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Simulation-Based Approximate Policy Gradient and Its Building

Control Application∗

Donghwan Lee †, Seungjae Lee, Panagiota Karava ‡, and Jianghai Hu§

February 5, 2018

Abstract

The goal of this paper is to study the potential applicability of a stochastic approximation-
based policy gradient method for optimal office building HVAC (Heating, Ventilation, and Air
Conditioning) control systems. A real-world building thermal dynamics with occupant interac-
tions is the main focus of this paper. It is a complex stochastic system in the sense that its
statistical properties depend on its state variables. In this case, existing approaches, for instance,
stochastic model predictive control methods, cannot be applied to optimal control designs. As a
remedy, we approximate the gradient of the cost function using simulations and use a gradient
descent type algorithm to design a suboptimal control policy. We assess its performance through
a simulation study of building HVAC systems.

1 Introduction

The goal of this paper is to study a stochastic approximate algorithm for stochastic optimal con-
trol designs and assess its applicability to building climate control scenarios, which are important
stochastic control applications. Recently, there has been a great amount of research interest in en-
ergy consumption and comfort management in buildings [1]. One of their main goals is to balance
between the energy consumption and occupants’ comfort in work environments. The presence of
stochastic uncertainties and disturbances, such as weather and occupant interactions, is a major
concern in building environment research as they degrade the performance of the control systems.

This paper considers the building control problem with a particular focus on occupant interactions.
The role of occupants is significant in the thermal dynamics of building spaces [2–6]. In particular,
the thermal preferences of occupants induce their actions, which potentially perturb the thermal
dynamics of building spaces. It is a special class of complex stochastic systems in the sense that the
statistical behavior of the occupant’s actions interact with the system evolution: occupant thermal
preference models [7–9] depend on environmental factors, for example, the indoor air temperature.
For this reason, developments of effective stochastic control methods become of prime importance.
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Literature Review: Optimal control designs for stochastic systems have been an active area of
research during the last decades. A classical approach is the linear quadratic Gaussian (LQG)
control, which computes optimal control policy for linear time-invariant (LTI) systems with Gaus-
sian random disturbances. Another main research direction is stochastic model predictive control
(SMPC) [10]. The SMPC was extensively studied in [11–14] for building control systems with
Gaussian random disturbances and without occupant interactions. However, Gaussian disturbances
cannot describe more complicated behavior of real-world systems, and it is of great importance to
develop optimal control designs for systems with more generic stochastic disturbances to meet
practical needs. For example, systems with disturbances/uncertainties that depend on Markov
chains arise in many applications, for instance, the vehicle path-planning [15, 16], macroeconomic
model [17], economic models of government expenditure [18], vehicle controls with driver’s behav-
ior models [19, 20], and hybrid electric vehicle powertrain management [21]. For building control
systems with Markov chain occupancy models, SMPCs were developed in [5, 22], and a nonlinear
MPC was used in [23] with occupancy pattern models expressed as hidden Markov models. Another
tractable approach is the scenario-based (or sample-based) approximation approaches [15,16,24–27].
Its advantage is the ability to cope with generic probability distributions as long as a sufficient num-
ber of random samples can be obtained. The approach was successfully applied to many engineering
applications, for instance, robot path-planning problems in [15, 16] and the aircraft conflict detec-
tion in [24]. For the building problems, the scenario approaches were investigated in [28], where
samples of the external temperature, the solar radiation, and the room occupancy are generated
by using an empirical statistic model. Approximate dynamic programming (ADP) [29–31] (or re-
inforcement learning [31] from the machine learning context) is another possibility. For building
applications, ADP was studied in several researches, for instance [32–35]. In [32], a closed-loop
satisfaction based system is developed for optimal control strategy of blinds and lights. In this
approach, users’ feelings are sent to the system via a human-machine interface to construct comfort
models, which are time-dependent and deterministic.

Challenges: However, the existing results did not consider occupant behavior models that depend
on the dynamics of the building spaces, for example, the indoor air temperature. In building
environment research, advanced occupant thermal preference models have been developed, e.g., [7–
9], where occupant’s thermal preferences are expressed as probability mass functions that depend
on environmental factors, for example, the indoor air temperature. The optimal control of such
stochastic systems cannot be formulated as easily solvable optimization problems. For instance,
the scenario-based control design schemes are problematic in this case. Consider the case that
probabilities of random disturbances/uncertainties depend on the current state variables. Then,
the probabilities depend on the control policy and the corresponding design parameters as well.
Therefore, state samples generated by using fixed controller parameters cannot reflect changes
of the controller parameters themselves. Beside the building problems, such cases arise in many
applications. For example, stochastic systems with disturbances modelled by Markov chains were
considered in [21,36] for hybrid electric vehicle powertrain management problems, where transition
probabilities of the Markov chain depend on the state of the dynamic system. These problems were
addressed in [21, 36] by using ADP.

Statement of Contributions: We apply the convolutional function smoothing and stochastic gra-
dient approximation procedure [37–40] to the aforementioned stochastic optimal control problem.
The smoothed function is an approximation of the original one, and described by an expectation
of the original function with respect to a random variable that perturbs its optimization param-
eters. Benefits are two-fold: the smoothed approximation is differentiable, and its gradient can
be stochastically approximated by sample means. Similarly to the scenario-based control design



approaches, this method uses samples of random variables. A main difference relies on the fact that
in most scenario-based approximations, the samples are used in optimization formulations, while
in our approach, they are used to estimate the cost function gradient. Then, a gradient descent
type algorithm is applied to the cost function minimization of the finite-horizon optimal control
problem. More recent advances of the convolutional function smoothing procedure can be found
in [41] for convex optimizations and in [40] for more rigorous and general analysis of the approach.
The proposed approach can be regarded as a class of policy gradient RL methods [42–45] with pros
and cons compared to existing approaches. In addition, the proposed method is applied to building
HVAC (Heating, Ventilation, and Air Conditioning) system control problems, and the validity of
the proposed approach is evaluated through a simulation study. We apply an occupant thermal
preference model based on an advanced Bayesian modelling approach in [9], where the thermal
preferences are expressed as probability mass functions that depend on the indoor air tempera-
ture. The occupant’s feeling or cognition induces actions that perturb thermal dynamics. To meet
practical needs, we also consider the output-feedback control where only partial information of the
state vector is available. The technical report is an extension of the conference version [46].

