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Introduction  

 

Despite a general consensus that making research data available is beneficial to many 

stakeholders, data sharing/curation is still not performed as an integrated step in most research 

lifecycles or common practice in the academic setting. (Fecher, Friesike & Hebing, 2015)  This 

is true for a range of qualitative, quantitative and mixed methods researchers, from science, 

(Tenopir, Dalton, et al., 2015), social science, (Miguel et al., 2014) medicine, (Margolis et al., 

2014) and humanities. (Kaplan, 2015) It should be noted that the cultures and practices 

surrounding the treatment of research data vary by field of study. Funders of research in health 

and medicine regularly require depositing data, but it has been noted recently by authors in the 

US that geology, ecology, and archaeology “lag behind some laboratory sciences in making 

data and samples available.” (McNutt et al., 2016) Recent studies indicate that researchers in 

agriculture did not deposit regularly or occasionally in repositories. (Chang & Milligan, 2016; 

Andrews, Young, Ochs, Shea, & Morris-Knower, 2016) And a study in Data Science Journal 

comparing five repositories showed modest increases and totals of data sets published over the 

past five years. (Assante, Candela, Castelli & Tani, 2016) 

 

This situation is not due to a lack of effort. Many stakeholders have championed the cause of 

making research data more accessible and taken steps to encourage researchers to share 

more of their data. The National Science Foundation’s (NSF) requirement that researchers draft 

a two page data management plan (DMP) outlining how they intended to make their data 

available beyond the duration of award was an important milestone in the push to make 

research data more accessible. Many academic libraries responded by developing services and 

support for researchers faced with understanding and navigating through what the DMP 

requirement meant for them. Helping researchers with their DMPs was their first research data 

service and was seen as an opportunity for librarians to play a larger role in supporting the 

research mission of their institutions. (Fearon, Gunia, Lake, Pralle & Sallans, 2013)  However, 

reviewing/revising DMPs does not seem to have been as big a need as first thought, perhaps 

because of the conventional wisdom that DMPs are rarely scrutinized in most grant proposals.  

There are examples of libraries helping develop data workflows on projects, best practices in 

labs, and courses/workshops for graduate students, but this does not seem to be a high level of 

activity across all academic libraries. (Hudson-Vitale et al., 2017)  

 

                                                
1 IMLS NLG Planning Grant: Enhancing the Data Curation Profiles to help Bridge the Gap between 
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Although the response to the NSF’s data management plan requirement and other efforts to 

prompt data sharing has been limited, the pressure to make data more available is quite real. 

Studies have found that when journal publishers, in addition to funding agencies, put pressure 

on scientists to share it influences data sharing behaviors.(Kim & Zhang, 2015) Collaborations 

and integration between repositories and journal publishers, such as with the Dryad data 

repository, is making it easier for journal publishers to facilitate better data deposit, rather than 

simply treat data as a supplement file.(http://datadryad.org/pages/submissionIntegration) 

 

Given this need, why aren’t repositories used more by researchers? We sought to explore this 

question in a series of workshops as a means to consider the next steps in developing the Data 

Curation Profiles (DCP) Toolkit. As an instrument for understanding researchers’ data, the Data 

Curation Toolkit was useful for understanding the data researchers had and what they wanted 

to do with it, and we were interested in expanding it towards helping librarians take action to 

increase data deposits. Though we recognized that this would be a complicated question to try 

and address, we believed that the DCP Toolkit provided a solid starting point and that it could 

be leveraged to create a means for librarians to take action to increase deposits. However, by 

the end of the two workshops we came to realize that maybe we need to approach this problem 

in a different way.  

 

 

Background 

 

The Data Curation Profiles (DCP) Toolkit was designed to assist libraries in developing and 

offering data services through enabling librarians to engage with researchers to better 

understand a particular data set and its components, to learn about a researcher’s current 

practices in managing, sharing and curating the data set, and to identify areas of unmet needs 

in managing, sharing or curating the data set to inform possible services. With funding from the 

Institute of Museum and Library Services (IMLS), the DCP Toolkit was developed by librarians 

and library faculty at Purdue University and the University of Illinois with the intent of better 

understanding “who will share what (kinds of data) with whom, and when.” (Brandt, Witt, 

Carlson, Palmer, & Cragin, 2007). Answering this question went beyond exploring motivations 

or barriers of sharing by looking at what it would take “to support deposit of data into shared 

repositories.” (Cragin, Palmer, Carlson & Witt, 2010) The resulting DCP Toolkit was designed 

with collection building and management in mind,  “to help gather information to make local data 

development policies and selection and deselection decisions.” (Witt, Carlson, Cragin & Brandt, 

2009) 

 

Since its release in 2010, the DCP Toolkit has been repurposed in a variety ways, from helping 

do short data interviews to scoping campus wide needs, and resulted in the Data Curation 

Profiles Directory, a series of Profiles which provide insight into how research data is managed 

in different disciplines (http://docs.lib.purdue.edu/dcp/).The Data Curation Profiles project has 32 

Profiles published in the Directory, and is a resource used in library schools, such as at the 

University of North Carolina, University of Illinois Urbana-Champaign and the University of 

Michigan. 
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We held two workshops at Purdue University to explore the challenges of increasing data 

deposits into repositories and to better understand the changes in cultural practices needed to 

make data deposit a natural component of the research workflow. The impetus behind holding 

these two workshops came from an IMLS planning grant to redesign the Data Curation Profiles 

Toolkit (DCPT) and to improve its capabilities in strengthening connections between the needs 

of researchers and the services offered by data repositories. Outcomes from these workshops 

were intended to inform a redesign of the Data Curation Profiles Toolkit (DCPT). Specifically, we 

were seeking to improve upon the DCPT as a means to better facilitate the deposit process 

through bridging the gap between the “active” stages of the data lifecycle management where 

the data are under the purview of the researcher to the “curation” stages of discovery, access 

and preservation where stewardship of the data is transferred to a third party operating a data 

repository. More broadly, the outcomes of these workshops were intended to further define and 

clarify the issues and barriers faced by the data curation community in attracting and facilitating 

deposits. It was our hope that a thorough articulation and in-depth examination of the issues 

surrounding the deposit of data from multiple vantage points would serve as a foundation for 

developing the next iteration of the DCPT and to further community efforts to bridge the gap 

between researchers and repositories.  

In the first workshop in 2015 we strove to identify the issues surrounding the transition from 

active use to 3rd party curation. We sought to do this “from the perspective of data” to  identify 

possible responses to address these issues. In the process of discussing getting data into a 

repository, we looked at facilitators and inhibitors to depositing data, and looked at activities of 

consumers and producers of data. We sought to put this together in a Business Model Canvas 

(see for example https://strategyzer.com/canvas/business-model-canvas), but found it difficult to 

reconcile partners, activities and resources to develop value propositions. We were able to 

develop a long list of possibilities, but found it rather difficult to build solid a business case out of 

our work.  

In a second workshop in 2016 we took a different approach. What if we looked at repositories 

from an entrepreneurial perspective and treated them as start up ventures? What would 

librarian interactions with researchers about their data look like if librarians took on the role of 

entrepreneurs seeking to identify and respond to the needs of researchers, as a market 

segment, with their data? Could applying the strategies and approaches of start ups enable 

libraries to develop services that would solve the real world problems faced by researchers so 

much so that they would be eager to use them? Recent work in an area called Lean Launchpad 

put an interesting spin on customer discovery, identifying a viable solution for problems, and 

creating a market fit to address needs. We walked through a startup process with an 

investigator of an NSF grant who teaches Lean Launchpad to faculty and graduate students. 

We believe what we learned can inform future explorations on connecting researchers to 

repositories. We know that making research data widely available can benefit the public, the 

research community and the individual researcher him or herself. The challenge is in finding 

ways in which data sharing and data deposits will become a normative part of the research 

process in all fields rather than an exception. 
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Literature Review - Benefits of ready access to open data  

 
Before we get into describing the workshops, it’s worth reviewing the work that has been done 
on the benefits of open access to research data. Benefits of access to readily available open 
data are numerous. Christine Borgman, in her 2012 article, “The Conundrum of Sharing 
Research Data”, describes four reasons for sharing data: 1) To reproduce and to verify the 
results of past research; 2) To make products and the results of publicly funded research 
available to the public; 3) To enable others to ask new questions of the existing data; 4) To 
advance the state of research and innovation. (Borgman, 2012)  
 
Perhaps the strongest argument for sharing research data is the ability to verify and reproduce 
research results. Being able to reproduce a study validates analysis and confirms the science 
and thus increases the value of the investment made by the funders. Sharing data encourages 
others to use it and investigate new uses and helps to identify errors and discourages fraud and 
also increases the value of funding dollars by avoiding duplication of data collection. Reusing 
shared data has the potential to increase research efficiency and quality. 
 
