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Enhanced acoustic transmission into dissipative solid

materials through the use of inhomogeneous plane

waves

D C Woods, J S Bolton, and J F Rhoads
School of Mechanical Engineering, Ray W. Herrick Laboratories, and Birck Nanotechnology
Center, Purdue University, West Lafayette, Indiana, USA

E-mail: jfrhoads@purdue.edu

Abstract. A number of applications, for instance ultrasonic imaging and nondestructive
testing, involve the transmission of acoustic energy across fluid–solid interfaces into dissipative
solids. However, such transmission is generally hindered by the large impedance mismatch at
the interface. In order to address this problem, inhomogeneous plane waves were investigated in
this work for the purpose of improving the acoustic energy transmission. To this end, under the
assumption of linear hysteretic damping, models for fluid–structure interaction were developed
that allow for both homogeneous and inhomogeneous incident waves. For low-loss solids, the
results reveal that, at the Rayleigh angle, a unique value of the wave inhomogeneity can be
found which minimizes the reflection coefficient, and consequently maximizes the transmission.
The results also reveal that with sufficient dissipation levels in the solid material, homogeneous
incident waves yield lower reflection values than inhomogeneous waves, due to the large degrees
of inhomogeneity inherent in the transmitted waves. Analytical conditions have also been
derived which predict the dependence of the optimal incident wave type on the dissipation
level and wave speeds in the solid medium. Finally, implications related to the use of acoustic
beams of limited spatial extent are discussed.

1. Introduction
Wave propagation in dissipative solid materials is of significant interest in a number of fields,
including seismology [1,2], ultrasonic imaging [3], and the nondestructive evaluation of structures
[4,5]. In nondestructive testing, for instance, ultrasonic waves can be employed to identify
structural defects, and also to indirectly measure material moduli through known relations
with measured wave speeds and attenuation coefficients. However, since typical applications
require the transmission of ultrasonic waves incident from a fluid medium (e.g., air or water),
a substantial portion of the incident energy is reflected at the fluid–solid interface, due to the
large differences in impedances between the two media. To address this limitation, incident
inhomogeneous plane waves (i.e., waves whose directions of propagation and attenuation are not
aligned) are considered here as a pathway to increased energy transmission across real fluid–solid
interfaces. Moreover, it is shown that the level (“degree”) of inhomogeneity of the incident wave
can be tuned, given the dissipation level in viscoelastic media, to optimize the acoustic energy
transmission.

Inhomogeneous plane waves can be generated by using phased arrays of sources and the
spectral division method [6,7], by propagation of incident homogeneous waves through multilayer
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systems [8], or by other approaches [9,10]. Due to material dissipation, both homogeneous and
inhomogeneous waves travelling in real media exhibit amplitude attenuation in the direction of
phase propagation. Inhomogeneous plane waves also have a component of decay perpendicular
to the phase propagation direction, so the angle of amplitude decay relative to the propagation
direction, known as the “degree of inhomogeneity” [11], is always less than 90◦.

In terms of the material characterization for wave propagation, dissipation is generally
modelled as hysteretic damping, as for linear viscoelastic materials [11–13]. With the material
further assumed to be homogeneous and isotropic, the phase and attenuation relations, as well as
the energy fluxes, of inhomogeneous plane waves (including both longitudinal and shear waves)
have been described in detail by Borcherdt [11,14,15] and others [16,17]. The reflection and
refraction phenomena of inhomogeneous waves at material interfaces, where linear viscoelastic
or fluid media occupy the two semi-infinite half-spaces, have also been described [11,18–22].
Notably, except for the special case of equal dissipation in the two media, the transmitted waves
are found to be inhomogeneous even when the incident wave is homogeneous, and transmission
is maximized at the Rayleigh angle, where the transmitted longitudinal and shear motions on
the solid surface are coincident [11,23,24]. Moreover, the fraction of the incident energy that is
transmitted is maximized when the reflection coefficient is minimized.