2 Preliminaries

The adopted notation is as follows: N and N+: sets of nonnegative and positive integers, respec-
tively; R: set of real numbers; R+: set of nonnegative real numbers; R++: set of positive real
numbers; Rn: n-dimensional Euclidean space; Rn×m: set of all n×m real matrices; AT : transpose
of matrix A; ‖ · ‖: any norm of a vector or a matrix; for a set S, |S|: cardinality of the set S;
E{·}: expectation operator; N (x, Σ): Gaussian distribution with mean x and covariance matrix Σ;
ΠU (·): projection onto set U ; w.p.: “with probability”; w.r.t.: “with respect to.”

Consider the discrete-time stochastic system

x(k + 1) = f(x(k),u(k),w(k)), x(0) = z ∈ R
n, (1)

where k ∈ {1, 2, . . . , N} is the finite time step, x(k) ∈ R
n is the state, u(k) ∈ U is the control input,

U is a compact set, w(k) ∈ W is a random/deterministic variable representing disturbances and
uncertainties with a certain distribution, and W is a compact set. Since U and W are bounded,
there exists a compact set X ∈ R

n such that x(k) ∈ X for all k ∈ {1, 2, . . . , N}. Therefore,
without loss of generality, we can assume that the state-space is X. In this paper, we consider the
finite-horizon stochastic optimal control problem.

Problem 1 (Optimal control problem (OCP)). Denote by

Fk := {w(0), . . . ,w(k − 1),x(0), . . . ,x(k),u(0), . . . ,u(k − 1)}

the history of the system until time k, and define the stage cost function ck : X × U → R+ for all
k ∈ {1, . . . , N}. For a given initial state z ∈ R

n, solve for (uk(Fk))
N−1
k=0

(u∗k(Fk))
N−1
k=0 := argmin

(uk(Fk))
N−1

k=0

Ez∼µ

{
N∑

k=0

ck(x(k), uk(Fk))

}

,

where (x(k))Nk=0 is a stochastic process which obeys the dynamics in (1), x(0) = z ∼ µ indicates
that the initial state x(0) follows a certain probability distribution µ which is defined in a bounded
sample space, uk(Fk) are maps from Fk to U , and the terminal cost cN only depends on the state.
The minimization is taken over a set of all maps from Fk to U .



The goal is to solve Problem 1 approximately by using a class of approximate policy gradient
methods [42–45]. In particular, we consider the parameterized state-feedback policy uk : Rn×C → U

uk(Fk) = ΠU (πk(x(k); θ)), k ∈ {1, . . . , N − 1}, (2)

where πk : Rn × C → R
m is a state-feedback control policy, θ ∈ C is a parameter vector to be

determined, C ⊆ R
q is a convex set, and ΠU (·) is the projection onto C. The projection operator is

used to ensure uk(Fk) ∈ U . A simplified stochastic optimal control problem is given as follows.

Problem 2 (Simplified OCP (SOCP)). For a given initial state z ∈ R
n, solve for θ ∈ C

θ∗ := argmin
θ∈C

J(θ),

where

J(θ) := Ez∼µ

{
N∑

k=0

ck(x(k), uk(x(k); θ))

}

. (3)

3 Smoothing and stochastic approximation

Since the probability mass function depends on θ, it is difficult to compute, if exists, the gradient
of J(θ) with respect to θ. Moreover, in many practical applications, J is not smooth, and the
gradient of J(θ) does not exist for some θ ∈ C. In this paper, we consider the generic scenario
where J is non-smooth, non-convex, and even the evaluation of the function value J(θ) at a single
point θ ∈ C is almost impossible numerically as well as analytically. To this end, the convolution
function smoothing approach in [37] is applied. In particular, we consider the smoothed function
approximate of J given by the convolution

Ĵβ(θ) :=

∫

Rq

J(θ − η)hβ(η)dη = Eη{J(θ − η)},

where Eη{·} implies that the expectation is taken with respect to η, the kernel function hβ is a
probability mass function satisfying certain properties (see [37], [39] for details), and β > 0 is a
parameter that controls the dispersion of hβ . It is known that Ĵβ(θ) is differentiable even when

J(θ) is not. Moreover, for a sufficiently large β, Ĵβ(θ) tends to become convex, and non-convex
optimization method based on this property was investigated in [39]. On the other hand, for a
sufficiently small β, Ĵβ approximates J with arbitrarily small errors. In this respect, we further

simplify the problem by approximating J into a smooth function Ĵβ (but possibly not convex).

Problem 3 (β-Approximated SOCP (β-ASOCP)). For a given initial state z ∈ R
n and parameter

β > 0, solve for θ ∈ C

θ∗ := argmin
θ∈C

Ĵβ(θ).

One of the possible choices for the kernel hβ is the Gaussian density function

hβ(η) =
1

(2π)n/2βn
exp

(

−
1

2

q
∑

i=1

(ηi/β)
2

)

,



i.e., η ∼ N (0, β2Iq). In this case, Ĵβ can be described by Ĵβ(θ) = Eη{J(θ+βη)}, where η ∼ N (0, Iq).
Its exact gradient has the simple form

∇θĴβ(θ) =
1

β
Eη{J(θ + βη)η} =

1

β
Eη{[J(θ + βη)− J(θ)]η}. (4)

The gradient (4) can be computed by using the property of the convolution

Ĵβ(θ) :=

∫

Rq

J(θ − η)hβ(η)dη =

∫

Rq

J(η)hβ(θ − η)dη,

taking the gradient of the last term w.r.t θ, and using the derivative of the normal distribution. It
also has the equivalent double-sided version

∇θĴβ(θ) =
1

2β
Eη{[J(θ + βη)− J(θ − βη)]η}.

The double-sided form can be obtained by changing η to −η in (4), adding two identical integrals,
and dividing the results by two as discussed in [39].

