we propose
the base model for trajectory level intention inference as Gaussian Process Regression (GPR). There
are many advantages of selecting GPR as the base learning model. Firstly, GPR is very powerful in
being able to quantify uncertainity over the intents using its predictive variance. Secondly, for low-
dimensional problems like trajectory level intention inference, GPR can capture suble apsects of the
trajectory space using its covariance function. Probabilistic inference is carried out over each intent
using the Bayesian-update rule as the trajectory proceeds towards each intent. A forgetting factor is in-
troduced in the Bayesian-update to measure the forgetfulness of the past belief information. Previously,
Wang et al. (2013) used a similar GPR-based dynamical model for intention inference in human-robot
table tennis. . For transferability between two scenes, we need to understand the difference between two
scenes at a trajectory level. At a trajectory level, we assume that there is not much difference in the tra-
jectory behaviour of the humans. The main difference is in terms of the location and quantity of intents
in the two different scenes. We use this assumption to develop a simple geometric non-rigid registration
technique that allows us to re-use models learnt in source scene and apply it to target scene. In our case,
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we do zero training on the target scene. The quantity and location arrangement of intents in the source
and target scene can be arbitrary. Experiments are conducted for both synthetic and real datasets to see
how our transfer technique performs on a target scene compared to a model trained from scratch in the
target scene.

The structure of the paper is as follows. Section 2 describes the Gaussian Process Regression training
and the prediction procedure. Section 3 discusses the experiments. Section 4 summarizes the results.

2. Proposed Gaussian Process Regression Method

Our goal is to predict the most probable intent location the human is going towards by obtaining a
probability score over all the intent locations present in the scene. The probability score determines how
likely each intent is to be reached by the human. This uncertainty over the intents can be quantified using
the predictive distribution of GPR. For training the GPR model, data in the form of human trajectories
directed towards different intents are recorded with each trajectory being time-sampled at the sensor
frequency. In the case of pedestrian destination prediction, the sensor is a 2D surveillance camera. In
the case of human reaching target prediction, the sensor is a 3D RGB-D sensor like Microsoft Kinect.
We denote the position of the human trajectory at time t by pt ∈ Rd, d = 2, 3 for the 2D and 3D case
respectively. A trajectory towards the intent is a time-series of such hand positions. For intent prediction,
we assume a state (position) transition model:

pt+1 = f(pt, g) + ε, (1)

where f(·) is the deterministic state transition function, and pt+1 and pt are the next and current sampled
trajectory points, respectively. ε ∈ Rd is a Gaussian distributed noise vector, and g is the intent index
given as a positive integer, forG intents, g ∈ {1, 2, ...G}. Our intermediate goal is to learn the predictive
distribution p(pt+1|pt, g) using Gaussian Process Regression.

2.1. Gaussian Process Regression

This subsection briefly introduces Gaussian Process Regression (See Rasmussen (2006) for a detailed
description). Suppose we have a dataset D = {(xi, yi)ni=1} ≡ (X,y) of n training points, where xi and
yi are inputs and desired outputs and X ∈ Rn×d (where d being the dimension of the input) and y ∈ Rn
are the result of stacking them vertically, respectively. Our model is as follows:

yi = f(xi) + εi, f ∼ GP (·|0,K), εi ∼ N(·|0, σ2), (2)

where the prior on f is a Gaussian Process, which implies that p(f) is a Gaussian process with zero
mean and covariance function K. The likelihood p(y|f) (εi) is Gaussian and therefore posterior on f
is also Gaussian. Gaussian processes are parameterized by a mean function, µ(x), and a covariance or
kernel function,K(xi,xj). An example of mean function can be aTx+c, a ∈ Rd and c ∈ R. A popular
example of covariance function is α1exp{− |x−x

′|α3

α2
} + α4 + α5δij , where δij is the Kronecker delta

function and α=[α1, α2, α3, α4, α5]
T are hyperparameters that need to be learnt.

