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Abstract—The dynamic nature of blood flow during hyperthermia therapy has made the control 

of minimum tumor temperature a difficult task. This paper presents initial studies of a novel 

approach to closed-loop control of local minimum tissue temperatures utilizing a newly 

developed estimation algorithm for use with conductive interstitial heating systems. The local 

minimum tumor temperature is explicitly estimated from the power required to maintain each 

member of an array of electrically heated catheters at a known temperature, in conjunction with a 

new bioheat equation-based algorithm to predict the ‘droop’ or fractional decline in tissue 

temperature between heated catheters. A closed loop controller utilizes the estimated minimum 

temperature near each catheter as a feedback parameter, which reflects variations in local blood 

flow. In response the controller alters delivered power to each catheter to compensate for 

changes in blood flow. The validity and stability of this estimation/control scheme were tested in 

computer simulations and in closed-loop control of nine patient treatments. The average 

estimation error from patient data analysis of 21 sites at which temperature was independently 

measured (three per patient) was 0.0 
o
C, with a standard deviation of 0.8 

o
C. These results 

suggest that estimation of local minimum temperature and feedback control of power delivery 

can be employed effectively during conductive interstitial heat therapy of intracranial tumors in 

man.  

 

 

 

Key words: Bioheat transfer, Glioma, Glioblastoma, Hyperthermia, Simulation model, 
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1 Introduction 

 

The clinical use of local heat therapy for the treatment of malignant disease has gained 

increasing visibility as a possible fourth modality of cancer therapy. Many clinicians have 

reported cases in which conventional therapies of surgery, radiation, or chemotherapy had failed; 

yet heat alone or heat in conjunction with conventional therapies demonstrated dramatic tumor 

regression (CRILE, 1962; LEVEEN et al., 1976; 1980; STORM et al., 1979). Yet, despite recent 

advances in equipment, technology, and techniques for treating malignant tumors with 

hyperthermia, the clinical results have remained disturbingly inconsistent (PEREZ et al., 1988). 

 

The predominant reasons for failure of current hyperthermia therapies, as demonstrated in a large 

multi-center study (PEREZ et al., 1988), would appear to be 

 

a) the lack of accurate knowledge about tumor temperature distributions 

b) the absence of precise control of tumor temperature distributions, which can vary 

widely 

c) the presence of under-heated volumes, or cold spots. 

 

These interrelated difficulties stem from an underlying lack of knowledge about tissue 

temperatures. The knowledge of temperature distributions during treatment is limited to a small 

number of implanted temperature sensors located at discrete sites. In the light of classical studies 

(CETAS et al., 1980; DEWHIRST et al., 1984) showing the minimum intratumoral temperature 

to be a highly correlated indicator of the efficacy of heat treatments in animals, it was our 

conclusion that human clinical results have probably been inconsistent because the tissue 

temperature elevations have been inconsistent. Accordingly, it has been .our goal to develop a 

system to determine and control, online and in real time, the minimum tissue temperature in a 

defined patient population receiving hyperthermia therapy for malignancy. This paper describes 

the solution of this control problem for the case of a conceptually simple, conductive interstitial 

technique. The solution allows online control of local minimum tumor temperatures throughout 

the treatment volume, even in the presence of time-varying blood flow. 

 

The conductive interstitial modality employs an array of 2.2 mm diameter interstitially implanted 

catheters (BAUMANN and ZUMWALT, 1989). The catheters contain electrically resistive 

heating elements and are implanted directly into intracranial tumors by a neurosurgeon. The 

geometry of the implantation is controlled using a template to specify the location of burr holes 

to be drilled through the skull (BAUMANN and ZUMWALT, 1989). The catheters are 

implanted such that each is equidistant from its six nearest neighbors, forming a pattern of 

equilateral triangles (Fig. 1). To maximize the delivered energy to the tumor and to minimize the 

energy delivered to adjacent normal tissue, the heating element length within the implanted 

catheter can be specified (2-8 cm) and thus tailored to tumor diameter, previously estimated from 

computed tomographic (CT) scans (BAUMANN and ZUMWALT, 1989). 
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Fig. 1 Heating catheter implantation geometry as seen in cross section. Each triplet of catheters 

forms an equilateral triangle with 15mm sides or inter-catheter spacing. The heating catheters are 

2.2 mm in diameter. 

 

 

Application of electric current to each resistive element converts electric energy directly to heat. 