An experimental evidence was given in [39] to demonstrate that the double-sided gradient form
provides better performance for optimization problems. Computation of the expectation is numeri-
cally intractable when the dimension of η is large. For this reason, the stochastic gradient estimate
can be used

∇θĴβ(θ) ∼=
1

2β

1

Nη

Nη∑

i=1

[J(θ + βη(i))− J(θ − βη(i))]η(i),

where η(i) denotes the i-th sample of η ∼ N (0, Iq) and Nη ∈ N+. Since J cannot be evaluated in
our problem setting, we further approximate J by using the sample average

J(θ) ∼= J̃(θ) :=
1

NJ

NJ∑

i=1

N∑

k=0

ck(x
(i)(k), uk(x

(i)(k); θ)),

where NJ ∈ N+, (x
(i)(k))Nk=0 is the i-th realization of the process (x(k))Nk=0. Combining the two

estimates, our gradient estimator is

∇θĴβ(θ) ∼= g(θ) :=
1

2β

1

Nη

Nη∑

i=1

[J̃(θ + βη(i))− J̃(θ − βη(i))]η(i). (5)

Now, since the approximate gradient is available, a gradient descent type algorithm [47] can be
used to solve Problem 3.

Algorithm 1 Stochastic Algorithm for β-ASOCP

1: Initialize θ0 ∈ R
q, set t = 0 and a convex set C ⊆ R

q.
2: repeat

3: θt+1 = ΠC(θt − γtg(θt))
4: t← t+ 1
5: until t is sufficiently large.



Remark 1. Algorithm 1 can be regarded as a class of policy gradient reinforcement learning [42–45].
Philosophically, it is most similar to the finite-difference policy gradient [43], where the simultaneous
perturbation stochastic gradient approximation (SPSA) [48] is used to estimate the gradient. One
of differences is that in SPSA, the cost function J needs to be differentiable while in Algorithm 1, it
does not. Most likelihood-radio gradient estimators [42, 44] are applicable to systems with discrete
state spaces and stochastic policies. For systems with continuous state spaces and deterministic
policies, the approach is problematic [45]. Although its counterpart exist as in [45], they should be
implemented in the actor-critic framework [29].

Remark 2. 1) An advantage of the proposed approach is its simplicity and applicability to broad
classes of systems. A disadvantage is that there exist many tuning issues, for instance, the choices
of the kernels hβ and parameterization structures. 2) Algorithm 1 can be applied for deterministic
systems. However, Algorithm 1 is especially useful with stochastic systems than deterministic sys-
tems because in the former case, dynamic programming algorithms can be more easily applied, e.g.
solving Riccati equations for deterministic linear systems.

Definition 1 (Lipschitz continuity, [49, 50]). Function f : I → R
s is Lipschitz continuous on I

with constant L0(f) > 0 if ‖f(x) − f(y)‖ ≤ L0(f)‖x − y‖, for all x, y ∈ I, where L0(f) ∈ R++ is
called the Lipschitz constant and I ⊆ R

q. f : I → R
s is called locally Lipschitz continuous on I if

for every x in I, there exists a neighborhood Nx of x such that f is Lipschitz continuous on Nx.

Throughout the paper, for any Lipschitz continuous function f , its Lipschitz constant will be
denoted by L0(f). Moreover, we assume that J is Lipschitz continuous on C with constant L0(J) >
0.

Assumption 1. J is Lipschitz continuous on C with constant L0(J) > 0.

If Assumption 1 holds with C = R
q, we can prove the convergence of Algorithm 1 to the stationary

point θ∗ of Ĵβ which satisfies ∇θĴβ(θ
∗) = 0. Although the convergence is proved by using existing

results, e.g., [29, Prop. 4.1], we provide its proof in Appendix 7 for completeness of the presentation.

Proposition 1. Suppose that Assumption 1 holds with C = R
q, and

lim
t→∞

γt = 0,
∞∑

t=0

γt =∞,
∞∑

t=0

γ2t <∞. (6)

Then, the following properties hold with probability one:

1. The sequence (Ĵβ(θt))
∞
t=0 converges.

2. limt→∞∇Ĵβ(θt) = 0.

3. Every limit point of (θt)
∞
t=0 is a stationary point of Ĵβ.

Proof. See Appendix 7.

Although Algorithm 1 is easier to implement in the case C = R
q, Assumption 1 is difficult to

hold if C = R
q. It will be explained in more detail in the next section with LTI systems. For

this reason, we will also consider the case that C is a convex and compact subset of Rq. In this
case, Assumption 1 holds under mild conditions, while the convergence proof becomes more tricky.
To prove the convergence, we adopt the following assumption on C.



Assumption 2 ( [51, Assumption 3]). The set C is described by

C := {θ ∈ R
q : hj(θ) ≤ 0, j ∈ {1, . . . , p}},

which is nonempty and compact, where p ∈ N+, hj : Rq → R, j ∈ {1, . . . , p}, are continuously
differentiable in a neighborhood of ∂C (boundary of C), for any θ ∈ ∂C, {∇hj(θ), j ∈ A(θ)} is a
linearly independent collection of vectors, and A(θ) is the active set defined as A(θ) = {j : hj(θ) =
0, θ ∈ C}.

Define the set of stationary points of Ĵβ on C as

L := {ξ ∈ C : −∇θĴ(ξ) ∈ NC(ξ)},

where NC(ξ) is the normal cone, i.e., NC(ξ) := {v ∈ R
q : vT (ξ − ξ′) ≥ 0, ∀ξ′ ∈ C}. We can establish

the convergence of Algorithm 1.

Proposition 2. Suppose that Assumption 1 and Assumption 2 hold and Ĵβ(L) has an empty
interior. Let (θt)

∞
t=0 be the stochastic process generated by Algorithm 1 with the step-size rule

in (6). Then, with probability one, limk→∞ dist(θk,L) = 0, where dist(x,L) := infy∈L ‖x− y‖.

Proof. See Appendix 8.

4 Analysis for LTI systems

From the discussions of the previous section, the Lipschitz continuity of J is essential. Consider
the stochastic LTI system

x(k + 1) = Ax(k) +Bu(k) +Dw(k), x(0) = z ∈ R
n, (7)

where k ∈ {0, . . . , N−1}, and w(k) is a random vector whose probability mass function is dependent
on the state x(k). Under some conditions, we can prove that J corresponding to the LTI system
in (7) is Lipschitz continuous on C. In particular, the LTI system (7) can be described by the
equation x̄ = Āz + B̄ū(x̄, θ) + D̄w̄, where

x̄ :=








x(0)
x(1)
...

x(N)







, ū(x̄, θ) :=








u0(x(0); θ)
u1(x(1); θ)

...
uN−1(x(N − 1); θ)







,

and

w̄ :=








w(0)
w(1)
...

w(N − 1)







, Ā :=








In
A
...

AN







, B̄ :=









0 · · · 0

B
. . .

...
...

. . . 0
AN−1B · · · B









, D̄ :=









0 · · · 0

D
. . .