There are two steps in Gaussian Process Regression:

• Training: The training process tunes the hyperparameters αi’s in the marginal likelihood
p(y|X,α) = N(0,Σn + σ2In×n), where Σn ∈ Rn×n is the kernel matrix such that [Σn]ij =
K(xi,xj) and xi,xj are instances of training inputs. In×n is the identity matrix. The logarithm
of the marginal likelihood is optimized with respect to σ and α.
• Prediction: After the hyperparameters are tuned, prediction is carried out for a test point x†. The

predictive distribution is then p(y†|x†) = N(µ†, σ†2) where µ† = Σ†Tn (Σn + σ2In×n)−1y and
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σ†2 = Σ† − Σ†Tn (Σn + σ2In×n)−1Σ†n + σ2. Σ†n ∈ Rn are vector of covariances between test
point x† and n training points, and Σ† = K(x†,x†).

In our problem, after having learnt GP’s for the 3 coordinates in the 3D case, we have a predictive distri-
bution of p(xt+1|pt, g), p(yt+1|pt, g), p(zt+1|pt, g) and combine them with independence assumptions
to form:

p(pt+1|pt, g) = p(xt+1|pt, g)p(yt+1|pt, g)p(zt+1|pt, g). (3)

For the 2D case, we will have

p(pt+1|pt, g) = p(xt+1|pt, g)p(yt+1|pt, g). (4)

For training, there can be two different approaches, which we will call as holistic and atomistic, re-
spectively. In the holistic approach, we consider the intent index g as an input feature to the learning
of the predictive distribution of each coordinate. For example in the 3D case, when learning the factor
p(xt+1|pt, g), the input is (xt, yt, zt, g) and the output is xt+1 and so on for the other co-ordinates. In
this case we will have d GPR models for d dimensions. The alternative atomistic approach is to consider
a separate model for each co-ordinate and for each intent g. For example in the 3D case, when learning
the factor p(xt+1|pt, g), the input is (xt, yt, zt) and the output is xt+1 and so we learn different models
for other co-ordinates and other intents g. For this atomistic approach, we will have dG models for d
coordinates and G intents.

Table 1. Worst Case Time-Complexity of different training approaches

Time Complexity Holistic Atomistic
Training (Serial) dn3 dG( nG)3

Prediction (Serial) dn2 dG( nG)2

Training (Parallel) n3 ( nG)3

Prediction (Parallel) n2 ( nG)2

For n training samples, we show in Table 1, that the atomistic approach is faster for prediction
and training. We assume that training data is equally distributed among intent classes. For a parallel
implementation, where model leaning and inference can be done simultaneously and for large number
of intents G, the holistic approach becomes very slow compared to the atomistic approach. In terms of
accuracy, we experimented and found that they do not have significant difference in performance. So
we will use the atomistic approach for training and prediction, as it will allow deployment in future
real-time systems easily.

2.2. Bayesian Inference Rule

After learning the predictive distribution model, we apply it to a test trajectory moving towards each
intent used in the training phase. The output will be intent probabilities (belief) for each sample of the
trajectory. We choose the most probable intent as the predicted intent. For calculating intent probabili-
ties, we use Bayes rule and the first-order Markov assumption:

p(g|p1:t+1) ∝ p(pt+1|pt, g)p(g|p1:t). (5)

The factor p(pt+1|pt, g) is learnt using GPR as discussed before while the factor p(g|p1:t) is recursively
evaluated from the initial belief; that is, the prior p(g|p1). The normalization is done after summing out
the posterior probabilities p(g|p1:t+1) over all the intents.

In the Bayesian belief update, we introduce a forgetting factor 0<λ<1, which measures how much
past belief information, that is, p(g|p1:t), the model needs to forget. λ = 1 implies taking only the
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present likelihood p(pt+1|pt, g) and forgetting the past belief. The modified equation would be:

p(g|p1:t+1) ∝ p(pt+1|pt, g)p(g|p1:t)
1−λ. (6)

After comparing the performance (accuracy, loss etc.) of the model with different λ, we could choose
the λ that produces the best performance. This technique has been used in Wang et al. (2013), where the
performance was shown to be insensitive to λ. Alternatively, we use a novel stationary state condition
to find the acceptable value of λ. The stationary state condition (S.S.C.) suggests that the target prob-
abilities should not change if the states do not change in the next time step. Mathematically, it implies
that whenever pt+1 = pt, after applying Bayes update rule, we should have p(g|p1:t+1) = p(g|p1:t)
for g ∈ {1, 2}. To study how the probability dynamics changes with λ and how it relates to S.S.C., we
consider the 2 target case, where g ∈ {1, 2}. Normalizing Eq. (6) for target 1, we obtain the following:

p(1|p1:t+1) =
p(pt+1|pt, 1)p(1|p1:t)