However, although it is clear that while “most researchers appreciate the benefits of sharing 
research data, on an individual basis they may be reluctant to share their own data”. (Van den 
Eynden & Bishop, 2014) Data sharing is often difficult to do based on the complexity of data, 
current research practices,  a lack of meaningful and direct incentives, costs, intellectual 
property, and public policy. (Borgman, 2012) As a result, making data open and freely available 
is not yet a routine part of researchers’ workflow or process. In a 2007 editorial in Nature 
Neuroscience, stated that unless researchers are given “credit for good citizenship in promotion 
decisions and give preference in awarding grants”, data sharing will not happen. The editorial 
concludes that the “scientific community needs to develop better incentives to encourage 
compliance and reward those who share”. (Nature.com, 2007) 

 
Efforts at requiring researchers to share data: U.S. Funding Agencies 
 
In the U.S., the Office of Management and Budget (OMB) Circular A-110 provides the federal 
administrative requirements for grants and agreements with institutions of higher education. In 
1999, OMB Circular A-110 was revised to provide public access under some circumstances to 
research data through the Freedom of Information Act (FOIA). U.S. funding agencies 
implemented the OMB requirement in various ways by encouraging or asking that data from 
federally funded awards be “shared”. 

In 2002 the National Science Foundation (NSF) implemented its sharing requirement based on 
the OMB Circular A-110 statement by updating its policy requiring data sharing: “Investigators 
are expected to share with other researchers, at no more than incremental cost and within a 
reasonable time, the primary data, samples, physical collections and other supporting materials 
created or gathered in the course of work under NSF grants. Grantees are expected to 
encourage and facilitate such sharing.” This requirement did not include guidelines on how data 
sharing should be done. 
 
In 2003 the National Institutes for Health (NIH) implemented their data sharing requirement 
“Data should be made as widely and freely available as possible while safeguarding the privacy 
of participants, and protecting confidential and proprietary data”.  (NIH 2007) All NIH proposals 
after October 2003, seeking $500,000 or more in direct costs, were to include a plan for sharing 
final research data, or state why data sharing was not possible.  
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These two data sharing requirements did not result in much of an increase in the amount of 
research data being shared. (Piowar, 2011) So in 2005 the National Science Board called for 
greater access to data from federally funded research of the National Science Foundation 
recommending that the NSF develop a strategy to provide an “effective framework for planning 
and managing NSF investments”. The report also recommended that the NSF require research 
proposals contain a data management plan for review. (NSB, 2005) 
 
Although it took awhile to respond, in 2010 the NSF announced its Data Management Plan 
(DMP) requirement. The guideline now states, “Proposals must include a supplementary 
document of no more than two pages labeled ‘Data Management Plan’. This supplement should 
describe how the proposal would conform to NSF policy on the dissemination and sharing of 
research results.” This policy went into effect in January 2011. 

In 2012 the NSF made a change in their instructions for preparing the researchers’ 
“Biographical Sketch”. One section was renamed from “Publications” to “Products” and included 
instructions that “products” could include, but not limited to: publications, datasets, software, and 
patents. In 2014 NIH followed suit, instructing researchers to “emphasize accomplishments” 
instead of just listing publications. 
 
On February 22, 2013, the White House’s Office of Science and Technology Policy (OSTP) took 
action to strengthen the data-sharing requirement further by issuing an executive directive. The 
directive stated purpose was “to increase access the results of federally funded scientific 
research” by requiring the results of taxpayer-funded research – both articles and data – be 
made freely available to the general public. This requirement extended the NSF DMP 
requirement to other federal agencies (those making over $100 Million in annual external 
contracts). The goal of the directive was for the plans “to have clear and coordinated policies for 
increasing [public] access”. (Holdren, 2013) Since then, 28 funders have established policies for 
data sharing and management requirements. (https://purr.purdue.edu/start/funder-requirements) 

Efforts at requiring researchers to share data: Journals 

 
Funding agencies are not the only groups interested in making data open and available. 
Journals have a responsibility to ensure that other researchers can replicate and build on the 
studies that they have published. Journal publishers have argued that making data available 
fosters scientific progress and allows others to benefit from it, and believe, researchers want to 
see their work used and cited by others. (Klump, 2017) 

The Nature Publishing Group is one example of how academic publishers have been adopting 
data sharing policies. Publishing in any Nature journal requires authors to make the materials, 
data and associated protocols underlying the paper available. It’s early efforts to “police” sharing 
of data (when the requirement was only to share when asked) resulted in Editors resolving 
complaints. In the Fall of 2016, the Nature Publishing Group initiated their latest data availability 
policies which included the following statements: “First, the sharing of research data is a 
condition of publication in Nature journals and second, each article must have a data availability 
statement”. Data availability statements are meant to provide more transparent and consistent 
information about where and how data supporting published articles are available. This supports 
the reuse, where possible, of data for further research and validation or reanalysis of findings by 
other researchers. Data availability statements also support researchers’ compliance with the 
requirements of funding agencies. (Vasilevsky, Minnier, Haendel, & Champieux, 2017) 
 
The Public Library of Science (PLOS) is another example of a publisher taking steps to promote 
public data sharing. In 2014, PLOS journals clarified their data availability policy to “make all 
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data underlying the findings described in their manuscript fully available, at the time of 
submission” and encouraged depositing and sharing data in PLOS suggested repositories. 
(PLoS ONE, 2015) The requirement goes further to say that refusal to share data, related 
metadata and methods will be grounds for rejection of future submissions. When data requests 
or questions about the data go unanswered by the authors of a published article, PLOS has 
issued expressions of concern alerting their readership that their data policy is not being 
followed. (PLoS ONE Editors, 2017) 

Efforts at requiring researchers to share data: Societies 

 
Scholarly societies also have an important role in leading and facilitating discussions about the 
future development of open access to data. These types of discussions require input from 
multiple stakeholders including researchers, funders, policy makers, data repositories, and 
publishers. (Norman, 2014) 

The British Ecological Society (BES) introduced a mandatory data archiving policy for its 
journals at the beginning of 2014 to increase accessibility and improve preservation. BES 
thought it was important to mandate making data published in its journals publicly accessible; 
hoping to encourage a behavioral change in the ecological community. BES reports that since 
the introduction of the mandate the journals have seen an average 6.7% increase in 
submissions. (Norman, 2014) To increase the legitimacy, credibility, and openness of 
intellectually diverse research communities, the American Political Science Association, in 2014, 
integrated “Data-Access & Research Transparency” “DA-RT” principles into their Ethics 
Guidelines. (APSA, 2016) And likewise the American Geophysical Union, in its “Scientific 
Integrity & Professional Ethics” guidelines, states that members have a responsibility to share 
data & findings openly and promptly, which is detailed in the “Publication Data Policy”: all data 
necessary to understand, evaluate, replicate, and build upon the reported research must be 
made available and accessible whenever possible. (AGU, 2017) 
 

Why Attempts at Requiring Sharing Data have Not Succeeded 
 
Unfortunately, these efforts by federal agencies, journal publishers and scholarly societies to get 
researchers to share data have not yet resulted in a substantial increase in data deposits. Even 
in fields with mature policies, repositories and standards, research data sharing levels are low 
and increasing only slowly, and data is least available in areas where it could make the biggest 
impact. (Piowar, 2011) It is evident that it is not just policies and stated requirements that impact 
researchers’ decisions to share data; other factors are also likely under consideration. As 
Fecher explained, data sharing in academia as a “multidimensional effort that includes a diverse 
set of stakeholders, entities and individual interests.” Barriers to sharing data are best 
understood as a convergence of multiple factors including:  social/cultural “norms”, technology 
barriers, and economic barriers (including time). (Fecher et al., 2015)  

Fecher is one of several to explore the data sharing process from the researcher’s point of view. 
He concludes that clear research policies with incentives for data sharing do have an effect on 
improving the quality of research that is shared. Researchers not only need to have a clear 
understanding of  “why” they should share data, but also need to know “how” to do so. (Fecher, 
et al., 2015)  Roche and his colleagues propose ways to increase the use and re-usability of 
data published in repositories by allowing for flexible data embargoes, encourage 
communication between data collectors and data re-users, make re-use policies clear, and 
encourage recognition by funders and institutions for publicly sharing data. (Roche et al., 2014) 
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One particularly notable barrier for researchers is the lack of rewards for managing data and 
making it usable by others outside of its creators, and in sharing it. For most researchers career 
rewards come from publications, not data sharing. There is no universally accepted mechanism 
for data creators to obtain academic credit, especially in the sights of Promotion and Tenure 
committees, for their creating and then sharing data. Without such incentives, researchers tend 
to only invest minimal time and effort to manage and share their data openly with others outside 
of their research team, if any such effort is made at all, which leads to poor documentation and 
datasets that are hard to find or reuse. (Friesike, 2015) Furthermore, most research 
communities have been slow to recognize data as a “first class output” of research, deserving 
the same level of attention as a journal article, book or other formal publications. No one is 
checking on the quality of the data, because there is no requirement to make data “useful”. 
(Roche et al., 2014)   
 
The lack of clear and strong expectations from publishers has been identified as another barrier 
to data sharing.  A recent study showed that a large number of journals provide no policy for 
data sharing. (Sturges et al., 2015) One study went a step further in stating, “journal publishers 
do not currently provide adequate direction through policy documentation and guidance” and 
need to work more closely “with data repositories to provide specific procedures concerning 
data deposit.” (Charbonneau & Beaudoin, 2015) As far as societies go, some, like the 
Ecological Society of America take on the responsibility of making authors submit data sets with 
paper, but most,  “have neither the mechanism for authors to submit supplementary data nor a 
way to share such data.” (Herold, 2015) And while some, such as the American Society of 
Naturalists work with the Dryad data repository to facilitate deposit, have admitted that there 
mandates are “loose by design.”   
 