The heated catheter, in turn, warms the tissue nearby through thermal conduction and, to some 

extent, by the bulk flow of blood within the tumor. Each catheter contains a temperature sensor 

(thermistor) that is located in the center of the catheter in contact with the internal heating 

element to monitor its temperature, which can be adjusted under computer control. The relevant 

physics of heat transfer are similar in concept to those of inductively heated ferromagnetic 

thermoseeds (OLESON and CETAS, 1982). The potential for achieving computer aided, closed 

loop control of tissue temperatures is much greater with electrically heated catheters than with 

other hot source techniques, because each catheter is electrically heated and activated. 
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Fig. 2 The temperature distribution between a triplet of heated catheters will assume the 

presented form. The warmest area or temperature peak occurs in the center of a heating catheter, 

while the coolest area or temperature valley occurs in the center of the triplet. Zero represents the 

level of baseline arterial temperature. Here cylindrical catheters are modeled as rectangular 

solids for simplicity, causing square profiles of the thermal peaks. Catheter power is 100 mW/cm 

and blood flow is 10 ml/min/100 g. 

 

 

When the heated catheters are implanted in arrays with a nominal 15 mm inter-catheter spacing 

and triangular symmetry, the temperature profile near a triplet of catheters assumes the form 

presented in Fig. 2. A fundamental feature of the temperature profile can be described by a 

dimensionless parameter that we call thermal 'droop'. The droop is defined, when inter-catheter 

spacing is small compared with the length of the heating element, as the fractional decline in 

tissue temperature between neighboring heated sources and can assume a value between zero and 

unity; specifically 

 

arterialcatheter

imummincatheter

TT

TT
droop




 .        (1) 

 

A droop of zero indicates that the local minimum tissue temperature equals the nearby source 

(catheter) temperature. This value could only occur if there is zero blood flow through the heated 

region. A droop of unity indicates that the local minimum tissue temperature is equal to arterial 

or core body temperature. This value would occur in the presence of extremely high blood flow 

or extremely wide catheter spacing. Thus, droop is a dimensionless, normalized descriptor of 
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local minimum tumor temperature, defined for the particular case of staggered arrays of 

conductive interstitial catheters. 

 

If one rearranges Equation (1), solving for the local minimum tissue temperature Tminimum, the 

result, 

 

 arterialcathetercatheterimummin TTdroopTT  ,      (2) 

 

provides an expression for local minimum tissue temperature as a function of catheter 

temperature, arterial (or core body) temperature, and droop. The problem of finding an online 

estimator of local minimum tumor temperature reduces to finding an online method of 

calculating droop, in conjunction with catheter temperature and arterial (or core body) 

temperature, both of which are easily measured. 

 

Once a method of determining droop is developed, it is then possible to incorporate closed-loop 

control using the estimated minimum temperature as a local feedback parameter for independent 

control of each heating element. Earlier work had suggested that droop can be accurately 

estimated from the steady-state catheter power and the temperature for at least some cases of 

conductive interstitial heat therapy. This approach seemed to be workable and attractive. Hence, 

the goals of the present study were to 

 

a) develop a system to control local minimum tissue temperatures based upon the 'droop' 

estimator of local minimum temperature 

b) assess the stability of the estimation/control system 

c) implement the system in a clinical setting. 

 

 

2 Methods 

 

2.1 Bioheat transfer equation 

 

To determine an estimator for thermal droop during conductive interstitial hyperthermia we 

employed the bioheat transfer equation of PENNES (1948). For a control volume of tissue small 

enough so that all the thermal properties within it can be considered constants, the 

bioheat transfer equation may be written as 

 

 
t

T
cTTcTKPq bbb

2

met



 ,      (3) 

 

where qmet is the specific rate of metabolic heat production, which is negligible in the context of 

local heat therapy for cancer, P is the power density delivered to tissue, which is zero for the 

conductive interstitial modality, K is the tissue thermal conductivity, T is the temperature of 

tissue, cb is the specific heat of blood, b is the specific flow rate of blood in capillaries, Tb, is 

the temperature of blood,  is the mass density of tissue, c is the specific heat of tissue, and t is 

time. Equation (3) governs both transient and steady-state heat transfer.  In the steady-state case, 
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which develops for the conductive interstitial modality after about five to ten minutes, 0
t

T





, 

and the equation simplifies to 

 

  0TTcTK bbb

2  .        (4) 

 

Literature values were used for brain tissue thermal conductivity (0.5275 W/(m 
o
C) (COOPER 

and TREZEK, 1971) and blood specific heat (3642.6 J/(kg 
o
C) (ALBRITTON, 1952). Further 

details of the computational methods used to solve this form of the bioheat equation are 

presented elsewhere (DEFORD et al., 1990). 

 

 

2.2 Local minimum temperature estimation 

 

To estimate droop, and in turn, local minimum temperatures, the bioheat transfer equation was 

utilized to characterize droop as a function of clinically measurable variables. Using the 

computer models previously described (DEFORD et al., 1990), we performed many simulations 

for arrays of heated catheters in tissue supplied by perfusions from 0 to 100 ml/min/100 g. 

