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타이어의 복 합  이차 원  유 한  요 소  모 델  

Hybrid Two-Dimensional Finite Element Model of Tires 
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ABSTRACT 
 

It has been shown that the vibrational response of a tire can be represented by a set of decaying waves, each 
associated with a particular cross-sectional mode shape in the region near the contact patch.  Thus, it can be concluded 
that tires can be effectively modeled as lossy waveguides.  It has also been shown that the sound radiation from tires is 
mainly from the region close to the contact patch.  In consequence, it may be computationally efficient to analyze tire 
vibration and sound radiation in the region close to the contact patch by using a hybrid finite element model in which 
the cross-section of a tire is approximated by 2-D finite elements while an analytical wave solution is assumed in the 
circumferential direction of the tire.  In this article, a hybrid finite element was formulated based on a composite shell 
model.  The dispersion relations for sample structures obtained by using the hybrid FE model were then compared with 
those obtained by using a full, three-dimensional FE model.  It has been shown that the FE analysis made using the 
hybrid 2-D finite elements yields results in close agreement with the three-dimensional model. 
 

1. Introduction 

Automobile noise is one of the most annoying 
environmental noise problems since the number of 
automobiles has increased dramatically over the last few 
decades.  It is well known that tire/road noise is a major 
contributor to exterior automobile noise: the other types 
of noise generated by an automobile such as engine noise, 
muffler noise, aerodynamic noise, and so on, can be 
relatively easily controlled since various noise control 
techniques directed at those sources have been 
successfully developed.  Among the numerous possible 
tire noise mechanisms, tire vibration has been 
extensively investigated as a primary noise source. 

In earlier experimental work, a stationary tire was 
driven radially at a point on its treadband and 
measurements of the resulting radial treadband vibration 
were made around the treadband circumference by using 
a laser Doppler velocimeter.  By performing a 
circumferential wave number transform of the measured 
space-frequency data, the wave propagation 
characteristics of a tire could be visualized [1].  In an 
attempt to understand these experimental results in 
details, the tire treadband was modeled as a circular 
cylindrical shell with air pressure acting on its interior 
surface [2,3].  To identify effects of tire rotation on 
wave propagation, rotation of a circular cylindrical shell 
was also considered [3].  This shell model was found to 
explain the principal wave propagation characteristics of 
a tire: i.e., the vibrational response of a tire can be 
expressed as a superposition of decaying waves, each 
associated with a particular cross-sectional mode shape.  
Thus, it can be concluded that a tire can be modeled as a 

lossy waveguide [1-3]. 
When a FE model of a tire is used to analyze tire 

vibration at high frequencies, the size of the elements 
should be small and the tire’s cross-section should be 
modeled in detail since the wavelength may be 
comparable to the thickness of the tire.  In consequence, 
a full, 3-D finite element model for high frequency 
analysis may require tremendous modeling efforts and 
computational resources.   

Since tires behave like constant cross-section 
waveguides, it would be computationally efficient to 
analyze tire vibration by using hybrid, 2-D FE models: 
i.e., the cross-section of a tire is approximated by finite 
elements while a propagating wave solution is assumed 
in the circumferential direction.   

Previously, Cheung [4] described a hybrid, 2-D FE 
formulation based on the use of strip elements: shape 
functions are prescribed in the cross-sectional direction 
and analytical mode shapes in the axial direction.  
Richards [5] analyzed the vibrational response of a tire 
coupled with an internal acoustical cavity by applying 
hybrid 2-D finite elements to both the tire and acoustical 
cavity.  In his case, the tire was modeled as a membrane.  
In addition, Brockman et al. [6] have estimated tire 
critical speeds by using a hybrid 2-D FE model.  They 
used solid elements in cylindrical coordinates and 
considered the tires’ rotation in the circumferential 
direction; inflation pressure was also considered.  
Nilsson and Finnveden [7] calculated the input point 
mobility of a tire by using a hybrid 2-D FE model based 
on orthotropic, pre-stressed conical shell elements. 

Here, a hybrid 2-D finite element for a composite shell 
with finite curvature was derived.  As a first step in the 
application of the hybrid 2-D finite element, a tire was 
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modeled as a finite, orthotropic circular cylindrical shell.  
Natural frequencies and mode shapes were then 
calculated and dispersion relations were obtained.  A 
full, 3-D FE model that had the same geometry and 
material properties as the hybrid 2-D model was 
implemented for the purpose of comparison. 
 