Ultimately there are many explanations as to why researchers are not yet sharing their data. 
York, Gutmann and Berman (2017) conducted an extensive literature review on the subject and 
found six overarching factors behind what they deemed to be a “stewardship gap”, the amount 
of valuable data created versus the amount that is protected through active stewardship. The six 
factors they identified are: culture (attitude and norms on the value of data stewardship), a lack 
of knowledge about stewardship, low commitment, confusion on responsibility, lack of resources 
and lack of stewardship action (York et. al., 2017). The NIH has also been interested in 
identifying the issues behind the low rates of data sharing. The NIH have expressed alarm in the 
frequency of published reports that claim a significant result, but then cannot reproduce it, and 
so they are exploring ways to provide greater transparency of the data that are the basis of 
published manuscripts. They have found a complex array of factors that seem to contribute to 
the lack of research reproducibility, including the need for additional training for researchers in 
managing their data. (Collins & Tabak, 2014)   
 
Other studies on data sharing and reuse explore the process from the consumer’s point of view. 
Separate studies by Curty and Faniel describe the factors researchers consider when deciding 
to use data produced by others. Curty uncovered that the “more practical and social benefits 
[researchers] perceive from reusing data, the more likely they would reuse data”. Her study 
concluded that actual data reuse is poorly accomplished due to the lack of incentives by funding 
agencies and policy makers to leverage the reuse of data.(Curty, 2015) Faniel concluded that in 
order to reuse data, researchers must understand the context the data was collected; assess 
that it is relevant to them. Researches need to be able to make judgments on the data, trust the 
data before they would reuse it (Faniel & Jacobsen, 2010). 
  
 
Efforts to understand researchers and the data they produce along with needs  



8 

 
Though data sharing is not yet a widespread practice in most fields, there are researchers who 
have made their data publicly available. Understanding how and why these researchers have 
shared their data and the data reuse practices of researchers are critically important to the 
development of data infrastructure, management, preservation and curation systems at an 
academic institution.  
 
One of the earliest studies on data sharing and reuse, was a longitudinal (10 year) study by 
Wallis, et al. that explored data sharing practices focused on the willingness of researcher to 
share data and their motivations to share. (Wallis, Rolando  & Borgman, 2013)  Research from 
2011 by Carol Tenopir, et al out of the DataONE project further explored data sharing and 
withholding practices, from the perspective of the data producers. This seminal survey of 1329 
earth scientists identified that barriers to sharing data are deeply rooted in research cultures, 
and that data sharing would more liked be served by creating new and easy to use 
infrastructure and tools than changing culture. Specifically it explored where and how 
researchers are willing to share data and what the motivations for sharing. (Tenopir et al., 2011) 
They found that ‘‘While the majority of researchers believe that colleagues should share their 
data, only a minority of respondents actually share their own data with individuals who did not 
help in gathering the data’’. On the other hand, a majority of those respondents are amenable to 
sharing at least some of their data; they also favor reusing others’ data given certain 
stipulations.  
 
Tenopir’s 2015 follow-up survey discussed the changes in data sharing and reuse practices as 
well as perceptions and examined how these practices and perceptions changed, or not, over 
the four years since the baseline study. The follow-up survey was taken well after the 2011 NSF 
requirements of a data management plan had been implemented. These new results showed an 
increased acceptance of and willingness to engage in data sharing, as well as a modest 
increase in actual data sharing. Tenoir’s study concluded that for researchers, the tendency to 
share data is context-dependent. Differences in researchers’ attitudes in willingness to share 
depend upon research domain, age and country of origin. (Tenopir et al., 2011; Tenopir, Dalton, 
et al., 2015) Variations in institutional support, and the available technological infrastructure 
were also factors that affected researchers’ desire and ability to share their data.  

The impact of research domain on data sharing practices has formed the basis of several 
studies. For example, Kim has studied researchers in two different fields: STEM and Social 
Science and found that both groups’ sharing behaviors were influenced by perceived career 
benefits and risks. This result was similar to that of Willis’ longitudinal study where “researchers 
are willing to share data if they receive credit to publish their results”. (Kim & Adler, 2015; Kim & 
Zhang, 2015) But the two groups differed in factors that would encourage them to share. (Kim & 
Zhang, 2015) STEM researchers said they would share more if risks were eliminated and if the 
benefits of sharing were emphasized more. Social Scientists would need better career benefits 
and more obvious benefits for their reputation before they would increase their sharing. 
 
A European study commissioned by Knowledge Exchange, gathered evidence, examples and 
opinions through conducting interviews and focus groups,  on current and future incentives for 
research data sharing from the researcher’s point of view. (Van den Eynden et al. 2014) The 
results of the study produced recommendations for policy and practice on how various 
stakeholders (research funders, societies, research institutions, data repositories and 
publishers) could best incentivize data access and reuse. It was recommended, in part, that 
funders invest in infrastructure and promote reuse of existing data resources and that research 
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institutions incorporate data impact on PhD assessments and set expectations for data sharing 
within the institution.  
 
Understanding research data sharing and reuse practices of researchers is important to the 
development of data infrastructure, management, preservation and curation systems at an 
academic institution. Crowston’s “Personas” project combined results from earlier studies and 
results including sources such as usage scenarios from DataONE and the Data Conservancy 
project and the Data Curation Profiles. Personas were found to be useful to understand users 
and their needs and useful for others trying to develop systems or services for data sharing. 
(Crowston, 2015) Currently under development is research by Shen, which incorporates 
multiple frameworks, models and templates to create a complex survey instrument to identify 
data sharing habits and needs of researchers, but also identifies gaps and services needed at 
an institution level. (Shen, 2016)  
 
Another set of institutional studies focused on surveying local researchers and stakeholders in 
order to inform local library services, using tools such as the Data Curation Profiles toolkit, the 
Data Asset Framework, DataONE’s research data survey and other institutional data 
management surveys (McLure, Level, Cranston, Oehlerts & Culbertson, 2014; Parham,  
Bodnar, & Fuchs, 2012; Peters & Dryden, 2011; Westra, 2014; Whitmire, Boock & Sutton, 2015) 
Goals of these different efforts were similar: to understand data management and sharing 
practices, to inform services at a local level regarding the behaviors, needs, interests and 
concerns of data and to make recommendations including policy recommendations.  

Conclusions from studies like these on research on data sharing and reuse behavior 
demonstrate a wide range of data sharing and reuse practices that suggest variance in 
practices, but also show a commonality in needing of for better tools, more support services, 
training to develop and skills to manage data, and incentives for sharing and reuse. Studies like 
these provide insights for informational professionals to enable them to better support and 
facilitate data sharing. The results from these studies can provide guidelines for policymakers, 
open data advocates, and data repository stakeholders to better attune policies and repositories 
to researchers needs. 
 

 

Library Services and Support for Data Sharing  
 
Involvement of academic libraries in e-science and e-research has been seen as a natural 
extension of their electronic resource management and digital stewardship responsibilities. 
Libraries have been able to connect research data management with historical and 
contemporary areas of professional practice, including materials selection, metadata creation 
and collection management; reference services, information literacy, and research consultation; 
and scholarly communication, open access, and institutional repositories. Libraries have 
recognized that they should start supporting researchers in managing and sharing data and 
some institutions have done so through advice and support with data management plans others 
have contributed to the use and reuse of research data by teaching techniques for sharing 
research data and promoting open data access.  Libraries create value by extending their 
stewardship and service activities to the management and sharing of research datasets. 
(Corrall, Kennan & Afzal, 2013) Librarians can’t force change, but can help facilitate it through 
identifying needs and aligning services to stakeholder these needs accordingly. 

