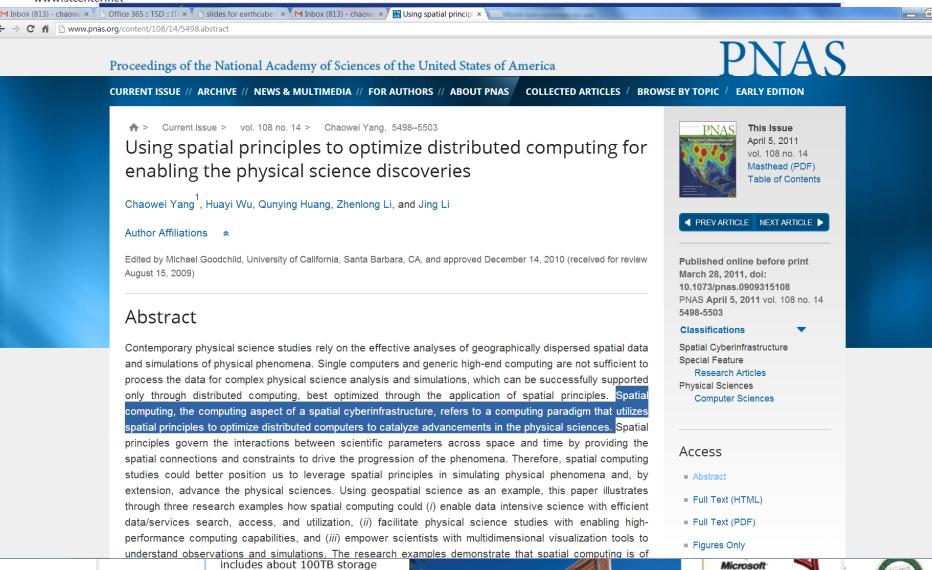
Spatiotemporal computing for enabling scientific research and engineering development: a GIS practice

Chaowei (Phil) Yang

Director, NSF Spatiotemporal Innovation Center Professor, Dept. of Geography & GeoInformation Science, George Mason University, Fairfax, VA Email: cyang3@gmu.edu

What is GIS?

A Short Personal Story


What is Spatial Computing, and Spatiotemporal Computing?

http://cisc.gmu.edu/

⊕ <^

and 10TFlops computing power and the connection to

Dust Storm Hazards

Illness & Diseases

Traffic & Car accidences

Air Pollution

Ecological System

Desertification

Global/regional Climate

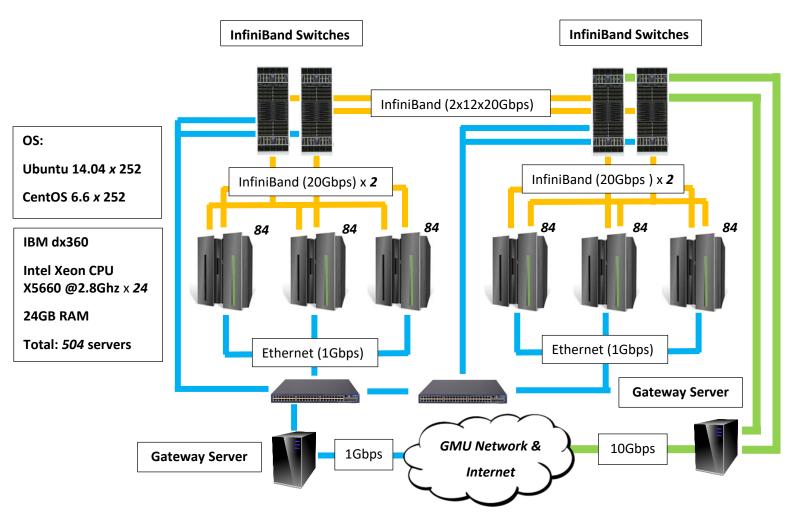
Phoenix Dust Storm a "100-Year Event", 2011, July 5th

