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Abstract: Developmental exposure to neurotoxic chemicals presents significant health 

concerns because of the vulnerability of the developing central nervous system (CNS) and 

the immature brain barrier. To date, a short list of chemicals including some metals have 

been identified as known developmental neurotoxicants; however, there are still numerous 

chemicals that remain to be evaluated for their potential developmental neurotoxicity (DNT). 

To facilitate evaluation of chemicals for DNT, the zebrafish vertebrate model system has 

emerged as a promising tool. The zebrafish possesses a number of strengths as a test 

species in DNT studies including an abundance of embryos developing ex utero presenting 

ease in chemical dosing and microscopic assessment at all early developmental stages. 

Additionally, rapid neurodevelopment via conserved molecular pathways supports the 

likelihood of recapitulating neurotoxic effects observed in other vertebrates. In this review, 

we describe the biological relevance of zebrafish as a complementary model for assessment 

of DNT. We then focus on a metalloid and two metals that are known developmental 

neurotoxicants (arsenic, methylmercury, and lead). We summarize studies in humans and 

traditional vertebrate models and then detail studies defining the toxicity of these 

substances using the zebrafish to support application of this model system in DNT studies. 

Keywords: arsenic; development; DNT; lead; metalloids, metals; methylmercury; 

neurotoxicity; zebrafish 
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1. Introduction 

Developmental exposure to certain chemicals are suggested as possible causes of neurodevelopmental 

impairments including reduced intelligence quotient (IQ), autism spectrum disorder (ASD) and 

attention deficit hyperactivity disorder (ADHD) [1–4]. The particular susceptibility of the developing 

central nervous system (CNS) has been noted for decades and several publications suggest that there 

might be a critical window of exposure during brain development [5–8]. It has also been discussed that 

early-life stimulation via environmental stressors such as chemical exposures may trigger genetic or 

epigenetic changes that modulate an organism’s biological system, which in turn leads to 

neurodevelopmental alterations [7,9–11]. Thus, exposure of early-life organisms to certain chemical 

compounds, especially during the critical period of development including prenatal and early postnatal 

stages, can have significant adverse impacts on the process of CNS development. In addition, some 

characteristics of neurodevelopmental disorders (e.g., those associated with ADHD and ASD) can 

continue into adulthood, implying the adverse effects of a childhood neurodevelopmental alteration can 

influence health throughout the lifespan [12,13]. 

To date, several chemicals including some metals and their related compounds are noted as 

neurotoxicants (reviewed in [14,15]). However, currently there is insufficient evidence to prove 

developmental neurotoxicity (DNT) for the majority of chemicals with only a few of them  

(e.g., arsenic, methylmercury, and lead) reported as known developmental neurotoxicants (reviewed  

in [14,15]). Environmental contamination of arsenic, methylmercury, and lead is widespread, resulting 

in frequent human exposure raising public health concerns (reviewed in [16–20]). These toxicants are 

non-biometals that do not play a role in biological systems and have been associated with 

neurodevelopmental alterations in developing organisms [3,21–23]. 

The little progress in identifying the DNT of chemicals is in part due to the limitation of studies 

using conventional in vivo models (e.g., non-human primates and rodent models), of which 

experiments are laborious, time-consuming, and may not be cost-effective. To this end, the zebrafish 

model system has emerged as a suitable complementary in vivo DNT test model. This model system 

has been applied historically as a powerful in vivo tool for developmental biology studies with 

numerous strengths as a laboratory test animal. The embryonic developmental stages of zebrafish are 

well documented, which provides a guide for researchers to identify major physiological alterations 

occurring during developmental toxicity assays [24]. Moreover, there is continuous progress on 

uncovering the developmental processes of the CNS and blood-brain-barrier (BBB) of the  

zebrafish [25–30]. Overall development of the zebrafish CNS and patterning of brain sub-regions are 

completed within three days after fertilization during which neurogenesis and formation of pioneer 

axons initiate (Figure 1). The rapid CNS development coupled with the general strengths of the 

zebrafish model system allows screening of chemical compounds for potential DNT, resulting in the 

zebrafish being an ideal complementary model for DNT studies. 

In this review, the general merits and biological significance of the zebrafish as a DNT test model 

are described. We then summarize DNT studies of a known metalloid and two metal neurotoxicants 

(i.e., arsenic, methylmercury, and lead) in humans and traditional vertebrate models. Moreover, we 

introduce research studies utilizing the zebrafish for DNT assessment of various chemicals and also 

show potential of the zebrafish as an in vivo model for rapid chemical-induced DNT screening. Finally, 



Toxics 2014, 2 466 

 

 

we discuss progresses made in studies on the DNT of arsenic, methylmercury, and lead using the 

zebrafish to support the application of this model system in DNT studies. 

Figure 1. Zebrafish neurodevelopment. (a) At 72 h post fertilization (hpf) major 

subdivisions of the zebrafish brain are present; Zebrafish axonal networks visualized by 

acetylated α-tubulin staining (b) at 72 hpf, (c) at 96 hpf, and (d) at 120 hpf of development. 

Scale bar = 100 µm. (C, cerebellum; H, hindbrain; M, midbrain; F, forebrain). 

 

2. Zebrafish as a Model for DNT 

2.1. General Strengths of the Developmental Zebrafish Model System 

The zebrafish model system has long been applied in the field of developmental biology [31–35]. 

Over the past decade, the zebrafish has also emerged as a popular tool for investigating the 

neurotoxicity of drugs and environmental chemicals [36–66]. The zebrafish presents numerous 

strengths as an in vivo test model including ex utero fertilization and transparency of embryos  

and early larvae, enabling microscopic observation through early developmental stages. The ex utero 

embryonic development also eases the determination of doses of exposed chemicals at all embryonic 

stages, providing explanation of exposure kinetics of chemicals of interest [67–70]. Moreover, the 

rapid growth and high fecundity of zebrafish facilitate higher throughput toxicity testing of multiple 

chemicals. In addition, a high degree of genetic similarity (≈70%) with humans allows application of 

zebrafish for human disease genetic studies [71]. The fully sequenced zebrafish reference genome, 

combined with the ability to use reverse genetic approaches, eases mechanistic studies on chemical 

toxicity using this species. The similarity of neural development between the zebrafish and other 

vertebrates also supports the application of the zebrafish as a complementary research tool to 

conventional vertebrate models for DNT assays [25,28,72]. There is also biological similarity between 

the zebrafish and other vertebrates in the development and function of biological barrier systems in the 

developing CNS (i.e., the BBB). The BBB is one of the most effective barrier systems in vertebrates 

and it is generally accepted that the BBB plays a pivotal role in the protection of the brain against 

neurotoxic insults. While there are many similarities, there are also some differences between the 

development of the zebrafish and mammalian brain. These similarities and differences are  

discussed below. 
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2.2. Comparison of Mammalian and Zebrafish CNS Development 

Following fertilization in vertebrates, the newly formed embryo undergoes several cycles of rapid 

cell division, during which a blastula (i.e., a single-cell organism) transforms into an embryo at the 

gastrula stage (i.e., a multi-cell organism). During gastrulation, three germ layers including the 

endoderm (the interior germinal layer), ectoderm (the outside germinal layer), and mesoderm are 

formed. The ectoderm, specifically the neuroectoderm, gives rise to the CNS (reviewed in [25,28]), 

whereas the endoderm and mesoderm are involved in the development of other organs (e.g., the kidney, 

liver, and pancreas) and tissues (e.g., bone and connective tissue). The neuroectoderm specifies to the 

neural plate, the origin of the CNS. The formation of the neural plate is followed by the neurulation 

process, in which the neural plate folds to generate the neural tube (reviewed in [25,28]). The neural 

tube eventually forms major components of the CNS including the brain, spinal cord, and nerves. 

