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Abstract 

 

Rapid improvements in hyperthermia apparatus are being achieved by industrial and university-

based research groups that have already led to the marketing of a variety of commercial systems 

for heat therapy of malignancy. These tissue heating systems employ microwaves, capacitively 

or inductively coupled radiofrequency current, or high intensity ultrasound to produce controlled 

local heating of tumor tissues. No single system is superior to others in all applications; each has 

its limitations. 
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Local hyperthermia therapy refers to application of heat to a limited region of the body in such a 

way that core body temperature and arterial blood temperatures do not change appreciably. 

Under certain circumstances, such local application of heat can be highly effective in causing 

selective destruction of tumor tissue (Hahn and Kim 1980; U et al. 1980). Most notably, when 

blood flow to the tumor is significantly less than that in surrounding normal tissues, heat energy 

absorbed from an external source is carried away less rapidly from the tumor than from adjacent 

normal tissues; and as a result the tumor temperature rises to a higher steady-state level (Babbs 

1982; Song et al. 1980). 

 

There are four major modalities for producing local heating of tissues by external means: 

microwave radiation, capacitively coupled radiofrequency current, inductively coupled 

radiofrequency current, and high intensity ultrasound. This paper briefly reviews the principles 

and limitations of each modality and identifies for the reader some of the university based 

research groups and corporations developing each technology. (Further details can be found in 

the research reports cited in the list of references.) The present paper focuses on noninvasive 

hyperthermia apparatus, although local hyperthermia approaches using invasive means, 

including capacitively coupled radiofrequency with interstitial electrodes (Manning et al. 1982), 

interstitial microwave antennas (Strohbehn et al. 1979), and inductively heated ferromagnetic 

seeds (Straffer 1979), are also under active investigation. 

 

 

Microwave Heating 

 

Microwave generators operating between 30 MHz and 30 GHz generate waves of 

electromagnetic energy that propagate through air or other coupling media such as de-ionized 

water. The generators are connected to applicators (antennas of various shapes) placed near the 

skin surface. When excited by high frequencies, these applicators produce approximately plane 

waves that pass into the tissue. The incident energy is absorbed by molecules that make up the 

tissue. At microwave frequencies of the order of 100 MHz the mechanism of power absorption 

includes both translational movement of charge carriers and rotational movement of middle-size 

molecules. As the frequency is increased, the larger molecules are successively less able to 

follow the rapidly changing fields until at 2456 MHz the absorption mechanism is dominated by 

the rotational movements of water molecules. 

 

Most tissues are good microwave absorbers--especially water containing tissues like skin and 

muscle. However, the specific absorption rate (SAR) is strongly dependent on the depth. For a 

plane wave normally incident on a thick homogeneous medium, the energy absorption 

diminishes exponentially with depth in the medium. Hence, a fundamental limitation of 

microwave heating is the difficulty of depositing power at depths of more than several 

centimeters from the skin surface, without excessive heating of overlying skin and fat. 

 

Much of the energy incident on the skin surface is in fact reflected because the skin's electrical 

properties (characterized by the complex dielectric constant) are so much different from those of 

the air in which the wave was propagating. For the same reason, there is also reflection at the 

skin/fat and fat/ muscle interfaces. The reflected waves are generally different in phase from the 
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incident waves and further complicated by the non-planar shapes of the tissue structures. The 

relative intensity and phase of the reflected waves depend on frequency, as does the wavelength 

of both the incident and reflected waves. Because of the relative phase differences, there may be 

regions of constructive and destructive interference between incident and reflected waves (i.e., 

standing wave patterns) which, in turn, create peaks and valleys in the heating patterns generated 

in the tissue (Johnson and Guy 1972). The exact heating pattern in any given target, therefore, is 

determined by the tissue properties and dimensions, antenna characteristics, and the frequency of 

the incident wave. In general, bulk absorption tends to dominate and the SAR falls off rapidly 

with depth. Because microwaves are effective for superficial heating, a large number of reports 

describe the use of microwave techniques for treatment of superficial tumors (Hornback et  al. 

1979; U et al.; Luk et al. 1981). 

 

Deep-lying tumors are usually difficult to heat with microwaves because the overlying tissues 

absorb and reflect the incident microwave beam. One approach to the problem of inadequate 

deep heating with microwaves, developed by P.F. Turner with the BSD corporation in Salt Lake 

City, Utah, utilizes an annular phased array of microwave applicators (Short and Turner 1980). 