Catheter powers ranged from 0 to 0.4 W/cm of catheter length. From simulation parameters and 

Equation (1) we found that droop was a simple, computable function of catheter power and 

catheter temperature, given a fixed inter-catheter spacing (Fig. 3). Noting that each curve in Fig. 

3 has a similar shape, a simple normalization was then found. After dividing the power per unit 

length delivered to a catheter by its temperature rise above arterial temperature, the curves 

collapsed to a single curve (Fig. 4). Performing a second-order polynomial regression of the 

curve in Fig. 4, we then obtained an estimation equation for droop as a function of the clinically 

measurable parameters: catheter temperature, catheter power, and arterial blood or core body 

temperature. 
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Fig. 3 Droop is a polynomial function of heating catheter temperature and steady-state power per 

unit length. Note that a unique curve exists for each value of internal heating catheter 

temperature.  

 

 

This estimation equation is presented in terms of a normalized power,  , (catheter power/heating 

element length/catheter temperature rise) in W/cm/
o
C for interior catheters in an array with 15 

mm spacing, namely 

 

droop = a+ b + c
2
         (5) 

 

where a= -0.0057, b=75.2 cm
o
C/W , and c= -861.7 (cm

o
C/W )

2
 for the case of 15 mm inter-

catheter spacing (Fig. 1). Similar functions exist for other catheter spacings, but they are not at 

present used clinically. All the factors required to calculate  -- catheter power per unit length 

and internal temperature rise -- are readily available from hardware driving commercially 

available electrically heated catheters (Cook Inc., Bloomington, Indiana, USA). 

 



8 

 

 

 
 

Fig. 4 If the delivered power per unit length to the heating catheter is divided by the resultant 

internal catheter temperature rise (above arterial temperature), the multiple curves of Fig. 3, for 

15 mm catheter spacing, collapse to a single polynomial function. Performing a second-order 

regression of the resultant curve allows the development of an estimation equation for droop as a 

function of internal heating catheter temperature and power per unit length. 

 

 

Substitution of Equation (5) for droop in Equation (2) provides a simple, rapidly computable 

expression 

 

  arterialcatheter

2

catheterimummin TTcbaTT  ,     (6) 

 

which allows the estimation of local minimum intratumoral temperature near each implanted 

catheter. 

 

The estimation Equation (5) was determined from multiple computer simulations of the bioheat 

Equation (4), which describes the steady-state behavior of heat transfer in biological tissue. 

Steady-state conditions exist, approximately, for most of the duration of the treatment. In the 

control problem we are also concerned with the transient (heat up) phase of the catheter-tissue 

system (lasting about 10 min).  We must be assured that the temperature estimate, derived from 

Equation (6), at least tracks the true tissue temperature during the transient heat-up phase to 
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ensure a stable and accurate estimation/control system at these early times. A plot of the response 

of the catheter/tissue system to a step input in power in computer simulations (Fig. 5) 

demonstrates the difference between bioheat equation-determined local minimum temperatures 

and those estimated from Equation (6). The greatest difference between the two temperature 

curves appears when the slopes of the curves are maximum, as predicted from Equations (3) and 

(4). Although the two curves are not identical, the estimation is a good approximation to the 

bioheat equation-determined minimum tissue temperature curve, with the same curve shape and 

timing. Estimated temperature from Equation (5) was accordingly selected as a practical 

feedback control parameter, for both the initial heat-up phase and for the more nearly steady-

state phase. 

 

 

 
 

Fig. 5 A step input of 160 mW/cm to a each heating catheter (surrounded by similar heating 

catheters) and given a local perfusion of 20 ml/min/100 g yields the minimum temperature step 

response for both the bioheat equation and the minimum temperature estimation equation, based 

upon ordinary differential equations. There is little difference between the two temperature 

curves, demonstrating the accuracy of the estimation equation even during transient heating. The 

baseline arterial temperature was 37 
o
C. 
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2.3 Stability of the controller design 

 

Development of the estimation Equation (6) appears to provide a route to feedback control of 

local minimum temperatures.  Evaluation of control system stability was necessary before such a 

controller could be responsibly implemented in patient treatments.  The bioheat transfer equation 

is an accurate model of tissue heat transfer (CHARNY and LEVIN, 1988; CLEGG and 

ROEMER, 1985; PANTAZATOS and CHEN, 1978), and is described in terms of partial 

differential equations (PDEs). In the context of current control theory, this poses a difficult 

problem. Tools to aid in the design and stability analysis of controllers for systems described by 

PDE's are very limited and may only be used in very specific cases (OGATA, 1970). However, 

because any estimation/control system for hyperthermia therapy will be employed in the 

treatment of human patients, it must be unconditionally stable. To further confound the problem, 

the system we seek to control is dynamic, i.e. time varying, because blood flow is time varying. 