Similar to the general processes of vertebrate neurogenesis, development of the zebrafish CNS also 

begins with the specification of the neuroectoderm and generation of the neural plate. At this point, the 

zebrafish embryo undergoes a slightly different process from general vertebrate neurulation. Unlike 

most vertebrates, which directly generate the neural tube by neural plate folding, the zebrafish converts 

the neural plate to the neural keel, which then forms the neural rod and then the neural tube [28,73]. 

The arrangement of critical divisions of the brain proceeds during gastrulation. In the zebrafish, 

gastrulation occurs from 5.25–6 to 10 h post fertilization (hpf), during which precursors of the 

forebrain and other regions (i.e., the midbrain, hindbrain, and spinal cord) proceed toward the anterior 

and more posterior positions, respectively [24,30]. Zebrafish primary neurons appear by  

24 hpf, forming simple neuronal clusters in neuromeres (reviewed in [74]). During early 

embryogenesis, there are only a few axonal tracts and commissures, but with the initiation of axonal 

projections by the primary neurons complex neuro-networks throughout the body through later 

developmental stages are gained (Figure 1b–d) [74–78]. The morphological development of major 

organ systems nears completion at the end of embryogenesis (≈72 hpf) with the BBB present at an 

earlier stage [24,29]. 

2.3. Blood-Brain Barrier (BBB) in the Zebrafish 

The BBB is composed of endothelial cells on cerebral blood capillaries. The BBB protects the brain 

from toxicants by preventing free-transport of substances. The filtering function of the BBB occurs by 

endothelial cells connected through tight junctions restricting free movement of ions or solutes  

(e.g., toxicants and macromolecules) between inside and outside of the barrier (reviewed in [79]). The 

BBB also isolates neurotransmitters and neuroactive substances in the CNS from those in the 

peripheral nervous system, hindering the interaction between the two systems (reviewed in [79–81]). 

Most water soluble substances are not able to freely enter the BBB because the tight junctions that 

connect nearby endothelial cells limit the movement of hydrophilic solutes through paracellular 

networks [79,82]. However, substances with low molecular weight or lipophilic characteristics can 

diffuse through the transmembrane relatively easy, implying that the BBB is not an absolute barrier 

against neurotoxic chemicals [83,84]. 
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Although the BBB may play a significant role in understanding the influence of exposure to 

neurotoxic substances on the developing brain, the functional mechanism and the maturation process 

still remain to be elucidated. It has been a generally accepted notion that the formation of the BBB is 

not complete during early developmental stages; in humans, it is not until the age of 6 months, during 

which the young brain still undergoes critical development up until 2 years of age [85–87]. However, 

this assumption of the immature BBB has been challenged with increasing evidence showing that the 

BBB appears at very early developmental stages and that proteins involved in BBB formation and also 

functional tight junctions exist in the developing brain (reviewed in [88–90]). There are several 

important players involved in the BBB junctional complex activity that maintains the homeostasis of 

the brain including two tight junction proteins: Claudin-5 and Zona occludens protein 1 (ZO-1) [91–96]. 

The genes encoding these proteins in humans (CLDN5 and TJP1, respectively) and in mice (Cldn5 and 

Tjp1, respectively) are also found in zebrafish as cldn5a and cldn5b, and as tjp1a and tjp1b [97–101]. 

The presence of the BBB in zebrafish at early life stages became evident by Umans and  

Taylor [29] when a drug transporter protein (i.e., multidrug resistance protein 1) at the BBB was 

immunohistochemically visualized at 48 hpf. While the exact timing of complete maturation of 

zebrafish BBB is unclear, it has been revealed that two tight junction proteins, Claudin-5 and ZO-1, in 

zebrafish brain endothelial cells are expressed as early as 72 hpf [27]. As visualized by Jeong et al. [27], 

the BBB of zebrafish is functional at 72 hpf as the leakage of an injected large molecular weight tracer, 

rhodamine-dextran (10 kDa) was restricted in microvessels of brain parenchyma. The zebrafish BBB 

may undergo further maturation to exclude small molecules after completion of embryogenesis,  

as shown in Fleming et al. [102] with the inclusion of Evans blue (961 Da) and sodium fluorescein 

(376 Da), restricted through 5 and 10 days after fertilization, respectively. 

Due to the vulnerability of the developing CNS and limited information about the BBB function of 

organisms at early life stages, a developmental exposure to environmental chemicals raises significant 

concerns for potential detrimental effects to the CNS and contribution to neurodevelopmental disorders. 

To date, a short list of chemicals including some metals and metalloids (e.g., arsenic, methylmercury, 

and lead) are identified as known developmental neurotoxicants (reviewed in [14,15]). In the sections 

below, we summarize the developmental neurotoxic effects of these toxicants as observed in humans 

and in traditional in vivo vertebrate animal models. We also introduce studies on various chemicals 

subjected to DNT testing using the zebrafish model. We then detail studies that have used the zebrafish 

model system for DNT assessment of arsenic, methylmercury, and lead. 

3. DNT of Arsenic, Methylmercury, and Lead 

3.1. Arsenic 

Arsenic is a metalloid element existing in nature, which can be found in an inorganic or organic 

form with several oxidation states, including trivalent arsenic (arsenite) and pentavalent arsenic 

(arsenate). Exposure to arsenic raises health concerns as it can damage our body by interacting with 

biomolecules and produce reactive oxygen species (reviewed in [103]). Arsenic has a long history of 

use as a pesticide, food preservative, and cancer chemotherapeutic agent (reviewed in [103]). Although 

the application of arsenic in the production of pesticides and food preservatives has mostly  
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been phased out, human exposure to arsenic still occurs because of the widespread environmental 

contamination and natural presence in geological stores in some regions of the globe [18,19,104–108]. 

Epidemiological studies report a number of arsenic exposure cases through contaminated drinking 

water supplies. Global epidemiological studies report a close relationship between early-life arsenic 

exposure and intellectual/cognitive ability of school-aged children [109–112]. For example, in a recent 

study conducted in the United States (US), Wasserman et al. [112] investigated the association of 

arsenic exposure through drinking water at home and the IQ levels of 272 school-aged children  

(mean age of 9.67-years) with the mean residence time in the current dwelling place (~7.34 years). 

Researchers compared the IQ of children exposed to low levels of arsenic (arsenic concentrations in 

water below 5 µg/L) to the IQ scores of those exposed to high levels of arsenic (arsenic concentrations 

in water between 5–10 µg/L). In participants exposed to high levels of arsenic, there was a significant 

decrease in the overall intellectual ability with about a six-point decrement in full scale IQ [112]. 