This device operates between 55 and 110 MHz. A ring of applicators encircles the patient, and 

diametrically opposite applicators are phased in such a way as to produce constructive 

interference of the plane waves in the center of the target. The interference patterns tend to 

mitigate undesired surface heating and to counteract attenuation of SAR with depth. An 

approximately uniform power deposition pattern can be produced in biological loads using this 

approach. However, because this approach tends to heat large volumes of tissue, a corresponding 

disadvantage is that the aggregate applied power may cause systemic hyperthermia that limits the 

duration of any one treatment--especially if the target tissues are well perfused. 

 

To avoid electromagnetic interference with other electronic devices and to avoid possible 

hazards to hospital personnel of chronic low level exposure, microwave heating must be done in 

an electrically shielded room. A relatively low cost copper screen cage can be constructed for 

this purpose. More elegant shielded facilities require alteration and renovation of treatment 

rooms at significant expense. Most instrumentation within the shielded area cannot be used when 

the microwave apparatus is on, and accurate online temperature measurement is difficult during 

microwave treatment. In particular, thermistors are difficult to use because of field-thermometer 

interactions during application of power (Cetas and Connor 1978). Even low resistance 

thermocouple junctions may self heat sufficiently to produce errors of over 2°C (R.E. Shupe, 

personal communication, 1982). The BSD system endeavors to employ non-interacting 

thermometers based upon gallium arsenide fluorescence, together with fiber optical coupling to 

circumvent such problems. This system is currently undergoing field tests at many institutions, 

including the University of Utah (Gibbs et al. 1982). 

 

Hornback, Shupe, and their coworkers (1979) at Indiana University Medical School in 

Indianapolis have considerable clinical experience with microwave hyperthermia. They use 

arrays of Erbe 434 MHz diathermy units to produce regional and whole-body hyperthermia. As 

the patient's body temperature rises during the initial stages of heating, reactive superficial 

vasodilation occurs, improving blood flow to the skin. Continued microwave heating of the skin 

tends to produce wholebody hyperthermia, since warmed blood is returned via the venous 

circulation to the heart. These investigators have thus found large aperture microwave heating to 
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be useful for producing whole-body hyperthermia. Indeed any localized hyperthermia device that 

deposits power in a relatively large volume will tend to produce whole-body heating (Gibbs et 

al.). If such systemic hyperthermia is not desired, it is necessary to cool untreated regions of the 

body with fans, ice packs, temperature controlled blankets, or other means. 

 

 

Capacitively Coupled RF Heating 

 

Capacitively coupled radiofrequency (RF) heating is accomplished at frequencies of 0.5-30 MHz 

with contact electrodes. Many of the problems of dealing with propagating electromagnetic 

waves are obviated, and heating patterns are similar to those which would be generated by direct 

current in a complex bulk conductor. These frequencies are high enough, however, to avoid 

electrical stimulation of muscle and nerve tissue. Capacitively coupled radiofrequency heating of 

tumors has been employed in the clinic by Le Veen and coworkers (1976; 1980) at the Medical 

University of South Carolina and by Brezovitch and colleagues (1981) at the University of 

Alabama. 

 

Capacitively coupled RF, like microwave energy, tends to cause excessive heating of surface 

tissues, albeit by a different mechanism. In order to heat deeper lying target tissue such as a 

tumor, the RF current must penetrate the subcutaneous fat. Fat has significantly higher resistivity 

than most other tissues (roughly 2000 ohm-cm for fat vs. 600 ohmcm for skin, and 400 ohm-cm 

for viscera); so that much greater resistive heating of fat occurs when a given current is passed 

through it, as would be expected in a series circuit. Also, the current density distribution in a 

volume conductor (tissue) converges to maximal values immediately under the electrodes on the 

skin surface. Because resistive heating is proportional to both the tissue resistivity and the square 

of the current density, the power deposition beneath the electrodes is certain to be greater than 

elsewhere in the bulk conductor. For this reason, virtually all practical capacitively coupled 

electrodes are water cooled to dissipate excess heat at the skin surface. 