...
...

. . . 0
AN−1D · · · D









.

Summarizing, both x̄ and ū can be written as functions of θ and w̄, i.e., x̄(θ, w̄) = Āz+B̄ū(x̄(θ, w̄), θ)+
D̄w̄. Define

J(θ, w̄) :=
N∑

k=0

ck(x(k; θ, w̄), uk(x(k; θ, w̄), θ)),



where x(k; θ, w̄) is the state vector at time k for given θ and w̄. Assume that w̄ ∈WN is a discrete
random variable with the probability mass function pw̄(w̄; x̄(θ, w̄)). Then, J in (3) can be described
by

J(θ) =
∑

w̄∈D

J(θ; w̄)pw̄(w̄; x̄(θ, w̄)).

In this case, the probability mass function depends on θ. For notational simplicity, we write
pw̄(w̄; x̄(θ, w̄)) = pw̄(w̄; θ). We can prove that if the stage cost function, probability mass function,
and the control policy are Lipschitz, then J is also Lipschitz.

Proposition 3. Consider the LTI system in (7). Suppose that

1. the stage cost function ck : X × U → R+ is Lipschitz on X × U for all k ∈ {1, . . . , N};

2. for any w̄ ∈WN , pw̄(w̄; ·) is Lipschitz continuous on R
n(N+1);

3. for any k ∈ {1, . . . , N − 1}, the parameterized control policy uk : X × C → R
m is Lipschitz

continuous on X × C;

4. there exists G > 0 such that J(θ; w̄) ≤ G, ∀θ ∈ C, w̄ ∈WN .

Then, J is Lipschitz continuous on C.

Proof. See Appendix 9.

Note that the third statement of Proposition 3 is difficult to be satisfied when C = R
q. For instance,

if πk : Rn×C → R
m in (2) is a linear state feedback, i.e., πk(x, θ) = Fx, where F is a state-feedback

gain matrix and θ = vec(F ) (vec(F ) is a vectorization of F ), then πk is a bilinear function, which
is only locally Lipschitz. Although uk : Rn × C → R

m in (2) is bounded due to the projection
map, it is still not Lipschitz on C = R

q. If C is a compact subset of Rq, then by using the local
Lipschitz assumption and the compactness of C, it is easy to prove that πk(x, θ) = Fx is Lipschitz
in C. Therefore, the convergence can be guaranteed by Proposition 2.

5 Application: Building HVAC System Control with Occupant

In this paper, we consider a 3m×3m private office space with a 2.5m2 south facing window, and its
RC (resistor-capacitor) circuit analogy is given in Figure 1. To reduce the order of the model, we use
one node for air in the room and another node collecting all the thermal mass in the room, where
Ta is the air temperature (◦C), To is the outdoor air temperature (◦C), Tw is the temperature
of the aggregated mass node (◦C), qsolar is the solar radiation (W ), qinternal is the internal heat
(W ), qHVAC is the heating/cooling rate of the HVAC system (W ). We assume that the room is
conditioned by a VAV system so that qHVAC directly affects Ta. Since we use low order model, we
assume that the air node includes some portion of surfaces in the room which absorb radiative heat
and release the heat quickly to the air. To determine appropriate values of the parameters of the
circuit, we conducted a building energy simulation with EnergyPlus 8.7.0 in [52], and estimated
the parameters minimizing the root-mean-square error between the air temperatures calculated by
the EnergyPlus simulation and the low order model. The values of parameters are summarized
in Table 1. The dynamic system model is given as



Figure 1: RC circuit analogy

Table 1: Values of the parameters of the circuit in Figure 1

Parameter Value Unit

R1 0.0084197 ◦C/W
R2 0.044014 ◦C/W
R3 4.38 ◦C/W
C1 9861100 J/◦C
C2 128560 J/◦C
a 0.55 –

C2Ṫa(t) =
To(t)− Ta(t)

R2
+

Tw(t)− Ta(t)

R1
+ (1− a)qsolar(t) + qHVAC(t) + qinternal(t),

C1Ṫw(t) =
Ta(t)− Tw(t)

R1
+

To(t)− Tw(t)

R3
+ aqsolar(t).

A discrete time representation can be obtained by using the Euler discretization with a sampling
time of ∆t

Ta(k + 1)− Ta(k) =
∆t

C2R2
(To(k)− Ta(k)) +

∆t

C2R1
(Tw(k)− Ta(k))

+
∆t(1− a)

C2
qsolar(k) +

∆t

C2
qHVAC(k) +

∆t

C2
qinternal(k),

Tw(k + 1)− Tw(k) =
∆t

C1R1
(Ta(k)− Tw(k)) +

∆t

C1R3
(To(k)− Tw(k)) +

∆ta

C1
qsolar(k),

where k ∈ N is the discrete time step. In this paper, we consider ∆t = 10min sampling time with
24 hours time horizon. In the building control literature, the time step is usually chosen to be
∆t = 30min. The reason we consider finer time steps is for quicker responses to occupant’s actions.
Therefore, the discrete time horizon is N = 144. Moreover, the real weather data (To(k), qsolar(k))
for k ∈ {1, . . . N} collected during the day 30th, July, 2017, is used (see Figure 2).

Now, we assume that there is an occupant in the room, and the occupant’s stochastic behavior
affects the system dynamics. In particular, define the stochastic process (z(k))144k=0 with the state
space S = {1, 2, 3}, which represents the occupant’s feeling of cold, comfort, and hot, respectively.
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Figure 2: Weather data (To(k), qsolar(k)) for k ∈ {1, . . . , N}.

Its probability depends on the current indoor temperature Ta(k), and its probability mass function
pz(z;Ta) is obtained by the Bayesian modelling approach in [9]. The values of the probability for
different values of Ta are depicted in Figure 3. Consider some probability space (Ω,F ,P), and let
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Figure 3: The probability mass function pz(1;Ta) (blue), pz(2;Ta) (black), pz(3;Ta) (red) for dif-
ferent Ta

R be a space of occupant’s actions, and let D be some information space. The information space D
is a set of variables that affect occupant actions. For example, the values of z(k) can be an element
of D because it is used to induce occupant actions. The occupant’s actions are modelled as a map
M : D × Ω → R. In this example, we consider two possible scenarios of occupant’s actions, i.e.,

M =
[
M1 M2

]T
, described below. Arguments of M will be omitted for notational simplicity.