When tested with younger aged groups, however, the adverse effects of arsenic exposure on 

children’s intellectual development becomes inconclusive [109,113]. For example, Nahar et al. [109] 

and Hamadani et al. [113] examined the association of children’s IQ levels with urinary arsenic 

concentrations obtained from the participants at the age of 4 and/or 5 years. In the study of  

Nahar et al. [109], researchers found an association between arsenic concentration in urine and a 

significant decrease in non-verbal IQ levels, but not in verbal IQ. On the other hand, Hamadani et al. [113] 

found a significant negative relationship between the urinary arsenic levels and verbal as well as full 

scale IQ of female children at 5 years of age. 

There are also studies completed on infantile neurodevelopment in relation to prenatal arsenic 

exposure. According to two recent birth cohort studies, the impact of arsenic exposure on early 

neurodevelopment may not be identical in infants at different ages [114,115]. When a study was 

conducted with 1-day old infants, researchers did find a negative relationship between the arsenic 

levels measured in cord blood and the neurodevelopmental status of newborns when evaluated by 

Brazelton Neonatal Behavioral Assessment Scale (III) [115]. However, this negative relationship did 

not appear in a more recent study with neurodevelopment evaluated by the Bayley Scale of Infant 

Development (II) using a cohort of 6-month old infants [114]. 

Rodent studies have reported reproducible results showing neurobehavioral and neurophysiological 

alterations following a developmental arsenic exposure continuing over different periods of time [116–118]. 

In studies conducted under sub-chronic or chronic exposure conditions, rats treated with arsenite from 

early gestation exhibited behavioral changes with impaired learning/memory ability [117,118]. For 

instance, rats treated with 36.7 mg/L arsenite from gestation day (GD) 15 through 4 months of age 

exhibited significant alterations in spontaneous locomotion and poor performance in the delayed 

alternation test [117]. In addition, more recent studies with shorter exposure periods (e.g., arsenite 

exposure beginning in early gestation until weaning) show molecular-level changes occurring in the rat 

brain, including reduced enzymatic antioxidant activity and altered expression of neural cell adhesion 

molecules [116,119]. Studies conducted in the past five years on the neurotoxic effects of arsenic 

exposure with rodent models in developmental stages are summarized in Table 1. 
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Table 1. A selection of studies carried out over the past five years on the neurotoxic effects of arsenic, MeHg, or Pb exposure in the zebrafish 

or in vivo rodent models during developmental stages. 

Substance Endpoints In Vivo Model Concentration a Exposure Period b Key Observations c References 

Arsenic 

Axonal/nerve 
growth 

Zebrafish 2 mM 4–48 hpf 
Altered axon outgrowth in the brain and nerve growth in 
the spinal cord 

Li et al. 
[120] 

Behavioral 
alteration 

Rat 

13.6 mg/L  
(≈0.1 mM) 

GD0–PND21 Delayed behavioral development (reflex responses) 
Luo et al. 
[116]  

10 mg/L  
(≈0.08 mM)  
or above 

GD6–PND42 Altered reflex responses or learning/memory behaviors 
Xi et al. 
[118] 

Zebrafish 
2 mM  
or above 

4–30 hpf 
Decrease in reflexive movement frequency under  
light stimulation 

Li et al. 
[120] 

MeHg 

Transcriptomic 
endpoint 

Rat 
0.1 mg/kg  
(≈0.5 µM)  
or above 

GD6–PND10 
Altered expression of genes related to brain 
development functional cluster in female offspring brain 

Radonjic  
et al. [121] 

Mouse 

4 mg/kg  
(≈0.02 mM) 

for 9 weeks including 
gestation period and  
2 weeks post-partum 

Altered expression of genes related to functional classes 
of cell morphology/function, growth factor activity, or 
receptor binding in pup brain 

Jayashankar 
et al. [122] 

2.6 mg/kg  
(≈0.01 mM) 

for 8 weeks including 
gestation period and  
2 weeks post-partum 

Altered expression of genes enriched in cell proliferation 
or stress response functions in pup brain 

Jayashankar 
et al. [123] 

1.5 mg/kg  
(≈0.007 mM)  
or above 

for 11 weeks including 
gestation period and  
2 weeks post-partum 

Exposure to MeHg chloride or MeHg cysteine altered 
expression of genes involved in functional clusters of 
immunoglobulin, metal/zinc binding, or methylation in 
pup brain 

Glover et al. 
[124] 

Zebrafish 
60 µg/L  
(≈0.3 µM) 

48–72 hpf 
Altered expression of clusters of genes involved in 
apoptosis, oxidative stress response, transcriptional 
elongation, or DNA repair 

Ho et al. 
[125] 

Behavioral 
alteration 

Rat 
0.5 mg/kg  
(≈0.002 mM) 

GD7–PND21 
Altered vertical activity in 2-month old female, but not 
in male rats 

Cauli et al. 
[126] 
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Table 1. Cont. 

Substance Endpoints In Vivo Model Concentration a Exposure Period b Key Observations c References 

  Mouse 
1.5 mg/kg  
(≈0.007 mM) 

for 11 weeks including 
gestation period and  
2 weeks post-partum 

Altered open field activity in pups exposed to MeHg 
chloride, but not MeHg cysteine 

Glover et al. 
[124] 

Pb 

Transcriptomic 
endpoint 

Mouse 0.1 mM GD8–PND21 
Altered expression of genes related to signal 
transduction pathway in female pup brain 

Kasten-Jolly 
et al. [127] 

Zebrafish 
100 ppb  
(≈0.5 µM) 

2–16 cell stage  
−72 hpf 

Altered global expression of genes related to 
neurological development, functioning, or diseases 

Peterson  
et al. [128] 

Axonal/nerve 
growth 

Zebrafish 
100 ppb  
(≈0.5 µM) 

≈2–≈36 hpf Decreased density of axon tracts  Zhang et al. 
[70] 

Behavioral 
alteration 

Rat 

5 mg/L  
(≈0.02 mM) 

GD0–60 days of age  
in offspring 

Increased locomotor activity  
Luo et al. 
[129]  

2.84 mg/mL  
(≈14 mM) 

GD1–PND24 
Maternal Pb exposure did not induce anxiety-related 
behavioral change in pups 

Molina et al. 
[130] 

Zebrafish 

10 nM  
or above 

<2–24 hpf 
Altered startling behavior in response to tapping 
stimulation 

Rice et al. 
[131] 

0.1 mg/L  
(≈0.5 µM)  
or above 

≈6–8 to 20–30 hpf Altered spontaneous movement  

Chen et al. 
[132] 0.025 mg/L  

(≈0.1 µM)  
or above 

6–96 hpf 
Altered swimming activity in response to  
light stimulation 

6–120 hpf Altered swimming activity under light or dark condition 

0.2 mM 0–144 hpf Altered spontaneous swimming activity 
Dou and 
Zhang [133] 

a Concentration of substances tested on animals followed by key observation; b GD, gestational day; hpf, hours post fertilization; PND, post-natal day; c Significance of 

key observations is described in comparison to that of control. 