 

A controversial scheme to provide a focusing effect with capacitively coupled RF has been 

proposed by LeVeen (LeVeen et al. 1980), and is under commercial development. This so-called 

"cross-fire" system works by activating alternate pairs of conductive electrodes that surround the 

target. In work in progress at the University of Arizona, one of us (JRO) measured power 

densities during RF heating in phantoms having typical human dimensions in cross section. With 

15 cm x 15 cm electrodes on either side of a 22-cm-wide homogeneous load with conductivity 

and dielectric constant similar to muscle, the ratio of superficial to mid-plane power deposition 

was 8.3. The decreasing power density with depth in this case is explained by divergence of the 

electric field between the electrodes. Since the current flow is approximately perpendicular to 

major tissue interfaces in heterogeneous loads (e.g., skin/fat, fat/muscle, and muscle/viscera), the 

power density in superficial fat relative to midplane viscera will be equal to the above power 

deposition ratio multiplied by the ratio of conductivities of fat to viscera. The resulting 

unfavorable ratio of power densities (18. 7) reveals the fundamental difficulty of achieving 

power deposition at depth with capacitively coupled RF. 
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Inductively Coupled RF Heating 

 

Inductive techniques for elevating tissue temperatures have been used in diathermy practice for 

many decades, but interest in the application of these techniques to human cancer therapy has 

been more recent. Storm and coworkers (1979a; 1979b) at Henry Medical Electronics in Los 

Angeles have reported on the use of a cylindrical electrode encircling large body regions (thorax, 

abdomen, or pelvis) for inductive heating of visceral tumors. The principle of this technique is 

that an alternating magnetic field is produced in the space encompassed by a coil carrying an 

alternating electric current. Faraday's law states that an alternating magnetic field passing 

through the torso will be associated with an induced electric field. In the case in which the coil 

surrounds the thorax or abdomen of the patient, this induced electric field can then produce 

current flow ("eddy currents") and, in turn, joule heating within the body. The general pattern of 

eddy current flow in a human patient surrounded by a current carrying coil follows concentric 

cylindrical surfaces about the longitudinal body axis. Moreover, there is a strong radial 

dependence of the magnitude of current flow that leads to a power density Pv within body tissues 

that in a strictly cylindrical load is given by the expression 

 

 2v Hr
8

1
)r(P  , 

 

where 

 

 = the electrical conductivity of the tissue (mho/m), 

 = the radian frequency of the alternating magnetic field (radians/sec), 

r = the radius of the tissue element from the axis of the cylindrical load (m), 

 = the magnetic permeability of the tissue (Hy/m), and 

H = the amplitude (phasor) of the applied magnetic field (amp/m) (Oleson, in press; Bottomley 

and Andrew 1978). 

 

The most relevant feature of this expression for cancer therapy is the dependence of the absorbed 

power density on the square of the radius. This fundamental physical principle tends to make 

inductive radiofrequency heating--like microwave heating and capacitively coupled RF--much 

more effective in superficial tissues than in deep tissues, at least as long as cylindrical symmetry 

is maintained. 

 

Experimentally, investigation of the power density patterns in cylindrical and heterogeneous 

loads has been reported by Paliwall and colleagues (1982) and Oleson (in press) in the case of an 

electrode encircling the load. Bioheat transfer modeling of temperature distributions in this case 

has been done by Halac and coworkers (in press) and by Hand and coworkers (1982a; 1982b) in 

the case of a flat "pancake coil" held over the skin surface. The essential features of the inductive 

heating seem to be that because eddy current flow is generally parallel to tissue interfaces, there 

is some sparing of the subcutaneous fat layer from excessive temperature rise in comparison to 

the capacitively coupled RF technique. However, because of the quadratic dependence of power 

density on radius, there is still a fundamental difficulty in achieving sufficiently high power 
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densities at depth for therapeutic heating of tumors, while maintaining applied power levels that 

do not damage superficial tissues. Of course, cooling of surface tissues can be done as with any 

deep heating device, but the depth at which excessive heating can be reduced by various surface 

cooling techniques is limited to about 3 cm (Hand et al. 1982a). In practice, surface cooling may 

or may not be sufficient to overcome the problem of superficial hot spots in specific cases. 

 

Another way of using the inductive method to heat deep seated tumors is to place a current loop 

on either side of the body (Helmholtz coils), such that the common axis of these two loops is 

perpendicular to the longitudinal body axis. This approach has been developed at the M.D. 

