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Introduction 
 
Nowadays, distributed systems are the necessity of almost all big enterprises. It is a  programmer’s 

nightmare to encounter a bug which causes failures in the system and leads to a crash on such a large 

infrastructure. With the ever increasing code sizes and processing needs, a tool is required that is able to 

assist a programmer in figuring out potential causes of a bug and minimizing time taken for debugging, 

hence rectifying it quickly. 

 
 
This problem has existed since the inception of distributed systems and continues to be a major development 

and monitoring bottleneck till  date. Numerous solutions have been proposed to assist programmers  in 

determining deterministic as well as byzantine failures in these large-scale systems. A few of the well-noted 

works in the domain utilized breakpoint debugging, replay tools using system logs [3] and quantitative 

comparison of performance metrics of different runs [4]. One such solution, called Orion [1], implements 

an automated diagnosis tool in computing systems by mining metric data. The focus of this tool is on 

manifest-on-metrics bugs where a faulty program execution will result in an abnormal pattern in system 

metrics. 

 
 
Our work focused on improving the functionality of Orion1. Orion compares the system metrics at various 

levels, namely, hardware, OS, middleware and application layer. The previous algorithm [2] is able to 

isolate the code region associated with the change in a particular metric. However, it does not make use of 

the association information provided by the stack traces of the normal and abnormal runs. We utilized the 

execution logs of a process, stored in the form of a stack trace, to narrow down the specified buggy code 

region to a particular sequence of function calls that contain the bug or are most affected by the bug. 

 
 
Another aspect of our solution focused on increasing the reliability of Orion’s results. The  existing 

algorithm [1] used a single normal run for comparison with an abnormal run. However, the system metrics 

                                                            
1 This is a distinct system from the Orion of [8] which is a system for parallelizing genomic queries.  
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might differ between various normal runs based on the input parameters and runtime environment. We 

augmented this functionality by enabling Orion to take into account the system metrics from multiple 

normal runs. Our solution focused on finding the closest normal run that best emulated the metrics of 

abnormal run before the process diverged abnormally. 

 
 
The first part of our algorithm focused on refining the granularity of Orion by locating the buggy function 

call sequence. The basic technique included design of a similarity index for determining the amount of 

correlation between two sequences of function calls, each belonging to normal and abnormal executions of 

the process. Following this, a dissimilarity score is calculated for each pair  of  abnormal  and  normal 

windows in decreasing order of similarity index. This score captures the dissimilarity in the behavior of the 

most similar stack traces between abnormal and normal runs. 

 
 
The second part of the algorithm focuses on better calibration of the results by determining the buggy metric 

using multiple normal runs. In a distributed system, multiple threads execute simultaneously which results 

in slight aberrations in the variance of system metrics of each new run. Therefore, considering the run 

closest to an abnormal run magnifies the dissimilarities better. We use the existing semantics of Orion for 

calculating correlation between different windows of abnormal and normal runs. Instead of calculating the 

correlation for different windows of same normal run, the extended algorithm calculates these correlation 

vectors across all normal runs and helps in identifying the normal with the closest deviation from the 

abnormal run. 

 
 
We benchmarked our work against already established bugs in open source software which have been fixed. 

This enabled us to verify our findings with the actual diagnosis of the bugs by developers. On running 

Orion’s extended functionality against the bug Hadoop-3067, the algorithm successfully listed the buggy 

function call sequence among the top three results. In the same case, we were also able to see a difference 

in the ordering of suspected buggy metrics when run with metric data from different normal runs. 
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To summarize, we have extended the functionality of Orion to be able to locate the buggy function call 

sequence over the existing algorithm that isolated the code region. Our algorithm is generic to applications 

and is able to locate the function call sequence which either contains the bug or is most affected by the bug. 

We have also increased the reliability of the results by including multiple runs for detecting the faulty 

metric. We successfully demonstrated Orion+ with Hadoop 3067. Orion+ identified the closest normal run 

to the abnormal run, which gave the faulty metrics in the most relevant order. It further found the function 

call sequence that was most affected in a given code region, as well as contained the specific method where 

the bug was present. 