1. Occupancy (M1): The occupant arrives at the room at time w1 uniformly distributed within
{48, . . . , 54} (between 8am and 9am), and leaves the room at time w2 uniformly distributed
within {96, . . . , 114} (between 4pm and 7pm). The map M1(k,w1,w2) ∈ {0, 1} is

M1 =

{

0, if k < w1 or k > w2

1, otherwise
.

2. Occupant’s overriding on set point (M2): The occupant uses a control panel to increase,
decrease, or maintain the current temperature set point. The set point has the dynamic



equation Tref(k+1) = Tref(k)+M2, where Tref(k) is the current set point, andM2 is occupant’s
control input. If z(k) = 1, then

M2 =







0, w.p. 0.4
M1, w.p. 0.3
2M1, w.p. 0.2
3M1, w.p. 0.1

,

if z(k) = 2, then M2 = 0, and if z(k) = 3, then

M2 =







0, w.p. 0.4
−M1, w.p. 0.3
−2M1, w.p. 0.2
−3M1, w.p. 0.1

.

The set point is assumed to vary within the range 15 ≤ Tref(k) ≤ 30.

Accordingly, the internal heat is given by qinternal(k) = 75 + 70M1 (W ), where the first term 75 is
internal heat due to electronic products, and the second term 70M1 indicates the heat produced
by the occupant’s body. To construct a state-space model, two additional state variables are
considered in addition to Ta(k) and Tw(k). The first additional state variable is Tref(k) described
by Tref(k + 1) = Tref(k) +M2. The second one is the outdoor air temperature To(k) described by
To(k + 1) = To(k) + ∆To(k), where ∆To(k) = To(k + 1)− To(k). Even though To is a disturbance,
by including it as a state variable, the state-space model better captures the real system dynamics,
and improve the performance of the linear quadratic regulator (LQR) control policy, which will be
used to initialize the proposed control design algorithm. In summary, one obtains a state-space
model x(k + 1) = Ax(k) +Bu(k) +Dw(k) with u(k) = qHVAC(k),

x(k) =







Ta(k)
Tw(k)
Tref(k)
To(k)






, w(k) =







qsolar(k)
75 + 70M1

M2

∆To(k)






,

and

A =







1− ∆t
C2R2

− ∆t
C2R1

∆t
C2R1

0 ∆t
C2R2

∆t
C1R1

1− ∆t
C1R1

− ∆t
C1R3

0 ∆t
C1R3

0 0 1 0
0 0 0 1






, B =







∆t
C2

0
0
0






, D =








∆t(1−a)
C2

∆t
C2

0 0
∆ta
C1

0 0 0

0 0 1 0
0 0 0 1







,

The stage cost function at time k is defined as ck(x(k), u(k)) = x(k)TQx(k) + u(k)TRu(k) if
w1 ≤ k ≤ w2 and ck(x(k), u(k)) = u(k)TRu(k) otherwise, where R = 0.00001 and

Q =
[
1 0 −1 0

]T [
1 0 −1 0

]
.

Note that x(k)TQx(k) = (Ta(k) − Tref(k))
2 is the square of the set point tracking error, and

u(k)TRu(k) represents the control input energy. R is a weight to balance between the tracking
performance and the energy saving. Its value was chosen by experiments.



5.1 Output-feedback control with 24 hours time-horizon

In this subsection, we present an output-feedback control structure. Let FLQR(k), k ∈ {0, . . . , N −
1}, be the finite-horizon LQR state-feedback gain for (A,B). Assume that the control input qHVAC

is saturated when qHVAC > 1000W or qHVAC < −1000W . We use a parameterized control policy (2)
of the following form:

uk(x(k); θc) = ΠU (FLQR(k)x(k) + πk(x(k); θc)), (8)

where ΠU is the projection onto a convex set U , and U = [−1000, 1000], πk(x(k); θc) is an addi-
tive control input to be determined, which compensates the LQR control policy to improve the
performance. In addition, consider the parameterization of πk(x(k); θc)

πk(x(k); θc) = F1x(k) + φ(k − 40)F2x(k) + φ(k − 80)F3x(k)

+ φ(k − 120)F4x(k) + φ(x1(k)− 20)F5x(k)

+ φ(x1(k)− 25)F6x(k) + φ(x1(k)− 30)F7x(k)

+ φ(x3(k)− 20)F8x(k) + φ(x3(k)− 25)F9x(k)

+ φ(x3(k)− 30)F10x(k), (9)

where φ is the Gaussian radial basis function φ(t) := exp(−t2/(2σ2)), σ = 10, and θc is any
vectorization of {F1, · · · , F10}. To meet practical needs, we will apply a output-feedback control
scheme. In particular, the wall temperature Tw cannot be exactly measured in building control

applications. The measurable output vector y(k) ∈ R
3 is y(k) = Cx(k), where C =





1 0 0 0
0 0 1 0
0 0 0 1



.

Since (A,C) is observable, we can consider the Kalman filter to estimate the current state

x̂(k + 1) = Ax̂(k) + LKal(k)(Cx̂(k)− y(k))

for k ∈ {0, . . . , N − 1}, where LKal(k), k ∈ {0, . . . , N − 1}, are the Kalman filter gains for (A,C)
and x̂(k), k ∈ {0, . . . , N}, are the estimated states. An output-feedback controller is u(k) =
FLQR(k)x̂(k), k ∈ {0, . . . , N − 1}. We consider a modified Kalman filter of the form

x̂(k + 1) = Ax̂(k) + LKal(k)(Cx̂(k)− y(k)) + ωk(e(k); θo)

for k ∈ {0, . . . , N−1}, where e(k) := Cx̂(k)−y(k), ωk(e(k); θo) is an additive term that compensates
the original Kalman filter, which is parameterized as follows:

ωk(e(k); θo) = L1e(k) + φ(k − 40)L2e(k) + φ(k − 80)L3e(k)

+ φ(k − 120)L4e(k) + φ(e1(k)− 20)L5e(k)

+ φ(e1(k)− 25)L6e(k) + φ(e1(k)− 30)L7e(k)

+ φ(e2(k)− 20)L8e(k) + φ(e2(k)− 25)L9e(k)

+ φ(e2(k)− 30)L10e(k),

and θo is any vectorization of the matrices {L1, . . . , L10}. With the state estimate, the control
policy uk(x̂(k); θc) in (9) is used. To guarantee the convergence, the convex set C is set to be
C = [−100, 100]q. We can prove that J is Lipschitz continuous on C.