Therefore, to design and evaluate a safe and effective control system using the conceptual tools 

presently available, an ordinary differential equation model (ODE) is highly desirable. 

 

Analysis of tissue temperature responses to step and sinusoidal power inputs to the various 

bioheat equation models allowed the identification of simple, linear ODE models that closely 

mimicked the transient response of local minimum tissue temperature, as described by the 

complete bioheat equation and Equation (6). It was discovered that the dominant mode (or time 

constant for the ODE model) of the system varied with blood flow as can be seen in Fig. 6. The 

dominant tissue mode or time constant varied from 45 sec for high blood flows (100 ml/min/100 

g) to over 2000 sec for very low blood flows (1 ml/min/100 g) (Fig. 6). It was also evident that 

the system gain (tissue temperature rise/input power) also varied with blood flow. The system 

gain increased from almost zero to about 25°C/W as blood flow varied from 100 down to 1 

ml/min/100 g. Because there is a physical separation between the hot source (catheter) and the 

location of the minimum temperature (about 8-9 mm from the source with 15 mm catheter 

spacing), there is a time delay between the application of a step change in catheter power and a 

temperature rise at a central location between catheters. This delay, found from computer 

simulations, was about 45 sec, regardless of the blood perfusion rate. 
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Fig. 6 Given a step input of 160 mW/cm to each heating catheter (surrounded by similar heating 

catheters) in the presence of local perfusion ranging from 1 ml/min/100 g to 50 ml/min/100g 

yields the multiple minimum temperature responses. As blood flow increases the step response 

time decreases, and the steady-state value of the minimum temperature decreases. The baseline 

arterial temperature was 37 °C. 

 

 

The results of the step and sinusoidal simulations allowed the development of a family of first-

order ODE models to describe tissue heating; a different model for each blood flow. A classical 

transformation technique (the Laplace transform) relating time functions to frequency dependent 

functions of a complex variable, s , was used to analyze this control problem (OGATA, 1970). 

Laplace transform techniques are used extensively throughout the remainder of this manuscript. 

The application of the Laplace transform replaces functions of time by a complex function 

dependent upon frequency (OGATA, 1970). The variable  s  is defined as  + j. where  and  

are real variables, and 1j  . Employing the Laplace transform and standard methods for 

finding the inverse Laplace transform, the transient behavior of the bioheat equation can be 

emulated by a family of first-order models with a single gain and single time constant. The 

general form of the model is 
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1s

Ke
)s(T

s

tissue





,         (7) 

 

 

where K is the open loop system gain (°C/W),  is the system time constant (in sec), and  is the 

system delay time (in sec). For a local perfusion of 1.0 ml/min/100 g, which might occur in the 

central regions of a large tumor, the first-order model in the s-plane is 

 

1s2570

e6.24
)s(T

s5.4

tissue





;         (8) 

 

whereas a perfusion of 20 ml/min/100 g, which represents a typical tumor blood flow 

(PETERSON, 1979), leads to an ODE model of 

 

1s250

e1.1
)s(T

s5.4

tissue





.         (9) 

 

Table 1 presents the dependence of the open-loop gain, and the open-loop time constant on 

perfusion. Equations (7), (8) and (9) thus represent a set of perfusion-specific ODE models of a 

PDE (bioheat equation) governed system. 

 

 

Table 1 First order gain and time constant (ODE for various blood flow rates) 
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Comparison of the ODE model response with the bioheat transfer equation (PDE) response 

demonstrated that the ODE models were good approximations to the system. Fig. 7 presents a 

step response of both the PDE and ODE models with a local perfusion of 10 ml/min/100 g. A 

good correlation exists between these models, adding confidence to our use of the ODE models. 

These ODE models could then be used to guide the development of the control system. The 

utility of these models does not require knowledge of the exact tissue perfusion in each particular 

case. Rather, the ODE models can serve as the basis for a worst-case analysis to design an 

unconditionally stable controller. 