(1−λ)∑2
g=1 p(pt+1|pt, g)p(g|p1:t)(1−λ)

. (7)

Changing the notation such that p(1|p1:t+1) = pt+1 and p(1|p1:t) = pt, we have p(2|p1:t) = 1 − pt
and the likelihoods be p(pt+1|pt, 1) = l1t and p(pt+1|pt, 2) = l2t and rt = l2t

l1t
be the likelihood ratio.

Putting notations back into Eq. (7) and rearranging, we get the recurrence relation of the probability as

pt+1 =
1

rt(
1
pt
− 1)1−λ + 1

. (8)

As motion starts, the prior will be p0. If the states (positions) do not change, the likelihoods (l1t,l2t) and
therefore the likelihood ratios (rt) will be the same throughout the recurrences. Setting rt = r, if we
want the steady state of the sequence (p∞), we set pt+1 = pt in Eq. (8) and obtain,

p∞ =
1

r
1

λ + 1
. (9)

If we have a prior p0 = 0.5, and if r = 1; that is, the likelihood of either target are equal(physically
represents human arm in an ambiguous position), p∞ will be 0.5 and S.S.C. holds eventually. Practically,
r will never be 1. It will be either r > 1 or r < 1. When r is just greater than 1; that is, 1.1, for λ = 0,
p∞ = 0 and for λ = 1, p∞ = 0.47, which is close to prior 0.5. When r is just less than 1; that is, 0.9,
for λ = 0, p∞ = 1 and for λ = 1, p∞ = 0.52, which is close to prior 0.5. Thus, higher λ yields less
divergence from the prior and is closer to follow S.S.C. Fig. 2 depicts the situation for r > 1, where we

Figure 2. Belief evolution for different forgetting factor λ

also see that the belief settles very quickly for λ = 1, and for λ = 0.2 it takes more time to settle. Since
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we want to follow the S.S.C. as closely as possible but also not to forget all the past belief completely
(λ = 1), we therefore settle with an intermediate value of λ = 0.8 for our experiments.

2.3. Transfer Technique

Traditionally, transfer learning (See (Pan & Yang, 2010) for a survey) between two scenes occurs with
availability of data in source scene as well as little availability of data in target scene, during training
the model. In our case we assume availability of data in source scene but no data in target scene during
training. We assume that the only information about target scene we have after training is the location of
intents in that target scene. This allows us to devise a transfer technique where we can reuse the learned
model from the source scene on a number of target scenes after knowing the intent locations in those
target scenes. This will be advantageous as we do not have to train a new model from scratch using
data in the target scene. Before describing our method, we introduce some notations and definitions
regarding transfer learning.

A domain D consists of feature space X and probability distribution P (X), such that X =
{x1, x2, ....., xn} ∈ X For particular domain, D = {X , P (X)} a task T consists of 2 components:
a label space Y and an objective function f(·) with T = {Y, f(·)}. The f(·) is not observed but is
learned from training data consisting of pairs of {xi, yi}, where xi ∈ X and yi ∈ Y . The function f(·)
is used to predict the label of an instance x. From a probabilistic view f(·) is written probabilistically as
the discriminative model P (y|x). We define a scene as S = {D, T }. In our problem of trajectory level
intention inference the feature space is the d−dimensional space containing trajectories. The marginal
P (X) is generally unknown. The label space Y is the space of possible intents. So |Y| will be equal to
the number of intents. Likewise, we will have two scenes - the source scene SS and the ST . Accordingly,
the definition of transfer learning is as follows -

