Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

8-2005

Prediction of Random Incidence Transmission Loss based on Normal Incidence Four-Microphone Measurements

Taewook Yoo Purdue University

J Stuart Bolton Purdue University, bolton@purdue.edu

Jonathan H. Alexander *3M Company*

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Yoo, Taewook; Bolton, J Stuart; and Alexander, Jonathan H., "Prediction of Random Incidence Transmission Loss based on Normal Incidence Four-Microphone Measurements" (2005). *Publications of the Ray W. Herrick Laboratories.* Paper 172. https://docs.lib.purdue.edu/herrick/172

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Prediction Of Random Incidence Transmission Loss Based On Normal Incidence Four-Microphone Measurements

Taewook Yoo J. Stuart Bolton Ray W. Herrick Laboratories

Jonathan H. Alexander 3M Corporation

Objectives

Procedures for measuring the normal incidence transmission loss of porous material are now available

Can normal incidence information be used to estimate random incidence transmission loss

Overall Approach

 Use 4-mic TL tube to estimate characteristic properties of porous materials

2. Use k_p and ρ_p in theoretical prediction of random incidence TL

* Approach works only for porous materials that can be modeled as effective fluids

Introduction

- 1. 4-mic transmission loss tube
 - Transfer matrix method and two-load method
 - In this study, the transfer matrix method was applied
 - Mid-size impedance tube (d:63.5 cm) was used
- 2. Normal impedance prediction
 - Measurements in one configuration used to predict performance in other configurations
- 3. Random incidence TL prediction
 - Closer to real application
 - No simple relationship with normal incidence TL

1-1 Transfer Matrix Method (Song and Bolton JASA 2000)

1-2 Two Load Method (Munjal)

Advantage: no requirement that sample be symmetric

Disadvantage: twice as many measurements

1-3 Materials

□ THL3

- polyester staple fibers
- Lower density than TC3303
- Lower TL and absorption coefficient
- Thinner than TC3303
- □ TC3303
 - blown micro fibers with mix of polypropylene and polyester staple fibers

	THL3	TC3303
Thickness [cm]	3.95	4.98
Mass per unit area [g/m2]	156	376

1-4 Two-Load and Transfer Matrix Methods

- Two-load and transfer matrix methods show perfect agreement both on magnitude and phase.
- Two-load method needs two different terminations with and without a sample: Total of four measurements are required

1-5 Typical Results

 \blacksquare α_d represents the fraction of the incident energy dissipated within the sample

1-6 Normal incidence TL (average of 10 measurements)

- Because of leakage problem, two layers were used for normal incidence TL test.
- □ Edge-constraint effects appear at low frequencies in the measurements
- Higher duct modes appear in sample around 3 kHz and cause increased standard deviation

1-7 Higher Order Modes in Samples

- □ Since wave speed in porous materials is subsonic, higher order modes may "cut-on" in the sample at lower frequencies than in the tube
 - TC3303 accurate at frequencies < 2700 Hz</p>
 - THL3 accurate at frequencies < 3100 Hz</p>
- This effect limits high frequency accuracy of the measurements

1-8 Complex Density and Complex Wave Number

- Normalized complex densities show that TC3303 has higher density
- $\square \quad \text{Phase speed:} \quad \frac{\omega}{\text{Re}\{k_p\}}$
- $\Box \quad \text{Attenuation per m: } \text{Im}\{k_p\}$
- These values can be used in SEA, FE predictions and plane wave predictions

2-1 Prediction of Hard Termination Impedance

• Use values of k_p and ρ_p measured in 4-microhpone tube to predict properties of same material in different environment (e.g., hard backing) and compare with direct measurement

2-2 Prediction of Hard Termination Case Absorption coefficient

3-1 Random Incidence Transmission Loss (for rigid or limp porous materials)

Region I
$$\begin{cases} P_1 = e^{-jk_x x - jk_y y} + Re^{jk_x x - jk_y y} \\ U_{1x} = -\frac{1}{j\omega\rho_0} \frac{\partial P_1}{\partial x} = -\frac{1}{j\omega\rho_0} (-jk_x e^{-jk_x x - jk_y y} + jk_x Re^{jk_x x - jk_y y}) \end{cases}$$

Region II
$$\begin{cases} P_2 = Ae^{-jk_{px}x - jk_{py}y} + Be^{jk_{px}x - jk_{py}y} \\ U_{2x} = -\frac{1}{j\omega\rho_p} \frac{\partial P_2}{\partial x} = -\frac{1}{j\omega\rho_p} (-jk_{px}Ae^{-jk_{px}x - jk_{py}y} + jk_{px}Be^{jk_{px}x - jk_{py}y}) \end{cases}$$

Region III
$$\begin{cases} P_3 = Te^{-jk_x x - jk_y y} \\ U_{3x} = -\frac{1}{j\omega\rho_0} \frac{\partial P_3}{\partial x} = -\frac{1}{j\omega\rho_0} (-jk_x Te^{-jk_x x - jk_y y}) \end{cases}$$

 k_p and ρ_p can be acquired from normal incidence TL test

Transmission coefficient

$$T = \frac{2\frac{\rho_p k_x}{\rho_0 k_{px}}}{e^{-jdk_x} \left\{ j \sin dk_{px} \left(\left(\frac{\rho_p k_x}{\rho_0 k_{px}} \right)^2 + 1 \right) + 2\frac{\rho_p k_x}{\rho_0 k_{px}} \cos dk_{px} \right\}}$$

where $\overline{\tau} = \int$

Transmission loss $TL = 10 \log_{10}(1/\overline{\tau})$

 $\sin 2\theta d\theta$

3-2 Test Setup of Random Incidence TL

- Test was performed in reverberation room with intensity probe with two different sized spacers.
- TL was calculated by averaging TL at 25 points over sample

Two layers of each material were used

3-3 Random Incidence Transmission Loss

Predictions based on complex density and wave number and direct measurements show excellent agreement

Summary

- Random incidence transmission loss and other acoustical properties (e.g., surface normal impedance) can be predicted by using complex wave number (k_p) and complex density (ρ_p) which can be acquired from normal incidence TL test (materials should be rigid or limp)
- Prediction and measurement of surface normal impedance and random incidence transmission loss showed good agreement with each other
- At low frequencies: measurements affected by edge-constraint effect
- At high frequencies: measurements affected by higher order mode propagation within the sample
- □ Transfer matrix and two-load method gave same results
- Transfer matrix method is more convenient than two-load method when the material is symmetric because a single measurement is sufficient