Multiple librarians have made the case for libraries providing services to support the data 
management, sharing and curation needs of researchers. In her introduction to her edited book 
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Research data management: practical strategies for information professionals, Ray states that 
“library and archival communities have been deeply involved with developing best practices for 
managing digital data for long-term use… These protocols are now being used as the basis for 
library services for research data.” (Ray, 2014, intro) In his conclusion in his paper The 
Emerging Role of Libraries in Data Curation and E-science, Heidorn states “libraries have the 
skill sets, longevity, and most of the infrastructure needed to accomplish this task for many 
types of data. If libraries do not actively engage in the task, then society may choose to create a 
new type of institution to curate digital data”. (Heidorn, 2011) 
 
To keep up with changes in the data landscape, librarians have been racing to reinvent 
themselves. Librarians have reacted quickly to the funder requirements developing research 
data management support services and repurposing institutional repositories to take in datasets.  
Funder mandates have been a major driver for the establishment of data management support 
services. It has been recognized that libraries cannot provide data management and sharing 
solutions totally on their own, but need to collaborate with other institutional departments such 
as research support and IT services. (Pinfield, Cox, & Smith, 2014)  

Case studies centered on library engagement in e-science began to emerge in 2008. Services 
during these early years were built on existing practices across the libraries, in areas from 
the reference interview and information literacy to digital preservation and repository 
development, as well as developing new models of practice, especially in relation to assessing 
data curation needs. (Corrall et al., 2013)  In 2009, the ARL eScience Task Force surveyed ARL 
institutions on their e-Services and data support services to understand the changing 
requirements for professional skills and infrastructure to address the “new data stewardship”. 
This survey found twenty-one libraries were already providing infrastructure or support services 
for e-science, and another 23 intended to do so. (Soehner, Steeves & Ward, 2010) 
 
The NSF DMP mandate went into effect in January 2011, thus prompting a move from 
supporting eScience to a more direct focus for research data management. Using the 2009 
survey as a baseline data about institutional about planning structures project, program and 
services, Fearon, et al conducted a follow up survey in the 2013 ARL SPEC Kit #334: Research 
data management services. The SPEC kit helped librarians compare services across institutions 
and by peers, and to inform creation of new services. It provided a snapshot of what research 
data management activities ARL libraries are currently involved in, what human resources are 
being used to provide these services, and projected service provision. (Fearon et al., 2013) 
 
As was seen in the Fearon, et al’s ARL SPEC Kit, the 2011 implementation of the NSF data 
management plan requirement was the impetus for a significant number of university libraries to 
create data services. Briney et al’s 2015 survey showed, that within only a few years of the 
requirement going into effect, half of the major research universities offered data services. 
Briney noted that this was a large increase from the approximately 20% of ACRL libraries 
offering data-related services previously observed by Tenopir, Birch & Allard (2012). By the time 
of Briney’s study, the results suggested, “Data services at libraries have passed the point of 
novelty and are becoming mainstream”. (Briney, Goben & Zilinski, 2015) In 2017, Hudson-
Vitale, et. al. produced an ARL SPEC Kit (#354 Data Curation) that focused on the state of data 
curation services offered by ARL libraries.  Using the Center for Informatics Research in 
Science and Scholarship’s definition for data curation as “the active and on-going management 
of data through its lifecycle of interest and usefulness to scholarly and educational activities”, 
(CIRSS, 2006) this SPEC Kit sought to understand the level of investment made by libraries not 
just to help researchers manage their data but to prepare it for a life beyond its point of origin. 
They found that of the 80 libraries that responded 51 were already offering data curation 
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services and another 13 were in the process of developing services (Hudson-Vitale et al., 2017).  

Librarians have developed techniques and tools to identify and develop support services for 
managing and sharing research data. Tools such as the Data Curation Profile Toolkit and have 
helped librarians uncover the data and types that researchers generate. By identifying and 
naming transformations of data stages, information professionals can target services that 
address real world scenarios. Mapping these stages together to create life cycle models has 
helped librarians to identify potential areas of need, develop services around these needs and 
then to communicate the data services the library has to offer.  (Carlson, 2014) 

Assessment of Data Services in Libraries 

With the advent of data management and similar services in the library comes the need to 
understand how and to what extent these services are successful in meeting the needs of 
researchers. It was noted in 2013 that while cultural changes toward data sharing were indeed 
needed, research data management services were an “unfolding patchwork of challenges” and 
there was a large “gap between service provision and customer needs.” (Pryor, 2013) In the 
ARL SPEC Kit later that year it was noted that many libraries were still experiencing “’growing 
pains’ of new service development” around research data, and that uptake is slow. (Fearon et 
al. 2013)  In 2014, librarians at the University of Michigan Library did interviews with librarians at 
eight institutions focusing on their research data management support services and how they 
were developed. The results of these interviews were then plotted on a timeline to determine the 
key steps in developing data services, which were defined as: garnering administrative backing, 
conducting needs assessments, developing campus partnerships, crafting services and defining 
staffing and job responsibilities. (Akers, Sferdean, Nicholls, & Green, 2014). Carol Tenopir and 
her coauthors report that in ARL libraries many librarians have professional interest in, and feel 
equipped for, future engagement in research data services. Tenopir’s study assessed the extent 
of libraries involved in research data management from technical infrastructure development to 
support and advisory services. (Tenopir, Hughes et al., 2015) Pinfield used a qualitative 
approach from interviews of UK staff to examine the roles and relationships involved in research 
data management. Through this study, he created a model to identify the layers of activity, 
multiple stakeholders and drivers and the factors of implementing research data management. 
(Pinfield et al., 2014) The model helped clarify different issues in research data management 
and identified layers of activity, multiple stakeholders and drivers & a large number of factors. At 
the time of Pinfield’s study library services were still emerging. But the findings provided a 
starting point for prioritization by suggesting themes and a model to be used to benchmark 
current Library activities against the model. 

Service assessments are an inherently a local process intended to reveal discontinuities 
between resources and stakeholder needs. One of the unexpected results from a study done by 
Stephan Kutay at California State University at Northridge was that most scientists did not 
believe that their organization was doing a sufficient job in helping them with data preservation. 
Some didn’t know if their library was offering help at all. This local assessment revealed a need 
to further promote the librarians as information experts, partners, collaborators and consultants 
in the areas of content management and access of faculty-owned research assets. (Kutay, 
2014) Another survey of data management practices at the University of Houston revealed that 
there was more than one unit on campus providing data management support. (Peters & 
Dryden, 2011) This led to the creation of a campus-wide working group, lead by the library, to 
promote more efficient coordination of data management initiatives and to increase 
communication among campus offices and library departments. At the University of Minnesota, 
Lisa Johnston used the results of a needs assessment and a workflow assessment to create 
their institutional data repository. The curation workflow model for repositories had two goals: to 
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figure out curation/repository services and help to figure out library services. Including a 
workflow model in addition to assessment allowed Minnesota to test and expand technical 
capacities and support data management. The outcome gave a more realistic sense of the 
overall capacities and expertise needed to develop a sustainable data curation service model. 
(Johnston, 2014) 

To help institutions “boost institutional support of e-research and the management and 
preservation of our scientific and scholarly record,” the Association of Research Libraries and 
the Digital Library Federation developed the E-Science Institute in 2011. To strengthen its 
emerging research data services, Oregon State University (OSU) Libraries participated in the E-
Science Institute in 2012.  A goal of the Institute was to create a strategy that would guide the 
development of identified services at OSU.  Part of the strategy was a campus survey to help 
the library move from basic research data services to providing more focused services that meet 
specific local needs. (Sutton, Barbara & Whitmire, 2013) The OSU Library is using the results of 
their faculty survey results to further discern campus needs and direct an expansion of library 
and technology support services (Whitmire et. al., 2015).   
 
 
Changing our Approach to Changing the Culture Around Data 
 
Despite the heavy investments made by researchers, academic libraries and others in providing 
resources and services to support data management, sharing and curation, we have not yet 
seen researchers routinely depositing their data into repositories. This was noted in a panel at 
the 2015 International Digital Curation Conference titled, “Why Is It Taking So Long?” (IDCC10, 
2015) Torsten Reimer described a point of view that the diffusion of research data management 
requires a massive culture change, and given how difficult that is, things aren’t really going that 
smoothly. He postulated that perhaps there is a perception among researchers that the cost-
benefit ratio for curating data isn’t “right”—that it takes a lot of effort, but there is little benefit for 
doing so. Given that data sharing, as it has been defined and promoted to researchers, has not 
yet caught on, perhaps we need to explore employing a different approach. One possible 
approach is to recast our view of data management activities as a series of tasks to be 
completed and towards a model of innovation to be adopted.    
 
Data Management as Innovation 

In his book, Diffusion of Innovations, Everett Rogers defined innovation as an “idea, practice or 

object that is perceived as new by an individual or other unit of adoption” which “need not just 

involve new knowledge.”  (Rogers, 2010) He acknowledges that because he mostly analyzed 

technology, he used the terms “innovation” and “technology” synonymously. Thus, sometimes 

his theory is called “diffusion of technology.” However, Rogers acknowledged that technology 

could include a philosophy, event or process.  Diffusion of innovation looks beyond technology 

immersion, to the adoption of ideas. Take for instance online shopping; the activity may be 

performed using various technologies (websites, encryption, e-checkout/payment,  etc.) but 

online shopping is an innovative idea in and of itself.    

Vaughan Jason, in attempting to define what innovation means for libraries, shows that libraries 

use the word “innovation” a lot—in positions descriptions, awards, strategic plans and 

conference planning. He notes that innovation relates not only to emerging technologies, but 

user-focused projects and their resulting impact. (Jason, 2013) Almeida further notes 

methodological approaches, such as the use of MOOCs for library instruction, can be seen as 
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classic “disruptive technology” in that they disrupt established pedagogical practices. (Almeida, 

2013) In this context we believe that the current push for research data management and 

curation can be seen as innovation. It fits the definition Rogers put forward, and it has context 

with emerging practices and tools in the library world, as well as adoption within the academic 

research community. Librarians have not only been early adopters of research data 

management as an innovation of service, advocating for its application, but given the immersion 

of data services in academic libraries, it’s reasonable to think that academic libraries have been 

early majority adopters (see figure 1).  