Proposition 4. Assume that the probability mass function pz(z; ·) is Lipschitz continuous on R.
Then, J is Lipschitz continuous on C.



Proof. Since the building thermal dynamics is modelled as a stochastic LTI system, we will ap-
ply Proposition 3. In particular, the stage cost function ck is quadratic (for any w1 and w2),
which is continuously differentiable. Therefore, it is Lipschitz on any compact subset by [50, Corol-
lary 6.4.20]. Due to the projection in (8), we have U = [−1000, 1000]. Therefore, ck is Lipschitz
continuous on X ×U by [49, Corollary 12.2]. Thus, 1) of Proposition 3 is satisfied. The statement
2) Proposition 3 is satisfied by hypothesis. To prove 3), note that (9) is continuously differentiable
w.r.t. (x, θ). By [50, Corollary 6.4.20], it is Lipschitz continuous on every compact set on X × C.
On the other hand, it can be proved that the projection ΠC is Lipschitz continuous on C because
it is a non-expansive map. By [49, Theorem 12.6], the composition function (8) is Lipschitz on
C. Therefore, uk(x; θ) in (8) with (9) is Lipschitz continuous w.r.t. (x, θ) on X × C. Thus, 3)
of Proposition 3 is satisfied. Finally, since the disturbance and control input are bounded for all
θ ∈ C, and the sum in (3) is finite, J(θ) is also bounded. Thus, 4) of Proposition 3 is satisfied. The
proof is completed by applying Proposition 3.

Recall the set of stationary points of Ĵβ on C defined as

L := {ξ ∈ C : −∇θĴ(ξ) ∈ NC(ξ)}.

Below, we establish the convergence of Algorithm 1 for the system under our consideration.

Proposition 5. Assume that the probability mass function pz(z; ·) is Lipschitz continuous on R

and Ĵβ(L) has an empty interior. Moreover, let (θt)
∞
t=0 Be the stochastic process generated by Al-

gorithm 1 with the step-size rule in (6). Then, with probability one, limk→∞ dist(θk,L) = 0, where
dist(x,L) := infy∈L ‖x− y‖.

Proof. We will check that all the conditions in Proposition 2 are satisfied. By Proposition 4, J is
Lipschitz continuous on C. In addition, C is described by C = {θ ∈ R

q : eTj θ−100 ≤ 0,−eTj −100θ ≤
0, j ∈ {1, . . . , q}}, where ej ∈ R

q is the vector whose elements are zeros except for its j-th element
which is one. The left-hand side of each inequality consisting of C is affine, and all the conditions
in Assumption 2 are satisfied. Therefore, the required conditions in Proposition 1 hold, and the
proof is completed.

We applied Algorithm 1 with θ =
[
θTc θTo

]T
, β = 0.001, NJ = 20, Nη = 1, 104 iterations, and

the initial state x(0) =
[
25 25 25 17

]T
. Simulation results of the proposed control policy and

the LQR policy are given in Figure 4 and Figure 5, respectively. Histograms of the costs of the
two methods are compared in Figure 6 with a total of 1500 simulations. The average cost of the
proposed control is 508.9, while 1361.7 for the LQR control. The result suggests that Algorithm 1
can potentially improve existing approaches.

Conclusion

In this paper, we studied an approximate policy gradient RL for stochastic optimal control design
algorithm. It can be applied to complicated stochastic systems that cannot be easily solved by
existing methods. Through simulation studies of building control with occupant interactions, we
demonstrated its applicability and performance. Potential future research agendas are summarized
as follows. 1) Establishing bounds on the loss of accuracy/suboptimality because of the convolution
smoothing approach can be established by using [40, Theorem 1]. Comprehensive analysis is an
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Figure 4: Simulation result with proposed output-feedback control.

avenue for future work. 2) The approach can scale to multi-zone building spaces with occupants
movement between zones. In this case, statistical models that can simulate the movement of occu-
pants are required. For computationally scalable algorithms, distributed optimization techniques,
e.g., [53], can be considered. 3) An extension of the proposed method to constrained optimizations
is useful in building control applications, where one may want to control the zone temperature
to lie within an interval. For constrained stochastic optimizations, the barrier or augmented La-
grangian method [47] can be readily applied, while further attentions need to be payed for rigorous
convergence analysis.
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[41] F. Yousefian, A. Nedić, and U. V. Shanbhag, “On stochastic gradient and subgradient methods
with adaptive steplength sequences,” Automatica, vol. 48, no. 1, pp. 56–67, 2012.

[42] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” in Advances in neural information
processing systems, 2000, pp. 1057–1063.

[43] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal locomo-
tion,” in Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, vol. 3, 2004, pp. 2619–2624.

[44] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy gradients,” Neural
networks, vol. 21, no. 4, pp. 682–697, 2008.

[45] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic policy
gradient algorithms,” in ICML, 2014.

[46] D. Lee, S. Lee, P. Karava, and J. Hu, “Simulation-based policy gradient and its building control
application,” in American control conference (ACC2018) (in press), 2018.

[47] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999.

[48] P. Sadegh and J. C. Spall, “Optimal random perturbations for stochastic approximation us-
ing a simultaneous perturbation gradient approximation,” IEEE Transactions on Automatic
Control, vol. 43, no. 10, pp. 1480–1484, 1998.

[49] K. Eriksson, D. Estep, and C. Johnson, Applied mathematics: Body and soul: Volume 1:
Derivatives and geometry in IR3. Springer Science & Business Media, 2013.

[50] H. H. Sohrab, Basic real analysis. Springer, 2003, vol. 231.

[51] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected stochastic gradient
algorithm for non-convex optimization,” IEEE Transactions on Automatic Control, vol. 58,
no. 2, pp. 391–405, 2013.

[52] U. D. of Energy, “Energyplustm 8.7.0 documentation,” https://energyplus.net/documentation,
[Online Available].

[53] J. Cai, D. Kim, R. Jaramillo, J. E. Braun, and J. Hu, “A general multi-agent control approach
for building energy system optimization,” Energy and Buildings, vol. 127, pp. 337–351, 2016.

[54] S. Bhatnagar, H. L. Prasad, and L. A. Prashanth, Stochastic recursive algorithms for opti-
mization: simultaneous perturbation methods. Springer, 2012, vol. 434.

https://energyplus.net/documentation


Appendices

6 Useful Lemmas

In this section, some important results for the proofs of this paper are presented.

