General Aviation Pilots' Strategies to Mitigate Bird Strikes

FLAVIO A. C. MENDONCA - Ph.D. THOMAS Q. CARNEY - Ph.D.

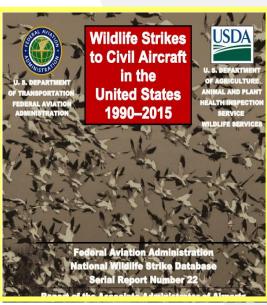
OVERVIEW

Wildlife Hazards to Aviation

Safety Management of Wildlife Hazards to Aviation - Pilots

Case Study

Introduction

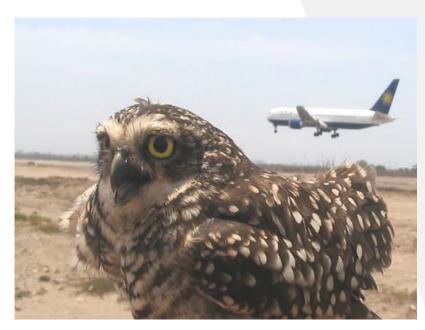


US Airways Flight 1549

- The U.S. Department of Agriculture (USDA) has partnered with the FAA since 1995
 - USDA has assisted the FAA with production of yearly and special reports on wildlife hazards to aviation:
 - Develop or enhance existing wildlife hazard management programs (including pilots)
 - Create refinements in the development and implementation of integrated research and operational efforts to mitigate the risk of bird strikes.

- **Some relevant statistics:**
 - 169,856 wildlife strikes
 - 97% involved birds
 - \$\display 63\% during the day
 - 52% of strikes between July and October
 - 61% during the arrival phases of flight
 - Strikes above 500 feet AGL Higher probability of damage!

- \$ 88% within the airport environment (below 1,500 feet AGL)
- \$\square\$ 97% below 3,500 feet AGL (the Bird Rich Zone)
- Analyses of data indicate that for GA aircraft the rate of damaging strikes has not declined since 2000
 - The rate of damaging strikes has increased outside the airport environment!



- How can the risk of wildlife strikes be mitigated?
 - Science and/or Technology
 - Avian radar
 - Falconry
 - Dogs (Border Collies);
 - Laser...
 - Certification Standards
 - Actions by crewmembers

Safety risk management (SRM) process:

- Hazard identification First step in the SRM process
- Hazard identification processes may include:
 - Aeronautical Information Manual (AIM)
 - Aeronautical Information Publication (AIP)
 - Notice to Airmen (NOTAM)
 - FAA Airport Facility Directory
 - Avian Hazard Advisory System (AHAS)
 - FAA Annual Wildlife Hazard Reports...

Safety risk management process – RISK ASSESSMENT

Risk Assessment Matrix Severity Likelihood Marginal Negligible Catastrophic Critical High High Serious Probable High **Serious** Occasional **Serious** Medium Low Remote **Improbable**

The level of aircraft damage and effects on the flight from wildlife strikes are directly related to the kinetic energy (KE) involved

$$KE = \underbrace{M \times V^2}_{2}$$

M = Bird Mass

V = Speed of Bird Relative to Aircraft

Safety Management of Wildlife Hazards - Pilots

- The risk of an engine failure is substantially higher during the departure phases of flight (takeoff/initial climb)
 - Pilots should use speed and flap settings that provide the best angle of climb (V_x)!
- Birds usually exhibit evasive behavior in response to an approaching aircraft
 - Pilots should use the aircraft external lights (where possible) whenever flying in the bird-rich zone
 - During the taxi phase of flight, a moving radar unit may enhance escape response by birds.

Safety Management of Wildlife Hazards - Pilots

- Birds are more active during dawn and dusk
- In case of a bird encounter, pilots should pull up, consistent with good flying techniques, to attempt to pass over them
- If operationally possible, pilots should heat the windshield during preflight preparation
- Pilots should consider delaying takeoff until birds have been dispersed
- Report wildlife activities to ATC and other aircraft.

- On March 4, 2008, about 1515 central standard time, a Cessna 500, N113SH, entered a steep descent and crashed about 2 minutes after takeoff from Wiley Post Airport (PWA) in Oklahoma City
 - The pilot, the second pilot, and the three passengers were killed
 - The airplane was destroyed by impact forces and post-crash fire.

- ♣ Probable cause → airplane wing-structure damage sustained during impact with one or more large birds, which resulted in a loss of control of the airplane
- The FAA Airport Facilities Directory entry for PWA included the remark, "Flocks of birds on [and in the vicinity of] the airport in ... all quadrants".
- The Bird Avoidance Model (BAM) indicated a medium-risk of bird strikes in the PWA area...