 

 

 
 

Fig. 7 Given a step input of 160 m W/cm to each heating catheter (surrounded by similar heating 

catheters) and a local blood flow of 20 ml/min/100 g yields the step response presented by the 

solid curve. Applying the same step input to the ODE model determined for a 20 ml/min/100 g 

blood flow yields the step response presented by the broken curve. The two curves are almost 

identical except for the small difference during the initial 100 sec. The baseline arterial 

temperature was 37°C.  Solid curve represents bioheat equation (PDE).  Dashed curve represents 

ODE model. 
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2.4 Practical aspects of controller design 

 

To further simplify the engineering problem, the estimation/control system was initially 

developed for use with a single hyperthermia generation system, the VH8500 system (Cook, 

Inc., Bloomington, Indiana, USA). The specifications for this control system are as follows: 

 

a) The system must be stable over the entire physiological range of blood flows (0-100 

ml/min/100 g. 

b) The system must simultaneously control multiple heating sources (currently up to 32 

catheters). 

c) It is desirable to have a rapid heat up to the pre-set point temperature (< 15min). 

d) If any overshoot of the desired minimum temperature occurs, it must be minimal and 

short lived (< 3 
o
C for < 5 min). 

e) The proposed system must operate without hardware modifications to the VH8500 

hyperthermia generation system. 

 

Since there exist many possible variations in system parameters, owing to its dynamic nature, the 

so-called optimal or state controllers (LUENBERGER, 1979) were ruled out as controller 

options. The VH8500 hyperthermia system utilizes an IBM XT compatible computer system for 

treatment planning, data storage, displaying graphics and treatment control. Therefore, a real 

limitation on the computational power exists. Considering the above specifications and 

limitations, we selected a proportional-integral (PI) control scheme (EL-HAWARY, 1984). The 

PI controller was also selected for its ability to control in the presence of system delays, 

nonlinearities, and transients that might exist during the course of actual hyperthermia treatment. 

 

The proposed estimation/control system is displayed in block diagram form in Fig. 8. 

Disturbances (such as changes in local blood flow) would enter the system after the controller. 

Without feedback it would be impossible to compensate for disturbance effects. It would be 

desirable to feed back the actual local minimum temperature, and this would make the design of 

the control system much easier. However, all true local minimum temperatures cannot be 

obtained with current technology. The task would require implantation of an intolerably large 

number of temperature sensors. Therefore, the estimated minimum temperature was used as 

feedback. The estimate, from Equation (6), tracks local disturbances very well and is a good 

candidate for use as a feedback parameter. 

 

Having selected the PI controller, control constants have to be determined that meet the 

presented specifications. Unconditional stability is of the foremost concern for this system, 

because equipment damage or patient injury is intolerable. Rather than using a classical 

definition of stability (OGATA, 1970) that would allow long-duration, high-amplitude damped 

oscillations, we specified a stability criterion that allowed a small overshoot of less than 3 °C and 

could last no more than 5 min. By these criteria, a decay ratio of greater than 0.75 was required. 

We defined the decay ratio as one minus the ratio of successive peaks or overshoots of the 

desired setpoint. Therefore, given a decay ratio of 0.75 the second peak (or overshoot) would be 

25 per cent of the value of the first peak. 
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Fig. 8 The closed loop block diagram (in the s-domain) of the system model used in this study 

includes: R(s) =system input (minimum tissue temperature setpoint), E (s) = error between the 

estimated minimum temperature and the minimum temperature setpoint (Y(s)- R(s)), C(s) 

=controller used to map the error to an appropriate power intended to drive the error E(s) to zero, 

MV(s) =manipulated value or parameter varied by the controller (power delivered to the heating 

catheter), dist(s) = local disturbances such as changes in blood flow rates, Ttissue(s) =ODE model 

of the local minimum tissue temperature, G(s) =a variable that lumps the controller and tissue 

model, used only to simplify notation, Y(s) =system output (minimum tissue temperature). 

 

 

Utilizing the family of ODE models previously described (Table 1) a worst-case control situation 

was identified as the set of conditions that would most easily (with the smallest system 

disturbance) cause instability. At very low perfusions the system gain was the highest ( 25) and 

the dominant mode or time constant was the longest ( 2500 sec). These features, coupled with 

the long delay time ( 45 sec), as shown in Table 1, constitute a worst-case situation. If control 

parameters could be determined for this situation that meet all stability requirements, the same 

parameters could also be employed safely for other conditions, including all values of tissue 

blood flow > 1 ml/min/100 g. Employing the model presented by Equation (8) and the Laplace 

transform of the PI control law represented by 

 

s

K
K)s(C 1

P  ,         (10) 

 

where KP is the proportional gain of the controller, K1 is integration gain of the controller (EL-

HAWARY, 1984), and  s  is again a complex frequency variable, yields the open loop system 

transfer function 

 























1s2570

e6.24

s

K
K)s(G

s5.4

1
P .       (11) 
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Rearranging Equation (10) as 

 

 zs
s

K
)s(C P  ,         (12) 

 

 

where z = (K1/KP), the open loop system input/output relationship, or transfer function, becomes 

 

  





















1s2570

e6.24
zs

s

K
)s(G

s5.4

P .       (13) 

 

The closed loop system with unity gain negative feedback can be described as 

 

)s(G1

)s(G

)s(R

)s(Y


 ,         (14) 

 

where G(s) is the open loop system transfer function from Equation (13), Y(s) is the system 

output (minimum tissue temperature), and R(s) is the system input (minimum temperature 

setpoint) as presented in Fig. 8. The controller (Equation (10)) can be thought of as a system that 

transforms the error between the desired minimum temperature and the estimated minimum 

temperature to a power (the manipulated variable or MV) in order to drive the error to zero. 