The goal of the present work was to investigate the use of incident inhomogeneous plane waves
to increase the energy transmission across fluid–solid interfaces into dissipative solid media.
For the case of lossless media, inhomogeneous incident waves were shown in previous work
[25] to yield a zero of the reflection coefficient, and hence optimal energy transmission, which
was attained by simultaneously varying the incidence angle and inhomogeneity. Interestingly,
for dissipative media and with homogeneous incident waves, Becker and Richardson [26,27]
considered arbitrary variation of the shear attenuation coefficient for a water–stainless steel
interface, including the variation with frequency, and found that significantly lower values of
the reflection coefficient were predicted for certain values of the shear attenuation. In this
work, rather than varying the frequency, the degree of inhomogeneity of the incident wave was
tuned for the purpose of minimizing the reflection coefficient. The interface model developed
here, which allows for both inhomogeneous and homogeneous incident plane waves and arbitrary
levels of material dissipation, is based on the theory presented by Borcherdt [11]. Analytical
conditions under which inhomogeneous waves improve energy transmission, as compared to
homogeneous waves, are derived by using approximations for low-loss media. Numerical results
for the reflection coefficient with inhomogeneous incident waves are presented for a low-loss solid
interface, and also with the dissipation level varied. Implications related to the construction and
use of acoustic beams of limited spatial extent, represented as infinite sums of plane waves, are
discussed as well.

2. Representation of inhomogeneous plane waves in dissipative media
When assuming a hysteretic damping model, monochromatic wave propagation in homogeneous,
isotropic, linear media may be characterized by the complex material wavenumbers for
longitudinal and shear waves, k̃L and k̃S , respectively:

k̃L =
ω

vL
− jαL,

k̃S =
ω

vS
− jαS ,

(1)

where ω is the frequency of the wave, vL and vS are the respective wave speeds for homogeneous
waves, αL and αS are the respective attenuation coefficients, and the time dependence is assumed
to be exp(jωt). With a knowledge of the complex wavenumbers and the density ρ, the material
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is completely characterized. If the complex Lamé parameters [11] are used as the two material
moduli, then the first parameter is given by λ̃ = ρω2(1/k̃2P − 2/k̃2S), and the second parameter

by µ̃ = ρω2/k̃2S . For the frequency dependence of the wavenumbers, a power law is generally
assumed for the attenuation coefficients, which is dependent on the material under consideration,
and the variation of the wave speeds is typically much weaker [28].

For homogeneous plane waves, only the frequency, amplitude, and propagation angle
with respect to a given coordinate system must be specified to characterize the wave, since
the directions of phase propagation and amplitude attenuation are aligned. However, for
inhomogeneous plane waves, the degree of inhomogeneity must be additionally specified. Figure
1(a) is a generic diagram of the propagation vector ~Pi, attenuation vector ~Ai, and degree of
inhomogeneity γi for an inhomogeneous plane wave propagating in the xz-plane, where, for
the sake of generality, the subscript i = L, S indicates the wave type as longitudinal or shear.
It follows from the Helmholtz equation that the complex wavevector for either type of wave,
~̃Ki = ~Pi − j ~Ai, must satisfy the material wavenumber condition [11]:

~̃Ki · ~̃Ki = k̃2i . (2)

In turn, it follows from this relation that when αi 6= 0, the degree of inhomogeneity (0◦ ≤ γi <
90◦) is related to the magnitudes of the propagation and attenuation vectors according to:

|~Pi|2 =
1

2

Re[k̃2i ] +

√
(Re[k̃2i ])2 +

(Im[k̃2i ])2

cos2(γi)

 ,

| ~Ai|2 =
1

2

−Re[k̃2i ] +

√
(Re[k̃2i ])2 +

(Im[k̃2i ])2

cos2(γi)

 ,

(3)

where Re denotes the real part of the argument and Im the imaginary part. It should be
emphasized here that the degree of inhomogeneity, if nonzero, impacts both the effective phase
speed ω/|~Pi|, which is lower than that for homogeneous waves vi, and the effective attenuation

| ~Ai|, which exceeds that for homogeneous waves αi.
Finally, the wave potentials also follow from the solution to the Helmholtz equation which,

for longitudinal and shear waves, respectively, are given by [11]:

φ̃L = Φ̃L exp[− ~AL · ~r] exp[j(ωt− ~PL · ~r)],
~̃φS = ~̃ΦS exp[− ~AS · ~r] exp[j(ωt− ~PS · ~r)],

(4)

where ~r is the position vector, and Φ̃L and ~̃ΦS are the amplitudes of the potentials.