Definition (Transfer Learning) Given a source scene SS = {DS , TS} and a target scene ST =
{DT , TT }, transfer learning aims to help improve learning of predictive function fT (·) in ST using
knowledge learnt in scene SS , where SS 6= ST . For our problem of trajectory level intention inference,
the source scene SS differs from the target scene ST in terms of the quantity and location of intents.
If we directly apply the model learned from the source scene SS to the target scene ST , there will
be lot of error. The error will be due to difference in spatial distribution of trajectory data between the
source and target scene. Our approach is to find a transformation from the target scene data space so that
we can carry out inference in the source scene data space. For our problem of trajectory level intention
inference we are learning the factor p(pt+1|pt, g) (g is the intent number) which is equivalent to learning
the generative model P (x|y) according to the notations of transfer learning. In our case we will have
a separate generative model for each intent defined using the atomistic approach previously. In a target
scene, the intents will be located differently. Therefore, P (xS |yS) 6= P (xT |yT ). However since we have
a separate model for each intent, we could find a spatial transformation from the target scene feature
space to the corresponding source scene feature space for the corresponding intents respectively. We
had previously used a feature transformation technique in our work on domain adaptation (Das & Lee,
2018b, 2018a). In that case we had unlabelled data in the target domain. In this case, the only information
that we will use in the target scene are the intent locations. The notion of spatial transformation is
intuitive because the target scene intent is different from the source scene intent only in terms of the
location in space. We would carry out this transformation for all the intents and then carry out inference
(See Eq. (6)).This will allow the source scene model re-usability and we would not have to train a model
from scratch, using the data in the target scene. We will now describe our transfer technique for both
|YS | = |YT | and |YS | 6= |YT |

2.3.1. Same Number of Intents (|YS | = |YT |), Different Locations

Our goal is to reuse the model learned in the source scene to the target scene. Suppose, we have already
learnt the predictive distribution model p(pt+1|pt, gS) in the source scene. gS is the intent in the source
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scene located at gS ∈ Rd. gT is the corresponding intent in the target scene located in the gT ∈ Rd.
Let the starting point of the test trajectory in the target scene be located at sT ∈ Rd. We want to
find the corresponding starting point sS ∈ Rd in the source scene. For that we conduct a 1-Nearest
Neighbour search from among the starting points of trajectories going towards intent gS in the source
scene. From among these starting points, we choose sS such that the vector sS − gS is the closest to
sT − gT in the d−dimensional space. The reason behind doing this is that we want to transform the
test trajectory in target scene to the closest located corresponding trajectory in the source scene. Let’s
call this correspondence transformation m(·) : Rd 7→ Rd that maps trajectory points going towards
intent gT to possible trajectory points as if it were going towards intent gS . To carry out the transition
inference p(pt+1|pt, gT ), where pt+1, pt ∈ Rd are the next and current location of trajectory points
towards intent gT , we map these points using m(·) and carry out inference in our already learned model
p(m(pt+1)|m(pt), gS). Thus, we assume that p(pt+1|pt, gT ) ≈ p(m(pt+1)|m(pt), gS) We follow the
similar approach for for all the corresponding intents in the source and the target scene. Once this is
done, we use Eq. (6) to find the posteriors p(gT |m(p1:t+1)) and then normalize over all the intents to
find the net probability scores. Now, we describe a method to find m(·).We consider two virtual sticks,
one that connects from sS to gS and another that connects sT to gT and call them vectors lS and lT ,
respectively. We find the rotation matrix RST that transforms the unit vector l̂S to l̂T . To transform point
pT lying on the trajectory towards intent gT to a corresponding point pS as if it is going towards intent
gS , we use the following equation:

pS = m(pT ) = RST (pT − sT )
‖lS‖
‖lT ‖

+ sS , (10)

which describes the transformation between the relative position vectors of the starting locations and

Figure 3. Proposed naive registration.

intent locations for the source and target intents. ‖lS‖‖lT ‖ is the scale factor depending on how far the intents
are located with respect to the starting position. We use the Rodriguez formula for deriving the rotation
matrix. If û is the unit vector representing the axis of rotation and θ is the angle of rotation, the rotation
matrix R is given as

R = I + (sinθ)U + (1− cosθ)U2 (11)

where U is the skew-symmetric form of û. If û = [u1, u2, u3]
T , then the skew-symmetric matrix,

U =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 (12)

Fig. 3 illustrates and explains this approach. We call this method as Naive Registration (NR). This
NR is carried for all the corresponding intents in the source and target scene. Now, we discuss how we
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apply this approach for different number of intents in the source and target scene.