Proper selection of controller constants KP and K1 was achieved by pole placement, using the 

root locus technique, such that the desired decay ratio > 0.75 was achieved. The root locus 

method (OGATA, 1970) was also used as an analysis tool to evaluate the stability of the closed-

loop system.  

 

The root locus is a method for finding the roots of the characteristic equation, where the 

characteristic equation is the denominator of a transfer function (1 + G(s)) from Equation (14) 

and the roots of this equation are the values of  s  that cause the characteristic equation to equal 

zero. Although the open-loop roots from Equation (13) are constants, when feedback is 

introduced and the gain varied, the closed loop roots become functions that may vary over a 

large range. To determine the system stability as the system gain changes (due to changes in 

blood flow) it is useful to know how the roots (or poles) of the closed loop system vary. A 

graphical representation of the roots can be drawn in the s-plane with real values of the roots 

along the abscissa and imaginary values along the ordinate. As all roots remain negative in sign, 

i.e. the root locus does not cross the imaginary axis (ordinate), the system is stable; at the point 

where the roots cross the imaginary axis the system is marginally stable, and all points to the 

right denote system instability (MARSHALL, 1979). Thus the left half-plane may be viewed as 

an area of negative feedback and the right half-plane as a positive feedback area. Fig. 9 presents 

the relationship between the root locus plots and time domain system stability. Notice that the 

system becomes more oscillatory as the roots (or poles) move away from the real axis (in the 

root locus) signifying the presence of complex valued roots. Crossing the imaginary axis denotes 

crossing from stability to instability. 
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Fig. 9 The relationship between closed-loop stability and the root locus. Temperature curve A 

corresponds to points on the root locus labeled A and so forth. Note that the temperature curves 

become more oscillatory as the poles on the root locus (corresponding points) become complex 

and move away from the real axis, and instability (sustained oscillations) occurs when the poles 

cross to the right hand plane. The bold line on the real axis denotes the presence of the root 

locus. 
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Fig. 10 The root locus of the closed loop system using the ODE tissue model for a blood flow of 

l ml/min/100 g. This was deemed the worst case, since the gain was high (24.6) and the time 

constant was long (2570 sec). The Xs denote open-loop poles and the Os denote open loop zeros 

of the system model presented in Equation (13). The boxes denote the location of the closed-loop 

poles using the presented PI controller (the operating point) with P = 0.608 and  I = 200. As the 

boxes are on the left hand side of the imaginary axis, the closed loop system is stable. The bold 

lines denote the presence of the root locus on the real axis. 

 

 

Figure 10 presents the root locus plot for the closed-loop system represented by Equation (13). 

The delay term, e
45s

 , in Equation (12), is represented by a fourth-order Pade approximation 

(MARSHALL, 1979), indicated by the multiple poles in Fig. 10. The delay actually represents an 

infinite number of new poles added to the system (MARSHALL, 1979). From the root locus 

presented in Fig. 10, one may note that for a  z  of 0.003 (from Equation 11) the closed-loop 

system gain can range from zero to 48.5 still maintaining stability. For adequate damping we 

selected KP as 0.608. Therefore, as z = 0.003, then K1 must be 1/200.  
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Root loci were also generated to assess the stability of the closed loop system over the entire 

range of physiological blood flows (represented as the models that lie within the range of 

Equations (7) and (8)). Fig. 11 presents root loci for the 'best case' (represented by Equation 8), 

where best case implies the most rapid response to changes in setpoint or disturbances with 

minimal overshoot and no instability, while worst case (Equation (13) and Fig. 10) implies the 

converse. The root locus remains very near the real axis (abscissa) for the best case, 

demonstrating a very high decay ratio (i.e. little or no overshoot, and a rapid response). The root 

locus in the worst case begins to approach the imaginary axis (ordinate) with complex roots, but 

does not cross it, denoting a more oscillatory but stable response.  

