Utilization of Unmanned System Technology in Transportation Engineering

Dr. Michael R. Williamson Assistant Professor Indiana State University

Sam Morgan

Instructor

Indiana State University

Overview

- Parking Project Description
- Setting up the assignment
- Identifying the problem
- Unmanned Systems
- Transportation Engineering Uses
 - Accumulation Graphs
 - Cost Effectiveness
- Lessons learned
- Future uses

Unmanned Systems

Indiana State University

- Terre Haute, Indiana
 - 60,000 Residents
- Indiana State University
 - Enrollment 14,000
 - Campus 435 acres
 - 5 Colleges
 - 30 parking lots
 - 1 parking garage

Campus Map

Parking Study Objectives

- Parking inventory
 - Count the number of available spaces in each lot
- Parking accumulation
 - One hour increments on all campus lots
 - Use unmanned systems if possible to collect data
 - Compare cost of traditional vs. unmanned system
 - Create bar graphs showing parking trends in each campus lot vs capacity

Parking Lots

- 6 Staff
 - 740 Total Spaces
 - 691 Regular
- 6 Student
 - 960 Total Spaces
 - 921 Regular
- 10 Staff/Student
 - 1594 Total Spaces
 - 1552 Regular

- 8 Remote
 - 1605 Total Spaces
 - 1587 Regular
- 1 Parking Garage
 - 590 Total Spaces
 - 572 Regular
- Total Spaces 5498

Parking Inventory

- Determine spaces on campus by type
 - Regular Spaces
 - Handicapped
 - Parking Meters
 - Service
 - Motorcycle

Parking Inventory with Unmanned Systems

- Count in off peak times
- Striping and signage visible

Faculty Led Student Project

- Collaboration outside of departments
- Civil Engineering Students
 - Transportation focus
 - Analyze and interpret data
 - Summarize results
- Aviation Students
 - Unmanned vehicle focus
 - Responsible for collecting data with drones

Setting up the Class Assignment

- Assigned to the 30-student Human Factors of UMS class
- Present to students and allow group collaboration
- Superstar student spearheaded the project
- One trip of all lots took approximately one hour
- Schedule students and UAVs
- Establish grading criteria
- Ensure all students participate
- Emphasize safety
- Side-quest to determine a valid and sustainable contract price

Timeline Considerations

- Number of available UAVs
 - ISU provided one
 - Students had personal drones
- Transfer UAV between parking lot launch sites
- Set-up and tear-down of the UAVs
- Battery charging
- Transfer UAVs between students
- Optimum time for accurate vehicle counts vs. class schedules
 - 5-10 minute difference could show overload vs. empty
- Student availability vs. class schedules

Identify problem

- Take useable pictures of all parking lots
- Schedule the people (30) and UAVs (3-4)
- Transfer UAVs between operators
- Provide pictures with data to know time, date, location
 - Pixilation matters to get accurate count
 - Trees, power lines, towers, buildings, etc. obscure some areas of the lots
 - File names from "00001" to "Lot 5_3 Apr_0800"

Identify problem

- Ensure safe operations with limited training
- Coordinate with FAA and police to minimize outside interventions
- Deliver completed data to parking lot team
- Always considering: Safety, man-hours, transportation, regulatory guidance, set-up costs, licensing requirements, scheduling, personnel availability, proficiency training, and checklist development

Unmanned Systems

- Phantom 4 Pro (Plus student-owned models)
- Capabilities
 - Flight time 28 minutes
 - Max Service Ceiling 20,000 feet
 - Max Wind Speed Resistance 22 mph
 - Programmable flight paths
 - Range Approximately 4 miles
 - Object tracking
- Cost of each drone (Full kits)
 - \$3000 to \$5000

Determine best options

- Pictures every hour between of each parking lot
 - May be at a low or high spike time between classes, "false" data
- Optimize sensor for max coverage while not overflying people or moving vehicles
- Straight down vs. altitude vs. angled shots (Flashlight effect)
- Data transfer between flights or end of day
- Battery charging and software updates
- Checklists developed during this project
- Parking lot travel flow to expedite collection