3. Fluid-solid interface
The reflection and transmission coefficients, as well as the stresses and energy fluxes, are
developed here for a semi-infinite material interface between fluid and solid media. Both media
are assumed to be homogeneous, isotropic, and linear, and to have an associated hysteretic
damping model. The incident wave is taken to be a longitudinal plane wave in the fluid, which
may be either homogeneous or inhomogeneous. The interface is shown conceptually in Figure
1(b), where a right-handed, rectangular coordinate system is assumed. For the sake of simplicity,
to denote whether quantities apply in the fluid or solid medium, no superscript will be used for
the fluid medium, and a superscript prime will be used for the solid (e.g., k̃L will denote the
material wavenumber for longitudinal waves in the fluid, and k̃′L will denote that in the solid).

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012188 doi:10.1088/1742-6596/744/1/012188

3



(a) (b)

Figure 1. A diagram showing (a) the propagation and attenuation vectors for an inhomogeneous
plane wave propagating in the xz-plane (where the subscript i = L, S indicates the wave type as
longitudinal or shear), and (b) the reflected and transmitted waves at the fluid–solid interface
for an incident inhomogeneous plane wave. Propagation vectors are shown as solid lines, and
attenuation vectors as dotted lines.

The boundary conditions at the interface (i.e., at z = 0) require continuity of the stress and
particle displacement normal to the interface, and also continuity of the shear stress [11,29]. It is
straightforward to compute the particle displacement in either medium from the wave potentials:

~̃u(m) = ∇φ̃(m)
L +∇× ~̃φ

(m)
S , where the superscript m indicates the medium. For propagation in

the xz-plane and with the shear stress in-plane, the normal and shear stresses, respectively, can
be computed in either medium as:

σ̃(m)
zz = λ̃(m)

(
∂ũ

(m)
x

∂x
+
∂ũ

(m)
z

∂z

)
+ 2µ̃(m)

(
∂ũ

(m)
z

∂z

)
,

σ̃(m)
xz = µ̃(m)

(
∂ũ

(m)
x

∂z
+
∂ũ

(m)
z

∂x

)
,

(5)

where the subscript on the right-hand-side denotes the component of the displacement vector.

It is assumed here that the fluid medium does not sustain shear waves (i.e., µ̃ = 0, ~̃φS = 0), so
the displacement and stress equations simplify considerably in the fluid. As a consequence of
shear stress continuity, the shear stress at the surface of the solid is thus equal to zero in this
case.

The reflection and transmission coefficients are computed by application of the
aforementioned boundary conditions. Trace wavenumber continuity, or the generalized Snell’s
law, subsequently follows: k̃L,x = k̃′L,x = k̃′S,x, where the second subscript denotes the component

of the wavevector. Therefore, k̃x can be simply written without ambiguity. The z-components
of the transmitted wavevectors are then computed from the material wavenumber condition,
Eq. (2), by using the principal value of the square root [11]: k̃′L,z = (k̃′2L − k̃2x)1/2 and

k̃′S,z = (k̃′2S − k̃2x)1/2. Finally, the three boundary conditions yield the linear system that is
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solved for the reflection and transmission coefficients: k̃L,z k̃′L,z k̃x
−λ̃k̃2L λ̃′k̃′2L + 2µ̃′k̃′2L,z 2µ̃′k̃xk̃

′
S,z

0 2µ̃′k̃xk̃
′
L,z µ̃′(k̃2x − k̃′2S,z)


 R̃T̃L
T̃S

 =

k̃L,zλ̃k̃2L
0

 , (6)

where R̃ is the (longitudinal) reflection coefficient, and T̃L and T̃S are the transmission coefficients
for the transmitted longitudinal and shear waves, respectively, in terms of the wave potentials.

It is then straightforward to compute the stresses in either medium by using Eq. (5). The

instantaneous energy flux vector [11,14,30] is given in terms of the stress tensor σ̃
(m)
ln and particle

velocity vector ∂~̃u(m)/∂t:

En(t) = −

(
Re
[
σ̃(m)
xn

]
Re

[
∂ũ

(m)
x

∂t

]
+ Re

[
σ̃(m)
zn

]
Re

[
∂ũ

(m)
z

∂t

])
, (7)

for n = x, z. The average energy flux, or intensity, is then computed by time-averaging the
instantaneous flux over one period.

