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Empirically tuning the Divisive Normalization. Cas-
cades of Linear+NonLinear Divisive Normalization trans-
forms [1] can be easily tuned using the derivatives intro-
duced in [2] to reproduce the perception of image distor-
tion in naturalistic environments. Previous brute-force ex-
plorations [3] suggested that spatial interactions in divisively
normalized wavelets are more relevant to reproduce subjec-
tive opinion than scale and orientation interactions. Opti-
mization of such spatial-only kernels confirms this [2]. In this
intraband-only Divisive Normalization the vector of V1-like
activations, x, depends on the energy of linear wavelet re-
sponses, e, dimension-wise normalized by a sum of neighbor
energies,

x =
e

b+Hp · e
= D−1

(b+Hp·e) · e (1)

where the kernel Hp only considers the departure in spatial
position, ∆p, between sensors of the same subband.

Obvious limitations of intraband kernels. Despite suc-
cessful optimization over large naturalistic image quality
databases [2], some basic effects with artificial stimuli may
be poorly reproduced [4]: while the model explains cross-
orientation and cross-scale masking for low frequency tests
seen on high frequency backgrounds it is not the case the
other way around. To fix this, a more balanced interaction
between subbands in the denominator of Eq. 1 is required,
which cannot be introduced in intraband-only kernels.

Solution goes beyond Watson & Solomon kernels.
The first guess to fix the imbalance is substituting the spatial-
only kernel Hp in Eq. 1 by more general kernels, as the one
proposed by Watson & Solomon, Hws = Hp�Hf �Hφ, that
not only depends on departures in position, p, but also in
frequency, f , and in orientation φ [5]. However, it turns out
that Gaussian Hws may not provide the appropriate balance
either: low frequency backgrounds may still have too much
energy and bias the result for high frequency tests. This may
be fixed ad-hoc [4] by left and right multiplication of the
Watson & Solomon kernel with extra diagonal matrices:

H = Dl ·Hws · Dr (2)

While Dr, pre-weights the subbands of e before computing
the interaction, Dl, tunes the relative weight of the masking
for each sensor. Additionally to the changes in H to account
for the artificial stimuli, the fine-tuned model in [4] included
an extra constant to keep the output dynamic range as in the

simpler model of Eq. 1, just to keep the previous performance
for naturalistic stimuli. Summarizing, the fine-tuned model,
x = Dk · D−1

(b+H·e) · e, requires a specific structure in H, i.e

Eq. 2, and vectors l and r of high-pass nature [4].

The question is: where the structure in Eq. 2 comes from?.

Explanation: wiring in Wilson-Cowan. The Divisive
Normalization model [1] and the Wilson-Cowan model [6] are
alternative formulations of the interaction of neural popula-
tions. Despite the fact that both models have been shown to
have similar information maximization properties [3, 7], and
provide similar descriptions of pattern discrimination [8], no
direct correspondence has been established between them yet.

In the Wilson-Cowan model [6] the variation of the acti-
vation vector, ẋ, increases with the energy of the input, e,
but, for each sensor, this variation is also moderated by its
own activity and by a linear combination of the activities of
the neighbor sensors,

ẋ = e− Dα · x−W · f(x) (3)

where f(x) is a dimension-wise sigmoid, and W is the matrix
that describes the damping factor between sensors.

In this work we assume that the Divisive Normalization
regime is the stationary solution of the dynamic system de-
fined by the Wilson-Cowan equations. We derive the analyt-
ical relation between the parameters of both models1,

b ∝ α

H ∝ D−1
x ·W · D−1

b (4)

which is the structure that had to be introduced ad-hoc in
Eq. 2. The high pass nature of x−1 and b−1 explains why the
low frequencies in e had to be attenuated by r and l.

Discussion. This relation between models has a range of
consequences. First, assuming fixed (hard-wired) interaction
between the sensors in the Wilson-Cowan model, Eq. 4 im-
plies that the required kernel in Divisive Normalization, H,
not only inherits the wiring inW , but it also should be signal-
dependent. Second, functional forms depending on proximity
(as in the Watson-Solomon kernel Hws) seem sensible choices
for wiring in W , which would justify the hand-crafted trick
in Eq. 2. Last, but more importantly, Eq. 4 implies that the
variety of dynamic analysis already done for Wilson-Cowan
systems [9] can also be applied to the wide range of phenom-
ena described by Divisive Normalization.
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