Federal Aviation Administration

- Approached this project with UAV business model
 - (Recreational, Commercial, or public entity)
- Small Unmanned Aircraft Rule (Part 107), 21 June 2016
 - < 55 lbs.
 - Visual Line-of-sight (VLOS) (Spectacles OK, not binoculars)
 - Daylight, or Civil Twilight with anti-collision lighting (3 mi)
 - FAA Certified Pilot in Command
 - Visual Observer optional (Recommended)
 - Maximum altitude of 400 feet above ground level (AGL)
 - Max speed 100 MPH ground speed (GS)
 - Weather: 3 SM visibility, 500' below clouds, 2,000' horizontally
 - Don't fly over people
 - ATC approval (Class D airspace)

Federal Aviation Administration

- Air Traffic Control (ATC) permission required in Class B/C/D airspace
 - Contact airports when within their controlled airspace
 - Notification is required when operating inside 5 statute miles and/or controlled airspace (Terre Haute – 5.7 NM)
- Require a part 107 certification for commercial operations
- Airspace Authorization
 - Available through internet request
 - 3-4 month wait
 - Once approved, still need to contact the ATC control tower
- Must yield right of way to all manned aircraft

Federal Aviation Administration

- Requires Preflight inspection prior to every flight
- No operation over moving vehicles
- May not operate over any persons not directly involved
- Restrictions may be lifted in near future
- Can also request a waiver to most Part 107 rules, with a 90-120 day response time

Local Restrictions

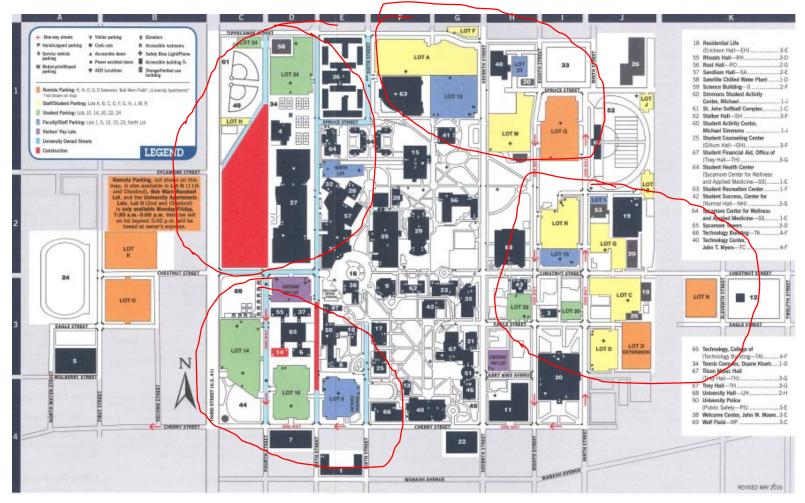
- Must notify University Police
 - New policy after data collection began
 - 48 hour notice
- May get an escort
- Concerned with filming near dorms
- Air vs. Ground jurisdiction

Contingencies

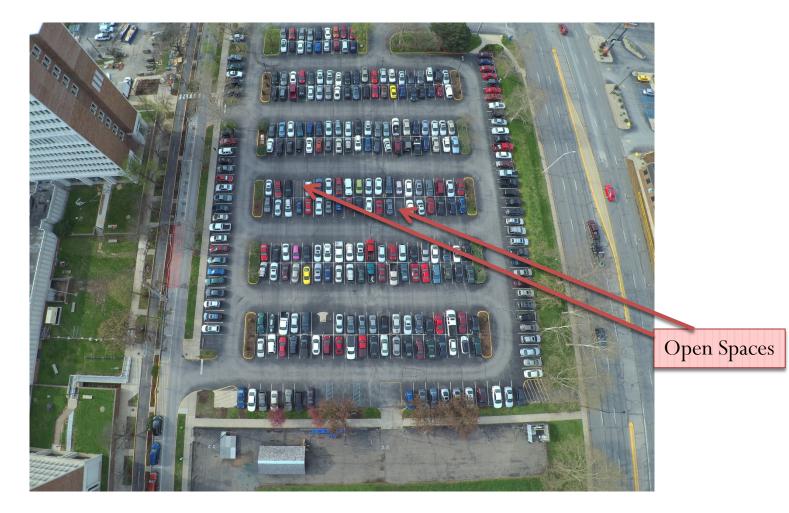
- Crashes
 - Lost UAV day 2, memory chip destroyed
 - Didn't download data from other flights
 - Poor training led to possible pilot error
- Weather
 - Rain the first week reduced successful ops
 - Winds, temps (UAV, battery, controller, person)
- Software glitches no-fly, geo-fence
- Data transfer issues
 - Drone to folders to thumb drives or cloud
 - Many high-res JPGS, label and file, transfer to students