3.1. Minimization of the reflection coefficient
In order to maximize the energy transmitted across the fluid–solid interface, the reflection
coefficient should be minimized. Provided that the density and Rayleigh wave speed in the
solid exceed the density and longitudinal wave speed, respectively, in the fluid, it is well-known
that transmission is optimized when incidence is at the Rayleigh angle for the interface, at which
point the incident wave is coincident with the free wave solution of resonant longitudinal and
shear motions on the solid surface [23,24,31]. The degree of inhomogeneity of the incident wave
also affects the energy transmission, and the optimal value of the inhomogeneity depends on
the dissipation levels in the solid, as well as on the other parameters which characterize the
interface.

The wavenumber k̃′Ray for the Rayleigh-type surface wave on a linear viscoelastic half-space
can be numerically computed as for a lossless elastic half-space, but with the complex values for
the longitudinal and shear material wavenumbers inserted into the characteristic equation [11]:(

k̃′2S
k̃′2Ray

)3

− 8

(
k̃′2S
k̃′2Ray

)2

+

(
24− 16

k̃′2L
k̃′2S

)(
k̃′2S
k̃′2Ray

)
− 16

(
1−

k̃′2L
k̃′2S

)
= 0, (8)

where the solution is the root such that |k̃′2S /k̃′2Ray| < 1. The complex wave speed ṽ′Ray

of the Rayleigh-type wave is then ṽ′Ray = ω/k̃′Ray, and the Rayleigh angle for the fluid–

solid interface is θRay = arcsin(vL/Re[ṽ′Ray]), where vL (unprimed) is the wave speed for
homogeneous longitudinal waves in the fluid medium. For low-loss solids, the effect of material
dissipation on the Rayleigh wave speed is negligible, and the wave speed can be approximated
as: ṽ′Ray ≈ Re[ṽ′Ray] ≡ v′Ray.

With respect to the degree of inhomogeneity γL of the incident wave which minimizes the
reflection coefficient, analysis reveals a strong dependence on the dissipation levels in the solid
medium. For the lossless fluid–solid interface, it was shown that, with incidence at the Rayleigh
angle, a unique value of the inhomogeneity yields a zero of the reflection coefficient magnitude
[25]. For the dissipative fluid–solid interface under consideration here, a unique value for the
degree of inhomogeneity can likewise be found which yields a local minimum of the reflection
coefficient if the dissipation levels in the solid are sufficiently small. The value of the reflection
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coefficient magnitude there is typically near-zero, but remains nonzero due to the material
dissipation in the system.

However, above a critical level of dissipation in the solid, homogeneous incident waves yield
lower values of the reflection coefficient at the Rayleigh angle than do inhomogeneous incident
waves, regardless of the value of the degree of inhomogeneity. This is due to the fact that, with
sufficient dissipation levels in the solid, the transmitted waves inherently have a high degree of
inhomogeneity, even for homogeneous incident waves, and so there is no benefit to introducing
an additional level of inhomogeneity through an inhomogeneous incident wave. Therefore, the
reflection coefficient is minimized for a homogeneous incident wave, but the value is neither a
local minimum nor typically near-zero (see also Section 4.2).

An approximation for the critical value of solid dissipation below which inhomogeneous
incident waves improve energy transmission can be derived by assuming small losses in the
solid and negligible losses in the fluid. The derivation is given in the Appendix. The ratio of
the longitudinal attenuation coefficient in the solid to the shear attenuation coefficient was held
constant in the variation: α′ratio = α′L/α

′
S = constant. The result for the approximation, in

terms of the shear attenuation coefficient, is:

α′∗S ≈
1

4

(
ρvL
ρ′v′S

)(
v′Ray√
v′2Ray − v2L

)
ω

V
, (9)

where the quantity V is a function of only the wave speeds and attenuation ratio in the solid
and is given by Eq. (A.5). The first term in parentheses is the ratio of the longitudinal wave
impedance in the fluid to the shear wave impedance in the solid, and the second term accounts
for the effect of the incident medium (fluid) on the transmitted waves when incidence is at
the Rayleigh angle. If a power law is assumed for the frequency variation of the attenuation
coefficient, α′S = aωb, then the condition can instead be framed in terms of the frequency:

ω∗ ≈

 1

4aV

(
ρvL
ρ′v′S

)(
v′Ray√
v′2Ray − v2L

)1/(b−1)

. (10)

Thus, for a homogeneous incident wave and set material parameters (except for the frequency
dependence of the attenuation), a frequency can be found which yields a minimum of
the reflection coefficient, a conclusion which is supported by the investigations of Becker
and Richardson [26,27]. However, since the present work is focused on the extension to
inhomogeneous incident waves, the frequency will be held constant.