American White Pelicans

AVIAN HAZARD ADVISORY SYSTEM (AHAS)

A H A S Avian Hazor of Advisory System						
SELECT AREA TYPE BELOW			SELECT AREA AND DATE FORMAT			
○Visual Routes ○Instrument Routes ○Slow Routes ®Airfields ○ICAO			Select a Flying Area WILEY POST Select Month Mar Select Day 1 Select Z Hour 20 SELECT CONTENT DISPLAY			
OMOAS ORanges OAlert Areas OAir Force Units OOther Units	Areas orce Units			AHAS RISK 12HR RISK GOOGLE MAP GOOGLE EARTH AHAS plus Show Chart AHAS users online = 130		
Printer Friendly AHAS RISK FOR WILEY POST 12 HOUR LOOKUP USE THE AHAS RISK FIELD TO DETERMINE RISK WILEY POST WILEY POST						
SEGMENT	DateTime	NEXRAD	BASED ON	HEIGHT (Ft AGL)	AHAS RISK	
WILEY POST	2018/03/1 20:42Z	LOW	NEXRAD	NA	LOW	
WILEY POST						
SEGMENT	DateTime	NEXRAD	BASED ON	HEIGHT (Ft AGL)	AHAS RISK	
WILEY POST	2018/03/1 21:42Z	LOW	ВАМ	NA	moderate	
WILEY POST						
SEGMENT	DateTime	NEXRAD	BASED ON	HEIGHT (Ft AGL)	AHAS RISK	
WILEY POST	2018/03/1 22:00Z	NA	BAM	NA	moderate	
WILEY POST						
SEGMENT	DateTime	NEXRAD	BASED ON	HEIGHT (Ft AGL)	AHAS RISK	
WILEY POST	2018/03/1 23:00Z	NA	BAM	NA	moderate	

- The pilot held an ATP certificate with a rating for airplane multiengine land and type ratings for the CE-500 (Cessna 500), Cessna CE-650 (Citation III), and Learjet airplanes;
 - 6,100 total flight hours
 - 5,000 pilot-in-command hours
 - 668 hours in turbine-powered airplanes.
- The second pilot held a commercial pilot certificate for airplane single-engine and multi-engine land and instrument airplane
 - 1,378 total flight hours
 - 1,245 pilot-in-command hours
 - ◆ 78 hours second-in-command time in turbine-powered airplanes.

- The flight was cleared for takeoff from runway 17L
 - The flight crew's departure clearance was to turn right to a heading of 200° and maintain an initial altitude of 3,000 feet above mean sea level (MSL)
 - Aproximately thirty seconds later, the flight crew reported they were level at 3,000 feet MSL
 - The aircraft was headed south-southwest at approximately 200 knots when its flight track intersected the flight track of primary returns
 - The aircraft entered a rapid descent and crashed

- Did the pilots know about the risk of bird strikes at PWA airport,
 - at that time of year, and altitude?
 - If not, why not?
- If they knew that information, did they have the technical knowledge and skills to mitigate the risk of an accident due to birds?
 - In hindsight, it is reasonable to postulate that with adequate planning and actions by the flight crew, the risk of this deadly aircraft accident due to impacts with birds could have been mitigated.

Safety Management of Wildlife Strikes to Aviation - Conclusions

Several factors influence the risk of an accident due to a bird strike, including actions by crewmembers

- Pilots should:
 - Integrate risk management into flight planning for all phases of flight
 - Reduce flight time and/or airspeed when flying through the bird-rich zone
 - Use aircraft external lights while flying in the bird-rich zone to enhance the escape behavior of certain species of birds.