Dust Storm eScience Infrastructure

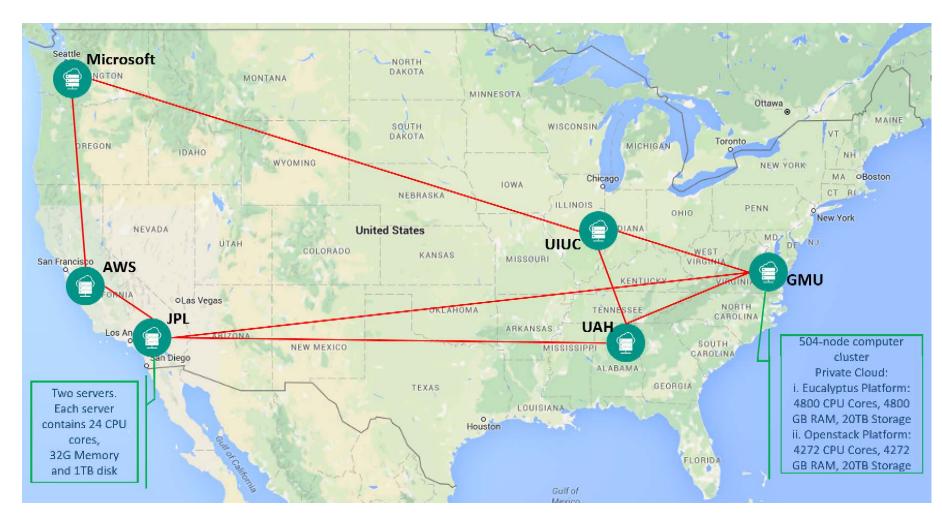
000

MASON

Center of Intelligent Spatial Computing for Water/Energy Science



Put us in the Global Context


An Academic Geospatial Cloud Environment: Physical Infrastructure and Network Configuration

GeoCloud: A national big data cloud

Leveraging Global Computing Resources

Spatial Cloud A Practical A

空间云计算——应用与实践

h

Spatial Cloud Computing A Practical Approach

Chaowei Yang Qunying Huang 著 李 锐 黄 蔚 金宝轩 译

6000 Broken Sound Farkway, N Suhe 300, Roca Raton, RL 33487 711 Third Avenue New York, NY 10017 2 Park Square, Milton Park Abingdon, Oson OX14 48N, UI

孔夫子旧部网 www.kongfz.com

л 💽

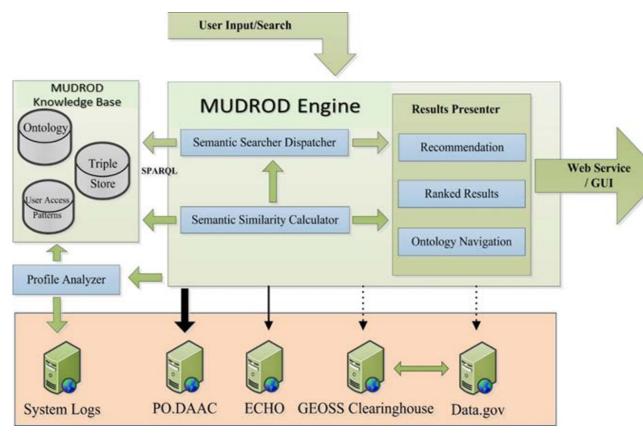
CRC Press Taylor & Francis Group

wei Yang

ng Huang

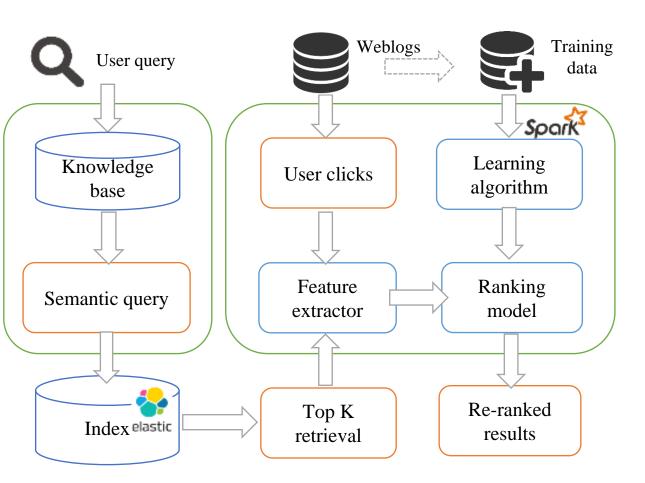
iting

al Approach


Building and Utilizing Spatiotemporal Knowledge Base?