 



Toxics 2014, 2 472 

 

 

3.2. Methylmercury 

Mercury (Hg) is a common metal that is naturally present in the environment. Hg can also be 

released by human activities such as gold mining or coal burning, which in turn contaminates air, soil, 

and water [134]. In the aquatic environment, Hg accumulates in aquatic biota and biomagnifies 

through the food chain. As a result, animals at the top of the food web (e.g., heavy seafood consumers) 

tend to be exposed to relatively high levels of Hg. Similarly, seafood consumption has also been 

pointed out as a primary source of human exposure to Hg [135,136]. Hg can exist in several oxidation 

states including elemental (Hg0), mercurous (Hg1+), and mercuric mercury (Hg2+). The mercurous and 

mercuric Hg can interact with carbon containing compounds, resulting in the formation of 

methylmercury (MeHg) and ethylmercury. 

Historically, health concerns of CNS exposure to Hg have mainly arisen from exposure to MeHg 

(reviewed in [137,138]). Therefore, the emphasis in much research has been placed on revealing the 

neurotoxicity of MeHg, especially in prenatal and early postnatal organisms. The potent neurotoxic 

effect of MeHg during development is well known from the environmental disaster in Minamata, 

Japan in the mid-1950s. In this early event, maternal consumption of seafood contaminated with high 

levels of MeHg (i.e., umbilical cord blood level at 1 ppm or higher) resulted in the poisoning of the 

fetus (reviewed in [138]). Consequently, the affected infants diagnosed with congenital Minamata 

disease exhibited a variety of neurodevelopmental symptoms (e.g., mental retardation, dysarthria, and 

chorea) with severe damage in the brain cortex and cerebellum (reviewed in [138]). 

In later years, two important cohort studies, the Seychelles Child Development Study (SCDS) and  

a study with the Faroese birth cohort, were conducted to examine the effect of prenatal MeHg exposure 

on the neurodevelopment of children. Both of these studies recruited cohorts of offspring who were 

maternally exposed to MeHg through high-fish diets, but showed dissimilar results. One prospective 

study using the Seychelles cohort started with hair sampling of 779 pregnant women for MeHg 

measurements in 1989–1990 [139]. The measured hair MeHg level, an indicator of maternal MeHg 

exposure, was used for comparison with the offspring’s neurodevelopmental status evaluated by 

applying age appropriate test batteries (e.g., the Bayley Scales of Infant Development and Wechsler 

Intelligence Scale for Children) at 6, 19, 29, 66 and 107 months of age [139]. There are a number of 

publications using the cohort of the SCDS that have followed up on the neurodevelopmental status of 

the test participants (up to 17 years of age in Davidson et al. [140]); however, the clear association 

between maternal MeHg exposure and neurodevelopmental alterations in the affected offspring has not 

been identified [140–143]. 

Another study was performed with a birth cohort in the Faroe Islands that included 1022 children 

born during 1986–1987 [144–147]. In studies using this birth cohort, researchers measured MeHg 

levels in maternal hair and cord blood to estimate the level of prenatal exposure. Offspring were then 

subjected to neurobehavioral tests (e.g., the Boston Naming Test and the California Verbal Learning 

Test) at 7 and 14 years of age [144–147]. Unlike the results shown in the SCDS, children in the 

Faroese Islands exposed to MeHg as a fetus exhibited neurobehavioral alterations, suggesting the 

negative impact of prenatal MeHg exposure on the offspring’s neurodevelopment [144–147]. 

There are also studies reporting new observations that prenatal MeHg exposure may cause damage 

in brain areas involved in the processing of visual information [148,149]. For example, when 102 Inuit 
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children were tested at preschool age, higher plasma MeHg levels in children were associated with 

altered ability of brain visual processing [148]. Similar neuropsychological alterations were also 

reported in teenagers (14 years of age), suggesting that maternal MeHg exposure may have a long 

lasting impact on offspring’s visual information processing capability [149]. 

In addition, nonhuman primate studies have been conducted on the DNT of MeHg [150]. 

Gunderson et al. [151,152] reported that maternal MeHg exposure of non-human primates impaired 

the cognitive ability of their offspring, leading to decreased visual recognition memory in affected 

infants. In Burbacher et al. [153], infant monkeys maternally exposed to MeHg exhibited altered social 

behavior compared to the control monkey offspring. Long-term postnatal exposure to MeHg also 

negatively impacted visual function in monkeys at older ages (≈4 years of age) [154,155]. 

In vivo rodent models developmentally exposed to MeHg exhibited neurobehavioral (e.g., motor 

activity, startle response, learning/memory ability, or activity related with one’s motivation) and/or 

physiological (e.g., brain gene expression, enzymatic activity, or neuronal cell damage)  

changes [124,126,156–165]. Interestingly, the effects of developmental MeHg exposure may be 

different depending on sex or age of test animals at the time of DNT evaluation. As an example, in one 

study, female rat offspring maternally exposed to MeHg (0.5 mg/kg/day, from GD7 until postnatal Day 

21) exhibited a decrease in vertical activity when tested at 2 months of age, while the activity of male 

offspring increased at the age of 3 months [126]. In another study, Beyrouty et al. [157] observed 

abnormal movement in female offspring, but not in males, when mothers were treated with MeHg  

(0.5 mg/kg/day from 4 weeks before mating until GD20) in response to auditory stimulation compared 

to control. Moreover, a significant decrease in monoamine oxidase enzyme activity was also detected 

in the brainstem of female offspring maternally treated with a higher dose of MeHg (1 mg/kg/day), 

while this change of enzymatic activity did not appear significant in male offspring [157]. Studies 

conducted in the past five years on the neurotoxic effects of MeHg exposure with rodent models in 

developmental stages are summarized in Table 1. 

The underlying mechanisms of MeHg DNT are not yet fully understood, but may be associated 

with interference of receptor activities involved in signaling pathways, oxidative stress defense 

mechanism, or the differentiation of the BBB [159,162–165]. 

3.3. Lead 

Lead (Pb) is a metallic element, which occurs naturally in the environment. Pb, with a common 

oxidation state of 2+ or 4+, exists as organic Pb and inorganic Pb, with humans being exposed to both 

forms. Human exposure to Pb increased extensively with its utilization in production of industrial 

chemicals (e.g., as a gasoline additive and in Pb-based paint) during the 1920s–1970s. Since the  

mid-1970s, the addition of Pb for fuel or paint production has been restricted in many of the developed 

countries including the US because of the increasing health concerns associated with Pb exposure on 

various organ systems including the CNS. However, even after the withdrawal, environmental Pb 

exposure is still an ongoing concern in that exposure to low doses of Pb is reported to be associated 

with neurodevelopmental alterations in children [2,3]. 

Neurotoxic consequences of a developmental Pb exposure was noticed as early as the 1970s by 

studies conducted with subjects who were exposed to relatively high levels of Pb (e.g., a mean 
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concentration of 202.1 µg Pb/g dentine) [166,167]. These early studies reported that Pb-exposed 

children exhibited several features of neurodevelopmental deficits including cognitive decline, 

decreased IQ score, and learning disabilities [166,167]. Later, studies with children exposed to much 

lower levels of Pb also detected similar neurodevelopmental deficits [168,169]. One noticeable 

example is a prospective study conducted by Bellinger et al. [168]. In this study, a cohort of  

249 children was categorized into three groups according to their prenatal Pb exposure levels estimated 

by measuring cord blood Pb concentration ranging from below 3 µg/dL though 10 µg/dL or above. 