Questions

- Anderson, A., Carpenter, D. S., Begier, M. J., Blackwell., B. F., DeVault, T. L., & Shwiff, S. A. (2015). Modeling the cost of bird strikes to US civil aircraft. *Journal of Transportation Research*, 38, 49-58.
- Avrenli, K. A., & Dempsey, B. J. (2014). Statistical analysis of aircraft-bird strikes resulting in engine failure. Journal of the Transportation Research Board, 2449, 14-23.
- Belant, J. L., & Ayers, C. R. (2014). *Habitat management to deter wildlife at airports* (ACRP Synthesis No. 52). Retrieved from the Transportation Research Board on the National Academies website: http://www.trb.org/Publications/Blurbs/170766.aspx
- Bernhardt, G., Blackwell, B. F., DeVault, T. L., & Broohl, L. K. (2010). Fatal injuries to birds from collisions with aircraft reveal anti-predator behaviours. The
 International Journal of Avian Science, 152(4), 830-834. doi: 10.1111/j.1474-919X.2010.01043.x
- Blackwell, B. F., & Bernhardt, G. E. (2004). Efficacy of aircraft landing lights in stimulating avoidance behavior in birds. *Journal of Wildlife Management*, 68(3), 725-732. Retrieved from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1077&context=icwdm_usdanwrc
- Blackwell, B. F., DeVault, T. L., Seamans, T. W., Lima, S. L., Baumhardt, P., & Juricic, E. F. (2012). Exploiting avian vision with aircraft lighting to reduce bird strikes. *Journal of Applied Ecology, 49*, 758-766. doi: 10.1111/j.1365-2664.2012.02165.x
- Cleary, E. C., & Dickey, A. (2010). Guidebook for addressing aircraft/wildlife hazards at general aviation airports (ACRP Report No. 32). Retrieved from the
 Transportation Research Board on the National Academies website: http://www.trb.org/Publications/Blurbs/163690.aspx Cleary, E. C., & Dolbeer, R. A. (2005).
 Wildlife hazard management at airports: A manual for airport personnel. Retrieved from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1127&context
 =icwdm_usdanwrc
- Dale, L. A. (2009). Personal and corporate liability in the aftermath of bird strikes: A costly consideration. Journal of Human-Wildlife Conflicts, 3(2), 155-166.
- DeFusco, R. (2016). Integrating wildlife hazard management into airport safety management systems. Paper presented at the 2016 Bird Strike Committee USA Meeting, Chicago, IL. Presentation retrieved from https://www.aaae.org/aaae/AAAEDocs/Meetings/2016/08/160807/Pres/03_defusco.pdf
- DeFusco, R. P., Junior, E. T. U., Cooley, T. R., & Landry, J. M. (2015). *Applying an SMS Approach to Wildlife Hazard Management* (ACRP Report No. 145. Retrieved from the Transportation Research Board on the National Academies website: http://www.trb.org/Publications/Blurbs/173318.aspxDeFusco, R. P., & Unangst, E. T. (2013). *Airport wildlife population management: A synthesis of airport practice* (ACRP Synthesis No. 39). Retrieved from the Transportation Research Board on the National Academies website: http://www.trb.org/main/blurbs/169414.aspx
- Dekker, A., & Buurma, L. (2005, May). Mandatory reporting of bird strikes in Europe: Who will report what to who. Paper presented at the 27th International Bird Strike Committee Meeting, Athens, Greece. Abstract retrieved from http://www.int-birdstrike.org/Athens_Papers/IBSC27%20WPII-1.pdf
- DeVault, T. L., Blackwell, B. F., & Belant, J. L. (Ed.) (2013). Wildlife in airport environments. Baltimore, Maryland: The Johns Hopkins University Press.
- Dolbeer, R. A. (2006a). Height distributions of birds as recorded by collisions with civil aircraft. Journal of Wildlife Management, 70(5), 1345-1350.
- Dolbeer, R. (2006b). Birds and aircraft are competing for space in crowded skies. *International Civil Aviation Organization Journal*, 3, 21-24.