Smart Data Discovery

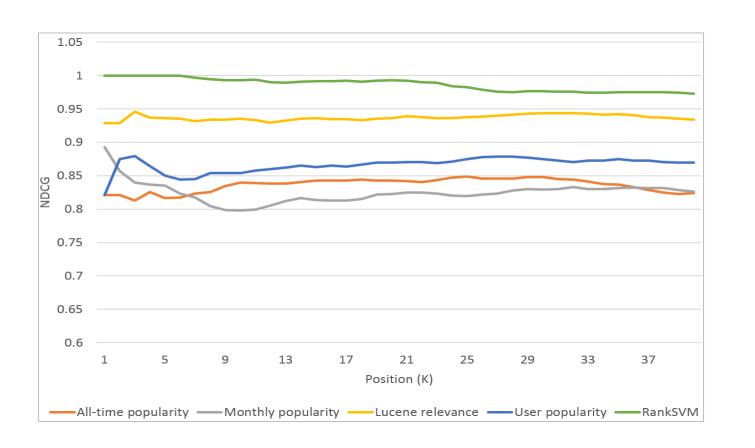
Architecture



- All of these (except for training) can be finished within 2 seconds
- None of the open
 source mainstream
 ML library provide any ranking algorithm
- Implemented it by ourselves with the aid of Spark MLlib

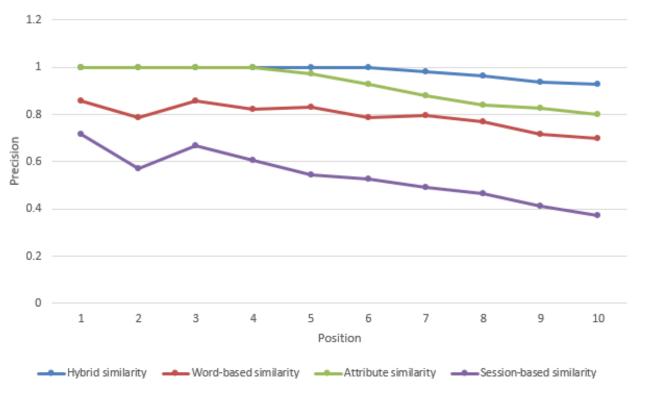
Architecture

- All of these (except for training) can be finished within 2 seconds
- None of the open source mainstream ML library provide any ranking algorithm
- Implemented it by ourselves with the aid of Spark MLlib


Smart Discovery of Big Geospatial Data Ranking & Recommendation

http://mudrod.jpl.nasa.gov/

NDCG (K) for five different ranking methods at varying K (1-40)

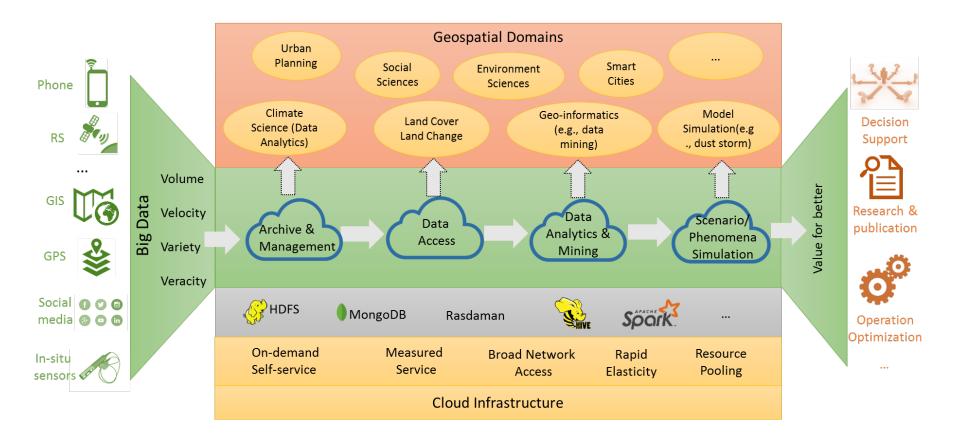


Jiang, Y., Y. Li, C. Yang, K. Liu, E. M. Armstrong, T. Huang, D. Moroni & L. J. McGibbney (2017) Towards intelligent geospatial discovery: a machine learning ranking framework. International Journal of Digital Earth (in press)

