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ABSTRACT

As an increasing population intensifies demands on the world’s water supplies’ questions are often raised about 
the best sampling practice to detect changes in water quality. However, it is often difficult to define the appropriate 
number of water samples to take within a given water-monitoring program. Therefore, we present a discussion on 
how to best define the number of samples required to assess changes in a watershed. A better defined plan will 
allow watershed managers a means to optimize their approaches to water quality protection.
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1. INTRODUCTION

Of the many questions asked by watershed managers 
across the world, one common inquiry is: “As part of 
our watershed project how many samples do we need 
to collect and examine to understand what is going 
on with the water?” This question holds regardless 
of where the work is conducted, and the answer will 
impact the size, scope, and cost of the effort. The 
secondary version of the question is how many water 
samples do we need collect to detect a change caused 
by a new management or conservation practice? At 
the outset of considerations, the watershed manager 
should be aware that the number of water samples 
that will be needed will reflect the intrinsic variance in 
water systems studied. This point is often overlooked 
for a more idealistic approach of “needing to know 
what is out in the watershed.” In order to show a 
significant difference from a management change, 
be prepared to collect more samples where the 
variance is high, as in streams and rivers, than where 
the variance is low, lakes, and ponds. There is not a 
right or wrong answer on sampling intensity; there are 
choices and consequences about what can be said 
from the findings. The most important consideration 
is “what do we want to know about our system” – 
this will govern the best approach. To this end, one 
should resolve a number of early issues including: 
(1) what materials are we interested in evaluating;  
(2) what level of change are we interested in detecting; 
(3) can we manage the sample collection analysis 
process; (4) are we interested in only concentration 
or do we want to measure flow volumes and consider 
the load of the materials in the water system; and 
the ultimate concern, (5) what level of confidence 
do we want to have in our findings (e.g., what do the 
numbers really mean and are they defensible at some 
level of statistical significance?) There are a number 
of statistical approaches that can be used to provide 
directions and inform this process.

To inform the process, the development of a sampling 
plan should include the collection of a preliminary set 
of samples – establishing a mean, standard deviation, 
and variance. The preliminary sampling should cover 
a significant length of time and include the types 
of weather conditions common in the watershed. 
Collecting five samples in 5 days is far different from 
collecting five samples ~5 months. An estimation of 
concentration mean and standard deviation will allow 
for a better prediction of initial levels of precision for the 
project. If resources are limited, utilize other studies from 
the region to inform the local process. Data presented 
later in this section give an indication of the types of 
variance you will typically encounter in both large and 
small Midwest streams. However, many aspects of 
water contamination are correlated. So, sometimes it is 
difficult to get an absolute answer. Another subtle issue 
to consider is that installing field scale implementation 
practices along a stream will only have an effect on 
that water coming into contact with the practice. The 
anticipated reductions in contamination for the overall 
watershed may be difficult to detect if practices only 
cover a small portion of the watershed.

Because of resource limitations, what occurs most 
often is the use of a fixed sampling plan (often quarterly) 
that is imposed on the project, and a consideration of 
data precision and the level of detectable difference 
is never actually stated. Statistically, using a fixed 
approach will limit the sensitivity of analysis and the 
degree of system change that is detectable (as the 
response is controlled by the variance in the system). 
Therefore, using a general fixed sampling plan will 
give a “view” of the system but is insensitive to the 
level of variance present. For example, if your goal is 
a 25% reduction in the level of nitrate, phosphorus, 
or Escherichia coli in a water system, your sampling 
strategy should be designed to indicate this level of 
reduction at a stated confidence level so you could 
detect if you have had an impact from a conservation 
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practice on the water quality in a given location. One 
could also use the approach to detect differences in two 
streams or in portions of a stream. The most important 
consideration is at what level of confidence (what level 
of significance) the findings can be held. With a fixed 
sampling protocol, the levels of “significant reduction” 
that is detectable and can be stated as significant 
(regardless of what you actually hope to achieve) 
are controlled by the imposed sampling plan (sample 
number) set inside the systems’ level of variance.