Lemma 1 ( [40]). Under Assumption 1, the following properties hold:

1. Ĵβ is Lipschitz continuous on C with constant L0(Ĵβ) > 0 with L0(Ĵβ) ≤ L0(J).

2. |J(θ)− Ĵβ(θ)| ≤ βL0(J)q
1/2, ∀θ ∈ C.

3. ∇θĴβ is Lipschitz continuous on C with constant L1(Ĵβ) = (2q1/2/β)L0(J).

Proof. The proof of 1) follows from [40, pp. 533], proof of 2) is given in [40, Theorem 1], and 3) is
proved in [40, Lemma 1].

Another important property is that E{‖g(x)‖2} is bounded, where g(x) is the following gradient
estimate defined in (5):

∇θĴβ(θ) ∼= g(θ) :=
1

2β

1

Nη

Nη∑

i=1

[J̃(θ + βη(i))− J̃(θ − βη(i))]η(i).

The boundedness can be proved by using the following fact: since U , X, and W are bounded, there
exists a real number G > 0 such that J̃(θ) ≤ G for all θ ∈ C.

Lemma 2. There exists a real number G > 0 such that J̃(θ) ≤ G for all θ ∈ C.

Using the above lemma, we can prove that E{‖g(θ)‖2} is bounded for all θ ∈ C.

Lemma 3. We have E{‖g(θ)‖2} ≤ 1
Nη

G2q for all θ ∈ C.

Proof. We have

E{‖g(x)‖2} = E{g(x)T g(x)}

=

(
1

2β

1

Nη

)2

E







Nη∑

i=1

Nη∑

j=1

(J̃(θ + βη(i))− J̃(θ − βη(i)))(J̃(θ + βη(j))− J̃(θ − βη(j)))(η(i))T η(j)







≤

(
1

2β

1

Nη

)2

E







Nη∑

i=1

Nη∑

j=1

4G2(η(i))T η(j)







=

(
1

2β

1

Nη

)2

E







Nη∑

i=1

4G2(η(i))T η(i)







=

(
1

2β

1

Nη

)2

4G2

Nη∑

i=1

E{tr(η(i)(η(i))T )}



=

(
1

2β

1

Nη

)2

4G2β2qNη

=
1

Nη
G2q,

where in the first inequality, we used Lemma 2 and in the fourth equation, we used E{tr(η(i)(η(i))T )} =
tr(β2Iq).

7 Proof of Proposition 1

To prove Proposition 1, we use results in [29, Prop. 4.1]. Consider an algorithm of the form θt+1 =
θt+γtst, and denote the history of the algorithm until time t by It := {θ0, . . . , θt, γ0, . . . , γt, s0, . . . , st−1}.
For convergence of this algorithm, some assumptions are needed.

Assumption 3 ( [29, Assumption 4.2]). We assume that there exists a function f : Rq → R with
the following properties:

1. f(x) ≥ 0 for all x ∈ R
q.

2. f is differentialble, and its gradient ∇f is Lipschitz continuous with constant L > 0.

3. There exists a positive constant c > 0 such that c ‖∇f(θt)‖
2 ≤ −∇f(θt)

T
E{st|It} for all t.

4. There exist positive constants K1 > 0 and K2 > 0 such that E{‖st‖2|It} ≤ K1+K2‖∇f(θt)‖2

for all t.

Recall the step-size rule in (6)

lim
t→∞

γt = 0,
∞∑

t=0

γt =∞,
∞∑

t=0

γ2t <∞.

Under Assumption 3 and the above step-size rule, convergence of θt to a stationary point of f is
guaranteed with probability one.

Lemma 4 ( [29, Prop. 4.1]). Consider the algorithm θt+1 = θt+γtst, where (γt)
∞
t=0 are nonnegative

and satisfy (6). Under Assumption 3, the following properties hold with probability one:

1. The sequence (f(θt))
∞
t=0 converges.

2. limt→∞∇f(θt) = 0.

3. Every limit point of (θt)
∞
t=0 is a stationary point of f .

Now, one can easily prove that g(θt) in (5) satisfies Assumption 3 for Ĵβ . Therefore, by Lemma 4,
(θt)

∞
t=0 converges to its stationary point θ∗ with probability one.

Proof of Proposition 1. All we need to do is to prove that Assumption 3 is satisfied. Since the
stage cost function satisfies ck ≥ 0 by assumption, J ≥ 0 and Ĵβ ≥ 0. Thus, the first statement
of Assumption 3 holds. The second and forth statements are proved by 3) of Lemma 1 and
Lemma 3, respectively, with st = −g(θt). Moreover, since E{−g(θt)|It} = −∇Ĵβ(θt), the third
statement holds with C = 1. The proof is completed by Lemma 4.



8 Proof of Proposition 2

To prove Proposition 2, we can use the Kushner-Clark theorem for convergence of projected stochas-
tic approximation in [54] or follow the existing work [51] for multi-agent projected stochastic gra-
dient algorithm. In this section, we will apply single-agent version of [51, Theorem 1]. Consider
the optimization problem minθ∈C Ĵβ(θ), where Ĵβ : Rq → R is continuously differentiable and C is a
nonempty compact convex subset of Rq. In addition, let (θt)

∞
t=0 be a stochastic process generated

by θt+1 = ΠC(θt − γtYt), where (Yt)
∞
t=0 is another process and (γt)

∞
t=0 is a deterministic step-size

rule. Suppose that (Yt)
∞
t=0 is defined on a measurable space equipped with a probability P. We

introduce the σ-filed Ft := σ(θ0, Y0, . . . , Yt). Recall the set of stationary points of Ĵβ on C defined
as

L := {ξ ∈ C : −∇θĴ(ξ) ∈ NC(ξ)}.

The convergence result in [51, Theorem 1] is summarized in the following lemma.

Lemma 5 ( [51, Theorem 1]). Suppose that Assumption 2 holds, Ĵβ(L) has an empty interior,

and (γt)
∞
t=0 are nonnegative and satisfy (6). In addition, assume that E{Yt|Ft−1} = ∇Ĵβ(θt), t ∈

{1, . . .}, and supθ∈C
∫
‖y‖2 dµθ(y) < ∞, where µθn−1

(S) := P(Yt ∈ S|Ft−1) for any measurable
set S and (µθ)θ∈Rq is a given family of probability measures on R

q. Then, with probability one,
limt→∞ dist(θt,L) = 0, where dist(x,L) := infy∈L ‖x− y‖.