Quantitative Evaluation for Recommending Content

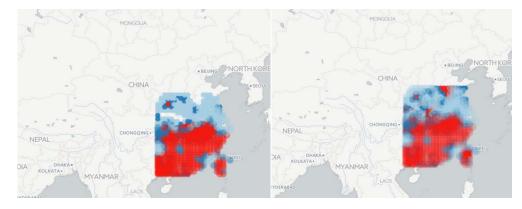
Hybrid similarity outperform other similarities since it integrates metadata attributes and user preference.

Y. Li, Jiang, Y., C. Yang, K. Liu, E. M. Armstrong, T. Huang, D. Moroni & L. J. McGibbney (2017) A Geospatial Data Recommender System based on Metadata and User Behaviour (in review with IJGIS)

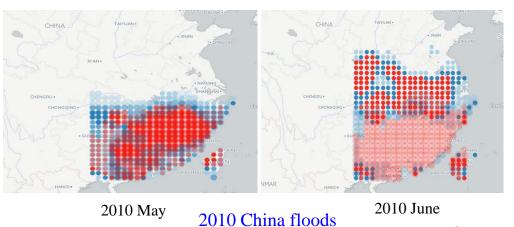


Is it a hot research topic?

A Big Data Platform Prototype



Yang, C., Yu, M., Hu, F., Jiang, Y. and Li, Y., 2017. Utilizing Cloud Computing to address big geospatial data challenges. *Computers, Environment and Urban Systems*, *61*, pp.120-128.


Detecting Anomaly Events from Big Climate Data

Time	P-value
1998/06/01	0.997109533
2008/06/01	0.992131279
2005/06/01	0.989325372
1980/08/01	0.987258529
2000/06/01	0.984524833
2011/06/01	0.98370185
2001/06/01	0.982886365
2010/06/01	0.981098687
2002/06/01	0.979622053
2008/07/01	0.978877457
2006/07/01	0.978502723

1998 June

1998 July <u>1998 Yangtze River floods</u> The floods resulted in 3,704 dead, 15 million homeless

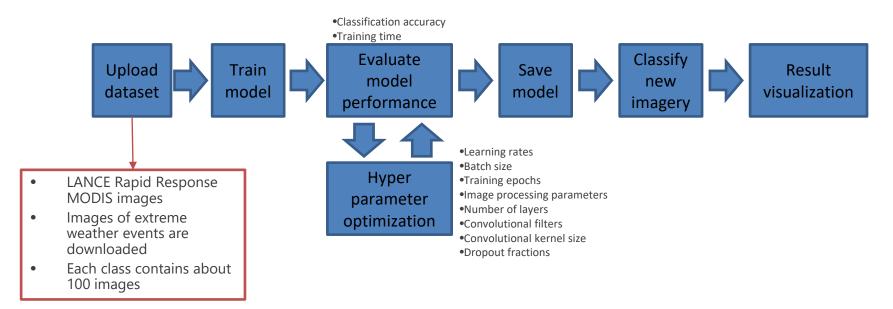
The total damages from the floods were roughly 55 billion dollars

Mining flooding information continuously to save lives

GOES-16/ABI and Suomi-NPP/VIIRS Merged Flood Map in Florida, USA

Merged Flood Extent from ABI and VIIRS on Sep.11, 2017 86°0'0"W 84°0'0"W 82°0'0"W 78°0'0"W South Carolina GOES-16/ABI and Suomi-NPP/VIIRS Merged Flood Map in West Gulf Region, USA TURI MASON Merged Flood Extent from ABI and VIIRS on Aug.31, 2017 Map Information Georgia 0 6 12 24 Projection: UTM, Zone 15 N Coordinate System: GCS WGS1984 Unit: Mile Legend cities river/lake state border Snow Shadow Cloud Normal open water Supra-snow/ice water Ice and Floodwater fraction (%) 40 20 **Data Source** Satellite Imagery Satellite/sensor: SNPP/VIIRS **GIS** data Adminstrative boundary and cities: GDAM Description This flood map is merged from Suomi-NPP/VIIRS data around 18:42 (UTC) and GOES-16/ABI data around 17:30 (UTC) on Aug. 31, 2017, which shows the flood extent under clear-sky coverage in West Gulf region of the USA due to Hurricane Harvey Water fraction means open water percentage in a 375-m pixel. 96°0'0'W 96°0'0'W 94*0'0'W 93*0*0*W