 
 
The following sections of the report will further expand on the background research that was conducted 

during the project, details about the existing implementation of Orion, design overview of Orion+, 

comprehensive approach to the problem at hand and its implementation specifics, experimentation and 

results. Finally, we conclude with the insights from the project and a brief discussion about the future scope 

of the project. 
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Background 
 
Today’s large-scale distributed applications are complex. With the increasing application complexity, 

finding the root cause of performance problems in an automated manner is a challenging task. Traditionally, 

application developers and administrators who have domain knowledge follow breakpoint-based debugging 

or  ad-hoc  profiling  techniques  to  manually  find  the  root  causes  of  the  performance  problems.  A 

performance problem in an application can occur due to a variety of root causes. Majority of the root causes 

relate to an abnormal pattern in the behavior of one or more metrics in the system. For example, due to a 

bug, an application can abnormally start opening a large number of file handles without closing them until 

the system runs out of the file-handle limit. 

 
 
With such a huge system at hand in production, efficient debugging becomes an important aspect of the 

development process. Processes, when failing in production may have a negative impact on the users and 

it is imperative to fix them at the earliest. Therefore, this problem is both of theoretical as well as practical 

importance and a solution to faster and more efficient debugging of distributed applications will increase 

the reliability and availability of these systems. 

 
 
An earlier related work in performance diagnosis area was presented in [4] where first using different 

metrics, a performance state (called a fingerprint) based on quantiles is established. The fingerprint is then 

statistically  compared  with  previously  known  fingerprints  that  resulted  in  performance  issues  in  past. 

Another approach is based on using a replay debugging tool called liblog [3].   It logs the execution of 

deployed application processes and replays them deterministically, faithfully reproducing race conditions 

and non-deterministic failures, enabling careful offline analysis. Liblog focuses on long-running services 

that are particularly prone to the slow-developing and non-deterministic, low-probability faults that resist 

detection during the testing phase. Prior work [7] has also shown that classification of failures is helped if 

there is application-specific knowledge that can be fed to the classifier. We aid in that effort through our 

extraction of application-specific parameters.  



6 

Our work is built over Orion [1], which was developed by previous members of the Dependable 

Computing Systems Lab. Orion is an automated problem diagnosis in computing systems by mining 

metric data. It focuses on finding the root cause of  performance problems  that  are associated with 

resource-leaks (where resource could be  file- handles, memory, connections etc.). Orion pinpoints the 

metric and a window that is most highly affected by a failure and subsequently finds top-k code regions that 

are associated with the  problem’s  origin. ORION’s algorithm models the application behavior through 

pairwise correlations of multiple metrics collected across different system layers. When failure occurs, it 

finds the correlations that deviate from normal behavior. 

 
 
Since our work is an extension of the existing functionality of Orion, it is only justified to give a detailed 

overview of the previous algorithm. The details following herewith form the building  blocks  for  our 

proposed solution. The figure below gives an overview of the algorithm. 

 
 

 
 

Figure 1 Problem determination Workflow of Orion[1] 
 
 

 
Orion uses measurements of multiple metrics at different levels in the system, i.e., hardware, OS, 

middleware and application for problem diagnosis in distributed applications. Given a normal and 

abnormal trace and log of system metrics, Orion calculates the correlation of pair of metrics 

between windows split across time. Using this distance matrix, Orion creates a hypersphere of 

these distance vectors and locates the faulty metric based on the maximum minimum distance 

between any two normal and abnormal windows. 
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The second half of Orion, which focuses on identifying the faulty code region, takes in the resulting 

faulty metric as an input. The algorithm then finds the abnormal windows that contribute most to 

the anomaly in the buggy metric. The aim of this part of the Orion algorithm is to pinpoint the 

code regions that might have contributed to the aberration in this particular metric. Therefore, after 

identifying the most anomalous windows for this faulty metric, Orion create a frequency map for 

number of unique occurrences of each of the code regions across the most abnormal windows. The 

code region with the highest are the potential culprits. Exactly which features should be used for 

the detection and the diagnosis phases is somewhat use case dependent and there is much prior 

work in feature engineering that is required to develop accurate classifiers [9]. 

 
 
The figure below summarizes the above algorithm in a pictorial format to give more clarity to the 

reader as to the flow of data, the processing units and the results obtained from the existing 

functionality of Orion. Each of the lines in the normal and abnormal run windows record the entry and 

exit of different functions and the values of system metrics at that instant of time. A particular entry ‘A/a’ 

symbolizes that the code region is ‘A’ and the specific method call is ‘a’. 
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Figure 2 Orion implementation overview 
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Design Overview 
 
 

 
Figure 3 High level conceptual figure of solution 

 

 
To improve the results returned by ORION and to make it more developer friendly, two major design 

changes were done. 