4. Numerical results and discussion
For the purpose of illustrating the effect of the degree of inhomogeneity of the incident plane
wave on the reflection coefficient, a water–stainless steel interface is considered here, with the
incidence angle near the Rayleigh angle for the interface. Additionally, simultaneous variation
of the inhomogeneity of the incident wave and the solid dissipation level is considered, and the
exact results for the critical value of dissipation are directly compared with those predicted by
the approximation in Eq. (9).

4.1. Low-loss solid interface: Water–stainless steel
For a water–stainless steel interface at a frequency of 10 MHz, the material properties were taken
as those used by Borcherdt [11]: for water, ρ = 1000 kg/m3, vL = 1490 m/s, and αL = 2.530
rad/m; and for stainless steel, ρ′ = 7932 kg/m3, v′L = 5740 m/s, v′S = 3142 m/s, α′L = 39.95
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(a) (b)

Figure 2. The magnitude of the reflection coefficient for the water–stainless steel interface
at 10 MHz as a function of (a) incidence angle θL and degree of inhomogeneity γL of the
incident wave, and (b) degree of inhomogeneity γL of the incident wave at the Rayleigh angle
θL = θRay ≈ 30.83◦.

rad/m, and α′S = 127.0 rad/m. The Rayleigh wave speed, from the equations presented in
Section 3.1, is v′Ray ≈ 2907 m/s (where the imaginary part is negligible), and the Rayleigh angle
is θRay ≈ 30.83◦.

Figure 2(a) shows the magnitude of the reflection coefficient as the incidence angle θL is varied
near the Rayleigh angle and the degree of inhomogeneity γL is varied from 0◦ (homogeneous
wave) to values near 90◦. As is evident, with respect to the variation of the incidence angle, the
lowest values of the reflection coefficient are achieved at the Rayleigh angle. More importantly,
with incidence at the Rayleigh angle, the variation of the degree of inhomogeneity is observed to
yield near-zero reflection values, and hence near-perfect energy transmission into the solid. The
degree of inhomogeneity which yields the local minimum is γL ≈ 88.85◦. This phenomenon is
illustrated in Figure 2(b), where only the degree of inhomogeneity is varied, and the incidence
angle is held constant at the Rayleigh angle. The value of the reflection coefficient at the local
minimum is |R̃| ≈ 0.0203, which represents a significant reduction from the value of |R̃| ≈ 0.295
for homogeneous incident waves.

4.2. Variation of the solid dissipation level and incident wave inhomogeneity
Though a unique value of the degree of inhomogeneity of the incident wave can be found for
low-loss solid interfaces that yields a local minimum of the reflection coefficient at the Rayleigh
angle, no such value can be found if dissipation levels in the solid are above a critical level.
Since the transmitted waves in such higher-loss solids inherently have considerable degrees of
inhomogeneity when incidence is at the Rayleigh angle, no additional benefit is conferred by
making the incident wave inhomogeneous. In order to illustrate this effect, the properties of
the interface considered in Section 4.1 were used, except that the attenuation coefficients in the
solid were varied along with the incident wave inhomogeneity. The ratio of the longitudinal to
shear attenuation coefficients in the solid was held constant at the value computed from the
parameters in Section 4.1: α′ratio = α′L/α

′
S = 0.3146. The frequency was held constant at 10

MHz, and so the variation of the attenuation here is considered to be a simple variation of
material parameters, rather than that from frequency dependence.

Figure 3 presents the results for the reflection coefficient magnitude for simultaneous variation
of the incident wave inhomogeneity γL and solid dissipation level, as specified in terms of the

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012188 doi:10.1088/1742-6596/744/1/012188

7



Figure 3. The magnitude of the reflection coefficient at 10 MHz, where the properties are those
for the water–stainless steel interface except that the attenuation in steel is varied as shown, as
a function of the shear attenuation coefficient in steel α′S and the degree of inhomogeneity γL of
the incident wave. The incident wave is propagating at the Rayleigh angle and the ratio of the
longitudinal to shear attenuation coefficients in steel is held constant at α′ratio = 0.3146.

shear attenuation coefficient α′S . As can be observed, on the left side of the figure (i.e., at lower
losses), there is a locus of small reflection values where, for each value of the attenuation, a
unique, nonzero value of the inhomogeneity can be found to yield the minimum of the reflection
coefficient. However, above a critical level of dissipation, no such local minima exist and
there is simply a slight variation of the reflection coefficient with respect to the incident wave
inhomogeneity, where the lowest values occur for homogeneous incident waves (i.e., at γL = 0◦).