 

 

 
 

Fig. 11 The root locus of the closed loop system using the ODE tissue model for a blood flow of 

100 ml/min/100 g. This was deemed the best case, because the gain was low (0.12) and the time 

constant was short (43 sec). The Xs denote the location of open-loop poles and the Os denote the 

location of open-loop zeros of the system model. The boxes denote the location of closed-loop 

poles using the PI controller with P = 0.608 and I= 200. Since the boxes are on the left hand side 

of the imaginary axis, the closed-loop system is stable. The bold lines denote the presence of the 

root locus on the real axis. 
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2.5 Clinical methods and data analysis 

 

Having developed the worst-case controller based upon a defined family of linear ODE models, 

we tested the controller performance, first in computer simulations and then in clinical settings 

(Missouri Baptist Medical Center or St Luke's West Hospital, St Louis, Missouri, USA). The 

estimation/control system was first analyzed in computer simulations using the bioheat transfer 

equation. These simulations demonstrated that stability was maintained in the presence of a large 

step increase or a decrease in effective perfusion (step changes > 60 ml/min/100 g), thereby 

verifying that the estimation/control system could be used safely and effectively in the clinic. 

 

To assess the validity and stability of the proposed system, eight patients were treated (one 

patient was treated twice) with the presented system. Each treatment was monitored to ensure 

system stability then retrospectively analyzed to determine the minimum temperature accuracy. 

Each patient was treated at Missouri Baptist Medical Center or St Luke's West Hospital in St 

Louis, Missouri, USA, with approval from their Institutional Review Boards (IRBs) and an 

investigational device exemption from the US Food & Drug Administration. There were six male 

and two female patients in this study, ranging in age from 41 to 67 years. The tumor types 

diagnosed at the time of hyperthermia treatment included four glioblastoma multiformes, three 

anaplastic astrocytomas and one metastatic lesion. The hyperthermia catheters were implanted as 

described previously (BAUMANN and ZUMWALT, 1989). The number of heating catheters 

implanted varied with tumor size and ranged from 6 to 17 with a median value of 11. 

 

To monitor intratumoral temperatures between the implanted heat generating catheters, small 

diameter (1.2 mm) temperature sensing catheters (containing only thermistors) were implanted. 

The temperatures from these sensors were used as comparison values to determine the accuracy 

and stability of the estimation equation and controller. The General Electric 9800 CT scanner 

and computer were employed to determine the position of the heating and temperature sensing 

catheters. Sequential non-overlapping coronal CT scans with a slice thickness of 3 mm were 

obtained immediately after implantation; then, employing the CT computer, sagittal 

reconstructions were performed to measure the implantation geometry in cross section. Only 

those temperature sensing catheters that were within 3 mm of the center of a triplet of heating 

catheters were included in subsequent analysis. 

 

During treatment the hyperthermia system (VH8500) acquires and stores operational and patient 

data for retrospective analysis. Included in the data stored are catheter current and voltage levels, 

treatment time, catheter power levels and individual catheter temperatures. Steady-state values of 

estimated minimum temperature and the corresponding measured minimum temperatures were 

retrospectively compared at multiple time instants during the three hour treatment. System 

stability was monitored during each patient treatment to ensure the safety of the patient. To study 

the occurrence and effect of local disturbances on the estimation/control system, retrospective 

analysis employing computer aided reconstructions of patient treatments were performed as 

described previously (DEFORD et al., 1990). 
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3 Results 

 

3.1 Engineering studies 

 

The estimation/control system was evaluated both in computer simulations and in the clinic. 

Results of computer simulations employing the transient bioheat transfer equation and the 

estimation/control system verified the accuracy and stability of the proposed system before 

clinical testing. Table 2 summarizes the simulated temperature estimation error, minimum 

temperature overshoot and the decay ratio for various local perfusions ranging from 1 

ml/min/100 g to 100 ml/min/100 g (a much wider variation of blood flows than expected in 

patients). For each perfusion value tested over the above range, the estimation/control system 

proved to be accurate and stable--meeting or exceeding the design specifications. 

 

 

Table 2 Closed-loop system performance as a function of local perfusion 

 

 
 

The estimation equation (Equation (6)) proved, in computer simulations, to be very accurate 

during steady state with a mean estimation error of 0.04 
o
C and standard deviation of 0.11 

o
C 

over the range of perfusions from 1 to 80 ml/min/100 g. 

 

At perfusions greater than 80 ml/min/100 g there was little temperature rise between catheters 

and therefore temperature estimation errors were unobtainable. During transients, such as the 

initial heat-up of the catheters or during changes in capillary blood flow, the estimation of 

minimum temperature always led the actual minimum temperature in time. That is, the estimated 

minimum temperature would overshoot the minimum temperature, as seen in Fig. 5. However, 

the estimated minimum temperature did closely track the minimum temperature even during 

large disturbances. Fig. 12 presents the response, as modeled in computer simulations, of the 

bioheat equation, of the variation of the estimation/control system in the presence of a large step 

increase in perfusion from an initial value of 10 ml/min/100 g to 40 ml/min/100 g. Notice that 

the estimated temperature closely tracks the actual minimum temperature. 
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Fig. 12 The response of the closed loop system to a large disturbance in local blood flow, as 

modeled by the transient bioheat transfer equation, using the PI controller and the minimum 

temperature estimation equation.  Given an initial perfusion of 10 ml/min/100 g and a minimum 

temperature setpoint of 43 
o
C, the minimum temperature was controlled to the setpoint.  After 