1. Using a most relevant normal run for getting the code regions from ORION 
 

2. Get a call stack from than a code region which is most impacted by the fault 
 
 
 
A set of logs of normal runs and an abnormal run are used to collect an accurate normal run by using 

correlation matrix. The normal run returned by this module is used in Orion to get a code region that has 

the bug. Based on the logs of normal and abnormal runs call stack is computed for each entry in the logs 

from the code region returned by Orion. Based on occurrence patterns of similar call stacks, suspicious call 

stacks are returned to the user. 

 
 
This design considers call stack changes that result in repetitive blocks, recursive blocks and disjoint blocks 

in similar call stacks from normal and abnormal runs. For example, repetitive blocks can be expected in 

case of a fault that results in retries of a method, recursive blocks can be expected in case of a missing 

termination condition and disjoint blocks in case of an exception handling block in the faulty run. In general 

similarity for any two call stacks is measured by cardinality of intersection of sets composed of call stack 

entries. For each specific case, additional length based restrictions are added. 
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Solution Details 
 
Multiple normal runs 

 
The current implementation of Orion takes only one normal run do the statistical comparison with the 

abnormal run. But in practice the program under test can have multiple executions with completely different 

statistical profiles. This can be due to differences in initial conditions they are run with. So to have a better 

understanding of the root cause of the bug/ deviation we need to find a normal run that is closely related to 

the given abnormal run. To illustrate this idea, consider the following diagram. 

 
 
 

 
 

 
 
Here x and y directions represent the pair-wise correlation values Orion generates and the plot shows the 

correlation vector points for 2 normal runs and one abnormal run. For the sake of simplicity, we assume the 

correlation vectors are 2 dimensional. It is clear in this case that normal-run 1 is closer to the given abnormal 

run. So comparing normal-run 1 with abnormal run will give better insight on the suspicious metrics. In 

Figure 4 Overlap of various normal and abnormal runs 
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contrast if we considered normal-run 2 with the abnormal it is highly likely that it will overestimate the 

deviation and provide incorrect metrics as the suspicious metrics. 

 
 
Proposed  Algorithm 

 
Our algorithm to handle this problem is developed on top of the results Orion already generates. What we 

are interested in is finding the normal run which is closest to the abnormal run in terms of metrics variations. 

 
Figure 5 Flowchart of multiple normal runs 

 

 
We take multiple normal runs as input to Orion+ and the abnormal run that we are interested in. We build 

the algorithm on top of the existing Orion code where the abnormal and normal runs are compared based 

on their correlation matrix. We extend that relation to calculating correlation between the abnormal run and 

across all windows of all normal runs. We are interested in the run which is closest to the given abnormal 

run i.e. most of the windows which are at a maximum minimum distance from the corresponding abnormal 

run belong to this normal run. We identify this normal run by creating a frequency map of the number of 
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anomalous windows that belong to each normal run. We then find the normal run whose windows contribute 

the most to the top 25 windows with lowest Euclidean distance from the abnormal windows. 

 
 

Finding the faulty stack trace 
 
Approaches 

LCS 

Orion returns the abnormal windows based on the deviation of system metrics of the faulty run from the 

normal run. Initial assumption was that if a window in abnormal run is farthest from normal run, the code 

executed in the faulty window and not in normal window will contain functions that execute in the buggy 

run. Based on this assumption, Longest Common Subsequence algorithm was implemented to get the LCS 

of log entries across top k anomalous windows, k being the parameter that decides the number of relevant 

farthest windows. The apparent issue with this approach was the complexity. n-LCS is NP Hard. There 

were no good approximation algorithms that could be used in our case. Even on implementing this by 

dynamic programming, it would not be a feasible solution in practical debugging scenarios. 

 
 
Graph based approach 

 
To reduce the complexity, a graph based approach was designed. Since LCS inherently imposes a 

“precedes” relation between every character and all characters following it, we wanted to  relax  this 

condition, to reduce the complexity, and honor only the caller-callee relation between entries in log. This 

was implemented as an edge between a caller and each of its callee functions. 