2. Derivation of Composite Shell Element 

2.1 Displacement and Strain 
Here, we define the 1- and 2-directions as tangential to 

shell surface and the 3-direction as normal to shell 
surface.  It is assumed that vibrational displacements of 
a shell can be approximated by shape functions in the 1-
direction and represented by an analytical solution in the 
2-direction.  Consider a finite element, on the shell, that 
has two nodal lines in the 2-direction.  Then, the 
displacement vector u = [u1 u2 u3]

T of the element can be 
expressed as 

),()(),,( 2121 xtxtxx y�u = , (1) 

where χχχχ is the matrix of shape functions (see Appendix 
A) and y is the nodal displacement vector.  The nodal 
displacement vector is defined as y = [u11 u21 u12 u22 u13 
β11 u23 β21]

T, where umn is the translational displacement 
in the n-direction at the m-th node and βmn is the 
rotational displacement in the n-direction at the m-th 
node.  Note that an element has two nodes and that each 
node has four nodal displacements (three translational 
displacements and one rotational displacement) that are 
functions of t and x2.   

When the shear deformation of the shell is assumed to 
be negligible, strain can be separated into membrane and 
bending strains.  These strains can be directly related to 
displacements (see Appendix B).  By substituting Eq. 
(1) into the strain-displacement relations, strains can then 
be associated with the nodal displacement vector: i.e., 

2
2

2

2
2

10 xx ∂
∂+

∂
∂+= yEyEyE� , (2) 

where εεεε is the strain vector, εεεε = [ε11 ε22 ε12 κ11 κ22 κ12]
T, 

εmn is the membrane strain and κmn is the bending strain. 

2.2 Energy Expressions for the Composite Shell 
For a composite shell, the resultant forces obtained by 

integrating the stresses in the thickness direction (x3) can 
be related to the strains: i.e., 

CeR = ,   (3) 

where R = [N11 N22 N12 M11 M22 M12]
T is the resultant 

force vector.  The resultant forces and moments are 
expressed as 

�
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=
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where σmn is the stress and h is the thickness of the shell. 
The potential energy stored in the element can be 

expressed in terms of the strain vector by making use of 
Eq. (3): i.e., 

( )

( )� � �

� � �

=

=

1

0 1 2

1

0 1 2

2121
TT

2121
T

2
1

2
1

t

t x x

t

t x x

dtdxdxAA

dtdxdxAAU

�C�

�R
, (3) 

where Am (m = 1,2) is the Lamé parameter of the shell.  
The kinetic energy can be expressed as 

 ( )� � �=
1

0 1 2

2121
TT

2
1 t

t x x

dtdxdxAAhT y��y ��ρ ,  (4) 

where ρ is the density averaged over the element 
thickness, h.  Finally, consider the work done by 
external forces.  The work done by distributed forces is 

( )� � �=
1

0 1 2

2121
TT

t

t x x

e
q dtdxdxAAW Q�y  (5) 

and the work done by point forces applied at the nodes is 

( )� �=
1

0 2

22
T

t

t x

e
f dtdxAW Fy , (6) 

where Qe = [q1 q2 q3]
T is the distributed force vector and 

Fe = [F11 F21 F12 F22 F13 F14 F23 F24]
T is the external, 

nodal force vector (see Appendix C).   

2.3 Variational Principle 
The element equation can be obtained by taking a 

small variation of the nodal displacements in the energy 
expression: i.e., 

( ) 0=−−− fq WWTUδ . (7) 

By substituting Eqs. (3) to (6) into Eq. (7), the system 
equation for one element can be derived as 

QFFyMyK ++=+
∂
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m
m

m

m x
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4

0 2

, (8) 

where Km is the m-th stiffness matrix, M is the mass 
matrix, Fi is the internal, nodal force vector, and Q = 
[Q11 Q21 Q12 Q22 Q13 Q14 Q23 Q24]

T is the generalized, 
distributed force vector (see Appendix C).  When more 
than one element is used for the analysis of a system, a 
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global system equation can be assembled from the 
individual element equations by applying conditions of 
displacement continuity and force balance at each node.  

 
Fig. 1 Hybrid 2-D FE model of circular cylindrical 

shell: dots represent nodes and solid lines 
indicate finite elements.  

 

Table 1 List of parameters used for tire models. 

Young’s Moduli E1 = 3.2×108 Pa 
E2 = 7.5×108 Pa 

Shear Modulus G12 = 5.0×107 Pa 
Poisson’s Ratio ν12 = 0.45 
Density 1200 kg/m3 
Thickness h = 0.008 m 

 

 
Fig. 2 Full, 3-D finite element model of incomplete, 

orthotropic circular cylindrical shell implanted in 
ANSYS version 5.7.  Arrow at the center 
indicates point input force. 