2000 sec at the initial blood flow rate (10 ml/min/100 g) the perfusion was increased in step 

fashion to 40 ml/min/100 g.  Note that after a dramatic drop in minimum temperature the 

minimum temperature returned to the desired setpoint without loss of stability. Also note that the 

estimated temperature, derived from the steady-state bioheat equation, tracked the actual 

temperature from the transient bioheat equation model with only small deviations.  Solid curve ~ 

bioheat equation.  Dashed curve ~ estimated equation. 

 

 

3.2 Clinical data 

 

The presented estimation/control system has been tested in nine patient treatments with no 

evidence of instability or large temperature estimation errors. Stability in each treatment was 

maintained and retrospective analysis of the temperature estimation (during steady state) 

revealed an average estimation error of 0.0 
o
C with a standard deviation of 0.8 °C. The design 

specifications were met or exceeded in all patient treatments. No patient treatment demonstrated 

any sign of instability in any of the nine patient treatments in which this system was employed. 

Specifically, the design goals included a decay ratio greater than 0.75 and a heat-up time of less 
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than 15 min. A decay ratio of greater than 0.92 was found in each patient treatment and the time 

required to achieve the therapeutic temperature setpoint, as determined by the estimation 

equation, was always less than 10 min, with an average heat-up time of 8.3 min and a standard 

deviation of 1.2 min. 

 

 

4 Discussion 

 

This paper presents the first report of fully closed-loop control of hyperthermia treatment of a 

complete tumor volume using multipoint feedback control. Previous attempts at feedback control 

in hyperthermia have adjusted the total or the local power delivery to achieve the desired 

temperature at a single selected temperature probe (MAGIN et al., 1982), and control of the 

entire temperature distribution was not attempted. 

 

Because of the conceptual simplicity of conductive interstitial hyperthermia, and similarity of 

local temperature distributions around each heated catheter, a single algorithm can be applied to 

all the catheters in the array to good effect. Control of heated catheters near large blood vessels 

or exterior in the implanted array, although not specifically modeled, are to a large extent 

self­compensating, because the greater convective heat loss to a large vessel or the greater 

conductive heat loss from the tumor edge toward the periphery is detected as increased capillary 

perfusion by the estimation algorithm. This easily implemented control scheme holds promise 

for eliminating problems of cold spots with attendant treatment failures. Overheating of normal 

tissues (a major limitation with feedback control of external beam techniques) does not occur 

with interstitial conductive heating, because heated catheters are implanted directly into tumor 

tissue and blood flow outside the tumor volume provides a good heat sink, thereby keeping 

nearby normal tissue cool. 

 

Hyperthermia as a treatment modality for malignant tumors does have a strong biological 

rationale. Heat is known to kill cells exponentially as a function of either time or temperature. 

However, when the treatment temperature remains near the thermal death threshold, even small 

temperature differences can lead to large differences in cytopathological effect (SAPARETO, 

1982). Thus, effective hyperthermia treatments depend on accurate control of tissue temperatures 

in order to abolish cold spots (underheated volumes). The ability to estimate local minimum 

temperatures from clinically available data is the first, and most important, step to this 

technically attractive route of online, closed-loop computer control of minimum intratumoral 

temperatures. 

 

We found the bioheat transfer equation to be a good model of heat transfer in biological tissues, 

as have other authors of previous reports (CHARNY and LEVIN, 1988; CLEGG and ROEMER, 

1985; OLESON et al., 1984; PANTAZATOS and CHEN, 1978). A major practical drawback of 

the bioheat equation, however, is the computational time required to solve it, especially when a 

large number of nodes or control volumes are employed, as is necessary in the presence of steep 

thermal gradients characteristic of the conductive interstitial technique. To circumvent this 

limitation we have used offline solutions of the bioheat equation and condensed the results to 

produce a rapidly computable online estimation equation. These estimations provide a key to 

effective computer-assisted hyperthermia therapy under feedback control that promises to 
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minimize cold spots and associated treatment failures. By employing the estimation equation 

presented and ODE models of tissue heat transfers for the specific case of conductive interstitial 

hyperthermia, a simple and stable estimation/control system has been developed and tested. This 

system requires little computational overhead, yet provides a level of treatment control 

heretofore impossible. The accuracy and precision of these estimated temperatures seem 

sufficient for practical clinical use in conductive interstitial therapy of intracranial tumors. 
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