 
 
On building the call graph for one out of k abnormal windows, the rest of the call logs were just used to 

modify the edge weights. For every caller-callee edge in the call stack, if the edge exists in the graph, the 

edge weight was incremented by 1 and no action otherwise. By this method, the caller-callee edge with 

maximum weight would be expected to be a path that gets called multiple times in faulty runs and would 
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be the suspicious call sequence. On implementing this, it was observed that the edge weights did not 

increase as expected. Instead, each edge was either of weight 1 or 2. Even the weaker  condition  of 

intersection of log entries across top abnormal windows was empty. On investigating the cause of this 

behavior turned-out to be the correctness assumption. The metrics change gets accumulated over time and 

the farthest windows need not necessarily be executing the same lines of code. Thus it was clear that any 

approach that considered only code across top abnormal windows would not lead to the correct solution. 

Instead, the entire call log for abnormal run should be considered against entire call log for normal run. The 

output of ORION for suspicious code regions could still be used. 

 
 

 
 

Figure 6 Graph based approach illustration 
 
 

 
Stack-based approach 

 
Call stack is collected for each of the methods from the suspicious code region returned by ORION for both 

normal and abnormal runs. Frequency of each call stack of interest is recorded for normal and abnormal 

runs. Each call stack from normal run is compared with every call stack from abnormal run based on a 

distance metric. An equality comparison wouldn’t work in our case as there is a possibility of different 

threads either interleaving the functions in different ways or calling different functions altogether. Distance 

is measured as a function of number of common functions called in each of the call stacks. This is captured 

by intersection of the set composed of call stack entries. The frequency of occurrence of each of the calls 
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stacks is recorded. For similar call stacks, if there is a huge difference in frequency, it is noted as a suspicious 

call stack. 

The following patterns are considered while comparing call stacks - 
 

1. Repetitive call stack 
 

2. Recursive call stack 
 

3. Disjoint call stack 
 
 

 

 
 

Figure 7 Illustration of different stack based approach 
 
 

 
Repetitive call-stack: When similar code-blocks appear multiple times as compared to the normal run call 

stack. This shows as a huge difference in frequency of similar call stacks. In this approach, in addition to 

content of two call stacks, a minimal length difference is rewarded in the similarity metric. This is to remove 

the cases, where content has a significant overlap just because of having more content in either the abnormal 

or normal run. 

 
 
Specifically, initial length constraint is - 

 
len(abnormal_stack) - len(normal_stack) < N 
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N is a parameter that needs to be tuned per case basis. 
 
 
 
For the call stacks that pass this constraint, the following content criteria needs to be met for similarity. 

 
len(abnormal_stack int normal stack) = min (len(abnormal_stack), len(normal_stack)) 

 
 
 
This criterion imposes that all functions in the normal stack trace must be present in abnormal stack trace. 

For the functions that pass through, the similarity score is computed as follows - 

Score = freq(abnormal_stack) / freq(normal_stack) 
 
 
 
All call stacks are ranked by their score and the top pair of abnormal and normal stack trace are returned to 

the developer. Repetitive call stack approach is meant for functions that are called repeatedly in abnormal 

runs, but this repetition is not captured by the call stack for these functions. 

 
 

Figure 8 Flowchart of repetitive stack based approach 
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Recursive call-stack - This approach identifies the code blocks that are repeated, and this repetition is 

captured in the call stack itself. For such repetitions, the content criteria is more central. Unlike the repetitive 

call stack approach, this approach rewards longer differences in length when the longer call stacks also have 

a higher repetition. Based on this, the similarity metric in this case is – 

 
 
Content: 

 
len(abnormal_stack int normal_stack) = min(len(abnormal_stack), len(normal_stack)) 

 
This imposes that normal stack trace entries be subset of entries of abnormal stack trace. 

 
 
 
Length: 

 
len(abnormal_stack) - len(normal_stack) > N 

 
 
 
The stack traces for which the condition doesn’t meet are taken care of in Repetitive call stack approach. 

For the pairs of stack traces from normal and abnormal runs that meet the above criteria, score is computed 

as follows - 

Score = (len(abnormal_stack) - len(normal_stack))/len(abnormal_stack int normal_stack) 
 
 
 
This score rewards the longer abnormal call stacks and those with a smaller normal stack length, when both 

have considerable overlap. All call stacks are ranked by this score and the top call stack is returned as the 

most affected call stack in this approach. 
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Figure 9 Flowchart for recursive stack based approach 
 
 

 
Disjoint call-stack: In case of a faulty run, a likely scenario would be exception handling/failure handling. 