Bellinger et al. [168] then evaluated the Mental Development Index (of Bayley Scales of Infant 

Development) of subjects included in each of the three groups at different stages of development until 

2 years of age. Subjects prenatally exposed to higher levels of Pb (cord blood Pb level of  

10–25 µg/dL) showed poor performance in the cognitive development test during 2 years of 

development compared to those with lower cord blood Pb levels (below 10 µg/dL), suggesting a 

negative impact of prenatal Pb exposure on early neurodevelopment [168]. 

To date, studies continue to report negative impacts of low-dose Pb exposure (i.e., blood Pb level 

below 10 μg/dL) on early neurodevelopment, leading to lowered IQ, increased ADHD risk, and poor 

academic achievement in children and cognitive decline in infants [2,3,170,171]. Canfield et al. [3] 

measured blood Pb levels of children at age 6–60 months and then examined their IQ scores at age  

3 and 5 years using the Stanford-Binet Intelligence Scale. Researchers found a linear relationship 

between a 4.6-point decline in children’s IQ and every 10 μg/dL increase of blood Pb level using a 

lifetime average [3]. In addition, Braun et al. [2] reported a relationship between a developmental Pb 

exposure at blood Pb levels in children below 10 μg/dL and an increased risk of ADHD. In this study, 

it was shown that children at the ages of 4–15 with higher levels of Pb in the blood (2–5 μg/dL) were 

at a 4.5-fold increased risk for ADHD compared to those with low blood Pb levels (below the limit of 

detection through 0.7 μg/dL) [2]. 

In addition, nonhuman primate studies have also shown the relationship between early-life Pb 

exposure and behavioral alterations [172–175]. For example, in Bushnell and Bowman [172,173], 

developmental Pb exposure resulted in poor performance on reversal learning tasks. In  

Laughlin et al. [176], it was also reported that monkeys developmentally exposed to Pb exhibited 

altered social behavior at an early age. 

A number of mechanisms of Pb DNT have been proposed and while an extensive number of studies 

have been conducted, the mechanisms of Pb DNT are not yet completely understood. To this end, 

several in vivo rodent studies have been performed in immature brains, relating developmental  

Pb exposure with alterations of cholinergic-, catecholaminergic, or glutamatergic neurotransmitter 

systems [177–180]. Several studies have related developmental Pb exposure and the function of 

glutamate receptor or its subtypes (e.g., N-methyl-D-aspartate (NMDA) receptor subtypes and 

metabotropic glutamate receptors) [180–183]. The functional importance of glutamate receptors is 

known with their involvement in excitatory signal transmission and learning/memory function [184]. 

Thus, the focus of many Pb DNT mechanistic studies has been on defining expression alterations of 

glutamate receptors. Accordingly, some progress has been made with studies identifying increased 

sensitivity to NMDA or altered expression of glutamate receptors in brain samples (e.g., the 

hippocampus) following developmental Pb exposure in rat models [180–183]. Studies conducted in the 
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past five years on the neurotoxic effects of Pb exposure with rodent models in developmental stages 

are summarized in Table 1. 

3.4. Mixtures 

There are also several studies completed evaluating DNT of metal mixtures with a specific 

consideration given to mixtures of arsenic, MeHg, or Pb with each other or with other metals such as 

manganese and cadmium [119,185–187] or with organic chemicals such as polychlorinated biphenyls 

and polybrominated diphenyl ethers (PBDEs) [126,188,189]. Combined with the increasing evidence 

in recent years, it has been revealed that developmental exposure to neurotoxic chemical mixtures may 

have additive or synergistic adverse effects. However, the various outcomes and complex mechanisms 

of DNT induced by co-exposure to multiple chemicals still remain largely unknown. 

4. DNT Studies Using the Zebrafish Model System 

4.1. Application of the Zebrafish Model in Various Chemical-Induced DNT Studies 

The zebrafish model has been applied in DNT research using a variety of chemical compounds 

including different classes of pesticides, ethanol, PBDEs, and other emerging environmental contaminants 

(e.g., nanoparticles). These studies have demonstrated DNT of various substances, among which major 

findings highlighting the potential of the zebrafish model, which are introduced in this section. 

Several studies have addressed zebrafish as a suitable model for testing pesticide-induced 

neurotoxicity appearing in very early stages of development [45,46,49,53,57–59,64,65]. Studies on 

organophosphorus pesticides, especially chlorpyrifos, indicated that developmental exposure to this 

chemical induced neurobehavioral changes in the zebrafish [46,57,65]. Eddins et al. [46] examined 

effects of chlorpyrifos exposure on levels of neurochemicals of zebrafish (144 hpf), showing decreased 

dopamine and serotonin levels but not norepinephrine levels. Effects of a developmental chlorpyrifos 

exposure or exposure to the metabolites of chlorpyrifos on acetylcholine esterase (AChE) activity were 

also assessed. In Yen et al. [65], exposure to chlorpyrifos significantly decreased AChE activity of 

zebrafish (120 hpf). On the other hand, in Yang et al. [64], it was the oxon metabolite of chlorpyrifos, 

not chlorpyrifos, which induced a significant decrease in AChE activity (48 and 72 hpf) with alteration 

of swimming activity (72 hpf) in wild-type, and growth inhibition of axons in transgenic zebrafish (72 hpf). 

DNT of pyrethroids and other pesticides (e.g., cartap, fenvalerate, fipronil, thiocyclam) has also 

been tested in the zebrafish model [45,49,53,58,59]. DeMicco et al. [45] observed abnormal movement 

of body, which is described as “spastic movement”, in the zebrafish (96 hpf) developmentally exposed 

to Type I (bifenthrin, permethrin, and resmethrin) or Type II pyrethroids (λ-cyhalothrin, cypermethrin, 

and deltamethrin). Interestingly, body curvature observed in zebrafish (144 hpf) developmentally 

treated by either Type I pyrethroids (bifenthrin and permethrin) or three Type II pyrethroids was  

also explained as an indication of neurotoxicity, not as a result of morphological alteration. This 

interpretation, both the spasms and the curvature as consequences of DNT, turned out to be rational 

since registration of diazepam (a γ-aminobutyric acid [GABA]A receptor antagonist) or MS-222  

(a sodium channel blocker) after deltamethrin treatment alleviated the abnormal movements and/or the 

curvature [45]. In another pyrethroid study, zebrafish exposed to cypermethrin exhibited apoptotic cell 
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death (96 hpf) in the CNS region (brain and spinal cord) [58]. Cypermethrin exposure also altered 

activities of enzymes responsive to oxidative stress (i.e., superoxide dismutase and catalase), level of 

malondialdehyde, and expression of a gene involved in DNA repair (i.e., 8-oxoguanine DNA glycosylase 

(ogg1)), suggesting the neurotoxic mechanisms related to the pathways of oxidative stress production 

and DNA-repair [58]. Similar effects were shown in the study of fenvalerate to which exposure 

resulted in apoptosis in the brain region of embryo and larval zebrafish [49]. In this study, changes in 

superoxide dismutase activity and expression of distal-less homeobox 2 (dlx2, a gene involved in 

neural differentiation) as well as ogg1 were observed, implying the involvement of oxidative stress 

generation and alteration of dlx2 and ogg1 related biological processes in mechanisms of  

fenvalerate-induced DNT [49]. 

