Purdue University [Purdue e-Pubs](https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fherrick%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Publications of the Ray W. Herrick Laboratories](https://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages) [School of Mechanical Engineering](https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Fherrick%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages)

7-10-2018

Finite Element Study of Acoustic Mode Force Transmission in a Loaded, Structural-Acoustical Tire Model

Rui Cao *Purdue University*, cao101@purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: [https://docs.lib.purdue.edu/herrick](https://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages)

Cao, Rui and Bolton, J Stuart, "Finite Element Study of Acoustic Mode Force Transmission in a Loaded, Structural-Acoustical Tire Model" (2018). *Publications of the Ray W. Herrick Laboratories.* Paper 175. https://docs.lib.purdue.edu/herrick/175

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Force transmission characteristics for a loaded structural-acoustic tire model

Ray W. Herrick Laboratories, Purdue University, USA Rui Cao and J. Stuart Bolton 07/10 2018

I. Introduction

- High frequency interior noise is mostly airborne and usually is not associated with structural vibration from road excitation. However, low frequency noise, has a strong association with structural vibration and can be perceived by the passengers.
- A major component of structure-borne noise comes from the tire's acoustic cavity mode near 200 Hz

Why do two tires of same size and geometry, from different manufacturers, have very different responses, in terms of cavity noise perception?

- Study force transmission from contact patch excitation to rim center
- How the cavity resonance may affect force transmission
- Ways of identifying bad tires/good tires, in terms of structure-borne noise

A Finite Element structural-acoustical tire model was created to investigate the tire cavity-induced structure-borne noise

- \triangleright Create realistic tire-road contact patch
- \triangleright Point excitation at the contact patch edge
- \triangleright Calculate dispersion relation in tire tread to identify vibration modes, as from test results
- \triangleright Calculate force transmission from excitation location to the rim center, to act as input for full vehicle analysis
- \triangleright Comparison study to identify the influencing factors

All modeling was performed in Abaqus 6.13

A 245/40R20 tire was used for dimension

II. Finite element tire model

All parts are using homogeneous material

- v Material properties were simplified and approximated
- ❖ Rim was set to be very stiff, so it's resonances were above the frequency of interest in this study
- ❖ Air bulk modulus was given at 97 °F

III. Analysis process

Boundary conditions

Continuity boundary

Tread – Air Cavity Sidewall – Air Cavity Rim – Air Cavity "TIE" function was applied to enforce the two surfaces stay in contact at all times

Contact boundary:

Tread surface – rigid ground Ground is considered rigid in the normal direction; a small friction coefficient is added to increase solution robustness (prevent tire sliding horizontally as the contact starts)

III. Analysis process

Vertical static loads

1300 lbs (approximately 6000 N) applied at the rim center – with 650 lbs on each side

Static inflation pressure

A 2.05X10⁵ Pa inflation pressure was applied to all tire interior cavity surfaces

Point harmonic excitation

A 1 N point harmonic point excitation over the investigated frequency range was applied at the contact patch leading edge

Harmonic point excitation 1N

III. Analysis process

Analysis Steps

Initial step – fix rim center

Step 1 – Tire inflation

Step 2 – Apply vertical load

Step 3 – Modal analysis

- rim center is still fixed

- rim center is released
- require adaptive mesh of the air cavity

- extract modes from 10 Hz to 320 Hz

Step 4 – Forced response calculation

- direct approach
- 0.5 Hz increment

- What to expect from the results
	- \triangleright Surface velocity of the tire tread identify vibration modes
	- \triangleright Dispersion relation of the tire tread identify wave types
	- \triangleright Rim center acceleration force transmissibility study
	- \triangleright Cavity and structural mode shapes

Contact patch area

- ❖ Deformation causes cavity resonance split
- ❖ One occurs below undeformed cavity resonance (horizontal)
- v One occurs above undeformed cavity resonance (vertical)

Undeformed resonance: 200.1 Hz; vertical mode: 201.4 Hz; horizontal mode: 199.3 Hz

For GY245/40R20 tire, the material property of the tread was modified to be soft (low stiffness), medium (medium stiffness) and stiff (high stiffness) to align the *vertical cavity resonance* to either the symmetric circumferential 8th mode or the asymmetric circumferential 9th mode of the treadband.

Point excitation located at the contact patch on the tread centerline, toward the rim center. Most forcing component is in the vertical direction (+Z)

Rim center acceleration comparison

Peak at frequency corresponding to horizontal acoustic cavity mode

Rim center acceleration comparison

Peak at frequency corresponding to horizontal acoustic cavity mode

Very low levels in the y-direction – some axial component due to the rim profile

Rim center acceleration comparison

Peak at frequency corresponding to vertical acoustic cavity mode

Spatial mobility comparison

- Low stiffness $-$ cavity mode matches $9th$ structural mode
- High stiffness $-$ cavity mode matches $8th$ structural mode

Dispersion comparison

As stiffness increase, the dispersion curve becomes narrower, indicating faster waves

Resultant mobility in *X* **direction**

Resultant mobility – vector sum of mobility around tire in horizontal direction

Resultant mobility in *X* **direction**

Resultant mobility – vector sum of mobility around tire in horizontal direction

Resultant mobility in *Z* **direction**

Resultant mobility in *Z* **direction**

Resultant mobility – vector sum of mobility around tire in vertical direction

Radial displacement

1st cavity mode - horizontal

Top view

Vertical motion components were canceled, leaving only horizontal motions

1st cavity mode - vertical

Horizontal motion components were canceled, leaving only vertical motion

Top view

ODB: Jab-GYRZD_FieeAxle_PIVeiLadb Abaqus/Slandaid 6.13-4 Wa<mark>d Sep 20 20:46:12 Eastein Daylight Time 2017</mark> Step: Step:4
Mode - - 17: Value = 1.50599E+06 Freq = 195.31 - (cycles/lime)
Pilmary Var: U, U1 ("ASSEMBLY_T-Datum csys-CYL")
Deformed Var: U - Deformation Scale Factor: +3.000e+00

Motion on two sides cancel each other

When 9th circumferential structural mode has same frequency as the vertical cavity mode, large response is observed

Compare with a model without air cavity

34

Compare with a model without air cavity

with air cavity without air cavity

VI. Compare with airless case

Compare with a model without air cavity

Without air – fore-aft motion is substantially reduced near 200 Hz

VI. Compare with airless case

Compare with a model without air cavity

Without air vertical motion is substantially reduced near 200 Hz

Conclusion

- \Box A finite element tire model was created, which simulated tire inflation, static loading toward a rigid surface and modal analysis.
- \Box Reaction forces/acceleration at rim center were obtained, along with tread surface mobility and dispersion relations
- \Box The coupling relation between cavity resonances and structural resonances were studied and odd-number structural modes were found to couple well with the vertical cavity mode due to similar mode shapes
- \Box Force transmission was related to whether a net motion of the tire tread was created at a particular frequency
- q A case without internal air cavity was simulated as an additional verification

Reference

Rui Cao, J. Stuart Bolton, Force transmission characteristics for a loaded structural-acoustic tire model, *SAE International Journal of Passenger Cars-Mechanical Systems*, 2018 (under review)

Rui Cao, J. Stuart Bolton, Tire cavity induced structure-borne noise study with experimental verification, *INTER-NOISE and NOISE-CON Congress and Conference Proceedings* , 2018 (Conference submission)

Acknowledgement

Financial support provided by Ford Motor Company, Matt Black, contract monitor.