This is fine except if ask the general question “did the 
imposed change significantly impact water quality”? 
For a watershed manager, a well-crafted data collection 
and analysis will clearly demonstrate if a management 
system has caused a significant difference. To be 
clear, when used in this context the word “significant” 
means the likelihood that an event could occur above 
a level controlled by only chance. So when we say 
the event is significant (e.g., a reduction in a nutrient 
level) at an alpha of 5%, it means the event occurs 
randomly 5% or less of the time, and we are 95% 
confident that the result is real. More importantly, by 
setting a desired level of significance, we can test to 
see if one data set (result 1) is different from another 
data set (result 2), and answer the question about the 
significance of the management change has made. 
This leads to a second point; to show you have had 
an impact on some aspect of water quality after you 
impose a practice, it is best to have collected data on 
quality prior to that practice being applied. If sampled 
correctly, this can provide irrefutable proof of the 
change. Moreover, even when the sampling frequency 
is less than ideal, a before and after approach can at 
least demonstrate numeric differences and aid in the 
discussion of the practice.

In using this approach, we are looking for help in 
establishing the number of samples needed to see a 
change in average values over a period of time with 
everything occurring in some level of sampling noise.

2. DETERMINING SAMPLE NUMBER

So the question becomes what is the “real signal 
and within the noise” and can we see a change in 

the signal? If we collect ~100 river samples and find 
a mean value as 0.148 mg of X L−1 with a standard 
deviation of 0.131 mg L−1 and then impose a practice 
with the goal of reducing the mean value in the water 
to 0.14 mg L−1 (a 5% reduction) assuming that the 
standard deviation in the second set of samples 
remains the same, from a statistical point-of-view, 
how many samples do we need to collect to prove this 
change is significant? Typically sampling plans are not 
presented with this approach.

To illuminate these points, a data set from water 
samples collected on three Indiana streams and the 
midsection of the Wabash River was used to show the 
importance of sampling frequency on the precision of 
results. In this study, we collected data on a number 
of parameters, but this discussion will be constrain 
to a consideration of concentration of E. coli, total 
suspended soils, total phosphorus (TP), ammonia, and 
nitrate as these are often at the core of many sampling 
programs. The general characteristics of the water 
systems are found in Table 1. It is clear that we are 
dealing with two classes of stream based on flow rates 
(the Wabash and the other three streams). Another 
approach to sample would be done considering load 
(which requires an estimate of flow) and is beyond this 
discussion. In terms of watershed management, the 
values in Table 1 should be considered pretreatment 
values, as we have not imposed any sort of land 
managements on the watershed systems.

The mean values for the five sampling locations 
and each targeted parameter are presented in 
Tables 2–6. For the systems, the values show high 
standard deviations directly connected to extremes 
in their concentration range. For example, E. coli 
numbers can range from 0 to ~92,000 cfu 100 mL−1 
on the same stream. Further observation of the data 
sets indicates that extreme values are commonly 
encountered in all of the measured parameters. 
Therefore, picking the right sample number comes 
down to how we evaluate of the changes in the 
sample mean within a range of values created by 
the standard deviation. This is the interaction that 
actually controls how we should address future 
assessments in the system.

Table 1. Water quantity and associated land use data.

System Mean (x) 
(cfs)

Standard 
deviation (d)

High flow 
(cfs)

Low flow 
(cfs)

Total  
area acr

Total  
AG (%)

Total  
Dev (%)

Total  
For (%)

Wabash R. 1 7,837 9,053 58,646 1,056

Wabash R. 2 8,147 9,411 60,967 1,098

Little Pine 25.7 55 800 0.02 13,855 89.6 7.3 2.6

Little Wea 24.9 50 1,413 0.41 11,067 93.8 4.3 1.2

Elliott Ditch 19.6 58 1,748 0.3 11,451 47.2 48 1.8

cfs, cubic feet per second; AG, agriculture; Dev, developed; For, forest.
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Table 2. Summary of water quality data – E. coli