2.3.2. Different Number of Intents (|YS | 6= |YT |)

We consider two cases, one when |YS | > |YT | and |YS | < |YT |. When |YS | > |YT |, that is when the
number of intents in the source scene is more than the number of intents in the target scene, we just
use |YT | of the |YS | models learned in the source scene. Then, we apply Naive Registration (NR) as
described in the previous section to those |YT | models and use Bayesian Update rule (6) to carry out
inference over the |YT | intents in the target scene.

The case with |YS | < |YT | is more complex. In classification, we generally extend binary classifiers
to multi-class classification using the one-vs.-one pair approach or the one-vs.-all approach. So, we
could use similar approach for extending intention inference from a scene with |YS | intents to a scene
with |YT | intents. However, the problem with these approaches is that they do not have a common
reference to compare against. Using such approaches might yield incorrect inference results. Therefore,
we propose a method of intention inference for the |YS | < |YT | case which we call the pivot approach.
The pivots are reference dummy intents that we choose in the target scene. We choose |YS | − 1 pivots
in the target scene. We chose the location of pivots to be far away from the scene. For example if the
scene was normalised within limits of [0, 1] in all the d dimensions, we could choose pivots randomly at
5 units. The main advantage of choosing pivots far away is that they do not become the most probable
intents and interfere with the inference procedure but can still act as a reference for final probabilistic
inference over the target scene intents. The process can be described in the following algorithm.

Algorithm 1: Pivot Approach
Select |YS | − 1 pivots in target scene
for each point in test trajectory do

for intent i = 1, 2, ...|YT | in target scene do
Choose intent i and |YS | − 1 pivots as intent set
Carry Out Naive Reg. (10) & Bayes Update
Set gross probability p̃i ← p

1−p
Where p is the belief of intent

end
Normalize :pi = p̃i∑

i p̃i

end

As an example, consider the case where we have |YS | = 2 intents in the source scene and |YT | = 3 in
the target scene. Therefore, we will have |YS | − 1 = 1 pivot in the target scene. At a particular instance
of the Bayesian inference of a test trajectory in the target scene, let the probability of Intent 1 vs. the
pivot be [0.7; 0.3], Intent 2 vs. the pivot be [0.6; 0.4] and Intent 3 vs. the pivot be [0.5; 0.5]. Then, the
gross-probability of Intent 1, Intent 2 and Intent 3 are 0.7

0.3 = 2.33, 0.6
0.4 = 1.5 and 0.5

0.5 = 1. They are
normalized to obtain net probabilities of 0.482, 0.31, 0.207 respectively. The full transfer methodology
for |YS | 6= |YN |is described in Fig. 4

3. Experiments and Experimental Results

All the simulations pertaining to the Gaussian Process Regression (GPR) model has been performed in
MATLAB. For training the GPR, we chose the matern covariance function because it has been shown to
describe spatial data like human motion quite well (Stein, 2012). For evaluation purpose we use plots of
Accuracy v/s Observation ratio (AvOR). Observation Ratio is the fraction of time observed to the total
time of a trajectory. Accuracy is obtained as the averaged accuracy over all intent classes. A model has
better performance on a dataset if it has higher accuracies at lower observation ratios.
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Figure 4. Full Transfer methodology using Naive Registration and Pivot Approach

3.1. Synthetic Data Experiments

We use synthetic data to verify our method before applying them to real data. This is necessary because
in real data-sets, we cannot arbitrarily change the number of intents in the source and target scenes and
observe the performance variations. For generating synthetic data, we use Bezier curves which has been
previously used in modelling human trajectories (Faraway, Reed, & Wang, 2007). We follow suit and
model bezier curve with 4 control points. These are also called as cubic Bezier curves. If we have four
control points p0, p1, p2, p3, all pi ∈ Rd, the bezier curve p(t) is given by

p(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3 (13)

for 0 ≤ t ≤ 1. Samples of t are chosen such that t = Be(v|α, β). Be(·) is the CDF of beta distribution
with parameters α = 2, β = 2. v are uniformly sampled points in the range [0, 1]. For our intention
inference problem, when generating trajectory data towards a particular intent location, we choose p3

to be the intent location and p0 ∼ Ud(0, 1), p1 ∼ 1
3p0 + 2

3p3 + Ud(−0.1, 0.1), p2 ∼ 1
3p3 + 2

3p0 +

Ud(−0.1, 0.1). Ud(0, 1) is a d−dimensional uniform distribution. A sample 2D dataset generated using
Bezier curves is given in Fig. 5
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Figure 5. A sample synthetic 2D dataset of 5 intents with 10 trajectories per intent. Black circles with red borders show the intent location