The zebrafish model has been applied for testing the developmental neurotoxic effects of exposure 

to chemicals related to Parkinson’s disease, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP), paraquat, and rotenone [37,62]. It seems clear that MPTP induces neurobehavioral changes 

and/or neuronal decrease in the developing zebrafish [37,43,62]. In Bretaud et al. [37], while paraquat 

or rotenone treatment did not induce significant changes, MPTP exposure induced decreases in 

swimming speed and in the number of dopaminergic neurons in the diencephalon of zebrafish at  

168 hpf and 120 hpf, respectively. Being a well-defined developmental neurotoxicant, MPTP was also 

used as a positive compound by Chen et al. [43] in which sodium benzoate exposure resulted in 

decreased dopamine neuronal expression of tyrosine hydroxylase and dopamine transporter at 72 hpf, 

and altered larval locomotive activity at 144 hpf. 

There are zebrafish studies on ethanol-induced neurotoxicity, showing the effects of developmental 

ethanol exposure on several neurotoxicological endpoints (e.g., altered behavior, apoptotic cell death, 

decreased retino-tectal projection area) and also the underlying mechanism [38,42,48,51]. Especially, 

apoptotic cell death occurring in the head area has been pronounced as one of the neurotoxic  

effects caused by developmental ethanol exposure in the zebrafish [38,48,51]. For example, in  

Flentke et al. [48], ethanol toxicity was investigated in regard to the association between ethanol 

exposure and fetal alcohol spectrum disorders. Flentke et al. [48] showed that ethanol exposure for 3 h 

resulted in apoptotic death of neural crest cells related to the calcium calmodulin-dependent protein 

kinase II signaling pathway. 

Zebrafish studies have revealed the neurotoxic effects of exposure to PBDEs (e.g., DE-71, BDE-47, 

BDE-49), showing alteration in neurobehavior, genetic expression, cholinergic system and/or axonal 

growth [39–41,52]. As an example, in Chen et al. [39], zebrafish (120 hpf) developmentally exposed to 

DE-71 exhibited altered locomotor movement, increased AChE activity, and decreased expression of 

nervous system genes (myelin basic protein, α1-tubulin, and sonic hedgehog a). Parental exposure to 

DE-71 (for 150 days) also induced changes in neurobehavior, CNS gene expression (myelin basic 

protein, synapsin IIa, α1-tubulin), and the cholinergic system but with decreased AChE activity in F1 

offspring at 96 hpf [40]. 

As shown in the research above, the zebrafish has a potential to be applied for testing DNT of a 

broad range of chemicals. However, a limited number of zebrafish studies have been conducted on 

influences of exposure to other substances (e.g., TCDD, cadmium, nanoparticles, and valproate) on 

neurobehavior or neurogenesis in the developmentally exposed zebrafish [42,44,50,54,63,66]. To this 

end, there has been a need to develop the strengths and further the application of the zebrafish as a 
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model organism for DNT testing. Studies have suggested endpoints which can serve as indicators in 

DNT screening of a variety of chemicals, which are described in the below section. 

4.2. The Zebrafish as a Potential Tool for Chemical-Induced DNT Screening 

The zebrafish model allows screening of multiple chemical DNT within a few days through 

examination of cellular (apoptosis) or specific neuronal proliferation (neuronal development or survival) 

appearing in the brain region by utilizing simple staining methods such as acridine orange (AO) 

staining or immunostaining [60,61]. For example, Ton et al. [61] suggested the zebrafish as a screening 

tool for DNT assessment, showing that measurement of cell death in the brain can be a useful endpoint 

using the zebrafish in the early life stage (96 hpf). Zebrafish were treated with five test chemicals (e.g., 

atrazine, 2,4-D, DDT, dieldrin, and nonylphenol), one teratogen (TCDD), or one negative compound 

for neurotoxicity (malathion) and then axonal tracts, catecholaminergic neurons, and apoptotic cell 

death occurring in the brain region visualized [61]. DNT was differentiated from teratogenic effects by 

obtaining the teratogenic index of each chemical. The results specified 2,4-D, dieldrin, and 

nonylphenol as developmental neurotoxicants among the seven chemicals tested [61]. 

Fan et al. [47] and Cowden et al. [42] suggested the examination of the quantitative expression of 

selected genes or the retino-tectal projection area as potential DNT endpoints. The relevance of these 

endpoints was proven using ethanol and/or valproate as model neurotoxicants. Fan et al. [47] provided 

gene expression profiles of ten nervous system genes (e.g., glial fibrillary acidic protein, myelin basic 

protein, nestin, synapsin IIa) with control genes (ribosomal protein L13A and elongation factor1 alpha) 

during zebrafish development (≈6 days), so that this information can be used for future DNT screening. 

Neurobehavioral alterations are a popular neurotoxicological endpoint in DNT studies using the 

zebrafish. With the small size, transparency, and ex vivo embryonic development of the zebrafish, live 

tracking of zebrafish behaviors using video recording tools is available from the early embryonic 

stages. A recent study by Kalueff et al. [190] further defined major behaviors of zebrafish to aid in the 

interpretation of zebrafish behavioral changes as phenotypes of neurological alterations. In the field of 

DNT research, the zebrafish neurobehavioral changes observed as endpoints can be grossly divided 

into three categories: spontaneous movement, touch-responsive movement, and locomotor activity 

induced without touch stimulation. These endpoints have been the basis for the development of 

methods for screening chemical-induced DNT in recent studies [42,55,56]. For example, as an attempt 

to provide a method for DNT screening using zebrafish, Selderslaghs et al. [56] examined behaviors of 

embryos (spontaneous movement) and larvae (swimming activity). These neurobehavioral endpoints 

were observed following exposure to seven chemicals with known DNT (e.g., acrylamide, bisphenol A, 

chlorpromazine, or MeHg) or three negative substances (e.g., acetaminophen, omeprazole, or saccharin). 

These results were then compared to the existing literature on the DNT of these chemicals [56]. Test 

results using all chemicals but omeprazole corresponded to existing animal data, showing the potential 

of the zebrafish in early life stages as a tool for screening chemical-induced DNT [56]. 

Overall with the recent gains in knowledge on zebrafish neurobehavior and transcriptional 

regulation, behavioral assays and transcriptional assessments provide comparable DNT data to 

traditional rodent model studies. Furthermore, various strengths of the zebrafish are being utilized to 

further the understanding of DNT at endpoints that are not as easily assessed in rodent models. For 
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example, the ex vivo embryonic development allows microscopic examination of developing axons 

immediately after fertilization, serving as a valuable indicator of DNT which is not as easily assessed 

in other vertebrate model systems. 

4.3. DNT Studies of Arsenic, Methylmercury, or Lead Using the Zebrafish 

The zebrafish has been utilized in several studies on the DNT of arsenic, MeHg, and Pb (Table 1). 

In these studies, the neurotoxic consequences of developmental metal exposures and/or the underlying 

mechanisms of metal DNT have been investigated from various angles (e.g., axonal growth inhibition, 

transcriptomic alterations, or neurobehavioral changes). In this section, we review the progress made 

in DNT studies on the metalloid arsenic and the two metals MeHg and Pb using the zebrafish as a test 

organism to support further studies of DNT using this model system. As an effort to differentiate 

developmental toxicity from DNT, overt signs of toxicity such as altered hatchability of embryo, 

lethality, or gross morphological (e.g., craniofacial alteration) or histological (e.g., organ edema) 

changes are excluded from the review unless the neurotoxic origin of those effects are clarified. 