System Mean (x)  
mg/L

Standard  
deviation (d)

Min 
mg/L

Max 
mg/L

Range Count

Wabash R. 1 334 591 10 2489 2479 126

Wabash R. 2 663 1669  9 15531 15522 128

Little Pine 1671 3081 33 24195 24162 137

Little Wea 547 1237 12 9803 9791 139

Elliott Ditch 2452 9422 17 92084 92066 140

Table 3. Summary of water quality data – Total Suspended Solids (TSS)

System Mean (x)  
mg/L

Standard  
deviation (d)

Min 
mg/L

Max 
mg/L

Range Count

Wabash R. 1 39 49 1.2 272 271 126

Wabash R. 2 49 58 3.2 304 301 127

Little Pine 23 34 1.2 261 260 138

Little Wea 15 41 0.4 352 351 137

Elliott Ditch 12 25 0 172 172 138

Table 4. Summary of water quality data – Total Phosphorus (P)

System Mean (x)  
mg/L

Standard  
deviation (d)

Min 
mg/L

Max 
mg/L

Range Count

Wabash R. 1 0.07 0.08 0 0.62 0.62 125

Wabash R. 2 0.10 0.07 0 0.51 0.51 124

Little Pine 0.15 0.13 0.02 0.89 0.88 136

Little Wea 0.051 0.12 0 0.73 0.73 136

Elliott Ditch 0.061 0.345 0 2.76 2.76 139

Table 5. Summary of water quality data – Ammonium-N (NH4+)

System Mean (x)  
mg/L

Standard  
deviation (d)

Min 
mg/L

Max 
mg/L

Range Count

Wabash R. 1 0.049 0.21 0 1.6 1.6 125

Wabash R. 2 0.045 0.15 0 1.3 1.3 126

Little Pine 0.04 0.12 0 0.89 0.89 137

Little Wea 0.09 0.64 0 7.36 7.36 137

Elliott Ditch 0.08 0.34 0 2.76 2.76 139

Table 6. Summary of water quality data – Nitrogen-N (NO3/2-)

System Mean (x)  
mg/L

Standard  
deviation (d)

Min 
mg/L

Max 
mg/L

Range Count

Wabash R. 1 3.08 2.07 0 8.3 8.3 125

Wabash R. 2 2.79 2.03 0 8.4 8.4 126

Little Pine 6.42 3.99 0.03 20.87 20.84 137

Little Wea 4.45 2.81 0.02 14.2 14.1 137

Elliott Ditch 1.14 0.74 0 4.28 4.28 139
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3. APPROACH

To answer the question posed in Section 1, Dunnette 
(1980) and others (National Water Quality Handbook 
[NWQH], 2003) provide an approach for estimating 
sample numbers for a watershed study. This approach 
is designed to determine the true mean with a specified 
level of accuracy. They suggest use of the equation

 
σ=n z
L

2 2

2
 (1)

n is the number of samples one “should” take, z is 
the confidence coefficient (the same as a Student’s 
t factor), s is the sample variance (the standard 
deviation squared), and L is the desired difference 
from the mean. For data sets where a large number 
of samples are used to create the mean, the z factor 
can be set to an infinity value, simplifying calculations 
while giving a good indication of n. As one makes 
calculations, no changes with the z value is required 
as long as n remains large. As more refined measures 
are made, when sample numbers drop <100, a 
reconsideration of the z value (Student’s t-test value) 
should be undertaken.

For an example, we evaluated data from Little Pine 
creek to find the number of samples needed for 
a determination of a 5% reduction in TP at a 95% 
confidence level, which would be 1,268, using the 
above-described equation.