Based on the variation along the line γL = 0◦ in Figure 3, it is clear that the critical
value of the attenuation coincides with the local minimum in the reflection coefficient with
respect to attenuation for a homogeneous incident wave, which was used in the derivation of the
approximation for the critical value, Eq. (9). As such, for a homogeneous incident wave at the
Rayleigh angle, Figure 4 presents a direct comparison between the exact result for the reflection
coefficient, computed by solving the system in Eq. (6), and the result computed by solving the
approximate system derived in the Appendix, as the shear attenuation coefficient is varied. For
both the magnitude shown in Figure 4(a) and the phase shown in Figure 4(b), for low values
of the attenuation, the approximation is very close to the exact result, as anticipated based on
the assumptions used in the approximation. The results diverge, but remain relatively close,
as the attenuation is increased towards the critical value, at which point the magnitude is a
minimum and the phase passes through −90◦. With further increases in the attenuation values,
the approximation diverges since the low-loss assumptions are violated. The prediction for the
critical value based on the approximation, Eq. (9), is α′∗S ≈ 217.9 rad/m, which yields an error of
6.2% compared to the exact value of α′∗S = 232.2 rad/m. In the context of applications which seek
to maximize the energy transmitted into the solid, the critical value of the dissipation provides
an upper bound below which inhomogeneous incident waves may improve the transmission.

5. Conclusions
A model for the transmission of inhomogeneous plane waves across dissipative fluid–solid
interfaces has been presented, where a linear hysteretic damping model was assumed. For low-
loss solids, inhomogeneous incident waves were shown to substantially reduce the magnitude of
the reflection coefficient in comparison with homogeneous waves, and thus increase the energy
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(a) (b)

Figure 4. The (a) magnitude and (b) phase of the reflection coefficient at 10 MHz, where the
properties are those for the water–stainless steel interface except that the attenuation in steel
is varied as shown, as a function of the shear attenuation coefficient in steel α′S . The incident
wave is homogeneous and is propagating at the Rayleigh angle, and the ratio of the longitudinal
to shear attenuation coefficients in steel is held constant at α′ratio = 0.3146. The blue curve
corresponds to the exact solution, as computed from Eq. (6), and the red curve corresponds to
the approximation, as derived in the Appendix.

transmission, for incidence at the Rayleigh angle. Moreover, a unique value of the degree of
inhomogeneity could be found which yields the local minimum of the reflection coefficient and,
therefore, the maximum energy transmission into the solid at a given frequency. However, above
a critical level of material dissipation in the solid, inhomogeneous incident waves were found to
yield slightly higher reflection values than homogeneous waves, which is attributable to the high
degrees of inhomogeneity inherent in the transmitted waves in higher-loss solids. An analytical
approximation was derived for the critical dissipation value, and it was found to give predictions
close to the exact result.

Since the inhomogeneity of the incident wave can be controlled by sound field reproduction
techniques [6,7,9,10], the use of inhomogeneous plane waves may help to address the transmission
limitations in applications such as ultrasonic imaging [3] and nondestructive testing [4,5]. More
broadly, this work may inform the construction of acoustic beam profiles of limited spatial extent
[23,24,32,33], which are typically used in practice, to optimize the energy transmission across
material interfaces. Since bounded acoustic waves, such as Gaussian beams, can be described
by a decomposition consisting of an infinite sum of inhomogeneous plane waves [34,35], the
reflection and transmission coefficients can be computed for each component, and the reflected
and transmitted profiles may subsequently be calculated by summation. Thus, in applications
in which it is sought to maximize the energy transmission, the results for inhomogeneous plane
waves described in this work may be useful in constructing the components, or “building blocks”,
for optimal wave profiles for a given interface.