 

 

Figure 1 - The diffusion of innovations according to Rogers  
Permission by copyright holder https://commons.wikimedia.org/wiki/File:Diffusion_of_ideas.svg  

Although it is apparent that most researchers have not adopted data management as an 

innovation, looking at data management from this perspective allows us to reconsider at why 

they haven’t easily adopted more practices and technologies into their research. Rogers 

identified five stages to adoption: being exposed to innovation (knowledge), becoming 

interested in it (persuasion), accepting the concept (decision), beginning to use it 

(implementation), and making it part of one’s work (confirmation). Thus we set out to explore the 

idea of diffusion of research data management and curation by talking with early adopters in the 

library field for their understanding of whether/how researchers have been exposed to 

innovation and are becoming interested in it.  

https://commons.wikimedia.org/wiki/File:Diffusion_of_ideas.svg
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Rodgers also developed several tools to help understand innovation. We wanted to explore 

whether one of these tools, Business Canvas Model, could help us identify where/why 

researchers might not be accepting the concept of data management and curation as beneficial 

to their research. This tool can be used by organizations to collect information to work through 

essentials aspect of a business, or similar enterprise, to identify areas to focus on to create 

value (and profit). The model lays out nine building blocks in which information and data is 

collected, and then linkages are made to determine where to focus. These nine areas are: key 

partners, key activities, key resources, value propositions, consumer relationships, consumer 

segments, channels, cost structures and revenue streams. The ultimate goal of the Business 

Canvas Model is to identify how to deliver value while optimizing or reducing risk. According to 

Osterwalder, a business model can help describe the rationale behind how organizational 

structures, processes and systems can be organized into a blueprint. (Osterwalder & Pigneur 

2010) The Nine building blocks help see the bigger picture, and the Business Canvas Model 

helps to show how pieces fit together.  

 

Workshops on Connecting Researchers to Repositories 

In 2014 we were awarded a planning grant from the Institute of Museum and Library Services to 

explore how librarians could further bridge the gap between data management in the “active” 

stages of the data lifecycle to the data curation stages of discovery, access and preservation. 

The results of our investigation would be used to inform the next iteration of the Data Curation 

Profile Toolkit. The work would be accomplished through an in depth environmental scan and 

literature review, and through holding two workshops to bring experts in the field together to 

clarify further and respond to the challenges of bridging the data deposit gap.     

Prior to holding the first workshop, the coordinators met with information professionals at the 

University of Tennessee, Dryad and University of North Carolina, the University of Virginia, and 

the Digital Curation Center and University of Edinburgh to engage experts in the library 

community in their own settings on issues and needs in bridging the gap between the active 

stages of the data management lifecycle and those of the curation lifecycle. Topics included 

looking at the value of data deposit at both an institutional and individual level, trying to realize 

the potential of data as a product and the possibility of identifying intervention points to 

maximize data deposit and dissemination. Outcomes led to a plan for a workshop to address 

the library community on issues and needs in bridging the gap between the active stages of the 

data management lifecycle to those of the curation lifecycle.  

For our first workshop, we brought in together experts from disciplinary repositories, iSchools 

and libraries to come together and discuss the current state of connections between research 

practices and data repositories. In our invitation to the workshop we asked attendees to 

consider the following questions: What advances been made in identifying researcher needs for 

their data and where does work still need to be done? Are data service providers properly in 

tune with the needs of researchers and if not what resources, education and support could be 

provided to better communicate between data producers and curators? Are there models or 

approaches that should be considered to increase the flow of data from active use into 

stewardship in ways that would reduce the high level of investment that is often required of both 
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data producers and curators? We also compiled our literature review into a bibliography of 

articles and other materials that addressed problems, issues or barriers relating to connecting 

researchers to repositories for attendees to review and consider prior to the workshop. This 

bibliography included as an appendix to this white paper, Connecting Researchers to 

Repositories.        

Workshop #1 - The Business Canvas Model   

The first workshop was held at Purdue University on June 15-16th 2015. [See Appendix 1] Our 

goal for this workshop was to articulate the existing barriers surrounding the transfer of data 

from its state of active development and use by the researchers who produced or acquired it to 

a curated state where it would be disseminated, stewarded and/or preserved by a 3rd party 

(librarians or others providing data curation services and resources). As a part of being in this 

curated space, the data would be made discoverable and accessible to people outside of the 

environment in which the data were originally generated or acquired to view or make use of in 

some fashion. In articulating this goal we identified three basic actors in this process: data 

producers, data curators and data consumers.  

First the group examined where librarians fit into the data landscape by examining well known 

research (JISC) and data (DataONE) lifecycles. A “sticky notes” exercise was used to identify 

the top items librarians felt (1) inhibited data in the lifecycle and (2) facilitated data in the 

lifecycle. After sharing ideas from this activity, participants worked to synthesize thematic areas 

that emerged as inhibitors or facilitators (i.e., presence of or lack of) needs for research data 

deposit, use and preservation. These included how researchers trust letting go of control of 

data, the time investment involved for all parties involved in deposit, the work and knowledge it 

takes to create metadata and documentation, the ability to apply standards and best practices, 

and how to identify and implement education and training related to these needs.  

Participants then broke into groups to discuss stakeholders in the data lifecycle process and 

examined issues from producer, consumer and repository/data lifecycle perspectives. 

Stakeholders we identified included researchers (faculty, students, others), publishers, 

institutions, funders, librarians, and the public. A further step was taken to identify possible 

actions that could be taken to develop recommendations or solutions to convince researchers to 

answer a “call to arms” to deposit data by the stakeholders.  [See Appendix 2 ] 

Participants then worked through the Business Canvas Model tool to articulate value 

propositions for specific approaches. 



16 

   

The Business Canvas Model 

Source: https://steveblank.com/2014/10/24/17577/  

 

While libraries are often agile and tenacious in responding to needs, they also need planning to 

anticipate and meet future needs. We used the Business Model Canvas as a tool to walk 

through strategic planning. Who are our "customers?" What are our value propositions? Or our 

key partners and resources that help achieve those propositional goals? Key 

Partners/Activities/Resources, Value Propositions, Customer Relationships, Customer 

Segments, Channels, etc. were identified from the perspectives noted above (producer, 

consumer, repository) and filled in on the canvas.  

At the end of the second day of the workshop participants were asked to consider what outcome 

or product of this discussion would be of most interest or use to their respective communities of 

data librarians and data repository people. The workshop resulted in identifying possible 

avenues that would take further study and assessment to determine how or whether they would 

work. For instance, could we track best practices through access to research data (i.e., what 

would usage data of datasets tell us)? Or, could we profile use cases or case studies that 

demonstrate coordination of services that solve problems about which researchers have dataset 

organization questions?   

The workshop also helped us to identify many elements, aspects and issues from different 

perspectives. Many of these suggestions are useful in and of themselves in articulating areas of 

need for the data curation community: 

● Can we promote trust in the data, not just the repository?  

● Could libraries sponsor/subsidize training, adoption and use of e-lab notebooks that link 

to institutional data repositories 

https://steveblank.com/2014/10/24/17577/
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● And promote policies where research data belongs to the university, has full ownership 

and requires deposit locally in addition to disciplinary or national repositories  

 

Overall, we found the Business Model Canvas to be useful a useful tool in the particular, but not 

in the aggregate. In other words, it seemed possible to brainstorm what the issues were from 

each perspective, and even suggest actions to take to get to the solution of depositing data, but 

it was difficult to map across the canvas when trying to integrate the three perspectives. We 

were able to understand and articulate activities, resources, relationships and value 

propositions, for each of the stakeholder groups. But we had trouble better understanding the 

bigger picture and seeing patterns and connections. Instructions https://canvanizer.com/how-to-

use/business-model-canvas-tutorial for using the tool make it look somewhat easy and 

straightforward to fill in the elements of the canvas. But it did not provide insight into mapping 

the elements together to make sense of them, or in actually helping to build a business case. If 

a business case simply provides the reasons to form and carry out a plan, it seemed like this 

approach was putting the cart before the horse. As newcomers to the business model tool, that 

we neither had experience in using the model for all it’s intricacies, nor the insight to understand 

that it could not be used to develop immediate solutions by plugging answers into the template. 

We realized we could use more helping in understanding and using this tool.  

 

How this led to looking more closely at “lean startup”  

Clearly, there are some cautions in using the Business Canvas Model. One perhaps obvious 

one is that the model seeks to create a better business model and improve profit, which, for 

better or worse, is not a priority for academic libraries. It is designed for use for a specific 

product or service, not necessarily improving a complex service model. (Fielt, 2011) Its visual 

nature, blocks on a canvas are often filled in with Post-It ® notes that have been brainstormed 

by a group, can mislead users into thinking the Business Canvas is a simple, straight-forward 

product to use. In fact, identifying partners, resources and customers may seem to be easy, but 

understanding the underlying value propositions may require extensive market analysis prior to 

completing the model. 