In cases like these, a difference code is executed in faulty runs when compared to  normal  runs  and 

comparing call stacks based on content and length lose their relevance. In this case, just recognizing the 

code block that was exclusively executed in faulty run is in itself a valuable information that can be used 

to debug the fault. To account for intersection in parent functions, a parameter rho is used to relax the zero 

intersection check. The following is the condition to declare that two stack traces are disjoint - 

 
 
len(abnormal_stack int normal_stack) < rho 

 
 
 
Thus, every call stack in abnormal run is checked for its presence in normal call stacks’ set. Disjoint call 

stacks are returned as affected code blocks. 
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Figure 10 Flowchart of disjoint stack based approach 
 
 

 
The results from these three approaches are returned to the developer. 
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Implementation 
 
Since Orion+ is an extension of Orion, we have extended the functionality in the same language, Python. 

The program is supported by all versions after Python 2.7. The implementation is platform independent and 

was tested in Windows, Linux and OS X environments with intel x86 processors. 

 
 
We modified Orion to input multiple normal runs and output the closest normal run with respect to a 

particular abnormal run. The code complexity of this implementation is small, () however the time 

complexity is of the order of O(n*m*k), where n is the number of normal runs, m is the number of windows 

for a particular split and k defines the number of ways in which the splits are performed (generally a 

constant). 

 
 
Our implementation for determining the faulty stack trace focuses on the stack trace of methods belonging 

to a particular code region deemed faulty by Orion. Since the logs collected by the profiling tool consist of 

all code regions, we filter the methods pertaining to the potentially faulty code region. This is in resonance 

with the fact that the buggy function call sequence should belong to the faulty code region while reducing 

the space and time complexity of the algorithm as well. 

 
 
The implementation of our working solution is concerned with developing three different use cases for the 

three distinct ways in which a buggy stack trace exposes itself. The implementation is a simple one in terms 

of the lines of code that were required to implement it. The complexity of piecewise algorithm is as follows: 

1. Creating a dictionary of multiple stack traces, each pertaining to unique methods in the faulty code 

region - O(N) time complexity, where N is the length of the full logs produced by the profiling 

metric. O(I*L*K) space complexity, where I is the number of unique methods of faulty code region, 

L is the average length of each of their stack traces and K is the number of stack traces of a particular 

function. 
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2. For getting the relation between abnormal and normal stack traces for repetitive, recursive and 

disjoint stack traces – O(n*m) time complexity, where n is the number of stack traces in abnormal 

run and m is the number of stack traces in normal run. Since we consider each stack trace of 

abnormal run against all stack traces of normal run the complexity is quadratic in nature. O(n*L) 

space complexity for storing the resultant stack traces in decreasing order of scores, where N is the 

number of stack traces and L is the maximum length of a particular stack trace. 

 
 
Hence, the overall time complexity of the algorithm is O(N + n*m) in worst case and space complexity 

is (I*J*K + n*L). However, these complexities are oblivious of the complexities  involved  in  the 

functions internal to the algorithm, like intersection of sets, dictionary access among others. 
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Experiments and Results 
 
Experimental setup 

 
We conducted our experiments with Hadoop – 3067 bug. The bug dealt with open sockets that were not 

being closed by the application. This resulted in an unprecedented increase in the number of open file 

descriptors. This bug can be reproduced by running a test case, specifically TestCrcCorruption of Hadoop’s 

DFSClient module. 

 
 
We cloned the Hadoop version where the bug had surfaced, i.e. version 17.0. However, the bug had been 

patched in the same version due to which the buggy version was not available. We forked the unpatched 

version from Apache Hadoop’s website and used it to run our tests. We setup the Hadoop system on our 

personal system and ran the unpatched version with this test as well as the patched version to reproduce 

normal and abnormal runs. 

 
 
Further, we dived into SystemTap [5] and Javassist [6] to generate the system metrics. However, SystemTap 

required specific environment to run in and Javassist only provided stack trace as an output. We then 

explored the profiling tools [7] developed by one of the members of DCS lab, Ignacio Laguna to generate 

the system metrics that matched the metrics generated for Orion earlier. We the used this process profiling 

tool to generate metrics at each ENTRY and EXIT point of the application during its run, both for normal 

and abnormal runs. The 17.0 version of Hadoop uses ANT and therefore we had to tweak the build.xml file 

to Hadoop’s unit test case with process profiler. 