Donglian Sun


		uja ale					
Map Informatio	Data Source	Legend	Description				
0 30 60 120		° cities	- This flood map is merged from Suomi-				
	m Satellite/sensor: SNPP/VIIRS: GOES-16/ABI	river/lake	NPP/VIIRS data around 18:35 (UTC)				
Projection: UTM, Zone 18 N	GIS data	state border	and GOES-16/ABIdata from 13:23 to				
Coordinate System:	Adminstrative boundary	Snow Shadow No data	20:57 (UTC) on Sep.11, 2017, which reflects the flood extent under clear-sky				

3-km GEOS-5 Nature Run 3.6 billion Grid volumes Vision: provide smooth big climate data analytics for NCCS/IPCC

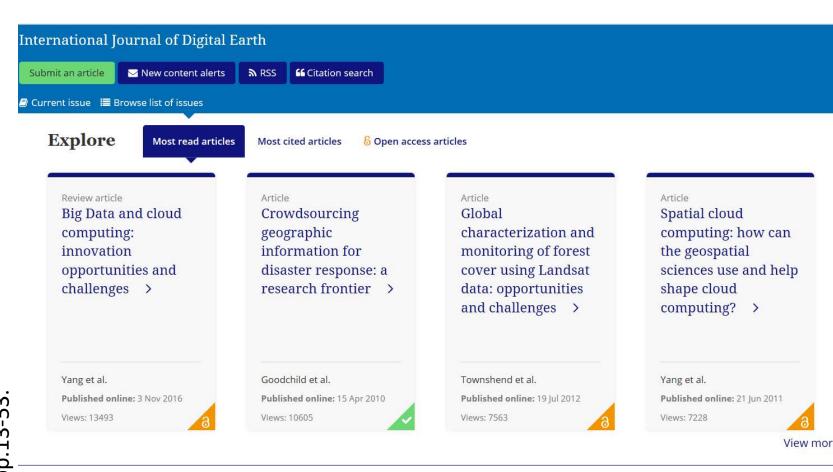
From Dan Duffy, NCCS

Automatically learn and detect disaster events from observations

Dust

Fire

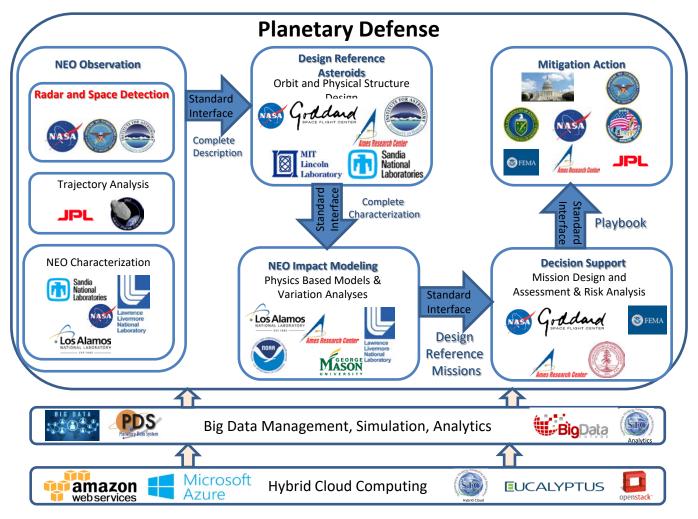
Hurricane


Plume

Big Data and Cloud Computing: Innovation Opportunities and Challenges

Big International Journal of Digital Earth, Data and cloud computing: innovation opportunities Huang, Q., Li, Z., Liu, K. and Hu, F., 2017. and challenges. I 10(1), pp.13-53. Yang, C.,

Is it cool to do research in GIS?



Discovery Channel - Large Asteroid Impact Simulation

Architectural Framework

Could I find a job?