In 2005, Steven Blank published, “The Four Steps to the Epiphany,” which argued against a 

product-based approach, which is how the Business Canvas model is sometimes used (i.e., 

start with a product or service and try to justify it using the model). (Blank, 2005) Blank argued 

for looking more closely at customer development, specifically customer discovery, validation, 

creation, and building before developing prototypes. The detailed nature of Blank’s Customer 

Discovery model is evident in its 18 steps as shown in Figure 2 below.  

https://canvanizer.com/how-to-use/business-model-canvas-tutorial
https://canvanizer.com/how-to-use/business-model-canvas-tutorial
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Figure 2 - Customer Discovery 

Source: https://steveblank.files.wordpress.com/2010/02/customer-discovery-for-the-

enterprise.jpg 

Blank called this approach “a Lean Launchpad” to assessing startup ideas. He later contributed 

to an NSF program, Innovation Corps Program (I-Corps), a program to better facilitate scientific 

discovery in technology development. (NSF, 2011) Blank’s contribution has included helping 

develop teaching objectives for the I-Corps program. (Blank, 2012a) Blank later turned his 

curriculum into a series of courses at the Udacity learning site, called Lean Launchpad. (Blank, 

2012b) 

Purdue University participates in the I-Corps program in which teaching faculty and graduate 

students learn the Lean Launchpad approach “to identify valuable product opportunities that can 

emerge from academic research.” (Purdue, 2015) Dr. Matthew Lynall teaches the curriculum, 

and has extensive knowledge of research start-ups, the Business Canvas model, and Lean 

Launchpad. In discussions with him, he revealed that many times people jump right into the 

Business Canvas model. Instead, he recommended starting with a more preliminary step of 

working with the Value Proposition Canvas. 

In reviewing our experience with the Business Canvas Model, we realized that we had tried to 

accomplish too much too quickly. We needed to pull back and to focus in on the value 

propositions for the various stakeholders in sharing data. Namely, articulating what were the 

motivations for each stakeholder type in sharing data or in supporting this practice. Matching 

value propositions with customer segments is the key of the Business Model Canvas.  Analysis 
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requires digging deep to understand customer “pains and gains,” rather than simply guessing or 

assuming as to what they might be. Likewise, looking at a product or service requires 

understanding its potential use and benefits from the user’s perspective. Finding a match 

between the two that fills a need not currently available helps identify a Value Proposition 

(defined as a key service that customers want) through a value mapping exercise to identify a 

market fit. (Osterwalder, Pigneur, Bernarda & Smith, 2014) 

The Value Proposition Canvas was developed as a tool to help entrepreneurs identify products 

and services that their customers would want. It is a component of the Business Model Canvas 

tool that focuses on the “Customer Segments” and “Value Propositions” elements as depicted in 

Figure 3.   

 
Figure 3 - The Business Canvas Model 

Source: https://steveblank.com/2014/10/24/17577/  

 

The customer segments are the people whom you intend to create value for and the value 

propositions are the elements of your product that you believe will attract these people. The 

Value Proposition Canvas is a means to explore each in more depth to create a better 

understanding of what your potential customers want and how what you have to offer fits 

customer needs.      

 

 

 

https://steveblank.com/2014/10/24/17577/
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Figure 4 - The Value Proposition Canvas 

Source: http://businessmodelalchemist.com/blog/2012/08/achieve-product-market-fit-with-our-

brand-new-value-proposition-designer.html  

 

In Figure 4 above the circle represents the customer segment, and the square represents the 

value proposition. 

 

The customer segment is comprised of three components: customer jobs, gains and pains.  

● Customer jobs are the things that your customers are the things they are trying to 

accomplish over the course of doing their jobs or living their lives. For researchers, these 

could be things like securing the funding need to carry out their research, or publishing 

their findings to disseminate their work.  

● Pains are the challenges or barriers encountered by your customers as they carry out 

their jobs. These are things that they would rather avoid or not have to do themselves, 

before, during or after carrying out a job. For researchers, these could be things like 

filling out paperwork as a part of applying for grants or paying author fees to have their 

article published. 

● Gains are the positive impacts or benefits that make customers successful, make their 

jobs easier to do, reduce expenses or other barriers, or otherwise produce a positive 

result or emotion. For researchers this could include things like having ready-made 

templates to plug into grant applications or having access to an author's’ fund to cover 

publication fees. 

 

Learning more about customer jobs is an essential part of the value proposition canvas. 

Customer jobs are broadly defined in this model and could include tasks, issues, or needs they 

are trying to satisfy. In addition, customer jobs could be comprised of functional, social or 

emotional elements.  

 

In learning more about the jobs performed by customers it is important that care be taken to 

identify which tasks are critical to the work and which are more trivial in nature. The same holds 

true for understanding their pains and gains. Some the pains and gains of the customer are 

more important, relevant or impactful on their jobs than others.    

 

http://businessmodelalchemist.com/blog/2012/08/achieve-product-market-fit-with-our-brand-new-value-proposition-designer.html
http://businessmodelalchemist.com/blog/2012/08/achieve-product-market-fit-with-our-brand-new-value-proposition-designer.html


21 

The value proposition is also comprised of three components: products & services, gain 

creators, pain relievers. All three of the components of the customer segment are things that 

can be observed.  

 

● Products and Services are all of the things that your value proposition is built around. 

These are the things that you would offer the customer to get their jobs done in ways 

that address their pain and/or maximize their gain. 

● Pain relievers are descriptions of how the products and services would provide some 

measure of relief for the customer’s pains. How exactly the products and services would 

address and alleviate pain before, during and after the customer completes his/her jobs. 

Pain relievers should explicitly reference which of the customer’s pains they are 

addressing, mitigating or removing and how.  

● Gain creators are descriptions of how the products and services would create customer 

gains through a positive outcome or result. Here too, gain creators should explicitly list 

which gains are being addressed.  

 

If you look closely at the graphic, you will notice an arrow from the circle and an arrow from the 

square coming together. This is meant to represent the “fit” of the product or service to the 

situation and needs of the customer. A problem-solution fit is achieved when the pain relievers 

and gain creators of your product or service align exactly with the pain and gains identified by 

the customer.  When this match is validated by the market (i.e. people buy and use your product 

or service) it is called a “product market fit”.  

 

This is certainly not all that an entrepreneur needs to do in order to be successful. A lot depends 

on having a great business model, access to resources and on extraneous factors to say the 

least. However, using the value proposition model can help focus attention on the customers 

and in designing products and services that meet their needs.    

  

Workshop #2 - The Value Proposition Canvas 

Professor Lynall agreed to provide an overview of the Value Proposition Canvas and instruction 

in its use to librarians at our second workshop, held at Purdue University June 6-7th, 2016. The 

goal of the second workshop was to understand how the Value Proposition Canvas might be 

applied to better understand and respond to researcher needs in sharing and curating their 

data. In the first workshop we looked at the challenge of moving data from its active state into a 

curated environment for stewardship, dissemination and preservation from the perspective of 

the data—what must be done and how does it get done. In the second workshop we used a 

“deep dive” approach to look more closely at researchers as customers, and their needs for very 

specific services, as opposed to larger all encompassing data services. (Note: We did not 

interview researchers as part of this process to gather more on-the-ground data.) 

In a review of previous work we discussed the idea of research data management as an 

innovation and its progression along an innovation diffusion curve. There are two contexts to 

understand when doing so. For librarians, especially in many ARL libraries which have had 

some kind of research data services for several years, we are at least in the middle of the curve 
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where a majority of early (and some late) adopters accept the need, and provide resources, for 

data services. However, for the most part, researchers are still in the very early adopters stage 

of employing data management practices. And in looking at the related five stages of adoption, 

you can’t implement or adopt something before you’ve made the decision to do so. One must be 

persuaded to make a decision, and to be persuaded requires a sufficient level of understanding 

and knowledge about the decision. Librarians can’t “jump the stack” and expect researchers to 

implement data solutions if they haven’t gone through the other steps first. 

Professor Lynall argued that when looking at improvement for data services, one must first go 

back and look closely at the pains of researchers in dealing with data management and 

curation. In particular, rather than looking at it from the data’s point of view (i.e., what should 

happen to the data), to focus on the researcher’s perspective. What are their specific pains as 

regards to their research, and what would alleviate them? What are they striving for in their 

research, professional career or life, and what would help them achieve their goals? In asking 

the question about research and not just data, the pains revealed may be related to workflow, 

processes, or other factors that may seem somewhat removed from the data itself. So we 

looked broadly at researchers’ work first before ever looking at data collection/generation, 

management, dissemination or curation. 

In introducing us to the Value Proposition Canvas, Lynall demonstrated how it was much 

simpler to look at the customer to identify pains, gains, and specific jobs to alleviate them. Then 

we could start looking at specific products or services that relieve pain or become a gain creator 

for researchers. Eventually this would lead us back to the Business Model Canvas where we 

could match customer segment to value proposition to create a market fit. This process would 

be completed over a series of small, incremental steps rather than jumping in headfirst and 

trying to complete everything at once.  

The first exercise was to look at “what they are really trying to do,” and was meant to 

understand and identify potential customer segments out of the larger generic group of 

researchers. The results may seem obvious, but serve as reminder that we first need to focus 

on customers, not on pushing services onto them. Based on previous work, experience and 

literature reviews, we started with generating several familiar “researchers want to…” goal 

statements: 

● Produce results that impact my field 

● Increase funding to further research 

● Attract collaborators 

● Bring the best graduate students into labs 

● Get credit that counts for promotion and tenure through publication and citation 

● Get awards and other recognition from peers or others in their field 

● Raise the reputation or profile of lab and institution 

● Secure legacy and reputation 

● Contribute to society and the “greater good”  

 

This discussion helped us steer away from putting data and services in the forefront without 

context, and led us to a step to analyze perspectives of customers. The second exercise was 
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then to determine archetypes, or personas, of researchers as our customers to help us reveal 

likely paths or connections to better understand where  our focus should be. 