 

3. Tire Models 

Keltie [8] obtained analytical solutions for the 
vibrational response and sound radiation in the case of an 
infinite, isotropic, circular cylindrical shell model of a 
tire.  

Here, tires are modeled as an orthotropic circular 
cylindrical shell by using both hybrid, 2-D finite 
elements and full, 3-D finite elements.  It is thus 
assumed that the radius of curvature in the cross-
sectional direction (x1) is constant and the radius of 
curvature in the circumferential direction (x2) is infinite: 
i.e., at relatively high frequencies, the radius of curvature 
in the 2-direction is much larger than the vibrational 
wavelength.  It is also assumed that the thickness of the 
shell is constant and a single material is used for both 
sidewall and treadband.  The tire parameters are listed 
in Table 1: they were adapted from the literature [10], 
were based on physical reasoning, or were obtained by 
direct measurement of tires.  The translational 
displacements at the edges of tire’s sidewall were set to 
zero.   

3.1 2-D FE Model 
As an application of the hybrid, 2-D finite element 

derived in the previous section, the cross-section of a tire 
was modeled by using 40 finite elements as shown in Fig. 
1. The radius of the cross-section was 0.09 m and the 
radius of curvature in the 2-direction was infinite.  It is 
assumed that within an element the radius of curvature in 
the 1-direction is infinite.  Since the radius of curvature 
in the 2-direction is infinite, the finite elements used in 
model were plate-like with A1 = 1, A2 = 1, R1 = 0, and R2 
= 0.  Note that top node (node number 21) in Fig. 1 is 
located at φ = 0°, the first node (node number 1) at φ = -
135°, and the last node (node number 41) at φ = 135°.  

The global system equation obtained after the matrix 
assembly process is the partial differential system 
equation that includes a fourth order spatial derivative (in 
the 2-direction) and a second order time derivative.  To 
solve this system equation, a natural vibration problem 
without damping and external force should be solved 
first (in this article, only the natural vibration analysis of 
the hybrid 2-D FE model will be considered).  When 
simply supported boundary conditions are applied at both 
ends of the circular cylinder, the nodal solutions can be 
assumed to have the form 

( ) ( )tixikxt nnn ω−= expexp),( 222 Yy , (9) 

where k2 = nπ/L is the wave number in the 2-direction, L 
is the length of the circular cylinder, and n is the mode 
number in the 2-direction (n is an integer number).  By 
substituting Eq. (9) into the homogeneous, global system 
equation, an eigenvalue problem is derived as 
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The natural frequencies, ωn, and mode shapes, Yn, can be 
calculated from Eq. (10) for a given n.   

3.2 Full, 3-D FE Model 
The FE mesh and location of the applied force are 

shown in Fig. 2.  ANSYS element type SHELL63 was 
used to represent the tire: there were 40 elements in the 
1-direction and 100 elements in the 2-direction.  Simply 
supported boundary conditions were imposed at x2 = 0 
and x2 = L.  The point force was applied at φ = 0 and x2 
= L/2.  The resulting vibrational velocities were 
recorded along the nodes at φ = 0.  Then the spatially 
distributed velocity data at each frequency was 
transformed into a wave number spectrum by applying 
the spatial Fourier transform: i.e., frequency-space 
domain data was transformed into frequency-wave 
number domain data [1]. 

3.3 Results and Discussion 
Figure 3(a) shows the frequency-wave number 

spectrum of the vibrational responses obtained from the 
full, 3-D FE analysis.  The results of Fig. 3(a) were re-
plotted in Fig. 3(b) along with the dispersion relations 
(indicated by dots) which are the relations between the 
natural frequencies, ωn, obtained from Eq. (10), and the 
wave numbers (k2 = nπ/L).  In Fig. 3(b), two solid lines 
at n = 11 and n = 20 are also shown.  In Figs. 4 and 5, 
the first four displacement mode shapes (from the lowest 
natural frequency) in the 3-direction (normal to the shell 
surface) are shown along with their natural frequencies 
when n = 11 and n =20, respectively. 

The frequency-wave number domain results are 
symmetrical with respect to the zero wave number axis, 
indicating that waves propagate equally in the positive 
and negative directions (see Fig. 3).  

In Fig. 3(a), there are at least four visible curving 
trajectories below 1200 Hz indicating the existence of at 
least four wave modes propagating in the 2-direction.  
Actually, there are more than four propagating wave 
types possible in this case: they can be identified from 
the dispersion relations obtained from the natural 
vibration analysis of the hybrid, 2-D FE model (see Fig. 
3(b)).  However, only the four wave types whose cross-
sectional mode shape does not have a node at the center 
of the treadband were excited since the point force was 
applied at the center: e.g., the second and third cross-
sectional modes in Figs. 4 and 5 are driven but the first 
and fourth are not.  When we compare Figs. 4 and 5, the 
first three cross-sectional mode shapes are almost 
identical which means that each curving trajectory is 
associated with a particular cross-sectional mode shape 

that is only slightly frequency-dependent. 