	UNIVERSITY OF SOUTH CAROLINA					A _		
	xx (3,224) - chao x 🙀 Google Calendar - V x 🕅 Kai Liu - Google Sch x 🕐 Apple F	CU Logout >	< []			0		
1025177	C https://scholar.google.com/citations?user=XqxiGUkAAAAJ&hl=en					☆ 🚣		
Web	Images More				ch	aowei.yang.1@gi	mail.com	010
	Kai Liu 🛛 🖾 Follow 🗸			Google So	cholar			SIG
	PhD Student of Earth Systems and GeoInformation Sciences, George Mason				inolai			
	University Web GIS, Volunteer Computing, Cloud Computing					Q,		
	Verified email at masonlive.gmu.edu			Citation indices	All	Since 2011		
	Start 1 - Mar 191			Citations h-index	163 6	162 6		
	Title 1–20	Cited by	Year	i10-index	5	5		
	Cloud computing for geosciences: deployment of GEOSS clearinghouse on Amazon's EC2 Q Huang, C Yang, D Nebert, K Liu, H Wu Proceedings of the ACM SIGSPATIAL international workshop on high performance	27	2010	2011 2012 2013 2014	4 2015 2016			
	Evaluating open-source cloud computing solutions for geosciences Q Huang, C Yang, K Liu, J Xia, C Xu, J Li, Z Gui, M Sun, Z Li Computers & Geosciences 59, 41-52	21	2013	Co-authors View al	II			
	Spatial cloud computing: a practical approach C Yang, Q Huang, Z Li, X Chen, K Liu CRC Press	19	2013	Zhenlong Li Jing Li				
	A performance, semantic and service quality-enhanced distributed search engine for improving geospatial resource discovery Z Gui, C Yang, J Xia, K Liu, C Xu, J Li, P Lostritto International Journal of Geographical Information Science 27 (6), 1109-1132	17	2013					
	The GEOSS clearinghouse high performance search engine K Liu, C Yang, W Li, Z Li, H Wu, A Rezgui, J Xia Geoinformatics, 2011 19th International Conference on, 1-4	13	2011					y o
	Contemporary computing technologies for processing big spatiotemporal data C Yang, M Sun, K Liu, Q Huang, Z Li, Z Gui, Y Jiang, J Xia, M Yu, C Xu, Space-Time Integration in Geography and GIScience, 327-351	9	2015					ata
	Building Model as a Service to support geosciences Z Li, C Yang, Q Huang, K Liu, M Sun, J Xia Computers, Environment and Urban Systems	6	2014					ces
	Optimizing an index with spatiotemporal patterns to support GEOSS Clearinghouse J Xia, C Yang, Z Gui, K Liu, Z Li International Journal of Geographical Information Science 28 (7), 1459-1481	6	2014					

recent work on using Graphics Processing Units (GPUs) to accelerate the visualization of

 \mathbf{T}

How to connect with the communities?

Training

- Research Experience for Undergraduate (4-6 each year)
- Series of Training Program on State Geographic Monitoring Technology:
 Objective: provide training to Chinese executives and engineers from NASG and provisional bureaus on state geographic monitoring technology and the trend of geospatial studies in the U.S.
 - Total over 200 executives were trained in the program

Outreach Activities

- Symposiums on Spatiotemporal Thinking, Computing and Applications
 - Five years in AAG CA
 - 20 paper and panel sessions organized on average each year
 - ~800 audience in the room each year
 - Total ~ 4000 person times