 
=

×
n (1.962) (0.131)

(0.148 0.05)

22 22

2  (2)

At this value of n, we would be 95% confident that a 
difference (up or down) of >5% from the current mean 
level of TP in the Little Pine creek can be detected. It 
must be reiterated that this value would be for before 
the management change, and a total number of 2n 
or 2,536 samples would be required to see a change 
of >5% from the implementation of a conservation 
practice (NWQH, 2003). The reason n is so large is 
that we have a highly variable system or s (relative 
to the sample mean). In this case, the coefficient of 
variation (CV = s /mean) is 88%. If the system had a 
50% reduction in s, this would reduce the n value to 
22. Therefore, if a practice did reduce the variation 
in mean, this could be accounted for determining 
future sample planning. The s value reflects the 
variance in the system, so reductions are unlikely, 
but it is critical to point out the factors motivating the 
n value. Clearly, natural systems are “messy,” highly 
variable and crosscorrelated. If we reduce the level 
of confidence, we are willing to accept to 90%, the 
number of samples required also falls to 893. On 
the other hand, the value of L can be adjusted to 
meet considerations of concentration reductions, for 
example, a desired level of reduction in TP. So if we 

are interested in observing for only large changes, say 
a 20% reduction from the mean (0.029 mg L−1), then 
the number of samples required falls to 56 or 112 for a 
pre- and postimplementation study. In this approach, 
a small change in the mean (while numerically visible) 
will be nonsignificant in its difference.

Clearly, a major use of this approach is justified when 
sampling is tied to questions about the detection of 
reductions. For example, on Little Pine TP levels’ 
average is 0.15 mg L−1. To reduce this to a target level 
of 0.08 mg L−1 (a 53% reduction), we have just installed 
a new conservation practice that has radically reduced 
the TP level. How many samples do we need to collect 
to show that a significant reduction has occurred? 
Using the above-desicribed equation, we find 95% 
confidence in our number, and we need a n value of 
11 over the year to confirm a reduction to 0.08 mg L−1. 
However, the finding would only be significant at TP 
levels of 0.08 mg L-1 or lower. That is, smaller average 
changes would appear as nonsignificant following 
statistical analysis. One must determine the level of 
reduction you need to achieve and build a sampling 
protocol to reach this point if you want to show the 
reduction.

Sampling is expensive, and we are frequently 
required to fix the number of samples collected to a 
schedule unrelated to s. For example, sampling of 
a watershed four times a year is often used. While 
this is an important and widely applied approach, an 
often unasked question is “what level of difference 
can we detect?” Using the same equation n = z2s 2/L2  
but solving for L (where L = mean × difference),  
L2 = z2s 2/n, and resetting z for four sample times or 
three degrees of freedom, we can find our critical 
level of significant difference. Again taking the Little 
Pine watershed data for TP and assuming we want 
a 95% confidence level for our findings, quarterly 
sampling would limit detecting significant changes in 
the mean level of TP to changes in excess of 96% or 
±0.142 mg L−1. In other words, the quarterly sampling 
relegates us to an assessment that will only allow us 
to show significance with large changes in the average 
level of TP in the water. If we retain the quarterly 
sampling plan but lower the confidence level to 90%, 
we would be limited to detect significant changes in the 
mean level of TP in excess of 69% or ±0.103 mg L−1.

4.  SAMPLING NEEDS TO REACH TARGET 
GOALS

From the information provided earlier, we can deter-
mine the number of samples needed for statistically 
indicating a given goal level. The percentage reduc-
tion depends on the system and the water quality 
goals for the location. Data in Table 7 show the 
calculated n values needed to statistically test for 
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attainment of the stated indicator goals. These results 
show the detection of significant, but small changes 
in highly variable systems require more sampling 
than is required for the detection of larger changes – 
assuming you reach the goal level and the variance 
is similar. In all cases except for nitrate-N, quarterly 
sampling would not be frequent enough to confirm a 
reduction to the target level.