Anderson Hospital by P.M. Corry et al. (1982a), and at the University of Arizona and Purdue 

University by the authors and their coworkers (Oleson, in press; Oleson et al., in press; Voorhees 

and Babbs, in press). Power deposition with this technique still varies approximately 

quadratically with distance measured perpendicularly to the common electrode axis, but in 

contrast to the circumferential electrode power deposition pattern, there are points on the 

midplane between the electrodes where the power deposition does not vanish. The total volume 

of superficial tissue receiving power deposition is also less than with the circumferential 

electrode, thus reducing somewhat the problem of excessive whole-body heating. There are 

complementary features to the non-uniform power deposition patterns in the case of the 

circumferential electrode vs. the coaxial electrode pair, and in some circumstances alternating the 

two electrode arrangements may reduce the volume of tissue that is inadequately heated by one 

electrode arrangement alone. However, the power deposition pattern with this technique is very 

difficult to analyze and control in the case of heterogeneous loads with differing geometries.  

 

 

Ultrasound 

 

There is a vast literature available on the biomedical uses of ultrasound (Clark et al. 1980), both 

in diagnostic and therapeutic applications. Heating is produced as ultrasound vibrations are 

absorbed in tissue. Focusing and/or pulsing of ultrasound can lead to markedly increased 

absorption in limited regions because of nonlinear effects-perhaps to great advantage in 

hyperthermia applications (Dunn et al. 1982). In addition to the tissue heating, another effect of 

ultrasound is that of cavitation, and it is possible that this process may produce non-thermal 

injury in biological tissues (Apfel 1982). 

 

In any application, it is important to recognize that ultrasound is poorly transmitted across air 

spaces, because strong reflection of the incident beam occurs within the soft tissue side of any 

tissue/air inlet face. Also, ultrasound is strongly absorbed within bone, and strongly reflected at 

tissue/bone interfaces. Hence presence of bone may interfere with the desired use of ultrasound. 

The absorption of ultrasound in soft tissue diminishes as frequency decreases, so that there is an 

optimal range of frequencies providing both adequate penetration and adequate absorption 

(Barber and Grifface 1981; Hill 1982). Near 1 MHz, wavelengths in soft tissue (approximately 1 

to 3 mm) are short enough to enable beams to be focused using various lens designs. The 

possibility of sharply focused power deposition at depth sets ultrasound apart from external 

microwave or radiofrequency techniques, where physics seems to dictate that little focusing at 

depth is possible. On the other hand, poor acoustical transmission across air prevents ultrasound 

from being used for tumors surrounded by aerated lung. Accordingly, ultrasound has been most 
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frequently used to treat superficial lesions, extremity lesions, or deep lesions in the abdominal 

cavity. 

 

Clinical investigations of "plane wave" and focused ultrasound have been reported by Lele and 

Parker (1982) and by Marmor and coworkers (1979a; 1979b). Corry and associates (1982b) also 

have considerable experience in hyperthermia produced by plane wave transducers. Lele and 

Parker at M.I.T. and Fessenden and colleagues (1982) at Stanford are investigating the use of 

focused approaches for heating deep visceral tumors. At Stanford, a system developed jointly 

with Hewlett Packard Corporation in Palo Alto, California, is under trial. In the near future it 

will be possible to make a preliminary judgment as to whether the theoretical promise of 

ultrasound hyperthermia for achieving focused, deep heating can be easily translated into clinical 

practice. 

 

Summary and Conclusions 

 

Technology for local heat therapy of cancer is evolving rapidly at a number of technologically 

diverse and geographically scattered institutions and companies. No single technology is superior 

to others in all applications, and no single company, laboratory, or research group has all the 

answers. An ideal system would provide focused heating at depth in a predictable fashion, with 

little probability of generating undesired hot spots in normal tissues and little interference with 

monitoring equipment. Existing systems approximate this ideal to different degrees, depending 

on the anatomy and geometry of the tumor and its surrounding tissues. 

 

In the foregoing discussion the important problem of measuring temperatures in tumors and 

normal tissues has been slighted. At the present time, all thermometry is necessarily invasive, 

and there are limitations to the number of points at which temperatures can be measured utilizing 

percutaneously placed catheters as conduits for thermometers. However, further advances in the 

art, the science, and the technology of local heat therapy are likely to be forthcoming in the next 

few years from a diverse community of investigators and young companies, who are following 

an interesting variety of approaches. Continued research and development in the spirit of 

constructive, rather than destructive, competition will certainly advance the field substantially--

much to the benefit of patients. At present, however, clinical engineers should realize that 

hyperthermia therapy for cancer is still experimental. Despite the flurry of commercial activity, 

considerable caution should be exercised in the purchase and use of hyperthermia equipment.  
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