 
 
Multiple Normal Run Experiment 

 
Using the above setup, we generated three normal runs for Hadoop’s testCrcCorruption test case with 

different inputs, namely, io.bytes.per.checksum and dfs.block.size. On passing these normal runs to Orion, 

we get the below mentioned graph for the three normal runs. The x axis marks the different windows, with 
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each of the three colored bars belonging to different normal runs. The y axis denotes the Euclidean distance 

between the corresponding normal and abnormal windows. The highest bars denote the farthest of the three 

runs. 

 

 
 

 
 
 
As we can see from above graph, the normal run whose windows are denoted by blue bars is the closest run 

to the abnormal matrix. The algorithm proposed by us works in a similar way. We first calculate the 

correlation between each pair of normal and abnormal window. Following which, we sort these windows 

in increasing order of correlation. The run which contributes the most to the top 25 windows of this sorted 

list is taken as the closest window to the specific abnormal run. 

 
 
As can be seen more clearly in the graph below, the blue run contributes the majority of windows in the top 

25 windows that are at maximally minimum distance from the abnormal run, Orion outputs the blue run as 

the closest normal run. 

Figure 11 Graphical representation of correlation between abnormal and normal runs for different windows 
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We further experimented with two normal runs by passing them into previous algorithm of Orion and 

comparing the top 10 metrics that are output as the potential buggy metrics. 

 
 

 
Figure 12 Top 10 abnormal metrics with normal run 1 
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Figure 13 Top 10 abnormal metrics with normal run 2 

 
 
 

As can be seen from the two figures above, Orion outputs different ranking of top ten metrics for the two 

corresponding normal runs. 

This experiment validated our algorithm that different normal runs may differ in the differences in their 

metrics depending on the input conditions and environment in which they are run. It also validated that 

Orion+ does return the closest normal run to the corresponding abnormal run. 

 
 
Faulty Function Sequence Experiment 

 
We also conducted experiment for validating our algorithm for fining the faulty function sequence using 

the same experimental setup. We used the normal run output by the above experiment to produce the faulty 

metric. The faulty metric was num_file_desc which was in accordance with the earlier results of Orion. 
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Figure 14 Top 10 abnormal metrics with closest normal run 
 
 
 

Using this metric, we generated the faulty code regions from a second pass of Orion and using this code 

region, tried to narrow down the scope of the code region to the buggy function call sequence. 

 

 

 
 

Figure 15 Result for buggy code regions for num_file_desc 
 

 
We ran Orion+ with the class name as DFSClient which was the buggy code region output by Orion. 

Orion+ successfully returned the below figure as a result to the input stack traces for normal and 

abnormal runs. 
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Figure 16 Orion+ faulty function call sequence 

 
 

 
As can be seen from the above figure, Orion+ returns the stack trace for isClosed() function call of the 

DFSClient code region. This function was the most affected part of the code because of the bug 3067. 

This can also be validated from the discussion of JIRA ticket from Apache for this bug 

(https://issues.apache.org/jira/browse/HADOOP-3067). 
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Discussion 
 
The proposed solution addresses common pattern of faulty call stacks - repetitive, recursive and disjoint. 

However, it is not necessarily exhaustive. Further experiments with different bugs would be required to 

experimentally conclude a confidence level or range of bugs covered by the three call stack based 

approaches. 

 
 
The call stack based approach also takes in parameters for maximum length difference, minimum length 

difference and maximum allowed intersection for disjoint call stacks. These parameters are highly 

dependent on the bug at hand and need to be tuned based on the level of sensitivity to faulty runs of code. 

With standard assumptions on sensitivity, the parameter tuning could be automated based on the call log. 

 
 

 

Conclusion 
 
This work presents the suspicious code at a finer granularity of call stack rather than code region, which 

was being returned by Orion. Call stack based comparison returns call stacks that are most impacted by the 

bug and save developer time to debug from scratch. This solution has polynomial complexity and hence 

can be implemented practically. 

 
 
To improve this work further, current comparison of call stacks in normal and abnormal runs which is 

purely based on content and length can be improved. If a phase-stamp could be added to the call stacks, 

based on which phase the code is executing in, the accuracy can be improved by ensuring that appropriate 

call stacks are only compared, as well as the space and time complexity can be made better by limited 

comparisons. 
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