5. FINAL CONSIDERATIONS

Accurate determination of contaminant concentration 
in highly variable systems is difficult. This difficulty 
reflects the fact that the concentrations of some 
materials can change over 500-fold (Tables 2–6) across 
a sampling season. On the other hand, statistical 
estimation methods for establishing sampling needs 
and defining the levels of detectable outcomes are 
possible but seems to have taken a backseat to the 
use of prescribed sampling plans. If required to use a 
fixed sampling plan, it is critical to anticipate the level 
of reduction that can be, from a statistical view point, 
attained and deemed significant. This brings us to a 
critical question: Are we simply watching the systems 
and hoping to see some improvements or do we want 
to critically assess the changes that are occurring as a 
way of understanding our watershed? As we expend 
money on improvement practices, we must be sensitive 
to assess their impact and think about the needed 
sampling intensity. Clearly, small changes in water 
quality are going to be difficult to detect and confirm 
statistically unless more rigorous sampling protocols 
are employed or the treatment lessens the variability of 
the sample mean. This is complicated by the fact that 
we are assuming a practice that will make an almost 
instantaneous change in the target levels. In reality, it 
may take years to see the full reduction. We are also 

assuming the responses that are not correlated with 
season, but we expect contaminants like nitrate may 
violate this assumption. So considerations of mean 
and variance within a season may be in order.

Systems employing low-sampling frequencies must 
manage their “impact expectations” and think about 
the speed at which the applied implementation 
practice will be maximal in its effectiveness. That is, 
while changes could be seen, the ability to rigorously 
test the significance of the finding is going to be limited 
except where extreme changes are found. Staged 
sampling where the practice is given time to mature in 
its effectiveness and most of the samples are collected 
after this point may provide a cost savings. With 
both small changes in sample mean and infrequent 
sampling, it may be difficult to say, with statistical 
certainty, we are improving water quality following the 
implementation of a management practice.

6.  STEPS SUGGESTED FOR TESTING 
WATER QUALITY CHANGES FROM AN 
IMPLEMENTATION PROJECT

(1) Decide what you want to measure and how you 
are going to conduct the process. Typically the 
group will be trying to limit the impairment.

(2) Establish a plan and collect preliminary data 
(over an appropriate length of time) for the water 
to estimate mean concentration and standard 
deviation of the contaminant. (This step is 
frequently overlooked but is critical.)

(3) From the preliminary data set, determine the 
level of change that is needed to meet your goal 
and select the field protocol that will lead to this 
change. From the existing literature, estimate the 

Table 7. Minimum frequency of sampling per year required to establish an achievement of indicator level at either the 95 and 90% 
confidence levels.

E. coli Total Phosphorus Nitrogen NO3/2-N
Mean1 Confidence Level Mean2 Confidence Level Mean3 Confidence Level

95% 90% 95% 90% 95% 90%
System cfu/100 

mL
n mgL-1 n mgL-1 n

Wabash R. 1  334 104 73 0.07 BI4 BI 3.08 14 10

Wabash R. 2  663  59 42 0.1 21 15 2.79 17 12

Little Pine 1671  18 12 0.15 15 10 6.42  3  2

Little Wea  547  59 41 0.051 BI BI 4.45  5  4

Elliott Ditch 2452  69 49 0.061 BI BI 1.14 BI BI

1 Indicator goal E. coli = 231 cfu /100 mL
2 Indicator goal P = 0.08 mgL-1

3 Indicator goal NO3/2-N = 2 mgL-1

4 BI=Below indicator level no reduction required
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best possible reduction that could be achieved 
with that practice and estimate the time required 
to see the maximal impact from the practice. This 
step is frequently overlooked, but the selection of 
a practice based on the desired level of reduction 
is cost effective.

(4) The time step in step 3 controls both the pre- 
and postimplementation sampling frequencies. 
If a fixed sampling protocol is used, calculate 
the best possible reduction that is detectable 
and use this to estimate the sampling time. 
Some consideration of the cost of the practice 
and sensitivity of the measurement can be 
undertaken.

(5) Begin to collect preimplementation data at the 
frequency indicated in step 4. Test this long-term 

data set against the short-term preliminary data 
and readjust the sampling frequency.

(6) At an appropriate time, install the field protocol 
and monitor at a similar frequency as indicted in 
step 5.
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