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Humans predominantly use vision to plan actions 

towards objects. Glancing at a nearby object, reaching 

out, and grasping it, feels effortless. However, the 

sensorimotor computations underlying grasp planning are nontrivial, and there is an extensive literature describing the multifaceted features of 

visually guided grasping[1,2]. At last year’s meeting[3], we presented preliminary work aimed at predicting how humans visually select grasp 

locations on 3D objects. Since then, we have developed this work into a theoretical framework that unifies the varied yet fragmented literature on 

human grasp selection. We are now able to generate predictions of two-digit precision grip grasps onto 3D objects varying in shape, weight, and 

material (Figure 1, e-h). These predictions are strikingly similar to real grasps executed by human participants (Figure 1, a-d; behavioural data 

from [4]).  

To generate these compelling predictions, we first create a triangulated 3D mesh model of a graspable object, and place it within a 3D coordinate 

frame. Within the same coordinate frame, we define the position and orientation of a human observer poised to grasp the object. We then sample 

the surface of the mesh model in discrete steps. Each sampled point on the surface of the object represents 

a potential contact location between the object and the hand grasping it. In precision grip, only two contact 

points are employed: the thumb contact point and the index finger contact point. Every possible precision 

grip grasp onto the object is thus defined as a 6D vector of x,y,z coordinates for the thumb contact point 

and x,y,z coordinates for the index contact point.  

For each grasp within the 6D manifold defined by the surface of the object, we compute how far the grasp 

is from a set of optimality criteria which we hypothesize the brain may employ to plan a successful grasp. 

We then assign a set of penalty values to each grasp, proportional to the distance of the grasp from this set 

of optimality criteria. We include criteria determined by the physical properties of both the graspable 

object and the human actuator (i.e. the human arm/hand). Specifically, we consider grasp optimality 

criteria based on (i) optimum force closure[5], (ii) minimum torque[6], (iii) alignment with the natural grasp 

axis[7], (iv) optimal grasp aperture[8], and (v) minimum reach trajectory[9]. We assume that humans will most likely select a grasp that satisfies all 

optimality criteria as much as possible. This is equivalent to searching for a grasp that has low penalty across all optimality criteria. The predicted 

grasps in Figure 1 (e-h) are sampled from the set of grasps that best satisfy this intersection of constraints.  

To quantitatively assess how similar predicted grasps are to human grasps, we defined a grasp similarity metric inversely proportional to the 

Euclidean distance (in 6D) between grasps, expressed as a percentage of the maximum possible distance between grips for each object. By this 

metric, Figure 2 shows how grasps selected by different human participants on the same object are 83.5% similar to each other, and grasps predicted 

through our framework are 85.1% similar to human grasps. With no direct knowledge of human data (i.e. without fitting human grasp data to a 

model), our approach can predict human grasps equally well as grasps from a random human on average approximate the median human grasp. 

The simple, equally weighted intersection of the constraints we have thus far described already well predicts human grasping behaviour. However, 

it is unlikely that all optimality criteria will be treated as being equally important by humans selecting grasps on different objects. Additionally, 

different persons may give different relative importance to different constraints. Therefore, we developed a method of varying the importance of 

each optimality criterion to fit the intersection of the constraints to observed patterns 

of human behaviour. Through this procedure, we demonstrate that the combination of 

force closure, hand posture, and grasp size explains most of human grasp selection. 

The length of the reach trajectory marginally influences human grasp planning, and 

only for very light objects. Furthermore, we find that humans select grasps that 

minimize torque only on heavy objects where very high torques may occur. In addition 

to describing individual patterns of human grasps, our framework can be employed to 

generate novel, perceptually dissimilar stimuli, that differentiate conflicting 

hypotheses on how humans grasp objects (Figure 3). 

We have thus far developed a framework capable of identifying the computations necessary to plan successful grasps when total knowledge of the 

physics of the environment is available. Hand-engineering algorithms that perform these computations directly from image input is a daunting 

task, one which has stumped the robotics community for decades[10]. Yet advances in machine learning may now come to our aid. Recently, deep 

convolutional neural networks have been successfully trained to control robotic grippers from monocular images[11]. Similarly, we are now 

attempting to train convolutional networks on motor tasks that a priori seem to require detailed physical knowledge of the world. Preliminary 

attempts suggest that genetic algorithms may be better than reinforcement learning for training deep convolutional neural networks at complex 

motor tasks[12]. This approach will hopefully allow us to determine the visual representations necessary for successful mappings between visual 

input and motor actions. Once we identify the visual computations that lead to successful motor actions, we will determine which of these 

computations the human visual system is employing to plan grasps towards objects. To this end, we are designing a dataset that will hopefully 

function as a benchmark to assess models of human grasping behaviour. At the end of my talk, I will present a preliminary version of this dataset, 

and I will seek feedback from the MODVIS community to help determine the structure and content of the dataset and ensure its success. Through 

a coordinated effort, the theory- and data-driven approach we present here holds the potential for developing complete, image-computable models 

of human visually guided grasping behaviour.  
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Figure 1. (a-d) Human grasps onto objects varying in shape, orientation, and material (wood and brass). (e-
h) Simulated grasps onto the same objects, predicted through our theoretical framework. 

Figure 2. Similarity to the median human 
grasp. Dashed line is the chance level of 
similarity between grasps constrained by 
object geometry. 

Figure 3. Novel stimuli generated to differentiate conflicting hypotheses 
on visually guided grasping behavior. These objects are selected to be 
equally and maximally distinct, as determined by a shape dissimilarity 
metric we have perceptually validated in a visual similarity task. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220144465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