Parking Inventory Results

- Discrepancies
 - Most lots were off by 2 to 5 regular spaces
 - No accurate count for several years


Parking Accumulation

- Defined: total number of vehicles parked at any given time
- Establish the distribution of parking accumulation over time
- Determine the peak accumulation and when it occurs
- Determine space availability
- Collect vehicle occupancy each hour
- Due to the nature of arrival patterns
 - 7:30 am to 3:30 pm
 - Class schedule
 - Faculty hours

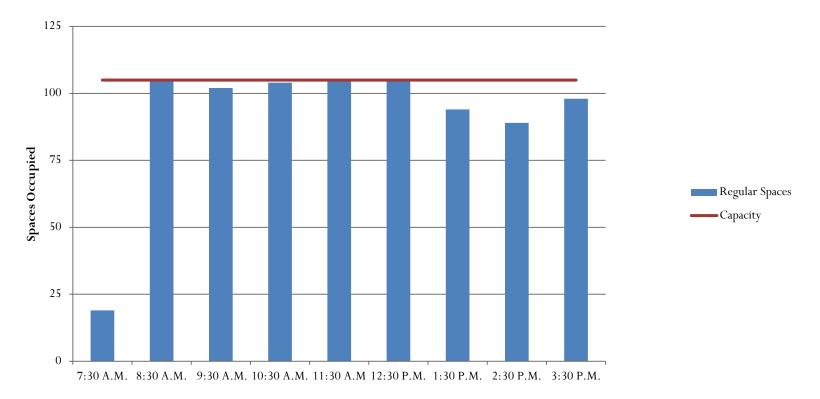

Parking Accumulation

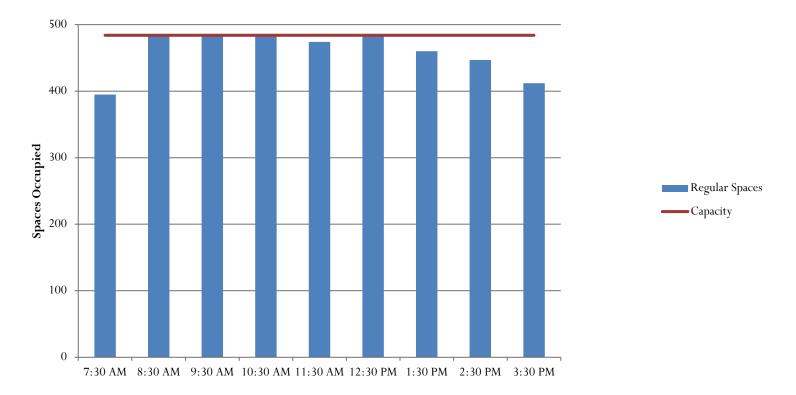
- Preliminary Analysis
 - Always open spaces
 - Handicapped
 - Parking Meters
 - Service
 - Motorcycle
 - Spaces full
 - Regular Spaces