Using such toy datasets, our goal is to report AvOR plots. All the experiments are performed over
ten trials. The ten trials were created by randomly dividing the datasets with different seed. Each trial
was tested using five-fold cross validation (80% for training and 20% for testing from each intent class).
Accuracy is reported as an average over all test trajectories over all intent classes for 50 to 100 percent
of observed trajectory time. For cross-scene evaluation, if the source scene is A and the target scene is
B, the following three experiments are possible-

• Model trained on Scene A and tested on Scene B without NR transfer technique. (A-B). We do
not report results of this because the AvOR performance is poor (<50% accuracy) and the plot
will be random.
• Model trained on Scene A and tested on Scene B with NR transfer technique. (A→B). We will

call results of these experiments as Cross-Scene Performance
• Model trained on Scene B and tested on Scene B (B-B). We will call results of these experiments

as In-Scene performance.

Our goal is to achieve the Cross-Scene performance as close as possible to the In-Scene performance on
the same scene. We also repeat reverse experiments with B as the source scene and A as the target scene.
Firstly, we consider the case when the number of intents in the source and target scene are same but the
intent locations are different. For that, we synthetically generate 2 scenes with each scene containing
8 intents at different locations from each other. Results of the experiment is shown in the leftmost plot
of Fig. 6 . From the results it shows that A-A is better than B→A but are comparable. On the other
hand, results of the experiment A→B is way better than B-B. In a way, we have achieved cross-scene
performance close to (and sometimes better than) in-scene performance (that corresponds to training
from scratch), using a simple NR technique that reuses models on target scenes with zero re-training.
We now experiment with the situation where the source scene and target scene have different number of
intents. We consider 3 scenes with 2, 11, 20 intents respectively. We chose such a variation in the intent
quantity to see how our method performs when there is huge difference between source and target
scene. As seen in the second from left plot of Fig. 6, the cross-scene and in-scene accuracy is above
97% for the second half of the observation time (0.5 to 1) and they are reasonably close to each other
suggesting that Naive Registration works. Also, the accuracy is higher compared to the scene with 8
intents because there are only 2 intents and it is very easy to figure out the most probable intent early on
in the trajectory. For the scene with 11 intents, we see that the cross-scene performance of the transfer
(2→11) is way better than the in-scene performance (11-11). The in-scene performance for (11-11) is
slightly better than the cross-scene performance (20→11). Generally, generalization (ie. discrepancy in
test and train results) is poor if the test samples lie far apart from the training samples. In our case, when
we are carrying out in-scene experiments (11-11) we have test samples that are not near the training
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Figure 6. Result plots for the synthetic dataset

samples in the feature space. However, when we are carrying out cross-scene experiments (2→11) we
are using NR to transform test sample to the closest training sample (using 1 Nearest Neighbor) making
sure that the transformed test sample lies near training samples. This sometimes results into cross-
scene performance being better than in-scene performance. This phenomenon is repeated for the scene
containing 20 scenes, where both cross-scene performances (2→20,11→20) are better than the in-scene
performance (20-20).

3.2. Real Data Experiments for Pedestrian Destination Prediction

For real datasets, intents are not localized as in synthetic datasets. Rather, intents are spread-out in the
feature space. This is evident in Fig. 7, where we see that the end-point locations of trajectories are
spread out in space. So, we cannot use Naive Registration transfer technique directly since we do not
have a point location of an intent in the source and target scene. So, we propose to divide each intent
into children sub-intents. This is carried out by clustering over the end points of the trajectories towards
each intent. We choose Mean-shift algorithm as the clustering technique (Cheng, 1995). This clustering
algorithm does not require pre-defined number of clusters. Also, since it is a mode-seeking algorithm,
it assigns sub-intent locations to wherever there is a high-density of trajectory end-points of an intent.
It also has good performance for any shape of clusters. The only tuning parameter required for the
mean-shift algorithm is the bandwidth. For all our real-datsets, we apply min-max feature scaling so
that all d-dimensional data is bounded to a data-space [0, 1]d. So, we choose a reasonable choice of
bandwidth as 0.1 after careful experimentation. Results of mean-shift clustering are shown in Fig. 7.
After clustering is done, the sub-intent locations over all the intents are collected together to form the
final intent location set of the scene. Training and prediction is carried out using this final intent set.
During prediction, at any instant of the test trajectory, whenever a sub-intent is inferred to be the most
probable, we choose its parent intent to be the most probable. Accordingly, accuracy vs observation
ratio plots are reported.