Sketch of the proof of Proposition 2. We first replace Yt with g(θt). By 3) of Lemma 1, Ĵβ is con-
tinuously differentiable. Since Yt = g(θt) and the random variable g(θ) only depends on θ ∈ R

q,
there exists a family of probability measures (µθ)θ∈Rq such that µθn−1

(S) := P(Yt ∈ S|Ft−1). To

prove supθ∈C
∫
‖y‖2 dµθ(y) < ∞, set y = g(θ). Then, it is equivalent to supθ∈C E{g(θ)} < ∞,

which is proved in Lemma 3. This completes the proof.

9 Proof of Proposition 3

To prove Proposition 3, we need an intermediate result which states that the state vector at time
k is Lipschitz with respect to θ on C.

Lemma 6. Suppose that the assumptions in Proposition 3 hold. For any fixed w̄ ∈ WN and
k ∈ {1, . . . , N}, x(k; ·, w̄) is Lipschitz continuous on C.

Proof. The proof is completed by induction. First, we prove that x(1; ·, w̄) is Lipschitz continuous
on R

q. For any given x(0) = z, we have x(1; ·, w̄) = Az + Bu0(z, ·) + Dw(0), which is an affine
transformation of the Lipschitz continuous function u0(z, ·). By [49, Theorem 12.6], the composition
of two Lipschitz functions is Lipschitz. Therefore, x(1; ·, w̄) is Lipschitz on R

q. Assume that x(k−
1; ·, w̄) is Lipschitz on R

q. Then, x(k; ·, w̄) is described by x(k; ·, w̄) = Ax(k−1; ·, w̄)+Buk−1(x(k−
1; ·, w̄), ·) + Dw(k − 1), which is an affine function of x(k − 1; ·, w̄) and uk−1(x(k − 1; ·, w̄), ·). By
assumption, x(k−1; ·, w̄) and uk−1(·, ·) are Lipschitz. By composition of functions, x(k; ·, w̄) is also
Lipschitz continuous. In particular, we have

‖x(k; θ, w̄)− x(k; θ′, w̄)‖

= ‖Ax(k − 1; θ, w̄) +Buk−1(x(k − 1; θ, w̄), θ)−Ax(k − 1; θ′, w̄)−Buk−1(x(k − 1; θ′, w̄), θ′)‖



≤ ‖A‖‖x(k − 1; θ, w̄)− x(k − 1; θ′, w̄)‖

+ ‖B‖‖uk−1(x(k − 1; θ, w̄), θ)− uk−1(x(k − 1; θ′, w̄), θ′)‖

≤ ‖A‖L(x(k − 1; ·, w̄))‖θ − θ′‖

+ ‖B‖L(uk−1(·, ·))

∥
∥
∥
∥

[
x(k − 1; θ, w̄)

θ

]

−

[
x(k − 1; θ′, w̄)

θ′

]∥
∥
∥
∥

≤ ‖A‖L(x(k − 1; ·, w̄))‖θ − θ′‖

+ ‖B‖L(uk−1(·, ·))(
∥
∥x(k − 1; θ, w̄)− x(k − 1; θ′, w̄)

∥
∥+

∥
∥θ − θ′

∥
∥)

≤ [‖A‖L(x(k − 1; ·, w̄)) + ‖B‖L(uk−1(·, ·)) + ‖B‖L(uk−1(·, ·))L(x(k − 1; ·, w̄))]
︸ ︷︷ ︸

L(x(k;·,w̄))

‖θ − θ′‖

By the induction argument, x(k; ·, w̄) is Lipschitz in C for all k ∈ {1, . . . , N}. This completes the
proof.

As a next step, we prove that J is also Lipschitz continuous on C.

Lemma 7. For any fixed w̄ ∈WN , J(θ, w̄) defined as

J(θ, w̄) :=
N∑

k=0

ck(x(k; θ, w̄), uk(x(k; θ, w̄), θ)),

is Lipschitz continuous w.r.t θ on C.

Proof. We have

|J(θ, w̄)− J(θ′, w̄)| ≤
N∑

k=0

∣
∣
∣
∣

(
ck(x(k; θ, w̄), uk(x(k; θ, w̄), θ))
−ck(x(k; θ

′, w̄), uk(x(k; θ
′, w̄), θ′))

)∣
∣
∣
∣

≤
N∑

k=0

L0(ck)‖x(k; θ, w̄)− x(k; θ′, w̄)‖

+
N∑

k=0

L0(ck)‖uk(x(k; θ, w̄), θ)− uk(x(k; θ
′, w̄), θ′)‖

≤
N∑

k=0

L0(ck)‖x(k; θ, w̄)− x(k; θ′, w̄)‖

+
N∑

k=0

L0(ck)L0(uk)‖x(k; θ, w̄)− x(k; θ′, w̄)‖+
N∑

k=0

L0(ck)L0(uk)‖θ − θ′‖,

where the second inequality follows from the Lipschitz continuity of ck, and the last inequality from
the Lipschitz continuity of uk. The proof is completed by using Lemma 6.

Proof of Proposition 3. We have

|J(θ)− J(θ′)|

≤
∑

w̄∈WN

|J(θ; w̄)pw̄(w̄; θ)− J(θ′; w̄)pw̄(w̄; θ
′)|



≤
∑

w̄∈WN

|J(θ; w̄)pw̄(w̄; θ)− J(θ′; w̄)pw̄(w̄; θ)|+
∑

w̄∈WN

|J(θ′; w̄)pw̄(w̄; θ)− J(θ′; w̄)pw̄(w̄; θ
′)|

≤ ‖θ − θ′‖
∑

w̄∈WN

L0(J(·; w̄))pw̄(w̄; θ) + ‖θ − θ′‖
∑

w̄∈WN

J(θ′; w̄)L0(pw̄(w̄; ·))

≤ L0(J)‖θ − θ′‖,

where L0(J) = Gmaxw̄∈W L0(pw̄(w̄; ·)) + maxw̄∈W L0(J(·; w̄)), the first inequality follows from
the triangle inequality, the third inequality follows from Lemma 7 and the Lipschitz continuity of
pw̄(w̄; ·), and the last inequality from the boundedness of J(·; w̄). This completes the proof.
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