- Dolbeer, R. A. (2007). Bird damage to turbofan and turbojet engines in relation to phase of flight: Why speed matters. Bird and Aviation 2(7), 1-9. Retrieved from http://davvl.de/Voluenglisch/2007/Dolbeer.pdf
- Dolbeer, R. A. (2009). Birds and aircraft: Fighting for airspace in ever more crowded skies. *Journal of Human-Wildlife Conflicts*, 3(2), 155-166.
- Dolbeer, R. A. (2011). Increasing trend of damaging bird strikes with aircraft outside the airport boundary: implications for mitigation measures. Human-Wildlife Interactions, 5(2), 235-248.
- Dolbeer, R. A. (2013). The history of wildlife management strikes and management at airports. In DeVault, T. L., Blackwell, B. F., & Belant, J. L. (Eds.), Wildlife in airport environments (pp. 1-6). Baltimore, Maryland: The Johns Hopkins University Press.
- Dolbeer, R. A. (2015). Trends in reporting of wildlife strikes with civil aircraft and in identification of species struck under a primarily voluntary reporting system, 1990-2013 (Especial Report submitted to the Federal Aviation Administration). Retrieved from the FAA website: https://www.faa.gov/airports/airport_safety/wildlife/media/trends-in-wildlife-strike-reporting-1990-2013.pdf
- Dolbeer, R. A., & Barnes, W. J. (2017). Positive bias in bird strikes to engines on left side of aircraft. Human-Wildlife Conflicts, 11(1), 33-40.
- Dolbeer, R. A., Seubert, J. L., & Begier, M. J. (2014). Population trends of resident and migratory Canada geese in relation to strikes with civil aircraft. *Human-Wildlife Interactions*, 8(1), 88-99. Retrieved from http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1018&context=hwi
- Dolbeer, R. A., & Wright, S. E. (2009). Safety management systems: How useful will the FAA national wildlife strike database be? *Human-Wildlife Conflicts*, 3(2), 167-178.
- Dolbeer, R. A., Wright, S. E., Weller, J. R., Anderson, A. M., & Begier, M. J. (2015). Wildlife strikes to civil aircraft in the United States: 1990–2014 (Serial Report Number 21). Retrieved from the Federal Aviation Administration website: http://www.faa.gov/airports/airport_safety/wildlife/media/wildlife-strike-report-1990-2014.pdf
- Dolbeer, R. A., Weller, J. R., Anderson, A. M., & Begier, M. J. (2016). Wildlife strikes to civil aircraft in the United States: 1990–2015 (Serial Report Number 22). Retrieved from the Federal Aviation Administration website: https://www.faa.gov/airports/airport_safety/wildlife/media/Wildlife-Strike-Report-1990-2015.pdf
- Doppler, M. S., Blackwell, B. F., DeVault, T. L., Juricic, E. F. (2015). Cowbird responses to aircraft with light tuned to their eyes: Implications for bird-aircraft collisions. The Condor Ornithological Applications, 117(2), 165-177. Retrieved from http://www.bioone.org/doi/full/10.1650/CONDOR-14-157.1
- Dove, C. J., Dahlan, N. F., & Heacker, M. (2009). Forensic bird-strike identification techniques used in an accident investigation at Wiley Post Airport, Oklahoma, 2008. *Human-Wildlife Conflicts*, 3(2), 179-185.
- Eschenfelder, P. (2005, May). High speed flight at low altitude: Hazard to commercial aviation? Paper presented at the Seventh Bird Strike Committee USA/Canada Meeting, Vancouver, Canada. Abstract retrieved from http://digitalcommons.unl.edu/birdstrike2005/4/
- Eschenfelder, P., & DeFusco, R. (2010, August). Bird strike mitigation beyond the airport. *AeroSafety World, 5*(7). Retrieved from http://flightsafety.org/aerosafety-world-magazine/august-2010/bird-strike-mitigation-beyond-the-airport

- Eschenfelder, P., & Hull, S. (2006, August). Reduction of risk: a flight crew guide to the avoidance and mitigation of wildlife strikes to aircraft. Paper presented at the Eighth Bird Strike Committee USA/Canada Meeting, St Louis, Missouri. Retrieved from http://digitalcommons.unl.edu/birdstrike2006/2/
- Federal Aviation Administration (FAA). (2013). Reporting wildlife aircraft strikes (FAA-AC 150/5200-32B). Retrieved from https://www.faa.gov/airports/resources/advisory_circulars/index.cfm/go/document.current/documentNumber/150_5200-32
- Federal Aviation Administration (FAA). (2016a). *Pilot's handbook of aeronautical knowledge*. Retrieved from https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/phak/
- Federal Aviation Administration (FAA). (2016b). Fact sheet: General aviation safety. Retrieved from https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274
- Federal Aviation Administration (FAA). (2016c). Wildlife strike resources. Retrieved from http://www.faa.gov/airports/airport_safety/wildlife/resources/
- Federal Aviation Administration (FAA). (2016d). *Risk management handbook* (FAA-H-8083-2). Retrieved from https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/risk_management_hb_change_1.pdf
- Federal Aviation Administration (FAA). (2016e). Aviation safety: Fiscal year 2016 business plan. Retrieved from https://www.faa.gov/air_traffic/publications/media/aip.pdf
- Federal Aviation Administration (FAA). (2016f). Aeronautical information publication: United States of America. Retrieved from https://www.faa.gov/air_traffic/publications/media/AIP.pdf Ferketich, S. (1991). Focus of psychometrics: Aspects of item analysis. Research in Nursing & Health, 14(2), 1665-168.
- Flight Safety Foundation (FSF). (1989). Birds Vs. aircraft: No winners. Accident Prevention, 46(3). Retrieved from http://flightsafety.org/ap/ap_mar89.pdf
- http://www.icao.int/publications/journalsreports/ 2013/6805_en.pdf
- International Civil Aviation Organization (ICAO). (2012). Airport services manual. Part 3: Wildlife control and reduction (Doc. 9137 AN/898) (4th ed.). Montreal, Canada: Author.
- International Civil Aviation Organization (ICAO). (2013a). Annex 19 to the Convention on International Civil Aviation, Safety Management (1st ed.). Montreal, Canada: Author.
- International Civil Aviation Organization (ICAO). (2013b). ICAO safety management manual (Doc. 9859-AN/474) (3rd ed.). Montreal, Canada: Author.