Future work will extend the present work to incident waves of finite extent by analyzing
common wave profiles and by constructing new profiles from optimal plane wave components.
Sound field reproduction techniques will also be further considered for the purpose of
constructing arbitrary wave profiles and inhomogeneous plane wave approximations. That work
will continue the investigation of methods for increased acoustic energy transmission across
fluid–solid interfaces through theory and experimentation.
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Appendix: Derivation of the critical value of solid dissipation below which
inhomogeneous waves minimize reflection
An approximation for the critical value of the shear attenuation coefficient below which
inhomogeneous incident plane waves improve the energy transmission at the Rayleigh angle
is derived here. Since the degree of inhomogeneity of the incident wave which minimizes the
reflection coefficient magnitude is zero in the right-hand limit at the critical value of attenuation
(see also Section 4.2), the system in Eq. (6) can be analyzed to minimize R̃ for a homogeneous
incident wave.

In order to simplify the system, the losses in the fluid are assumed to be negligible compared
to the real part of the incident wavevector and compared to the losses in the solid: αL � ω/v′Ray

and αL � α′L, α
′
S . These conditions yield, for the fluid:

λ̃ ≈ ρv2L, k̃x ≈
ω

v′Ray

, k̃L,z ≈
ω
√
v′2Ray − v2L
v′RayvL

. (A.1)

In the solid, the losses are assumed to be small in the sense that the squares of the attenuation
coefficients are negligible in comparison to those of the real parts of the material wavenumbers:
α′2L , α

′2
S � (ω/v′L)2, (ω/v′S)2. Thus, the imaginary part of the complex Rayleigh-type wave speed

can be neglected and the real part v′Ray is sufficient. The imaginary part of the first Lamé
parameter is also neglected here for the purpose of stress computations, since the effects of
the longitudinal and shear attenuation coefficients partially offset each other for the first Lamé
parameter. Consequently, for the solid:

λ̃′ ≈ ρ′
(
v′2L − 2v′2S

)
, µ̃′ ≈ ρ′v′2S

(
1 +

2jv′Sα
′
S

ω

)
. (A.2)

The z-components of the transmitted wavevectors are computed by using the principal value
of the square root, and must also be approximated here. This approximation can be made
by using the assumptions listed above, the material wavenumber condition in Eq. (2), and the
observation that the magnitudes of the real part of the z-components are small for supercritical
incidence at the Rayleigh angle (i.e., |Re[k̃′L,z]| � |Im[k̃′L,z]| and |Re[k̃′S,z]| � |Im[k̃′S,z]|). The
real and imaginary parts of the resulting equation then yield the approximations for the real
and imaginary parts of the z-components of the transmitted wavevectors:

k̃′L,z ≈
α′L

v′L

√
v′−2Ray − v

′−2
L

− jω
√
v′−2Ray − v

′−2
L ,

k̃′S,z ≈
α′S

v′S

√
v′−2Ray − v

′−2
S

− jω
√
v′−2Ray − v

′−2
S .

(A.3)

The substitution of the above approximations into Eq. (6) yields an approximation to the
system in terms of only the frequency ω and the material parameters sufficient to characterize
the two media under the assumptions used (ρ, ρ′, vL, v′L, v′S , α′L, α′S , and, as computed from
the relations highlighted in Section 3.1, v′Ray). Finally, the ratio of the longitudinal attenuation
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coefficient in the solid to the shear attenuation coefficient is held constant in the variation:
α′ratio = α′L/α

′
S = constant. The system can then be solved by row reduction and, given the

assumptions used here, terms of order (α′S)2 and higher can be neglected.
The minimum of the reflection coefficient magnitude with respect to the attenuation occurs

when the real part of the reflection coefficient is zero. Thus, setting that part equal to zero
yields the approximation for the critical value of the shear attenuation coefficient:

α′∗S ≈
1

4

(
ρvL
ρ′v′S

)(
v′Ray√
v′2Ray − v2L

)
ω

V
, (A.4)

where the quantity V (with units of velocity) is a function of only the wave speeds and
attenuation ratio in the solid and is given by:

V (v′L, v
′
S , v
′
Ray, α

′
ratio) = ξS

[
v′2S v

′−2
Ray(1 + 2v′2S ξ

−2
S )
]

− ξL
[
v′2S ξ

−2
L + v′−2L (v′2S − v′2L /2) + v′3S (v′−2Ray + ξ−2S )(v′Sξ

−2
L + v′−1L α′ratio)

]
,

(A.5)

for which the quantities ξL = (v′−2Ray−v
′−2
L )−1/2 and ξS = (v′−2Ray−v

′−2
S )−1/2 have been introduced

for the sake of convenience.
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