There are a few studies describing the effects or mechanisms of neurotoxicity associated with a 

developmental exposure to arsenic. In a study by Li et al. [120], zebrafish embryos were exposed to 

either a control treatment or various concentrations of sodium arsenite from 4 hpf. To investigate the 

effects of arsenite exposure on early neurodevelopment, the zebrafish embryos were subjected to either 

simple microscopic observations at 30 hpf or immunostaining at 48 hpf [120]. The former experiment 

was conducted to observe the reflexive actions of embryos in response to light stimulation, revealing 

that the frequency of motions made by embryos developmentally treated with 2 or 5 mM arsenite 

decreased significantly compared to the control zebrafish [120]. As the zebrafish in very early stages 

of development has a relatively simple neuronal network, the observation of the reflexive movement 

may reflect the altered neuronal function derived from arsenite exposure, not the secondary outcome of 

non-DNT (e.g., growth retardation). In the immunostaining experiment, axonal tracts of zebrafish 

embryos were visualized using acetylated α-tubulin (α-AT) antibody and showed altered growth 

patterns of axons in the brain and spinal cord of zebrafish exposed to 2 mM of arsenite compared  

to those in the control treatment [120]. Furthermore, researchers also found that exposure to 2 mM 

arsenite induced changes in patterns of cell proliferation, cell death, and DNA methylation in 

developing zebrafish at 24 and/or 48 hpf using various methods including proliferating cell nuclear 

antigen (PCNA) labeling, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

assay, and 5-methylcytidine labeling [120]. Based on these observations, it might be reasonable to 

assume that arsenite DNT is related to the altered biological processes strictly regulated by proper cell 

proliferation, apoptosis, or DNA methylation during normal embryonic development. To generalize 

this assumption, however, additional investigations into the molecular mechanism of arsenite DNT 

need to be performed to clarify that the effects observed in the zebrafish are the consequences of DNT 

and not of teratogenicity. A follow-up study by Li et al. [191] investigated the mechanisms of arsenic 

DNT with a focus on the activity of zebrafish Dvr1, which is involved in axis formation (known as 

growth differentiation factor 1 (GDF1) in mammals). In this study, quantitative polymerase chain 

reaction (qPCR) and whole mount in situ hybridization techniques were utilized to detect the levels of 

Dvr1 expression in the developing zebrafish. The results of this study showed a decrease in Dvr1 
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expression in 2 mM sodium arsenite treated embryos compared to those in the control group at 6 hpf in 

both of the experiments [191]. To further investigate the association between Dvr1 function and early 

development of the zebrafish nervous system, researchers injected a Dvr1 morpholino (MO) with or 

without plasmids encoding Dvr1 homolog (e.g., mouse GDF1) [191]. By performing this simple MO 

injection into the embryo, expression of a specific gene of interest can be silenced in the zebrafish.  

The generated Dvr1 morphants were then subjected to α-AT staining at 48 hpf and showed impaired 

neural development in the brain, trunk, and tail compared to embryos in the control treatment  

(i.e., not genetically manipulated embryos) [191]. In the same immunostaining experiment using 

embryos co-treated with Dvr1 MO and plasmids, the expression of mouse GDF1 alleviated the 

neurodevelopmental effects of Dvr1 knockdown, suggesting the involvement of Dvr1 in the mechanism 

of arsenic DNT in the zebrafish [191]. 

Long et al. [192] identified the expression of abcc5 (ATP-binding cassette transporter), which plays 

a role in cellular signaling and protection from xenobiotics, in the zebrafish embryo with or without an 

exposure to heavy metals including arsenic, mercury, and Pb. Firstly, Long et al. [192] characterized 

quantitative and spatial expression of abcc5 by using qPCR and whole mount in situ hybridization, 

revealing that abcc5 was expressed in the lens and brain during embryogenesis (24, 48, and 72 hpf). 

The level of abcc5 expression was then evaluated in embryos treated with different concentrations of 

metals, including sodium arsenate (100 µM), Hg chloride (0.5 µM), or Pb nitrate (50 µM) [192]. qPCR 

results indicated that each metal exposure (through 24 to 48 hpf) resulted in a significant increase in 

quantitative abcc5 expression [192]. The pattern of abcc5 expression observed without metal exposure 

implies that this gene may have a role in distinctive regions including the brain during embryogenesis. 

Although it needs to be further elucidated, considering the function of abcc5 is to transport cGMP in 

signal transduction, one can speculate that expression alterations of abcc5 induced by metal exposure 

may interfere with important biological processes such as neurodevelopment. 

The zebrafish model system was also applied to investigate MeHg DNT. Hassan et al. [193] 

observed a significant reduction of cellular proliferation occurring in the neural tube of zebrafish 

developmentally exposed to 10, 50, or 80 µg/L (≈0.4 µM) MeHg at 30 hpf using PCNA staining. 

Cuello et al. [194] investigated the effects of MeHg exposure on zebrafish development at the protein 

level using iTRAQ (isobaric tags for relative and absolute quantification). Altered expression of 

proteins involved in calcium binding (e.g., parvalbumin-2 and parvalbumin 9, and parvalbumin 

isoform 1d) was observed in the zebrafish treated with 25 µg/L (≈0.1 µM) MeHg from 72 to 144 hpf, 

suggesting the disturbance of calcium homeostasis as an important mechanism of MeHg toxicity. More 

recently, Ho et al. [125] treated embryos with 60 µg/L (≈0.3 µM) MeHg from 48 to 72 hpf and then 

conducted microarray analysis, which enables global detection of gene expression changes in the 

zebrafish. Researchers then conducted a whole mount in situ hybridization with 88 genes that showed 

substantial expression changes in the microarray analysis and confirmed expression alterations of 60 of 

the 88 genes [125]. The data from the in situ hybridization experiments also allowed further grouping 

of genes according to their expression patterns shown in different tissues. In this analysis, 24 of the  

88 genes had specific expression alterations in the brain region [125]. These 24 genes expressed in  

the brain were involved in a variety of biological activities including transcriptional regulation, 

development, and transport processes, implying possible biological disturbances in the zebrafish brain 

affected by developmental MeHg exposure [125]. The information obtained from this transcriptomic 
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analysis is valuable since there is a lack of basic data about potential molecular targets of MeHg 

neurotoxicity. Thus, this data can assist in identifying targets for later in-depth studies using the 

zebrafish to further define the molecular mechanisms of MeHg DNT toxicity. 

Several Pb DNT studies have been carried out using the zebrafish, presenting various signs of 

neurodevelopmental alterations in Pb exposed subjects (reviewed in [195]). Low concentrations tested 

in the Pb exposure studies described below show that the zebrafish is indeed a very sensitive in vivo 

test model for DNT assessment. For example, Peterson et al. [128] evaluated global gene expression 

changes in developing zebrafish in response to a low-dose Pb exposure. Microarray analysis was 

performed with embryos treated with 100 ppb (≈0.5 µM) Pb through the end of embryogenesis, 

resulting in significant expression alterations of 55 genes engaged in processes related to nervous 

system development/functioning and neurological diseases [128]. Western blot analysis revealed 

significant changes in expression of several target proteins including metallothionein-2, FRY-like, and 

reelin [128]. The results of this study are noteworthy in revealing that a low-dose of Pb was sufficient 

to induce expression alterations of genes/proteins involved in the zebrafish nervous system. In addition, 

it is also important to note that the alterations detected at 72 hpf were not present at 120 hpf, implying 

that the effects of a developmental Pb exposure might be time point specific. It is yet unclear whether 

the expression alterations of nervous system genes observed at 72 hpf are reflective of transient effects 

of Pb exposure or not. To answer this question, further analyses of global changes of gene expression 

appearing at stages earlier than 72 hpf and later than 120 hpf need to be performed. 