Our brainstorming on possible archetypes resulted in four broad categories: 

● Disciplines: researchers have different methods and deal with research much differently 

across broad disciplines (STEM vs Humanities), and for instance, some collect data 

while others generate it 

● Roles: researchers roles may involve those directly involved in research, such as faculty, 

postdoc, graduate student, lab manager, etc., as well as those somewhat peripheral to 

the research, such as administrator, vendor/supplier, or librarian 

● Type of data: which can range from: experimental vs observation vs simulation; in small 

to large quantities; in sensitive or restricted access areas; with static, dynamic, or 

streaming data; with images, videos, or physical samples 

● Responsibility: additionally, researchers may have a variety of responsibilities in the 

discipline, role, and type of research: PI or co-PIs; the ones who provide (collect or 

generate) data, clean or process, or analyze it; someone who determines ownership or 

authority, or ensures compliance or privacy/security 

 

The next step for us was to determine jobs to be done (JTBD). As noted above, specific pains 

must be identified and an analysis must be done to understand what would relieve them or what 

gains could be identified that would help researchers achieve their goals. To accomplish this we 

broke into pairs to discuss the types of pains of researchers that we had identified. As with all of 

our work from this workshop, Lynall noted this exercise could only lead to hypothesis building, 

not solving the problems. Problem solving could not be done in the abstract, on a whiteboard or 

with sticky notes. He was adamant that the only way to test a hypothesis would be to interview 

many, many researchers to hear directly from them if our solutions (services, tools or resources 

we created) actually address their problems. 

For customers pains we had to understand undesired costs and situations that caused problems 

or negative emotions for the customer. For instance, we might ask about things taking too long 

or costing too much money, and things that annoy, frustrate or give a headache. For customer 

gains we had to understand benefits that would be expected, such as use satisfaction, cost 

savings, relief, and social gains. To better understand potential customer gains from another 

lengthy list we might ask questions about what they are looking for, what would make their life 

easier, what might be the result of an ideal solution? Typically these are not the kinds of 

questions we ask directly in DMP consultations or Data Curation Profile interviews and so we 

are likely overlooking critical pieces of information in our drive to provide services and 

resources.  

Only after you have conducted many interviews, up to a hundred, are you able to start defining 

what could be pain relievers and gain creators for customers with some degree of confidence.  

And then you can begin to identify a product or service that helps them achieve something 

functionally or socially or emotionally that makes life better. At this point we were confronted 

with what Lynall called “eating the elephant in the room.” This expression is a mixed metaphor 

meaning one has to deal with the big thing that we gathered to understand, research data 
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services, but how could anyone possibly eat/solve it all at once? Lynall explained that looking at 

small discrete steps was really the only way to move forward in creating a new product or 

service with any degree of confidence, even if meant limiting yourself to small discrete 

successes. To illustrate his point, he explained how in the early days of dot com start-ups, 

someone would come up with a big idea, and try to get a lot of venture capital to build it or do it. 

Many of these start ups failed from trying to do too much too soon without a real sense of the 

market or need they were trying to serve. Lynall used the company pets.com as an example. It 

started with a wildly successful marketing mascot (a sock puppet dog) but failed because it “was 

weak on fundamentals and lost money on most of its sales.” (It was eventually bought by 

PetSmart.) https://en.wikipedia.org/wiki/Pets.com 

In a final post-it note exercise we drilled down to identify a small niche in which we could 

propose a hypothesis. We created a hypothetical archetype of mechanical engineers with grants 

who have trouble meeting funder requirements in managing and sharing data as a possible type 

of customer. We then set about defining what our interactions and processes would be to test 

out an hypothesis. The interaction would be to engage in a conversation to see if leads to a 

discussion about problems with sharing or using data. The process would be to approach many 

customers, iterate and fine-tune the questions, but avoid leading the conversation to data 

intentionally.  

As a next step we generated a series of possible questions to ask and developed a very loose 

script to use in talking to researchers: 

● Intro: Hi, I’m interested in learning about your pain points in your research… (you want to 

find out what they want to talk about) 

● We’re looking at ways institution can help with research [I’m here to help…] 

● What is like doing research here? What are the big challenges you face? What are the 

requirements of the job that you have to fulfill? 

● What does a successful day look like for you? 

● Can/how can the institution help you? 

● Anything else I can ask? Is there someone else to talk to? Can I come back? 

● If topics of external funding, students, publication, etc. come up that can’t be addressed 

easily or right away, you might ask whether you can do a follow up…  

 

Lynall reiterated that talking to people was not only key, but also talking to as many of them as 

possible and quickly was important as well. Using Lean Launchpad techniques, typically one 

person talked to a hundred people or so in a week to ten days. Throughout the process it would 

be likely that some questions might change or get deleted based upon what was learned as 

these interactions and as the potential customer base progressed (e.g., by gaining insight one 

might learn how to get to the heart of the matter). The goal is to reveal two or three big things 

you’ve learned or insights into problems they have, and then to report them out to the team, 

preferably using an online tool or space where people can review and add comments. The 

information learned from the interviews and discussions about them would then be used to 

develop the product or service. Once a prototype was created the interviewees could be 

revisited to react to it. Questions about the extent to which the product or service met 

expectations and addressed the pains and gains identified would be asked. The answers would 

https://en.wikipedia.org/wiki/Pets.com
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inform another iteration of the product or service and the process would continue until the team 

was confident that their result matched customer needs.  

Finally Lynall wanted to impress upon us a little pessimism—that not only might the process be 

slow going, it might result in only a small thing that turned out to be a pain reliever or gain 

creator (or conversely, no pain may lead to stopping a service). For instance, what if 

researchers only wanted examples of other DMPs and that was it? Or to have their students 

simply learn better file naming and/or directory structure? Or what if they did not see data 

sharing as their problem at all? He pointed out that the Value Proposition Canvas and other 

Lean Launchpad techniques were about making products and services that were sure to work 

based on evidence rather than assumptions, no matter how small. But that in doing so, small 

successes might lead to additional gains, such as examples of DMPs leading to guidelines for 

description or standardization of metadata needed to publish data, perhaps leading to deposit of 

data in a repository.  

 

Discussion 

The Data Curation Profile Toolkit was designed to understand the story of the data in a project 

and to provide information professionals with enough information to respond to the specific 

needs expressed by the researcher(s) being interviewed. When we launched the DCPT we had 

visions of librarians generating series of Profiles that could be compared, contrasted and 

ultimately used to develop a better understanding of researcher needs on a larger scale.  

Having multiple Profiles on Mechanical Engineers, for example, would allow libraries and other 

agencies who provide support to researchers to identify common practices and specific needs 

related to data management, organization, description, sharing, and preservation with the intent 

of developing larger scale responses. However, in talking with librarians it became obvious that 

the amount of time and effort required to complete a Profile was prohibitive for many and so we 

could not expect a sufficient number of Profiles to do the large-scale analysis that we had 

initially envisioned. Instead, our study on the usability of the DCPT revealed librarians wanted “a 

lighter and more adjustable version with less time requirements.” (Zhang, Zilinski, Brandt & 

Carlson, 2015) This study used a survey to determine what influenced the use of the DCPT, and 

identified factors of perceived usability, specifically: the amount of time required using the tool 

and its format and structure were seen as deterrents to use. 

Given our findings from the DCPT usability study, the idea of asking broad questions (“what 

does a successful day in the lab look like?”) that go further than the scope of the questions 

asked in the DCPT (“could you tell me about the data you create or use in your project?”) may 

seem counter-intuitive. However, the practice of doing a lot of information gathering and 

analysis before coming up with a hypothesis to test, as the Lean Launch Pad does, make good 

sense. The literature has many use cases and case studies in which librarians developed 

approaches and tried to market them and implement them as services for their constituents, 

without defining the level of success that was desired or expected. The challenge of course is in 

finding the time and the capacity to be able to gather the information that is required to truly 

understand the needs of our users and the environments in which they work and live, and to 
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analyze and derive meaning from this information in ways that can be applied through our 

products and services. Although many librarians conduct research it is not the focus of most 

positions, which makes it hard for librarians to actively engage in the kind of activities needed to 

make use of tools like the DCPT or the Value Proposition Canvas. Herein lies one of the 

fundamental challenges for libraries. We desire an easy way to develop an in-depth 

understanding of researcher’s environment and needs for their data that enable us to provide 

services of value to them, but the complexities of data and research necessitate a significant 

investment of time and resources to gain a sufficient enough understanding to respond.  

Through this endeavor we’ve come to see that maybe we are not asking the right questions. For 

instance, perhaps the question to ask is not, “why won’t researchers deposit?” For one thing, 

such questions have been asked in numerous surveys over the past decade. And the answers 

are generally fairly standardized around: time, knowledge and skills, credit and resources. As 

part of this grant work we researched the literature and examined expert experiences to look at 

possible solutions and they too seem to turn up common themes: provide training, tools and 

help. 