Campus Map

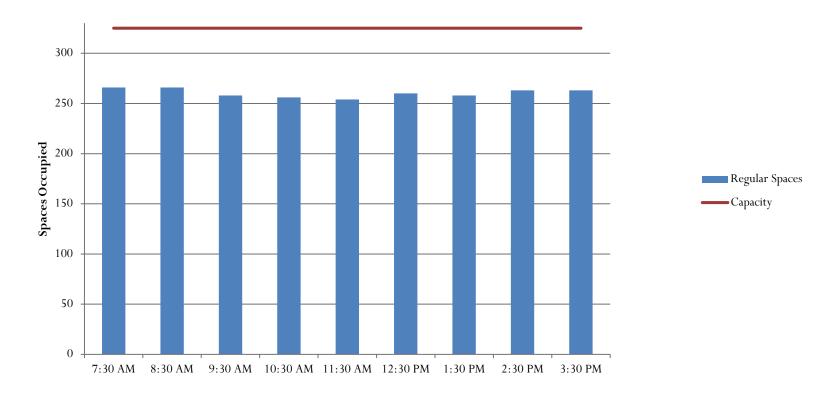
Drone Data

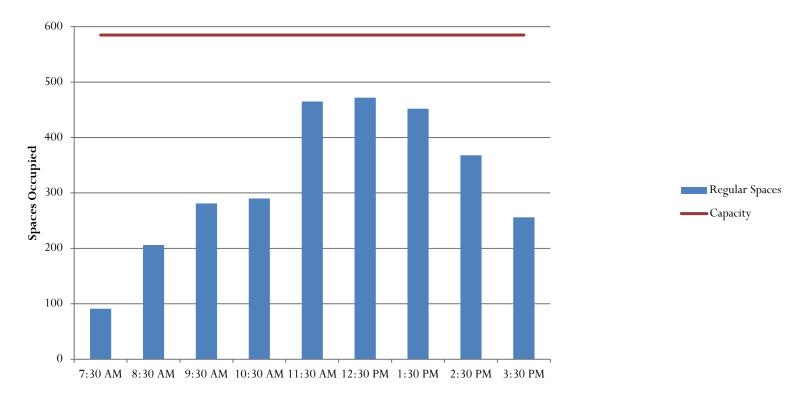
Parking Garage


- Not accessible via drone
- Manual counts


Deliverable

- Accumulation graphs
- All parking lots on campus
- Assist travelers in choosing parking based on time of day


FACULTY/STAFF LOT 15


STAFF/STUDENT LOT A

STUDENT LOT 24

PARKING GARAGE

Cost Effectiveness

- Wages
 - \$12/hour, per student
- Hours
 - Large lots require full day counts
 - Drone capture multiple lots per flight
- Drone Cost
 - \$3000

Cost Effectiveness

Method	Hours	Weeks	Cost	
Traditional Method 4 Students	512	12.8	\$ 6,144.00	
Drone Study Student	40	1	\$ 3,480.00	
Drone Study is 56.7 percent of the cost 92.2 percent of cost savings when drone is recouped				

Lesson Learned

- Labeling the pictures
 - Date
 - Time
 - Parking lot(s)
- Multi lots per picture
 - Reducing flights
- Key to flights
 - Get certified ASAP
 - Practice
 - Schedule and communicate
 - Study and know rules
 - Determine lucrative value

- Sun angles
 - Shadows
 - Glare
- Drone capabilities
 - Battery efficiency
 - Data storage
- Weather
 - Including wind

Future use with Software

- OpenALPR
 - Plate detection system
- Compatible with most cameras
- Create flight plan to collect data
 - Issue tickets as necessary
 - Conduct studies on:
 - Duration
 - Turnover rate

id	Lot	Plate_Number	Confidence
1	15	CE MW 1	78.48
2	15	NR 1967	74.51
3	15	KE 4932	86.46
4	15	TKY 3939	78.54
5	15	BCEM 29	95.45

- Parking
 - Inventory
 - Accumulation/Occupancy

- Before and after traffic queues
 - Signal timing
 - Other improvements

- Work zone
 - Inspections
 - Traffic monitoring

- Road Networks
 - Pavement inspections
 - Bridge inspections

Contact Information

- Michael R. Williamson Ph.D.
 - Assistant Professor, Dept. of Civil Engineering, Indiana State University, Terre Haute, IN 47809 Phone: 217-343-7512; email: <u>michael.williamson@indstate.edu</u>
- Sam Morgan
 - Director, Unmanned Systems. Instructor, Department of Aviation, Indiana State University, Terre haute, IN 47809.
 Phone: 812-237-2660; email sam.morgan@indstate.edu