In a follow-up study, Peterson et al. [196] assessed the expression of zebrafish reln (equivalent to 

human reelin that is known to be involved in neuronal development and diseases). Zebrafish embryos 

were exposed to up to 100 ppb Pb acetate shortly after fertilization through 24–96 hpf, and then 

subjected to whole mount in situ hybridization or qPCR analysis to evaluate expression alteration of 

zebrafish reln [196]. In the in situ hybridization experiment, expression of reln was noticeable in the 

CNS region beginning at 24 hpf, while no spatial expression alterations were observed in response to 

the Pb exposure. A significant decrease in reln expression occurred only in embryos treated with  

100 ppb Pb at 60 hpf, without significant changes in brain morphology or brain cell apoptosis.  

These findings suggest a time point specific role of this gene that might be involved in neurotoxic 

mechanisms other than brain morphogenesis [196]. Considering the absence of apoptotic cell death in 

the brain, which is one of the frequently used indicators of neurotoxicity in zebrafish studies, focus of 

future studies needs to be placed on different mechanisms of neurotoxicity. 

In an additional follow-up study, the effect of Pb exposure on axonal growth in the developing 

zebrafish was studied following exposure to 100 ppb Pb acetate at several time points between  

18–36 hpf by α-AT staining and showed a significant decrease in axonal density in Pb exposed 

embryos at 18, 20, or 24 hpf [70]. The genetic mechanisms underlying this Pb-induced axonal density 

decrease were investigated by measuring quantitative expression of genes involved in axon guidance in 

embryos exposed to 100 ppb Pb through 14–36 hpf. The qPCR analysis revealed that expression of 

sonic hedgehog a and ephrin type-A receptor 4b were significantly down-regulated at 14 and 16 hpf, 

respectively [70]. On the other hand, netrin2 expression increased significantly at 30 and 36 hpf, 

suggesting the involvement of netrin2 in regulating axonal growth in response to Pb neurotoxicity at 

early developmental stages [70]. 



Toxics 2014, 2  481 

 

 

Recently Wirbisky et al. [69] investigated the effects of Pb acetate exposure (up to 100 ppb, up to 

72 hpf) on the GABAergic system of embryonic zebrafish using qPCR and High Performance Liquid 

Chromatography (HPLC). In the qPCR analysis, Pb treated embryos exhibited time point specific 

expression alterations of genes involved in GABA production (gad2, gad1b), transport  

(gat-1, gat-3, vgat), and GABA receptors (gabra1, gabbr1a) throughout embryogenesis [69]. GABA 

measurement by HPLC revealed that embryonic Pb exposure also induced fluctuation of GABA levels 

with an increase in GABA at 48 hpf and a decrease in GABA at 72 hpf [69]. These results suggest that 

Pb exposure interferes with the GABAergic system in the zebrafish during embryonic developmental 

stages with different patterns of genetic expression and GABA level fluctuations. In regards to the 

function of GABA which can be either excitatory or inhibitory at different embryonic developmental 

stages, future observations at narrower ranges of developmental time points may explain the 

importance of the GABAergic system as a mechanism of Pb-induced DNT. 

Developmental Pb exposure also causes neurobehavioral changes in the zebrafish. In Rice et al. [131], 

embryos were treated with up to 30 nM of Pb chloride through 24 hpf and then subjected to a 

neurobehavioral test at 168 hpf. The behavioral changes of the zebrafish were evaluated on several 

parameters reflecting altered movement in response to different frequencies of tapping stimulation  

(i.e., one tap/s or four taps/s), showing that zebrafish developmentally treated with 30 nM of Pb 

exhibited altered responses under both the one and four taps/second frequency stimulation [131].  

Rice et al. [131] also provided a probable mechanistic interpretation of the behavioral changes 

including altered sensitivity of mechanosensory neuromasts, function of neurons involved in signal 

integration, or neurotransmitter signaling, albeit inclusive. In another study Chen et al. [132] treated 

zebrafish with up to 1 mg/L (≈5 µM) Pb acetate from 6–8 hpf and monitored spontaneous movement 

from 20 until 30 hpf, showing that spontaneous activity of embryos exposed to 1 mg/L of Pb 

significantly decreased at most of the tested time points. Chen et al. [132] also examined behavioral 

changes of zebrafish developmentally treated with lower concentrations of Pb acetate (up to 0.1 mg/L 

(~0.5 µM)) starting from 6 hpf until the time of evaluation. In the test conducted under constant light 

or dark condition at 120 hpf, zebrafish developmentally exposed to 0.1 mg/L Pb showed a significant 

decrease and increase in mean swimming speed under light and dark condition, respectively [132].  

The mechanisms of Pb DNT causing the inconsistent change of larval swimming activity as well as the 

alteration of spontaneous movement are largely unknown. Considering the sensitivity of the zebrafish 

embryo and larva, further elucidation may be necessary to discriminate the behavioral alteration 

caused by different experimental conditions from the Pb-induced neurobehavioral effects. Taken 

together, the Pb DNT studies using the zebrafish model have shown the neurotoxic effects of a  

low-dose Pb exposure at specific time points. Information about molecular targets of Pb DNT in the 

zebrafish allows further investigation of mechanisms involved in Pb-induced DNT. Future studies on 

behavioral phenotypes and underlying molecular mechanisms at expanded developmental time points 

or with lower doses of Pb will aid in the understanding of Pb DNT in the zebrafish. 

5. Conclusions 

The zebrafish has traditionally been a popular model in the field of developmental biology with 

current expansion into all areas of biological research. The zebrafish presents a number of strengths  
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as an in vivo laboratory model including the use as a complementary vertebrate model for DNT 

assessment. Furthermore, the application of the zebrafish as a complementary model in DNT studies is 

supported by published studies investigating the DNT of the known neurotoxicants arsenic, MeHg, and 

Pb. To facilitate the application of the zebrafish model in DNT testing, further studies need to be 

conducted on exposure kinetics of various substances to determine exposure doses per embryo or larva. 

A few studies have started to include this analysis (e.g., [69,70]), but more work is needed in this area 

to understand dose and exposure kinetics. In addition, chorionation or dechorionation status at  

the time of chemical exposure may also affect the degree of chemical absorption by the embryo. 

Additionally, there is a need for validation of existing endpoints to distinguish DNT from 

developmental toxicity (e.g., differentiation of behavior from neurobehavior) and for the development 

of novel markers which can be used as direct indicators of DNT in the zebrafish. Overall, with future 

investigations, the use of the zebrafish model system will assist in the screening of developmental 

neurotoxicants and ultimately facilitate our understanding of DNT mechanisms. 
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