- Marra, P. P., Dove, C. J., Dolbeer, R. A., Dahlan, N. F., Heacker, M., Whaton, J. F., Diggs, N. E., ... Henkes, G. A. (2009). Migratory Canada geese cause crash of US airways flight 1549. Frontiers in Ecology and the Environment, 7(6), 297-301.
- Martin, J. A., Belant, J. L., DeVault, T. L., Blackwell, B. F., Junior, L. W. B., Riffel., S. K., & Wang, G. (2011). Wildlife risk to aviation: A multi-scale issue requires
 a multi-scale solution. Human-Wildlife Interactions, 5(2), 198-203.
- Mendonca, F. A. C. (2008, August). The bird hazard report as a safety tool. Paper presented at the Tenth Bird Strike Committee USA/Canada meeting, Orlando, FL. Retrieved from http://digitalcommons.unl.edu/birdstrike2008/20/
- Mendonca, F. A. C. (2011, September). <u>Airlines' pilots' perceptions concerning recommended practices that reduce the risk of bird strikes</u>. Paper presented at the 11th meeting of the Bird Strike North America Conference, Niagara Falls, Canada. Retrieved from http://digitalcommons.unl.edu/birdstrike2011/20/
- Mendonca, F. A. C. (2016). Exploiting science: Enhancing pilots' safety training to reduce the risk of bird strikes. Paper presented at the 2016 Bird Strike
 Committee USA Meeting, Chicago, IL. Presentation retrieved from https://www.aaae.org/aaae/AAAEDocs/ Meetings/2016/08/160807/Pres/26_Mendonca.pdf
- Mendonca, F. A. C. (2017). Exploiting science: Enhancing the safety training of pilots to reduce the risk of bird strikes (Unpublished doctoral dissertation).
 Purdue University, West Lafayette, IN.
- Mendonca, F. A. C., & Carney, T. Q. (2017). A safety management model for FAR 141 approved flight schools. Submitted for publication.
- National Transportation Safety Board (NTSB). (2009). Crash of Cessna 500, N113SH following an in-flight collision with large birds Oklahoma City, Oklahoma (NTSB/AAR-09/05-PB2009-910405). Retrieved from https://www.ntsb.gov/investigations/AccidentReports/ Reports/AAR0905.pdf
- National Transportation Safety Board (NTSB). (2010). Loss of thrust in both engines, US airways flight 1549 and Subsequent Ditching on the Hudson River: US Airways Flight 1549 Airbus A320-214, N106US Airbus Industry A320-214, N106US (NTSB/AAR-10/03). Retrieved from http://www.ntsb.gov/investigations/AccidentReports/ Reports/AAR1003.pdf
- Kelly, T. A. (2002, September). Managing bird strike risk with the avian hazard advisory system. *United States Air Force Flying Magazine: Safety, 58*(9). Retrieved from
- http://www.usahas.com/Downloads/Article%20Managing%20Bird%20Strike%20Risk%20With%20AHAS%20Flying%20Safety%20Sep%202002%20Kelly.pdf
- , B. (2004). Sharing the skies manual An aviation industry guide to the management of wildlife hazards. Retrieved from the Government of Canada, Transport Canada website: https://www.tc.gc.ca/eng/civilaviation/publications/tp13549-menu-2163.htm MacKinnon, B., Sowden, R., & Kelly, T. (2003). Risk analysis of high-speed aircraft departures below 10,000 feet. Paper presented at the Fifth Bird Strike Committee USA/Canada Meeting, Toronto, Canada. Retrieved from http://digitalcommons. unl.edu/cgi/viewcontent.cgi?article=1002&context=birdstrike2003
- Nohara, T. (2016). *Illustrating the use of avian radar for off-airport bird hazard alerting*. Paper presented at the 2016 Bird Strike Committee USA Meeting, Chicago, IL. Presentation retrieved from http://www.aaae.org/aaae/AAAEDocs/Meetings/2016/ 08/160807/Pres/05_Nohara.pdf
- O'Callaghan, J. (n.d.). *Bird-strike certification standards and damage mitigation*. Retrieved from the National Transportation Safety Board website: https://www.ntsb.gov/news/events/documents/oklahoma city ok-2 web bird strike cert and damage john ocallaghan.pdf