For real datasets, more salient intents will have more human trajectories towards it. As an example, in
a pedestrian scenario, more people will visit a hospital than a shop. So we would capture more trajectory
data for the hospital intent class than the shop intent class. The scenes used in the real-data set are in
birds-eye view so that we can safely model pedestrian trajectories as lying in 2D space. Also, for the real
data, a lot of pedestrian spatial trajectories are partial and not ending upto the destination eventually. For
real data, we use publicly available pedestrian datasets ETH (Pellegrini, Ess, Schindler, & Van Gool,
2009) and UCY (Lerner et al., 2007). The ETH dataset consists of 2 scenes (ETH and Hotel). The UCY
dataset consists of 2 scenes (ZARA and UCY). Each ZARA scene consists of 2 datasets ZARA-01
and ZARA-02. Our goal is to learn a model from one scene and transfer and test it to a different scene.
Without our proposed transfer techniques, we would obtain accuracies in the range of 50% even at 100%
of the observed trajectory. The performance would be even worse if the source and target scene intents
are located very far from each other. We will use the notation A→ B. for the situation when the model
is trained on scene A and tested on scene B. The notation A-A implies that we use 2

3 of the dataset of
scene A for training and the remaining 1

3 of the dataset of scene A for testing. Subsequently, for the
case A → B, we use the previously trained model on 2

3 of the dataset of scene A, apply the transfer
technique and then test on the full dataset of scene B. This is the methodology, we will apply for all the
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Figure 7. Red dots show the end-points of the trajectories of the normalized UCY (Lerner et al., 2007) Dataset. There are 4 intents. Since the
intents are spread out, we estimate the location of sub-intents as shown by black dots. The estimated sub-intents are modes of the mean-shift
clustering algorithm with a bandwidth of 0.1

.

Figure 8. All Results on the Pedestrian Destination Prediction datasets

datasets of the different scenes. We want to study how the performance of A→ B varies for different
transfer scenario. From these plots in Fig. 8, we see that in almost all cases the transferred models
are comparable to the baseline (A-A). The results are wiggly, because the pedestrians path towards the
destination is not as smooth as the toy data. Also, unexpectedly the intention prediction performance
decreases with observation ratio (UCY → ZARA 1). This because most of the trajectories might not
end up at the destination.

3.3. Real Data Experiments for Human Reaching Target Prediction

The training demonstrations are obtained from the data repository used in (Luo & Berenson, 2015)
which had been recorded using VICON, sampled at 120 Hz. From it, we use 14 trajectories for each of
2 targets for training. As these trajectories were not annotated with target locations, we used K-means
clustering among the end-point locations of all the trajectories (K = 2) to obtain the estimated target
locations t1, t2 ∈ R3 (See Fig. 9). We also considered a different scene consisting of 5 targets. (See
Fig. 10). Results are reported in the same way as in pedestrian destination prediction experiments in
Fig. 11. Scene 1 and Scene 2 corresponds to scene with 2 and 5 intents respectively. From, the plots we
see that in almost all cases the transferred models are comparable to the baseline (A-A). Expectedly,
performance on Scene 1 is better owing to lesser number of intents.

4. Conclusions

In this paper, we have developed a trajectory level intention inference system. We used the probabilistic
formulation of Gaussian process regression for the prediction since it performs well for regression and
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Figure 9. Training demonstrations and estimated targets.

Figure 10. Another scene consisting of 5 targets

Figure 11. Cross-Scene Performance for reaching data.
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uncertainty quantification with less training data. For generalization to different target locations, we
proposed a naive registration technique. We also explored the stationary state condition for choosing the
forgetting factor. We tested our approach on pedestrian and reaching motion datasets. We find the results
to be comparable to the baseline approach. In the future, we would like to study intention inference in
presence of obstacles and changing intents.
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