4. Conclusions 

In this article, a hybrid 2-D finite element for a 
composite shell was formulated by using the variational 
principle.  For the purpose of validating the hybrid 2-D 
finite element, a finite, orthotropic circular cylindrical 
shell model of a tire was analyzed by using both hybrid 
2-D plate finite elements and full, 3-D finite elements.  
Although here natural vibration was analyzed by using a 
hybrid 2-D FE model and forced vibration by using a full, 
3-D FE model, both models could be used in either role.  
A forced 2-D model will be developed in future work. 

 

 
Fig. 3 (a) Frequency-wave number domain 

representation of the forced responses obtained 
from full, 3-D FE analysis and (b) dispersion 
relations (dots) obtained from hybrid 2-D FE 
analysis overlaid on forced responses (contour) 
presented in Fig 3(a). 
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Fig. 4 Natural displacement mode shapes in the 3-

direction and associated natural frequencies 
obtained from hybrid 2-D FE analysis when n = 
11. 

 
Fig. 5 Natural displacement mode shapes in the 3-

direction and associated natural frequencies 
obtained from hybrid 2-D FE analysis when n = 
20. 

Appendix A 

Displacements in the 1- and 2-directions are 
represented by a first order polynomial while the 
displacement in the 3-direction is represented by a third 
order polynomial that is normally used for beam 
elements: i.e., 

212111111 uuu χχ += ,  (A1) 

222212122 uuu χχ += ,  (A2) 

and 

21242323111413133 θχχθχχ +++= uuu , (A3) 

where the first index of χ and u on the right-hand side 
indicates node number and the second index denotes the 
direction of displacement.  When the two nodes of a 
element are located at x1 = -1 and x1 = 1, the shape 
functions are 

)1(2/1 111 x−=χ ,  (A4) 

)1(2/1 121 x+=χ ,  (A5) 

1112 χχ = ,  (A6) 

2122 χχ = ,  (A7) 

3
1

2
113 ]2/)1[(2]2/)1[(31 xx +++−=χ , (A8) 

2
1114 ]2/)1(1)[1( xx +−+−=χ , (A9) 

3
1

2
123 ]2/)1[(2]2/)1[(3 xx +−+=χ , (A10) 

and 

]2/)1(}2/)1)[{(1( 1
2

1124 xxx +−++=χ .   

 (A11) 
 

Appendix B 

Expressions for the strains of thin shells were derived 
by Soedel [9] and they are presented here for 
completeness.  They can be separated in terms of 
membrane strains and bending strains: i.e., 

113
0
1111 κεε x+= ,  (B1) 

223
0
2222 κεε x+= ,  (B2) 

and 

123
0
1212 κεε x+= ,  (B3) 

where the membrane strains are 
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the bending strains are 

2

1

21

2

1

1

1
11

1
x
A

AAxA ∂
∂+

∂
∂= ββκ , (B4) 
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and the rotational displacements are 

1

3
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1
1
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and 

2

3
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2
2
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AR
u

∂
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where Rm is the radius of curvature in the m-direction. 

Appendix C 

Stiffness matrices are represented in terms of matrices, 
E0, E1, and E2 in Eq. (2) and C in Eq. (3): i.e.,  

( )�=
1

110
TT

00
x

dxAECEK , (C1) 

( )� −=
1

111
TT

00
TT

11
x

dxAECEECEK , (C2) 
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TT

10
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22
x
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 (C3) 
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11
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23
x

dxAECEECEK , (C4) 

and 

( )�=
1

112
TT

24
x

dxAECEK . (C5) 

The mass matrix is 

( )�=
1

11
T

x

dxAh ��M ρ .  (C6) 

Nodal forces (for both internal and external forces) are 

[ ] mm RMNF  node111111 /+= , (C7) 

[ ] mm RMNF  node212122 /+= , (C8) 

m

m x
M

A
NF

 node2

12

2
133

1
�
�

�
�
�

�

∂
∂+= , (C9) 

and 

[ ] mm AMF  node1114 /= ,  (C10) 

where the first index in each component in the point 
force vector represents node number.  Finally, the 
generalized, distributed force is 

( )�=
1

11
x

mnnmn dxAqQ χ .  (C11) 
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