Outreach Activities

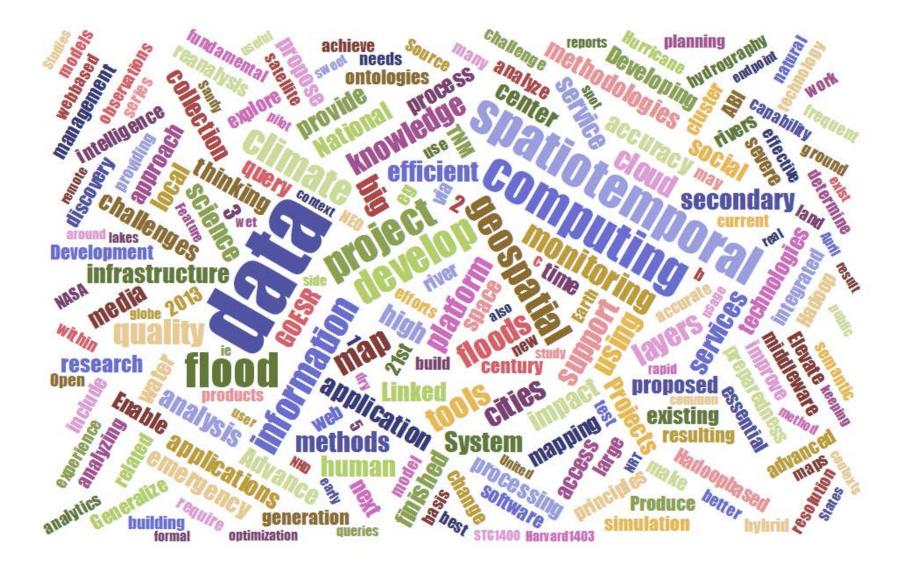
- International symposium on spatiotemporal computing
 - 74 paper submissions and 34 was accepted
 - IJGIS accepted 6 papers
 - Conference proceedings:
 - 81 attendees, 5 keynotes, 53 oral presentations, and 2 panels.
 - Videos of the keynotes and panels are now available at <u>http://stcenter.net/issc/photos_videos</u>

What do we want to achieve?

I/UCRC for Spatiotemporal Thinking, Computing, and Application is Formed by

• UCSB Center for Spatial Studies (as a continuation of NCGIA) leads GIScience innovation

-> Spatiotemporal Thinking


• **GMU** Center for Intelligent Spatial Computing leads computational research for geospatial issues

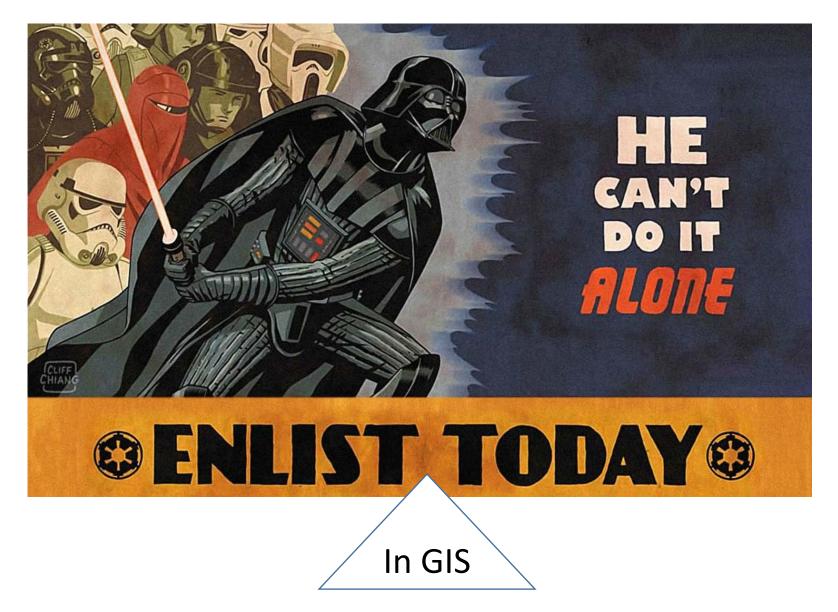
-> Spatiotemporal Computing

• Harvard Center for Geographic Analyses supports applications of world significance

-> Spatiotemporal Applications

Research Topics

Goal & Objectives


Advance

- Spatiotemporal thinking -> Human intelligence
- Spatiotemporal computing -> Computer software and tools
- Spatiotemporal applications -> Human capability of responding to deep scientific questions and grand engineering challenges

Collaboratively, make a difference by building the spatiotemporal infrastructure.

- Innovative Research–Academia
- Products and Services–Industry
- Operations–Agencies

How could we achieve these objectives?

Picture from http://bensbargains.net/thecheckout/wp-content/uploads/2013/05/Pro-empire-enlist-today-he-needs-you.jpg

Thank you!

Any Question?

www.stcenter.net

Chaowei (Phil) Yang

Director, NSF Spatiotemporal Innovation Center

Professor, Dept. of Geography & GeoInformation Science, George Mason University, Fairfax, VA

Email: cyang3@gmu.edu