It seems that we might not even ask, “what would make deposit easier?” Lynall helped us see in 

our second workshop that even asking that more innocuous question probably isn’t the right 

approach. First we must show researchers that we are interested in understanding the “pain 

points” in carrying out their research, and ask what those might be (i.e., not pre-suppose they 

are data management related). This is the first job of a librarian or liaison: to understand the 

information needs of researchers. Years ago this might have been done through interactions at 

a reference desk, but now requires outreach, or rather, reaching out, to faculty, and literally 

meeting them in their spaces, where they work, teach, and drink coffee. (Delaney & Bates, 

2015) 

Asking a more general question—“how’s your research going?”—is similar to the opening of the 

DCPT process, although as its name implies, even the first question pushes the conversation 

toward discussing data—“Could you please provide me with a brief overview of the research 

project associated with the data that we will be discussing in this interview?” (Carlson, 2010) But 

broader variations of this might be, “We’re looking at ways institution/library can help with 

research…” or “The library would like to know what are the big challenges you face in your 

research?” 

It is possible that this would lead down a rabbit hole of responses totally unrelated to data or to 

frustrations beyond our or their control (“If we only had localized IT support this would be so 

much easier!”).  But still, it is information about the research done in the institution that provides 

information on needed services.  It can be argued that such a “bottom-up” approach would not 

scale—that there aren’t enough librarians or liaisons around to engage in such discussions. 

We’ve learned that information or data management problems can vary not only vary by 

discipline and sub-discipline, but also by lab and project as well. (Brandt et al., 2007) Therefore, 

the question shouldn’t be “how do we reach all researchers?” but rather “How can we reach 

some researchers and help them?” And hopefully responses or approaches that solve similar 

problems can be turned into guides or resources or tools. 
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Perhaps the bigger takeaway from these workshops is the idea of scaling back and looking only 

for little things that are sure to be successes, at least at first. Not asking “How can we do 

everything for researchers?” but “What would be one thing that would make life easier for 

them?” And those things might not even include data management, sharing or preservation, or 

at least not on the surface, as far as the researcher is concerned.  In acknowledging the myriad 

of complexities that surround the requirements being made by funding agencies, publishers and 

others are making, the temptation is to try and address these problems at scale. However, our 

experiences with the Data Curation Profiles Toolkit and exposure to the Value Proposition 

Canvas demonstrate the value of thinking iteratively in the short term as a way of eventually 

realizing longer-term gains.     

Conclusion 

We set out to explore how we could build the next iteration of the Data Curation Profiles Toolkit 

to try to address the low rate of deposit into data repositories. We saw the DCPT serving as a 

foundation for informing librarians and other information professionals how to better prepare 

their data over the course of the research data lifecycle for eventual deposit and for informing 

repositories how they could structure their submission process to best connect with researchers. 

We still believe that the DCPT is an excellent means of gathering information about the 

practices and needs of individual researchers, however we have learned from these workshops 

that it is not a suitable instrument for sparking broad based culture change. The richness and 

depth of the DCP comes at the price of a significant investment of time and effort. As we 

learned from Professor Lynall in our second workshop, agility and the ability to gather quick 

responses from a lot of the potential pool of customers is a key facet in developing innovative 

products that are more likely to succeed. To understand researcher needs we might ask 

questions about what would make their life easier, what might be a useful solution to help them. 

Typically these are not the kinds of questions we ask directly in DMP consultations or Data 

Curation Profile interviews and perhaps we lose out on useful information that would provide 

insight into services.  

 

Approaching the challenge of data sharing from an entrepreneurial standpoint can help jump 

start efforts to increase data deposits. The cultures of practice surrounding data management, 

sharing and preservation in many research fields are still evolving. The direction and speed in 

which they take shape will be determined less by abstract ideals and more by how data sharing 

can aid researchers in accomplishing what they set out to do. Though we have learned a great 

deal from the surveys, interviews and other information gathering efforts that have been done by 

librarians and others in the past decade or so, we have not yet been able to develop practical 

tools that address the on the ground issues that facilitate or hinder deposit into data 

repositories.  

We know that making research data widely available can benefit the public, the research 

community and the individual researcher him or herself. The challenge is in finding ways in 

which data sharing and data deposits will become a normative part of the research process in 

all fields rather than an exception. Making progress will likely require use to move away from 

relying solely on surveys and other cumbersome information gathering approaches towards 
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more lightweight and rapid approaches that can be used to fashion prototypes of tools and 

resources that can be brought out and tested. Recasting our thinking and approaches on 

instantiating data sharing by grounding them on local scale needs offers another promising path 

forward.    

Lastly, it is not clear whether the DCPT can or should be adapted to fit this approach. The goal 

of providing a profile of data management and use is different than identifying better ways to 

encourage data deposit. As shown by the number of downloads of Data Curation Profiles (9434 

downloads since October 2012), there seems to be use for detailed profiles. But while a DCPT 

“lite” might cut down on problems of format and time needed to gather information, it wouldn’t 

likely provide a quick and easy solution for connecting researchers to repositories. Further 

research on what such a tool or method would look like is to be pursued in future research.  
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Appendix 1 Workshop 1 participants and goals 

Workshop 1 was held June 15-16, 2015. As noted, this Workshop brought together data 

management and curation experts with a wide range of backgrounds and experiences in 

university settings. Participants included: 

Project partners: 

Scott Brandt-PI (Purdue University) 

Jake Carlson-PI (University of Michigan) 

Suzie Allard-co-PI (University of Tennessee, Knoxville) 

Sherry Lake (University of Virginia) 

Angus Whyte (DCC, University of Edinburgh) 

Sarah Jones (HATII, University of Glasgow) 

Todd Vision (Dryad) [unable to attend] 

  

Invited experts: 

Elizabeth Hull (Dryad) 

Lisa Johnston (University of Minnesota) 

Wendy Kozlowski (Cornell University) 

Joan Starr (California Digital Library) 

Thomas Padilla (Michigan State University) 

Limor Peer (Yale University) 

Lizzy Rolando (Georgia Institute of Technology) 

Karen Baker (University of Illinois, Urbana Champaign) 

Abigail Goben (University of Illinois, Chicago) 

  

The initial goals for the workshop were to: 

1. Review the literature on issues related to research data to provide context and help 

define the problem 

2. Discuss connecting researchers and repositories from the data’s point of view to identify 

problems that inhibit or prevent the transfer of data 

3. Describe possible ways to address problems identified, determine feasibility of 

approaches 

4. Apply business model paradigm to articulate value propositions for specific approaches 

identified through discussion with experts (personas/scenarios, questions database, best 

practice recommendations) 

5. Provide suggestions to bring this all together to create outline and framework for White 

Paper 
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Appendix 2 - Activities to support the value propositions (from workshop 1) 

 

Value propositions 

Providing the data in a meaningful way 

Save time 

Do new science - ask new questions 

Enabling them to produce products of commercial value 

Discover evidence / compliance track best practices through access to the data - (usage data) 

Learning and education 

More informed policy making / discovery 

Enabling evidence based discussion / research / actions,  

 

Activities to support value propositions  

Make data available will full documentation / context 

Promote clarity and understandability of the documentation - transparency - generic / non-

discipline specific - understandable 

Delineate relationships between data sets to enable interoperability 

Consider design of the product - imagining the re-use - speculate the utility of the data  

Consider the tools needed to use the data in meaningful ways (i.e.,  design tools for use) 

Define service workflows to derive a particular result/outcome and accommodate free and open 

exploration (product design) - modules/tools of processing - curriculum 

Promote discovery tools (UI for humans and API for machines, OAI-PMH for indexers) - that 

connect to accessibility standards and are tested 

Visualization and Analysis Tools - embedded or linked 

Foster interoperable formatting (open and migration) 

Make data machine readable (ready for automated consumption - building apps on top of) 

Ensure IP - Licensing and rights - what are consumers allowed to do with the data to promote 

good data governance 

Provide a means of maintaining the data (through a repository or other means - ours or another) 

Develop a brand that generates trust 

Define customer support system and how it operates 

Define service levels - from the consumer's vantage point / standard of practice 

Form User communities 
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Appendix 3 Workshop 2 participants and goals 

 

Workshop 2 was held at Purdue University June 6-7th, 2016 to further investigate adoption of 

research data management as an innovation from a startup perspective. Participants included: 

Scott Brandt-PI (Purdue University) 

Jake Carlson-PI (University of Michigan) 

Suzie Allard-co-PI (University of Tennessee, Knoxville) 

Sherry Lake (University of Virginia) 

Lisa Johnston (University of Minnesota) 

Wendy Kozlowski (Cornell University) 

Abigail Goben (University of Illinois, Chicago) 

 

Goals of the Workshop were: 

1. Review our “customer focus” on researchers who have requirements to share data 
(funders, publishers, or peers) but do not have a natural workflow for depositing data 

2. Review the problems associated with connecting researchers to repositories 
3. What are the problems, and what would alleviate them? 
4. What are possible options to remedy problem? How to find out what researchers want? 

Can more focus on Customer Segments and Value Proposition help? 
5. Review structure for white paper 
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